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ROM2F/2004-04MS-TP-04-02DESY 04-022The ontinuum limit of the quark massstep saling funtion in quenhed lattie QCD
LPHAA

CollaborationM. Guagnellia, J. Heitgerb, F. Palombi;a, C. Penad and A. Vladikasaa INFN, Sezione di Roma II/o Dipartimento di Fisia, Universit�a di Roma \Tor Vergata"Via della Riera Sienti�a 1, I-00133 Rome, Italyb Westf�alishe Wilhelms-Universit�at M�unster, Institut f�ur Theoretishe PhysikWilhelm-Klemm-Strasse 9, D-48149 M�unster, Germany \E. Fermi" Researh Center/o Compendio Viminale, pal. F, I-00184 Rome, Italyd DESY, Theory GroupNotkestrasse 85, D-22607 Hamburg, GermanyAbstratThe renormalisation group running of the quark mass is determined non-perturbatively fora large range of sales, by omputing the step saling funtion in the Shr�odinger Fun-tional formalism of quenhed lattie QCD both with and without O(a) improvement. Aone-loop perturbative alulation of the disretisation e�ets has been arried out for boththe Wilson and the Clover-improved ations and for a large number of lattie resolutions.The non-perturbative omputation yields ontinuum results whih are regularisation inde-pendent, thus providing onvining evidene for the uniqueness of the ontinuum limit. Asa byprodut, the ratio of the renormalisation group invariant quark mass to the quark mass,renormalised at a hadroni sale, is obtained with very high auray.



1 IntrodutionThe renormalisation group running of the QCD fundamental parameters, namelythe renormalised gauge oupling and quark masses, has now been omputed non-perturbatively for a large range of sales, albeit in the limit of in�nitely heavy seaquarks; see refs. [1, 2℄. These results have been obtained using lattie regularisedquenhed QCD with Wilson fermions, prior to extrapolating to the ontinuum limit.In the ase of the quark mass running, Symanzik improvement was an importantelement in reduing the extrapolation unertainties, as it implies that the dominantsystemati e�ets due to the �niteness of the UV uto� a�1 are O(a2). The ase ofQCD with two dynamial avours has been investigated in [3℄.The ontinuum limit of lattie QCD is known to exist to all orders of pertur-bation theory (PT) [4℄. Beyond PT this issue has been addressed by numerialsimulation. The strategy onsists in implementing di�erent regularisations whihformally orrespond to the same Field Theory (QCD in our ase) and in establish-ing the universality of the ontinuum limit of given renormalised physial quantities,omputed with di�erent regulators. This sometimes turns out to be less straight-forward than expeted; e.g. see the disussion on the universality of the ontinuumlimit of spin and sigma models in refs. [5℄. In pure SU(2) gauge theory, universal-ity has been tested by omputing two di�erent non-perturbatively de�ned runningouplings over a large range of energies [6℄. In pure SU(3) gauge theory, evideneof universality has been reently found in a study of the saling properties of thedeon�ning temperature with di�erent gauge ations [7℄.In the present work we extend these ideas to the step saling funtion (SSF)of the quark mass in quenhed QCD. This quantity has been alulated in ref. [2℄from an improved ation; here it is also evaluated from an unimproved ation. Theontinuum SSF, omputed for a large range of renormalisation sales, is found tobe independent of these regularisation details, providing evidene for a universalontinuum limit. In this respet our study parallels losely the one of ref. [8℄, whihwas dealing with the SSF of the operator orresponding to the average momentumof non-singlet parton densities. In omparison, our quantity is partiularly simple,as we essentially ompute ratios of two-point funtions. This allows us to have anexellent ontrol of both statistial and systemati errors. As a byprodut we real-ulate the avour independent ratio of the renormalisation group invariant (RGI)quark mass to the renormalised one (at a given hadroni sale). We obtain a resultompatible to the original one of ref. [2℄ but fairly more aurate.A study of disretisation e�ets in the SSF has also been performed, for bothWilson and Clover ations, in one-loop PT. This alulation has been arried out fora large number of lattie resolutions. We �nd that lowest order perturbation theorygreatly underestimates the disretisation e�ets of the SSF.1



2 The Shr�odinger Funtional and O(a) improvementIn this setion we gather the most relevant de�nitions and outline the propertiesof the quantities we are interested in. Most details are omitted, as they have beenpresented in previous works, whih we will frequently refer to.We adopt the lattie Shr�odinger funtional (SF) formalism [9, 10, 11℄; morespei�ally we regularise QCD on a lattie of extension L3 � T (here T = L al-ways) with periodi boundary onditions in the spae diretions (up to a phase �for the fermion �elds) and Dirihlet boundary onditions in the Eulidean time di-retion [10, 11℄. Otherwise the lattie gauge and fermioni �eld ations are of thestandard Wilson type; their O(a) improved version is disussed below. The baregauge oupling and quark mass are denoted by g0 (with � � 6=g20) and m0 (with2� � [am0 + 4℄�1), respetively. As we will be working in the quenhed approxi-mation, the bare gauge oupling g0 and hiral point � are funtions of the lattiespaing a alone. The hiral point is the value of the hopping parameter � for whihthe \urrent" quark mass, de�ned below, vanishes. The bare subtrated quark massis de�ned as amq = [1=� � 1=�℄=2, whereas an unrenormalised \urrent" quarkmass is given by m(g0) = 12(��0 + �0) fA(x0)2 fP(x0) ; (2.1)with fX (X = A;P) the orrelation funtions of loal bilinear operatorsfX(x0) = �a62 Xy;z h��j(y)5�i(z) � i(x)X j(x)i : (2.2)The �eld indies i; j label two distint avours; the \boundary �elds" � are de�ned inref. [12℄. For X = A we have X = 05 and for X = P we have X = 5. The forwardand bakward lattie time derivatives are denoted by �0 and ��0 respetively1 . Wealso de�ne the orrelation funtion of boundary �eldsf1 = � a122L6 Xy;z;y0;z0 h ��0i(y0)5�0j(z0) ��j(y)5�i(z) i : (2.3)Unprimed quantities are de�ned on the the x0 = 0 boundary, primed ones on thex0 = T one.The O(a) Symanzik improvement of the above onstrution has been worked outin refs. [10, 12℄. For the pure gauge ation, it amounts to modifying it by introduingtime-boundary ounterterms proportional to [t(g20)�1℄. For the fermioni ation wemust introdue the well-known lover ounterterm in the lattie bulk, proportionalto sw(g20), and time-boundary ounterterms proportional to [~t(g20)�1℄. Correlation1We follow losely the notation of [2, 12℄, whither we refer for details.2



funtions of omposite operators suh as eq. (2.2) may then also be O(a) improvedby inluding in the lattie de�nition of these operators the appropriate ounterterms.In the hiral limit there are no suh ounterterms for the pseudosalar density P (x),while the axial urrent A0(x) requires the addition of �0P with a oeÆient A(g20).The axial urrent is used in the omputation of the bare quark mass, but, beingsale independent, it is learly not needed in the omputation of its renormalisationgroup running. Thus A will play no rôle in the present work.All these improvement oeÆients may in priniple be omputed non-perturba-tively for a range of values of the bare oupling g0; for sw we rely on the alulationof ref. [13℄. It has also been alulated in perturbation theory to one loop [14, 15℄.The oeÆients t and ~t are known only in perturbation theory, to NLO [16℄ andLO [15℄ respetively: t(g20) = 1� 0:089g20 � 0:030g40 ; (2.4)~t(g20) = 1� 0:018g20 : (2.5)A more detailed disussion of perturbative O(a) improvement will be presentedin Setion 4. Here we outline the main expetations related to uto� e�ets, in thespirit of the Symanzik improvement programme [17℄: in the absene of improvementounterterms (i.e. sw = 0 and t = ~t = 1), orrelation funtions (suh as fP andfA), omputed at �xed UV uto� a�1 and renormalised non-perturbatively, shouldexhibit O(a) deviations from their ontinuum limit. If all improvement oeÆientswere known non-perturbatively, the disretisation errors would be O(a2). With theimprovement oeÆients set to their tree-level values (i.e. sw = t = ~t = 1), thedominant disretisation e�ets are expeted to be O(g20a) and O(a2); with one-loopoeÆients we have O(g40a) and O(a2) errors et. These statements refer to thehiral limit (away from whih, we must also take into onsideration ountertermsproportional to the quark mass). Sine we are in the framework of mass independentrenormalisation, working in the hiral limit is adequate for our purposes. We haveperformed numerial simulations in two regimes:(i) What we all \unimproved ation results" (or \unimproved ase" for short)onsists in setting sw = 0 . Moreover, we set ~t = 1, while the one-loop value2(eq. (2.4) trunated to O(g20)) is used for t. Sine the ation in the lattiebulk is unimproved, the dominant disretisation e�ets ought to be O(a).(ii) What we all \improved ation results" (or \improved ase" for short) onsistsin using the Clover ation with a non-perturbative sw. The one-loop value2This is a hoie of onveniene: it is important to know for renormalisation purposes (seeeq. (3.3) below) the dependene of the Shr�odinger funtional renormalised oupling g (1=L) onthe bare oupling g0. This dependene is known non-perturbatively [1, 2℄ for the pure Yang-Millsation with this t value. In any ase, the hoie for t has no bearing on the order of leading lattieartifats. 3



from eqs. (2.4) and (2.5) is used for t and ~t respetively. Thus the domi-nant disretisation errors should be O(g40a) and O(a2). Sine the former onlyarise from perturbatively improved boundary ounterterms, while everythingin the lattie bulk is fully improved, it is reasonable to expet that orrela-tion funtions are mostly a�eted by O(a2) errors. Numerial support for thisexpetation has been presented in ref. [2℄.3 The step saling funtionSF renormalisation shemes are mass independent; i.e. simulations an be performedin the hiral limit. The renormalisation sale is set at the lattie IR uto� (i.e.� = 1=L); the renormalised oupling g(1=L) and quark mass m(1=L) are then onlyfuntions of L. The SF renormalised oupling has been de�ned in ref. [1℄. Therenormalised quark mass is [2℄m(1=L) = lima!0 ZA(g0) Z�1P (g0; L=a) m(g0) (3.1)where m(g0) is de�ned in eq. (2.1) and the renormalisation ondition for the pseu-dosalar operator is ZP(g0; L=a)fP(L=2)pf1 �����m=0 = (�; a=L) ; (3.2)with (�; a=L) suh that at tree level ZP(0; L=a) = 1. We will always impose eq. (3.2)at � = 0:5 [2, 18℄, and hene eliminate any expliit referene to � from now on.The axial urrent normalisation ZA(g0), being sale independent, has no e�et onthe renormalisation group running of the quark mass; thus it is of no immediateonsequene to the present work.Here we are interested in the step saling funtion of the quark mass, whih isde�ned in the hiral limit m(g0) = 0, for a lattie of a given resolution L=a and at�xed renormalised oupling g 2(1=L) = u, by�P(u; a=L) = ZP(g0; 2L=a)ZP(g0; L=a) �����m=0; g 2(1=L)=u : (3.3)This quantity is �nite in the ontinuum limit�P(u) = lima!0�P(u; a=L) = m(1=L)m(1=(2L))�����g 2(1=L)=u : (3.4)4



The physial meaning of �P follows from the RG equation obeyed by the renormalisedquark mass � �m(�)�� = ��g(�)� m(�) (3.5)(reall that � = 1=L). Upon integration of this equation between sales L�1 and(2L)�1 we obtain �P(u) = exp(� Z g (1=(2L))g (1=L) �(g)�(g) dg) ; (3.6)with �(g) the Callan-Symanzik funtion. Thus, �P is losely related to the quarkmass anomalous dimension.The lattie SSF �P is not unique: it depends on the details of the lattieregularisation (e.g. the type of lattie ation hosen, the level of O(a) improvementet.). Its ontinuum limit, however, should be unique (i.e. universality should hold),unless lattie QCD, or at least the spei� regularisation implemented here, exhibitssome unexpeted pathology. This is what the present paper has set out to explore,in the spirit of refs. [5, 6℄.4 Disretisation e�ets in perturbation theoryThe expansion of the SSF in renormalised perturbation theory reads�P(u) = 1 + 1Xn=1 �(n)P un ; (4.1)with the LO universal RG oeÆient �(1)P = �8 ln(2)=(4�)2. In perturbation theorythe uto� dependene of the SSF an be studied by expanding�P(u; a=L)�P(u) = 1 + 1Xn=0 kn(a=L) un : (4.2)Note that due to the hoie of renormalisation ondition (3.2), disretisation errorsare absent at tree level (i.e. k0(a=L) = 0). Moreover, kn(0) = 0 by onstrution.The quantity k1(a=L), whih ontains the uto� e�ets at one loop, is known for theimproved ase from the work of Sint and Weisz [18℄ for L=a = 4; 6; : : : ; 16. In theirnotation, it is given byk1(a=L) = k(1)Æk(L=a) = �8 ln(2)(4�)2 Æk(L=a) ; (4.3)5



L=a k1 (Unimproved) k1 (Improved)4 1:5366198� 10�3 �7:4992105� 10�36 8:1921362� 10�4 �7:2993963� 10�48 1:2463902� 10�4 9:2204726� 10�510 �2:3064991� 10�4 2:1695501� 10�412 �4:0199062� 10�4 2:2359743� 10�414 �4:8254066� 10�4 2:0536785� 10�416 �5:1712918� 10�4 1:8293858� 10�418 �5:2761682� 10�4 1:6171688� 10�420 �5:2516423� 10�4 1:4302219� 10�422 �5:1573079� 10�4 1:2694608� 10�424 �5:0261759� 10�4 1:1321941� 10�426 �4:8770374� 10�4 1:0149790� 10�4Table 1: Results for the uto� dependene of the step saling funtion of the pseu-dosalar density at one loop in perturbation theory.with Æk(L=a) tabulated in Table 2 of ref. [18℄ (the ase of interest to us is � =0:5; � = T=L = 1). We have repeated these alulations for the unimproved aseand extended both ases to L=a = 18; 20; : : : ; 26. The results are summarised inTable 1 and Fig. 1.The present perturbative analysis has been motivated by the wish to explorein detail the uto� dependene of our non-perturbative estimates of �P(u; a=L),obtained in our simulations at four lattie resolutions L=a = 6; 8; 12; 16 (see nextSetion). Stritly speaking we therefore need to know k1(a=L) only at these fourvalues of (a=L), for both the unimproved and improved ases. However it is learthat one-loop uto� e�ets an have a rather non-trivial overall behaviour as (a=L)is redued. Had we limited our perturbative alulation to the range of interest (i.e.L=a = 6; 8; 12; 16), in the unimproved ase we would have only observed that k1rosses over monotonially the absissa axis at about L=a = 8, without signallingthat it indeed onverges towards its limiting value k1(0) = 0 (the improved asealready \bends over" towards the origin within this range). As a partial safeguardagainst the eventuality of some unontrolled error a�iting our perturbative results(e.g. rounding in the numerial integrations), we have extended the alulations allthe way to L=a = 26. Table 1 and Fig. 1 demonstrate that indeed k1 reahes a loalextremum and subsequently points towards the origin of the axes, as it should.In order to gain some further insight into this behaviour, we reall that the6



oeÆients kn of the perturbative series an be expanded askn(a=L) = 1Xp=1 � aL�p nXl=0 (n)pl [ ln(a=L) ℄l ; (4.4)with the leading O(u) (one-loop) disretisation e�ets having the formk1(a=L) = aL�(1)10 + (1)11 ln(a=L)�+ a2L2�(1)20 + (1)21 ln(a=L)�+O(a3=L3) : (4.5)Tree-level improvement implies in general that (n)1n = 0; thus the O(a=L) one-loopperturbative ontribution is as above, but without the logarithm (i.e. (1)11 = 0).One-loop improvement implies that (n)1n = (n)1;n�1 = 0; thus the O(a=L) one-loopperturbative ontributions of eq. (4.5) all vanish ((1)10 = (1)11 = 0). The leadingdisretisation e�ets of �P are then O(u a2=L2). Suh \dominant" disretisatione�ets may in pratie ompete with the next order O(u2 a=L) errors, arising fromk2(a=L). In all ases the funtional form of k1(a=L) is learly ompliated; theobserved behaviour an be explained by the strengths (and relative signs) of thevarious oeÆients (n)pl .5 Non-perturbative omputation of the step saling funtionIn this Setion we study the extrapolation of �P to the ontinuum limit. We alsoobtain a very aurate estimate of the ratio of the RGI quark mass to its renormalisedounterpart at a hadroni sale. The method of omputation is idential to that ofref. [2℄.5.1 Continuum limit of the step saling funtionFor both the unimproved and improved ases the lattie SSF �P has been evaluatedat 14 values of the renormalised oupling g(1=L), eah for four lattie resolutionsL=a = 6; 8; 12 and 16. Note that in ref. [2℄ only the improved ase has been studied.A full olletion of our raw data is presented in Tables 2 and 3. The \tuning" of� at the four L=a values, orresponding to an (almost) �xed renormalised ouplingg 2(1=L) = u has been taken over from ref. [2℄. This orresponds to the �rst threeolumns of Tables 2 and 3. The same is true of � for the improved ase (fourtholumn of Table 2). All other results are new3. In the strong oupling regime new3The omputation of � for the unimproved ase was �rst performed in ref. [8℄ for 9 of the 14ouplings used here; following [2℄, this is done at � = 0.7



Figure 1: Cuto� dependene of the step saling funtion of the pseudosalar densityat one loop in perturbation theory.results have been obtained at g 2(1=L) = 3:111. The statistial auray of ourimproved and unimproved �P(u; a=L) results is omparable (save for a few aseswhere the improved data has somewhat smaller errors).4A omparison of our data in the improved ase with those of ref. [2℄ revealsfairly ompatible results: for ZP(g0; L=a) and ZP(g0; 2L=a) we mostly agree withinerrors, save for a few ases in whih agreement is within 2 �; the same is true for�P(u; a=L), with some data being ompatible only within 1:5 �.If quenhed lattie QCD has a universal ontinuum limit, then both sets of�P results (improved and unimproved ation) ought to extrapolate to the sameontinuum value �P at �xed oupling u. What we have set out to investigate isthe power dependene (linear and/or quadrati) of the results on (a=L). From theanalysis of ref. [2℄ we expet the dominant disretisation e�ets to be O(a) in theunimproved ase and O(a2) in the improved one. Nevertheless we have performed�ts on both datasets with the two Ans�atze�P(u; a=L) = �P(u) + �(u)(a=L) ; (5.1)�P(u; a=L) = �P(u) + �(u)(a=L)2 : (5.2)4The typial statistis aumulated for small latties is of several hundred on�gurations. Forthe largest latties the number of on�gurations ranges from around 60 at the weakest ouplings toaround 200 at the strongest ones. 8



� La g2(1=L) � ZP �g0; La � ZP �g0; 2La � �P �u; aL�10.7503 6 0.8873(5) 0.130591(4) 0.8480(5) 0.8192(8) 0.9660(11)11.0000 8 0.8873(10) 0.130439(3) 0.8402(5) 0.8125(10) 0.9670(13)11.3384 12 0.8873(30) 0.130251(2) 0.8331(8) 0.8049(11) 0.9662(16)11.5736 16 0.8873(25) 0.130125(2) 0.8253(8) 0.7986(15) 0.9676(20)10.0500 6 0.9944(7) 0.131073(5) 0.8326(5) 0.8012(8) 0.9623(11)10.3000 8 0.9944(13) 0.130889(3) 0.8260(7) 0.7957(9) 0.9633(14)10.6086 12 0.9944(30) 0.130692(2) 0.8153(8) 0.7826(13) 0.9599(19)10.8910 16 0.9944(28) 0.130515(2) 0.8102(7) 0.7796(15) 0.9622(20)9.5030 6 1.0989(8) 0.131514(5) 0.8200(6) 0.7831(10) 0.9550(14)9.7500 8 1.0989(13) 0.131312(3) 0.8117(6) 0.7769(9) 0.9571(13)10.0577 12 1.0989(40) 0.131079(3) 0.8005(9) 0.7668(11) 0.9579(17)10.3419 16 1.0989(44) 0.130876(2) 0.7959(10) 0.7630(11) 0.9587(18)8.8997 6 1.2430(13) 0.132072(9) 0.8013(4) 0.7633(8) 0.9526(11)9.1544 8 1.2430(14) 0.131838(4) 0.7945(5) 0.7548(11) 0.9500(15)9.5202 12 1.2430(35) 0.131503(3) 0.7842(7) 0.7498(11) 0.9561(16)9.7350 16 1.2430(34) 0.131335(3) 0.7774(11) 0.7407(14) 0.9528(22)8.6129 6 1.3293(12) 0.132380(6) 0.7909(6) 0.7501(11) 0.9484(16)8.8500 8 1.3293(21) 0.132140(5) 0.7826(7) 0.7435(11) 0.9500(16)9.1859 12 1.3293(60) 0.131814(3) 0.7738(10) 0.7348(15) 0.9496(23)9.4381 16 1.3293(40) 0.131589(2) 0.7661(9) 0.7273(19) 0.9494(27)8.3124 6 1.4300(20) 0.132734(10) 0.7808(5) 0.7356(8) 0.9421(12)8.5598 8 1.4300(21) 0.132453(5) 0.7727(6) 0.7282(11) 0.9424(16)8.9003 12 1.4300(50) 0.132095(3) 0.7621(10) 0.7195(14) 0.9441(22)9.1415 16 1.4300(58) 0.131855(3) 0.7551(8) 0.7129(16) 0.9441(23)7.9993 6 1.5553(15) 0.133118(7) 0.7659(4) 0.7178(12) 0.9372(16)8.2500 8 1.5553(24) 0.132821(5) 0.7575(7) 0.7127(12) 0.9409(18)8.5985 12 1.5533(70) 0.132427(3) 0.7484(11) 0.7021(14) 0.9381(23)8.8323 16 1.5533(70) 0.132169(3) 0.7405(11) 0.6966(19) 0.9407(29)Table 2: Results for the step saling funtion �P, improved ase.9



� La g 2(1=L) � ZP �g0; La � ZP �g0; 2La � �P �u; aL�7.7170 6 1.6950(26) 0.133517(8) 0.7527(6) 0.6997(4) 0.9296(9)7.9741 8 1.6950(28) 0.133179(5) 0.7452(6) 0.6934(11) 0.9305(17)8.3218 12 1.6950(79) 0.132756(4) 0.7353(4) 0.6858(14) 0.9327(20)8.5479 16 1.6950(90) 0.132485(3) 0.7266(12) 0.6792(16) 0.9348(27)7.4082 6 1.8811(22) 0.133961(8) 0.7345(7) 0.6773(5) 0.9221(11)7.6547 8 1.8811(28) 0.133632(6) 0.7259(7) 0.6712(12) 0.9246(19)7.9993 12 1.8811(38) 0.133159(4) 0.7174(4) 0.6630(13) 0.9242(19)8.2415 16 1.8811(99) 0.132847(3) 0.7132(16) 0.6578(14) 0.9223(29)7.1214 6 2.1000(39) 0.134423(9) 0.7149(7) 0.6512(5) 0.9109(11)7.3632 8 2.1000(45) 0.134088(6) 0.7069(6) 0.6452(13) 0.9127(20)7.6985 12 2.1000(80) 0.133599(4) 0.6976(4) 0.6370(14) 0.9131(21)7.9560 16 2.100(11) 0.133229(3) 0.6904(12) 0.6348(12) 0.9195(24)6.7807 6 2.4484(37) 0.134994(11) 0.6874(8) 0.6112(5) 0.8891(13)7.0197 8 2.4484(45) 0.134639(7) 0.6796(7) 0.6079(14) 0.8945(23)7.3551 12 2.4484(80) 0.134141(5) 0.6711(5) 0.5978(15) 0.8908(23)7.6101 16 2.448(17) 0.133729(4) 0.6664(12) 0.5996(13) 0.8998(25)6.5512 6 2.770(7) 0.135327(12) 0.6628(8) 0.5775(4) 0.8713(12)6.7860 8 2.770(7) 0.135056(8) 0.6551(8) 0.5753(14) 0.8782(24)7.1190 12 2.770(11) 0.134513(5) 0.6487(5) 0.5704(10) 0.8793(17)7.3686 16 2.770(14) 0.134114(3) 0.6452(14) 0.5672(15) 0.8791(30)6.3665 6 3.111(4) 0.135488(6) 0.6395(9) 0.5427(13) 0.8486(24)6.6100 8 3.111(6) 0.135339(3) 0.6356(8) 0.5466(15) 0.8600(26)6.9322 12 3.111(12) 0.134855(3) 0.6290(12) 0.5363(15) 0.8526(29)7.1911 16 3.111(16) 0.134411(3) 0.6286(9) 0.5438(16) 0.8651(28)6.2204 6 3.480(8) 0.135470(15) 0.6179(4) 0.5058(12) 0.8186(20)6.4527 8 3.480(14) 0.135543(9) 0.6129(5) 0.5085(17) 0.8297(29)6.7750 12 3.480(39) 0.135121(5) 0.6092(10) 0.5102(15) 0.8375(28)7.0203 16 3.480(21) 0.134707(4) 0.6050(10) 0.5056(17) 0.8357(31)Table 2: (ontinued)10



� La g2(1=L) � ZP �g0; La � ZP �g0; 2La � �P �u; aL�10.7503 6 0.8873(5) 0.134696(7) 0.8559(5) 0.8290(7) 0.9686(10)11.0000 8 0.8873(10) 0.134548(6) 0.8450(5) 0.8188(8) 0.9690(11)11.3384 12 0.8873(30) 0.134277(5) 0.8336(6) 0.8066(10) 0.9676(14)11.5736 16 0.8873(25) 0.134068(6) 0.8264(7) 0.8003(13) 0.9684(18)10.0500 6 0.9944(7) 0.135659(8) 0.8413(5) 0.8123(8) 0.9655(11)10.3000 8 0.9944(13) 0.135457(5) 0.8310(5) 0.8012(9) 0.9641(12)10.6086 12 0.9944(30) 0.135160(4) 0.8188(7) 0.7887(12) 0.9632(17)10.8910 16 0.9944(28) 0.134849(6) 0.8108(8) 0.7826(16) 0.9652(22)9.5030 6 1.0989(8) 0.136520(5) 0.8292(6) 0.7973(8) 0.9615(12)9.7500 8 1.0989(13) 0.136310(3) 0.8189(5) 0.7847(9) 0.9582(12)10.0577 12 1.0989(40) 0.135949(4) 0.8060(8) 0.7739(11) 0.9602(17)10.3419 16 1.0989(44) 0.135572(4) 0.7980(12) 0.7641(11) 0.9575(20)8.8997 6 1.2430(13) 0.137706(5) 0.8119(6) 0.7775(8) 0.9576(12)9.1544 8 1.2430(14) 0.137400(4) 0.8009(6) 0.7651(9) 0.9553(13)9.5202 12 1.2430(35) 0.136855(2) 0.7880(8) 0.7521(12) 0.9544(18)9.7350 16 1.2430(34) 0.136523(4) 0.7805(9) 0.7452(14) 0.9548(21)8.6129 6 1.3293(12) 0.138346(6) 0.8045(7) 0.7654(8) 0.9514(13)8.8500 8 1.3293(21) 0.138057(4) 0.7912(6) 0.7525(10) 0.9511(15)9.1859 12 1.3293(60) 0.137503(2) 0.7779(9) 0.7378(12) 0.9485(19)9.4381 16 1.3293(40) 0.137061(4) 0.7703(13) 0.7286(15) 0.9459(25)8.3124 6 1.4300(20) 0.139128(11) 0.7905(7) 0.7517(9) 0.9509(14)8.5598 8 1.4300(21) 0.138742(7) 0.7800(6) 0.7377(11) 0.9458(16)8.9003 12 1.4300(50) 0.138120(8) 0.7669(10) 0.7262(17) 0.9469(25)9.1415 16 1.4300(58) 0.137655(5) 0.7586(9) 0.7190(17) 0.9478(25)7.9993 6 1.5553(15) 0.140003(11) 0.7808(7) 0.7350(9) 0.9413(14)8.2500 8 1.5553(24) 0.139588(8) 0.7671(6) 0.7237(11) 0.9434(16)8.5985 12 1.5533(70) 0.138847(6) 0.7560(9) 0.7083(16) 0.9369(24)8.8323 16 1.5533(70) 0.138339(7) 0.7458(13) 0.6992(18) 0.9375(29)Table 3: Results for the step saling funtion �P, unimproved ase.11



� La g 2(1=L) � ZP �g0; La � ZP �g0; 2La � �P �u; aL�7.7170 6 1.6950(26) 0.140954(12) 0.7650(7) 0.7195(9) 0.9405(15)7.9741 8 1.6950(28) 0.140438(8) 0.7550(7) 0.7095(15) 0.9397(22)8.3218 12 1.6950(79) 0.139589(6) 0.7418(10) 0.6940(16) 0.9356(25)8.5479 16 1.6950(90) 0.139058(6) 0.7328(11) 0.6823(19) 0.9311(29)7.4082 6 1.8811(22) 0.142145(11) 0.7489(7) 0.6994(10) 0.9339(16)7.6547 8 1.8811(28) 0.141572(9) 0.7368(7) 0.6829(13) 0.9268(20)7.9993 12 1.8811(38) 0.140597(6) 0.7241(11) 0.6725(15) 0.9287(25)8.2415 16 1.8811(99) 0.139900(6) 0.7161(12) 0.6652(16) 0.9289(27)7.1214 6 2.1000(39) 0.143416(11) 0.7309(8) 0.6746(10) 0.9230(17)7.3632 8 2.1000(45) 0.142749(9) 0.7181(7) 0.6564(17) 0.9141(25)7.6985 12 2.1000(80) 0.141657(6) 0.7037(8) 0.6440(13) 0.9152(21)7.9560 16 2.100(11) 0.140817(7) 0.6980(12) 0.6399(15) 0.9168(27)6.7807 6 2.4484(37) 0.145286(11) 0.7057(8) 0.6403(11) 0.9073(19)7.0197 8 2.4484(45) 0.144454(7) 0.6921(8) 0.6224(12) 0.8993(20)7.3551 12 2.4484(80) 0.143113(6) 0.6796(8) 0.6065(19) 0.8924(30)7.6101 16 2.448(17) 0.142107(6) 0.6745(12) 0.6095(19) 0.9036(32)6.5512 6 2.770(7) 0.146825(11) 0.6839(9) 0.6083(11) 0.8895(20)6.7860 8 2.770(7) 0.145859(7) 0.6702(8) 0.5938(17) 0.8860(27)7.1190 12 2.770(11) 0.144299(8) 0.6583(11) 0.5796(14) 0.8804(26)7.3686 16 2.770(14) 0.143175(7) 0.6532(15) 0.5772(19) 0.8836(35)6.3665 6 3.111(4) 0.148317(10) 0.6635(9) 0.5770(11) 0.8696(20)6.6100 8 3.111(6) 0.147112(7) 0.6529(9) 0.5642(14) 0.8641(25)6.9322 12 3.111(12) 0.145371(7) 0.6394(11) 0.5504(20) 0.8608(35)7.1911 16 3.111(16) 0.144060(8) 0.6329(13) 0.5479(17) 0.8657(32)6.2204 6 3.480(8) 0.149685(15) 0.6473(10) 0.5466(13) 0.8444(24)6.4527 8 3.480(14) 0.148391(9) 0.6309(9) 0.5315(23) 0.8424(38)6.7750 12 3.480(39) 0.146408(7) 0.6201(9) 0.5218(21) 0.8415(36)7.0203 16 3.480(21) 0.145025(8) 0.6131(11) 0.5177(20) 0.8444(36)Table 3: (ontinued)12



Another issue raised in ref. [2℄ is the number of data points whih should be inludedin eah �t. In that work the L=a = 6 results were dropped from the �ts, being toofar from the ontinuum limit. We have performed �ts with all data (4-point �ts)and also without the L=a = 6 data (3-point �ts). This means that we have applieda total of four �tting proedures (the two Ans�atze of eqs. (5.1,5.2), eah for a 3- anda 4-point �t).The results of these �tting proedures an be summarised as follows:(i) In all ases, the statistial auray of our result for �P is better than 1%. Theresults for the linear or quadrati oeÆients � have large statistial uner-tainties (up to 100%), reeting an overall weak uto� dependene of �P.(ii) For any given lattie regularisation (i.e. improved or unimproved) and withany given �tting Ansatz (i.e. linear or quadrati in (a=L)), the results for �Pobtained by a 3-point �t are ompatible to those obtained by a 4-point �t (at�xed oupling u). Naturally, the former have a larger error.(iii) For either lattie regularisation (i.e. improved or unimproved) and with anygiven number of �tting points (i.e. 3-point �t or 4-point �t) the results for�P obtained by a linear �t in (a=L) are ompatible to those obtained by aquadrati �t in (a=L) (at �xed oupling u). There is just one exeption for theimproved data at the strongest oupling u = 3:480 with a 4-point �t (agreementis within 1:5�). The results from the quadrati �t are more aurate, due tothe fat that the extrapolation from the range of simulated data points to theontinuum limit is shorter in (a=L)2 than in (a=L).(iv) The goodness of �t is always satisfatory (�2=d:o:f : < 3) at weak and in-termediate ouplings (u 2 [0:8873; 1:8811℄). In a limited number of ases atstronger ouplings the value tends to rise onsiderably, but this apparentlydoes not depend systematially on the number of �tted points and hoie of�tting Ansatz. In any ase, given the small number of �tted data points,�2=d:o:f : is a goodness-of-�t riterion of relatively limited value. Instead, thetotal �2=d:o:f : varies between 1 and 2, indiating satisfatory overall qualityof the �ts.We onservatively onsider our 3-point �t results to be our best (i.e. we drop thedata omputed at the largest lattie spaing) and opt for linear �ts in (a=L) withthe unimproved ase and quadrati ones with the improved one. The results forthese options are shown in Fig. 2.One ould attempt to enrih this analysis along the lines of ref. [6℄: we reallthat the disretisation e�ets known from perturbation theory (see eq. (4.2) and therelated disussion) an be divided out of the lattie SSF, by de�ning the quantity�(2)P (u; a=L) = �P(u; a=L)1 + u k1(a=L) : (5.3)13



The ontinuum limit of �(2)P is trivially the same as that of �P, but the formerquantity may approah it faster, as it has disretisation errors whih are of order u2.However we have seen in the previous Setion that k1(a=L) is always numeriallyvery small. Thus the denominator of eq. (5.3) has an impereptible impat on �P.The ontinuum extrapolations of �P (obtained with improved and unimprovedlattie ations) give results whih are fully ompatible both in the weak and strongoupling regions. At intermediate ouplings we only have agreement within 1:5 �; seeFig. 2. The previous �tting analysis strongly suggests that this small disrepany,rather than signalling a lak of ontinuum limit universality, is to be attributed todisretisation e�ets not being fully under ontrol.We will now orroborate this onlusion, by �tting our best results for theontinuum SSF �P(u) with the polynomial�P(u) = 1 + NXn=1 snun : (5.4)In all ases the �rst order oeÆient is �xed to its PT value, s1 = �8 ln(2)=(4�)2.One-parameter �ts with N = 2 yields2 = �0:0029(2) (�2=d:o:f :� 1:0) improved ase ;s2 = �0:0028(3) (�2=d:o:f :� 1:1) unimproved ase ; (5.5)whih are not too far from the PT value s2 = �0:002031(4) of ref. [18℄. One-parameter �ts with s2 �xed by PT and N = 3 yields3 = �0:00031(5) (�2=d:o:f : � 0:7) improved ase ;s3 = �0:00025(11) (�2=d:o:f : � 1:1) unimproved ase : (5.6)The above results are ompatible for the two lattie ations and thus supportiveof universality. This analysis beomes unstable one we push it to two- or more-parameter �ts. For instane, an N = 3 �t with two �tting parameters (s2 and s3)yields results with errors that range between 50% and 100%, while the N = 4 �tswith either two (s3; s4) or three �tting parameters (s2; s3; s4) estimate them with100% unertainty.Having mustered adequate numerial support for universality, we follow ref. [8℄and alulate �P(u) (at �xed oupling u) by ombined extrapolation of the �P(u; a=L)data from both ations, onstrained to a unique ontinuum limit. The improved(unimproved) ase is assumed to depend quadratially (linearly) on a=L. Resultsfor �P obtained with 3- and 4-point �ts are fully ompatible at all ouplings, whilethose for �(u) are ill-determined, as they arry up to 100% unertainties. The good-ness of �t is mostly �2=d:o:f : � 1, exept for a ouple of ases where it is around 4;anyway its average for all ouplings drops below 1.14



The 3-point �t results for �P(u) are subsequently �tted aording to eq. (5.4);with s1 given by PT, the ase orresponding to eq. (5.5) givess2 = �0:0028(1) (�2=d:o:f : � 1:1) ombined ase ; (5.7)while that of eq. (5.6) givess3 = �0:00030(5) (�2=d:o:f :� 0:8) ombined ase : (5.8)We take the results of eqs. (5.6) and (5.8) to be our best �ts. In Fig. 3 we omparethe LO and NLO preditions for the SSF with our disrete non-perturbative dataand the best-�t result.5.2 RG running of the quark massUsing the funtional form for �P we an ompute the ratio of renormalised quarkmasses between the minimum and maximum renormalisation sales overed by oursimulations. In order to be onsistent with the notation of ref. [2℄, we denote theformer by (2Lmax)�1. The ratio in question is then obtained in two steps:First the SSF of the gauge oupling�(u) = g 2(1=2L)��g 2(1=L)=u ; (5.9)omputed in [1, 2℄, is used in order to determine the orrespondene between renor-malised ouplings and renormalisation sales. This is done through the reursionul = �(ul+1) ; (5.10)with u0 = g2(1=Lmax) = 3:48 the initial value5. We note in passing that thisproedure is based on obtaining the SSF by �tting the results of refs. [1, 2℄ by apolynomial �(u) = uh1 + NXn=1 �nuni : (5.11)In the present analysis we have used the N = 4 series, with �1, �2 �xed from PTand �3, �4 resulting from the �t.Seond the funtional form for the SSF �P is used for this sequene of ouplingsin order to ompute the mass ratio from the produt (f. eq. (3.4))m(1=2Lmax)m(1=2�k+1Lmax) = k�1Yl=0 [�P(ul)℄�1 : (5.12)5This initial value u0 = 3:48 orresponds to Lmax=r0 = 0:738(16); the initial alulation wasperformed in ref. [19℄ while the above result is quoted in the more reent ref. [20℄.15



Ref. Method Mm(1=2Lmax)[2℄ Improved 1.157(12)This work Improved 1.154(9)This work Unimproved 1.160(13)This work Combined 1.155(9)Table 4: Ratio of the RGI quark mass to the renormalised quark mass at sale� = 1=2Lmax. \Method" refers to the proedure used in the omputation of �P.In pratie the range of sales overed by our simulations is spanned in k = 7iteration steps.The �nal step in our alulation is the omputation of the ratio of the RGI quarkmass M to its sale dependent ounterpart m(�); in the quenhed approximationthis is given by [2℄Mm(�) = � 22(4�)2 g 2(�)��4=11 exp(� Z g (�)0 dg � �(g)�(g) � 811g�) : (5.13)In pratie we ompute the produt of two ratios:Mm(1=2Lmax) = � m(1=2Lmax)m(1=2�k+1Lmax)��1 Mm(1=2�k+1Lmax) : (5.14)The �rst ratio on the r.h.s. is known from eq. (5.12). The seond ratio, whih refersto a perturbative sale � = 1=2�k+1Lmax, is alulated from eq. (5.13) with the NLOperturbative values of �(g) and �(g).Having desribed the method, we gather the relevant results (and that of ref. [2℄)in Table 4. The errors have been omputed as outlined in Appendix B of ref. [2℄.The following omments are in plae:(i) The quoted results have been obtained from the best SSF �ts of eqs. (5.6) and(5.8). Several other �ts, suh as those desribed in the previous subsetion,have been tried out. In all ases the �nal result M=m(1=2Lmax) utuatedwithin the quoted error, whih in turn only inreased slightly with inreasingnumber of �tted parameters.(ii) Our improved result is ompatible with that of ref. [2℄. The error is nowsmaller, due to improved statistis for the raw data on ZP.(iii) Compared to our unimproved result, the improved one has a smaller error.Realling that statistis are roughly the same, this reets a better system-ati ontrol of disretisation e�ets, suh as stable quadrati extrapolations in(a=L). 16



(iv) The result of the ombined ase is idential to the improved one.Our �nal result is Mm(1=2Lmax) = 1:155(9) : (5.15)The quoted error does not inlude the e�et of the unertainty in the determinationof Lmax=r0, reported in ref. [20℄. Its ontribution being roughly equal to the aboveerror implies that there is no point in inreasing the preision of our result unlessthe unertainty in Lmax=r0 is also redued.6 ConlusionsWe have performed a very detailed omputation of the step saling funtion of thequark mass in quenhed lattie QCD, employing two variants of the lattie regu-larisation, namely unimproved and Clover-improved Wilson ations. In both asesthe SSF has been omputed at many renormalised gauge ouplings (orrespond-ing to a wide range of renormalisation sales) and for several lattie resolutions.Upon extrapolation to the ontinuum, the SSF has turned out to be independentof the spei�s of the lattie regularisation, providing onvining evidene for theuniversality of the ontinuum limit.The uniqueness of the ontinuum SSF has subsequently been used as a on-straint, giving us an extra handle for the ontrol of the sensitive extrapolations tozero lattie spaing. The �nal outome of this detailed analysis, applied to highstatistis data, is a very preise value of the ratio M=m(�). Far from being an aa-demi exerise, the inreased auray of our result, ompared to [2℄, is of pratialrelevane. For example, in the ontext of the non-perturbative mathing of HeavyQuark E�etive Theory and QCD in �nite volume, reently proposed and appliedin refs. [21℄, preise numerial knowledge of the funtional dependene of QCD ob-servables on the renormalisation group invariant quark mass is of great importane.The analysis desribed in this work is urrently being applied to the SSF ofother phenomenologially interesting quantities. Preliminary results on the SSF ofthe tensor bilinear operator � �0k (relevant e.g. to some semileptoni B-mesondeays) have appeared in ref. [22℄, while the �rst results on the SSF of four-fermionoperators (related to neutral meson osillations, Kaon deays et.) an be found inref. [23℄.AknowledgmentsWe thank P. Hasenfratz, F. Niedermayer and S. Sint for disussions. Speial thanksgo to R. Sommer and H. Wittig for a ritial reading of the manusript and many17



helpful suggestions. C.P. aknowledges the �nanial support provided through theEuropean Community's Human Potential Programme under ontrat HPRN-CT-2000-00145, Hadrons/Lattie QCD. A.V. thanks the Bern Theory Group for itshospitality during the initial stages of this work.

18



Figure 2: Continuum extrapolations of �P at �xed renormalised oupling u for theimproved ation (full symbols, solid line) and the unimproved ation (open symbols,dashed line). The L=a = 6 data points have not been inluded in the �ts. The valueof u inreases from top to bottom and from left to right.19



Figure 3: The step saling funtion �P(u) (full points) in the improved (top),unimproved (middle) and ombined (bottom) ases. Shown are also the expressionsfor the step saling funtion in LO (dotted line) and NLO (dashed line) perturbationtheory, as well as our best �t to the numerial data (solid line).20
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