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tMaximal and non-maximal supergravities in three spa
etime dimensions allowfor a large variety of semisimple and non-semisimple gauge groups, as well as 
om-plex gauge groups that have no analog in higher dimensions. In this 
ontribution wereview the re
ent progress in 
onstru
ting these theories and dis
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olai at the 27th Johns Hopkins Workshop, 24 - 26 August2003, G�oteborg, Sweden. 1



1 Introdu
tionLo
ally supersymmetri
 theories in three spa
etime dimensions 
oupled to matter haveat most N = 16 supersymmetries [1℄. The bosoni
 matter is des
ribed by s
alar �elds,whi
h parametrize a target spa
e belonging to a nonlinear sigma model. While thereis a large number of possible target spa
es when N � 4, the possibilities be
ome morerestri
ted with in
reasing N : beyond N = 4, the target spa
es are 
oset spa
es G=H,where H is the maximal 
ompa
t subgroup of G. For all values of N these supergravitiesmay be invariant under a bosoni
 symmetry group G, whi
h 
ommutes with the Lorentztransformations and spa
etime di�eomorphisms and whi
h involves (subgroups of) thetarget-spa
e isometry group and the R-symmetry group SO(N). In that 
ase there existsupersymmetri
 deformations where a subgroup G0 � G is promoted to a lo
al symmetry[2, 3, 4, 5℄, thereby furnishing three-dimensional analogs of the gauged supergravities indimensionsD � 4 that have been known for a long time. In 
ontrast to higher-dimensionalgauged supergravities, the ve
tor �elds in general appear via a Chern-Simons (CS) ratherthan a Yang-Mills (YM) term. As it turns out, there is a surprisingly ri
h stru
ture andvariety of possible gaugings, in
luding semisimple and non-semisimple gauge groups aswell as novel 
omplex gaugings whi
h have no analog in D � 4 dimensions.There are several reasons why D = 3 (gauged) supergravities are of more generalinterest. Below we list some of these reasons.� During the last �ve years there has been enormous interest in the so-
alled AdS/CFT
orresponden
e, a

ording to whi
h a supergravity theory with an AdS groundstateis related to a (super)
onformal theory living on the boundary of the AdS spa
e (see[6℄ for a review and an extensive list of referen
es). Mu
h of this interest has beenfo
used on the AdS5=CFT4 
orresponden
e, relating gauged maximal supergravitywith gauge group SO(6) on AdS5 [7℄ to the maximally supersymmetri
 Yang-Millstheory on its boundary. While in this 
ase one has essentially only one theory totest the 
onje
tured 
orresponden
e, the number of possibilities is far greater whenone des
ends by two in the number of dimensions: the AdS3=CFT2 
orresponden
eo�ers a mu
h larger bestiary of examples, be
ause on the one hand there are farmore super
onformal theories in two dimensions, and on the other hand be
ausegauged supergravities are more numerous in three dimensions.� (Ungauged) extended supergravities exhibit their maximal global and most \uni�ed"symmetry in three dimensions1, be
ause all tensor gauge �elds 
an be dualizedto s
alar �elds, so that the propagating bosoni
 degrees of freedom are uniformlydes
ribed by s
alar �elds, whi
h usually live on a target spa
e with a ni
e geometri
al1Here we will not be 
on
erned with the in�nite dimensional global symmetries E9, E10 and E11,whi
h are known, resp. 
onje
tured, to emerge for maximal supergravities in dimensions D � 2.2



stru
ture. In parti
ular for the maximal N = 16 theory, the maximally extendedex
eptional Lie algebra E8 makes its appearan
e [8, 9℄, whereas in dimensions D = 4and D = 5 the maximal-rank ex
eptional symmetries 
ompatible with maximalsupersymmetry are E7 and E6, respe
tively [10℄.� Unlike the abelian duality relating s
alar �elds and antisymmetri
 tensor gauge �eldsin higher dimensions, the duality between s
alar and ve
tor �elds 
an be extendedto non-abelian gauge groups in three dimensions. There is a novel equivalen
e be-tween YM and 
ertain CS gauge theories (whi
h also holds for non-supersymmetri
theories) whi
h has no analog in dimensions D � 4. Namely, as shown in [11, 5℄,in three dimensions, any YM gauged supergravity with gauge group GYM is equiv-alent to a CS gauged supergravity with non-semisimple gauge group GYM nT witha 
ertain translation group T . Be
ause in the latter formulation all the ve
torsappear via a CS term rather than a YM-type kineti
 term, no new propagatingdegrees of freedom are generated by the gauging, as is required by the preservationof supersymmetry. Altogether, the CS gauged supergravities thus not only 
ontainthe YM-type gauged theories but en
ompass a mu
h larger 
lass of theories.� Be
ause the ve
tors appear via a CS term and do not propagate, their numberand hen
e the dimension of the gauge group are not determined a priori, unlikein dimensions D � 4. For this reason, the possible gaugings are more numerousand exhibit a ri
her stru
ture than the 
orresponding D � 4 gauged supergravities.Similar 
omments apply to the s
alar potentials of these theories whi
h providea large variety of symmetry breaking patterns with va
ua of the anti-de Sitter,Minkowski or de Sitter-type [12, 13, 14℄. Among the novel features without analogin higher dimensions let us mention the existen
e of maximally supersymmetri
va
ua for non-
ompa
t gauge groups (
f. table 2 in se
tion 9) and the o

urren
eof stable AdS-type va
ua with 
ompletely broken supersymmetry (for D � 4, allknown non-supersymmetri
 va
ua of maximally gauged supergravities are unstable[15, 16, 17, 18℄).� Ex
ept for 
ertain non-semisimple gaugings, none of the D = 3 gauged supergravi-ties 
an be obtained by any known me
hanism from higher dimensional supergrav-ity. The very existen
e of these theories may thus point to the existen
e of new\
usps" of M theory, and the existen
e of new geometri
al stru
tures in eleven di-mensions of the type suggested in [19, 20℄ and referen
es therein. The theorieswhi
h do originate from higher dimensions usually appear with a YM-type kineti
term, and therefore ne
essarily require non-semisimple gauge groups in the CS-typeformulation, as des
ribed above. In parti
ular they in
lude all those theories ob-tained by redu
tion of higher-dimensional maximal gauged supergravities on a torus,or by Kaluza-Klein 
ompa
ti�
ation of higher-dimensional supergravities on some3



internal manifold, su
h as for instan
e IIA/IIB supergravity 
ompa
ti�ed on theseven-sphere, or D = 5 supergravity on the two-sphere.� Just like D = 11 supergravity 
an be viewed as a strong-
oupling limit of D = 10IIA superstring theory [21℄ one may spe
ulate that four dimensions might arise outof a strongly 
oupled D = 3 supergravity theory [22℄. In this 
ontext, a spe
ial roleis played by the dilaton �eld, whose expe
tation value on the one hand `measures'the size of the S1 on whi
h one redu
es, and on the other hand appears as thestring 
oupling 
onstant. The 
onne
tion between the pertinent D = 3 potentialsand the potentials of D � 4 gauged supergravity potentials has been studied in [4℄,where the dilaton is identi�ed with the s
alar �eld asso
iated with a 
ertain gradingoperator whi
h is an element of the relevant (non-semisimple) gauge group.� Gauged supergravity 
an provide an e�e
tive and e
onomi
al des
ription of an in�-nite number of Kaluza-Klein supermultiplets in a way that is again without analogin dimensions D � 4. This has been re
ently demonstrated for the 
ompa
ti�
ationof matter-
oupled half maximal D=6 supergravity on AdS3�S3 whi
h leads to ane�e
tive theory in three dimensions with N = 8 lo
al supersymmetries [23℄. Morespe
i�
ally, the self-intera
tions of the the spin-1 Kaluza-Klein towers are fully de-s
ribed by an N = 8 gauged supergravity with gauge group SO(4)n T1, where T1is an in�nite dimensional translation group, and the gauge group is embedded intothe global symmetry group SO(8;1). (The se
ond entry is in�nite be
ause thereare in�nitely many N = 8 matter supermultiplets.) In parti
ular, this embeddingis 
ompatible with the quantum numbers of the Kaluza-Klein supermultiplets, andthe masses of all Kaluza-Klein states are 
orre
tly re
overed from a single s
alarpotential.� Finally, there are intriguing 
onne
tions to re
ent developments in the di�erentialgeometry of three-dimensional manifolds. On the one hand, the models 
ontain theCS Lagrangians that 
an be used to des
ribe knots and links and their 
hara
teristi
polynomials (invariants) [24, 25, 26℄. On the other hand they 
ontain the requisitematter �elds to realize the various elementary Thurston geometries [27, 28℄; in par-ti
ular, re
ent progress in establishing part of the Thurston 
onje
ture [29℄ has beenbased on the introdu
tion of a `dilaton �eld'. The question is therefore whether thesegauged supergravities 
an provide a uni�ed framework for these so far dis
onne
tedparts of mathemati
s.This review is organized as follows. In se
tion 2 we brie
y review the results of [1℄on the ungauged supergravity theories in three dimensions. The global invarian
es ofthe 
orresponding Lagrangians are dis
ussed in se
tion 3. In se
tion 4 we show thatarbitrary gauge �eld 
ouplings of Yang-Mills-type in three dimensions may always be4



brought into the form of parti
ular Chern-Simons intera
tions. For general gaugingswe may thus restri
t attention to the latter type of theories. In se
tion 5 and 6 wepresent the full Lagrangian and transformation rules of the gauged supergravities in threedimensions, as well as the 
onditions that must be satis�ed in order that the gaugingpreserves supersymmetry. The theories for N � 4 supersymmetries are dis
ussed in moredetail in se
tion 7, while se
tions 8 and 9 fo
us on the stru
ture of the N > 4 theories, andin parti
ular on the admissible gauge groups for the maximal (N = 16) theory. There, wealso mention some possible impli
ations of our results for the AdS3/CFT2 
orresponden
e.2 Supergravity 
oupled to nonlinear sigma modelsIn this se
tion we brie
y summarize the results of [1℄ (for a dis
ussion of the pe
uliaritiesof pure gravity in three spa
e-time dimensions, we refer to [30, 31℄). The �elds of thenonlinear sigma model are the target-spa
e 
oordinates �i and their superpartners �i, withi = 1; : : : ; d; the supergravity �elds are the dreibein e�a, the spin-
onne
tion �eld !�ab andN gravitino �elds  I� with I = 1; : : : ; N . The gravitinos transform under the R-symmetrygroup SO(N), whi
h is not ne
essarily a symmetry group of the Lagrangian.Sin
e the �elds are all massless at this stage, one may assume that no matter �eldsother than s
alars and spinors are required, be
ause heli
ity is trivial in three dimensions.The s
alar �elds parametrize a target spa
e endowed with a Riemannian metri
 gij(�).Pure supergravity is topologi
al in three dimensions and exists for an arbitrary numberN of super
harges and 
orresponding gravitinos [32℄. Its 
oupling to a nonlinear sigmamodel requires the existen
e of N � 1 hermitean, almost 
omplex, stru
tures fPij(�),labeled by P = 2; : : : ; N , whi
h generate a Cli�ord algebra,fPik fQkj + fQik fPkj = �2 ÆPQ Æij : (2.1)From the fP one 
onstru
ts 12N(N�1) tensors f IJij = �fJIij = �f IJji that a
t as generatorsfor the group SO(N),fPQ = f [P fQ℄ ; f1P = �fP1 = fP ; (2.2)where, here and hen
eforth, I; J = 1; : : : ; N . The f IJ are 
ovariantly 
onstant, both withrespe
t to the Christo�el and SO(N) target-spa
e 
onne
tions, �ijk and QIJi , respe
tively,Di (�; Q) f IJjk � �if IJjk � 2�i[kl f IJj℄l + 2QK[Ii fJ ℄Kjk = 0 : (2.3)The SO(N) 
onne
tions QIJi (�) are nontrivial in view ofRIJij (Q) � �iQIJj � �jQIJi + 2QK[Ii QJ ℄Kj = 12f IJij : (2.4)5



For N = 2 the target spa
e is K�ahler and f12 is a 
omplex stru
ture. The SO(2)holonomy is undetermined. For N = 3, there are three (almost) 
omplex stru
turesf12; f23 and f31, and the target spa
e is a quaternion-K�ahler spa
e. The 
ase N = 4 isspe
ial: there exists a tensor J ij, de�ned byJ = 124"IJKLf IJfKL ; J2 = 1 ; (2.5)whi
h has eigenvalues �1, 
ommutes with the almost 
omplex stru
tures and is 
ovari-antly 
onstant. This implies that the target spa
e is lo
ally the produ
t of two separateRiemannian spa
es of dimension d�, where d+ + d� = d and d� are both multiples of4. These two subspa
es are quaternion-K�ahler and 
orrespond to inequivalent N = 4supermultiplets. For N = 4 we note the following identity,f IJ ij fKLij = 4�d+PIJ;KL+ + d�PIJ;KL� � ; (2.6)with (anti)self-dual proje
tors,PIJ;KL� = 12ÆI[K ÆL℄J � 14"IJKL : (2.7)For N > 2 the target spa
e is an Einstein spa
e with nontrivial SO(N) holonomy. Theholonomy group is 
ontained in SO(N) �H0 � SO(d) whi
h must a
t irredu
ibly on thetarget spa
e. The group H0 must be a subgroup of SO(k) (for N = 7; 8; 9 mod 8), U(k)(for N = 2; 6 mod 8), or Sp(k) (for N = 3; 4; 5 mod 8), where k denotes the number ofindependent supermultiplets whose s
alar �elds parametrize the target spa
e. For N = 4these results are more subtle be
ause of the produ
t stru
ture. We note the followingrelations (always assuming N > 2),Rijkl = 18 �f IJij f IJkl + C�� h�ij h�kl� ;Rijkl f IJ kl = 12 �d+P+IJ;KL + d�P�IJ;KL� fKLij ;Rij = (N � 2 + 18d) gij + 18(d+ � d�)Jij ; (2.8)where, for N 6= 4, one must set Jij = 0 and P�IJ;KL = 12ÆI[KÆL℄J. In the �rst equation,C��(�) is a symmetri
 tensor and the target-spa
e tensors h�ij(�) form a basis of antisym-metri
 tensors 
ommuting with the almost 
omplex stru
tures. These tensors generatethe H0 fa
tor of the holonomy group with 
orresponding stru
ture 
onstants f��
.Beyond N = 4 the target spa
e geometries be
ome very restri
ted. This is shown intable 1, where k denotes the number of matter supermultiplets 
oupled to supergravity.Remarkably, not all values of 4 < N � 16 
an be realized: matter-
oupled supergravitiesexist only for N = 5; 6; 8; 9; 10; 12 and 16 super
harges. Furthermore, only for N � 8 is6



N Target Spa
e d1 Riemann manifoldMR k2 K�ahler manifoldMK 2k3 quaternion K�ahler manifoldMQK 4k4 quaternion K�ahler manifoldsMQK1�MQK2 4(k1+k2)5 Sp(2; k)=(Sp(2)�Sp(k)) 8k6 SU(4; k)=(SU(k)�SU(4)�U(1)) 8k8 SO(8; k)=(SO(8)�SO(k)) 8k9 F4(�20)=SO(9) 1610 E6(�14)=(SO(10)�U(1)) 3212 E7(�5)=(SO(12)�Sp(1)) 6416 E8(8)=SO(16) 128Table 1: Target spa
es for D = 3 supergravities. The number of independent supermultipletsis denoted by k. For N = 4 there exist two types of (inequivalent) supermultiplets, 
ounted byk1 and k2.it possible to in
lude an arbitrary number k of supermultiplets, whereas for N � 9 thereexists only one theory for ea
h admissible value of N .Let us now turn to the Lagrangian and supersymmetry transformations. We adopta manifestly SO(N) 
ovariant notation whi
h allows to sele
t the N�1 almost 
omplexstru
tures from the f IJ tensors by spe
ifying some arbitrary unit N -ve
tor �I and iden-tifying the 
omplex stru
tures with �JfJI . A

ordingly we extend the fermion �elds �ito an over
omplete set, �iI , de�ned by�iI = ��i; fPij �j� : (2.9)The fa
t that we have only d fermion �elds, rather than dN , is expressed by the SO(N)
ovariant 
onstraint,�iI = PIJij �jJ � 1N �ÆIJÆij � f IJ ij��jJ : (2.10)We should stress, that the introdu
tion of �iI is a purely notational 
onvenien
e; at everystep in the 
omputation one may 
hange ba
k to the original notation by 
hoosing �i =7



�I�iI . The 
ovariant notation does not imply that the theory is SO(N) invariant; ratherthe 
ovariant setting allows us to treat the N supersymmetries and the 
orrespondinggravitinos on equal footing.The Lagrangian then takes the formL0 = �12 i "��� �e�aR��a + � I�D� I��� 12e gij �g�� ���i ���j +N�1 ��iI=D�jI�+ 14e gij ��iI
�
� I� (���j + b���j)� 124eN�2Rijkl ��iI
a�jI ��kJ
a�lJ+ 148eN�2 �3 (gij ��iI�jI)2 � 2(N � 2) (gij ��iI
a�jJ)2� ; (2.11)with the 
ovariant derivativesD� I� = ��� + 12!a� 
a� I� + ���iQIJi  J� ;D��iI = ��� + 12!a� 
a��iI + ���j ��ijk �kI +QIJj �iJ� : (2.12)As in [1, 5℄, we use the Pauli-K�all�en metri
 with hermitean gamma matri
es 
a, satisfying
a
b = Æab + i"ab


. The Lagrangian is invariant under the following supersymmetrytransformationsÆe�a = 12 ��I
a  I� ;Æ I� = D��I � 18gij ��iI
��jJ 
�� �J � Æ�iQIJi  J� ;Æ�i = 12 ��I �iI ;Æ�iI = 12 �ÆIJ1�f IJ�i j =b��j �J � Æ�j ��ijk �kI +QIJj �iJ� ; (2.13)with the super
ovariant derivative b���i � ���i � 12 � I��iI . Observe that the terms pro-portional to Æ� in Æ�iI do not satisfy the same 
onstraint (2.10) as �iI itself, be
ausethe proje
tion operator PIJij itself transforms under supersymmetry, su
h that only theproje
tor 
ondition is supersymmetri
.3 Isometries and R-symmetriesThe Lagrangian (2.11) and the transformation rules (2.13) are 
onsistent with target-spa
edi�eomorphisms and �eld-dependent SO(N) R-symmetry rotations. These transforma-tions 
orrespond to reparametrizations within 
ertain equivalen
e 
lasses, but do not, ingeneral, 
onstitute an invarian
e. The SO(N) rotations a
t on  I�, �iI and QIJi a

ordingto Æ I� = SIJ(�) J� ; Æ�iI = SIJ(�)�iJ ; ÆQIJi = �DiSIJ(�) : (3.1)8



From (2.4), one 
on
ludes that the f IJ should be rotated 
orrespondingly,Æf IJ = 2SK[I(�) fJ ℄K : (3.2)The bosoni
 invarian
e group G of the Lagrangian (2.11) that 
ommutes with theLorentz transformations and spa
etime di�eomorphisms, is a subgroup of the produ
t ofthe target-spa
e isometries times the R-symmetry transformations. It is generated bythose target-spa
e isometries whose a
tion on the QIJi and f IJ may be absorbed by aspe
ial SO(N) transformation (3.1), (3.2). Spe
i�
ally, its generators are Killing ve
tor�elds X i(�) satisfyingLX gij = 0 ; LXQIJi +DiSIJ (�;X) = 0 ;LXf IJij � 2SK[I (�;X) fJ ℄Kij = 0 ; (3.3)where SIJ(�;X) is the parameter of an in�nitesimal SO(N) rotation whi
h depends bothon X i(�) and on the s
alar �elds. The Lagrangian (2.11) is then invariant under the
ombined transformations,Æ�i = X i(�) ; Æ I� = SIJ(�;X) J� ; Æ�iI = �jI�jX i + SIJ(�;X)�iJ : (3.4)The fermion transformations 
an be rewritten 
ovariantly,Æ I� = VIJ(�;X) J� � Æ�iQIJi  J� ;Æ�iI = DjX i �jI + VIJ(�;X)�iJ � Æ�j ��ijk �kI +QIJj �iJ� ; (3.5)where VIJ(�;X) � XjQIJj (�) + SIJ(�;X). Using (2.4) and (2.3), one veri�es that these
ond equation of (3.3) 
orresponds to,DiVIJ(�;X) = 12f IJij (�)Xj(�) ; (3.6)whi
h shows that VIJ(�;X) 
an be regarded as as the moment map asso
iated with theisometry X i. After 
ontra
ting (3.6) with fMN ij , one obtainsf IJ ij DiXj = ( 12dVIJ ; for N 6= 2; 4(d+PIJ;KL+ + d�PIJ;KL� )VKL ; for N = 4 (3.7)The last equation of (3.3) 
oin
ides with the integrability 
ondition related to (3.6) andis thus automati
ally satis�ed.For N > 2, the above analysis shows that there are no obstru
tions for extending anisometry to an invarian
e of the Lagrangian. For N = 2 this is di�erent: VIJ is determined9



by (3.6) up to an integration 
onstant related to the invarian
e of the Lagrangian under
onstant SO(2) transformations of the fermions. The isometries leave the 
omplex stru
-ture invariant and are therefore holomorphi
. For N = 4 the (anti)selfdual almost 
om-plex stru
tures PIJ;KL� fKL live in the 
orresponding d�-dimensional quaternion-K�ahlersubspa
e. The same holds for the moment maps, PIJ;KL� VKL, whi
h a

ording to (3.6)depend only on the 
orresponding subspa
e 
oordinates. Note, however, that when oneof the subspa
es is trivial, say when d� = 0, then PIJ;KL� VKL 
orresponds to a triplet ofarbitrary 
onstants. This is a 
onsequen
e of the fa
t that the model in this 
ase has arigid SO(3) invarian
e a
ting ex
lusively on the fermions.These integration 
onstants in VIJ 
orrespond to the so-
alled Fayet-Iliopoulos (FI)terms that are known from the gaugings of four-dimensional N = 1 and N = 2 super-gravity. Indire
tly, the above results may have impli
ations for higher-dimensional gaugedsupergravities, as follows from 
onsidering their redu
tion to three dimensions. For in-stan
e, the redu
tion of d = 4; N = 1 supergravity leads to d = 3; N = 2 supergravity forwhi
h the moment maps 
an always be modi�ed by an additive 
onstant. Consequently,we expe
t that there are no obstru
tions against a FI term in four dimensions, whi
h is in-deed the 
ase. For d = 4; N = 2 supergravity the situation is more subtle. The redu
tionof these theories to three dimensions leads to a produ
t of two quaternion-K�ahler targetspa
es, one asso
iated with the ve
tor multiplets and one asso
iated with the hypermulti-plets in four dimensions. As in three dimensions there are no integration 
onstants in themoment maps unless one of these quaternion-K�ahler spa
es is of dimension zero, it followsthat FI terms are only possible in four dimensions in the absen
e of hypermultiplets, aresult whi
h is indeed well known.The generators of G are labeled by indi
esM;N : : : and generate an algebra g. They
onsist of 
ombined isometries generated by Killing ve
tors XMi and in�nitesimal SO(N)rotations SM IJ � SIJ(�;XM). For N = 2; 4 one may have the situation that some of theXM vanish, while the 
orresponding SM IJ are 
onstant. Closure of g implies,XMj �jXN i �XNj �jXMi = fMNKXKi ; (3.8)[SM;SN ℄IJ �XMi �iSN IJ +XN i �iSM IJ = �fMNK SK IJ ; (3.9)with stru
ture 
onstants fMNK.From the integrability 
ondition of (3.6) one derives that DiXj� 14 fMNij VMN 
ommuteswith the almost 
omplex stru
tures. For N > 2 this implies that it 
an be de
omposedin terms of the antisymmetri
 tensors h�ij introdu
ed in (2.8),DiXMj � 14f IJij VM IJ � h�ij VM� : (3.10)Introdu
ing the notation VM i � XM i, we establish the following system of linear di�er-10



ential equations,DiVM IJ = 12 f IJij VM j ;DiVM� = 18 C�� h�ij VM j ;DiVMj = 14 f IJij VM IJ + h�ij VM� ; (3.11)where the 
ovariant derivative 
ontains the Christo�el 
onne
tion as well as the SO(N)�H0
onne
tions. Furthermore, we derivefMNK VK IJ = 12 f IJij VMiVNj � [VM; VN ℄IJ ;fMNK VK� = 18C�� h�ij VM i VN j + f�
� VM� VN 
 ;fMNK VKi = 14f IJij (VM IJ VN j �VN IJ VM j) + h�ij(VM� VN j � VN� VM j) : (3.12)Under the G-transformations the quantities VM IJ , VM i and VM� transform a

ording tothe adjoint representation of G, up to �eld-dependent SO(N)�H0 transformations, as isshown by,VN iDiVM IJ = �fMNK VK IJ + [VN ;VM℄IJ ;VN iDiVM� = �fMNK VK� + f�
� VN
 VM� : (3.13)For VM i this result is 
aptured by (3.8).4 Yang-Mills versus Chern-Simons gauged theoriesSo far we have been 
on
erned with massless matter �elds. We now turn to supersym-metri
 deformations of these theories that 
an be obtained by gauging. In that 
ase twoissues arise immediately. First the theories dis
ussed so far did not in
lude ve
tor �eldsthat are obviously needed to e�e
t the gauging. Se
ondly, when the �elds are not masslessthen it is no longer obvious that matter supermultiplets 
an be ex
lusively des
ribed interms of s
alar and spinor �elds, and one might want to in
lude other �elds as well. Asit turns out, these two issues are somewhat related.First of all, one 
an always in
lude ve
tor gauge �elds without 
hanging the numberof dynami
 degrees of freedom, by introdu
ing CS terms. This seems to leave open theoption of adding additional standard YM kineti
 terms (whi
h may eventually a
quiremass terms by spontaneous symmetry breaking) to des
ribe some of the matter degreesof freedom. In fa
t, all the theories that have been 
onstru
ted by dire
t dimensionalredu
tion appear as YM rather than CS gauged theories [33, 34℄.11



However, it turns out that the YM Lagrangians in three dimensions are simply equiv-alent to parti
ular CS Lagrangians. The dynami
 degrees of freedom are then 
arried byextra (
ompensating) s
alar �elds. In this 
onversion every gauge �eld is repla
ed by twogauge �elds and a new s
alar �eld, whi
h together des
ribe the same number of dynami
degrees of freedom as the original gauge �eld. The nonabelian gauge group is enlarged toa bigger gauge group whi
h is ne
essarily non-semisimple. To see how this 
omes about,
onsider a Lagrangian in three spa
etime dimensions with YM kineti
 terms quadrati
 inthe �eld strengths and with moment intera
tions proportional to gauge 
ovariant tensorsOA�� , L = �14pg �FA��(A)+OA��(A;�)�MAB(�) �FB��(A)+OB��(A;�)�+ L0(A;�) :(4.1)Here AA� denote the nonabelian gauge �elds labeled by indi
es A;B; : : :, and � generi
allydenotes possible matter �elds transforming a

ording to 
ertain representations of thegauge group GYM. The stru
ture 
onstants of this group are denoted by fABC , so thatthe �eld strengths read,FA��(A) = ��AA� � ��AA� � fBCAAB�AC� :The symmetri
 matrix MAB(�) may depend on the matter �elds and transforms 
ovari-antly under GYM. The last term, L0(A;�), in the Lagrangian is separately gauge invariantand its dependen
e on the gauge �elds is ex
lusively 
ontained in 
ovariant derivatives ofthe matter �elds or in topologi
al mass terms (i.e. CS terms).Usually the duality is e�e
ted by regarding the �eld strength as an independent �eldon whi
h the Bian
hi identity is imposed by means of a Lagrange multiplier. Be
ause theLagrangian (4.1) depends expli
itly on both the �eld strengths and on the gauge �elds, wepro
eed di�erently and write the �eld strength in terms of new ve
tor �elds BA� and thederivative of 
ompensating s
alar �elds �A, all transforming in the adjoint representationof the gauge group. The expli
it expression,12 ipg "���(FA��(A) +OA ��(A;�)) = MAB(BB � �D��B) ; (4.2)where MAC MCB = ÆBA , should be regarded as a �eld equation that follows from the newLagrangian (4.5) that we are about to present. The stru
ture of (4.2) implies that we aredealing with additional gauge transformations as its right-hand side is invariant under the
ombined transformations,ÆBA� = D��A ; Æ�A = �A ; (4.3)under whi
h all other �elds remain invariant. The 
orresponding abelian gauge group, T ,has nilpotent generators transforming in the adjoint representation of GYM. Obviously,12



the �A a
t as 
ompensating �elds with respe
t to T . The 
ombined gauge group is now asemidire
t produ
t of GYM and T and its dimension is twi
e the dimension of the originalgauge group GYM. The 
ovariant �eld strengths belonging to the new gauge group areFA��(A) and FA��(B;A) = 2D[�BA�℄, and transform under T a

ording to ÆFA�� = 0 andÆFA�� = ��C fABC FB��. The fully gauge 
ovariant derivative of �A equalsD̂��A � D��A �BA� = ���A � fABC AB� �C �BA� ; (4.4)and is invariant under T transformations.The �eld equations 
orresponding to the new Lagrangian,L = �12pg D̂��AMAB(�)D̂��B + 12 i "��� (FA��BA� �OA�� D̂��A) + L0(A;�) ;(4.5)lead to (4.2) as well as to the same �eld equations as before for the matter �elds �.Observe that the Lagrangian is fully gauge invariant up to a total derivative. In this way,the YM Lagrangian has now been 
onverted to a CS Lagrangian, with a di�erent gaugegroup and a di�erent s
alar �eld 
ontent, although the theory is still equivalent on-shellto the original one. To obtain the original Lagrangian (4.1), one simply imposes the gauge�A = 0 and integrates out the �elds BA�.In �gure 1 we s
hemati
ally illustrate the impli
ations of this equivalen
e for gaugedsupergravities in three dimensions. When des
ended from higher dimensions, the un-gauged theories usually appear with the physi
al bosoni
 degrees of freedom in di�erentguises, as s
alar and ve
tor �elds. In order to exhibit possible hidden symmetries, onethen dualizes the ve
tor �elds after whi
h all bosoni
 degrees of freedom are representedby s
alar �elds (in prin
iple there 
an also exist `intermediate' versions). The resultingtheory is then on-shell equivalent to the original one. Both theories 
an be gauged, butas the table shows, the on-shell equivalen
e persists.Perhaps it is worth pointing out that introdu
ing a mass term to a CS theory or a YMtheory has di�erent 
onsequen
es with regard to the degrees of freedom [35℄. An abelianCS term with a regular mass term proportional to 12mA 2� yields the following massivewave equation for the ve
tor �eld,��A� � ��A� = � im"���A� ; (4.6)whi
h des
ribes massive degrees of freedom with spin only equal to +1 or �1, dependingon the sign of the mass term. In 
ontradistin
tion, a YM kineti
 term with a regular massterm 12m2A 2� leads to massive degrees of freedom 
arrying both spin +1 and spin �1. Thisdoubling of degrees of freedom is 
onsistent with the YM-CS 
onversion des
ribed above,as a YM theory takes the form of a CS theory with twi
e the number of ve
tor �elds.13



gauging gaugingGauged theory (4.5)d s
alars, 2� CS-ve
torsgauge group: G0 nT�
Ungauged theoryd�� s
alars,� abelian ve
torsGauged theory (4.1)d�� s
alars, � YM-ve
torsgauge group: G0

dualizationUngauged theoryd s
alars, no ve
tors eliminationby means of (4.2)Figure 1: CS and YM gauged supergravity in three dimensions5 The embedding tensorWe now wish to deform the Lagrangian (2.11) su
h that it be
omes invariant under asubset of transformations (3.4) with spa
etime dependent parameters. The 
orrespondingsubalgebra g0 � g is 
hara
terized by an embedding tensor �MN viaX i = g�MN �M(x)XN i ; SIJ = g�MN �M(x)SNIJ ; (5.1)with gauge parameters �N (x) depending on the spa
etime 
oordinates, and a gauge 
ou-pling 
onstant g. Unless the gauge group G0 
oin
ides with the full symmetry groupG, the embedding tensor a
ts as a proje
tor whi
h redu
es the number of independentparameters a

ording todimg0 = rank� : (5.2)Although it is not obvious from the way �MN appears in (5.1) we will see below that itmust be gauge invariant and symmetri
 under inter
hange of the indi
esM and N . ViatM�MN tN it de�nes an element in the symmetri
 tensor produ
t (g
 g)sym. In order thatthe gauge tranformations generate a group, �MN must satisfy the 
ondition,�MP �NQ fPQR = f̂MNP �PR ; (5.3)for 
ertain 
onstants f̂MNP, whi
h are subsequently identi�ed as the stru
ture 
onstants ofthe gauge group. One 
an verify that the validity of the Ja
obi identity for the gauge groupstru
ture 
onstants follows dire
tly from the Ja
obi identity asso
iated with the group G,14



subje
t to proje
tion by the embedding tensor. The symmetry and gauge invarian
e of�MP implies that f̂MPQ�QN + f̂NPQ�MQ = 0, whi
h 
an be written in G-
ovariant form,�PL (fKLM�NK + fKLN�MK) = 0 : (5.4)Subsequently we introdu
e the gauge �elds AM� into the de�nition of the 
ovariantderivatives. For example, we haveD��i = ���i + g�MN AM� XN i ; (5.5)for the s
alar �elds. Their 
ovariant �eld strengths follow from the 
ommutator of two
ovariant derivatives, e.g.,[D�;D� ℄�i = g�MN FM�� XN i ; (5.6)and take the form�MN FM�� = �MN���AM� � ��AM� � g f̂PQMAP�AQ� � : (5.7)The extra minimal 
ouplings (5.5) render the Lagrangian invariant under lo
al trans-formations (3.4), (5.1) provided we assume the following transformation behavior of theve
tor �elds�MN ÆAM� = �MN �����M + g f̂PQMAP� �Q� : (5.8)However, they violate supersymmetry and the 
entral question is whether new terms inthe supersymmetry variations and in the Lagrangian 
an be found su
h as to regain thissymmetry. It is at this point that the need arises to in
lude a CS term for the ve
tor�elds,LCS = 14 ig "���AM� �MN���AN� � 13g f̂PQN AP�AQ� � ; (5.9)and assume the following supersymmetry transformations,�MN ÆAM� = �MN h2VM IJ � I��J + VMi ��iI
��Ii : (5.10)In order for this to work and to preserve gauge invarian
e, it is ne
essary to adopt asymmetri
, gauge invariant, embedding tensor.15



Although the embedding tensors must be found 
ase by 
ase, let us brie
y mentionsome general properties. For semisimple gaugings, the Lie algebra g0 always de
omposesas a dire
t sumg0 =Mi gi � g ; (5.11)of simple Lie algebras gi. In this 
ase, the embedding tensor 
an be written as a sum ofproje
tion operators�MN =Xi "i �MP(�i)PN ; (5.12)where �i proje
ts onto the i-th simple fa
tor g0i, �MP is the Cartan-Killing form, and the
onstants "i 
hara
terize the relative strengths of the gauge 
ouplings. There is only oneoverall gauge 
oupling 
onstant g for the maximal theory (N = 16), but there may beseveral independent 
oupling 
onstants for lower N .For non-semisimple gaugings, (5.11) is repla
ed byg0 =Mi gi � t ; (5.13)where t represents the solvable part of the gauge group. For the non-semisimple gaugegroups whi
h typi
ally appear in theories obtained by dimensional redu
tion, the lattersubalgebra de
omposes intot = t0 � t0 : (5.14)The abelian subalgebra t0 here transforms in the adjoint of the semisimple part of thegauge group and pairs up with the semisimple subalgebra in the embedding tensor, whi
hhas non-vanishing 
omponents only in (gi
 t0)sym and in (t0
 t0)sym. There are also manyexamples of nilpotent and almost nilpotent gaugings, where the semisimple part is absentor `small'. Many examples of non-semisimple gaugings 
an be generated from semisimpleones by a singular \boost" within the global symmetry group G, as explained in [4℄.6 T -tensors, 
onsisten
y 
onstraints, and the LagrangianBefore presenting the full Lagrangian of the gauged supergravity, we de�ne the so-
alledT -tensor (originally introdu
ed in higher-dimensional supergravity [36℄) asT IJ;KL � VM IJ�MNVN KL ; T IJi � VM IJ�MNVN i ;T ij � VM i�MNVN j ; T�i � VM��MNVN i ;T�� � VM��MNVN� ; T IJ� � VM IJ�MNVN� : (6.1)16



The T -tensor 
omponents that 
arry indi
es �; � do not appear dire
tly in the Lagrangianand transformation rules and are only de�ned for N > 2. From (5.4) and (3.13) itreadily follows that the T -tensor transforms 
ovariantly under the gauged isometries. Theadditional masslike terms and the s
alar potential in the Lagrangian and the 
orrespondingterms in the supersymmetry variations of the fermion �elds, whi
h we will spe
ify shortly,are en
oded in three tensors, A1; A2 and A3, whi
h are related to the T -tensor.A 
entral result of [5℄ is that a gauge group G0 � G with a gauge invariant embed-ding tensor �MN des
ribing the minimal 
ouplings a

ording to (5.5), is 
onsistent withsupersymmetry if and only if the asso
iated T -tensor (6.1) satis�es the 
onstraint,T IJ;KL = T [IJ;KL℄ � 4N�2 Æ I[K TL℄M;MJ � 2 ÆI[KÆL℄J(N�1)(N�2) TMN;MN : (6.2)For N = 1 and N = 2, this 
onstraint degenerates to an identity. The 
onsisten
y 
on-straint (6.2) has a simple group-theoreti
al meaning in SO(N): denoting the irredu
ibleparts of T IJ;KL under SO(N) by( � )sym = 1 + + + ; (6.3)with ea
h box representing a ve
tor representation of SO(N), equation (6.2) eliminatesthe \Weyl-tensor" type representationP T IJ;KL = 0 : (6.4)The 
ondition for a 
onsistent gauging is now fully 
aptured by 
onstraints (5.4) and (6.2)applied to a symmetri
 embedding tensor �MN . Spe
i�
 
ases will be dis
ussed in laterse
tions.Let us now present the full Lagrangian and transformation rules. The Lagrangian isgiven byL = �12 i "��� �e�aR��a + � I�D� I��� 12e gij �g�� D��iD��j +N�1 ��iI =D�jI�+ 14 ig "���AM� �MN���AN� � 13g f̂PQN AP�AQ��+ 14e gij ��iI
�
� I� (D��j + bD��j)� 124eN�2Rijkl ��iI
a�jI ��kJ
a�lJ+ 148eN�2 �3 (gij ��iI�jI)2 � 2(N�2) (gij ��iI
a�jJ)2�+ eg�12AIJ1 � I� 
��  J� +AIJ2 j � I� 
��jJ + 12A3 IJij ��iI�jJ�� 2 eg2 �gij AI J2i AI J2j � 2N�1AIJ1 AIJ1 � ; (6.5)17



with 
ovariant derivatives de�ned byD��i = ���i + g�MN AM� XN i ; bD��i = D��i � 12 � I��iI ;D� I� = ��� + 12!a�
a� I� + ���iQIJi  J� + g�MNAM� VN IJ  J� ;D��iI = ��� + 12!a�
a��iI + ���j ��ijk �kI +QIJj �iJ�+ g�MNAM� �Æij VN IJ � ÆIJgik DkVN j��jJ : (6.6)The supersymmetry transformations readÆe�a = 12 ��I
a  I� ;ÆAM� = 2VM IJ � I��J + VMi ��iI
��I ;Æ I� = D��I � 18gij ��iI
��jJ 
�� �J � Æ�iQIJi  J� + g AIJ1 
� �J ;Æ�i = 12 ��I �iIÆ�iI = 12 �ÆIJ1�f IJ�i j =bD�j �J � Æ�j ��ijk �kI +QIJj �iJ�� gN AJiI2 �J ; (6.7)with D��I = ��� + 12!a�
a� �I + ���iQIJi �J + g�MNAM� VN IJ �J : (6.8)The gauge transformations take the formÆ�i = g�MN �MXN i ;Æ I� = g�MN �MVNIJ  J� � Æ�iQIJi  J� ;Æ�iI = g�MN �M(�jI DjVNi + VNIJ �iJ)� Æ�j ��ijk �kI +QIJj �iJ� ;�MN ÆAM� = �MN (����M + g f̂PQMAP� �Q) : (6.9)For N > 2, the tensor A1 is given byAIJ1 = � 4N�2 T IM;JM + 2(N�1)(N�2) ÆIJ TMN;MN : (6.10)In the 
ases N = 1; 2, this tensor is only partially determined as we shall des
ribe in thenext se
tion. For all values of N the tensors A2 and A3 are given fun
tions of A1 and theT -tensor (6.1),AI J2 i = 1N nDiAIJ1 + 2T IJ io ;A3 IJij = 1N2n � 2D(iDj)AIJ1 + gij AIJ1 +AK[I1 fJ ℄Kij+2Tij ÆIJ � 4D[iT IJ j℄ � 2Tk[i f IJkj℄o : (6.11)18



Using (6.2) and its derivatives, one may verify that these tensors satisfy the symmetriesimplied by their appearan
e in (6.5):AIJ1 = AJI1 ; PKI ji AJ K2 j = AJI2 i ; A3 IJij = A3 JIji = PKI ji A3KJkj : (6.12)7 Dis
ussion of low N theoriesIn this se
tion we dis
uss the gauged supergravities for low values of N , following [5℄.The 
ases N = 1; 2 are spe
ial be
ause the tensor A1 entering the potential and thegravitino mass term is not uniquely determined by the 
onditions derived in the foregoingse
tion, and thus in general is not expressible in terms of the T -tensor alone. This leavesthe freedom for additional deformations (and thus s
alar �eld potentials) whi
h are notindu
ed by gauging. The additional freedom for N = 1 and N = 2 appears via real and
omplex holomorphi
 superpotentials, respe
tively. For N � 3, on the other hand, alldeformations 
orrespond to gaugings.7.1 N = 1In this 
ase, the target spa
e is a Riemannian manifold of arbitrary dimension d. Thetensor A1 has just one 
omponent, whi
h is a gauge invariant fun
tion F (�) on the targetspa
e,�MNXN i�iF = 0 : (7.1)Reading o� the values for A2 and A3 from (6.11), we obtainA1 = F ; A2 i = �iF ; A3 ij = gijF � 2Di�jF + 2Tij ; (7.2)with Tij = XMi �MNXNj . As a 
onsequen
e, any subgroup of isometries 
an be gauged(for example, by 
hoosing a 
onstant fun
tion F ). The gravitino  � is never 
harged underthe gauge group, and the gauging is restri
ted to the matter se
tor. The 
ase �MN = 0and F 6= 0 
orresponds to deformations of the original theory that are not indu
ed bygaugings. The s
alar potential V is given byV = 2g2 �gij �iF�jF � 2F 2� ; (7.3)so that the fun
tion F serves as the real superpotential. Stationary points of F de�ne(anti-de Sitter) supersymmetri
 ground states. An o�-shell version of these results forabelian gauge groups was re
ently given in [37℄.19



7.2 N = 2The target spa
e in this 
ase is a K�ahler manifold and may be 
onveniently parametrizedby d=2 
omplex 
oordinates and their 
onjugates, (�i; ���{). Its metri
 and the SO(2)
onne
tion are given in terms of the K�ahler K(�; ��) potential as gi�| = �i��|K, Qi � Q12i =�14i�iK. Any subgroup of the invarian
e group 
an be gauged. Partial results for abelianN = 2 gaugings have been obtained in [38, 39, 40, 41℄.A

ording to (3.3) only holomorphi
 isometries of the target spa
e 
an be extended tosymmetries of the Lagrangian. Su
h isometries are parameterized by holomorphi
 Killingve
tor �elds (X i;X�{),��{Xj = 0 ; DiX�| +D�|Xi = 0 :The se
ond 
ondition implies that the K�ahler potential remains invariant under the isom-etry up to a K�ahler transformation. We write this spe
ial K�ahler transformation in termsof a holomorphi
 fun
tion S(�), i.e.,ÆK(�; ��) = �X i �iK �X�{ ��{K = 4i (S � �S) : (7.4)Equation (3.6) may then be solved asV � V12 = �14i(X i�iK �X�{��{K) + S12 = �12iX i�iK + 2S :For every generator XM of the invarian
e group we thus identify a holomorphi
 fun
-tion SM, determined by (7.4) up to a real 
onstant. The parti
ular transformation (whi
hwe denote with the extra label M = 0),X0 i = 0 ; S0 = 12 ; V0 = 1 ; (7.5)
onstitutes a 
entral extension of the isometry group and generates the SO(2) R-symmetrygroup that a
ts ex
lusively on the fermions. These symmetries play a role in the presen
eof FI terms. We refer to [5℄ for further details.For the T -tensor, we introdu
e the notationT � T IJ;IJ = 2T 12;12 ; Ti � T 12i = 12 i�iT : (7.6)The tensor AIJ1 is determined by (6.10)A111 = �T � eK=2<W ; A221 = �T + eK=2<W ; A121 = A211 = eK=2=W ; (7.7)20



with an holomorphi
 superpotential W (�), whi
h, be
ause of gauge 
ovarian
e, must sat-isfy �MN (XN iDiW � 2iVNW ) = �MN (XN i�iW � 4iSNW ) = 0 ; (7.8)with the K�ahler 
ovariant derivative DiW � �iW + �iKW . The tensors A2, A3 followfrom (6.11); for A2 we �nd,A112 i = �iA122 i = �12(�iT + eK=2DiW ) ; A212 i = iA222 i = 12i(�iT � eK=2DiW ) : (7.9)The s
alar potential of the gauged theory is given byV = g2�4 gi�{ �iT ��{T � 4T 2 + gi�{ eKDiWD�{W � 4 eK jW j2� : (7.10)Note that in three dimensions, the s
alar potential 
ontains terms quarti
 in the momentmap V, sin
e the T -tensor is quadrati
 in V. This is in 
ontrast with e.g. four dimensions,where the 
orresponding part of the s
alar potential is quadrati
 in V.Analogous to the N = 1 
ase, there are two kinds of supersymmetri
 deformationsof the original theory. On the one hand, there are the gaugings, whi
h are 
ompletely
hara
terized by an embedding tensor �MN . The above analysis shows that there is norestri
tion on the T -tensor, and therefore any subgroup of the invarian
e group of thetheory is an admissible gauge group, as long as its embedding tensor satis�es (5.4). Onthe other hand there are the deformations des
ribed by the holomorphi
 superpotentialW , whi
h are not indu
ed by a gauging. In 
ase both deformations are simultaneouslypresent, their 
ompatibility requires (7.8). Pure N = 2 supergravity (without gauging)
an have a 
osmologi
al 
onstant 
orresponding to a 
onstant W and vanishing T . Thisimplies that the gravitino mass matrix is tra
eless. An alternative way to generate a
osmologi
al term in pure supergravity makes use of gauging the R-symmetry group. Inthat 
ase, T equals a nonzero 
onstant (equal to �00) and W = 0; the gravitino massmatrix is then proportional to the identity. The latter version has been 
onsidered in [38℄.7.3 Some 
omments on N = 3 and N = 4 theoriesFor N = 3, the target spa
e is a quaternion-K�ahler manifold. In this 
ase, the 
onsis-ten
y 
ondition (6.2) redu
es to an identity su
h that any subgroup of isometries 
an be
onsistently gauged. For N = 4 on the other hand, the target spa
e is lo
ally a produ
tof two quaternion-K�ahler manifolds of dimension d�. The almost-
omplex stru
tures f IJde
ompose into two sets of three almost-
omplex stru
tures f�,f+P � 12 (J + 1) fP = 12fP � 14�PQR fQR ; (P = 1; 2; 3) ;f� �P � 12 (J � 1) fP = � 12fP � 14�PQR fQR ; ( �P = 1; 2; 3) ; (7.11)21




orresponding to the de
omposition of the SO(4) R-symmetry group,SO(4) = SO(3)+ � SO(3)� : (7.12)In this basis, the 
onsisten
y 
ondition (6.2) that en
odes supersymmetry of the theorytakes the formT PQ = 13 ÆPQ TRR ; where T PQ = VMP�MNVN Q ; (7.13)and 
orrespondingly for T �P �Q. The o�-diagonal 
omponents, T P �Q are 
onstrained by thequadrati
 
onstraint (5.4), see referen
e [5℄ for details. Unlike the 
ases N < 4, it isthus no longer possible to gauge any subgroup of the isometry group. We refer to [5℄ forfurther details. Hen
eforth, we will 
all a subgroup of G `admissible' if its embeddingtensor obeys (5.3) and (6.2), so that supersymmetry is preserved.8 Symmetri
 target spa
es with N > 4Beyond N = 4, the only admissible target spa
es are the symmetri
 spa
es listed intable 1. Hen
e they are 
oset spa
es G=H, where the isotropy group is equal to the(maximal) holonomy group SO(N) � H0. The s
alar �elds may be des
ribed by meansof a G-valued matrix L(�i), on whi
h the rigid a
tion of G is realized by left multipli-
ation, while SO(N) � H0 a
ts as a lo
al symmetry by multipli
ation from the right.The generators of the group G 
onstitute a Lie algebra g, whi
h thus de
omposes intoftMg = fXIJ ;X�; Y Ag. The XIJ generate SO(N), the X� generate the 
ompa
t groupH0, while the remaining (non
ompa
t) generators Y A transform in a spinor representationof SO(N). The 
onne
tion with the general quantities introdu
ed above is given viaL�1�iL = 12 QIJi XIJ +Q�i X� + eiA Y A ;XM i �iL = tM L� 12SMIJ LXIJ + SM� LX� ;L�1tML = 12 VM IJ XIJ + VM�X� + VMA Y A ;gij = eiA ejB ÆAB ; f IJij = � �IJAB eAi eBj ; VMi = eiA VMA : (8.1)Equations (3.12) then 
orrespond to the fa
t that the maptM ! L�1tML ; (8.2)is an isomorphism of the algebra g; the a
tual equations follow straightforwardly fromthe 
ommutator [L�1tML; L�1tNL℄, upon using the expli
it 
ommutation relations of the22



generators XIJ , X� and Y A. Linear �rst-order di�erential equations su
h as (3.11) 
an bederived for any 
oset spa
e (see, e.g. [42℄) and the a
tual results follow after substitutingthe appropriate expressions for the 
oset-spa
e 
urvatures. Here we should add that theabove analysis 
an be straightforwardly extended to N = 4 with symmetri
 target spa
es,as all these spa
es are known and exhibit the same 
hara
teristi
s as outlined above.The symmetri
 spa
e stru
ture in parti
ular implies, that the T -tensor (6.1) 
oin
ideswith the image of the embedding tensor �MN under (8.2),TAB = VMA�MN VNB ; (8.3)This allows us to lift the 
onsisten
y 
ondition (6.4), a

ording to whi
h the SO(N) rep-resentation in the T -tensor vanishes, to a �eld-independent 
ondition on the embeddingtensor,PMNPQ�PQ = 0 : (8.4)HerePproje
ts onto the unique irredu
ible representation in (g
g)sym that 
ontains therepresentation of the T -tensor, via (8.3). It is a non-trivial fa
t that the T -tensor, whi
h isassigned to R-symmetry representations, and appears in the fermioni
 masslike terms andthe s
alar potential, 
an be assembled into representations of the global symmetry groupG, as was �rst noti
ed in the 
ontext of maximal gauged supergravity in four dimensions[16℄. For the symmetri
 target spa
es, admissible subgroups of G are 
hara
terized by anembedding tensor that obeys (5.3) and (8.4).Note that the 
onsisten
y 
onditions (5.3) and (8.4) remain 
ovariant under the 
om-plexi�ed global symmetry group GC . Indeed, non-semisimple gaugings in four dimensionswere originally found in [43℄ by analyti
 
ontinuation of SO(8) in the 
omplexi�ed globalsymmetry group E7(C ). In three dimensions, a similar 
onstru
tion should exist relatingthe di�erent non-
ompa
t real forms of the gauge groups listed in table 2 below, andexplaining why ratios of 
oupling 
onstants between the fa
tor groups remain the same.9 Admissible gauge groups for N = 16To illustrate the variety of possible gaugings, we now turn to the maximally extendedN = 16 supergravity.2 In this 
ase the embedding tensor transforms as an element of the2A di�erent version of gauged N=16 supergravity, whi
h modi�es the ungauged theory only by topo-logi
al terms, and does not lead to a s
alar potential or Yukawa type 
ouplings, was re
ently proposedin [44℄. 23



symmetri
 tensor produ
t of two adjoint (and in this 
ase also fundamental) representa-tions of E8(8)(248
 248)sym = 1� 3875 � 27000 ; (9.1)As shown in [2℄ (8.4) be
omes(P27000)MNPQ�PQ = 0 : (9.2)so that the embedding tensor de
omposes into a singlet and the 3875 representations ofE8(8). Following [9℄, we split the generators of g = e8(8) into 120 
ompa
t onesXIJ = �XJIwith SO(16) ve
tor indi
es I; J = 1; : : : ; 16, and 128 non
ompa
t ones fY Ag with SO(16)spinor indi
es A = 1; : : : 128. Then the 
ondition (9.2) implies that only spe
ial SO(16)representations 
an appear in �; we have� = �IJ jKLXIJ 
XKL +�IJ jA (XIJ 
 Y A + Y A 
XIJ ) + �AjB Y A 
 Y B ; (9.3)with [2, 13℄�IJ jKL = �2� ÆIJKL + 2ÆI[K �L℄J + �IJKL ;�IJ jA = �17 �[IA _A �J ℄ _A ;�AjB = � ÆAB + 196 �IJKL �IJKLAB ; (9.4)and the SO(16) � matri
es �IA _A, where the indi
es _A = 1; : : : ; 128 label the 
onjugatespinor representation. The tensors �IJ , �IJKL and �I _A transform as the 135, 1820 and1920 representations of SO(16), respe
tively; hen
e �II = 0 = �IA _A �I _A, and �IJKL is
ompletely antisymmetri
 in its four indi
es. The singlet 
ontribution in (9.4) is absentfor non-semisimple and 
omplex gauge groups.Although the solutions to (9.2) have not been exhaustively 
lassi�ed, it is known thatall the irredu
ible 
omponents o

urring in (9.4) 
an and do appear, depending on thetype of gauge group. The simplest examples are the semisimple gaugings with maximalsupersymmetry 
onstru
ted in [2℄, for whi
h we have quite generally� ;�IJ ; �IJKL 6= 0 and �I _A = 0 (for semisimple g0) : (9.5)In this 
ase, the sum (5.12) 
ontains at most two terms, i.e. the gauge groups are typi
allyprodu
ts of two simple groups G1�G2 with a �xed ratio of 
oupling 
onstants g1=g2, su
hthat there is only one free parameter in the theory. S
hemati
ally, we have the admissiblegauge groupsG0 = E8 ; E7 �A1 ; E6 �A2 ; F4 �G2 ; D4 �D4 : (9.6)24



whi
h appear in all those real forms that are 
onsistent with E8(8). Remarkably, theratio g1=g2 does not depend on the 
hosen real form. Furthermore, as shown in [2, 13℄,all these theories possess maximally supersymmtri
 (AdS or Minkowski) ground states.The 
orresponding theories with their 
orresponding gauge groups, whi
h are parti
ularnon
ompa
t versions of the groups (9.6), are listed in table 2. In the last 
olumn, the tablelists the symmetry groups of the ground states, whi
h are superextensions of the three-dimensional AdS group SL(2;R) � SL(2;R). Besides the fully supersymmetri
 va
ua,there are also many known stationary points with partially broken supersymmetry [12,13, 14℄. However, be
ause no general and 
omplete results on the extremal stru
ture ofthe asso
iated potentials are available to date3, many further extremal points 
ould existbesides the known ones.A se
ond 
lass are the non-semisimple gaugings, whose existen
e 
an also be inferredfrom the fa
t that in higher dimensions there are many maximal gaugings with non-semisimple groups [43, 45, 46, 47, 48℄. For the non-semisimple gaugings, in general all
omponents of the embedding tensor in (9.4) are non-vanishing, in parti
ular the `o�-diagonal' 
omponents (mixing 
ompa
t and non-
ompa
t generators)�I _A 6= 0 (for non-semisimple g0) : (9.7)For N = 16, the most prominent examples are [4℄G0 = SO(p; q)nT28 for p+ q = 8 ;G0 = CSO(p; q; r)n Tp;q;r for p+ q + r = 8 and r > 0 (9.8)Here, T28 is an abelian group of 28 translations transforming in the adjoint of SO(p; q).Similarly, Tp;q;r is a group of translations, but of smaller dimensiondimTp;q;r = dimCSO(p; q; r) = 28 � 12r(r � 1) : (9.9)Note that the groups in (9.8) involving SO(p; q) or CSO(p; q; r) with p 6= 0; 8 admit onlyone embedding, whereas there are two inequivalent SO(8) n T28 gaugings, 
orrespondingto the 
ompa
ti�
ations IIA and IIB supergravity on S7. Quite generally, redu
tion of ahigher-dimensional gauged supergravity (with semisimple or non-semisimple gauge group)on a torus will always lead to a non-semisimple gauge group in three dimensions. In viewof the equivalen
e of CS and YM type gauge theories explained in se
tion 4, the gaugedsupergravities with the gauge groups (9.8) are 
onsequently on-shell equivalent to theones obtained by redu
ing the SO(p; q) and CSO(p; q; r) theories of [43℄ on S1. Further3Even for D=4, the 
omplexity of the potentials has prevented the identi�
ation of new stationarypoints beyond those already found in [15, 17℄, although the potentials are now known on a larger manifoldof s
alar �eld 
on�gurations thanks to the high performan
e symboli
 algebra program developed in [14℄.25



gauge group G0 ratio g1=g2 (nL; nR) ground state symmetry groupSO(8)�SO(8) g1=g2 = �1 (8; 8) OSp(8j2;R)�OSp(8j2;R)SO(7; 1)�SO(7; 1) g1=g2 = �1 (8; 8) F(4)�F(4)SO(6; 2)�SO(6; 2) g1=g2 = �1 (8; 8) SU(4j1; 1)�SU(4j1; 1)SO(5; 3)�SO(5; 3) g1=g2 = �1 (8; 8) OSp(4�j4)�OSp(4�j4)SO(4; 4)�SO(4; 4) g1=g2 = �1 (8; 8) Minkowski va
uumG2(2)�F4(4) gG2=gF4 = �3=2 (4; 12) D1(2; 1;�23)�OSp(4�j6)G2�F4(�20) gG2=gF4 = �3=2 (7; 9) G(3)�OSp(9j2;R)E6(6)�SL(3) gA2=gE6 = �2 (16; 0) OSp(4�j8)�SU(1; 1)E6(2)�SU(2; 1) gA2=gE6 = �2 (12; 4) SU(6j1; 1)�D1(2; 1;�12)E6(�14)�SU(3) gA2=gE6 = �2 (10; 6) OSp(10j2;R)�SU(3j1; 1)E7(7)�SL(2) gA1=gE7 = �3 (16; 0) SU(8j1; 1)�SU(1; 1)E7(�5)�SU(2) gA1=gE7 = �3 (12; 4) OSp(12j2;R)�D1(2; 1;�13)E8(8) gE8 (16; 0) OSp(16j2;R)�SU(1; 1)Table 2: The N = 16 theories with semisimple gauge groups G0. Ex
ept for the last row, thegauge groups appear as dire
t produ
ts of two fa
tors whose 
oupling 
onstant ratio g1=g2 isdetermined by (9.2). All these theories admit a maximally supersymmetri
 AdS (or Minkowski,for G0 = SO(4; 4) � SO(4; 4)) ground state, whose symmetry group fa
torizes a

ording toGL �GR, as spe
i�ed in the last 
olumn; the super
harges split a

ordingly into nL + nR = 16.examples of non-semisimple gaugings 
an be generated from semisimple ones by the boostmethod des
ribed in [4℄.In 
ontrast to the semisimple gaugings, the non-semisimple ones do not admit maxi-mally supersymmetri
 groundstates. The potentials 
ontain exponential fa
tors and theirminimum is usually rea
hed at in�nity. This phenomenon is well-known from higher-dimensional gauged supergravities. The non-existen
e of fully supersymmetri
 va
ua isalso related to the disappearan
e of the supersymmetri
 va
uum that is known to o

urwhen one redu
es maximal gauged supergravity from four or �ve to three dimensions ona torus. 26



The most 
urious solution of the 
onsisten
y 
onditions is the 
omplex gauge groupG0 = SO(8; C ) : (9.10)whi
h 
an be realized in two inequivalent ways, 
orresponding to two possible and inequiv-alent embeddings of SO(8; C ) into the (real) Lie group E8(8) (there are similar 
omplexgauge groups SO(n; C ) for N = 2n = 12; 10 supergravities). This gauging provides anexample of a purely o�-diagonal embedding tensor for whi
h� = �IJ = �IJKL = 0 and �I _A 6= 0 (for g0 = so(8; C )) ; (9.11)so �I _A is the only nonvanishing 
omponent in (9.4). Be
ause it does not require an imag-inary unit, this embedding exhibits some rather strange properties. Like the semisimplegauge groups of table 2, the SO(8; C ) gauged supergravities 
annot be derived from higherdimensions by any known me
hanism. Furthermore, they feature a de Sitter stationarypoint at the origin breaking all supersymmetries, and with ta
hyoni
 instabilities. (Thereare indi
ations that these models possess no further extrema besides the one at the ori-gin.4) We note that CS gauge theories with 
omplex gauge groups are of 
onsiderableinterest ([24℄; see also [26℄ and referen
es therein for some re
ent developments). Theembedding of su
h theories into supergravity with non-trivial matter 
ouplings may wellprovide interesting new perspe
tives.As we already explained in the introdu
tion, the existen
e of the large variety of gaugedsupergravities in three spa
e-time dimensions, with potentials that have stationary points
orresponding to AdS ba
kgrounds, is important in the 
ontext of the AdS/CFT 
orre-sponden
e. In the 
ase at hand the 
orresponden
e implies a relation between an AdSsolution of a 
ertain three-dimensional gauged supergravity and a two-dimensional (su-per)
onformal theory living on the boundary of the AdS spa
e. The two-dimensionaltheories are 
hara
terized by an in�nite-dimensional super
onformal algebra. These alge-bras have all been 
lassi�ed [49℄; they 
onsist of a sum of two algebras, pertaining to theleft- and right-moving se
tors, respe
tively, 
ontaining an nL- and an nR-superextendedVirasoro algebra. On the supergravity side, the maximal �nite-dimensional subalgebrawill 
orrespond to the symmetry algebra of the AdS3 stationary point. To illustrate this,one may 
onsider the theories listed in table 2, whi
h admit maximally supersymmetri
AdS3 stationary points whose symmetry algebra are listed in the last 
olumn. Indeed,ea
h of these symmetry algebras 
oin
ides with the maximal �nite subalgebra of a 
or-responding super
onformal algebra of [49℄ with the appropriate numbers, nL and nR, ofsuper
harges.The in�nite-dimensional super
onformal algebras appear in the asymptoti
 symmetriesof the supergravity �elds [50, 51℄. For the pure extended (N > 1) supergravity theories,4T. Fis
hba
her, private 
ommuni
ation. 27



this phenomenon was analyzed in [52℄. For nL;R > 4, this analysis 
on�rmed the presen
eof terms in the algebra that are quadrati
 in the generators, in a

ord with the knownform of the 
orresponding in�nite-dimensional super
onformal algebras. It should beinteresting to extend this analysis to the propagating bulk �elds des
ribed by the matter-
oupled gauged supergravities of this paper.In the spirit of the AdS/CFT 
orresponden
e the supergravity Lagrangians (6.5) ob-tained for the theories listed in table 2 allow the 
onstru
tion of the n-point 
orrelationfun
tions of a 
losed subset of 
hiral primary operators of the asso
iated super
onformaltheories. To date, no 
on
rete proposal for these N = 16 boundary theories has beenput forward | partly due to the la
k of known brane 
on�gurations whose near horizongeometry would admit an isometry group related to any of the gauge groups in table 2.In 
ontrast, the most prominent example of an AdS3/CFT2 
orresponden
e, the D1-D5system, relates IIB string theory on AdS3�S3�M4 [53℄ to an N = (4; 4) super
onformal�eld theory des
ribed by a non-linear sigma model whose target spa
e is a deformation ofthe symmetri
 orbifold (M4)n=Sn [6℄. The 
orresponding low-energy e�e
tive supergravityis the half-maximal theory 
onstru
ted in [23℄.Gauged supergravities with non-semisimple gauge groups on the other hand make theirappearan
e in the generalization of the AdS/CFT 
orresponden
e to so-
alled domainwall/QFT dualities, relating string theory on near-horizon Dp-brane geometries to d = p+1dimensional super-Yang-Mills theories with sixteen super
harges [54, 55℄. In parti
ular,the N = 16 theory with gauge group SO(8)nT28 des
ribing the warped AdS3�S7 near-horizon D-string geometry [56℄, is holographi
ally dual to IIA matrix string theory [57℄.A
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