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AEI-2003-105 DESY 04-033 ITP-UU-04/05 SPIN-04/03Gauged Supergravities in Three Dimensions:A Panorami Overview1B. de WitInstitute for Theoretial Physis & Spinoza Institute,Utreht University, Postbus 80.195, 3508 TD Utreht, The Netherlandsb.dewit�phys.uu.nlH. NiolaiMax-Plank-Institut f�ur Gravitationsphysik,Albert-Einstein-Institut,M�uhlenberg 1, D-14476 Potsdam, Germanyniolai�aei.mpg.deH. SamtlebenII. Institut f�ur Theoretishe Physik der Universit�at Hamburg,Luruper Chausse 149, D-22761 Hamburg, Germanyhenning.samtleben�desy.deAbstratMaximal and non-maximal supergravities in three spaetime dimensions allowfor a large variety of semisimple and non-semisimple gauge groups, as well as om-plex gauge groups that have no analog in higher dimensions. In this ontribution wereview the reent progress in onstruting these theories and disuss some of theirpossible appliations.1Based on talks by B. de Wit and H. Niolai at the 27th Johns Hopkins Workshop, 24 - 26 August2003, G�oteborg, Sweden. 1



1 IntrodutionLoally supersymmetri theories in three spaetime dimensions oupled to matter haveat most N = 16 supersymmetries [1℄. The bosoni matter is desribed by salar �elds,whih parametrize a target spae belonging to a nonlinear sigma model. While thereis a large number of possible target spaes when N � 4, the possibilities beome morerestrited with inreasing N : beyond N = 4, the target spaes are oset spaes G=H,where H is the maximal ompat subgroup of G. For all values of N these supergravitiesmay be invariant under a bosoni symmetry group G, whih ommutes with the Lorentztransformations and spaetime di�eomorphisms and whih involves (subgroups of) thetarget-spae isometry group and the R-symmetry group SO(N). In that ase there existsupersymmetri deformations where a subgroup G0 � G is promoted to a loal symmetry[2, 3, 4, 5℄, thereby furnishing three-dimensional analogs of the gauged supergravities indimensionsD � 4 that have been known for a long time. In ontrast to higher-dimensionalgauged supergravities, the vetor �elds in general appear via a Chern-Simons (CS) ratherthan a Yang-Mills (YM) term. As it turns out, there is a surprisingly rih struture andvariety of possible gaugings, inluding semisimple and non-semisimple gauge groups aswell as novel omplex gaugings whih have no analog in D � 4 dimensions.There are several reasons why D = 3 (gauged) supergravities are of more generalinterest. Below we list some of these reasons.� During the last �ve years there has been enormous interest in the so-alled AdS/CFTorrespondene, aording to whih a supergravity theory with an AdS groundstateis related to a (super)onformal theory living on the boundary of the AdS spae (see[6℄ for a review and an extensive list of referenes). Muh of this interest has beenfoused on the AdS5=CFT4 orrespondene, relating gauged maximal supergravitywith gauge group SO(6) on AdS5 [7℄ to the maximally supersymmetri Yang-Millstheory on its boundary. While in this ase one has essentially only one theory totest the onjetured orrespondene, the number of possibilities is far greater whenone desends by two in the number of dimensions: the AdS3=CFT2 orrespondeneo�ers a muh larger bestiary of examples, beause on the one hand there are farmore superonformal theories in two dimensions, and on the other hand beausegauged supergravities are more numerous in three dimensions.� (Ungauged) extended supergravities exhibit their maximal global and most \uni�ed"symmetry in three dimensions1, beause all tensor gauge �elds an be dualizedto salar �elds, so that the propagating bosoni degrees of freedom are uniformlydesribed by salar �elds, whih usually live on a target spae with a nie geometrial1Here we will not be onerned with the in�nite dimensional global symmetries E9, E10 and E11,whih are known, resp. onjetured, to emerge for maximal supergravities in dimensions D � 2.2



struture. In partiular for the maximal N = 16 theory, the maximally extendedexeptional Lie algebra E8 makes its appearane [8, 9℄, whereas in dimensions D = 4and D = 5 the maximal-rank exeptional symmetries ompatible with maximalsupersymmetry are E7 and E6, respetively [10℄.� Unlike the abelian duality relating salar �elds and antisymmetri tensor gauge �eldsin higher dimensions, the duality between salar and vetor �elds an be extendedto non-abelian gauge groups in three dimensions. There is a novel equivalene be-tween YM and ertain CS gauge theories (whih also holds for non-supersymmetritheories) whih has no analog in dimensions D � 4. Namely, as shown in [11, 5℄,in three dimensions, any YM gauged supergravity with gauge group GYM is equiv-alent to a CS gauged supergravity with non-semisimple gauge group GYM nT witha ertain translation group T . Beause in the latter formulation all the vetorsappear via a CS term rather than a YM-type kineti term, no new propagatingdegrees of freedom are generated by the gauging, as is required by the preservationof supersymmetry. Altogether, the CS gauged supergravities thus not only ontainthe YM-type gauged theories but enompass a muh larger lass of theories.� Beause the vetors appear via a CS term and do not propagate, their numberand hene the dimension of the gauge group are not determined a priori, unlikein dimensions D � 4. For this reason, the possible gaugings are more numerousand exhibit a riher struture than the orresponding D � 4 gauged supergravities.Similar omments apply to the salar potentials of these theories whih providea large variety of symmetry breaking patterns with vaua of the anti-de Sitter,Minkowski or de Sitter-type [12, 13, 14℄. Among the novel features without analogin higher dimensions let us mention the existene of maximally supersymmetrivaua for non-ompat gauge groups (f. table 2 in setion 9) and the ourreneof stable AdS-type vaua with ompletely broken supersymmetry (for D � 4, allknown non-supersymmetri vaua of maximally gauged supergravities are unstable[15, 16, 17, 18℄).� Exept for ertain non-semisimple gaugings, none of the D = 3 gauged supergravi-ties an be obtained by any known mehanism from higher dimensional supergrav-ity. The very existene of these theories may thus point to the existene of new\usps" of M theory, and the existene of new geometrial strutures in eleven di-mensions of the type suggested in [19, 20℄ and referenes therein. The theorieswhih do originate from higher dimensions usually appear with a YM-type kinetiterm, and therefore neessarily require non-semisimple gauge groups in the CS-typeformulation, as desribed above. In partiular they inlude all those theories ob-tained by redution of higher-dimensional maximal gauged supergravities on a torus,or by Kaluza-Klein ompati�ation of higher-dimensional supergravities on some3



internal manifold, suh as for instane IIA/IIB supergravity ompati�ed on theseven-sphere, or D = 5 supergravity on the two-sphere.� Just like D = 11 supergravity an be viewed as a strong-oupling limit of D = 10IIA superstring theory [21℄ one may speulate that four dimensions might arise outof a strongly oupled D = 3 supergravity theory [22℄. In this ontext, a speial roleis played by the dilaton �eld, whose expetation value on the one hand `measures'the size of the S1 on whih one redues, and on the other hand appears as thestring oupling onstant. The onnetion between the pertinent D = 3 potentialsand the potentials of D � 4 gauged supergravity potentials has been studied in [4℄,where the dilaton is identi�ed with the salar �eld assoiated with a ertain gradingoperator whih is an element of the relevant (non-semisimple) gauge group.� Gauged supergravity an provide an e�etive and eonomial desription of an in�-nite number of Kaluza-Klein supermultiplets in a way that is again without analogin dimensions D � 4. This has been reently demonstrated for the ompati�ationof matter-oupled half maximal D=6 supergravity on AdS3�S3 whih leads to ane�etive theory in three dimensions with N = 8 loal supersymmetries [23℄. Morespei�ally, the self-interations of the the spin-1 Kaluza-Klein towers are fully de-sribed by an N = 8 gauged supergravity with gauge group SO(4)n T1, where T1is an in�nite dimensional translation group, and the gauge group is embedded intothe global symmetry group SO(8;1). (The seond entry is in�nite beause thereare in�nitely many N = 8 matter supermultiplets.) In partiular, this embeddingis ompatible with the quantum numbers of the Kaluza-Klein supermultiplets, andthe masses of all Kaluza-Klein states are orretly reovered from a single salarpotential.� Finally, there are intriguing onnetions to reent developments in the di�erentialgeometry of three-dimensional manifolds. On the one hand, the models ontain theCS Lagrangians that an be used to desribe knots and links and their harateristipolynomials (invariants) [24, 25, 26℄. On the other hand they ontain the requisitematter �elds to realize the various elementary Thurston geometries [27, 28℄; in par-tiular, reent progress in establishing part of the Thurston onjeture [29℄ has beenbased on the introdution of a `dilaton �eld'. The question is therefore whether thesegauged supergravities an provide a uni�ed framework for these so far disonnetedparts of mathematis.This review is organized as follows. In setion 2 we briey review the results of [1℄on the ungauged supergravity theories in three dimensions. The global invarianes ofthe orresponding Lagrangians are disussed in setion 3. In setion 4 we show thatarbitrary gauge �eld ouplings of Yang-Mills-type in three dimensions may always be4



brought into the form of partiular Chern-Simons interations. For general gaugingswe may thus restrit attention to the latter type of theories. In setion 5 and 6 wepresent the full Lagrangian and transformation rules of the gauged supergravities in threedimensions, as well as the onditions that must be satis�ed in order that the gaugingpreserves supersymmetry. The theories for N � 4 supersymmetries are disussed in moredetail in setion 7, while setions 8 and 9 fous on the struture of the N > 4 theories, andin partiular on the admissible gauge groups for the maximal (N = 16) theory. There, wealso mention some possible impliations of our results for the AdS3/CFT2 orrespondene.2 Supergravity oupled to nonlinear sigma modelsIn this setion we briey summarize the results of [1℄ (for a disussion of the peuliaritiesof pure gravity in three spae-time dimensions, we refer to [30, 31℄). The �elds of thenonlinear sigma model are the target-spae oordinates �i and their superpartners �i, withi = 1; : : : ; d; the supergravity �elds are the dreibein e�a, the spin-onnetion �eld !�ab andN gravitino �elds  I� with I = 1; : : : ; N . The gravitinos transform under the R-symmetrygroup SO(N), whih is not neessarily a symmetry group of the Lagrangian.Sine the �elds are all massless at this stage, one may assume that no matter �eldsother than salars and spinors are required, beause heliity is trivial in three dimensions.The salar �elds parametrize a target spae endowed with a Riemannian metri gij(�).Pure supergravity is topologial in three dimensions and exists for an arbitrary numberN of superharges and orresponding gravitinos [32℄. Its oupling to a nonlinear sigmamodel requires the existene of N � 1 hermitean, almost omplex, strutures fPij(�),labeled by P = 2; : : : ; N , whih generate a Cli�ord algebra,fPik fQkj + fQik fPkj = �2 ÆPQ Æij : (2.1)From the fP one onstruts 12N(N�1) tensors f IJij = �fJIij = �f IJji that at as generatorsfor the group SO(N),fPQ = f [P fQ℄ ; f1P = �fP1 = fP ; (2.2)where, here and heneforth, I; J = 1; : : : ; N . The f IJ are ovariantly onstant, both withrespet to the Christo�el and SO(N) target-spae onnetions, �ijk and QIJi , respetively,Di (�; Q) f IJjk � �if IJjk � 2�i[kl f IJj℄l + 2QK[Ii fJ ℄Kjk = 0 : (2.3)The SO(N) onnetions QIJi (�) are nontrivial in view ofRIJij (Q) � �iQIJj � �jQIJi + 2QK[Ii QJ ℄Kj = 12f IJij : (2.4)5



For N = 2 the target spae is K�ahler and f12 is a omplex struture. The SO(2)holonomy is undetermined. For N = 3, there are three (almost) omplex struturesf12; f23 and f31, and the target spae is a quaternion-K�ahler spae. The ase N = 4 isspeial: there exists a tensor J ij, de�ned byJ = 124"IJKLf IJfKL ; J2 = 1 ; (2.5)whih has eigenvalues �1, ommutes with the almost omplex strutures and is ovari-antly onstant. This implies that the target spae is loally the produt of two separateRiemannian spaes of dimension d�, where d+ + d� = d and d� are both multiples of4. These two subspaes are quaternion-K�ahler and orrespond to inequivalent N = 4supermultiplets. For N = 4 we note the following identity,f IJ ij fKLij = 4�d+PIJ;KL+ + d�PIJ;KL� � ; (2.6)with (anti)self-dual projetors,PIJ;KL� = 12ÆI[K ÆL℄J � 14"IJKL : (2.7)For N > 2 the target spae is an Einstein spae with nontrivial SO(N) holonomy. Theholonomy group is ontained in SO(N) �H0 � SO(d) whih must at irreduibly on thetarget spae. The group H0 must be a subgroup of SO(k) (for N = 7; 8; 9 mod 8), U(k)(for N = 2; 6 mod 8), or Sp(k) (for N = 3; 4; 5 mod 8), where k denotes the number ofindependent supermultiplets whose salar �elds parametrize the target spae. For N = 4these results are more subtle beause of the produt struture. We note the followingrelations (always assuming N > 2),Rijkl = 18 �f IJij f IJkl + C�� h�ij h�kl� ;Rijkl f IJ kl = 12 �d+P+IJ;KL + d�P�IJ;KL� fKLij ;Rij = (N � 2 + 18d) gij + 18(d+ � d�)Jij ; (2.8)where, for N 6= 4, one must set Jij = 0 and P�IJ;KL = 12ÆI[KÆL℄J. In the �rst equation,C��(�) is a symmetri tensor and the target-spae tensors h�ij(�) form a basis of antisym-metri tensors ommuting with the almost omplex strutures. These tensors generatethe H0 fator of the holonomy group with orresponding struture onstants f��.Beyond N = 4 the target spae geometries beome very restrited. This is shown intable 1, where k denotes the number of matter supermultiplets oupled to supergravity.Remarkably, not all values of 4 < N � 16 an be realized: matter-oupled supergravitiesexist only for N = 5; 6; 8; 9; 10; 12 and 16 superharges. Furthermore, only for N � 8 is6



N Target Spae d1 Riemann manifoldMR k2 K�ahler manifoldMK 2k3 quaternion K�ahler manifoldMQK 4k4 quaternion K�ahler manifoldsMQK1�MQK2 4(k1+k2)5 Sp(2; k)=(Sp(2)�Sp(k)) 8k6 SU(4; k)=(SU(k)�SU(4)�U(1)) 8k8 SO(8; k)=(SO(8)�SO(k)) 8k9 F4(�20)=SO(9) 1610 E6(�14)=(SO(10)�U(1)) 3212 E7(�5)=(SO(12)�Sp(1)) 6416 E8(8)=SO(16) 128Table 1: Target spaes for D = 3 supergravities. The number of independent supermultipletsis denoted by k. For N = 4 there exist two types of (inequivalent) supermultiplets, ounted byk1 and k2.it possible to inlude an arbitrary number k of supermultiplets, whereas for N � 9 thereexists only one theory for eah admissible value of N .Let us now turn to the Lagrangian and supersymmetry transformations. We adopta manifestly SO(N) ovariant notation whih allows to selet the N�1 almost omplexstrutures from the f IJ tensors by speifying some arbitrary unit N -vetor �I and iden-tifying the omplex strutures with �JfJI . Aordingly we extend the fermion �elds �ito an overomplete set, �iI , de�ned by�iI = ��i; fPij �j� : (2.9)The fat that we have only d fermion �elds, rather than dN , is expressed by the SO(N)ovariant onstraint,�iI = PIJij �jJ � 1N �ÆIJÆij � f IJ ij��jJ : (2.10)We should stress, that the introdution of �iI is a purely notational onveniene; at everystep in the omputation one may hange bak to the original notation by hoosing �i =7



�I�iI . The ovariant notation does not imply that the theory is SO(N) invariant; ratherthe ovariant setting allows us to treat the N supersymmetries and the orrespondinggravitinos on equal footing.The Lagrangian then takes the formL0 = �12 i "��� �e�aR��a + � I�D� I��� 12e gij �g�� ���i ���j +N�1 ��iI=D�jI�+ 14e gij ��iI�� I� (���j + b���j)� 124eN�2Rijkl ��iIa�jI ��kJa�lJ+ 148eN�2 �3 (gij ��iI�jI)2 � 2(N � 2) (gij ��iIa�jJ)2� ; (2.11)with the ovariant derivativesD� I� = ��� + 12!a� a� I� + ���iQIJi  J� ;D��iI = ��� + 12!a� a��iI + ���j ��ijk �kI +QIJj �iJ� : (2.12)As in [1, 5℄, we use the Pauli-K�all�en metri with hermitean gamma matries a, satisfyingab = Æab + i"ab. The Lagrangian is invariant under the following supersymmetrytransformationsÆe�a = 12 ��Ia  I� ;Æ I� = D��I � 18gij ��iI��jJ �� �J � Æ�iQIJi  J� ;Æ�i = 12 ��I �iI ;Æ�iI = 12 �ÆIJ1�f IJ�i j =b��j �J � Æ�j ��ijk �kI +QIJj �iJ� ; (2.13)with the superovariant derivative b���i � ���i � 12 � I��iI . Observe that the terms pro-portional to Æ� in Æ�iI do not satisfy the same onstraint (2.10) as �iI itself, beausethe projetion operator PIJij itself transforms under supersymmetry, suh that only theprojetor ondition is supersymmetri.3 Isometries and R-symmetriesThe Lagrangian (2.11) and the transformation rules (2.13) are onsistent with target-spaedi�eomorphisms and �eld-dependent SO(N) R-symmetry rotations. These transforma-tions orrespond to reparametrizations within ertain equivalene lasses, but do not, ingeneral, onstitute an invariane. The SO(N) rotations at on  I�, �iI and QIJi aordingto Æ I� = SIJ(�) J� ; Æ�iI = SIJ(�)�iJ ; ÆQIJi = �DiSIJ(�) : (3.1)8



From (2.4), one onludes that the f IJ should be rotated orrespondingly,Æf IJ = 2SK[I(�) fJ ℄K : (3.2)The bosoni invariane group G of the Lagrangian (2.11) that ommutes with theLorentz transformations and spaetime di�eomorphisms, is a subgroup of the produt ofthe target-spae isometries times the R-symmetry transformations. It is generated bythose target-spae isometries whose ation on the QIJi and f IJ may be absorbed by aspeial SO(N) transformation (3.1), (3.2). Spei�ally, its generators are Killing vetor�elds X i(�) satisfyingLX gij = 0 ; LXQIJi +DiSIJ (�;X) = 0 ;LXf IJij � 2SK[I (�;X) fJ ℄Kij = 0 ; (3.3)where SIJ(�;X) is the parameter of an in�nitesimal SO(N) rotation whih depends bothon X i(�) and on the salar �elds. The Lagrangian (2.11) is then invariant under theombined transformations,Æ�i = X i(�) ; Æ I� = SIJ(�;X) J� ; Æ�iI = �jI�jX i + SIJ(�;X)�iJ : (3.4)The fermion transformations an be rewritten ovariantly,Æ I� = VIJ(�;X) J� � Æ�iQIJi  J� ;Æ�iI = DjX i �jI + VIJ(�;X)�iJ � Æ�j ��ijk �kI +QIJj �iJ� ; (3.5)where VIJ(�;X) � XjQIJj (�) + SIJ(�;X). Using (2.4) and (2.3), one veri�es that theseond equation of (3.3) orresponds to,DiVIJ(�;X) = 12f IJij (�)Xj(�) ; (3.6)whih shows that VIJ(�;X) an be regarded as as the moment map assoiated with theisometry X i. After ontrating (3.6) with fMN ij , one obtainsf IJ ij DiXj = ( 12dVIJ ; for N 6= 2; 4(d+PIJ;KL+ + d�PIJ;KL� )VKL ; for N = 4 (3.7)The last equation of (3.3) oinides with the integrability ondition related to (3.6) andis thus automatially satis�ed.For N > 2, the above analysis shows that there are no obstrutions for extending anisometry to an invariane of the Lagrangian. For N = 2 this is di�erent: VIJ is determined9



by (3.6) up to an integration onstant related to the invariane of the Lagrangian underonstant SO(2) transformations of the fermions. The isometries leave the omplex stru-ture invariant and are therefore holomorphi. For N = 4 the (anti)selfdual almost om-plex strutures PIJ;KL� fKL live in the orresponding d�-dimensional quaternion-K�ahlersubspae. The same holds for the moment maps, PIJ;KL� VKL, whih aording to (3.6)depend only on the orresponding subspae oordinates. Note, however, that when oneof the subspaes is trivial, say when d� = 0, then PIJ;KL� VKL orresponds to a triplet ofarbitrary onstants. This is a onsequene of the fat that the model in this ase has arigid SO(3) invariane ating exlusively on the fermions.These integration onstants in VIJ orrespond to the so-alled Fayet-Iliopoulos (FI)terms that are known from the gaugings of four-dimensional N = 1 and N = 2 super-gravity. Indiretly, the above results may have impliations for higher-dimensional gaugedsupergravities, as follows from onsidering their redution to three dimensions. For in-stane, the redution of d = 4; N = 1 supergravity leads to d = 3; N = 2 supergravity forwhih the moment maps an always be modi�ed by an additive onstant. Consequently,we expet that there are no obstrutions against a FI term in four dimensions, whih is in-deed the ase. For d = 4; N = 2 supergravity the situation is more subtle. The redutionof these theories to three dimensions leads to a produt of two quaternion-K�ahler targetspaes, one assoiated with the vetor multiplets and one assoiated with the hypermulti-plets in four dimensions. As in three dimensions there are no integration onstants in themoment maps unless one of these quaternion-K�ahler spaes is of dimension zero, it followsthat FI terms are only possible in four dimensions in the absene of hypermultiplets, aresult whih is indeed well known.The generators of G are labeled by indiesM;N : : : and generate an algebra g. Theyonsist of ombined isometries generated by Killing vetors XMi and in�nitesimal SO(N)rotations SM IJ � SIJ(�;XM). For N = 2; 4 one may have the situation that some of theXM vanish, while the orresponding SM IJ are onstant. Closure of g implies,XMj �jXN i �XNj �jXMi = fMNKXKi ; (3.8)[SM;SN ℄IJ �XMi �iSN IJ +XN i �iSM IJ = �fMNK SK IJ ; (3.9)with struture onstants fMNK.From the integrability ondition of (3.6) one derives that DiXj� 14 fMNij VMN ommuteswith the almost omplex strutures. For N > 2 this implies that it an be deomposedin terms of the antisymmetri tensors h�ij introdued in (2.8),DiXMj � 14f IJij VM IJ � h�ij VM� : (3.10)Introduing the notation VM i � XM i, we establish the following system of linear di�er-10



ential equations,DiVM IJ = 12 f IJij VM j ;DiVM� = 18 C�� h�ij VM j ;DiVMj = 14 f IJij VM IJ + h�ij VM� ; (3.11)where the ovariant derivative ontains the Christo�el onnetion as well as the SO(N)�H0onnetions. Furthermore, we derivefMNK VK IJ = 12 f IJij VMiVNj � [VM; VN ℄IJ ;fMNK VK� = 18C�� h�ij VM i VN j + f�� VM� VN  ;fMNK VKi = 14f IJij (VM IJ VN j �VN IJ VM j) + h�ij(VM� VN j � VN� VM j) : (3.12)Under the G-transformations the quantities VM IJ , VM i and VM� transform aording tothe adjoint representation of G, up to �eld-dependent SO(N)�H0 transformations, as isshown by,VN iDiVM IJ = �fMNK VK IJ + [VN ;VM℄IJ ;VN iDiVM� = �fMNK VK� + f�� VN VM� : (3.13)For VM i this result is aptured by (3.8).4 Yang-Mills versus Chern-Simons gauged theoriesSo far we have been onerned with massless matter �elds. We now turn to supersym-metri deformations of these theories that an be obtained by gauging. In that ase twoissues arise immediately. First the theories disussed so far did not inlude vetor �eldsthat are obviously needed to e�et the gauging. Seondly, when the �elds are not masslessthen it is no longer obvious that matter supermultiplets an be exlusively desribed interms of salar and spinor �elds, and one might want to inlude other �elds as well. Asit turns out, these two issues are somewhat related.First of all, one an always inlude vetor gauge �elds without hanging the numberof dynami degrees of freedom, by introduing CS terms. This seems to leave open theoption of adding additional standard YM kineti terms (whih may eventually aquiremass terms by spontaneous symmetry breaking) to desribe some of the matter degreesof freedom. In fat, all the theories that have been onstruted by diret dimensionalredution appear as YM rather than CS gauged theories [33, 34℄.11



However, it turns out that the YM Lagrangians in three dimensions are simply equiv-alent to partiular CS Lagrangians. The dynami degrees of freedom are then arried byextra (ompensating) salar �elds. In this onversion every gauge �eld is replaed by twogauge �elds and a new salar �eld, whih together desribe the same number of dynamidegrees of freedom as the original gauge �eld. The nonabelian gauge group is enlarged toa bigger gauge group whih is neessarily non-semisimple. To see how this omes about,onsider a Lagrangian in three spaetime dimensions with YM kineti terms quadrati inthe �eld strengths and with moment interations proportional to gauge ovariant tensorsOA�� , L = �14pg �FA��(A)+OA��(A;�)�MAB(�) �FB��(A)+OB��(A;�)�+ L0(A;�) :(4.1)Here AA� denote the nonabelian gauge �elds labeled by indies A;B; : : :, and � generiallydenotes possible matter �elds transforming aording to ertain representations of thegauge group GYM. The struture onstants of this group are denoted by fABC , so thatthe �eld strengths read,FA��(A) = ��AA� � ��AA� � fBCAAB�AC� :The symmetri matrix MAB(�) may depend on the matter �elds and transforms ovari-antly under GYM. The last term, L0(A;�), in the Lagrangian is separately gauge invariantand its dependene on the gauge �elds is exlusively ontained in ovariant derivatives ofthe matter �elds or in topologial mass terms (i.e. CS terms).Usually the duality is e�eted by regarding the �eld strength as an independent �eldon whih the Bianhi identity is imposed by means of a Lagrange multiplier. Beause theLagrangian (4.1) depends expliitly on both the �eld strengths and on the gauge �elds, weproeed di�erently and write the �eld strength in terms of new vetor �elds BA� and thederivative of ompensating salar �elds �A, all transforming in the adjoint representationof the gauge group. The expliit expression,12 ipg "���(FA��(A) +OA ��(A;�)) = MAB(BB � �D��B) ; (4.2)where MAC MCB = ÆBA , should be regarded as a �eld equation that follows from the newLagrangian (4.5) that we are about to present. The struture of (4.2) implies that we aredealing with additional gauge transformations as its right-hand side is invariant under theombined transformations,ÆBA� = D��A ; Æ�A = �A ; (4.3)under whih all other �elds remain invariant. The orresponding abelian gauge group, T ,has nilpotent generators transforming in the adjoint representation of GYM. Obviously,12



the �A at as ompensating �elds with respet to T . The ombined gauge group is now asemidiret produt of GYM and T and its dimension is twie the dimension of the originalgauge group GYM. The ovariant �eld strengths belonging to the new gauge group areFA��(A) and FA��(B;A) = 2D[�BA�℄, and transform under T aording to ÆFA�� = 0 andÆFA�� = ��C fABC FB��. The fully gauge ovariant derivative of �A equalsD̂��A � D��A �BA� = ���A � fABC AB� �C �BA� ; (4.4)and is invariant under T transformations.The �eld equations orresponding to the new Lagrangian,L = �12pg D̂��AMAB(�)D̂��B + 12 i "��� (FA��BA� �OA�� D̂��A) + L0(A;�) ;(4.5)lead to (4.2) as well as to the same �eld equations as before for the matter �elds �.Observe that the Lagrangian is fully gauge invariant up to a total derivative. In this way,the YM Lagrangian has now been onverted to a CS Lagrangian, with a di�erent gaugegroup and a di�erent salar �eld ontent, although the theory is still equivalent on-shellto the original one. To obtain the original Lagrangian (4.1), one simply imposes the gauge�A = 0 and integrates out the �elds BA�.In �gure 1 we shematially illustrate the impliations of this equivalene for gaugedsupergravities in three dimensions. When desended from higher dimensions, the un-gauged theories usually appear with the physial bosoni degrees of freedom in di�erentguises, as salar and vetor �elds. In order to exhibit possible hidden symmetries, onethen dualizes the vetor �elds after whih all bosoni degrees of freedom are representedby salar �elds (in priniple there an also exist `intermediate' versions). The resultingtheory is then on-shell equivalent to the original one. Both theories an be gauged, butas the table shows, the on-shell equivalene persists.Perhaps it is worth pointing out that introduing a mass term to a CS theory or a YMtheory has di�erent onsequenes with regard to the degrees of freedom [35℄. An abelianCS term with a regular mass term proportional to 12mA 2� yields the following massivewave equation for the vetor �eld,��A� � ��A� = � im"���A� ; (4.6)whih desribes massive degrees of freedom with spin only equal to +1 or �1, dependingon the sign of the mass term. In ontradistintion, a YM kineti term with a regular massterm 12m2A 2� leads to massive degrees of freedom arrying both spin +1 and spin �1. Thisdoubling of degrees of freedom is onsistent with the YM-CS onversion desribed above,as a YM theory takes the form of a CS theory with twie the number of vetor �elds.13



gauging gaugingGauged theory (4.5)d salars, 2� CS-vetorsgauge group: G0 nT�
Ungauged theoryd�� salars,� abelian vetorsGauged theory (4.1)d�� salars, � YM-vetorsgauge group: G0

dualizationUngauged theoryd salars, no vetors eliminationby means of (4.2)Figure 1: CS and YM gauged supergravity in three dimensions5 The embedding tensorWe now wish to deform the Lagrangian (2.11) suh that it beomes invariant under asubset of transformations (3.4) with spaetime dependent parameters. The orrespondingsubalgebra g0 � g is haraterized by an embedding tensor �MN viaX i = g�MN �M(x)XN i ; SIJ = g�MN �M(x)SNIJ ; (5.1)with gauge parameters �N (x) depending on the spaetime oordinates, and a gauge ou-pling onstant g. Unless the gauge group G0 oinides with the full symmetry groupG, the embedding tensor ats as a projetor whih redues the number of independentparameters aording todimg0 = rank� : (5.2)Although it is not obvious from the way �MN appears in (5.1) we will see below that itmust be gauge invariant and symmetri under interhange of the indiesM and N . ViatM�MN tN it de�nes an element in the symmetri tensor produt (g
 g)sym. In order thatthe gauge tranformations generate a group, �MN must satisfy the ondition,�MP �NQ fPQR = f̂MNP �PR ; (5.3)for ertain onstants f̂MNP, whih are subsequently identi�ed as the struture onstants ofthe gauge group. One an verify that the validity of the Jaobi identity for the gauge groupstruture onstants follows diretly from the Jaobi identity assoiated with the group G,14



subjet to projetion by the embedding tensor. The symmetry and gauge invariane of�MP implies that f̂MPQ�QN + f̂NPQ�MQ = 0, whih an be written in G-ovariant form,�PL (fKLM�NK + fKLN�MK) = 0 : (5.4)Subsequently we introdue the gauge �elds AM� into the de�nition of the ovariantderivatives. For example, we haveD��i = ���i + g�MN AM� XN i ; (5.5)for the salar �elds. Their ovariant �eld strengths follow from the ommutator of twoovariant derivatives, e.g.,[D�;D� ℄�i = g�MN FM�� XN i ; (5.6)and take the form�MN FM�� = �MN���AM� � ��AM� � g f̂PQMAP�AQ� � : (5.7)The extra minimal ouplings (5.5) render the Lagrangian invariant under loal trans-formations (3.4), (5.1) provided we assume the following transformation behavior of thevetor �elds�MN ÆAM� = �MN �����M + g f̂PQMAP� �Q� : (5.8)However, they violate supersymmetry and the entral question is whether new terms inthe supersymmetry variations and in the Lagrangian an be found suh as to regain thissymmetry. It is at this point that the need arises to inlude a CS term for the vetor�elds,LCS = 14 ig "���AM� �MN���AN� � 13g f̂PQN AP�AQ� � ; (5.9)and assume the following supersymmetry transformations,�MN ÆAM� = �MN h2VM IJ � I��J + VMi ��iI��Ii : (5.10)In order for this to work and to preserve gauge invariane, it is neessary to adopt asymmetri, gauge invariant, embedding tensor.15



Although the embedding tensors must be found ase by ase, let us briey mentionsome general properties. For semisimple gaugings, the Lie algebra g0 always deomposesas a diret sumg0 =Mi gi � g ; (5.11)of simple Lie algebras gi. In this ase, the embedding tensor an be written as a sum ofprojetion operators�MN =Xi "i �MP(�i)PN ; (5.12)where �i projets onto the i-th simple fator g0i, �MP is the Cartan-Killing form, and theonstants "i haraterize the relative strengths of the gauge ouplings. There is only oneoverall gauge oupling onstant g for the maximal theory (N = 16), but there may beseveral independent oupling onstants for lower N .For non-semisimple gaugings, (5.11) is replaed byg0 =Mi gi � t ; (5.13)where t represents the solvable part of the gauge group. For the non-semisimple gaugegroups whih typially appear in theories obtained by dimensional redution, the lattersubalgebra deomposes intot = t0 � t0 : (5.14)The abelian subalgebra t0 here transforms in the adjoint of the semisimple part of thegauge group and pairs up with the semisimple subalgebra in the embedding tensor, whihhas non-vanishing omponents only in (gi
 t0)sym and in (t0
 t0)sym. There are also manyexamples of nilpotent and almost nilpotent gaugings, where the semisimple part is absentor `small'. Many examples of non-semisimple gaugings an be generated from semisimpleones by a singular \boost" within the global symmetry group G, as explained in [4℄.6 T -tensors, onsisteny onstraints, and the LagrangianBefore presenting the full Lagrangian of the gauged supergravity, we de�ne the so-alledT -tensor (originally introdued in higher-dimensional supergravity [36℄) asT IJ;KL � VM IJ�MNVN KL ; T IJi � VM IJ�MNVN i ;T ij � VM i�MNVN j ; T�i � VM��MNVN i ;T�� � VM��MNVN� ; T IJ� � VM IJ�MNVN� : (6.1)16



The T -tensor omponents that arry indies �; � do not appear diretly in the Lagrangianand transformation rules and are only de�ned for N > 2. From (5.4) and (3.13) itreadily follows that the T -tensor transforms ovariantly under the gauged isometries. Theadditional masslike terms and the salar potential in the Lagrangian and the orrespondingterms in the supersymmetry variations of the fermion �elds, whih we will speify shortly,are enoded in three tensors, A1; A2 and A3, whih are related to the T -tensor.A entral result of [5℄ is that a gauge group G0 � G with a gauge invariant embed-ding tensor �MN desribing the minimal ouplings aording to (5.5), is onsistent withsupersymmetry if and only if the assoiated T -tensor (6.1) satis�es the onstraint,T IJ;KL = T [IJ;KL℄ � 4N�2 Æ I[K TL℄M;MJ � 2 ÆI[KÆL℄J(N�1)(N�2) TMN;MN : (6.2)For N = 1 and N = 2, this onstraint degenerates to an identity. The onsisteny on-straint (6.2) has a simple group-theoretial meaning in SO(N): denoting the irreduibleparts of T IJ;KL under SO(N) by( � )sym = 1 + + + ; (6.3)with eah box representing a vetor representation of SO(N), equation (6.2) eliminatesthe \Weyl-tensor" type representationP T IJ;KL = 0 : (6.4)The ondition for a onsistent gauging is now fully aptured by onstraints (5.4) and (6.2)applied to a symmetri embedding tensor �MN . Spei� ases will be disussed in latersetions.Let us now present the full Lagrangian and transformation rules. The Lagrangian isgiven byL = �12 i "��� �e�aR��a + � I�D� I��� 12e gij �g�� D��iD��j +N�1 ��iI =D�jI�+ 14 ig "���AM� �MN���AN� � 13g f̂PQN AP�AQ��+ 14e gij ��iI�� I� (D��j + bD��j)� 124eN�2Rijkl ��iIa�jI ��kJa�lJ+ 148eN�2 �3 (gij ��iI�jI)2 � 2(N�2) (gij ��iIa�jJ)2�+ eg�12AIJ1 � I� ��  J� +AIJ2 j � I� ��jJ + 12A3 IJij ��iI�jJ�� 2 eg2 �gij AI J2i AI J2j � 2N�1AIJ1 AIJ1 � ; (6.5)17



with ovariant derivatives de�ned byD��i = ���i + g�MN AM� XN i ; bD��i = D��i � 12 � I��iI ;D� I� = ��� + 12!a�a� I� + ���iQIJi  J� + g�MNAM� VN IJ  J� ;D��iI = ��� + 12!a�a��iI + ���j ��ijk �kI +QIJj �iJ�+ g�MNAM� �Æij VN IJ � ÆIJgik DkVN j��jJ : (6.6)The supersymmetry transformations readÆe�a = 12 ��Ia  I� ;ÆAM� = 2VM IJ � I��J + VMi ��iI��I ;Æ I� = D��I � 18gij ��iI��jJ �� �J � Æ�iQIJi  J� + g AIJ1 � �J ;Æ�i = 12 ��I �iIÆ�iI = 12 �ÆIJ1�f IJ�i j =bD�j �J � Æ�j ��ijk �kI +QIJj �iJ�� gN AJiI2 �J ; (6.7)with D��I = ��� + 12!a�a� �I + ���iQIJi �J + g�MNAM� VN IJ �J : (6.8)The gauge transformations take the formÆ�i = g�MN �MXN i ;Æ I� = g�MN �MVNIJ  J� � Æ�iQIJi  J� ;Æ�iI = g�MN �M(�jI DjVNi + VNIJ �iJ)� Æ�j ��ijk �kI +QIJj �iJ� ;�MN ÆAM� = �MN (����M + g f̂PQMAP� �Q) : (6.9)For N > 2, the tensor A1 is given byAIJ1 = � 4N�2 T IM;JM + 2(N�1)(N�2) ÆIJ TMN;MN : (6.10)In the ases N = 1; 2, this tensor is only partially determined as we shall desribe in thenext setion. For all values of N the tensors A2 and A3 are given funtions of A1 and theT -tensor (6.1),AI J2 i = 1N nDiAIJ1 + 2T IJ io ;A3 IJij = 1N2n � 2D(iDj)AIJ1 + gij AIJ1 +AK[I1 fJ ℄Kij+2Tij ÆIJ � 4D[iT IJ j℄ � 2Tk[i f IJkj℄o : (6.11)18



Using (6.2) and its derivatives, one may verify that these tensors satisfy the symmetriesimplied by their appearane in (6.5):AIJ1 = AJI1 ; PKI ji AJ K2 j = AJI2 i ; A3 IJij = A3 JIji = PKI ji A3KJkj : (6.12)7 Disussion of low N theoriesIn this setion we disuss the gauged supergravities for low values of N , following [5℄.The ases N = 1; 2 are speial beause the tensor A1 entering the potential and thegravitino mass term is not uniquely determined by the onditions derived in the foregoingsetion, and thus in general is not expressible in terms of the T -tensor alone. This leavesthe freedom for additional deformations (and thus salar �eld potentials) whih are notindued by gauging. The additional freedom for N = 1 and N = 2 appears via real andomplex holomorphi superpotentials, respetively. For N � 3, on the other hand, alldeformations orrespond to gaugings.7.1 N = 1In this ase, the target spae is a Riemannian manifold of arbitrary dimension d. Thetensor A1 has just one omponent, whih is a gauge invariant funtion F (�) on the targetspae,�MNXN i�iF = 0 : (7.1)Reading o� the values for A2 and A3 from (6.11), we obtainA1 = F ; A2 i = �iF ; A3 ij = gijF � 2Di�jF + 2Tij ; (7.2)with Tij = XMi �MNXNj . As a onsequene, any subgroup of isometries an be gauged(for example, by hoosing a onstant funtion F ). The gravitino  � is never harged underthe gauge group, and the gauging is restrited to the matter setor. The ase �MN = 0and F 6= 0 orresponds to deformations of the original theory that are not indued bygaugings. The salar potential V is given byV = 2g2 �gij �iF�jF � 2F 2� ; (7.3)so that the funtion F serves as the real superpotential. Stationary points of F de�ne(anti-de Sitter) supersymmetri ground states. An o�-shell version of these results forabelian gauge groups was reently given in [37℄.19



7.2 N = 2The target spae in this ase is a K�ahler manifold and may be onveniently parametrizedby d=2 omplex oordinates and their onjugates, (�i; ���{). Its metri and the SO(2)onnetion are given in terms of the K�ahler K(�; ��) potential as gi�| = �i��|K, Qi � Q12i =�14i�iK. Any subgroup of the invariane group an be gauged. Partial results for abelianN = 2 gaugings have been obtained in [38, 39, 40, 41℄.Aording to (3.3) only holomorphi isometries of the target spae an be extended tosymmetries of the Lagrangian. Suh isometries are parameterized by holomorphi Killingvetor �elds (X i;X�{),��{Xj = 0 ; DiX�| +D�|Xi = 0 :The seond ondition implies that the K�ahler potential remains invariant under the isom-etry up to a K�ahler transformation. We write this speial K�ahler transformation in termsof a holomorphi funtion S(�), i.e.,ÆK(�; ��) = �X i �iK �X�{ ��{K = 4i (S � �S) : (7.4)Equation (3.6) may then be solved asV � V12 = �14i(X i�iK �X�{��{K) + S12 = �12iX i�iK + 2S :For every generator XM of the invariane group we thus identify a holomorphi fun-tion SM, determined by (7.4) up to a real onstant. The partiular transformation (whihwe denote with the extra label M = 0),X0 i = 0 ; S0 = 12 ; V0 = 1 ; (7.5)onstitutes a entral extension of the isometry group and generates the SO(2) R-symmetrygroup that ats exlusively on the fermions. These symmetries play a role in the preseneof FI terms. We refer to [5℄ for further details.For the T -tensor, we introdue the notationT � T IJ;IJ = 2T 12;12 ; Ti � T 12i = 12 i�iT : (7.6)The tensor AIJ1 is determined by (6.10)A111 = �T � eK=2<W ; A221 = �T + eK=2<W ; A121 = A211 = eK=2=W ; (7.7)20



with an holomorphi superpotential W (�), whih, beause of gauge ovariane, must sat-isfy �MN (XN iDiW � 2iVNW ) = �MN (XN i�iW � 4iSNW ) = 0 ; (7.8)with the K�ahler ovariant derivative DiW � �iW + �iKW . The tensors A2, A3 followfrom (6.11); for A2 we �nd,A112 i = �iA122 i = �12(�iT + eK=2DiW ) ; A212 i = iA222 i = 12i(�iT � eK=2DiW ) : (7.9)The salar potential of the gauged theory is given byV = g2�4 gi�{ �iT ��{T � 4T 2 + gi�{ eKDiWD�{W � 4 eK jW j2� : (7.10)Note that in three dimensions, the salar potential ontains terms quarti in the momentmap V, sine the T -tensor is quadrati in V. This is in ontrast with e.g. four dimensions,where the orresponding part of the salar potential is quadrati in V.Analogous to the N = 1 ase, there are two kinds of supersymmetri deformationsof the original theory. On the one hand, there are the gaugings, whih are ompletelyharaterized by an embedding tensor �MN . The above analysis shows that there is norestrition on the T -tensor, and therefore any subgroup of the invariane group of thetheory is an admissible gauge group, as long as its embedding tensor satis�es (5.4). Onthe other hand there are the deformations desribed by the holomorphi superpotentialW , whih are not indued by a gauging. In ase both deformations are simultaneouslypresent, their ompatibility requires (7.8). Pure N = 2 supergravity (without gauging)an have a osmologial onstant orresponding to a onstant W and vanishing T . Thisimplies that the gravitino mass matrix is traeless. An alternative way to generate aosmologial term in pure supergravity makes use of gauging the R-symmetry group. Inthat ase, T equals a nonzero onstant (equal to �00) and W = 0; the gravitino massmatrix is then proportional to the identity. The latter version has been onsidered in [38℄.7.3 Some omments on N = 3 and N = 4 theoriesFor N = 3, the target spae is a quaternion-K�ahler manifold. In this ase, the onsis-teny ondition (6.2) redues to an identity suh that any subgroup of isometries an beonsistently gauged. For N = 4 on the other hand, the target spae is loally a produtof two quaternion-K�ahler manifolds of dimension d�. The almost-omplex strutures f IJdeompose into two sets of three almost-omplex strutures f�,f+P � 12 (J + 1) fP = 12fP � 14�PQR fQR ; (P = 1; 2; 3) ;f� �P � 12 (J � 1) fP = � 12fP � 14�PQR fQR ; ( �P = 1; 2; 3) ; (7.11)21



orresponding to the deomposition of the SO(4) R-symmetry group,SO(4) = SO(3)+ � SO(3)� : (7.12)In this basis, the onsisteny ondition (6.2) that enodes supersymmetry of the theorytakes the formT PQ = 13 ÆPQ TRR ; where T PQ = VMP�MNVN Q ; (7.13)and orrespondingly for T �P �Q. The o�-diagonal omponents, T P �Q are onstrained by thequadrati onstraint (5.4), see referene [5℄ for details. Unlike the ases N < 4, it isthus no longer possible to gauge any subgroup of the isometry group. We refer to [5℄ forfurther details. Heneforth, we will all a subgroup of G `admissible' if its embeddingtensor obeys (5.3) and (6.2), so that supersymmetry is preserved.8 Symmetri target spaes with N > 4Beyond N = 4, the only admissible target spaes are the symmetri spaes listed intable 1. Hene they are oset spaes G=H, where the isotropy group is equal to the(maximal) holonomy group SO(N) � H0. The salar �elds may be desribed by meansof a G-valued matrix L(�i), on whih the rigid ation of G is realized by left multipli-ation, while SO(N) � H0 ats as a loal symmetry by multipliation from the right.The generators of the group G onstitute a Lie algebra g, whih thus deomposes intoftMg = fXIJ ;X�; Y Ag. The XIJ generate SO(N), the X� generate the ompat groupH0, while the remaining (nonompat) generators Y A transform in a spinor representationof SO(N). The onnetion with the general quantities introdued above is given viaL�1�iL = 12 QIJi XIJ +Q�i X� + eiA Y A ;XM i �iL = tM L� 12SMIJ LXIJ + SM� LX� ;L�1tML = 12 VM IJ XIJ + VM�X� + VMA Y A ;gij = eiA ejB ÆAB ; f IJij = � �IJAB eAi eBj ; VMi = eiA VMA : (8.1)Equations (3.12) then orrespond to the fat that the maptM ! L�1tML ; (8.2)is an isomorphism of the algebra g; the atual equations follow straightforwardly fromthe ommutator [L�1tML; L�1tNL℄, upon using the expliit ommutation relations of the22



generators XIJ , X� and Y A. Linear �rst-order di�erential equations suh as (3.11) an bederived for any oset spae (see, e.g. [42℄) and the atual results follow after substitutingthe appropriate expressions for the oset-spae urvatures. Here we should add that theabove analysis an be straightforwardly extended to N = 4 with symmetri target spaes,as all these spaes are known and exhibit the same harateristis as outlined above.The symmetri spae struture in partiular implies, that the T -tensor (6.1) oinideswith the image of the embedding tensor �MN under (8.2),TAB = VMA�MN VNB ; (8.3)This allows us to lift the onsisteny ondition (6.4), aording to whih the SO(N) rep-resentation in the T -tensor vanishes, to a �eld-independent ondition on the embeddingtensor,PMNPQ�PQ = 0 : (8.4)HerePprojets onto the unique irreduible representation in (g
g)sym that ontains therepresentation of the T -tensor, via (8.3). It is a non-trivial fat that the T -tensor, whih isassigned to R-symmetry representations, and appears in the fermioni masslike terms andthe salar potential, an be assembled into representations of the global symmetry groupG, as was �rst notied in the ontext of maximal gauged supergravity in four dimensions[16℄. For the symmetri target spaes, admissible subgroups of G are haraterized by anembedding tensor that obeys (5.3) and (8.4).Note that the onsisteny onditions (5.3) and (8.4) remain ovariant under the om-plexi�ed global symmetry group GC . Indeed, non-semisimple gaugings in four dimensionswere originally found in [43℄ by analyti ontinuation of SO(8) in the omplexi�ed globalsymmetry group E7(C ). In three dimensions, a similar onstrution should exist relatingthe di�erent non-ompat real forms of the gauge groups listed in table 2 below, andexplaining why ratios of oupling onstants between the fator groups remain the same.9 Admissible gauge groups for N = 16To illustrate the variety of possible gaugings, we now turn to the maximally extendedN = 16 supergravity.2 In this ase the embedding tensor transforms as an element of the2A di�erent version of gauged N=16 supergravity, whih modi�es the ungauged theory only by topo-logial terms, and does not lead to a salar potential or Yukawa type ouplings, was reently proposedin [44℄. 23



symmetri tensor produt of two adjoint (and in this ase also fundamental) representa-tions of E8(8)(248
 248)sym = 1� 3875 � 27000 ; (9.1)As shown in [2℄ (8.4) beomes(P27000)MNPQ�PQ = 0 : (9.2)so that the embedding tensor deomposes into a singlet and the 3875 representations ofE8(8). Following [9℄, we split the generators of g = e8(8) into 120 ompat onesXIJ = �XJIwith SO(16) vetor indies I; J = 1; : : : ; 16, and 128 nonompat ones fY Ag with SO(16)spinor indies A = 1; : : : 128. Then the ondition (9.2) implies that only speial SO(16)representations an appear in �; we have� = �IJ jKLXIJ 
XKL +�IJ jA (XIJ 
 Y A + Y A 
XIJ ) + �AjB Y A 
 Y B ; (9.3)with [2, 13℄�IJ jKL = �2� ÆIJKL + 2ÆI[K �L℄J + �IJKL ;�IJ jA = �17 �[IA _A �J ℄ _A ;�AjB = � ÆAB + 196 �IJKL �IJKLAB ; (9.4)and the SO(16) � matries �IA _A, where the indies _A = 1; : : : ; 128 label the onjugatespinor representation. The tensors �IJ , �IJKL and �I _A transform as the 135, 1820 and1920 representations of SO(16), respetively; hene �II = 0 = �IA _A �I _A, and �IJKL isompletely antisymmetri in its four indies. The singlet ontribution in (9.4) is absentfor non-semisimple and omplex gauge groups.Although the solutions to (9.2) have not been exhaustively lassi�ed, it is known thatall the irreduible omponents ourring in (9.4) an and do appear, depending on thetype of gauge group. The simplest examples are the semisimple gaugings with maximalsupersymmetry onstruted in [2℄, for whih we have quite generally� ;�IJ ; �IJKL 6= 0 and �I _A = 0 (for semisimple g0) : (9.5)In this ase, the sum (5.12) ontains at most two terms, i.e. the gauge groups are typiallyproduts of two simple groups G1�G2 with a �xed ratio of oupling onstants g1=g2, suhthat there is only one free parameter in the theory. Shematially, we have the admissiblegauge groupsG0 = E8 ; E7 �A1 ; E6 �A2 ; F4 �G2 ; D4 �D4 : (9.6)24



whih appear in all those real forms that are onsistent with E8(8). Remarkably, theratio g1=g2 does not depend on the hosen real form. Furthermore, as shown in [2, 13℄,all these theories possess maximally supersymmtri (AdS or Minkowski) ground states.The orresponding theories with their orresponding gauge groups, whih are partiularnonompat versions of the groups (9.6), are listed in table 2. In the last olumn, the tablelists the symmetry groups of the ground states, whih are superextensions of the three-dimensional AdS group SL(2;R) � SL(2;R). Besides the fully supersymmetri vaua,there are also many known stationary points with partially broken supersymmetry [12,13, 14℄. However, beause no general and omplete results on the extremal struture ofthe assoiated potentials are available to date3, many further extremal points ould existbesides the known ones.A seond lass are the non-semisimple gaugings, whose existene an also be inferredfrom the fat that in higher dimensions there are many maximal gaugings with non-semisimple groups [43, 45, 46, 47, 48℄. For the non-semisimple gaugings, in general allomponents of the embedding tensor in (9.4) are non-vanishing, in partiular the `o�-diagonal' omponents (mixing ompat and non-ompat generators)�I _A 6= 0 (for non-semisimple g0) : (9.7)For N = 16, the most prominent examples are [4℄G0 = SO(p; q)nT28 for p+ q = 8 ;G0 = CSO(p; q; r)n Tp;q;r for p+ q + r = 8 and r > 0 (9.8)Here, T28 is an abelian group of 28 translations transforming in the adjoint of SO(p; q).Similarly, Tp;q;r is a group of translations, but of smaller dimensiondimTp;q;r = dimCSO(p; q; r) = 28 � 12r(r � 1) : (9.9)Note that the groups in (9.8) involving SO(p; q) or CSO(p; q; r) with p 6= 0; 8 admit onlyone embedding, whereas there are two inequivalent SO(8) n T28 gaugings, orrespondingto the ompati�ations IIA and IIB supergravity on S7. Quite generally, redution of ahigher-dimensional gauged supergravity (with semisimple or non-semisimple gauge group)on a torus will always lead to a non-semisimple gauge group in three dimensions. In viewof the equivalene of CS and YM type gauge theories explained in setion 4, the gaugedsupergravities with the gauge groups (9.8) are onsequently on-shell equivalent to theones obtained by reduing the SO(p; q) and CSO(p; q; r) theories of [43℄ on S1. Further3Even for D=4, the omplexity of the potentials has prevented the identi�ation of new stationarypoints beyond those already found in [15, 17℄, although the potentials are now known on a larger manifoldof salar �eld on�gurations thanks to the high performane symboli algebra program developed in [14℄.25



gauge group G0 ratio g1=g2 (nL; nR) ground state symmetry groupSO(8)�SO(8) g1=g2 = �1 (8; 8) OSp(8j2;R)�OSp(8j2;R)SO(7; 1)�SO(7; 1) g1=g2 = �1 (8; 8) F(4)�F(4)SO(6; 2)�SO(6; 2) g1=g2 = �1 (8; 8) SU(4j1; 1)�SU(4j1; 1)SO(5; 3)�SO(5; 3) g1=g2 = �1 (8; 8) OSp(4�j4)�OSp(4�j4)SO(4; 4)�SO(4; 4) g1=g2 = �1 (8; 8) Minkowski vauumG2(2)�F4(4) gG2=gF4 = �3=2 (4; 12) D1(2; 1;�23)�OSp(4�j6)G2�F4(�20) gG2=gF4 = �3=2 (7; 9) G(3)�OSp(9j2;R)E6(6)�SL(3) gA2=gE6 = �2 (16; 0) OSp(4�j8)�SU(1; 1)E6(2)�SU(2; 1) gA2=gE6 = �2 (12; 4) SU(6j1; 1)�D1(2; 1;�12)E6(�14)�SU(3) gA2=gE6 = �2 (10; 6) OSp(10j2;R)�SU(3j1; 1)E7(7)�SL(2) gA1=gE7 = �3 (16; 0) SU(8j1; 1)�SU(1; 1)E7(�5)�SU(2) gA1=gE7 = �3 (12; 4) OSp(12j2;R)�D1(2; 1;�13)E8(8) gE8 (16; 0) OSp(16j2;R)�SU(1; 1)Table 2: The N = 16 theories with semisimple gauge groups G0. Exept for the last row, thegauge groups appear as diret produts of two fators whose oupling onstant ratio g1=g2 isdetermined by (9.2). All these theories admit a maximally supersymmetri AdS (or Minkowski,for G0 = SO(4; 4) � SO(4; 4)) ground state, whose symmetry group fatorizes aording toGL �GR, as spei�ed in the last olumn; the superharges split aordingly into nL + nR = 16.examples of non-semisimple gaugings an be generated from semisimple ones by the boostmethod desribed in [4℄.In ontrast to the semisimple gaugings, the non-semisimple ones do not admit maxi-mally supersymmetri groundstates. The potentials ontain exponential fators and theirminimum is usually reahed at in�nity. This phenomenon is well-known from higher-dimensional gauged supergravities. The non-existene of fully supersymmetri vaua isalso related to the disappearane of the supersymmetri vauum that is known to ourwhen one redues maximal gauged supergravity from four or �ve to three dimensions ona torus. 26



The most urious solution of the onsisteny onditions is the omplex gauge groupG0 = SO(8; C ) : (9.10)whih an be realized in two inequivalent ways, orresponding to two possible and inequiv-alent embeddings of SO(8; C ) into the (real) Lie group E8(8) (there are similar omplexgauge groups SO(n; C ) for N = 2n = 12; 10 supergravities). This gauging provides anexample of a purely o�-diagonal embedding tensor for whih� = �IJ = �IJKL = 0 and �I _A 6= 0 (for g0 = so(8; C )) ; (9.11)so �I _A is the only nonvanishing omponent in (9.4). Beause it does not require an imag-inary unit, this embedding exhibits some rather strange properties. Like the semisimplegauge groups of table 2, the SO(8; C ) gauged supergravities annot be derived from higherdimensions by any known mehanism. Furthermore, they feature a de Sitter stationarypoint at the origin breaking all supersymmetries, and with tahyoni instabilities. (Thereare indiations that these models possess no further extrema besides the one at the ori-gin.4) We note that CS gauge theories with omplex gauge groups are of onsiderableinterest ([24℄; see also [26℄ and referenes therein for some reent developments). Theembedding of suh theories into supergravity with non-trivial matter ouplings may wellprovide interesting new perspetives.As we already explained in the introdution, the existene of the large variety of gaugedsupergravities in three spae-time dimensions, with potentials that have stationary pointsorresponding to AdS bakgrounds, is important in the ontext of the AdS/CFT orre-spondene. In the ase at hand the orrespondene implies a relation between an AdSsolution of a ertain three-dimensional gauged supergravity and a two-dimensional (su-per)onformal theory living on the boundary of the AdS spae. The two-dimensionaltheories are haraterized by an in�nite-dimensional superonformal algebra. These alge-bras have all been lassi�ed [49℄; they onsist of a sum of two algebras, pertaining to theleft- and right-moving setors, respetively, ontaining an nL- and an nR-superextendedVirasoro algebra. On the supergravity side, the maximal �nite-dimensional subalgebrawill orrespond to the symmetry algebra of the AdS3 stationary point. To illustrate this,one may onsider the theories listed in table 2, whih admit maximally supersymmetriAdS3 stationary points whose symmetry algebra are listed in the last olumn. Indeed,eah of these symmetry algebras oinides with the maximal �nite subalgebra of a or-responding superonformal algebra of [49℄ with the appropriate numbers, nL and nR, ofsuperharges.The in�nite-dimensional superonformal algebras appear in the asymptoti symmetriesof the supergravity �elds [50, 51℄. For the pure extended (N > 1) supergravity theories,4T. Fishbaher, private ommuniation. 27



this phenomenon was analyzed in [52℄. For nL;R > 4, this analysis on�rmed the preseneof terms in the algebra that are quadrati in the generators, in aord with the knownform of the orresponding in�nite-dimensional superonformal algebras. It should beinteresting to extend this analysis to the propagating bulk �elds desribed by the matter-oupled gauged supergravities of this paper.In the spirit of the AdS/CFT orrespondene the supergravity Lagrangians (6.5) ob-tained for the theories listed in table 2 allow the onstrution of the n-point orrelationfuntions of a losed subset of hiral primary operators of the assoiated superonformaltheories. To date, no onrete proposal for these N = 16 boundary theories has beenput forward | partly due to the lak of known brane on�gurations whose near horizongeometry would admit an isometry group related to any of the gauge groups in table 2.In ontrast, the most prominent example of an AdS3/CFT2 orrespondene, the D1-D5system, relates IIB string theory on AdS3�S3�M4 [53℄ to an N = (4; 4) superonformal�eld theory desribed by a non-linear sigma model whose target spae is a deformation ofthe symmetri orbifold (M4)n=Sn [6℄. The orresponding low-energy e�etive supergravityis the half-maximal theory onstruted in [23℄.Gauged supergravities with non-semisimple gauge groups on the other hand make theirappearane in the generalization of the AdS/CFT orrespondene to so-alled domainwall/QFT dualities, relating string theory on near-horizon Dp-brane geometries to d = p+1dimensional super-Yang-Mills theories with sixteen superharges [54, 55℄. In partiular,the N = 16 theory with gauge group SO(8)nT28 desribing the warped AdS3�S7 near-horizon D-string geometry [56℄, is holographially dual to IIA matrix string theory [57℄.AknowledgmentsB. de Wit and H. Niolai would like to thank the organizers for a very enjoyable meeting.We thank T. Fishbaher and I. Herger for ollaboration on the results reported here.This work is partly supported by EU ontrats HPRN-CT-2000-00122 and HPRN-CT-2000-00131, and by the INTAS ontrat 99-1-590.Referenes[1℄ B. de Wit, A. K. Tollst�en, and H. Niolai, Loally supersymmetri D=3 nonlinearsigma models, Nul. Phys. B392 (1993) 3{38, [hep-th/9208074℄.[2℄ H. Niolai and H. Samtleben, Maximal gauged supergravity in three dimensions,Phys. Rev. Lett. 86 (2001) 1686{1689, [hep-th/0010076℄; Compat and nonompat28

http://arXiv.org/abs/hep-th/9208074
http://xxx.lanl.gov/abs/hep-th/9208074
http://arXiv.org/abs/hep-th/0010076
http://xxx.lanl.gov/abs/hep-th/0010076


gauged maximal supergravities in three dimensions, JHEP 0104 (2001) 022,[hep-th/0103032℄.[3℄ H. Niolai and H. Samtleben, N = 8 matter oupled AdS3 supergravities, Phys. Lett.B514 (2001) 165{172, [hep-th/0106153℄.[4℄ T. Fishbaher, H. Niolai, and H. Samtleben, Non-semisimple and omplexgaugings of N = 16 supergravity, hep-th/0306276. to appear in Commun. Math.Phys.[5℄ B. de Wit, I. Herger, and H. Samtleben, Gauged loally supersymmetri D = 3nonlinear sigma models, Nul. Phys. B671 (2003) 175{216, [hep-th/0307006℄.[6℄ O. Aharony, S. S. Gubser, J. Maldaena, H. Ooguri, and Y. Oz, Large N �eldtheories, string theory and gravity, Phys. Rept. 323 (2000) 183{386,[hep-th/9905111℄.[7℄ M. G�unaydin, L. J. Romans, and N. P. Warner, Compat and nonompat gaugedsupergravity theories in �ve-dimensions, Nul. Phys. B272 (1986) 598{646.[8℄ B. Julia, Appliation of supergravity to gravitation theories, in Uni�ed �eld theoriesin more than 4 dimensions, eds. V.D. Sabbata and E. Shmutzer, World Sienti�,Singapore 1983, 215[9℄ N. Marus and J. H. Shwarz, Three-dimensional supergravity theories, Nul. Phys.B228 (1983) 145{162.[10℄ E. Cremmer and B. Julia, The SO(8) Supergravity, Nul. Phys. B159 (1979) 141.[11℄ H. Niolai and H. Samtleben, Chern-Simons vs. Yang-Mills gaugings in threedimensions, Nul. Phys. B668 (2003) 167{178, [hep-th/0303213℄.[12℄ T. Fishbaher, Some stationary points of gauged N=16 D=3 supergravity, Nul.Phys. B638 (2002) 207{219, [hep-th/0201030℄.[13℄ T. Fishbaher, H. Niolai, and H. Samtleben, Vaua of maximal gauged D = 3supergravities, Class. Quant. Grav. 19 (2002) 5297{5334, [hep-th/0207206℄.[14℄ T. Fishbaher, Mapping the vauum struture of gauged maximal supergravities:An appliation of high-performane symboli algebra, hep-th/0305176.[15℄ N.P. Warner, Some new extrema of the salar potential of gauged N = 8supergravity, Phys. Lett. B128 (1983) 169[16℄ B. de Wit and H. Niolai, The parallelizing S7 torsion in gauged N=8 supergravity,Nul. Phys. B231 (1984) 506{532. 29

http://arXiv.org/abs/hep-th/0103032
http://xxx.lanl.gov/abs/hep-th/0103032
http://arXiv.org/abs/hep-th/0106153
http://xxx.lanl.gov/abs/hep-th/0106153
http://arXiv.org/abs/hep-th/0306276
http://xxx.lanl.gov/abs/hep-th/0306276
http://arXiv.org/abs/hep-th/0307006
http://xxx.lanl.gov/abs/hep-th/0307006
http://arXiv.org/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/9905111
http://arXiv.org/abs/hep-th/0303213
http://xxx.lanl.gov/abs/hep-th/0303213
http://arXiv.org/abs/hep-th/0201030
http://xxx.lanl.gov/abs/hep-th/0201030
http://arXiv.org/abs/hep-th/0207206
http://xxx.lanl.gov/abs/hep-th/0207206
http://arXiv.org/abs/hep-th/0305176
http://xxx.lanl.gov/abs/hep-th/0305176


[17℄ C.M. Hull and N.P. Warner, The potentials of the gauged N = 8 supergravitytheories, Nul. Phys. B253 (1985) 675[18℄ C.M. Hull, The minimal ouplings and salar potentials of the gauged N = 8supergravities, Class. Quant. Grav. 2 (1985) 343[19℄ K. Koepsell, H. Niolai and H. Samtleben, An exeptional geometry for d = 11supergravity?, Class. Quant. Grav. 17 (2000) 3689{3702, [hep-th/0006034℄.[20℄ B. de Wit and H. Niolai, Hidden symmetries, entral harges and all that, Class.Quant. Grav. 18 (2001) 3095, [hep-th/0011239℄.[21℄ E. Witten, String theory dynamis in various dimensions, Nul. Phys. B443 (1995)85{126, [hep-th/9503124℄.[22℄ E. Witten, Strong oupling and the osmologial onstant, Mod. Phys. Lett. A10(1995) 2153, [hep-th/9506101℄.[23℄ H. Niolai and H. Samtleben, Kaluza-Klein supergravity on AdS3 � S3, JHEP 0309(2003) 036, [hep-th/0306202℄.[24℄ E. Witten, Quantization of Chern-Simons gauge theory with omplex gauge group,Commun. Math. Phys. 137 (1991) 29{66.[25℄ R. Kashaev and N. Reshetikhin, Invariants of tangles with at onnetions in theiromplements. I. Invariants and holonomy R-matries, [math.AT/0202211℄[26℄ S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and theA-polynomial, [hep-th/0306165℄.[27℄ J. Gegenberg, S. Vaidya, and J. F. Vazquez-Poritz, Thurston geometries fromeleven dimensions, Class. Quant. Grav. 19 (2002) L199{L204, [hep-th/0205276℄.[28℄ J. Gegenberg and G. Kunstatter, Using 3d stringy gravity to understand theThurston onjeture, hep-th/0306279.[29℄ G. Perelman, The entropy formula for the Rii ow and its geometri appliations,math.DG/0211159; Rii ow with surgery on three-manifolds, math.DG/0303109;Finite extintion time for the solutions to the Rii ow on ertain three-manifolds,math.DG/0307245.[30℄ S. Deser, R. Jakiw and G. 't Hooft, Three-dimensional Einstein gravity: Dynamisof at spae Ann. Phys. 152 (1984) 220[31℄ S. Deser and R. Jakiw, Three-Dimensional Cosmologial Gravity: Dynamis OfConstant Curvature, Annals Phys. 153 (1984) 405.30

http://arXiv.org/abs/hep-th/0006034
http://xxx.lanl.gov/abs/hep-th/0006034
http://arXiv.org/abs/hep-th/0011239
http://xxx.lanl.gov/abs/hep-th/0011239
http://arXiv.org/abs/hep-th/9503124
http://xxx.lanl.gov/abs/hep-th/9503124
http://arXiv.org/abs/hep-th/9506101
http://xxx.lanl.gov/abs/hep-th/9506101
http://arXiv.org/abs/hep-th/0306202
http://xxx.lanl.gov/abs/hep-th/0306202
http://arXiv.org/abs/math/0202211
http://arXiv.org/abs/math.AT/0202211
http://arXiv.org/abs/hep-th/0306165
http://xxx.lanl.gov/abs/hep-th/0306165
http://arXiv.org/abs/hep-th/0205276
http://xxx.lanl.gov/abs/hep-th/0205276
http://arXiv.org/abs/hep-th/0306279
http://xxx.lanl.gov/abs/hep-th/0306279
http://arXiv.org/abs/math/0211159
http://xxx.lanl.gov/abs/math.DG/0211159
http://arXiv.org/abs/math/0303109
http://xxx.lanl.gov/abs/math.DG/0303109
http://arXiv.org/abs/math/0307245
http://xxx.lanl.gov/abs/math.DG/0307245


[32℄ A. Ah�uarro and P. K. Townsend, A Chern-Simons ation for three-dimensionalanti-de Sitter supergravity theories, Phys. Lett. B180 (1986) 89{92.[33℄ M. Cveti�, H. Lu, and C. N. Pope, Consistent Kaluza-Klein sphere redutions,Phys. Rev. D62 (2000) 064028, [hep-th/0003286℄.[34℄ H. Lu, C. N. Pope, and E. Sezgin, SU(2) redution of six-dimensional (1,0)supergravity, Nul. Phys. B668 (2003) 237{257, [hep-th/0212323℄;Yang-Mills-Chern-Simons supergravity, hep-th/0305242.[35℄ S. Deser and Z. Yang, A Remark On The Higgs E�et In Presene OfChern-Simons Terms, Mod. Phys. Lett. A4 (1989) 2123.[36℄ B. de Wit and H. Niolai, N=8 supergravity, Nul. Phys. B208 (1982) 323{364.[37℄ M. Beker, D. Constantin, S. J. J. Gates, W. D. Linh, W. Merrell and J. Phillips,M-theory on Spin(7) manifolds, uxes and 3D, N = 1 supergravity, Nul. Phys.B683 (2004) 67, [hep-th/0312040℄.[38℄ J. M. Izquierdo and P. K. Townsend, Supersymmetri spae-times in (2+1) AdSsupergravity models, Class. Quant. Grav. 12 (1995) 895{924, [gr-q/9501018℄.[39℄ N. S. Deger, A. Kaya, E. Sezgin, and P. Sundell, Matter oupled AdS3 supergravitiesand their blak strings, Nul. Phys. B573 (2000) 275{290, [hep-th/9908089℄.[40℄ M. Abou-Zeid and H. Samtleben, Chern-Simons vorties in supergravity, Phys. Rev.D65 (2002) 085016, [hep-th/0112035℄.[41℄ M. Berg, M. Haak, and H. Samtleben, Calabi-Yau fourfolds with ux andsupersymmetry breaking, JHEP 04 (2003) 046, [hep-th/0212255℄.[42℄ B. de Wit, Supergravity, in Unity from Duality: Gravity, Gauge Theory and Strings(C. Bahas, M. Douglas, A. Bilal, N. Nekrasov, and F. David, eds.), SpringerVerlag, 2003. hep-th/0212245.[43℄ C. M. Hull, Nonompat gaugings of N=8 supergravity, Phys. Lett. B142 (1984)39{41; More gaugings of N=8 supergravity, Phys. Lett. B148 (1984) 297{300; Anew gauging of N = 8 supergravity, Phys. Rev. D30 (1984) 760.[44℄ H. Nishino and S. Rajpoot, Topologial gauging of N = 16 supergravity inthree-dimensions, Phys. Rev. D67, 025009 (2003) [arXiv:hep-th/0209106℄.[45℄ L. Andrianopoli, F. Cordaro, P. Fr�e, and L. Gualtieri, Non-semisimple gaugings ofD=5 N=8 supergravity and FDAs, Class. Quantum Grav. 18 (2001) 395{413,[hep-th/0009048℄. 31

http://arXiv.org/abs/hep-th/0003286
http://xxx.lanl.gov/abs/hep-th/0003286
http://arXiv.org/abs/hep-th/0212323
http://xxx.lanl.gov/abs/hep-th/0212323
http://arXiv.org/abs/hep-th/0305242
http://xxx.lanl.gov/abs/hep-th/0305242
http://arXiv.org/abs/hep-th/0312040
http://arXiv.org/abs/gr-qc/9501018
http://xxx.lanl.gov/abs/gr-qc/9501018
http://arXiv.org/abs/hep-th/9908089
http://xxx.lanl.gov/abs/hep-th/9908089
http://arXiv.org/abs/hep-th/0112035
http://xxx.lanl.gov/abs/hep-th/0112035
http://arXiv.org/abs/hep-th/0212255
http://xxx.lanl.gov/abs/hep-th/0212255
http://arXiv.org/abs/hep-th/0212245
http://xxx.lanl.gov/abs/hep-th/0212245
http://arXiv.org/abs/hep-th/0209106
http://arXiv.org/abs/hep-th/0009048
http://xxx.lanl.gov/abs/hep-th/0009048


[46℄ L. Andrianopoli, R. D'Auria, S. Ferrara, and M. A. Lled�o, Gauging of at groups infour dimensional supergravity, JHEP 07 (2002) 010, [hep-th/0203206℄.[47℄ C. M. Hull, New gauged N = 8;D = 4 supergravities, Class. Quant. Grav. 20 (2003)5407{5424, [hep-th/0204156℄.[48℄ B. de Wit, H. Samtleben, and M. Trigiante, On Lagrangians and gaugings ofmaximal supergravities, Nul. Phys. B655 (2003) 93{126, [hep-th/0212239℄;Maximal supergravity from IIB ux ompati�ations, Phys. Lett. B583 (2004)338{346, [hep-th/0311224℄.[49℄ E. S. Fradkin and V. Y. Linetsky, Results of the lassi�ation of superonformalalgebras in two-dimensions, Phys. Lett. B282 (1992) 352, [hep-th/9203045℄;Classi�ation of superonformal and quasisuperonformal algebras intwo-dimensions, Phys. Lett. B291 (1992) 71.[50℄ J. D. Brown and M. Henneaux, Central harges in the anonial realization ofasymptoti symmetries: An example from three-dimensional gravity, Commun.Math. Phys. 104 (1986) 207.[51℄ M. Banados, K. Bautier, O. Coussaert, M. Henneaux and M. Ortiz, Anti-deSitter/CFT orrespondene in three-dimensional supergravity, Phys. Rev. D58(1998) 085020, [hep-th/9805165℄.[52℄ M. Henneaux, L. Maoz and A. Shwimmer, Asymptoti dynamis and asymptotisymmetries of three-dimensional extended AdS supergravity, Annals Phys. 282(2000) 31, [hep-th/9910013℄.[53℄ A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv.Theor. Math. Phys. 2 (1998) 733, [hep-th/9806194℄; D. Kutasov and N. Seiberg,More omments on string theory on AdS3, JHEP 9904 (1999) 008,[hep-th/9903219℄.[54℄ N. Itzhaki, J. M. Maldaena, J. Sonnenshein and S. Yankielowiz, Supergravity andthe large N limit of theories with sixteen superharges, Phys. Rev. D58 (1998)046004, [hep-th/9802042℄.[55℄ H. J. Boonstra, K. Skenderis and P. K. Townsend, The domain wall/QFTorrespondene, JHEP 9901 (1999) 003, [hep-th/9807137℄.[56℄ J. F. Morales and H. Samtleben, Supergravity duals of matrix string theory, JHEP0208 (2002) 042, [hep-th/0206247℄.[57℄ R. Dijkgraaf, E. Verlinde and H. Verlinde, Matrix string theory, Nul. Phys. B500(1997) 43, [hep-th/9703030℄. 32

http://arXiv.org/abs/hep-th/0203206
http://xxx.lanl.gov/abs/hep-th/0203206
http://arXiv.org/abs/hep-th/0204156
http://xxx.lanl.gov/abs/hep-th/0204156
http://arXiv.org/abs/hep-th/0212239
http://xxx.lanl.gov/abs/hep-th/0212239
http://arXiv.org/abs/hep-th/0311224
http://xxx.lanl.gov/abs/hep-th/0311224
http://arXiv.org/abs/hep-th/9203045
http://xxx.lanl.gov/abs/hep-th/9203045
http://arXiv.org/abs/hep-th/9805165
http://xxx.lanl.gov/abs/hep-th/9805165
http://arXiv.org/abs/hep-th/9910013
http://xxx.lanl.gov/abs/hep-th/9910013
http://arXiv.org/abs/hep-th/9806194
http://xxx.lanl.gov/abs/hep-th/9806194
http://arXiv.org/abs/hep-th/9903219
http://xxx.lanl.gov/abs/hep-th/9903219
http://arXiv.org/abs/hep-th/9802042
http://xxx.lanl.gov/abs/hep-th/9802042
http://arXiv.org/abs/hep-th/9807137
http://xxx.lanl.gov/abs/hep-th/9807137
http://arXiv.org/abs/hep-th/0206247
http://xxx.lanl.gov/abs/hep-th/0206247
http://arXiv.org/abs/hep-th/9703030
http://xxx.lanl.gov/abs/hep-th/9703030

	Introduction
	Supergravity coupled to nonlinear sigma models
	Isometries and R-symmetries
	Yang-Mills versus Chern-Simons gauged theories
	The embedding tensor
	T-tensors, consistency constraints, and the Lagrangian
	Discussion of low N theories
	N=1
	N=2
	Some comments on N=3 and N=4 theories

	Symmetric target spaces with N>4
	Admissible gauge groups for N=16

