
*H
EP
-L
AT
/0
40
20
22
*

Revised Version  ROM2F/2004-04
 MS-TP-04-02
 DESY 04-022

ar
X

iv
:h

ep
-l

at
/0

40
20

22
 v

2 
  1

8 
M

ar
 2

00
4

ROM2F/2004-04MS-TP-04-02DESY 04-022The 
ontinuum limit of the quark massstep s
aling fun
tion in quen
hed latti
e QCD
LPHAA

CollaborationM. Guagnellia, J. Heitgerb, F. Palombi
;a, C. Penad and A. Vladikasaa INFN, Sezione di Roma II
/o Dipartimento di Fisi
a, Universit�a di Roma \Tor Vergata"Via della Ri
er
a S
ienti�
a 1, I-00133 Rome, Italyb Westf�alis
he Wilhelms-Universit�at M�unster, Institut f�ur Theoretis
he PhysikWilhelm-Klemm-Strasse 9, D-48149 M�unster, Germany
 \E. Fermi" Resear
h Center
/o Compendio Viminale, pal. F, I-00184 Rome, Italyd DESY, Theory GroupNotkestrasse 85, D-22607 Hamburg, GermanyAbstra
tThe renormalisation group running of the quark mass is determined non-perturbatively fora large range of s
ales, by 
omputing the step s
aling fun
tion in the S
hr�odinger Fun
-tional formalism of quen
hed latti
e QCD both with and without O(a) improvement. Aone-loop perturbative 
al
ulation of the dis
retisation e�e
ts has been 
arried out for boththe Wilson and the Clover-improved a
tions and for a large number of latti
e resolutions.The non-perturbative 
omputation yields 
ontinuum results whi
h are regularisation inde-pendent, thus providing 
onvin
ing eviden
e for the uniqueness of the 
ontinuum limit. Asa byprodu
t, the ratio of the renormalisation group invariant quark mass to the quark mass,renormalised at a hadroni
 s
ale, is obtained with very high a

ura
y.



1 Introdu
tionThe renormalisation group running of the QCD fundamental parameters, namelythe renormalised gauge 
oupling and quark masses, has now been 
omputed non-perturbatively for a large range of s
ales, albeit in the limit of in�nitely heavy seaquarks; see refs. [1, 2℄. These results have been obtained using latti
e regularisedquen
hed QCD with Wilson fermions, prior to extrapolating to the 
ontinuum limit.In the 
ase of the quark mass running, Symanzik improvement was an importantelement in redu
ing the extrapolation un
ertainties, as it implies that the dominantsystemati
 e�e
ts due to the �niteness of the UV 
uto� a�1 are O(a2). The 
ase ofQCD with two dynami
al 
avours has been investigated in [3℄.The 
ontinuum limit of latti
e QCD is known to exist to all orders of pertur-bation theory (PT) [4℄. Beyond PT this issue has been addressed by numeri
alsimulation. The strategy 
onsists in implementing di�erent regularisations whi
hformally 
orrespond to the same Field Theory (QCD in our 
ase) and in establish-ing the universality of the 
ontinuum limit of given renormalised physi
al quantities,
omputed with di�erent regulators. This sometimes turns out to be less straight-forward than expe
ted; e.g. see the dis
ussion on the universality of the 
ontinuumlimit of spin and sigma models in refs. [5℄. In pure SU(2) gauge theory, universal-ity has been tested by 
omputing two di�erent non-perturbatively de�ned running
ouplings over a large range of energies [6℄. In pure SU(3) gauge theory, eviden
eof universality has been re
ently found in a study of the s
aling properties of thede
on�ning temperature with di�erent gauge a
tions [7℄.In the present work we extend these ideas to the step s
aling fun
tion (SSF)of the quark mass in quen
hed QCD. This quantity has been 
al
ulated in ref. [2℄from an improved a
tion; here it is also evaluated from an unimproved a
tion. The
ontinuum SSF, 
omputed for a large range of renormalisation s
ales, is found tobe independent of these regularisation details, providing eviden
e for a universal
ontinuum limit. In this respe
t our study parallels 
losely the one of ref. [8℄, whi
hwas dealing with the SSF of the operator 
orresponding to the average momentumof non-singlet parton densities. In 
omparison, our quantity is parti
ularly simple,as we essentially 
ompute ratios of two-point fun
tions. This allows us to have anex
ellent 
ontrol of both statisti
al and systemati
 errors. As a byprodu
t we re
al-
ulate the 
avour independent ratio of the renormalisation group invariant (RGI)quark mass to the renormalised one (at a given hadroni
 s
ale). We obtain a result
ompatible to the original one of ref. [2℄ but fairly more a

urate.A study of dis
retisation e�e
ts in the SSF has also been performed, for bothWilson and Clover a
tions, in one-loop PT. This 
al
ulation has been 
arried out fora large number of latti
e resolutions. We �nd that lowest order perturbation theorygreatly underestimates the dis
retisation e�e
ts of the SSF.1



2 The S
hr�odinger Fun
tional and O(a) improvementIn this se
tion we gather the most relevant de�nitions and outline the propertiesof the quantities we are interested in. Most details are omitted, as they have beenpresented in previous works, whi
h we will frequently refer to.We adopt the latti
e S
hr�odinger fun
tional (SF) formalism [9, 10, 11℄; morespe
i�
ally we regularise QCD on a latti
e of extension L3 � T (here T = L al-ways) with periodi
 boundary 
onditions in the spa
e dire
tions (up to a phase �for the fermion �elds) and Diri
hlet boundary 
onditions in the Eu
lidean time di-re
tion [10, 11℄. Otherwise the latti
e gauge and fermioni
 �eld a
tions are of thestandard Wilson type; their O(a) improved version is dis
ussed below. The baregauge 
oupling and quark mass are denoted by g0 (with � � 6=g20) and m0 (with2� � [am0 + 4℄�1), respe
tively. As we will be working in the quen
hed approxi-mation, the bare gauge 
oupling g0 and 
hiral point �
 are fun
tions of the latti
espa
ing a alone. The 
hiral point is the value of the hopping parameter � for whi
hthe \
urrent" quark mass, de�ned below, vanishes. The bare subtra
ted quark massis de�ned as amq = [1=� � 1=�
℄=2, whereas an unrenormalised \
urrent" quarkmass is given by m(g0) = 12(��0 + �0) fA(x0)2 fP(x0) ; (2.1)with fX (X = A;P) the 
orrelation fun
tions of lo
al bilinear operatorsfX(x0) = �a62 Xy;z h��j(y)
5�i(z) � i(x)
X j(x)i : (2.2)The �eld indi
es i; j label two distin
t 
avours; the \boundary �elds" � are de�ned inref. [12℄. For X = A we have 
X = 
0
5 and for X = P we have 
X = 
5. The forwardand ba
kward latti
e time derivatives are denoted by �0 and ��0 respe
tively1 . Wealso de�ne the 
orrelation fun
tion of boundary �eldsf1 = � a122L6 Xy;z;y0;z0 h ��0i(y0)
5�0j(z0) ��j(y)
5�i(z) i : (2.3)Unprimed quantities are de�ned on the the x0 = 0 boundary, primed ones on thex0 = T one.The O(a) Symanzik improvement of the above 
onstru
tion has been worked outin refs. [10, 12℄. For the pure gauge a
tion, it amounts to modifying it by introdu
ingtime-boundary 
ounterterms proportional to [
t(g20)�1℄. For the fermioni
 a
tion wemust introdu
e the well-known 
lover 
ounterterm in the latti
e bulk, proportionalto 
sw(g20), and time-boundary 
ounterterms proportional to [~
t(g20)�1℄. Correlation1We follow 
losely the notation of [2, 12℄, whither we refer for details.2



fun
tions of 
omposite operators su
h as eq. (2.2) may then also be O(a) improvedby in
luding in the latti
e de�nition of these operators the appropriate 
ounterterms.In the 
hiral limit there are no su
h 
ounterterms for the pseudos
alar density P (x),while the axial 
urrent A0(x) requires the addition of �0P with a 
oeÆ
ient 
A(g20).The axial 
urrent is used in the 
omputation of the bare quark mass, but, beings
ale independent, it is 
learly not needed in the 
omputation of its renormalisationgroup running. Thus 
A will play no rôle in the present work.All these improvement 
oeÆ
ients may in prin
iple be 
omputed non-perturba-tively for a range of values of the bare 
oupling g0; for 
sw we rely on the 
al
ulationof ref. [13℄. It has also been 
al
ulated in perturbation theory to one loop [14, 15℄.The 
oeÆ
ients 
t and ~
t are known only in perturbation theory, to NLO [16℄ andLO [15℄ respe
tively: 
t(g20) = 1� 0:089g20 � 0:030g40 ; (2.4)~
t(g20) = 1� 0:018g20 : (2.5)A more detailed dis
ussion of perturbative O(a) improvement will be presentedin Se
tion 4. Here we outline the main expe
tations related to 
uto� e�e
ts, in thespirit of the Symanzik improvement programme [17℄: in the absen
e of improvement
ounterterms (i.e. 
sw = 0 and 
t = ~
t = 1), 
orrelation fun
tions (su
h as fP andfA), 
omputed at �xed UV 
uto� a�1 and renormalised non-perturbatively, shouldexhibit O(a) deviations from their 
ontinuum limit. If all improvement 
oeÆ
ientswere known non-perturbatively, the dis
retisation errors would be O(a2). With theimprovement 
oeÆ
ients set to their tree-level values (i.e. 
sw = 
t = ~
t = 1), thedominant dis
retisation e�e
ts are expe
ted to be O(g20a) and O(a2); with one-loop
oeÆ
ients we have O(g40a) and O(a2) errors et
. These statements refer to the
hiral limit (away from whi
h, we must also take into 
onsideration 
ountertermsproportional to the quark mass). Sin
e we are in the framework of mass independentrenormalisation, working in the 
hiral limit is adequate for our purposes. We haveperformed numeri
al simulations in two regimes:(i) What we 
all \unimproved a
tion results" (or \unimproved 
ase" for short)
onsists in setting 
sw = 0 . Moreover, we set ~
t = 1, while the one-loop value2(eq. (2.4) trun
ated to O(g20)) is used for 
t. Sin
e the a
tion in the latti
ebulk is unimproved, the dominant dis
retisation e�e
ts ought to be O(a).(ii) What we 
all \improved a
tion results" (or \improved 
ase" for short) 
onsistsin using the Clover a
tion with a non-perturbative 
sw. The one-loop value2This is a 
hoi
e of 
onvenien
e: it is important to know for renormalisation purposes (seeeq. (3.3) below) the dependen
e of the S
hr�odinger fun
tional renormalised 
oupling g (1=L) onthe bare 
oupling g0. This dependen
e is known non-perturbatively [1, 2℄ for the pure Yang-Millsa
tion with this 
t value. In any 
ase, the 
hoi
e for 
t has no bearing on the order of leading latti
eartifa
ts. 3



from eqs. (2.4) and (2.5) is used for 
t and ~
t respe
tively. Thus the domi-nant dis
retisation errors should be O(g40a) and O(a2). Sin
e the former onlyarise from perturbatively improved boundary 
ounterterms, while everythingin the latti
e bulk is fully improved, it is reasonable to expe
t that 
orrela-tion fun
tions are mostly a�e
ted by O(a2) errors. Numeri
al support for thisexpe
tation has been presented in ref. [2℄.3 The step s
aling fun
tionSF renormalisation s
hemes are mass independent; i.e. simulations 
an be performedin the 
hiral limit. The renormalisation s
ale is set at the latti
e IR 
uto� (i.e.� = 1=L); the renormalised 
oupling g(1=L) and quark mass m(1=L) are then onlyfun
tions of L. The SF renormalised 
oupling has been de�ned in ref. [1℄. Therenormalised quark mass is [2℄m(1=L) = lima!0 ZA(g0) Z�1P (g0; L=a) m(g0) (3.1)where m(g0) is de�ned in eq. (2.1) and the renormalisation 
ondition for the pseu-dos
alar operator is ZP(g0; L=a)fP(L=2)pf1 �����m=0 = 
(�; a=L) ; (3.2)with 
(�; a=L) su
h that at tree level ZP(0; L=a) = 1. We will always impose eq. (3.2)at � = 0:5 [2, 18℄, and hen
e eliminate any expli
it referen
e to � from now on.The axial 
urrent normalisation ZA(g0), being s
ale independent, has no e�e
t onthe renormalisation group running of the quark mass; thus it is of no immediate
onsequen
e to the present work.Here we are interested in the step s
aling fun
tion of the quark mass, whi
h isde�ned in the 
hiral limit m(g0) = 0, for a latti
e of a given resolution L=a and at�xed renormalised 
oupling g 2(1=L) = u, by�P(u; a=L) = ZP(g0; 2L=a)ZP(g0; L=a) �����m=0; g 2(1=L)=u : (3.3)This quantity is �nite in the 
ontinuum limit�P(u) = lima!0�P(u; a=L) = m(1=L)m(1=(2L))�����g 2(1=L)=u : (3.4)4



The physi
al meaning of �P follows from the RG equation obeyed by the renormalisedquark mass � �m(�)�� = ��g(�)� m(�) (3.5)(re
all that � = 1=L). Upon integration of this equation between s
ales L�1 and(2L)�1 we obtain �P(u) = exp(� Z g (1=(2L))g (1=L) �(g)�(g) dg) ; (3.6)with �(g) the Callan-Symanzik fun
tion. Thus, �P is 
losely related to the quarkmass anomalous dimension.The latti
e SSF �P is not unique: it depends on the details of the latti
eregularisation (e.g. the type of latti
e a
tion 
hosen, the level of O(a) improvementet
.). Its 
ontinuum limit, however, should be unique (i.e. universality should hold),unless latti
e QCD, or at least the spe
i�
 regularisation implemented here, exhibitssome unexpe
ted pathology. This is what the present paper has set out to explore,in the spirit of refs. [5, 6℄.4 Dis
retisation e�e
ts in perturbation theoryThe expansion of the SSF in renormalised perturbation theory reads�P(u) = 1 + 1Xn=1 �(n)P un ; (4.1)with the LO universal RG 
oeÆ
ient �(1)P = �8 ln(2)=(4�)2. In perturbation theorythe 
uto� dependen
e of the SSF 
an be studied by expanding�P(u; a=L)�P(u) = 1 + 1Xn=0 kn(a=L) un : (4.2)Note that due to the 
hoi
e of renormalisation 
ondition (3.2), dis
retisation errorsare absent at tree level (i.e. k0(a=L) = 0). Moreover, kn(0) = 0 by 
onstru
tion.The quantity k1(a=L), whi
h 
ontains the 
uto� e�e
ts at one loop, is known for theimproved 
ase from the work of Sint and Weisz [18℄ for L=a = 4; 6; : : : ; 16. In theirnotation, it is given byk1(a=L) = k(1)Æk(L=a) = �8 ln(2)(4�)2 Æk(L=a) ; (4.3)5



L=a k1 (Unimproved) k1 (Improved)4 1:5366198� 10�3 �7:4992105� 10�36 8:1921362� 10�4 �7:2993963� 10�48 1:2463902� 10�4 9:2204726� 10�510 �2:3064991� 10�4 2:1695501� 10�412 �4:0199062� 10�4 2:2359743� 10�414 �4:8254066� 10�4 2:0536785� 10�416 �5:1712918� 10�4 1:8293858� 10�418 �5:2761682� 10�4 1:6171688� 10�420 �5:2516423� 10�4 1:4302219� 10�422 �5:1573079� 10�4 1:2694608� 10�424 �5:0261759� 10�4 1:1321941� 10�426 �4:8770374� 10�4 1:0149790� 10�4Table 1: Results for the 
uto� dependen
e of the step s
aling fun
tion of the pseu-dos
alar density at one loop in perturbation theory.with Æk(L=a) tabulated in Table 2 of ref. [18℄ (the 
ase of interest to us is � =0:5; � = T=L = 1). We have repeated these 
al
ulations for the unimproved 
aseand extended both 
ases to L=a = 18; 20; : : : ; 26. The results are summarised inTable 1 and Fig. 1.The present perturbative analysis has been motivated by the wish to explorein detail the 
uto� dependen
e of our non-perturbative estimates of �P(u; a=L),obtained in our simulations at four latti
e resolutions L=a = 6; 8; 12; 16 (see nextSe
tion). Stri
tly speaking we therefore need to know k1(a=L) only at these fourvalues of (a=L), for both the unimproved and improved 
ases. However it is 
learthat one-loop 
uto� e�e
ts 
an have a rather non-trivial overall behaviour as (a=L)is redu
ed. Had we limited our perturbative 
al
ulation to the range of interest (i.e.L=a = 6; 8; 12; 16), in the unimproved 
ase we would have only observed that k1
rosses over monotoni
ally the abs
issa axis at about L=a = 8, without signallingthat it indeed 
onverges towards its limiting value k1(0) = 0 (the improved 
asealready \bends over" towards the origin within this range). As a partial safeguardagainst the eventuality of some un
ontrolled error a�i
ting our perturbative results(e.g. rounding in the numeri
al integrations), we have extended the 
al
ulations allthe way to L=a = 26. Table 1 and Fig. 1 demonstrate that indeed k1 rea
hes a lo
alextremum and subsequently points towards the origin of the axes, as it should.In order to gain some further insight into this behaviour, we re
all that the6




oeÆ
ients kn of the perturbative series 
an be expanded askn(a=L) = 1Xp=1 � aL�p nXl=0 
(n)pl [ ln(a=L) ℄l ; (4.4)with the leading O(u) (one-loop) dis
retisation e�e
ts having the formk1(a=L) = aL�
(1)10 + 
(1)11 ln(a=L)�+ a2L2�
(1)20 + 
(1)21 ln(a=L)�+O(a3=L3) : (4.5)Tree-level improvement implies in general that 
(n)1n = 0; thus the O(a=L) one-loopperturbative 
ontribution is as above, but without the logarithm (i.e. 
(1)11 = 0).One-loop improvement implies that 
(n)1n = 
(n)1;n�1 = 0; thus the O(a=L) one-loopperturbative 
ontributions of eq. (4.5) all vanish (
(1)10 = 
(1)11 = 0). The leadingdis
retisation e�e
ts of �P are then O(u a2=L2). Su
h \dominant" dis
retisatione�e
ts may in pra
ti
e 
ompete with the next order O(u2 a=L) errors, arising fromk2(a=L). In all 
ases the fun
tional form of k1(a=L) is 
learly 
ompli
ated; theobserved behaviour 
an be explained by the strengths (and relative signs) of thevarious 
oeÆ
ients 
(n)pl .5 Non-perturbative 
omputation of the step s
aling fun
tionIn this Se
tion we study the extrapolation of �P to the 
ontinuum limit. We alsoobtain a very a

urate estimate of the ratio of the RGI quark mass to its renormalised
ounterpart at a hadroni
 s
ale. The method of 
omputation is identi
al to that ofref. [2℄.5.1 Continuum limit of the step s
aling fun
tionFor both the unimproved and improved 
ases the latti
e SSF �P has been evaluatedat 14 values of the renormalised 
oupling g(1=L), ea
h for four latti
e resolutionsL=a = 6; 8; 12 and 16. Note that in ref. [2℄ only the improved 
ase has been studied.A full 
olle
tion of our raw data is presented in Tables 2 and 3. The \tuning" of� at the four L=a values, 
orresponding to an (almost) �xed renormalised 
ouplingg 2(1=L) = u has been taken over from ref. [2℄. This 
orresponds to the �rst three
olumns of Tables 2 and 3. The same is true of �
 for the improved 
ase (fourth
olumn of Table 2). All other results are new3. In the strong 
oupling regime new3The 
omputation of �
 for the unimproved 
ase was �rst performed in ref. [8℄ for 9 of the 14
ouplings used here; following [2℄, this is done at � = 0.7



Figure 1: Cuto� dependen
e of the step s
aling fun
tion of the pseudos
alar densityat one loop in perturbation theory.results have been obtained at g 2(1=L) = 3:111. The statisti
al a

ura
y of ourimproved and unimproved �P(u; a=L) results is 
omparable (save for a few 
aseswhere the improved data has somewhat smaller errors).4A 
omparison of our data in the improved 
ase with those of ref. [2℄ revealsfairly 
ompatible results: for ZP(g0; L=a) and ZP(g0; 2L=a) we mostly agree withinerrors, save for a few 
ases in whi
h agreement is within 2 �; the same is true for�P(u; a=L), with some data being 
ompatible only within 1:5 �.If quen
hed latti
e QCD has a universal 
ontinuum limit, then both sets of�P results (improved and unimproved a
tion) ought to extrapolate to the same
ontinuum value �P at �xed 
oupling u. What we have set out to investigate isthe power dependen
e (linear and/or quadrati
) of the results on (a=L). From theanalysis of ref. [2℄ we expe
t the dominant dis
retisation e�e
ts to be O(a) in theunimproved 
ase and O(a2) in the improved one. Nevertheless we have performed�ts on both datasets with the two Ans�atze�P(u; a=L) = �P(u) + �(u)(a=L) ; (5.1)�P(u; a=L) = �P(u) + �(u)(a=L)2 : (5.2)4The typi
al statisti
s a

umulated for small latti
es is of several hundred 
on�gurations. Forthe largest latti
es the number of 
on�gurations ranges from around 60 at the weakest 
ouplings toaround 200 at the strongest ones. 8



� La g2(1=L) �
 ZP �g0; La � ZP �g0; 2La � �P �u; aL�10.7503 6 0.8873(5) 0.130591(4) 0.8480(5) 0.8192(8) 0.9660(11)11.0000 8 0.8873(10) 0.130439(3) 0.8402(5) 0.8125(10) 0.9670(13)11.3384 12 0.8873(30) 0.130251(2) 0.8331(8) 0.8049(11) 0.9662(16)11.5736 16 0.8873(25) 0.130125(2) 0.8253(8) 0.7986(15) 0.9676(20)10.0500 6 0.9944(7) 0.131073(5) 0.8326(5) 0.8012(8) 0.9623(11)10.3000 8 0.9944(13) 0.130889(3) 0.8260(7) 0.7957(9) 0.9633(14)10.6086 12 0.9944(30) 0.130692(2) 0.8153(8) 0.7826(13) 0.9599(19)10.8910 16 0.9944(28) 0.130515(2) 0.8102(7) 0.7796(15) 0.9622(20)9.5030 6 1.0989(8) 0.131514(5) 0.8200(6) 0.7831(10) 0.9550(14)9.7500 8 1.0989(13) 0.131312(3) 0.8117(6) 0.7769(9) 0.9571(13)10.0577 12 1.0989(40) 0.131079(3) 0.8005(9) 0.7668(11) 0.9579(17)10.3419 16 1.0989(44) 0.130876(2) 0.7959(10) 0.7630(11) 0.9587(18)8.8997 6 1.2430(13) 0.132072(9) 0.8013(4) 0.7633(8) 0.9526(11)9.1544 8 1.2430(14) 0.131838(4) 0.7945(5) 0.7548(11) 0.9500(15)9.5202 12 1.2430(35) 0.131503(3) 0.7842(7) 0.7498(11) 0.9561(16)9.7350 16 1.2430(34) 0.131335(3) 0.7774(11) 0.7407(14) 0.9528(22)8.6129 6 1.3293(12) 0.132380(6) 0.7909(6) 0.7501(11) 0.9484(16)8.8500 8 1.3293(21) 0.132140(5) 0.7826(7) 0.7435(11) 0.9500(16)9.1859 12 1.3293(60) 0.131814(3) 0.7738(10) 0.7348(15) 0.9496(23)9.4381 16 1.3293(40) 0.131589(2) 0.7661(9) 0.7273(19) 0.9494(27)8.3124 6 1.4300(20) 0.132734(10) 0.7808(5) 0.7356(8) 0.9421(12)8.5598 8 1.4300(21) 0.132453(5) 0.7727(6) 0.7282(11) 0.9424(16)8.9003 12 1.4300(50) 0.132095(3) 0.7621(10) 0.7195(14) 0.9441(22)9.1415 16 1.4300(58) 0.131855(3) 0.7551(8) 0.7129(16) 0.9441(23)7.9993 6 1.5553(15) 0.133118(7) 0.7659(4) 0.7178(12) 0.9372(16)8.2500 8 1.5553(24) 0.132821(5) 0.7575(7) 0.7127(12) 0.9409(18)8.5985 12 1.5533(70) 0.132427(3) 0.7484(11) 0.7021(14) 0.9381(23)8.8323 16 1.5533(70) 0.132169(3) 0.7405(11) 0.6966(19) 0.9407(29)Table 2: Results for the step s
aling fun
tion �P, improved 
ase.9



� La g 2(1=L) �
 ZP �g0; La � ZP �g0; 2La � �P �u; aL�7.7170 6 1.6950(26) 0.133517(8) 0.7527(6) 0.6997(4) 0.9296(9)7.9741 8 1.6950(28) 0.133179(5) 0.7452(6) 0.6934(11) 0.9305(17)8.3218 12 1.6950(79) 0.132756(4) 0.7353(4) 0.6858(14) 0.9327(20)8.5479 16 1.6950(90) 0.132485(3) 0.7266(12) 0.6792(16) 0.9348(27)7.4082 6 1.8811(22) 0.133961(8) 0.7345(7) 0.6773(5) 0.9221(11)7.6547 8 1.8811(28) 0.133632(6) 0.7259(7) 0.6712(12) 0.9246(19)7.9993 12 1.8811(38) 0.133159(4) 0.7174(4) 0.6630(13) 0.9242(19)8.2415 16 1.8811(99) 0.132847(3) 0.7132(16) 0.6578(14) 0.9223(29)7.1214 6 2.1000(39) 0.134423(9) 0.7149(7) 0.6512(5) 0.9109(11)7.3632 8 2.1000(45) 0.134088(6) 0.7069(6) 0.6452(13) 0.9127(20)7.6985 12 2.1000(80) 0.133599(4) 0.6976(4) 0.6370(14) 0.9131(21)7.9560 16 2.100(11) 0.133229(3) 0.6904(12) 0.6348(12) 0.9195(24)6.7807 6 2.4484(37) 0.134994(11) 0.6874(8) 0.6112(5) 0.8891(13)7.0197 8 2.4484(45) 0.134639(7) 0.6796(7) 0.6079(14) 0.8945(23)7.3551 12 2.4484(80) 0.134141(5) 0.6711(5) 0.5978(15) 0.8908(23)7.6101 16 2.448(17) 0.133729(4) 0.6664(12) 0.5996(13) 0.8998(25)6.5512 6 2.770(7) 0.135327(12) 0.6628(8) 0.5775(4) 0.8713(12)6.7860 8 2.770(7) 0.135056(8) 0.6551(8) 0.5753(14) 0.8782(24)7.1190 12 2.770(11) 0.134513(5) 0.6487(5) 0.5704(10) 0.8793(17)7.3686 16 2.770(14) 0.134114(3) 0.6452(14) 0.5672(15) 0.8791(30)6.3665 6 3.111(4) 0.135488(6) 0.6395(9) 0.5427(13) 0.8486(24)6.6100 8 3.111(6) 0.135339(3) 0.6356(8) 0.5466(15) 0.8600(26)6.9322 12 3.111(12) 0.134855(3) 0.6290(12) 0.5363(15) 0.8526(29)7.1911 16 3.111(16) 0.134411(3) 0.6286(9) 0.5438(16) 0.8651(28)6.2204 6 3.480(8) 0.135470(15) 0.6179(4) 0.5058(12) 0.8186(20)6.4527 8 3.480(14) 0.135543(9) 0.6129(5) 0.5085(17) 0.8297(29)6.7750 12 3.480(39) 0.135121(5) 0.6092(10) 0.5102(15) 0.8375(28)7.0203 16 3.480(21) 0.134707(4) 0.6050(10) 0.5056(17) 0.8357(31)Table 2: (
ontinued)10



� La g2(1=L) �
 ZP �g0; La � ZP �g0; 2La � �P �u; aL�10.7503 6 0.8873(5) 0.134696(7) 0.8559(5) 0.8290(7) 0.9686(10)11.0000 8 0.8873(10) 0.134548(6) 0.8450(5) 0.8188(8) 0.9690(11)11.3384 12 0.8873(30) 0.134277(5) 0.8336(6) 0.8066(10) 0.9676(14)11.5736 16 0.8873(25) 0.134068(6) 0.8264(7) 0.8003(13) 0.9684(18)10.0500 6 0.9944(7) 0.135659(8) 0.8413(5) 0.8123(8) 0.9655(11)10.3000 8 0.9944(13) 0.135457(5) 0.8310(5) 0.8012(9) 0.9641(12)10.6086 12 0.9944(30) 0.135160(4) 0.8188(7) 0.7887(12) 0.9632(17)10.8910 16 0.9944(28) 0.134849(6) 0.8108(8) 0.7826(16) 0.9652(22)9.5030 6 1.0989(8) 0.136520(5) 0.8292(6) 0.7973(8) 0.9615(12)9.7500 8 1.0989(13) 0.136310(3) 0.8189(5) 0.7847(9) 0.9582(12)10.0577 12 1.0989(40) 0.135949(4) 0.8060(8) 0.7739(11) 0.9602(17)10.3419 16 1.0989(44) 0.135572(4) 0.7980(12) 0.7641(11) 0.9575(20)8.8997 6 1.2430(13) 0.137706(5) 0.8119(6) 0.7775(8) 0.9576(12)9.1544 8 1.2430(14) 0.137400(4) 0.8009(6) 0.7651(9) 0.9553(13)9.5202 12 1.2430(35) 0.136855(2) 0.7880(8) 0.7521(12) 0.9544(18)9.7350 16 1.2430(34) 0.136523(4) 0.7805(9) 0.7452(14) 0.9548(21)8.6129 6 1.3293(12) 0.138346(6) 0.8045(7) 0.7654(8) 0.9514(13)8.8500 8 1.3293(21) 0.138057(4) 0.7912(6) 0.7525(10) 0.9511(15)9.1859 12 1.3293(60) 0.137503(2) 0.7779(9) 0.7378(12) 0.9485(19)9.4381 16 1.3293(40) 0.137061(4) 0.7703(13) 0.7286(15) 0.9459(25)8.3124 6 1.4300(20) 0.139128(11) 0.7905(7) 0.7517(9) 0.9509(14)8.5598 8 1.4300(21) 0.138742(7) 0.7800(6) 0.7377(11) 0.9458(16)8.9003 12 1.4300(50) 0.138120(8) 0.7669(10) 0.7262(17) 0.9469(25)9.1415 16 1.4300(58) 0.137655(5) 0.7586(9) 0.7190(17) 0.9478(25)7.9993 6 1.5553(15) 0.140003(11) 0.7808(7) 0.7350(9) 0.9413(14)8.2500 8 1.5553(24) 0.139588(8) 0.7671(6) 0.7237(11) 0.9434(16)8.5985 12 1.5533(70) 0.138847(6) 0.7560(9) 0.7083(16) 0.9369(24)8.8323 16 1.5533(70) 0.138339(7) 0.7458(13) 0.6992(18) 0.9375(29)Table 3: Results for the step s
aling fun
tion �P, unimproved 
ase.11



� La g 2(1=L) �
 ZP �g0; La � ZP �g0; 2La � �P �u; aL�7.7170 6 1.6950(26) 0.140954(12) 0.7650(7) 0.7195(9) 0.9405(15)7.9741 8 1.6950(28) 0.140438(8) 0.7550(7) 0.7095(15) 0.9397(22)8.3218 12 1.6950(79) 0.139589(6) 0.7418(10) 0.6940(16) 0.9356(25)8.5479 16 1.6950(90) 0.139058(6) 0.7328(11) 0.6823(19) 0.9311(29)7.4082 6 1.8811(22) 0.142145(11) 0.7489(7) 0.6994(10) 0.9339(16)7.6547 8 1.8811(28) 0.141572(9) 0.7368(7) 0.6829(13) 0.9268(20)7.9993 12 1.8811(38) 0.140597(6) 0.7241(11) 0.6725(15) 0.9287(25)8.2415 16 1.8811(99) 0.139900(6) 0.7161(12) 0.6652(16) 0.9289(27)7.1214 6 2.1000(39) 0.143416(11) 0.7309(8) 0.6746(10) 0.9230(17)7.3632 8 2.1000(45) 0.142749(9) 0.7181(7) 0.6564(17) 0.9141(25)7.6985 12 2.1000(80) 0.141657(6) 0.7037(8) 0.6440(13) 0.9152(21)7.9560 16 2.100(11) 0.140817(7) 0.6980(12) 0.6399(15) 0.9168(27)6.7807 6 2.4484(37) 0.145286(11) 0.7057(8) 0.6403(11) 0.9073(19)7.0197 8 2.4484(45) 0.144454(7) 0.6921(8) 0.6224(12) 0.8993(20)7.3551 12 2.4484(80) 0.143113(6) 0.6796(8) 0.6065(19) 0.8924(30)7.6101 16 2.448(17) 0.142107(6) 0.6745(12) 0.6095(19) 0.9036(32)6.5512 6 2.770(7) 0.146825(11) 0.6839(9) 0.6083(11) 0.8895(20)6.7860 8 2.770(7) 0.145859(7) 0.6702(8) 0.5938(17) 0.8860(27)7.1190 12 2.770(11) 0.144299(8) 0.6583(11) 0.5796(14) 0.8804(26)7.3686 16 2.770(14) 0.143175(7) 0.6532(15) 0.5772(19) 0.8836(35)6.3665 6 3.111(4) 0.148317(10) 0.6635(9) 0.5770(11) 0.8696(20)6.6100 8 3.111(6) 0.147112(7) 0.6529(9) 0.5642(14) 0.8641(25)6.9322 12 3.111(12) 0.145371(7) 0.6394(11) 0.5504(20) 0.8608(35)7.1911 16 3.111(16) 0.144060(8) 0.6329(13) 0.5479(17) 0.8657(32)6.2204 6 3.480(8) 0.149685(15) 0.6473(10) 0.5466(13) 0.8444(24)6.4527 8 3.480(14) 0.148391(9) 0.6309(9) 0.5315(23) 0.8424(38)6.7750 12 3.480(39) 0.146408(7) 0.6201(9) 0.5218(21) 0.8415(36)7.0203 16 3.480(21) 0.145025(8) 0.6131(11) 0.5177(20) 0.8444(36)Table 3: (
ontinued)12



Another issue raised in ref. [2℄ is the number of data points whi
h should be in
ludedin ea
h �t. In that work the L=a = 6 results were dropped from the �ts, being toofar from the 
ontinuum limit. We have performed �ts with all data (4-point �ts)and also without the L=a = 6 data (3-point �ts). This means that we have applieda total of four �tting pro
edures (the two Ans�atze of eqs. (5.1,5.2), ea
h for a 3- anda 4-point �t).The results of these �tting pro
edures 
an be summarised as follows:(i) In all 
ases, the statisti
al a

ura
y of our result for �P is better than 1%. Theresults for the linear or quadrati
 
oeÆ
ients � have large statisti
al un
er-tainties (up to 100%), re
e
ting an overall weak 
uto� dependen
e of �P.(ii) For any given latti
e regularisation (i.e. improved or unimproved) and withany given �tting Ansatz (i.e. linear or quadrati
 in (a=L)), the results for �Pobtained by a 3-point �t are 
ompatible to those obtained by a 4-point �t (at�xed 
oupling u). Naturally, the former have a larger error.(iii) For either latti
e regularisation (i.e. improved or unimproved) and with anygiven number of �tting points (i.e. 3-point �t or 4-point �t) the results for�P obtained by a linear �t in (a=L) are 
ompatible to those obtained by aquadrati
 �t in (a=L) (at �xed 
oupling u). There is just one ex
eption for theimproved data at the strongest 
oupling u = 3:480 with a 4-point �t (agreementis within 1:5�). The results from the quadrati
 �t are more a

urate, due tothe fa
t that the extrapolation from the range of simulated data points to the
ontinuum limit is shorter in (a=L)2 than in (a=L).(iv) The goodness of �t is always satisfa
tory (�2=d:o:f : < 3) at weak and in-termediate 
ouplings (u 2 [0:8873; 1:8811℄). In a limited number of 
ases atstronger 
ouplings the value tends to rise 
onsiderably, but this apparentlydoes not depend systemati
ally on the number of �tted points and 
hoi
e of�tting Ansatz. In any 
ase, given the small number of �tted data points,�2=d:o:f : is a goodness-of-�t 
riterion of relatively limited value. Instead, thetotal �2=d:o:f : varies between 1 and 2, indi
ating satisfa
tory overall qualityof the �ts.We 
onservatively 
onsider our 3-point �t results to be our best (i.e. we drop thedata 
omputed at the largest latti
e spa
ing) and opt for linear �ts in (a=L) withthe unimproved 
ase and quadrati
 ones with the improved one. The results forthese options are shown in Fig. 2.One 
ould attempt to enri
h this analysis along the lines of ref. [6℄: we re
allthat the dis
retisation e�e
ts known from perturbation theory (see eq. (4.2) and therelated dis
ussion) 
an be divided out of the latti
e SSF, by de�ning the quantity�(2)P (u; a=L) = �P(u; a=L)1 + u k1(a=L) : (5.3)13



The 
ontinuum limit of �(2)P is trivially the same as that of �P, but the formerquantity may approa
h it faster, as it has dis
retisation errors whi
h are of order u2.However we have seen in the previous Se
tion that k1(a=L) is always numeri
allyvery small. Thus the denominator of eq. (5.3) has an imper
eptible impa
t on �P.The 
ontinuum extrapolations of �P (obtained with improved and unimprovedlatti
e a
tions) give results whi
h are fully 
ompatible both in the weak and strong
oupling regions. At intermediate 
ouplings we only have agreement within 1:5 �; seeFig. 2. The previous �tting analysis strongly suggests that this small dis
repan
y,rather than signalling a la
k of 
ontinuum limit universality, is to be attributed todis
retisation e�e
ts not being fully under 
ontrol.We will now 
orroborate this 
on
lusion, by �tting our best results for the
ontinuum SSF �P(u) with the polynomial�P(u) = 1 + NXn=1 snun : (5.4)In all 
ases the �rst order 
oeÆ
ient is �xed to its PT value, s1 = �8 ln(2)=(4�)2.One-parameter �ts with N = 2 yields2 = �0:0029(2) (�2=d:o:f :� 1:0) improved 
ase ;s2 = �0:0028(3) (�2=d:o:f :� 1:1) unimproved 
ase ; (5.5)whi
h are not too far from the PT value s2 = �0:002031(4) of ref. [18℄. One-parameter �ts with s2 �xed by PT and N = 3 yields3 = �0:00031(5) (�2=d:o:f : � 0:7) improved 
ase ;s3 = �0:00025(11) (�2=d:o:f : � 1:1) unimproved 
ase : (5.6)The above results are 
ompatible for the two latti
e a
tions and thus supportiveof universality. This analysis be
omes unstable on
e we push it to two- or more-parameter �ts. For instan
e, an N = 3 �t with two �tting parameters (s2 and s3)yields results with errors that range between 50% and 100%, while the N = 4 �tswith either two (s3; s4) or three �tting parameters (s2; s3; s4) estimate them with100% un
ertainty.Having mustered adequate numeri
al support for universality, we follow ref. [8℄and 
al
ulate �P(u) (at �xed 
oupling u) by 
ombined extrapolation of the �P(u; a=L)data from both a
tions, 
onstrained to a unique 
ontinuum limit. The improved(unimproved) 
ase is assumed to depend quadrati
ally (linearly) on a=L. Resultsfor �P obtained with 3- and 4-point �ts are fully 
ompatible at all 
ouplings, whilethose for �(u) are ill-determined, as they 
arry up to 100% un
ertainties. The good-ness of �t is mostly �2=d:o:f : � 1, ex
ept for a 
ouple of 
ases where it is around 4;anyway its average for all 
ouplings drops below 1.14



The 3-point �t results for �P(u) are subsequently �tted a

ording to eq. (5.4);with s1 given by PT, the 
ase 
orresponding to eq. (5.5) givess2 = �0:0028(1) (�2=d:o:f : � 1:1) 
ombined 
ase ; (5.7)while that of eq. (5.6) givess3 = �0:00030(5) (�2=d:o:f :� 0:8) 
ombined 
ase : (5.8)We take the results of eqs. (5.6) and (5.8) to be our best �ts. In Fig. 3 we 
omparethe LO and NLO predi
tions for the SSF with our dis
rete non-perturbative dataand the best-�t result.5.2 RG running of the quark massUsing the fun
tional form for �P we 
an 
ompute the ratio of renormalised quarkmasses between the minimum and maximum renormalisation s
ales 
overed by oursimulations. In order to be 
onsistent with the notation of ref. [2℄, we denote theformer by (2Lmax)�1. The ratio in question is then obtained in two steps:First the SSF of the gauge 
oupling�(u) = g 2(1=2L)��g 2(1=L)=u ; (5.9)
omputed in [1, 2℄, is used in order to determine the 
orresponden
e between renor-malised 
ouplings and renormalisation s
ales. This is done through the re
ursionul = �(ul+1) ; (5.10)with u0 = g2(1=Lmax) = 3:48 the initial value5. We note in passing that thispro
edure is based on obtaining the SSF by �tting the results of refs. [1, 2℄ by apolynomial �(u) = uh1 + NXn=1 �nuni : (5.11)In the present analysis we have used the N = 4 series, with �1, �2 �xed from PTand �3, �4 resulting from the �t.Se
ond the fun
tional form for the SSF �P is used for this sequen
e of 
ouplingsin order to 
ompute the mass ratio from the produ
t (
f. eq. (3.4))m(1=2Lmax)m(1=2�k+1Lmax) = k�1Yl=0 [�P(ul)℄�1 : (5.12)5This initial value u0 = 3:48 
orresponds to Lmax=r0 = 0:738(16); the initial 
al
ulation wasperformed in ref. [19℄ while the above result is quoted in the more re
ent ref. [20℄.15



Ref. Method Mm(1=2Lmax)[2℄ Improved 1.157(12)This work Improved 1.154(9)This work Unimproved 1.160(13)This work Combined 1.155(9)Table 4: Ratio of the RGI quark mass to the renormalised quark mass at s
ale� = 1=2Lmax. \Method" refers to the pro
edure used in the 
omputation of �P.In pra
ti
e the range of s
ales 
overed by our simulations is spanned in k = 7iteration steps.The �nal step in our 
al
ulation is the 
omputation of the ratio of the RGI quarkmass M to its s
ale dependent 
ounterpart m(�); in the quen
hed approximationthis is given by [2℄Mm(�) = � 22(4�)2 g 2(�)��4=11 exp(� Z g (�)0 dg � �(g)�(g) � 811g�) : (5.13)In pra
ti
e we 
ompute the produ
t of two ratios:Mm(1=2Lmax) = � m(1=2Lmax)m(1=2�k+1Lmax)��1 Mm(1=2�k+1Lmax) : (5.14)The �rst ratio on the r.h.s. is known from eq. (5.12). The se
ond ratio, whi
h refersto a perturbative s
ale � = 1=2�k+1Lmax, is 
al
ulated from eq. (5.13) with the NLOperturbative values of �(g) and �(g).Having des
ribed the method, we gather the relevant results (and that of ref. [2℄)in Table 4. The errors have been 
omputed as outlined in Appendix B of ref. [2℄.The following 
omments are in pla
e:(i) The quoted results have been obtained from the best SSF �ts of eqs. (5.6) and(5.8). Several other �ts, su
h as those des
ribed in the previous subse
tion,have been tried out. In all 
ases the �nal result M=m(1=2Lmax) 
u
tuatedwithin the quoted error, whi
h in turn only in
reased slightly with in
reasingnumber of �tted parameters.(ii) Our improved result is 
ompatible with that of ref. [2℄. The error is nowsmaller, due to improved statisti
s for the raw data on ZP.(iii) Compared to our unimproved result, the improved one has a smaller error.Re
alling that statisti
s are roughly the same, this re
e
ts a better system-ati
 
ontrol of dis
retisation e�e
ts, su
h as stable quadrati
 extrapolations in(a=L). 16



(iv) The result of the 
ombined 
ase is identi
al to the improved one.Our �nal result is Mm(1=2Lmax) = 1:155(9) : (5.15)The quoted error does not in
lude the e�e
t of the un
ertainty in the determinationof Lmax=r0, reported in ref. [20℄. Its 
ontribution being roughly equal to the aboveerror implies that there is no point in in
reasing the pre
ision of our result unlessthe un
ertainty in Lmax=r0 is also redu
ed.6 Con
lusionsWe have performed a very detailed 
omputation of the step s
aling fun
tion of thequark mass in quen
hed latti
e QCD, employing two variants of the latti
e regu-larisation, namely unimproved and Clover-improved Wilson a
tions. In both 
asesthe SSF has been 
omputed at many renormalised gauge 
ouplings (
orrespond-ing to a wide range of renormalisation s
ales) and for several latti
e resolutions.Upon extrapolation to the 
ontinuum, the SSF has turned out to be independentof the spe
i�
s of the latti
e regularisation, providing 
onvin
ing eviden
e for theuniversality of the 
ontinuum limit.The uniqueness of the 
ontinuum SSF has subsequently been used as a 
on-straint, giving us an extra handle for the 
ontrol of the sensitive extrapolations tozero latti
e spa
ing. The �nal out
ome of this detailed analysis, applied to highstatisti
s data, is a very pre
ise value of the ratio M=m(�). Far from being an a
a-demi
 exer
ise, the in
reased a

ura
y of our result, 
ompared to [2℄, is of pra
ti
alrelevan
e. For example, in the 
ontext of the non-perturbative mat
hing of HeavyQuark E�e
tive Theory and QCD in �nite volume, re
ently proposed and appliedin refs. [21℄, pre
ise numeri
al knowledge of the fun
tional dependen
e of QCD ob-servables on the renormalisation group invariant quark mass is of great importan
e.The analysis des
ribed in this work is 
urrently being applied to the SSF ofother phenomenologi
ally interesting quantities. Preliminary results on the SSF ofthe tensor bilinear operator � �0k (relevant e.g. to some semileptoni
 B-mesonde
ays) have appeared in ref. [22℄, while the �rst results on the SSF of four-fermionoperators (related to neutral meson os
illations, Kaon de
ays et
.) 
an be found inref. [23℄.A
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Figure 2: Continuum extrapolations of �P at �xed renormalised 
oupling u for theimproved a
tion (full symbols, solid line) and the unimproved a
tion (open symbols,dashed line). The L=a = 6 data points have not been in
luded in the �ts. The valueof u in
reases from top to bottom and from left to right.19



Figure 3: The step s
aling fun
tion �P(u) (full points) in the improved (top),unimproved (middle) and 
ombined (bottom) 
ases. Shown are also the expressionsfor the step s
aling fun
tion in LO (dotted line) and NLO (dashed line) perturbationtheory, as well as our best �t to the numeri
al data (solid line).20
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