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tThe exa
t bosoni
 Neumann matri
es of the 
ubi
 vertex in plane-wave light-
one string�eld theory are derived using the 
ontour integration te
hniques developed in our earlierpaper. This simpli�es the original derivation of the vertex. In parti
ular, the Neumannmatri
es are written in terms of �-deformed Gamma-fun
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at-spa
e solution. The asymptoti
s ofthe �-deformed Gamma-fun
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1. Introdu
tionThe BMN-
orresponden
e [1℄ between the plane-wave limit of IIB string theory onAdS5 � S5 [2,3℄ and a 
ertain se
tor of the d = 4, N = 4 SYM theory has proven to be apowerful means in paving the way towards an improved understanding of the AdS/CFT
orresponden
e.Despite the impressive advan
ements in the analysis of both sides of this 
orrespon-den
e, some key questions still remain to be answered. One 
entral point that has so farnot been addressed to full satisfa
tion is the study of intera
tions and their dual interpre-tation. For instan
e, given the exa
t 
ubi
 vertex, the string s
attering amplitudes 
an inprin
iple be 
al
ulated for all values of �. For large � this would allow 
omparison withperturbative gauge theory 
al
ulations and moreover the knowledge of �nite � 
orre
tions
ould provide very interesting predi
tions for �nite �0 
orre
tions in the gauge theory.Some important results in this dire
tion have already been obtained. On the stringtheory side, progress has been made towards understanding the intera
tions in the frame-work of light-
one string �eld theory. This was �rst developed for 
at spa
e in [4,5,6℄ andthen generalized to the plane-wave in [7,8,9,10,11,12,13,14℄. For 
omparisons to the gaugetheory side see e.g. [15,16,17℄1. However, quantities that have been 
omputed for all � arestill rather rare, and we believe 
omprise only the results of [11℄ for the 
ubi
 
losed inter-a
tion vertex as well as [14℄ for the open-
losed vertex. Furthermore, in order to perform
omputations of s
attering amplitudes based on these results, it would be advantageous ifthe intera
tions are expressed in a 
on
ise form reminis
ent of the 
at-spa
e results.The main motivation for the present paper is to re-address the analysis of the plane-wave 
ubi
 vertex. The derivation that we shall provide for the vertex relies on the 
ontourmethod for summing 
ertain in�nite series, whi
h was developed in [14℄. One of the mainmerits of this approa
h is that it allows a derivation very 
lose to the one known for the
at spa
e vertex in [5℄. The solution to the 
ubi
 vertex equation, as in [14℄, will bewritten in terms of �-deformed Gamma-fun
tions. This gives an elegant generalization ofthe 
at-spa
e solutions of [5℄.There is a slight dis
repan
y between the expli
it expression of the Neumann matri
esin [11℄ and ours. It appears that the only problem in [11℄ is the �nal expression for theNeumann ve
tors (i.e., their equation (52))2. We derive the large � asymptoti
s dire
tly1 For a more 
omplete list of referen
es see [18,19,20,21,22℄.2 In fa
t it is easy to see that there is some error in (52) of [11℄; simply note that �m3 in theequation in question is divergent. 1



from the exa
t expression for the Neumann ve
tors, whi
h agree with those in [11℄. Despitethe dis
repan
y in the exa
t expression, this is not surprising sin
e the asymptoti
s in [11℄were not developed from their exa
t expression for the vertex. We will elaborate on thisin se
tion 3.3. We also extend the large-� asymptoti
s by expli
itly 
omputing the �rstexponential 
orre
tions and provide a 
onje
ture for the subsequent exponential 
orre
tionterms.The plan of this paper is as follows. In se
tion 2 we present the derivation of the 
ubi
vertex in 
at spa
e using the 
ontour method for summing series of [14℄. In se
tion 3 wegeneralize this to the 
ubi
 vertex in the plane-wave. In se
tion 4 we use the asymptoti
sof the �-deformed Gamma-fun
tions to derive the large-� expansions of the Neumannmatri
es. We also 
omment upon the exponential 
orre
tions appearing in the large-�asymptoti
 expansions and expli
itly give the �rst term, as well as provide a 
onje
turefor the subsequent terms. We 
on
lude in se
tion 5. There are four appendi
es, in whi
hvarious properties and asymptoti
s of the �-deformed Gamma-fun
tions are derived.2. The 
ubi
 vertex in 
at-spa
eIn this se
tion, as a warm-up, we will use the 
ontour method of [14℄ in order toderive the well-known 
at-spa
e Neumann matri
es �Nrsmn for the 
ubi
 string vertex, whi
horiginally were determined in [5℄. We shall fo
us on the bosoni
 part of the vertex, forwhi
h the standard ansatz isjV i = N exp 12 3Xr;s=1 1Xm;n=1a(r)�m �Nrsmna(s)�n + 3Xr=1 1Xm=1 a(r)�m �NrmP +KP2! j 0 i ; (2:1)where a(r)�m are the normalized os
illators of the r-th string and Pi = 2p+1 pi2 � 2p+2 pi1.Geometri
al 
ontinuity 
onditions and momentum 
onservation then imply 
onstraintsupon the Neumann matri
es. It was shown that the Neumann matri
es satisfy�Nrsmn = �mn�1�2�3n�r +m�s �Nrm �Nsn ; (2:2)where �Nrm = ���A(r)�t ��1B�m ; K = �14B��1B ; (2:3)and �i = 2p(i)+ are the momenta of the various strings, whi
h are 
hosen su
h thatP3i=1 �i = 0, and �0 =P3r=1 �r log j�rj. Without loss of generality we assume �1; �2 > 02



and �3 < 0. The matri
es A and B are de�ned in appendix A and 
orrespond to variousFourier modes. Further � = 3Xr=1A(r) �A(r)�t : (2:4)To solve for the Neumann matri
es, it is 
lear that it is suÆ
ient to determine ��1B. Thisis most 
onveniently done by solving the two 
oupled series1Xn=1pn �f (3)n A(r)nm = �3�rpm �f (r)m3Xr=1 1Xn=1 pn�r A(r)mn �f (r)n = �Bm ; (2:5)for �f (r)n . These are related to the Neumann ve
tors by�f (r)m = �rpm �Nrm : (2:6)An additional 
onstraint is 1Xn=1pn �f (3)n Bn = �2 �0�1�2 ; (2:7)whi
h 
omes from the knowledge of the expli
it form of K in 
at-spa
e3. The equations(2.5) are equivalent to 1Xm=1 (�1)mm sin(m��) �f (3)m = � �0�3 (2:8)1Xm=1(�1)m+nm sin(m��)n2 �m2�2 �f (3)m = � �2�2 �f (1)n (2:9)1Xm=1(�1)mm sin(m��)n2 �m2(1 + �)2 �f (3)m = 1(� + 1)2 �2 �f (2)n (2:10)��1 1Xn=1n(�1)n �f (1)nn2 �m2�2 + 1 + ��2 1Xn=1n �f (2)nn2 �m2(1 + �)2= �2�3 (�1)m 1sin(m��) �f (3)m � �3�1�2 1m2 : (2:11)3 Note, that the RHS of this equation equals K, whi
h in 
at-spa
e 
an be determined using
onformal invarian
e, whereby one maps the known Neumann fun
tions of the 
omplex plane tothe light-
one string diagram, 
f. [23℄. Due to the absen
e of expli
it 
onformal invarian
e inthe light-
one gauge, this is not possible anymore in the plane-wave, so that the 
ondition (2.7)
annot be used to derive properties of f (3) . This will be dis
ussed in the next se
tion.3



Here, we de�ned � = �1=�3 < 0.We shall now apply the 
ontour method in order to derive the solutions to theseequations. S
hemati
ally, the 
ontour method provides one with solutions f(n) to 
ertain
oupled series Pn f(n) = F for given F (note these 
an be interpreted as in�nite dimen-sional matrix equations). The main idea is to map the sum to a 
ontour integral in theplane so that by Cau
hy's theorem1Xn=1 f(n) +Xk Resz=zk� 
ot(�z)f(z) = limR!1ICR dz2�i� 
ot(�z)f(z) ; (2:12)where CR is the 
ontour given by a 
ir
le of radiusR 
entred on the origin, not interse
tingany poles of the integrand (so in parti
ular R 6= 1; 2; 3:::). If the RHS of (2.12) vanishes,one 
an 
ompare the sum over residues with F , whi
h allows one to infer the poles andzeroes of f(z) (note we will assert that f(z) = 0 for z = 0;�1;�2:::). For more details andexamples on the 
ontour method we refer the reader to [14℄.Applied to the present 
ontext, i.e., in order to �nd the solutions for �f (r)n , we mapthe sum to a 
ontour integral in the 
omplex plane, i.e., 
onsider in view of (2.8)I dm2�i � 
ot(�m) 1
os(�m) sin(m��)m �f (3)(m)= �I dm2�i �(m+ 1)�(�m) sin(m��)m �f (3)(m) ; (2:13)where we have rewritten (�1)m = 1= 
os(�m). Assume that there are no relative 
an
el-lations of residues, and that the 
ontribution to the sum 
omes from a single residue. Thesum (2.8) arises from the poles at m 2 IN. In order to 
an
el the poles of �(m + 1) form 2 ZZ�, �f (3)(m) needs to have a fa
tor 1=�(m+1). Further, it 
an have poles atm� 2 ZZ�or m� 2 ZZ+, i.e., �f (3)m / �(��m). In fa
t, it has to have su
h a fa
tor, as otherwise, eval-uating the 
ontour integral for (2.9) would imply that �f (1)n vanishes, whi
h is unphysi
al.Further, sin
e � < 0 the only 
onsistent 
hoi
e is that the poles are at m� 2 ZZ+, asotherwise �f (3)m would be singular for the parti
ular value � = �1. In summary we dedu
edthat �f (3)(m) = f̂ (3)(m) �(�m�)�(m+ 1) ; (2:14)with f̂ (3)(m) having no poles at m 2 ZZ or m� 2 ZZ.In evaluating the integral for (2.10)I dm2�i m �(�m)�(1 +m�) �n2 �m2(1 + �)2 f̂ (3)m ; (2:15)4



one obtains poles at m = �n=(1 + �). Assuming that the 
ontributions to the sums
ome only from one term, implies that f̂ (3)m has to have zeroes at all values m, su
h that�m(1 + �) 2 ZZ+ for one of the signs � = �1. Thus, we may make the further ansatzf̂ (3)m = 1�(��m(1 + �) + 1) �f (3)m : (2:16)For the 
hoi
e � = 14, the residue of (2.15) at m = �n=(1 + �) implies�f (2)n = �� n1+����1� n� �1+����(n + 1) �f (3)� n1+� = �(�n�3�2 )���n��3�2 + 1�+ 1��(n + 1) �f (3)n�3�2 : (2:17)The 
ontour argument applies only if the integrand suitably falls o� at in�nity (
f. [14℄).Invoking Stirling's formula, the m-dependent part of the integrand in (2.15) has an asymp-toti
 behaviour given bym�5=2�m�(1 + �)m(1+�) �f (3)(m) =m�5=2��m�1�31 ��m�2�32 (��3)�m �f (3)(m)=m�5=2e�m�0=�3 �f (3)(m) : (2:18)Thus, �f (3) must 
ontain a fa
tor em�0=�3 , but 
ould in prin
iple also be proportional toPk akmk for some suitable powers k, whi
h respe
t the required asymptoti
s. The sameasymptoti
 behaviour is obtained for the integrands for (2.8) and (2.10). We shall fullydetermine �f below.With the new ansatz (2.16), the residue for the sum in (2.8) be
omes1Xm=1 (�1)mm sin(m��) �f (3)m = � d �f (3)(m)dm ����m=0 ; (2:19)so that d �f (3)(m)dm ����m=0 = �0�3 : (2:20)Now 
onsider the integral for equation (2.9),(�1)n I dm2�i � 
ot(�m)
os(�m) m sin(m��)n2 �m2�2 �(�m�)�(m + 1) f̂ (3)(m) : (2:21)4 With the 
hoi
e � = �1, one would en
ounter a pole at some positive real integer for some
hoi
e of �. The non-vanishing 
ontributions from this pole would lead to in
onsisten
ies.5



The only pole that has a non-trivial residue is lo
ated at m = n=�, whi
h results in(�1)n+1 �2�2 �(�n� )�(n+ 1) f̂ (3)n� = �2�2 �f (1)n : (2:22)With (2.16), the fun
tion �f (1) is now determined as�f (1)n = (�1)n+1 �(�n� )�(�n� � n+ 1)�(n + 1) �f (3)n� = �(��2�1n)���n��2�1 + 1�+ 1��(n+ 1) �f (3)n�3�1 ;(2:23)where the re
e
tion identity has been applied. In order to further 
onstrain the fun
tion�f we need to dis
uss the last equation (2.11). Consider the term that gives rise to the �rstterm in (2.11), involving �f (1)n�I dn2�i n �f (3)(n� )�(�n)n2 �m2�2 �(n+ n� )�(1 + n� ) : (2:24)The poles are determined as in appendix E of [5℄. At n = 0 the pole isResn=0 = � �f (3)(0)�(1 + �)m2 : (2:25)At n =m� the residue isResn=m� = � �f (3)(m)�(��m)�((1 + �)m)2�(1 +m) ; (2:26)and for n 2 �=(1 + �)ZZ� the residues give rise to the sum� 1Xk=1 �f (3)�� k1 + �� 1k2 �m2(� + 1)2 �( k�+1)�(k)�(1 � k�1+� ) : (2:27)Comparison with (2.11) yields the following additional 
ondition on �f (3)�f (3)(0)�1(1 + �)m2 = � �3�1�2m2 ; (2:28)so that �f (3)(0) = 1 : (2:29)In order to fully determine �f , re
all that from the asymptoti
al behaviour in (2.18) wededu
ed that �f (3)(m) =Pk akmkem�0=�3 . Now, (2.29) and (2.20) imply that a0 = 1 and6



a1 = 0. Sin
e any higher power of k would alter the asymptoti
s su
h that the 
ontourmethod would not be appli
able anymore, we 
on
lude that�f (3)(m) = em�0=�3 : (2:30)This is in agreement with [5℄. In summary, the solutions to the equations (2.8)-(2.11) takethe general form �f (r)m = �f (r)m ���m�r+1�r ��(m+ 1)���m��r+1�r + 1�+ 1� ; (2:31)where we set �f (r)m = �f (3)m �3�r = em�0=�r : (2:32)In parti
ular, (2.8)-(2.11) imply that the Neumann ve
tors are given by� 1�rpm �f (r)m = ��A(r)�t ��1B�m = � �Nrm ; (2:33)whi
h 
ompletes the 
ontour method derivation for the 
at-spa
e 
ubi
 vertex.3. The 
ubi
 vertex for the plane-waveHaving illustrated the 
ontour method, we are now ready to apply it to derive the
ubi
 vertex for the plane-wave string theory. Again, we are interested in the bosoni
 Neu-mann 
oeÆ
ients. As in the 
ase of the open-
losed vertex derived in [14℄, the 
ubi
 vertexwill turn out to be most 
on
isely expressed in terms of �-deformed Gamma-fun
tions. Inparti
ular, the following fun
tions will be useful�(r)� (z) = e�
�r!z 1�rz 1Yn=1� n!rn + �r!z e�r!zn �= �I2��r(�rz) ; (3:1)where !rn = pn2 + �2r�2 and �I�(z) is the �-deformed Gamma-fun
tion de�ned in [14℄(ex
ept n as opposed to !n appears in the denominator of the in�nite produ
t). We shallde�ne the Gamma-fun
tion without a supers
ript��(z) = �(r)� (z) ; for �r = 1 : (3:2)A key property of these fun
tions is that they satisfy a generalization of the re
e
tionidentity of the Gamma-fun
tion�(r)� (z)�(r)� (�z) = � ��rz sin(��rz) : (3:3)Various properties of these fun
tions, su
h as asymptoti
s in z and in � are dis
ussed inthe appendi
es and in [14℄. 7



3.1. Vertex equationsThe ansatz for the bosoni
 part of the plane-wave 
ubi
 vertex is as in (2.1). The
onditions on the Neumann matri
es in the plane-wave 
ase have been derived in [7℄, whi
hagain redu
e to the problem of �nding f (3)m (denoted by Ym in [11℄) su
h that1Xn=1(�+)mn f (3)n = 3Xr=1 1Xn=1�A(r)U (r) �A(r)�t�mn f (3)n = Bm ; (3:4)where (U (r))mn = Æmn (!rm � �r�)m : (3:5)The 
onventions are as in [7,8,11℄ and the relation to se
tion 2 is by f (r)n j�=0 = �f (r)n pn .As in 
at spa
e, (3.4) has the interpretation of 
ontinuity 
onditions on the vertex atthe intera
tion, i.e. at � = 0. The strategy, whi
h we shall pursue (and whi
h is in 
ontrastto [11℄) is to pro
eed as in 
at spa
e and stepwise solve for f (3)m , i.e., to �nd solutions f (r)mto the set of equations 1Xp=1 f (3)p A(r)pm = �3�r f (r)m (3:6)1Xp=1 3Xr=1 1�r �A(r)U (r)�mp f (r)p = �Bm : (3:7)The Neumann matri
es in the plane-wave 
ase have been shown [24℄ to satisfy an analogousequation to (2.2), �Nrsmn = � mn�1� 4��K �Nrm �Nsn�s!rm + �r!sn ; (3:8)where the Neumann ve
tors are�Nrm = � (C�1Cr)1=2U�1r f (r) 1�r �m=r!rmm (!rm + ��r)m 1�r f (r)m ; (3:9)and K = �14Bt��1+ B : (3:10)Further Cmn =mÆmn , (Cr)mn = !rmÆmn and the f (r)'s are de�ned as above.Our strategy is now to apply the 
ontour method to the sums in (3.6) and (3.7). Fromequation (3.6) one 
an again dedu
e the pole stru
ture for f (3)(m). Assuming that the8



residues of the equations in (3.6) 
ome from a single pole the 
onditions are that f (3)(m)has zeroes for m 2 �IN as well as m(1 + �) 2 IN0 and has poles for m� 2 IN. Thus,this �xes the pole and zero stru
ture of the solution, however not the expli
it fun
tionaldependen
e. The latter is determined by (3.7). For this, note the !rp term entering U (r).As dis
ussed in [14℄, the integrals along the bran
h 
uts that are present due to the squareroot will not 
ontribute to the 
ontour integral 
orresponding to the sum in question, ifthe � and p dependen
es are all pa
kaged together into !rp and the integrand is odd inthe imaginary part. Thus, in view of (3.6), one is lead to the following expli
it realizationof the poles and zeroes in f (3)f (3)(m) = ~f (3)m ����(��m)��(1+�)(�(1 + �)m) ��(m) ; (3:11)where the parti
ular 
hoi
e of deformation parameters for the Gamma fun
tions is 
hosen,in order to ensure that all bran
h 
uts 
oin
ide. The fun
tion ~f (3)m is determined mu
h inthe same way as we explained in detail for the 
at-spa
e dis
ussion. Furthermore, one hasto ensure that the all-� solution reprodu
es the right 
at-spa
e limit. Note also, that the
ontour method requires that the integrand falls o� suitably at in�nity, so that the RHSof (2.12) vanishes. In the 
at-spa
e this dis
ussion relied on applying the Stirling formulato the Gamma fun
tions. For the plane-wave 
ase, it will be relevant that the �-deformedGamma-fun
tions satisfy an analogous Stirling formula, whi
h is proven in appendix B.3.2. Solutions to the vertex equationsFrom the dis
ussion in the last subse
tion, whi
h in parti
ular lead to the form (3.11),one obtains the following ansatz for the fun
tion f (3)(m), whi
h has the 
orre
t 
at-spa
elimit. It further satis�es �f (3)�� ���=0 = �0f (3), whi
h follows from equation (30) of [11℄5. Theansatz reads f (3)m = m22!mBmy(1� y)e�0(��!m)�(1)� (m)�(2)� (m)��(m) M(0+) ; (3:12)where we �xed as in [11℄ the gauge�1 = y ; �2 = 1� y ; �3 = �1 ; (3:13)5 Note this motivates the fa
tor 1=!m as opposed to 1=(!m+�) whi
h both have the 
orre
t
at spa
e limit. 9



and Bm = 2� sin(m�(1 � y))y(1 � y)m3=2 ; (3:14)as well as M(z) = ��(z)z��y(yz)yz ��(1�y)((1 � y)z)(1 � y)z : (3:15)The fa
tor M(0+) is 
omputed from (3.11) by imposing the equation (3.7) and thus is
ru
ial in order to reprodu
e the 
orre
t residues. Note also that M(0+) ! 1 as � ! 0.So, more expli
itly we havef (3)(m) = pm� sin(m�(1� y))e�0(��!m)!m ��y(ym)��(1�y)((1 � y)m)��(m) M(0+) (3:16)= �e�0(��!m)!m 1pm(1� y) ��y(ym)��(1�y)(�(1� y)m) ��(m) M(0+) : (3:17)Evaluation of the 
ontour integrals 
orresponding to (3.6) for r = 1 and r = 2, whi
h haveonly non-trivial residues at m = �n=y and m = �n=(1� y), respe
tively, results inf (1)(n) = � (�1)ne�0(�+!ny )!nypn(1� y) ��(ny )�(2)� (ny ) �(1)� (ny ) M(0+) (3:18)f (2)(n) = e�0(�+! n1�y )! n1�ypny ��( n1�y )�(1)� ( n1�y ) �(2)� ( n1�y ) M(0+) : (3:19)Note that in evaluating the 
ontour integrals for ea
h value for r the bran
h 
uts 
oin
ide,the integrand being odd along the 
uts, whi
h is of 
ourse 
ru
ial for the appli
ability ofthe 
ontour method. These solutions 
an be put into the 
losed formf (r)m = e�0(�+! m�r )pm(��r � �r+1)! m�r �(r+1)� �� m�r ��(r)� � m�r��(r�1)� � m�r �M(0+) ; (3:20)whi
h beautifully generalizes the 
orresponding expression in 
at-spa
e (2.31) taking intoa

ount the di�eren
e in 
onventions.Next (3.7) needs to be 
he
ked. Thus 
onsider the following 
ontour integral, whi
h
orresponds to the sum of the r = 1 term in (3.7) (
f. 
at spa
e analysis)�M(0+)I dn2�i 2y(�1)m+1pm sin(m�y)n sin(�n) e�0(�+!ny )n2 �m2y2 (!ny � �)!ny ��(1�y)(�ny (1� y))��(�ny )��y(n) :(3:21)10



The residues at n 2 IN give the r = 1 term, the residues at n(1 � y)=y 2 IN give ther = 2 term and the residue at n = �my gives the r = 3 term in (3.7). We are left onlywith the integral around the bran
h 
ut, whi
h runs from n = iy� to n = �iy�. Sin
ethe integrand is odd along either side of the 
ut the line integrals vanish { however theintegrand is a
tually singular at n = 0 and thus we are left with two semi
ir
ular 
ontourson either side of the bran
h 
ut, whi
h we will 
all C+ and C�, see �gure 1. One might betempted to think this 
ontribution is just the residue of the integrand at n = 0 howeverthings are not quite as simple as this, sin
e the integrand is not de�ned at this point withour 
hoi
e of bran
h 
ut. What we 
an do though is take the residue of the fa
tors notdepending on !n and then on the right side (i.e., along C+) take the limit n! 0+ of therest and on the left take the limit n! 0�.
Figure 1 The 
ontours C�.In the present 
ase, the only 
ontribution 
omes from C� (note the integrand is notregular at the bran
h points, however the integral around them still vanishes, in fa
t goesas O(�1=2) where � is the radius of the 
ontour around a bran
h point, see [14℄). We �ndthat the 
ontribution from C� is�2(�1)m sinm�y�m3=2y(1� y) M(0+)M(0�) : (3:22)It is easy to verify that M(0+)M(0�) = 1, whi
h leaves the 
ontribution from C� to beexa
tly Bm thus 
ompleting the proof.Finally, we need to 
ompute the quantity K, whi
h is de�ned byK = �14Bt ��1+ B = �14 1Xn=1Bnf (3)n : (3:23)11



For the 
omputation, we need to 
onsider the 
ontour integral�2M(0+)y(1� y) I dm2�i M(�m)e�0(�!m+�)m!m : (3:24)The residues at �m 2 IN give �4K and sin
e there are no other poles we are left with theintegrals around the bran
h 
ut. There is a singularity in the integrand at m = 0 whi
hon both sides looks like a simple pole. Computing we get�2M(0+)y(1� y) ZC+ dm2�i M(�m)e�0(�!m+�)m!m = �M(0+)M(0�)�y(1� y) ; (3:25)and �2M(0+)y(1 � y) ZC� dm2�i M(�m)e�0(�!m+�)m!m = M(0+)2e2�0��y(1� y) : (3:26)Therefore we �nd that K = 14y(1 � y)� �M(0+)2e2��0 � 1� ; (3:27)whi
h we see has the 
orre
t 
at spa
e limit, K(� = 0) = �0=(2y(1 � y)).We should emphasize that in this appli
ation of the 
ontour method of [14℄ it hasbeen 
ru
ial that the 
ir
ular integrals around the bran
h points, as well as the integrals atin�nity vanish { the latter was shown by applying the generalization of Stirling's formulaof appendix B.3.3. CommentsA 
ouple of remarks are in order, in parti
ular in view of the 
omparison with thesolution obtained in [11℄. First re
all that the solution Ym(�; y) in [11℄ is to be 
omparedwith our solution f (3)m . In this 
omparison, one will observe that the solution in eq. (52)of [11℄ only agrees with (3.12), if �3 ! ��3 as well as the sign of the r = 3 term in theexponent is 
ipped, i.e., ifYm(�; y) = exp "(�� !m)�0 + 2Xr=1(�r � �mr) � (�3 � �m3)# m2!mBm ; (3:28)with �3 repla
ed by 1. Note that the solution as it stands in [11℄ would be divergent forintegral m, and thus seems in
onsistent6.6 The authors of [11℄ have 
on�rmed the sign dis
repan
ies in the equation in question. Wewould like to thank Y. He and M. Spradlin for dis
ussions on this point.12



4. Large-� asymptoti
sThe large-� asymptoti
s of expressions in plane-wave string theory are of the fore-most interest in the 
ontext of the BMN 
orresponden
e, as these are to be 
ompared withperturbative (in �0) gauge theory data. Given our expressions for the Neumann matri-
es, the only non-trivial input in determining these asymptoti
 expressions are the large-�asymptoti
s of the �-deformed Gamma-fun
tions, whi
h we derive in appendix C. In ap-plying these one has to keep in mind that the asymptoti
 formulae only apply to �(r)(z)for jarg(z)j < �, thus before applying the asymptoti
s to the fun
tions f (r)(m) one has toensure that upon suitable appli
ation of the re
e
tion identities this 
ondition is satis�edfor the arguments.First note that M(0+) has the asymptoti
s, using the �-fun
tion asymptoti
s of theappendix C, given by 7 M(0+) � e��0�s 14��y(1� y) : (4:1)Applying these asymptoti
s upon (3.18) and (3.19), we obtainf (1)n � (�1)n2�p2�y(1 � y) pn!nyp!ny + �f (2)n � 12�p2�y(1 � y) pn! n(1�y)q! n(1�y) + � : (4:2)For f (3)(n), the asymptoti
 formula is only appli
able to (3.16), resulting inf (3)m � 1� sin(m��2) �3pm 1p2��q!� m�3 + �! m�3 : (4:3)This expansion agrees pre
isely with [11℄. The Neumann ve
tors�Nrm =r!rmm (!rm + ��r)m f (r)m 1�r=r!rmm m(!rm � ��r)f (r)m 1�r ; (4:4)thus have the asymptoti
 behaviour for r = 1; 2�Nrm � � (�1)r(n+1)�1=2r2��p2�m p(!rm + ��r)p!rm ; (4:5)7 As in [11℄, A(�) � B(�) means A(�) = B(�) + O(e�j�rj�).13



as well as for r = 3 �N3m � � 1� sin(m��2) 1p2��s j�3j!3m(!3m � ��3) : (4:6)Finally we may study the large-� asymptoti
s of K. Inspe
ting (3.27) we see that we onlyneed (4.1), whi
h leads toK � � 14y(1� y)� + 116�y2(1� y)2�2 : (4:7)These agree with the �ndings of [11℄.4.1. Exponential 
orre
tionsIn this se
tion we will 
on
entrate on expli
itly extra
ting the �rst exponential 
or-re
tion to the Neumann ve
tors we have derived, thus going further than the results givenin [11℄. These 
orre
tions 
ould have interesting impli
ations for the gauge theory.The problem redu
es to �nding the large-� exponential 
orre
tions to the deformedGamma-fun
tions. Here we give a brief argument and one 
an �nd a more rigorous deriva-tion in appendix D. In appendix D we show the following key result��� log �(r)� (z)exp = �pj�rj�!z e�2�j�rj� �1 +O� 1��� : (4:8)If one does an integration with respe
t to � by parts (i.e., integrate the e�2�j�rj�), thenwe 
an prove that log�(r)� (z)exp = pj�rj�2�j�rj!z e�2�j�r j� �1 +O� 1��� ; (4:9)the details of whi
h are provided in appendix D. This essentially means that the remainingintegral simply 
ontributes to the O(1=�) part. Now it is a simple matter of some algebrato dedu
e the 
orre
tions to the Neumann ve
tors. We �nd the following result�(1)� (z)�(2)� (z)��(z) = p2�e!z�0py(1� y) p!z + �z �1 + p�2�!z�e�2�y�py �1 +O� 1���+ e�2�(1�y)�p1� y �1 +O� 1���� e�2�� �1 +O� 1����� : (4:10)Using this it is straightforward to dedu
e the 
orre
tions to f (r)m .14



Curiously, it 
an be shown that the exponential 
orre
tions are related to the Casimirenergy of a two-dimensional massive boson on a 
ylindri
al world-sheet with periodi
boundary 
ondition. The Casimir energy is given by [25,26℄���r = � 1(2�)2 1Xp=1Z 10 dt e�p2t��2�2r�2=t ; (4:11)using whi
h it 
an be easily shown that the exponential 
orre
tions for the deformedGamma-fun
tion satis�es the following relation� log �(r)� (z)exp�� = 1!z�r ����r�� = 1!z� ����r��r : (4:12)� parametrizes the length of the world-sheet. Sin
e the �-derivative of the energy 
anbe interpreted as pressure, these 
orre
tions probably arise due to the tidal for
es in thisba
kground [25℄. The exa
t physi
al signi�
an
e of this result, parti
ularly on the gaugetheory side needs to be explored.It is tempting to extend the analysis applied for the �rst term in (4.9) in order toextra
t the full series of exponential 
orre
tions. In this paper, we shall 
ontent ourselvesby giving a 
onje
tural expression for the series (4.9),log�(r)� (z)exp = 1Xn=1 e�2�nj�rj� pj�rj�2�j�rjpn!z �1 +O� 1��� ; (4:13)where the 
onje
ture is, that the O(1=�) terms do not lead to any mixing of the exponentialsin the series. We provide some arguments in favour of this 
onje
ture in appendix D.1.Using the above 
onje
ture and upon expanding the exponential, in general theexponential 
orre
tions 
an be written s
hemati
ally as1Xn=1gn(�;�r)e�2�n�j�r j ; (4:14)whi
h suggests the interpretation of these quantities in terms of a series of non-perturbative
orre
tions. Note, that in deriving the exponential 
orre
tions we made use of the asymp-toti
 expansion of the Bessel fun
tion K�(x). It is well known that this expansion is notBorel summable. The exa
t signi�
an
e of this for the dual gauge theory needs to beunderstood. 15



5. Plane-wave Neumann matrix manualThe purpose of this se
tion is to summarise our main results, in order to fa
ilitate the
omparison with gauge theory 
al
ulations for whi
h the Neumann matri
es are essential.We give the expressions for the Neumann matri
es valid for all �, the large-� expansionas well as the �rst exponential 
orre
tions, whi
h we have determined expli
itly. Thesubsequent exponential terms are only 
onje
tural and 
an be obtained from (4.13).So, to summarize, we have expressed the plane-wave Neumann matri
es as�Nrsmn = � mn�1� 4��K �Nrm �Nsn�s!rm + �r!sn ; (5:1)where the Neumann ve
tors �Nrm are related to the fun
tions f (r)m via�Nrm =r!rmm (!rm + ��r)m 1�r f (r)m : (5:2)We have determined the expli
it form of these fun
tions in (3.20), and furthermore K was
omputed in (3.27). Putting all this together, we obtain the Neumann matri
es for all�-values to be�Nrsmn = � 4mn e�0�! m�r +! n�s ��� �(�r + �r+1) (�s + �s+1) (!rm + ��r)(!sn + ��s)(!rm!sn)1=2 (�s!rm + �r!sn) �� 0� �(r+1)� �� m�r��(r)� � m�r��(r�1)� � m�r�1A 0� �(s+1)� �� n�s��(s)� � n�s��(s�1)� � n�s�1A ; (5:3)where the �-deformed Gamma-fun
tions are de�ned in (3.1) and (3.2). Applying the large-� asymptoti
s for the deformed Gamma-fun
tions obtained in appendix C one 
an extra
tthe large-� behavior, whi
h is of interest for 
omparison with the gauge theory. We havegiven the expli
it forms of the large-� Neumann ve
tors in se
tion 4, and the asymptoti
sfor (5.1) are straight-forwardly obtained from (4.5), (4.6) and (4.7).The �rst term in the exponential 
orre
tions to these large-� asymptoti
s, whi
hhad so far not been determined, follow from the exponential 
orre
tions of the Gamma-fun
tions in (4.10), together with (5.1). 16



6. Con
lusionsIn this paper we have derived the bosoni
 Neumann matri
es in plane-wave stringtheory using the 
ontour method developed in [14℄, whi
h allows to express the result interms of �-deformed Gamma-fun
tions. This approa
h not only simpli�es the derivation ofthe Neumann matri
es and their large-�-asymptoti
s, the latter being in agreement with[11℄, but allows to extra
t exponential 
orre
tions, i.e., terms of O(e�2�j�r j�). We havederived an expli
it form for the �rst term in these exponential 
orre
tions, and provideda 
onje
tural formula for the leading order in 1=� terms in the full exponential series. Afew open questions and remarks are in order.� The dual gauge-theoreti
al interpretation of the exponential 
orre
tions has 
ertainly sofar been elusive. The expli
it form for the �rst term in the exponential 
orre
tions, whi
hwe derived, provides some expli
it quantity that 
ould be 
ompared to the gauge theory.In terms of the e�e
tive 't Hooft 
oupling, �0 = 1=(�p+�0)2, the result is proportionalto e�2�=p�0 . In parti
ular, these should 
orrespond to non-perturbative e�e
ts, whi
hare remotely reminis
ent of 
ontributions that arise from D-branes in string theory. Avital question that hereby arises is then: What obje
ts on the gauge theory side 
ould beattributed su
h 
orre
tions?� The exponential 
orre
tions were shown to be related to the Casimir energy of a massivetwo-dimensional boson on a 
ylinder. Is this merely a mathemati
al 
oin
iden
e or 
an itbe attributed more physi
al signi�
an
e?� It would be very interesting to use the results obtained in the present paper as well asin [14℄ in order to 
ompute s
attering of 
losed and open strings. In parti
ular, the openstring 
ubi
 vertex is of 
ourse 
losely related to the 
losed 
ubi
 vertex and 
ould be usedin order to 
ompute s
attering of open strings in orientifold theories or with D-branes, su
has the ones 
onstru
ted in [25,27,28,29℄. Furthermore, these should be 
ompared to gaugetheoreti
al 
omputations in
luding operators dual to D-branes, su
h as in [30,31,32℄.� As a mathemati
al 
uriosity, it is 
on
eivable that the 
ontour method 
ould be usedmore generally to derive integral transforms, in the same way that the present paper givesa systemati
 way to obtain the integral transform used in [11℄ to derive the 
ubi
 vertex.� Finally, it is tempting to 
onje
ture that all 
at spa
e amplitudes, whi
h 
an be ex-pressed in terms of Gamma-fun
tions, 
an be 
arried over in the plane-wave ba
kgroundby repla
ing them with suitable �-deformed Gamma-fun
tions.17
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hoi
e �1 = y and �2 = 1 � y andhen
e �3 = �1, as in [11℄.Appendix B. Generalisation of Stirling's formulaIn this se
tion we analyse the large z asymptoti
s of the Gamma fun
tion ��(z).Re
all this is de�ned as [14℄��(z) = e�
!zz 1Yn=1 n!z + !n e!z=n : (B.1)18



Using the Weierstrass de�nition of �(z) implieslog���(z)�(z) � = �
(!z � z) + 1Xn=1 log� z + n!z + !n�+ !z � zn : (B.2)Note that limz!1(!z � z) = 0. This allows us to dedu
e thatlimz!1 log���(z)�(z) � = 0 ; (B.3)and therefore that ��(z) � �(z) � p2�zz�1=2e�z ; (B.4)as z !1 and of 
ourse for j arg zj < �.Appendix C. Large-� asymptoti
s of the deformed Gamma-fun
tionsThe large-� asymptoti
s are derived in a similar fashion as in the appendi
es of [14℄,applying various te
hniques of [33℄. Taking the log of both sides of (3.1) and di�erentiatingwith respe
t to � leads to��� log �(r)� (z) = �r�!z " 1Xn=1� 1n � 1!rn�� 
# : (C.1)So we need to 
onsider the asymptoti
s ofS = 1Xn=1� 1n � 1!rn� : (C.2)Di�erentiating both sides with respe
t to � implies�S�� = 1Xn=1 �2r�!3rn : (C.3)Using the results in the appendix of [14℄1Xn=1 1!3rn = � 12(�r�)3 + 1(�r�)2 +O(e�j�r j�) ; (C.4)whi
h after integrating leads toS = 12��r + log�+ 
(�r) +O(e�j�rj�) ; (C.5)19



where 
(�r) is a 
onstant of integration. Di�erentiating with respe
t to �r leads to�S��r = � 12��2r + �
��r +O(e�j�r j�) : (C.6)One should now di�erentiate S with respe
t to �r and then take the large-� limit of theresulting expression to 
ompare with this one. This leads to�S��r = 1Xn=1��2�r!3rn � = � 12�2r� + 1�r +O(e�j�r j�) : (C.7)Now 
omparing with equation (C.6) we get�
��r = 1�r ; (C.8)implying that 
(�r) = log�r + 
 ; (C.9)and therefore S = 12��r + log(��r) + 
+O(e�j�r j�) : (C.10)Substituting this into (C.1) and then integrating with respe
t to � we arrive atlog �(r)� (z) = �r!z (
� 
 � 1 + log(��r)) + 12 log(!z + �)+ z�r log�!z + z� �+K(z; �r) +O(e�j�r j�) ; (C.11)where K(z; �r) 
omes from integrating with respe
t to �. This fun
tion 
an be determinedby taking the large-� asymptoti
s of ��z log �(r)� (z) and 
omparing to the z and �r deriva-tives of (C.11), whi
h we will do next. Taking the partial derivative with respe
t to z of(C.11) leads to��z log �(r)� (z) � z2(� + !z)!z + (
� 
� 1+ log�r�)�rz!z +�r log�z + !z� �+ z�r!z + �K�z ;(C.12)while the z logarithmi
 derivative of (3.1) leads to�
�r z!z � 1z � �rz!z 1Xn=1� 1!rn + �r!z � 1n� : (C.13)20



Taking the limit �!1 in both equations results in the 
ondition�K�z = �1z : (C.14)Now taking the partial derivative with respe
t to �r of (C.11) one obtains���r log �(r)� (z) � (
� 
 + log(�r�))!z + z log�z + !z� �+ �K��r ; (C.15)while the �r logarithmi
 derivative of (3.1) implies�
!z � 1�r � 1Xn=1� 1!rn + �r!z ��r�2!rn + !z�� !zn � : (C.16)Comparing the above two equations at z = 0 and using (C.10) leads to the 
ondition�K��r = � 12�r : (C.17)Therefore we 
on
lude thatK(z; �r) = � log z � 12 log�r + 
0 : (C.18)Finally we have the desired asymptoti
 expression for the deformed Gamma-fun
tions forj arg zj < � log �(r)� (z) = �r!z (
� 
 � 1 + log(��r)) + 12 log(�r!z + �r�)+ z�r log�!z + z� �� log(z�r) + 
0 +O(e�j�r j�) : (C.19)The 
onstants 
 and 
0 
an a
tually be determined, and we will in fa
t need 
0 expli
itly.To determine these 
onstants we employ the large z-asymptoti
s formula derived in ap-pendix B whi
h is valid for all �. For large z, the RHS of (C.19) (ignoring the O(e�j�r j�)
ontribution) is asymptoti
 to��rz � 12� log(�rz) + �rz(
 � 
 � 1 + log 2) + 
0 : (C.20)Comparing this to Stirling's formula (whi
h is valid for all �) we see that we must have
 = 
 � log 2 and 
0 = logp2�. 21



Appendix D. O(e��) 
orre
tionsWe shall now derive the exponential 
orre
tions in the large-� expansion of thedeformed Gamma-fun
tions. In equation (C.3) , the O(e��) term is given by�Se�� = 2�2r�Z 10 ds�2�2r e�s 1Xn=1 e� n2�2�2�2rs ; (D.1)whi
h 
an be written in terms of the modi�ed Bessel fun
tion of the se
ond kind as4�j�rj 1Xn=1nK1(2n��j�rj) ; (D.2)where we have used the integral represenation K1(x) = 1x R10 dt e�t�x2=4t. Integratingwith respe
t to � leads to Se = �2 1Xn=1K0(2j�rj�n�) : (D.3)Thus the O(e��) terms in (C.1) are given byF (z; �) � �2 1Xn=1 �r�!z K0(2j�rj�n�) : (D.4)The large-� behaviour of this quantity is readily dedu
ed from that of the Kelvin fun
tions8,whi
h gives F (z; �) = �pj�rj�!z e�2�j�r j� �1 +O� 1��� : (D.5)Thus we are left with evaluating R F (z; �) d�. We now prove the following formula 
ru
ialfor the evaluation of the above integralI(z) = Z 1� dt ptpt2 + z2 e��t = p�e����!z �1 +O� 1��� : (D.6)We will prove the formula for real z as this is all we will need. The argument is elementaryand goes as follows. Integrate by parts to giveI(z) = p�e����!z � 12� Z 1� dte��t (z2 � t2)pt(z2 + t2)3=2 : (D.7)8 Note K�(x) =p �2xe�x(1 +O(1=x)). 22



Sin
e jz2 � t2j < z2 + t2 for real z, we have���� (z2 � t2)pt(z2 + t2)3=2 ���� < 1pt(z2 + t2)1=2 � 1p�(z2 + �2)1=2 ; (D.8)wherefore ���� 12� Z 1� dte��t (z2 � t2)pt(z2 + t2)3=2 ���� < e���2�2p�!z : (D.9)Hen
e we have proven (D.6). Note we have not restri
ted � in this proof at all. Thus onemight expe
t to extend this to 
omplex z for large-�. Using this we 
on
lude thatZ 1� F (z; �) d� = pj�rj�2�j�rj!z e�2�j�rj� �1 +O� 1��� : (D.10)Finally we 
omment on the 
onne
tion to [11℄. For this, we make use of the followingintegral representation K0(x�) = Z 10 dt e�xpt2+�2pt2 + �2 ; (D.11)valid for x > 0, see [34℄, to express the whole of the exponential 
orre
tions in a di�erentform. Using this we may sum Se, given by (D.3), whi
h impliesSe = �2Z 10 dt 1pt2 + �2[e2��rpt2+�2 � 1℄ : (D.12)If we 
hange variables to �s =pt2 + �2 we obtainSe = �2Z 11 ds 1ps2 � 1 1e2���rs � 1 ; (D.13)whi
h is a 
losed expression for the O(e��) terms of the sum (C.2). The exponential 
or-re
tions to the �-deformed Gamma-fun
tions are readily obtained from (C.1). In
identallyan equivalent formula to (D.13) appears in [11℄.D.1. Conje
ture for subsequent exponential 
orre
tionsIn analogy to the derivation of the �rst term in the exponential 
orre
tions one shouldbe able to 
ompute the full series (4.14). There are various subtleties in determining this,in parti
ular related to the approximation of the O(1=�) term in (D.7). We shall nowpresent some arguments whi
h allow us to 
onje
ture the exa
t expression for the leading23



order terms, i.e., of O(1=�). So, we wish to 
ompute the expansion of the following terminto a series of exponential 
orre
tions O(e�2�nj�r j�)Z 1� d� �!z 1Xn=1K0(2j�rj�n�) : (D.14)First, re
all the asymptoti
 series for the Kelvin fun
tion ([35℄, VII., 7.34)K0(x) =r �2xe�x p�1Xm=0 
m(2x)m + (�1)pRp! ; (D.15)where the error term Rp for large p, su
h that x = p=2 + � with j�j < 1, is given byRp � 2rx� e�2xp �12 +O�1p�� : (D.16)Applying this to the Kelvin fun
tion appearing in (D.14), implies thatlog�(r)� (z)exp = 1Xn=1 e�2�nj�rj� pj�rj�2�j�rjpn!z �1 +O� 1��� ; (D.17)where it may be of use to point out that the Rp-terms do not 
ontribute to the leadingterm in 1=�, and thus 
an be disregarded. If it now 
an be ensured that O(1=�) does not
ontain terms like e�� then we 
an retain the �rst term, as there is no mixing at the sameorder of the 
oeÆ
ient. However, to make this statement pre
ise, a better approximationof the O(1=�) terms in (D.7) would have to be derived.
24



Referen
es[1℄ D. Berenstein, J. M. Malda
ena, H. Nastase, Strings in 
at spa
e and pp waves fromN = 4 super Yang Mills, JHEP 0204, 013 (2002); hep-th/0202021.[2℄ R. R. Metsaev, Type IIB Green-S
hwarz superstring in plane wave Ramond-Ramondba
kground, Nu
l. Phys. B 625, 70 (2002); hep-th/0112044.[3℄ R. R. Metsaev, A. A. Tseytlin, Exa
tly solvable model of superstring in plane waveRamond-Ramond ba
kground, Phys. Rev. D 65, 126004 (2002); hep-th/0202109.[4℄ M. B. Green, J. H. S
hwarz, Superstring Field Theory, Nu
l. Phys. B 243, 475 (1984).[5℄ M. B. Green, J. H. S
hwarz, Superstring Intera
tions, Nu
l. Phys. B 218, 43 (1983).[6℄ M. B. Green, J. H. S
hwarz, L. Brink, Super�eld Theory Of Type II Superstrings, Nu
l.Phys. B 219, 437 (1983).[7℄ M. Spradlin, A. Volovi
h, Superstring intera
tions in a pp-wave ba
kground, Phys.Rev. D 66, 086004 (2002); hep-th/0204146.[8℄ M. Spradlin, A. Volovi
h, Superstring intera
tions in a pp-wave ba
kground. II, JHEP0301, 036 (2003); hep-th/0206073.[9℄ A. Pankiewi
z,More 
omments on superstring intera
tions in the pp-wave ba
kground,JHEP 0209, 056 (2002); hep-th/0208209.[10℄ A. Pankiewi
z, B. Stefanski, Pp-wave light-
one superstring �eld theory, Nu
l. Phys.B 657, 79 (2003); hep-th/0210246.[11℄ Y. H. He, J. H. S
hwarz, M. Spradlin, A. Volovi
h, Expli
it formulas for Neu-mann 
oeÆ
ients in the plane-wave geometry, Phys. Rev. D 67, 086005 (2003); hep-th/0211198,v2.[12℄ J. Gomis, S. Moriyama, J. w. Park, Open + 
losed string �eld theory from gauge �elds;hep-th/0305264.[13℄ B. J. Stefanski, Open string plane-wave light-
one superstring �eld theory; hep-th/0304114; B. Chandrasekhar, A. Kumar, D-branes in pp-wave light 
one string�eld theory, JHEP 0306, 001 (2003); hep-th/0303223.[14℄ J. Lu
ietti, S. S
hafer-Nameki, A. Sinha,On the exa
t open-
losed vertex in plane-wavelight-
one string �eld theory, to appear in Phys. Rev. D; hep-th/0311231.[15℄ I. R. Klebanov, M. Spradlin, A. Volovi
h, New e�e
ts in gauge theory from pp-wavesuperstrings, Phys. Lett. B 548, 111 (2002); hep-th/0206221.[16℄ M. x. G. Huang, Three point fun
tions of N = 4 super Yang Mills from light 
onestring �eld theory in pp-wave, Phys. Lett. B 542, 255 (2002); hep-th/0205311.[17℄ C. S. Chu, V. V. Khoze, Corresponden
e between the 3-point BMN 
orrelators and the3-string vertex on the pp-wave, JHEP 0304, 014 (2003); hep-th/0301036.[18℄ A. Pankiewi
z, Strings in plane wave ba
kgrounds, Forts
h. Phys. 51, 1139 (2003);hep-th/0307027. 25

http://arxiv.org/abs/hep-th/0202021
http://arxiv.org/abs/hep-th/0112044
http://arxiv.org/abs/hep-th/0202109
http://arxiv.org/abs/hep-th/0204146
http://arxiv.org/abs/hep-th/0206073
http://arxiv.org/abs/hep-th/0208209
http://arxiv.org/abs/hep-th/0210246
http://arxiv.org/abs/hep-th/0211198
http://arxiv.org/abs/hep-th/0211198
http://arxiv.org/abs/hep-th/0305264
http://arxiv.org/abs/hep-th/0304114
http://arxiv.org/abs/hep-th/0304114
http://arxiv.org/abs/hep-th/0303223
http://arxiv.org/abs/hep-th/0311231
http://arxiv.org/abs/hep-th/0206221
http://arxiv.org/abs/hep-th/0205311
http://arxiv.org/abs/hep-th/0301036
http://arxiv.org/abs/hep-th/0307027


[19℄ J. C. Plefka, Le
tures on the plane-wave string / gauge theory duality, Forts
h. Phys.52, 264 (2004); hep-th/0307101.[20℄ M. Spradlin, A. Volovi
h, Light-
one string �eld theory in a plane wave; hep-th/0310033.[21℄ D. Sadri, M. M. Sheikh-Jabbari, The plane-wave / super Yang-Mills duality; hep-th/0310119.[22℄ R. Russo, A. Tanzini, The duality between IIB string theory on pp-wave and N = 4SYM: A status report; hep-th/0401155.[23℄ M. B. Green, J. H. S
hwarz, E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes,Anomalies And Phenomenology, Cambridge University Press (1987).[24℄ J. H. S
hwarz, Comments on superstring intera
tions in a plane-wave ba
kground,JHEP 0209, 058 (2002); hep-th/0208179.[25℄ O. Bergman, M. R. Gaberdiel, M. B. Green, D-brane intera
tions in type IIB plane-wave ba
kground, JHEP 0303, 002 (2003); hep-th/0205183.[26℄ T. Takayanagi, Modular invarian
e of strings on pp-waves with RR-
ux, JHEP 0212,022 (2002); hep-th/0206010.[27℄ M. R. Gaberdiel, M. B. Green, The D-instanton and other supersymmetri
 D-branesin IIB plane-wave string theory, Annals Phys. 307, 147 (2003); hep-th/0211122.[28℄ M. R. Gaberdiel, M. B. Green, S. S
hafer-Nameki, A. Sinha, Oblique and 
urved D-branes in IIB plane-wave string theory, JHEP 0310, 052 (2003); hep-th/0306056.[29℄ A. Sinha, N. V. Suryanarayana, Tadpole analysis of orientifolded plane-waves, JHEP0211, 026 (2002); hep-th/0209247.[30℄ V. Balasubramanian, M. x. Huang, T. S. Levi, A. Naqvi, Open strings from N = 4super Yang-Mills, JHEP 0208, 037 (2002); hep-th/0204196.[31℄ D. Berenstein, E. Gava, J. M. Malda
ena, K. S. Narain, H. Nastase, Open strings onplane waves and their Yang-Mills duals, hep-th/0203249.[32℄ D. Berenstein, Shape and holography: Studies of dual operators to giant gravitons,Nu
l. Phys. B 675, 179 (2003); hep-th/0306090.[33℄ E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge UniversityPress (1927).[34℄ I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series, and Produ
ts, A
ademi
Press (2000).[35℄ G. N. Watson, A Treatise on the theory of Bessel fun
tions, Cambridge UniversityPress (1966). 26

http://arxiv.org/abs/hep-th/0307101
http://arxiv.org/abs/hep-th/0310033
http://arxiv.org/abs/hep-th/0310033
http://arxiv.org/abs/hep-th/0310119
http://arxiv.org/abs/hep-th/0310119
http://arxiv.org/abs/hep-th/0401155
http://arxiv.org/abs/hep-th/0208179
http://arxiv.org/abs/hep-th/0205183
http://arxiv.org/abs/hep-th/0206010
http://arxiv.org/abs/hep-th/0211122
http://arxiv.org/abs/hep-th/0306056
http://arxiv.org/abs/hep-th/0209247
http://arxiv.org/abs/hep-th/0204196
http://arxiv.org/abs/hep-th/0203249
http://arxiv.org/abs/hep-th/0306090

