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hep-th/0402185DAMTP-2004-9DESY-04-024On the plane-wave ubi vertexJames Luietti [, Sakura Sh�afer-Nameki ℄ and Aninda Sinha [[DAMTP, University of CambridgeWilberfore Road, Cambridge CB3 OWA, U.K.℄II. Institut f�ur Theoretishe Physik, University of HamburgLuruper Chaussee 149, 22761 Hamburg, GermanyAbstratThe exat bosoni Neumann matries of the ubi vertex in plane-wave light-one string�eld theory are derived using the ontour integration tehniques developed in our earlierpaper. This simpli�es the original derivation of the vertex. In partiular, the Neumannmatries are written in terms of �-deformed Gamma-funtions, thus asting them intoa form that elegantly generalizes the well-known at-spae solution. The asymptotis ofthe �-deformed Gamma-funtions allow one to determine the large-� behaviour of theNeumann matries inluding exponential orretions. We provide an expliit expressionfor the �rst exponential orretion and make a onjeture for the subsequent exponentialorretion terms.2/2004Email: J.Luietti, S.Shafer-Nameki, A.Sinha�damtp.am.a.uk



1. IntrodutionThe BMN-orrespondene [1℄ between the plane-wave limit of IIB string theory onAdS5 � S5 [2,3℄ and a ertain setor of the d = 4, N = 4 SYM theory has proven to be apowerful means in paving the way towards an improved understanding of the AdS/CFTorrespondene.Despite the impressive advanements in the analysis of both sides of this orrespon-dene, some key questions still remain to be answered. One entral point that has so farnot been addressed to full satisfation is the study of interations and their dual interpre-tation. For instane, given the exat ubi vertex, the string sattering amplitudes an inpriniple be alulated for all values of �. For large � this would allow omparison withperturbative gauge theory alulations and moreover the knowledge of �nite � orretionsould provide very interesting preditions for �nite �0 orretions in the gauge theory.Some important results in this diretion have already been obtained. On the stringtheory side, progress has been made towards understanding the interations in the frame-work of light-one string �eld theory. This was �rst developed for at spae in [4,5,6℄ andthen generalized to the plane-wave in [7,8,9,10,11,12,13,14℄. For omparisons to the gaugetheory side see e.g. [15,16,17℄1. However, quantities that have been omputed for all � arestill rather rare, and we believe omprise only the results of [11℄ for the ubi losed inter-ation vertex as well as [14℄ for the open-losed vertex. Furthermore, in order to performomputations of sattering amplitudes based on these results, it would be advantageous ifthe interations are expressed in a onise form reminisent of the at-spae results.The main motivation for the present paper is to re-address the analysis of the plane-wave ubi vertex. The derivation that we shall provide for the vertex relies on the ontourmethod for summing ertain in�nite series, whih was developed in [14℄. One of the mainmerits of this approah is that it allows a derivation very lose to the one known for theat spae vertex in [5℄. The solution to the ubi vertex equation, as in [14℄, will bewritten in terms of �-deformed Gamma-funtions. This gives an elegant generalization ofthe at-spae solutions of [5℄.There is a slight disrepany between the expliit expression of the Neumann matriesin [11℄ and ours. It appears that the only problem in [11℄ is the �nal expression for theNeumann vetors (i.e., their equation (52))2. We derive the large � asymptotis diretly1 For a more omplete list of referenes see [18,19,20,21,22℄.2 In fat it is easy to see that there is some error in (52) of [11℄; simply note that �m3 in theequation in question is divergent. 1



from the exat expression for the Neumann vetors, whih agree with those in [11℄. Despitethe disrepany in the exat expression, this is not surprising sine the asymptotis in [11℄were not developed from their exat expression for the vertex. We will elaborate on thisin setion 3.3. We also extend the large-� asymptotis by expliitly omputing the �rstexponential orretions and provide a onjeture for the subsequent exponential orretionterms.The plan of this paper is as follows. In setion 2 we present the derivation of the ubivertex in at spae using the ontour method for summing series of [14℄. In setion 3 wegeneralize this to the ubi vertex in the plane-wave. In setion 4 we use the asymptotisof the �-deformed Gamma-funtions to derive the large-� expansions of the Neumannmatries. We also omment upon the exponential orretions appearing in the large-�asymptoti expansions and expliitly give the �rst term, as well as provide a onjeturefor the subsequent terms. We onlude in setion 5. There are four appendies, in whihvarious properties and asymptotis of the �-deformed Gamma-funtions are derived.2. The ubi vertex in at-spaeIn this setion, as a warm-up, we will use the ontour method of [14℄ in order toderive the well-known at-spae Neumann matries �Nrsmn for the ubi string vertex, whihoriginally were determined in [5℄. We shall fous on the bosoni part of the vertex, forwhih the standard ansatz isjV i = N exp 12 3Xr;s=1 1Xm;n=1a(r)�m �Nrsmna(s)�n + 3Xr=1 1Xm=1 a(r)�m �NrmP +KP2! j 0 i ; (2:1)where a(r)�m are the normalized osillators of the r-th string and Pi = 2p+1 pi2 � 2p+2 pi1.Geometrial ontinuity onditions and momentum onservation then imply onstraintsupon the Neumann matries. It was shown that the Neumann matries satisfy�Nrsmn = �mn�1�2�3n�r +m�s �Nrm �Nsn ; (2:2)where �Nrm = ���A(r)�t ��1B�m ; K = �14B��1B ; (2:3)and �i = 2p(i)+ are the momenta of the various strings, whih are hosen suh thatP3i=1 �i = 0, and �0 =P3r=1 �r log j�rj. Without loss of generality we assume �1; �2 > 02



and �3 < 0. The matries A and B are de�ned in appendix A and orrespond to variousFourier modes. Further � = 3Xr=1A(r) �A(r)�t : (2:4)To solve for the Neumann matries, it is lear that it is suÆient to determine ��1B. Thisis most onveniently done by solving the two oupled series1Xn=1pn �f (3)n A(r)nm = �3�rpm �f (r)m3Xr=1 1Xn=1 pn�r A(r)mn �f (r)n = �Bm ; (2:5)for �f (r)n . These are related to the Neumann vetors by�f (r)m = �rpm �Nrm : (2:6)An additional onstraint is 1Xn=1pn �f (3)n Bn = �2 �0�1�2 ; (2:7)whih omes from the knowledge of the expliit form of K in at-spae3. The equations(2.5) are equivalent to 1Xm=1 (�1)mm sin(m��) �f (3)m = � �0�3 (2:8)1Xm=1(�1)m+nm sin(m��)n2 �m2�2 �f (3)m = � �2�2 �f (1)n (2:9)1Xm=1(�1)mm sin(m��)n2 �m2(1 + �)2 �f (3)m = 1(� + 1)2 �2 �f (2)n (2:10)��1 1Xn=1n(�1)n �f (1)nn2 �m2�2 + 1 + ��2 1Xn=1n �f (2)nn2 �m2(1 + �)2= �2�3 (�1)m 1sin(m��) �f (3)m � �3�1�2 1m2 : (2:11)3 Note, that the RHS of this equation equals K, whih in at-spae an be determined usingonformal invariane, whereby one maps the known Neumann funtions of the omplex plane tothe light-one string diagram, f. [23℄. Due to the absene of expliit onformal invariane inthe light-one gauge, this is not possible anymore in the plane-wave, so that the ondition (2.7)annot be used to derive properties of f (3) . This will be disussed in the next setion.3



Here, we de�ned � = �1=�3 < 0.We shall now apply the ontour method in order to derive the solutions to theseequations. Shematially, the ontour method provides one with solutions f(n) to ertainoupled series Pn f(n) = F for given F (note these an be interpreted as in�nite dimen-sional matrix equations). The main idea is to map the sum to a ontour integral in theplane so that by Cauhy's theorem1Xn=1 f(n) +Xk Resz=zk� ot(�z)f(z) = limR!1ICR dz2�i� ot(�z)f(z) ; (2:12)where CR is the ontour given by a irle of radiusR entred on the origin, not intersetingany poles of the integrand (so in partiular R 6= 1; 2; 3:::). If the RHS of (2.12) vanishes,one an ompare the sum over residues with F , whih allows one to infer the poles andzeroes of f(z) (note we will assert that f(z) = 0 for z = 0;�1;�2:::). For more details andexamples on the ontour method we refer the reader to [14℄.Applied to the present ontext, i.e., in order to �nd the solutions for �f (r)n , we mapthe sum to a ontour integral in the omplex plane, i.e., onsider in view of (2.8)I dm2�i � ot(�m) 1os(�m) sin(m��)m �f (3)(m)= �I dm2�i �(m+ 1)�(�m) sin(m��)m �f (3)(m) ; (2:13)where we have rewritten (�1)m = 1= os(�m). Assume that there are no relative anel-lations of residues, and that the ontribution to the sum omes from a single residue. Thesum (2.8) arises from the poles at m 2 IN. In order to anel the poles of �(m + 1) form 2 ZZ�, �f (3)(m) needs to have a fator 1=�(m+1). Further, it an have poles atm� 2 ZZ�or m� 2 ZZ+, i.e., �f (3)m / �(��m). In fat, it has to have suh a fator, as otherwise, eval-uating the ontour integral for (2.9) would imply that �f (1)n vanishes, whih is unphysial.Further, sine � < 0 the only onsistent hoie is that the poles are at m� 2 ZZ+, asotherwise �f (3)m would be singular for the partiular value � = �1. In summary we deduedthat �f (3)(m) = f̂ (3)(m) �(�m�)�(m+ 1) ; (2:14)with f̂ (3)(m) having no poles at m 2 ZZ or m� 2 ZZ.In evaluating the integral for (2.10)I dm2�i m �(�m)�(1 +m�) �n2 �m2(1 + �)2 f̂ (3)m ; (2:15)4



one obtains poles at m = �n=(1 + �). Assuming that the ontributions to the sumsome only from one term, implies that f̂ (3)m has to have zeroes at all values m, suh that�m(1 + �) 2 ZZ+ for one of the signs � = �1. Thus, we may make the further ansatzf̂ (3)m = 1�(��m(1 + �) + 1) �f (3)m : (2:16)For the hoie � = 14, the residue of (2.15) at m = �n=(1 + �) implies�f (2)n = �� n1+����1� n� �1+����(n + 1) �f (3)� n1+� = �(�n�3�2 )���n��3�2 + 1�+ 1��(n + 1) �f (3)n�3�2 : (2:17)The ontour argument applies only if the integrand suitably falls o� at in�nity (f. [14℄).Invoking Stirling's formula, the m-dependent part of the integrand in (2.15) has an asymp-toti behaviour given bym�5=2�m�(1 + �)m(1+�) �f (3)(m) =m�5=2��m�1�31 ��m�2�32 (��3)�m �f (3)(m)=m�5=2e�m�0=�3 �f (3)(m) : (2:18)Thus, �f (3) must ontain a fator em�0=�3 , but ould in priniple also be proportional toPk akmk for some suitable powers k, whih respet the required asymptotis. The sameasymptoti behaviour is obtained for the integrands for (2.8) and (2.10). We shall fullydetermine �f below.With the new ansatz (2.16), the residue for the sum in (2.8) beomes1Xm=1 (�1)mm sin(m��) �f (3)m = � d �f (3)(m)dm ����m=0 ; (2:19)so that d �f (3)(m)dm ����m=0 = �0�3 : (2:20)Now onsider the integral for equation (2.9),(�1)n I dm2�i � ot(�m)os(�m) m sin(m��)n2 �m2�2 �(�m�)�(m + 1) f̂ (3)(m) : (2:21)4 With the hoie � = �1, one would enounter a pole at some positive real integer for somehoie of �. The non-vanishing ontributions from this pole would lead to inonsistenies.5



The only pole that has a non-trivial residue is loated at m = n=�, whih results in(�1)n+1 �2�2 �(�n� )�(n+ 1) f̂ (3)n� = �2�2 �f (1)n : (2:22)With (2.16), the funtion �f (1) is now determined as�f (1)n = (�1)n+1 �(�n� )�(�n� � n+ 1)�(n + 1) �f (3)n� = �(��2�1n)���n��2�1 + 1�+ 1��(n+ 1) �f (3)n�3�1 ;(2:23)where the reetion identity has been applied. In order to further onstrain the funtion�f we need to disuss the last equation (2.11). Consider the term that gives rise to the �rstterm in (2.11), involving �f (1)n�I dn2�i n �f (3)(n� )�(�n)n2 �m2�2 �(n+ n� )�(1 + n� ) : (2:24)The poles are determined as in appendix E of [5℄. At n = 0 the pole isResn=0 = � �f (3)(0)�(1 + �)m2 : (2:25)At n =m� the residue isResn=m� = � �f (3)(m)�(��m)�((1 + �)m)2�(1 +m) ; (2:26)and for n 2 �=(1 + �)ZZ� the residues give rise to the sum� 1Xk=1 �f (3)�� k1 + �� 1k2 �m2(� + 1)2 �( k�+1)�(k)�(1 � k�1+� ) : (2:27)Comparison with (2.11) yields the following additional ondition on �f (3)�f (3)(0)�1(1 + �)m2 = � �3�1�2m2 ; (2:28)so that �f (3)(0) = 1 : (2:29)In order to fully determine �f , reall that from the asymptotial behaviour in (2.18) wededued that �f (3)(m) =Pk akmkem�0=�3 . Now, (2.29) and (2.20) imply that a0 = 1 and6



a1 = 0. Sine any higher power of k would alter the asymptotis suh that the ontourmethod would not be appliable anymore, we onlude that�f (3)(m) = em�0=�3 : (2:30)This is in agreement with [5℄. In summary, the solutions to the equations (2.8)-(2.11) takethe general form �f (r)m = �f (r)m ���m�r+1�r ��(m+ 1)���m��r+1�r + 1�+ 1� ; (2:31)where we set �f (r)m = �f (3)m �3�r = em�0=�r : (2:32)In partiular, (2.8)-(2.11) imply that the Neumann vetors are given by� 1�rpm �f (r)m = ��A(r)�t ��1B�m = � �Nrm ; (2:33)whih ompletes the ontour method derivation for the at-spae ubi vertex.3. The ubi vertex for the plane-waveHaving illustrated the ontour method, we are now ready to apply it to derive theubi vertex for the plane-wave string theory. Again, we are interested in the bosoni Neu-mann oeÆients. As in the ase of the open-losed vertex derived in [14℄, the ubi vertexwill turn out to be most onisely expressed in terms of �-deformed Gamma-funtions. Inpartiular, the following funtions will be useful�(r)� (z) = e��r!z 1�rz 1Yn=1� n!rn + �r!z e�r!zn �= �I2��r(�rz) ; (3:1)where !rn = pn2 + �2r�2 and �I�(z) is the �-deformed Gamma-funtion de�ned in [14℄(exept n as opposed to !n appears in the denominator of the in�nite produt). We shallde�ne the Gamma-funtion without a supersript��(z) = �(r)� (z) ; for �r = 1 : (3:2)A key property of these funtions is that they satisfy a generalization of the reetionidentity of the Gamma-funtion�(r)� (z)�(r)� (�z) = � ��rz sin(��rz) : (3:3)Various properties of these funtions, suh as asymptotis in z and in � are disussed inthe appendies and in [14℄. 7



3.1. Vertex equationsThe ansatz for the bosoni part of the plane-wave ubi vertex is as in (2.1). Theonditions on the Neumann matries in the plane-wave ase have been derived in [7℄, whihagain redue to the problem of �nding f (3)m (denoted by Ym in [11℄) suh that1Xn=1(�+)mn f (3)n = 3Xr=1 1Xn=1�A(r)U (r) �A(r)�t�mn f (3)n = Bm ; (3:4)where (U (r))mn = Æmn (!rm � �r�)m : (3:5)The onventions are as in [7,8,11℄ and the relation to setion 2 is by f (r)n j�=0 = �f (r)n pn .As in at spae, (3.4) has the interpretation of ontinuity onditions on the vertex atthe interation, i.e. at � = 0. The strategy, whih we shall pursue (and whih is in ontrastto [11℄) is to proeed as in at spae and stepwise solve for f (3)m , i.e., to �nd solutions f (r)mto the set of equations 1Xp=1 f (3)p A(r)pm = �3�r f (r)m (3:6)1Xp=1 3Xr=1 1�r �A(r)U (r)�mp f (r)p = �Bm : (3:7)The Neumann matries in the plane-wave ase have been shown [24℄ to satisfy an analogousequation to (2.2), �Nrsmn = � mn�1� 4��K �Nrm �Nsn�s!rm + �r!sn ; (3:8)where the Neumann vetors are�Nrm = � (C�1Cr)1=2U�1r f (r) 1�r �m=r!rmm (!rm + ��r)m 1�r f (r)m ; (3:9)and K = �14Bt��1+ B : (3:10)Further Cmn =mÆmn , (Cr)mn = !rmÆmn and the f (r)'s are de�ned as above.Our strategy is now to apply the ontour method to the sums in (3.6) and (3.7). Fromequation (3.6) one an again dedue the pole struture for f (3)(m). Assuming that the8



residues of the equations in (3.6) ome from a single pole the onditions are that f (3)(m)has zeroes for m 2 �IN as well as m(1 + �) 2 IN0 and has poles for m� 2 IN. Thus,this �xes the pole and zero struture of the solution, however not the expliit funtionaldependene. The latter is determined by (3.7). For this, note the !rp term entering U (r).As disussed in [14℄, the integrals along the branh uts that are present due to the squareroot will not ontribute to the ontour integral orresponding to the sum in question, ifthe � and p dependenes are all pakaged together into !rp and the integrand is odd inthe imaginary part. Thus, in view of (3.6), one is lead to the following expliit realizationof the poles and zeroes in f (3)f (3)(m) = ~f (3)m ����(��m)��(1+�)(�(1 + �)m) ��(m) ; (3:11)where the partiular hoie of deformation parameters for the Gamma funtions is hosen,in order to ensure that all branh uts oinide. The funtion ~f (3)m is determined muh inthe same way as we explained in detail for the at-spae disussion. Furthermore, one hasto ensure that the all-� solution reprodues the right at-spae limit. Note also, that theontour method requires that the integrand falls o� suitably at in�nity, so that the RHSof (2.12) vanishes. In the at-spae this disussion relied on applying the Stirling formulato the Gamma funtions. For the plane-wave ase, it will be relevant that the �-deformedGamma-funtions satisfy an analogous Stirling formula, whih is proven in appendix B.3.2. Solutions to the vertex equationsFrom the disussion in the last subsetion, whih in partiular lead to the form (3.11),one obtains the following ansatz for the funtion f (3)(m), whih has the orret at-spaelimit. It further satis�es �f (3)�� ���=0 = �0f (3), whih follows from equation (30) of [11℄5. Theansatz reads f (3)m = m22!mBmy(1� y)e�0(��!m)�(1)� (m)�(2)� (m)��(m) M(0+) ; (3:12)where we �xed as in [11℄ the gauge�1 = y ; �2 = 1� y ; �3 = �1 ; (3:13)5 Note this motivates the fator 1=!m as opposed to 1=(!m+�) whih both have the orretat spae limit. 9



and Bm = 2� sin(m�(1 � y))y(1 � y)m3=2 ; (3:14)as well as M(z) = ��(z)z��y(yz)yz ��(1�y)((1 � y)z)(1 � y)z : (3:15)The fator M(0+) is omputed from (3.11) by imposing the equation (3.7) and thus isruial in order to reprodue the orret residues. Note also that M(0+) ! 1 as � ! 0.So, more expliitly we havef (3)(m) = pm� sin(m�(1� y))e�0(��!m)!m ��y(ym)��(1�y)((1 � y)m)��(m) M(0+) (3:16)= �e�0(��!m)!m 1pm(1� y) ��y(ym)��(1�y)(�(1� y)m) ��(m) M(0+) : (3:17)Evaluation of the ontour integrals orresponding to (3.6) for r = 1 and r = 2, whih haveonly non-trivial residues at m = �n=y and m = �n=(1� y), respetively, results inf (1)(n) = � (�1)ne�0(�+!ny )!nypn(1� y) ��(ny )�(2)� (ny ) �(1)� (ny ) M(0+) (3:18)f (2)(n) = e�0(�+! n1�y )! n1�ypny ��( n1�y )�(1)� ( n1�y ) �(2)� ( n1�y ) M(0+) : (3:19)Note that in evaluating the ontour integrals for eah value for r the branh uts oinide,the integrand being odd along the uts, whih is of ourse ruial for the appliability ofthe ontour method. These solutions an be put into the losed formf (r)m = e�0(�+! m�r )pm(��r � �r+1)! m�r �(r+1)� �� m�r ��(r)� � m�r��(r�1)� � m�r �M(0+) ; (3:20)whih beautifully generalizes the orresponding expression in at-spae (2.31) taking intoaount the di�erene in onventions.Next (3.7) needs to be heked. Thus onsider the following ontour integral, whihorresponds to the sum of the r = 1 term in (3.7) (f. at spae analysis)�M(0+)I dn2�i 2y(�1)m+1pm sin(m�y)n sin(�n) e�0(�+!ny )n2 �m2y2 (!ny � �)!ny ��(1�y)(�ny (1� y))��(�ny )��y(n) :(3:21)10



The residues at n 2 IN give the r = 1 term, the residues at n(1 � y)=y 2 IN give ther = 2 term and the residue at n = �my gives the r = 3 term in (3.7). We are left onlywith the integral around the branh ut, whih runs from n = iy� to n = �iy�. Sinethe integrand is odd along either side of the ut the line integrals vanish { however theintegrand is atually singular at n = 0 and thus we are left with two semiirular ontourson either side of the branh ut, whih we will all C+ and C�, see �gure 1. One might betempted to think this ontribution is just the residue of the integrand at n = 0 howeverthings are not quite as simple as this, sine the integrand is not de�ned at this point withour hoie of branh ut. What we an do though is take the residue of the fators notdepending on !n and then on the right side (i.e., along C+) take the limit n! 0+ of therest and on the left take the limit n! 0�.
Figure 1 The ontours C�.In the present ase, the only ontribution omes from C� (note the integrand is notregular at the branh points, however the integral around them still vanishes, in fat goesas O(�1=2) where � is the radius of the ontour around a branh point, see [14℄). We �ndthat the ontribution from C� is�2(�1)m sinm�y�m3=2y(1� y) M(0+)M(0�) : (3:22)It is easy to verify that M(0+)M(0�) = 1, whih leaves the ontribution from C� to beexatly Bm thus ompleting the proof.Finally, we need to ompute the quantity K, whih is de�ned byK = �14Bt ��1+ B = �14 1Xn=1Bnf (3)n : (3:23)11



For the omputation, we need to onsider the ontour integral�2M(0+)y(1� y) I dm2�i M(�m)e�0(�!m+�)m!m : (3:24)The residues at �m 2 IN give �4K and sine there are no other poles we are left with theintegrals around the branh ut. There is a singularity in the integrand at m = 0 whihon both sides looks like a simple pole. Computing we get�2M(0+)y(1� y) ZC+ dm2�i M(�m)e�0(�!m+�)m!m = �M(0+)M(0�)�y(1� y) ; (3:25)and �2M(0+)y(1 � y) ZC� dm2�i M(�m)e�0(�!m+�)m!m = M(0+)2e2�0��y(1� y) : (3:26)Therefore we �nd that K = 14y(1 � y)� �M(0+)2e2��0 � 1� ; (3:27)whih we see has the orret at spae limit, K(� = 0) = �0=(2y(1 � y)).We should emphasize that in this appliation of the ontour method of [14℄ it hasbeen ruial that the irular integrals around the branh points, as well as the integrals atin�nity vanish { the latter was shown by applying the generalization of Stirling's formulaof appendix B.3.3. CommentsA ouple of remarks are in order, in partiular in view of the omparison with thesolution obtained in [11℄. First reall that the solution Ym(�; y) in [11℄ is to be omparedwith our solution f (3)m . In this omparison, one will observe that the solution in eq. (52)of [11℄ only agrees with (3.12), if �3 ! ��3 as well as the sign of the r = 3 term in theexponent is ipped, i.e., ifYm(�; y) = exp "(�� !m)�0 + 2Xr=1(�r � �mr) � (�3 � �m3)# m2!mBm ; (3:28)with �3 replaed by 1. Note that the solution as it stands in [11℄ would be divergent forintegral m, and thus seems inonsistent6.6 The authors of [11℄ have on�rmed the sign disrepanies in the equation in question. Wewould like to thank Y. He and M. Spradlin for disussions on this point.12



4. Large-� asymptotisThe large-� asymptotis of expressions in plane-wave string theory are of the fore-most interest in the ontext of the BMN orrespondene, as these are to be ompared withperturbative (in �0) gauge theory data. Given our expressions for the Neumann matri-es, the only non-trivial input in determining these asymptoti expressions are the large-�asymptotis of the �-deformed Gamma-funtions, whih we derive in appendix C. In ap-plying these one has to keep in mind that the asymptoti formulae only apply to �(r)(z)for jarg(z)j < �, thus before applying the asymptotis to the funtions f (r)(m) one has toensure that upon suitable appliation of the reetion identities this ondition is satis�edfor the arguments.First note that M(0+) has the asymptotis, using the �-funtion asymptotis of theappendix C, given by 7 M(0+) � e��0�s 14��y(1� y) : (4:1)Applying these asymptotis upon (3.18) and (3.19), we obtainf (1)n � (�1)n2�p2�y(1 � y) pn!nyp!ny + �f (2)n � 12�p2�y(1 � y) pn! n(1�y)q! n(1�y) + � : (4:2)For f (3)(n), the asymptoti formula is only appliable to (3.16), resulting inf (3)m � 1� sin(m��2) �3pm 1p2��q!� m�3 + �! m�3 : (4:3)This expansion agrees preisely with [11℄. The Neumann vetors�Nrm =r!rmm (!rm + ��r)m f (r)m 1�r=r!rmm m(!rm � ��r)f (r)m 1�r ; (4:4)thus have the asymptoti behaviour for r = 1; 2�Nrm � � (�1)r(n+1)�1=2r2��p2�m p(!rm + ��r)p!rm ; (4:5)7 As in [11℄, A(�) � B(�) means A(�) = B(�) + O(e�j�rj�).13



as well as for r = 3 �N3m � � 1� sin(m��2) 1p2��s j�3j!3m(!3m � ��3) : (4:6)Finally we may study the large-� asymptotis of K. Inspeting (3.27) we see that we onlyneed (4.1), whih leads toK � � 14y(1� y)� + 116�y2(1� y)2�2 : (4:7)These agree with the �ndings of [11℄.4.1. Exponential orretionsIn this setion we will onentrate on expliitly extrating the �rst exponential or-retion to the Neumann vetors we have derived, thus going further than the results givenin [11℄. These orretions ould have interesting impliations for the gauge theory.The problem redues to �nding the large-� exponential orretions to the deformedGamma-funtions. Here we give a brief argument and one an �nd a more rigorous deriva-tion in appendix D. In appendix D we show the following key result��� log �(r)� (z)exp = �pj�rj�!z e�2�j�rj� �1 +O� 1��� : (4:8)If one does an integration with respet to � by parts (i.e., integrate the e�2�j�rj�), thenwe an prove that log�(r)� (z)exp = pj�rj�2�j�rj!z e�2�j�r j� �1 +O� 1��� ; (4:9)the details of whih are provided in appendix D. This essentially means that the remainingintegral simply ontributes to the O(1=�) part. Now it is a simple matter of some algebrato dedue the orretions to the Neumann vetors. We �nd the following result�(1)� (z)�(2)� (z)��(z) = p2�e!z�0py(1� y) p!z + �z �1 + p�2�!z�e�2�y�py �1 +O� 1���+ e�2�(1�y)�p1� y �1 +O� 1���� e�2�� �1 +O� 1����� : (4:10)Using this it is straightforward to dedue the orretions to f (r)m .14



Curiously, it an be shown that the exponential orretions are related to the Casimirenergy of a two-dimensional massive boson on a ylindrial world-sheet with periodiboundary ondition. The Casimir energy is given by [25,26℄���r = � 1(2�)2 1Xp=1Z 10 dt e�p2t��2�2r�2=t ; (4:11)using whih it an be easily shown that the exponential orretions for the deformedGamma-funtion satis�es the following relation� log �(r)� (z)exp�� = 1!z�r ����r�� = 1!z� ����r��r : (4:12)� parametrizes the length of the world-sheet. Sine the �-derivative of the energy anbe interpreted as pressure, these orretions probably arise due to the tidal fores in thisbakground [25℄. The exat physial signi�ane of this result, partiularly on the gaugetheory side needs to be explored.It is tempting to extend the analysis applied for the �rst term in (4.9) in order toextrat the full series of exponential orretions. In this paper, we shall ontent ourselvesby giving a onjetural expression for the series (4.9),log�(r)� (z)exp = 1Xn=1 e�2�nj�rj� pj�rj�2�j�rjpn!z �1 +O� 1��� ; (4:13)where the onjeture is, that the O(1=�) terms do not lead to any mixing of the exponentialsin the series. We provide some arguments in favour of this onjeture in appendix D.1.Using the above onjeture and upon expanding the exponential, in general theexponential orretions an be written shematially as1Xn=1gn(�;�r)e�2�n�j�r j ; (4:14)whih suggests the interpretation of these quantities in terms of a series of non-perturbativeorretions. Note, that in deriving the exponential orretions we made use of the asymp-toti expansion of the Bessel funtion K�(x). It is well known that this expansion is notBorel summable. The exat signi�ane of this for the dual gauge theory needs to beunderstood. 15



5. Plane-wave Neumann matrix manualThe purpose of this setion is to summarise our main results, in order to failitate theomparison with gauge theory alulations for whih the Neumann matries are essential.We give the expressions for the Neumann matries valid for all �, the large-� expansionas well as the �rst exponential orretions, whih we have determined expliitly. Thesubsequent exponential terms are only onjetural and an be obtained from (4.13).So, to summarize, we have expressed the plane-wave Neumann matries as�Nrsmn = � mn�1� 4��K �Nrm �Nsn�s!rm + �r!sn ; (5:1)where the Neumann vetors �Nrm are related to the funtions f (r)m via�Nrm =r!rmm (!rm + ��r)m 1�r f (r)m : (5:2)We have determined the expliit form of these funtions in (3.20), and furthermore K wasomputed in (3.27). Putting all this together, we obtain the Neumann matries for all�-values to be�Nrsmn = � 4mn e�0�! m�r +! n�s ��� �(�r + �r+1) (�s + �s+1) (!rm + ��r)(!sn + ��s)(!rm!sn)1=2 (�s!rm + �r!sn) �� 0� �(r+1)� �� m�r��(r)� � m�r��(r�1)� � m�r�1A 0� �(s+1)� �� n�s��(s)� � n�s��(s�1)� � n�s�1A ; (5:3)where the �-deformed Gamma-funtions are de�ned in (3.1) and (3.2). Applying the large-� asymptotis for the deformed Gamma-funtions obtained in appendix C one an extratthe large-� behavior, whih is of interest for omparison with the gauge theory. We havegiven the expliit forms of the large-� Neumann vetors in setion 4, and the asymptotisfor (5.1) are straight-forwardly obtained from (4.5), (4.6) and (4.7).The �rst term in the exponential orretions to these large-� asymptotis, whihhad so far not been determined, follow from the exponential orretions of the Gamma-funtions in (4.10), together with (5.1). 16



6. ConlusionsIn this paper we have derived the bosoni Neumann matries in plane-wave stringtheory using the ontour method developed in [14℄, whih allows to express the result interms of �-deformed Gamma-funtions. This approah not only simpli�es the derivation ofthe Neumann matries and their large-�-asymptotis, the latter being in agreement with[11℄, but allows to extrat exponential orretions, i.e., terms of O(e�2�j�r j�). We havederived an expliit form for the �rst term in these exponential orretions, and provideda onjetural formula for the leading order in 1=� terms in the full exponential series. Afew open questions and remarks are in order.� The dual gauge-theoretial interpretation of the exponential orretions has ertainly sofar been elusive. The expliit form for the �rst term in the exponential orretions, whihwe derived, provides some expliit quantity that ould be ompared to the gauge theory.In terms of the e�etive 't Hooft oupling, �0 = 1=(�p+�0)2, the result is proportionalto e�2�=p�0 . In partiular, these should orrespond to non-perturbative e�ets, whihare remotely reminisent of ontributions that arise from D-branes in string theory. Avital question that hereby arises is then: What objets on the gauge theory side ould beattributed suh orretions?� The exponential orretions were shown to be related to the Casimir energy of a massivetwo-dimensional boson on a ylinder. Is this merely a mathematial oinidene or an itbe attributed more physial signi�ane?� It would be very interesting to use the results obtained in the present paper as well asin [14℄ in order to ompute sattering of losed and open strings. In partiular, the openstring ubi vertex is of ourse losely related to the losed ubi vertex and ould be usedin order to ompute sattering of open strings in orientifold theories or with D-branes, suhas the ones onstruted in [25,27,28,29℄. Furthermore, these should be ompared to gaugetheoretial omputations inluding operators dual to D-branes, suh as in [30,31,32℄.� As a mathematial uriosity, it is oneivable that the ontour method ould be usedmore generally to derive integral transforms, in the same way that the present paper givesa systemati way to obtain the integral transform used in [11℄ to derive the ubi vertex.� Finally, it is tempting to onjeture that all at spae amplitudes, whih an be ex-pressed in terms of Gamma-funtions, an be arried over in the plane-wave bakgroundby replaing them with suitable �-deformed Gamma-funtions.17
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Using the Weierstrass de�nition of �(z) implieslog���(z)�(z) � = �(!z � z) + 1Xn=1 log� z + n!z + !n�+ !z � zn : (B.2)Note that limz!1(!z � z) = 0. This allows us to dedue thatlimz!1 log���(z)�(z) � = 0 ; (B.3)and therefore that ��(z) � �(z) � p2�zz�1=2e�z ; (B.4)as z !1 and of ourse for j arg zj < �.Appendix C. Large-� asymptotis of the deformed Gamma-funtionsThe large-� asymptotis are derived in a similar fashion as in the appendies of [14℄,applying various tehniques of [33℄. Taking the log of both sides of (3.1) and di�erentiatingwith respet to � leads to��� log �(r)� (z) = �r�!z " 1Xn=1� 1n � 1!rn�� # : (C.1)So we need to onsider the asymptotis ofS = 1Xn=1� 1n � 1!rn� : (C.2)Di�erentiating both sides with respet to � implies�S�� = 1Xn=1 �2r�!3rn : (C.3)Using the results in the appendix of [14℄1Xn=1 1!3rn = � 12(�r�)3 + 1(�r�)2 +O(e�j�r j�) ; (C.4)whih after integrating leads toS = 12��r + log�+ (�r) +O(e�j�rj�) ; (C.5)19



where (�r) is a onstant of integration. Di�erentiating with respet to �r leads to�S��r = � 12��2r + ���r +O(e�j�r j�) : (C.6)One should now di�erentiate S with respet to �r and then take the large-� limit of theresulting expression to ompare with this one. This leads to�S��r = 1Xn=1��2�r!3rn � = � 12�2r� + 1�r +O(e�j�r j�) : (C.7)Now omparing with equation (C.6) we get���r = 1�r ; (C.8)implying that (�r) = log�r +  ; (C.9)and therefore S = 12��r + log(��r) + +O(e�j�r j�) : (C.10)Substituting this into (C.1) and then integrating with respet to � we arrive atlog �(r)� (z) = �r!z (�  � 1 + log(��r)) + 12 log(!z + �)+ z�r log�!z + z� �+K(z; �r) +O(e�j�r j�) ; (C.11)where K(z; �r) omes from integrating with respet to �. This funtion an be determinedby taking the large-� asymptotis of ��z log �(r)� (z) and omparing to the z and �r deriva-tives of (C.11), whih we will do next. Taking the partial derivative with respet to z of(C.11) leads to��z log �(r)� (z) � z2(� + !z)!z + (� � 1+ log�r�)�rz!z +�r log�z + !z� �+ z�r!z + �K�z ;(C.12)while the z logarithmi derivative of (3.1) leads to��r z!z � 1z � �rz!z 1Xn=1� 1!rn + �r!z � 1n� : (C.13)20



Taking the limit �!1 in both equations results in the ondition�K�z = �1z : (C.14)Now taking the partial derivative with respet to �r of (C.11) one obtains���r log �(r)� (z) � (�  + log(�r�))!z + z log�z + !z� �+ �K��r ; (C.15)while the �r logarithmi derivative of (3.1) implies�!z � 1�r � 1Xn=1� 1!rn + �r!z ��r�2!rn + !z�� !zn � : (C.16)Comparing the above two equations at z = 0 and using (C.10) leads to the ondition�K��r = � 12�r : (C.17)Therefore we onlude thatK(z; �r) = � log z � 12 log�r + 0 : (C.18)Finally we have the desired asymptoti expression for the deformed Gamma-funtions forj arg zj < � log �(r)� (z) = �r!z (�  � 1 + log(��r)) + 12 log(�r!z + �r�)+ z�r log�!z + z� �� log(z�r) + 0 +O(e�j�r j�) : (C.19)The onstants  and 0 an atually be determined, and we will in fat need 0 expliitly.To determine these onstants we employ the large z-asymptotis formula derived in ap-pendix B whih is valid for all �. For large z, the RHS of (C.19) (ignoring the O(e�j�r j�)ontribution) is asymptoti to��rz � 12� log(�rz) + �rz( �  � 1 + log 2) + 0 : (C.20)Comparing this to Stirling's formula (whih is valid for all �) we see that we must have =  � log 2 and 0 = logp2�. 21



Appendix D. O(e��) orretionsWe shall now derive the exponential orretions in the large-� expansion of thedeformed Gamma-funtions. In equation (C.3) , the O(e��) term is given by�Se�� = 2�2r�Z 10 ds�2�2r e�s 1Xn=1 e� n2�2�2�2rs ; (D.1)whih an be written in terms of the modi�ed Bessel funtion of the seond kind as4�j�rj 1Xn=1nK1(2n��j�rj) ; (D.2)where we have used the integral represenation K1(x) = 1x R10 dt e�t�x2=4t. Integratingwith respet to � leads to Se = �2 1Xn=1K0(2j�rj�n�) : (D.3)Thus the O(e��) terms in (C.1) are given byF (z; �) � �2 1Xn=1 �r�!z K0(2j�rj�n�) : (D.4)The large-� behaviour of this quantity is readily dedued from that of the Kelvin funtions8,whih gives F (z; �) = �pj�rj�!z e�2�j�r j� �1 +O� 1��� : (D.5)Thus we are left with evaluating R F (z; �) d�. We now prove the following formula ruialfor the evaluation of the above integralI(z) = Z 1� dt ptpt2 + z2 e��t = p�e����!z �1 +O� 1��� : (D.6)We will prove the formula for real z as this is all we will need. The argument is elementaryand goes as follows. Integrate by parts to giveI(z) = p�e����!z � 12� Z 1� dte��t (z2 � t2)pt(z2 + t2)3=2 : (D.7)8 Note K�(x) =p �2xe�x(1 +O(1=x)). 22



Sine jz2 � t2j < z2 + t2 for real z, we have���� (z2 � t2)pt(z2 + t2)3=2 ���� < 1pt(z2 + t2)1=2 � 1p�(z2 + �2)1=2 ; (D.8)wherefore ���� 12� Z 1� dte��t (z2 � t2)pt(z2 + t2)3=2 ���� < e���2�2p�!z : (D.9)Hene we have proven (D.6). Note we have not restrited � in this proof at all. Thus onemight expet to extend this to omplex z for large-�. Using this we onlude thatZ 1� F (z; �) d� = pj�rj�2�j�rj!z e�2�j�rj� �1 +O� 1��� : (D.10)Finally we omment on the onnetion to [11℄. For this, we make use of the followingintegral representation K0(x�) = Z 10 dt e�xpt2+�2pt2 + �2 ; (D.11)valid for x > 0, see [34℄, to express the whole of the exponential orretions in a di�erentform. Using this we may sum Se, given by (D.3), whih impliesSe = �2Z 10 dt 1pt2 + �2[e2��rpt2+�2 � 1℄ : (D.12)If we hange variables to �s =pt2 + �2 we obtainSe = �2Z 11 ds 1ps2 � 1 1e2���rs � 1 ; (D.13)whih is a losed expression for the O(e��) terms of the sum (C.2). The exponential or-retions to the �-deformed Gamma-funtions are readily obtained from (C.1). Inidentallyan equivalent formula to (D.13) appears in [11℄.D.1. Conjeture for subsequent exponential orretionsIn analogy to the derivation of the �rst term in the exponential orretions one shouldbe able to ompute the full series (4.14). There are various subtleties in determining this,in partiular related to the approximation of the O(1=�) term in (D.7). We shall nowpresent some arguments whih allow us to onjeture the exat expression for the leading23



order terms, i.e., of O(1=�). So, we wish to ompute the expansion of the following terminto a series of exponential orretions O(e�2�nj�r j�)Z 1� d� �!z 1Xn=1K0(2j�rj�n�) : (D.14)First, reall the asymptoti series for the Kelvin funtion ([35℄, VII., 7.34)K0(x) =r �2xe�x p�1Xm=0 m(2x)m + (�1)pRp! ; (D.15)where the error term Rp for large p, suh that x = p=2 + � with j�j < 1, is given byRp � 2rx� e�2xp �12 +O�1p�� : (D.16)Applying this to the Kelvin funtion appearing in (D.14), implies thatlog�(r)� (z)exp = 1Xn=1 e�2�nj�rj� pj�rj�2�j�rjpn!z �1 +O� 1��� ; (D.17)where it may be of use to point out that the Rp-terms do not ontribute to the leadingterm in 1=�, and thus an be disregarded. If it now an be ensured that O(1=�) does notontain terms like e�� then we an retain the �rst term, as there is no mixing at the sameorder of the oeÆient. However, to make this statement preise, a better approximationof the O(1=�) terms in (D.7) would have to be derived.
24
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