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al evaluation of phase spa
e integrals byse
tor de
ompositionT. Binotha and G. Heinri
hbaInstitut f�ur Theoretis
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he Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyAbstra
tIn a series of papers we have developed the method of iterated se
tor de
ompositionfor the 
al
ulation of infrared divergent multi-loop integrals. Here we apply it to phasespa
e integrals to 
al
ulate a 
ontribution to the double real emission part of the e+e� !2 jets 
ross se
tion at NNLO. The expli
it 
an
ellation of infrared poles upon summationover all possible 
uts of a given topology is worked out in detail for a spe
i�
 example.



1 Introdu
tionThe pre
ision measurements at LEP, SLAC, HERA and the Tevatron in the past years madeit obvious that QCD 
orre
tions at next-to-leading order (NLO) a

ura
y are mandatory fora su

essful 
omparison of data and theory. Fortunately, a multitude of NLO 
orre
tionsare available these days and the te
hniques for these 
al
ulations have rea
hed a rathermature state, at least in what 
on
erns 1! 3 or 2! 2 partoni
 pro
esses.However, the advent of the LHC and above all an e+e� linear 
ollider will provideinstan
es where the NLO QCD 
orre
tions are { in some parti
ular 
ases { not suÆ
ientlya

urate to mat
h the experimental pre
ision. This is true for example for the extra
tionof the strong 
oupling 
onstant �s from jet observables at a future e+e� 
ollider.This fa
t served as a motivation for substantial progress towards the 
al
ulation ofNNLO 
orre
tions to important pro
esses, in parti
ular in what 
on
erns the two-loopvirtual 
orre
tions [1℄{[6℄ and the one-loop 
orre
tions 
ombined with real radiation whereone additional parton is emitted [7, 8, 9℄. The 
onstru
tion of a fully di�erential NNLOpartoni
 Monte Carlo program however also requires the 
al
ulation of the real emission partwhere up to two partons 
an be unresolved, and { last but not least { the 
ombination of allthe ingredients to a stable and suÆ
iently fast Monte Carlo program. In what 
on
erns thedouble real emission, subtra
tion s
hemes have been proposed in the literature [10, 11, 12℄,but a 
omplete 
al
ulation in
luding the �nal Monte Carlo program has been performedso far only for the parti
ular 
ase of the photon+ jet{ rate in e+e� annihilation [13, 14℄.However, a lot of a
tivity 
on
erning this subje
t is going on at the moment. The e�orts are
on
entrated parti
ularly on the pro
ess e+e� ! 3 jets, as this rea
tion is both appealingfrom a phenomenologi
al point of view (e.g. measurement of �s) as well as from a theoreti
alone (no problems due to initial state singularities). Nevertheless, it is worthwhile to 
onsider�rst the rea
tion e+e� ! 2 jets as this is the simplest example where the treatment of thedouble unresolved real radiation 
an be studied, and therefore a good testing ground for anew method.Progress in what 
on
erns the integration of subtra
tion terms has been made in [15℄,where it has been shown that the integrals of any 1! 4 matrix element in massless QCDover the total phase spa
e 
an be expressed by four master integrals. These integrals havebeen evaluated analyti
ally as well as numeri
ally.The 
omplexity of the phase spa
e integrals with two unresolved partons stems from thefa
t that the 
orresponding IR singularity stru
ture is overlapping. We have demonstratedin [16℄ how one 
an disentangle in an automated way overlapping singularities in parameterrepresentations of dimensionally regulated multi-loop integrals. The method of iteratedse
tor de
omposition, 
ombined with numeri
al integration of the pole 
oeÆ
ients, provedsu

essful to deal with very 
ompli
ated Feynman diagrams [16, 17℄.In this paper we apply the same ideas to parameter representations of phase spa
eintegrals, as a 
ontinuation of the work done in [15, 18℄. In the same 
ontext the methodof se
tor de
omposition also has been applied meanwhile in [19℄.In 
ontrast to [15℄, where this method of numeri
al integration has been applied tomaster integrals only, we show here that we also 
an deal with numerators 
oming fromgauge 
ouplings and thus �nally with 
omplete matrix elements. Working through oneexample in great detail, we demonstrate the viability of our approa
h, showing expli
itly1



Figure 1: Sample three loop topology related to e+e� ! 2 jets at NNLO.the 
an
ellation of infrared poles for a given topology when summing over all 
uts.The paper is organised as follows. In se
tion 2 we dis
uss in detail the 
an
ellationof infrared divergen
es in a 
on
rete example. We work out the 
ut stru
ture and the
ounterterms and represent the 
onsidered topology by a number of 
ut diagrams whi
hgive rise to phase spa
e integrals. In se
tion 3 we present the analyti
al results for the 2{and 3{parti
le 
ut diagrams, and in se
tion 4 we dis
uss the method to perform the phasespa
e integration of the 4-parti
le 
ut numeri
ally. In se
tion 5 we present the numeri
alresult for a more 
ompli
ated topology whi
h has up to 1=�4 poles. Se
tion 6 
loses thepaper with a dis
ussion.2 Can
ellation of infrared divergen
esTwo-jet produ
tion in e+e� 
ollisions at NNLO in �s 
orresponds diagrammati
ally to sumsover 
uts of three-loop va
uum polarisation graphs. After renormalization of ultravioletsubdivergen
es the three-loop diagram has at most an overall ultraviolet divergen
e with a�nite imaginary part. Be
ause this imaginary part is related to the sum over all 
uts of thediagram, one 
on
ludes that the sum over all 
uts has to be �nite. This is just the KLN [20℄
an
ellation me
hanism for infrared �nal state singularities. In our 
ase, one has 2{, 3{ and4{parti
le 
uts whi
h 
orrespond to phase spa
e integrations over the respe
tive partons.We require 2 jets in the �nal state, su
h that up to two partons 
an be
ome unresolved.Consider for example the diagram shown in Fig. 1. In the following subse
tions, we willwork out the UV renormalization and 
ut stru
ture of this diagram. We use Feynman gaugethroughout the paper.2.1 Cut diagramsInfrared 
an
ellations take pla
e when summing over 
uts of a given renormalized topology.In our 
ase we have the 2{, 3{ and 4{parti
le 
uts C2; C3 and C4, whi
h graphi
ally aregiven by
2



C2 = + z1 +12 z2+ + z1 +12 z2C3 = +12 z1+ +12 z1C4 =The fa
tors z1 and z2 denote the 
ontributions from 
ounterterms. The sum of termsin ea
h line in the above �gures is formally UV �nite. In dimensional regularization theradiative 
orre
tions to the two-point fun
tions vanish if the parti
le is put on-shell. Thisis the me
hanism whi
h formally leads to the 
onversion of UV into IR poles. Using thediagrammati
 rule = 0 ; = 0 = 0the only remaining terms in the sum C = C2 + C3 + C4 are3



C = + z1 + z2 (1)The 1=� terms 
ontained in z1 and z2 now represent IR poles. The graphs shown in (1)denote the 
ontribution from the given topology to the full pro
ess. As the imaginary partof the 
orresponding 3-loop topology is �nite, unitarity implies that C is IR �nite.The part whi
h is hard to 
al
ulate analyti
ally is the 4{parti
le 
ut, that is why weadvo
ate a numeri
al evaluation of C4. The remaining 
ombination of 
ounterterms and2{ and 3{parti
le phase spa
e integrations 
an straightforwardly be done analyti
ally. Thiswill be worked out in the next se
tion.2.2 UV renormalizationTo 
ompute the renormalization 
onstants z1 and z2 we have to determine the pole parts ofall graphs and subgraphs. Following a graphi
al BPHZ notation one has to 
arry out thefollowing subtra
tions to renormalize the one-loop selfenergy and �nally the whole diagram:The one-loop subtra
tion: � = �niteand the two-loop subtra
tions:
� +� = �niteThe shaded boxes denote the MS pres
ription to keep only the pole part of the expres-sion, up to absorption of a standard fa
tor into the 
oupling:� = CMS �0 ; �s = CMS �s;0 ; CMS = �(1 + �)(4�)��2� (2)4



Using the integralI(�; �) = Z dDki�D=2 
�=k
�[�k2℄�[�(k � p)2℄�= =p(2�D)(�p2)D=2�����(� + � �D=2)�(�)�(�) �(D=2� �+ 1)�(D=2� �)�(D � �� � + 1) (3)one �nds the following analyti
 results for the graphi
al expressions (D = 4 � 2�). At oneloop: = i=pCF ��s4�� �p2�2 !�� �(1� �)2�(2� 2�) (1� �)�= i=pCF ��s4�� 1� (4)and for the two-loop part:= �i=pC2F ��s4��2 �p2�2 !�2� �(1 + 2�)�(1 + �)2 �(1� �)3�(3� 3�) (1� �)2�2= �i=pC2F ��s4��2 �p2�2 !�� �(1� �)2�(1� 2�) 1� ��2(1� 2�)= �i=pC2F ��s4��2 h 12�2 + 54� � 1� log �p2�2 !i= �i=pC2F ��s4��2 h 1�2 + 1� � 1� log �p2�2 !i (5)The renormalization 
onstants 
an be read o� dire
tly:i=pz1 = ) z1 = CF �s4� 1� (6)i=pz2 = �) z2 = C2F ��s4� 1��2 h12 � 14�i = 12 z21 h1� 12�i (7)The non-lo
al logarithmi
 terms 
an
el, as guaranteed by the BPHZ theorem.3 Matrix elements and phase spa
e integralsWhat remains to be done is the evaluation of the phase spa
e integrals for the 
uts shownin Eq. (1). The 
orresponding matrix elements are given by the following formulae, where5



p1 (p2) are the momenta of the quark (anti-quark), p3 and p4 denote the gluons.jM1!2j2 = 16�� (1� �)  �2��(1 + �)(4�)�! s12 (8)jM1!3j2 = 8 (4�)2(1� �)2 ��s CF  �2��(1 + �)(4�)�!2 s23s13 (9)jM1!4j2 = 16 (4�)3(1� �)3��2s C2F  �2��(1 + �)(4�)�!3(s13 + s34)(s12 + s24)� s14 s23s13(s13 + s34 + s14)2 (10)jM1!2j2 and jM1!3j2 
an be integrated dire
tly. The 
orresponding phase spa
e integralsare given in detail in the Appendix. We obtainT1!2 = Z d�1!2jM1!2j2 = 2�Q2  Q2�2 !�� (1� �)�(1� �)�(1 + �)�(2� 2�) (11)Using the integralJ3(�) = 1Z0 dy1dy2dy3 Æ(1� y1 � y2 � y3) (y1 y2 y3)�� y3y2 = �(1� �)� �(1� �)3�(3� 3�) ; (12)where y1 = s12=Q2; y2 = s13=Q2; y3 = s23=Q2, one �nds for the 1! 3 
ase:T1!3 = Z d�1!3jM1!3j2= ��s CF (2�)2�8�3 (1� �)2Q2 Q2�2 !�2� V (3� 2�)V (2� 2�)�(1 + �)2 J3(�)= �z1 T1!2  Q2�2 !�� 2 (1� �)2�(1� �)2�(1 + �)�(3� 3�) (13)The 1! 4 
ase 
annot be solved easily analyti
ally. We write it in the following form:T1!4 = Z d�1!4jM1!4j2= (z1 �)2 T1!2  Q2�2 !�2� (1� �)2�(1 + �)2�(1� 2�) J4(�) (14)where the nontrivial integral J4(�) remains, whi
h will be dealt with numeri
ally in the nextse
tion.So far, one �nds for the 
ut diagrams in Eq. (1):C2 = z21 T1!2 �12 � 14�� 6



C3 = �z21 T1!2  Q2�2 !�� (1� �)2 "1 + 92� + �2  634 � 2�23 !+O(�3)#C4 = z21 T1!2 Q2�2 !�2� �2(1� �)2 "1� �2�22 +O(�3)# J4(�) (15)and 
onsequently the poles 
ontained in J4(�) have to 
an
el with�C2 + C3�jpolepart = z21 T1!2 "�12 � 114 � + � log Q2�2 !# : (16)4 Numeri
al evaluation of 1! 4 phase spa
e integralsIn massless QCD, the integrals of any 1! 4 matrix element over the total phase spa
e 
an beexpressed by four master integrals whose analyti
al evaluation is 
ompli
ated, but has beena
hieved in [15℄. This allows to follow the 
onventional pro
edure to establish a subtra
tions
heme and to integrate the subtra
tion terms analyti
ally. However, as the �nite part of thephase spa
e will �nally be integrated numeri
ally anyway, a 
exible, 
ompletely numeri
almethod would be wel
ome. Of 
ourse the problem 
onsists in the isolation and subtra
tionof the infrared poles, stemming from the integration over unresolved parti
les, before anumeri
al evaluation is possible. This is where se
tor de
omposition is very 
onvenient.How it pro
eeds is shown for the sample integral J4 de�ned in eq. (17). Note that thisintegral 
ontains an integrable singularity of square-root type. For the sake of numeri
alstability it is preferable to perform a mapping su
h that the integrand is bounded near thephase spa
e limits. In detail we pro
eed as follows:Our starting point is the integral J4(�) whi
h represents (up to an overall fa
tor, seeeqs. (10),(15)) the integral over the 4{parti
le 
ut of the topology in Fig. 1.J4(�) = 4� 1Z0 6Yi=1 d yi�(��)(��)�1=2��Æ(1� 6Xj=1 yj)(y1 + y5) (y2 + y6)� y3 y4y2 (y2 + y4 + y6)2 ; (17)where we have res
aled the Mandelstam invariants byy1 = s12=Q2; y2 = s13=Q2; y3 = s23=Q2; y4 = s14=Q2; y5 = s24=Q2; y6 = s34=Q2and � � �(y1y6; y2y5; y3y4) is the K�allen fun
tion �(x; y; z) = x2+y2+z2�2xy�2yz�2xz.The derivation of the phase spa
e integral 
an be found in the appendix, see eq. (37).Primary se
tor de
ompositionTo eliminate the delta distribution in (17) we split the integration region into 6 "primaryse
tors" by the following de
omposition of unity:1 = 6Xj=1 6Yj 6=k=1�(yj � yk) (18)7



In ea
h primary se
tor j we apply the mappingyk = ( tkyj if k 6= jyj if k = j (19)Note that to ea
h index there exists a 
onjugate index de�ned by the pairing of Mandelstamvariables in the arguments of the K�allen fun
tion, �(y1y6; y2y5; y3y4). The 
onstraint �(��)is solved for the variable with index 
onjugate to j in ea
h primary se
tor j. To be expli
itwe give the result for primary se
tor 1 in the following, where we have�(t6; t2t5; t3t4) = 0, t�6 = t2t5 + t3t4 � 2pt2t3t4t5 = (pt2t5 �pt3t4)2Remapping the square-root singularityBefore iterated se
tor de
omposition 
an be applied to disentangle the IR singularities, it isne
essary to perform some variable transformations su
h that �nally all possible singularitiesare at zero. Further it is useful to make a quadrati
 transformation tj = x2j for j = 2; 3; 4; 5to avoid square roots.One possibility of remapping is to split ea
h primary se
tor into two subse
tors A andB, with t6 2 [t�6 ; t06℄ = A and t6 2 [t06; t+6 ℄ = B, where t06 = t2t5 + t3t4. The following trans-formations then lead to a numeri
ally stable behaviour near the phase-spa
e boundaries:tA6 = t�6 + (t06 � t�6 )x26 = (x2x5 � x3x4)2 + 2x2x3x4x5 x26tB6 = t+6 � (t+6 � t06)x26 = (x2x5 + x3x4)2 � 2x2x3x4x5 x26 (20)After these transformations the integral J4;se
1 in primary se
tor one is given byJ4;se
1 = 4� (JA4;1 + JB4;1)JA;B4;1 = 25�2� 1Z0 6Yj=2dxj (x2x3x4x5)1�2� x�2�6 (2� x26)�1=2���(1� tA;B6 (~x))�F (1; x22; x23; x24; x25; tA;B6 (~x)) (21)The fun
tion F depends on the topology, in our 
aseF (z1; : : : ; z6) = � 6Xj=1 zj��3+4� (z1 + z5)(z2 + z6)� z3z4z2(z2 + z4 + z6)2 : (22)Note that the �-fun
tion 
onstraint is trivially ful�lled whenever one of the variables xj ,j 2 f2; 3; 4; 5g goes to zero. However, at this point we have not mapped all possiblesingularities to zero yet. For example, tA6 
an vanish if fx2; x3; x4; x5g ! 1; x6 ! 0. In this
ase another transformation xj ! 1� xj is made1. Note that all these transformations aredone automati
ally in our program. Having �nally mapped all possible singularities to zero,iterated se
tor de
omposition 
an be applied straightforwardly. One obtains the 
oeÆ
ientsof the 1=� poles as �nite parameter integrals whi
h 
an be integrated numeri
ally, in thesame way as has been explained in [15, 16℄.1It 
an o

ur that xj ! 0 is singular as well for some j 2 f2; 3; 4; 5g. In this 
ase the integration region forxj is split at 1/2, and only after this splitting the variables are remapped su
h that all possible singularitiesare lo
ated at zero. 8



Figure 2: Cut topology with 1=�4 poles.Numeri
al solutionFor the integral J4 we �nd numeri
ally(1� �)2J4 = 0:500 1�2 + 2:7491� + 7:869 + O(�) (23)Inserting this result into (15) and 
omparing to eq. (16) we see that the poles are 
an
elledwithin the numeri
al pre
ision whi
h we 
hose to be 0.1%.5 Another TopologyTo show that our method also works in the 
ase of a more 
ompli
ated pole stru
ture and alengthier numerator, we 
onsider now the 
ut graph shown in Fig. 2, whi
h leads to poles upto 1=�4, and the expanded numerator 
ontains about 70 terms. The 
orresponding matrixelement is given by (pij::: =6 pi+ 6 pj + : : :)jM1!4j2 = �(4�)3��2s C2F  �2��(1 + �)(4�)�!3 tr(p1
�p13
�p134
�p2
�p24
�p234
�)s134s13s234s24 (24)Writing again the phase spa
e integral in the form~T1!4 = Z d�1!4jM1!4j2 = (z1 �)2 T1!2  Q2�2 !�2� 116(1� �)�(1 + �)2�(1� 2�) ~J4(�)we obtain numeri
ally~J4 = 1:000�4 + 3:000�3 + 3:776�2 + 8:957� + 57:85+ O(�) (25)We stress that no analyti
al manipulations whatsoever, in parti
ular no redu
tion to masterintegrals, are ne
essary to a
hieve this result.6 Dis
ussion and OutlookIn this paper we have argued that the method of se
tor de
omposition as proposed in [18, 15℄and applied in a similar form in [19℄ 
an serve to 
al
ulate the double real emission part9



needed for NNLO 
orre
tions to jet 
ross se
tions in massless QCD.We have shown expli
itlyhow the IR poles 
an
el by 
onsidering one sample topology 
ontributing to e+e� ! 2 jetsat NNLO. We 
al
ulated all 
uts 
ontributing to a 2 jet �nal state: The double real emissionpart, 
orresponding to a 4{parti
le 
ut, is 
al
ulated numeri
ally by se
tor de
omposition,and all the poles are shown to 
an
el with 
ontributions from the 2{and 3{parti
le 
utswithin the 
hosen numeri
al pre
ision2 . We also 
al
ulated numeri
ally the 4{parti
le 
utof a topology whi
h has the maximal possible number of IR poles.The method has several appealing features:� The (overlapping) soft/
ollinear poles are extra
ted without the need to establish asubtra
tion s
heme and to integrate analyti
ally over 
ompli
ated subtra
tion terms.� The �nite parts are available as regular fun
tions of the kinemati
 invariants. If a mea-surement fun
tion is in
luded, as already has been done in [19℄, one 
an obtain fullydi�erential 
ross se
tions, su
h that for example the implementation of experimental
uts should be straightforward.� It is justi�ed to expe
t that the Monte Carlo integration to obtain the �nal 
ross se
-tion does not lead to major instabilities as the singularities at phase spa
e boundariesalready have been remapped.� The generalisation of the method to the 1 ! 5 phase spa
e is feasible but has to beinvestigated further.The 
omplete double real emission part 
ontributing to e+e� ! 2 jets 
an be evaluatedalong the same lines and will be given elsewhere.A
knowledgementWe would like to thank the Kavli Institute for Theoreti
al Physi
s for its kind hospitalitywhile part of this work has been 
ompleted. This resear
h was supported in part by theNational S
ien
e Foundation under Grant No.PHY99-07949.AppendixThe D-dimensional 1 ! N phase spa
e for N = 2; 3; 4The di�erential form of the phase spa
e for a 1! N parti
le phase spa
e in D dimensionsis given by d�1!N = (2�)N�D(N�1)h NYj=1 dDpjÆ(p2j)�(Ej)iÆ�Q� NXj=1 pj� (26)Here Q is the in
oming momentum and the pj denote outgoing parti
les with light-likemomenta and energy 
omponent Ej . As Q is time-like for physi
al kinemati
s one 
analways a
hieve Q = (E;~0(D�1)) by an adequate Lorentz boost. Let us spe
ialise now to the
ases N = 2; 3; 4.2Note that the method of se
tor de
omposition 
ould also serve to 
al
ulate the 2{and 3{parti
le 
ut
ontributions. In this 
ase the algorithm for multi-loop integrals as des
ribed in [16, 17℄ 
an be applied.10



Case 1! 2:For N = 2 the momenta 
an be parametrized byQ = (E;~0(D�1)) ; p1 = E1 (1;~0(D�2); 1) ; p2 = Q� p1 (27)Integrating out the Æ-distributions leads tod�1!2 = (2�)2�D 21�D (Q2)D=2�2 d
D�2 (28)where d
D�2 is the di�erential surfa
e element of the SD�2 sphere. Its integral is equal tothe volume of the (D � 1)-dimensional unit sphereZSD�2 d
D�2 = V (D � 1) = 2 �D�12�(D�12 ) (29)Case 1! 3:For N = 3 one 
an 
hoose a 
oordinate frame su
h thatQ = (E;~0(D�1))p1 = E1 (1;~0(D�2); 1)p2 = E2 (1;~0(D�3); sin �; 
os �)p3 = Q� p2 � p1 (30)Integrating out the Æ-distributions yieldsd�1!3 = 14(2�)3�2D dE1dE2d�1[E1E2 sin �℄D�3d
D�2 d
D�3 (31)As in the following a parametrization in terms of the Mandelstam variables sij = 2 pi �pj willbe useful, we make the transformation E1; E2; �! s12; s23; s13. To work with dimensionlessvariables we de�ne y1 = s12=Q2, y2 = s13=Q2, y3 = s23=Q2 whi
h leads tod�1!3 = (2�)3�2D 24�D32 (Q2)D�3 d
D�2 d
D�3 [y1 y2 y3℄D=2�2dy1 dy2 dy3�(y1) �(y2) �(y3) Æ(1� y1 � y2 � y3) (32)Case 1! 4:Starting from Eq. (26) and eliminating p4 yieldsd�1!4 = (2�)4�3D dD�1p12E1 dD�1p22E2 dD�1p32E3 �(E1) �(E2) �(E3)�(E �E1 �E2 � E3) Æ�(Q� p1 � p2 � p3)2� (33)11



Choosing a frame whereQ = (E;~0(D�1))p1 = E1 (1;~0(D�2); 1)p2 = E2 (1;~0(D�3); sin �1; 
os�1)p3 = E3 (1;~0(D�4); sin �3 sin �2; 
os�3 sin �2; 
os �2)p4 = Q� p1 � p2 � p3 : (34)leads tod�1!4 = 18(2�)4�3D dE1 dE2 dE3 d�1 d�2 d�3[E1E2E3 sin �1 sin �2℄D�3 sin �D�43d
D�2 d
D�3 d
D�4�(E1) �(E2) �(E3)�(E �E1 � E2 � E3)Æ(E2� 2E(E1+E2 +E3) + 2(p1 � p2 + p1 � p3 + p2 � p3)) (35)As above we map the angle and energy variables to the Mandelstam invariants as integrationvariables. The Ja
obian in 
ombination with terms already present in (35) 
an be writtenas the determinant of the Gram matrix Gij = 2 pi � pj . The determinant 
an be expressedby the K�allen fun
tion �(x; y; z) = x2 + y2 + z2 � 2xy � 2yz � 2xz asdet(G) = �(s12 s34; s13 s24; s14 s23)= �[4EE1E2E3 sin �1 sin �2 sin �3℄2 (36)We see that det(G) has to be negative semi-de�nite. With the dimensionless variablesy1 = s12=Q2 ; y2 = s13=Q2 ; y3 = s23=Q2 ; y4 = s14=Q2 ; y5 = s24=Q2 ; y6 = s34=Q2and � = �(y1y6; y2y5; y3y4) one obtains �nallyd�1!4 = (2�)4�3D(Q2)3D=2�4 2�2D+1 d
D�2 d
D�3 d
D�424 6Yj=1 dyj�(yj)35 �(��) [��℄(D�5)=2Æ(1� 6Xj=1 yj) (37)Referen
es[1℄ Z. Bern, L.J. Dixon and A. Ghin
ulov, Phys. Rev. D 63 (2001) 053007[hep-ph/0010075℄;Z. Bern, A. De Freitas, L.J. Dixon, A. Ghin
ulov and H.L. Wong, JHEP 0111 (2001)031 [hep-ph/0109079℄;Z. Bern, A. De Freitas and L.J. Dixon, JHEP 0109 (2001) 037 [hep-ph/0109078℄; JHEP0203 (2002) 018 [hep-ph/0201161℄; JHEP 0306 (2003) 028 [hep-ph/0304168℄.[2℄ C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Nu
l. Phys.B 601 (2001) 318 [hep-ph/0010212℄; 601 (2001) 347 [hep-ph/0011094℄; 605 (2001)486 [hep-ph/0101304℄;E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Nu
l. Phys. 605 (2001) 46712

http://arXiv.org/abs/hep-ph/0010075
http://arXiv.org/abs/hep-ph/0109079
http://arXiv.org/abs/hep-ph/0109078
http://arXiv.org/abs/hep-ph/0201161
http://arXiv.org/abs/hep-ph/0304168
http://arXiv.org/abs/hep-ph/0010212
http://arXiv.org/abs/hep-ph/0011094
http://arXiv.org/abs/hep-ph/0101304


[hep-ph/0102201℄;C. Anastasiou, E.W.N. Glover and M.E. Tejeda-Yeomans, Nu
l. Phys. B 629 (2002)255 [hep-ph/0201274℄;T. Binoth, E.W.N. Glover, P. Marquard and J.J. van der Bij, JHEP 0205 (2002) 060[hep-ph/0202266℄;E.W.N. Glover and M.E. Tejeda-Yeomans, JHEP 0306 (2003) 033 [hep-ph/0304169℄.[3℄ L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, Nu
l.Phys. B 627 (2002) 107 [hep-ph/0112081℄ and 642 (2002) 227 [hep-ph/0206067℄.[4℄ S. Mo
h, P. Uwer and S. Weinzierl, Phys. Rev. D 66 (2002) 114001 [hep-ph/0207043℄.[5℄ T. Gehrmann and E. Remiddi, Nu
l. Phys. B 640 (2002) 379 [hep-ph/0207020℄.[6℄ E. W. N. Glover, arXiv:hep-ph/0401119.[7℄ Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Nu
l. Phys. B 425 (1994) 217[hep-ph/9403226℄;D.A. Kosower, Nu
l. Phys. B 552 (1999) 319 [hep-ph/9901201℄;D.A. Kosower and P. Uwer, Nu
l. Phys. B 563 (1999) 477 [hep-ph/9903515℄;Z. Bern, V. Del Du
a and C.R. S
hmidt, Phys. Lett. B 445 (1998) 168[hep-ph/9810409℄;Z. Bern, V. Del Du
a, W.B. Kilgore and C.R. S
hmidt, Phys. Rev. D 60 (1999) 116001[hep-ph/9903516℄;S. Catani and M. Grazzini, Nu
l. Phys. B 591 (2000) 435 [hep-ph/0007142℄.[8℄ D.A. Kosower, Phys. Rev. Lett. 91 (2003) 061602 [hep-ph/0301069℄.[9℄ S. Weinzierl, JHEP 0307 (2003) 052 [hep-ph/0306248℄.[10℄ J. Campbell and E.W.N. Glover, Nu
l. Phys. B 527 (1998) 264 [hep-ph/9710255℄;S. Catani and M. Grazzini, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389℄; Nu
l.Phys. B 570 (2000) 287 [hep-ph/9908523℄;F.A. Berends and W.T. Giele, Nu
l. Phys. B 313 (1989) 595.[11℄ D. A. Kosower, Phys. Rev. D 67 (2003) 116003 [hep-ph/0212097℄.[12℄ S. Weinzierl, JHEP 0303 (2003) 062 [hep-ph/0302180℄.[13℄ A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, \Radiative 
orre
tions tothe photon + 1jet rate at LEP," Phys. Lett. B 414 (1997) 354 [hep-ph/9705305℄.[14℄ A. Gehrmann-De Ridder and E.W.N. Glover, Nu
l. Phys. B 517 (1998) 269[hep-ph/9707224℄.[15℄ A. Gehrmann-De Ridder, T. Gehrmann and G. Heinri
h, arXiv:hep-ph/0311276.[16℄ T. Binoth and G. Heinri
h, Nu
l. Phys. B 585 (2000) 741 [hep-ph/0004013℄.[17℄ T. Binoth and G. Heinri
h, Nu
l. Phys. B 680 (2004) 375 [hep-ph/0305234℄.13

http://arXiv.org/abs/hep-ph/0102201
http://arXiv.org/abs/hep-ph/0201274
http://arXiv.org/abs/hep-ph/0202266
http://arXiv.org/abs/hep-ph/0304169
http://arXiv.org/abs/hep-ph/0112081
http://arXiv.org/abs/hep-ph/0206067
http://arXiv.org/abs/hep-ph/0207043
http://arXiv.org/abs/hep-ph/0207020
http://arXiv.org/abs/hep-ph/0401119
http://arXiv.org/abs/hep-ph/9403226
http://arXiv.org/abs/hep-ph/9901201
http://arXiv.org/abs/hep-ph/9903515
http://arXiv.org/abs/hep-ph/9810409
http://arXiv.org/abs/hep-ph/9903516
http://arXiv.org/abs/hep-ph/0007142
http://arXiv.org/abs/hep-ph/0301069
http://arXiv.org/abs/hep-ph/0306248
http://arXiv.org/abs/hep-ph/9710255
http://arXiv.org/abs/hep-ph/9810389
http://arXiv.org/abs/hep-ph/9908523
http://arXiv.org/abs/hep-ph/0212097
http://arXiv.org/abs/hep-ph/0302180
http://arXiv.org/abs/hep-ph/9705305
http://arXiv.org/abs/hep-ph/9707224
http://arXiv.org/abs/hep-ph/0311276
http://arXiv.org/abs/hep-ph/0004013
http://arXiv.org/abs/hep-ph/0305234


[18℄ G. Heinri
h, Nu
l. Phys. Pro
. Suppl. 116 (2003) 368 [hep-ph/0211144℄.[19℄ C. Anastasiou, K. Melnikov and F. Petriello, arXiv:hep-ph/0311311.[20℄ T. Kinoshita, J. Math. Phys. 3 (1962) 650;T. D. Lee and M. Nauenberg, Phys. Rev. 133 (1964) B1549.

14

http://arXiv.org/abs/hep-ph/0211144
http://arXiv.org/abs/hep-ph/0311311

	Introduction
	Cancellation of infrared divergences
	Cut diagrams
	UV renormalization

	Matrix elements and phase space integrals
	Numerical evaluation of 14 phase space integrals
	Another Topology
	Discussion and Outlook

