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WUE-ITP-2004-007DESY 04{030NSF-KITP-04-29February 2004Numerial evaluation of phase spae integrals bysetor deompositionT. Binotha and G. HeinrihbaInstitut f�ur Theoretishe Physik und AstrophysikUniversit�at W�urzburg, Am Hubland, 97074 W�urzburg, GermanybII. Institut f�ur theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyAbstratIn a series of papers we have developed the method of iterated setor deompositionfor the alulation of infrared divergent multi-loop integrals. Here we apply it to phasespae integrals to alulate a ontribution to the double real emission part of the e+e� !2 jets ross setion at NNLO. The expliit anellation of infrared poles upon summationover all possible uts of a given topology is worked out in detail for a spei� example.



1 IntrodutionThe preision measurements at LEP, SLAC, HERA and the Tevatron in the past years madeit obvious that QCD orretions at next-to-leading order (NLO) auray are mandatory fora suessful omparison of data and theory. Fortunately, a multitude of NLO orretionsare available these days and the tehniques for these alulations have reahed a rathermature state, at least in what onerns 1! 3 or 2! 2 partoni proesses.However, the advent of the LHC and above all an e+e� linear ollider will provideinstanes where the NLO QCD orretions are { in some partiular ases { not suÆientlyaurate to math the experimental preision. This is true for example for the extrationof the strong oupling onstant �s from jet observables at a future e+e� ollider.This fat served as a motivation for substantial progress towards the alulation ofNNLO orretions to important proesses, in partiular in what onerns the two-loopvirtual orretions [1℄{[6℄ and the one-loop orretions ombined with real radiation whereone additional parton is emitted [7, 8, 9℄. The onstrution of a fully di�erential NNLOpartoni Monte Carlo program however also requires the alulation of the real emission partwhere up to two partons an be unresolved, and { last but not least { the ombination of allthe ingredients to a stable and suÆiently fast Monte Carlo program. In what onerns thedouble real emission, subtration shemes have been proposed in the literature [10, 11, 12℄,but a omplete alulation inluding the �nal Monte Carlo program has been performedso far only for the partiular ase of the photon+ jet{ rate in e+e� annihilation [13, 14℄.However, a lot of ativity onerning this subjet is going on at the moment. The e�orts areonentrated partiularly on the proess e+e� ! 3 jets, as this reation is both appealingfrom a phenomenologial point of view (e.g. measurement of �s) as well as from a theoretialone (no problems due to initial state singularities). Nevertheless, it is worthwhile to onsider�rst the reation e+e� ! 2 jets as this is the simplest example where the treatment of thedouble unresolved real radiation an be studied, and therefore a good testing ground for anew method.Progress in what onerns the integration of subtration terms has been made in [15℄,where it has been shown that the integrals of any 1! 4 matrix element in massless QCDover the total phase spae an be expressed by four master integrals. These integrals havebeen evaluated analytially as well as numerially.The omplexity of the phase spae integrals with two unresolved partons stems from thefat that the orresponding IR singularity struture is overlapping. We have demonstratedin [16℄ how one an disentangle in an automated way overlapping singularities in parameterrepresentations of dimensionally regulated multi-loop integrals. The method of iteratedsetor deomposition, ombined with numerial integration of the pole oeÆients, provedsuessful to deal with very ompliated Feynman diagrams [16, 17℄.In this paper we apply the same ideas to parameter representations of phase spaeintegrals, as a ontinuation of the work done in [15, 18℄. In the same ontext the methodof setor deomposition also has been applied meanwhile in [19℄.In ontrast to [15℄, where this method of numerial integration has been applied tomaster integrals only, we show here that we also an deal with numerators oming fromgauge ouplings and thus �nally with omplete matrix elements. Working through oneexample in great detail, we demonstrate the viability of our approah, showing expliitly1



Figure 1: Sample three loop topology related to e+e� ! 2 jets at NNLO.the anellation of infrared poles for a given topology when summing over all uts.The paper is organised as follows. In setion 2 we disuss in detail the anellationof infrared divergenes in a onrete example. We work out the ut struture and theounterterms and represent the onsidered topology by a number of ut diagrams whihgive rise to phase spae integrals. In setion 3 we present the analytial results for the 2{and 3{partile ut diagrams, and in setion 4 we disuss the method to perform the phasespae integration of the 4-partile ut numerially. In setion 5 we present the numerialresult for a more ompliated topology whih has up to 1=�4 poles. Setion 6 loses thepaper with a disussion.2 Canellation of infrared divergenesTwo-jet prodution in e+e� ollisions at NNLO in �s orresponds diagrammatially to sumsover uts of three-loop vauum polarisation graphs. After renormalization of ultravioletsubdivergenes the three-loop diagram has at most an overall ultraviolet divergene with a�nite imaginary part. Beause this imaginary part is related to the sum over all uts of thediagram, one onludes that the sum over all uts has to be �nite. This is just the KLN [20℄anellation mehanism for infrared �nal state singularities. In our ase, one has 2{, 3{ and4{partile uts whih orrespond to phase spae integrations over the respetive partons.We require 2 jets in the �nal state, suh that up to two partons an beome unresolved.Consider for example the diagram shown in Fig. 1. In the following subsetions, we willwork out the UV renormalization and ut struture of this diagram. We use Feynman gaugethroughout the paper.2.1 Cut diagramsInfrared anellations take plae when summing over uts of a given renormalized topology.In our ase we have the 2{, 3{ and 4{partile uts C2; C3 and C4, whih graphially aregiven by
2



C2 = + z1 +12 z2+ + z1 +12 z2C3 = +12 z1+ +12 z1C4 =The fators z1 and z2 denote the ontributions from ounterterms. The sum of termsin eah line in the above �gures is formally UV �nite. In dimensional regularization theradiative orretions to the two-point funtions vanish if the partile is put on-shell. Thisis the mehanism whih formally leads to the onversion of UV into IR poles. Using thediagrammati rule = 0 ; = 0 = 0the only remaining terms in the sum C = C2 + C3 + C4 are3



C = + z1 + z2 (1)The 1=� terms ontained in z1 and z2 now represent IR poles. The graphs shown in (1)denote the ontribution from the given topology to the full proess. As the imaginary partof the orresponding 3-loop topology is �nite, unitarity implies that C is IR �nite.The part whih is hard to alulate analytially is the 4{partile ut, that is why weadvoate a numerial evaluation of C4. The remaining ombination of ounterterms and2{ and 3{partile phase spae integrations an straightforwardly be done analytially. Thiswill be worked out in the next setion.2.2 UV renormalizationTo ompute the renormalization onstants z1 and z2 we have to determine the pole parts ofall graphs and subgraphs. Following a graphial BPHZ notation one has to arry out thefollowing subtrations to renormalize the one-loop selfenergy and �nally the whole diagram:The one-loop subtration: � = �niteand the two-loop subtrations:
� +� = �niteThe shaded boxes denote the MS presription to keep only the pole part of the expres-sion, up to absorption of a standard fator into the oupling:� = CMS �0 ; �s = CMS �s;0 ; CMS = �(1 + �)(4�)��2� (2)4



Using the integralI(�; �) = Z dDki�D=2 �=k�[�k2℄�[�(k � p)2℄�= =p(2�D)(�p2)D=2�����(� + � �D=2)�(�)�(�) �(D=2� �+ 1)�(D=2� �)�(D � �� � + 1) (3)one �nds the following analyti results for the graphial expressions (D = 4 � 2�). At oneloop: = i=pCF ��s4�� �p2�2 !�� �(1� �)2�(2� 2�) (1� �)�= i=pCF ��s4�� 1� (4)and for the two-loop part:= �i=pC2F ��s4��2 �p2�2 !�2� �(1 + 2�)�(1 + �)2 �(1� �)3�(3� 3�) (1� �)2�2= �i=pC2F ��s4��2 �p2�2 !�� �(1� �)2�(1� 2�) 1� ��2(1� 2�)= �i=pC2F ��s4��2 h 12�2 + 54� � 1� log �p2�2 !i= �i=pC2F ��s4��2 h 1�2 + 1� � 1� log �p2�2 !i (5)The renormalization onstants an be read o� diretly:i=pz1 = ) z1 = CF �s4� 1� (6)i=pz2 = �) z2 = C2F ��s4� 1��2 h12 � 14�i = 12 z21 h1� 12�i (7)The non-loal logarithmi terms anel, as guaranteed by the BPHZ theorem.3 Matrix elements and phase spae integralsWhat remains to be done is the evaluation of the phase spae integrals for the uts shownin Eq. (1). The orresponding matrix elements are given by the following formulae, where5



p1 (p2) are the momenta of the quark (anti-quark), p3 and p4 denote the gluons.jM1!2j2 = 16�� (1� �)  �2��(1 + �)(4�)�! s12 (8)jM1!3j2 = 8 (4�)2(1� �)2 ��s CF  �2��(1 + �)(4�)�!2 s23s13 (9)jM1!4j2 = 16 (4�)3(1� �)3��2s C2F  �2��(1 + �)(4�)�!3(s13 + s34)(s12 + s24)� s14 s23s13(s13 + s34 + s14)2 (10)jM1!2j2 and jM1!3j2 an be integrated diretly. The orresponding phase spae integralsare given in detail in the Appendix. We obtainT1!2 = Z d�1!2jM1!2j2 = 2�Q2  Q2�2 !�� (1� �)�(1� �)�(1 + �)�(2� 2�) (11)Using the integralJ3(�) = 1Z0 dy1dy2dy3 Æ(1� y1 � y2 � y3) (y1 y2 y3)�� y3y2 = �(1� �)� �(1� �)3�(3� 3�) ; (12)where y1 = s12=Q2; y2 = s13=Q2; y3 = s23=Q2, one �nds for the 1! 3 ase:T1!3 = Z d�1!3jM1!3j2= ��s CF (2�)2�8�3 (1� �)2Q2 Q2�2 !�2� V (3� 2�)V (2� 2�)�(1 + �)2 J3(�)= �z1 T1!2  Q2�2 !�� 2 (1� �)2�(1� �)2�(1 + �)�(3� 3�) (13)The 1! 4 ase annot be solved easily analytially. We write it in the following form:T1!4 = Z d�1!4jM1!4j2= (z1 �)2 T1!2  Q2�2 !�2� (1� �)2�(1 + �)2�(1� 2�) J4(�) (14)where the nontrivial integral J4(�) remains, whih will be dealt with numerially in the nextsetion.So far, one �nds for the ut diagrams in Eq. (1):C2 = z21 T1!2 �12 � 14�� 6



C3 = �z21 T1!2  Q2�2 !�� (1� �)2 "1 + 92� + �2  634 � 2�23 !+O(�3)#C4 = z21 T1!2 Q2�2 !�2� �2(1� �)2 "1� �2�22 +O(�3)# J4(�) (15)and onsequently the poles ontained in J4(�) have to anel with�C2 + C3�jpolepart = z21 T1!2 "�12 � 114 � + � log Q2�2 !# : (16)4 Numerial evaluation of 1! 4 phase spae integralsIn massless QCD, the integrals of any 1! 4 matrix element over the total phase spae an beexpressed by four master integrals whose analytial evaluation is ompliated, but has beenahieved in [15℄. This allows to follow the onventional proedure to establish a subtrationsheme and to integrate the subtration terms analytially. However, as the �nite part of thephase spae will �nally be integrated numerially anyway, a exible, ompletely numerialmethod would be welome. Of ourse the problem onsists in the isolation and subtrationof the infrared poles, stemming from the integration over unresolved partiles, before anumerial evaluation is possible. This is where setor deomposition is very onvenient.How it proeeds is shown for the sample integral J4 de�ned in eq. (17). Note that thisintegral ontains an integrable singularity of square-root type. For the sake of numerialstability it is preferable to perform a mapping suh that the integrand is bounded near thephase spae limits. In detail we proeed as follows:Our starting point is the integral J4(�) whih represents (up to an overall fator, seeeqs. (10),(15)) the integral over the 4{partile ut of the topology in Fig. 1.J4(�) = 4� 1Z0 6Yi=1 d yi�(��)(��)�1=2��Æ(1� 6Xj=1 yj)(y1 + y5) (y2 + y6)� y3 y4y2 (y2 + y4 + y6)2 ; (17)where we have resaled the Mandelstam invariants byy1 = s12=Q2; y2 = s13=Q2; y3 = s23=Q2; y4 = s14=Q2; y5 = s24=Q2; y6 = s34=Q2and � � �(y1y6; y2y5; y3y4) is the K�allen funtion �(x; y; z) = x2+y2+z2�2xy�2yz�2xz.The derivation of the phase spae integral an be found in the appendix, see eq. (37).Primary setor deompositionTo eliminate the delta distribution in (17) we split the integration region into 6 "primarysetors" by the following deomposition of unity:1 = 6Xj=1 6Yj 6=k=1�(yj � yk) (18)7



In eah primary setor j we apply the mappingyk = ( tkyj if k 6= jyj if k = j (19)Note that to eah index there exists a onjugate index de�ned by the pairing of Mandelstamvariables in the arguments of the K�allen funtion, �(y1y6; y2y5; y3y4). The onstraint �(��)is solved for the variable with index onjugate to j in eah primary setor j. To be expliitwe give the result for primary setor 1 in the following, where we have�(t6; t2t5; t3t4) = 0, t�6 = t2t5 + t3t4 � 2pt2t3t4t5 = (pt2t5 �pt3t4)2Remapping the square-root singularityBefore iterated setor deomposition an be applied to disentangle the IR singularities, it isneessary to perform some variable transformations suh that �nally all possible singularitiesare at zero. Further it is useful to make a quadrati transformation tj = x2j for j = 2; 3; 4; 5to avoid square roots.One possibility of remapping is to split eah primary setor into two subsetors A andB, with t6 2 [t�6 ; t06℄ = A and t6 2 [t06; t+6 ℄ = B, where t06 = t2t5 + t3t4. The following trans-formations then lead to a numerially stable behaviour near the phase-spae boundaries:tA6 = t�6 + (t06 � t�6 )x26 = (x2x5 � x3x4)2 + 2x2x3x4x5 x26tB6 = t+6 � (t+6 � t06)x26 = (x2x5 + x3x4)2 � 2x2x3x4x5 x26 (20)After these transformations the integral J4;se1 in primary setor one is given byJ4;se1 = 4� (JA4;1 + JB4;1)JA;B4;1 = 25�2� 1Z0 6Yj=2dxj (x2x3x4x5)1�2� x�2�6 (2� x26)�1=2���(1� tA;B6 (~x))�F (1; x22; x23; x24; x25; tA;B6 (~x)) (21)The funtion F depends on the topology, in our aseF (z1; : : : ; z6) = � 6Xj=1 zj��3+4� (z1 + z5)(z2 + z6)� z3z4z2(z2 + z4 + z6)2 : (22)Note that the �-funtion onstraint is trivially ful�lled whenever one of the variables xj ,j 2 f2; 3; 4; 5g goes to zero. However, at this point we have not mapped all possiblesingularities to zero yet. For example, tA6 an vanish if fx2; x3; x4; x5g ! 1; x6 ! 0. In thisase another transformation xj ! 1� xj is made1. Note that all these transformations aredone automatially in our program. Having �nally mapped all possible singularities to zero,iterated setor deomposition an be applied straightforwardly. One obtains the oeÆientsof the 1=� poles as �nite parameter integrals whih an be integrated numerially, in thesame way as has been explained in [15, 16℄.1It an our that xj ! 0 is singular as well for some j 2 f2; 3; 4; 5g. In this ase the integration region forxj is split at 1/2, and only after this splitting the variables are remapped suh that all possible singularitiesare loated at zero. 8



Figure 2: Cut topology with 1=�4 poles.Numerial solutionFor the integral J4 we �nd numerially(1� �)2J4 = 0:500 1�2 + 2:7491� + 7:869 + O(�) (23)Inserting this result into (15) and omparing to eq. (16) we see that the poles are anelledwithin the numerial preision whih we hose to be 0.1%.5 Another TopologyTo show that our method also works in the ase of a more ompliated pole struture and alengthier numerator, we onsider now the ut graph shown in Fig. 2, whih leads to poles upto 1=�4, and the expanded numerator ontains about 70 terms. The orresponding matrixelement is given by (pij::: =6 pi+ 6 pj + : : :)jM1!4j2 = �(4�)3��2s C2F  �2��(1 + �)(4�)�!3 tr(p1�p13�p134�p2�p24�p234�)s134s13s234s24 (24)Writing again the phase spae integral in the form~T1!4 = Z d�1!4jM1!4j2 = (z1 �)2 T1!2  Q2�2 !�2� 116(1� �)�(1 + �)2�(1� 2�) ~J4(�)we obtain numerially~J4 = 1:000�4 + 3:000�3 + 3:776�2 + 8:957� + 57:85+ O(�) (25)We stress that no analytial manipulations whatsoever, in partiular no redution to masterintegrals, are neessary to ahieve this result.6 Disussion and OutlookIn this paper we have argued that the method of setor deomposition as proposed in [18, 15℄and applied in a similar form in [19℄ an serve to alulate the double real emission part9



needed for NNLO orretions to jet ross setions in massless QCD.We have shown expliitlyhow the IR poles anel by onsidering one sample topology ontributing to e+e� ! 2 jetsat NNLO. We alulated all uts ontributing to a 2 jet �nal state: The double real emissionpart, orresponding to a 4{partile ut, is alulated numerially by setor deomposition,and all the poles are shown to anel with ontributions from the 2{and 3{partile utswithin the hosen numerial preision2 . We also alulated numerially the 4{partile utof a topology whih has the maximal possible number of IR poles.The method has several appealing features:� The (overlapping) soft/ollinear poles are extrated without the need to establish asubtration sheme and to integrate analytially over ompliated subtration terms.� The �nite parts are available as regular funtions of the kinemati invariants. If a mea-surement funtion is inluded, as already has been done in [19℄, one an obtain fullydi�erential ross setions, suh that for example the implementation of experimentaluts should be straightforward.� It is justi�ed to expet that the Monte Carlo integration to obtain the �nal ross se-tion does not lead to major instabilities as the singularities at phase spae boundariesalready have been remapped.� The generalisation of the method to the 1 ! 5 phase spae is feasible but has to beinvestigated further.The omplete double real emission part ontributing to e+e� ! 2 jets an be evaluatedalong the same lines and will be given elsewhere.AknowledgementWe would like to thank the Kavli Institute for Theoretial Physis for its kind hospitalitywhile part of this work has been ompleted. This researh was supported in part by theNational Siene Foundation under Grant No.PHY99-07949.AppendixThe D-dimensional 1 ! N phase spae for N = 2; 3; 4The di�erential form of the phase spae for a 1! N partile phase spae in D dimensionsis given by d�1!N = (2�)N�D(N�1)h NYj=1 dDpjÆ(p2j)�(Ej)iÆ�Q� NXj=1 pj� (26)Here Q is the inoming momentum and the pj denote outgoing partiles with light-likemomenta and energy omponent Ej . As Q is time-like for physial kinematis one analways ahieve Q = (E;~0(D�1)) by an adequate Lorentz boost. Let us speialise now to theases N = 2; 3; 4.2Note that the method of setor deomposition ould also serve to alulate the 2{and 3{partile utontributions. In this ase the algorithm for multi-loop integrals as desribed in [16, 17℄ an be applied.10



Case 1! 2:For N = 2 the momenta an be parametrized byQ = (E;~0(D�1)) ; p1 = E1 (1;~0(D�2); 1) ; p2 = Q� p1 (27)Integrating out the Æ-distributions leads tod�1!2 = (2�)2�D 21�D (Q2)D=2�2 d
D�2 (28)where d
D�2 is the di�erential surfae element of the SD�2 sphere. Its integral is equal tothe volume of the (D � 1)-dimensional unit sphereZSD�2 d
D�2 = V (D � 1) = 2 �D�12�(D�12 ) (29)Case 1! 3:For N = 3 one an hoose a oordinate frame suh thatQ = (E;~0(D�1))p1 = E1 (1;~0(D�2); 1)p2 = E2 (1;~0(D�3); sin �; os �)p3 = Q� p2 � p1 (30)Integrating out the Æ-distributions yieldsd�1!3 = 14(2�)3�2D dE1dE2d�1[E1E2 sin �℄D�3d
D�2 d
D�3 (31)As in the following a parametrization in terms of the Mandelstam variables sij = 2 pi �pj willbe useful, we make the transformation E1; E2; �! s12; s23; s13. To work with dimensionlessvariables we de�ne y1 = s12=Q2, y2 = s13=Q2, y3 = s23=Q2 whih leads tod�1!3 = (2�)3�2D 24�D32 (Q2)D�3 d
D�2 d
D�3 [y1 y2 y3℄D=2�2dy1 dy2 dy3�(y1) �(y2) �(y3) Æ(1� y1 � y2 � y3) (32)Case 1! 4:Starting from Eq. (26) and eliminating p4 yieldsd�1!4 = (2�)4�3D dD�1p12E1 dD�1p22E2 dD�1p32E3 �(E1) �(E2) �(E3)�(E �E1 �E2 � E3) Æ�(Q� p1 � p2 � p3)2� (33)11



Choosing a frame whereQ = (E;~0(D�1))p1 = E1 (1;~0(D�2); 1)p2 = E2 (1;~0(D�3); sin �1; os�1)p3 = E3 (1;~0(D�4); sin �3 sin �2; os�3 sin �2; os �2)p4 = Q� p1 � p2 � p3 : (34)leads tod�1!4 = 18(2�)4�3D dE1 dE2 dE3 d�1 d�2 d�3[E1E2E3 sin �1 sin �2℄D�3 sin �D�43d
D�2 d
D�3 d
D�4�(E1) �(E2) �(E3)�(E �E1 � E2 � E3)Æ(E2� 2E(E1+E2 +E3) + 2(p1 � p2 + p1 � p3 + p2 � p3)) (35)As above we map the angle and energy variables to the Mandelstam invariants as integrationvariables. The Jaobian in ombination with terms already present in (35) an be writtenas the determinant of the Gram matrix Gij = 2 pi � pj . The determinant an be expressedby the K�allen funtion �(x; y; z) = x2 + y2 + z2 � 2xy � 2yz � 2xz asdet(G) = �(s12 s34; s13 s24; s14 s23)= �[4EE1E2E3 sin �1 sin �2 sin �3℄2 (36)We see that det(G) has to be negative semi-de�nite. With the dimensionless variablesy1 = s12=Q2 ; y2 = s13=Q2 ; y3 = s23=Q2 ; y4 = s14=Q2 ; y5 = s24=Q2 ; y6 = s34=Q2and � = �(y1y6; y2y5; y3y4) one obtains �nallyd�1!4 = (2�)4�3D(Q2)3D=2�4 2�2D+1 d
D�2 d
D�3 d
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