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DESY 04-012January 2004Design formulas for short-wavelength FELsE.L. Saldin, E.A. Shneidmiller, M.V. YurkovDeutshes Elektronen-Synhrotron (DESY), Notkestrasse 85, D-22607 Hamburg,GermanyAbstratSimple formulas for optimization of VUV and X-ray SASE FELs are presented.The FEL gain length and the optimal beta-funtion are expliitly expressed interms of the eletron beam and undulator parameters. The FEL saturation lengthis estimated taking into aount quantum di�usion in the undulator. Examplesof the FEL optimization are given. Parameters of a SASE FEL, operating at theCompton wavelength, are suggested.
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1 IntrodutionSuessful operation of the VUV (vauum ultraviolet) FEL (free eletron laser) at theTESLA Test Faility at DESY [1,2℄, based on SASE (self-ampli�ed spontaneous emission)priniple [3℄, has stimulated a rapidly growing interest in the development of VUV andX-ray FELs. A number of projets (see, for instane, [4{8℄) are now at di�erent stages ofdesign and onstrution.At the �rst stage of a SASE FEL design one looks for the dependene of the FEL saturationlength on the wavelength, eletron beam parameters, undulator parameters, and beta-funtion. Usually the parameters are optimized for the shortest design wavelength sinethe saturation length is the largest in this ase. The saturation length is proportional tothe gain length (e-folding length) of the fundamental transverse mode (see [9℄ for moredetails). The gain length an be found by the solution of the FEL eigenvalue equation.The eigenvalue equation for a high-gain FEL, inluding di�ration of radiation, emittane,and energy spread, was derived in [10,11℄. There exist approximate solutions [12,13℄ ofthis equation. The exat solution was presented in [14℄ as well as an approximate solution(with a limited validity range). The latter solution was �tted [14℄ using 3 dimensionlessgroups of parameters, and 19 �tting oeÆients. An approximate solution, that �ts theexat solution in the entire parameter spae with high auray (better that 1 %), waspresented in [15℄. A numerial algorithm for �nding this approximate solution is very fastand robust. It was used to obtain the main results of this paper.In this paper we present the expliit, simple and rather aurate dependenies of the FELgain length on the beam and undulator parameters. Our formulas are not universal, butthey provide a good auray (better than 5 % for the gain length) in a typial parameterrange of VUV and X-ray FELs. We present the formulas without derivation sine theywere not derived analytially. In some sense the parametri dependenies were guessed,and then the �tting oeÆients were found from the solution of the eigenvalue equation.For instane, we used only 2 �tting oeÆients for the gain length with the optimized beta-funtion. Our formulas allow one to quikly estimate FEL saturation length, inluding theprinipal e�et of energy di�usion in the undulator due to quantum utuations of the2



undulator radiation. In addition, we present two pratial examples of using our designformulas: optimization of SASE FEL with negligible energy spread, and the limitation onSASE FEL wavelength taking into aount quantum di�usion. In partiular, we suggest forthe �rst time the set of parameters for a SASE FEL operating at the Compton wavelength.2 Gain length for the optimized beta-funtionLet us onsider an axisymmetri eletron beam with a urrent I, and a Gaussian dis-tribution in transverse phase spae and in energy [14,15℄. The fousing struture in theundulator is a superposition of the natural undulator fousing and an external alternating-gradient fousing. The eigenvalue equation [14,15℄ is valid under the following ondition[15℄: Lf2�� � min 1; �r2��!where Lf is the period of the external fousing struture, � is an average beta-funtion, �is the rms emittane of the eletron beam, and �r is the FEL resonant wavelength. Theresonane ondition is written as:�r = �w(1 +K2)22 : (1)Here �w is the undulator period,  is relativisti fator, and K is the rms undulatorparameter:K = 0:934 �w[m℄ Brms[T℄ ; (2)Brms being the rms undulator �eld.In what follows we assume that the beta-funtion is optimized so that the FEL gainlength takes the minimal value for given wavelength, beam and undulator parameters.Under this ondition the solution of the eigenvalue equation for the �eld gain length 1 an1 There is also a notion of the power gain length whih is twie shorter.3



be approximated as follows:Lg ' Lg0 (1 + Æ) ; (3)whereLg0 = 1:67�IAI �1=2 (�n�w)5=6�2=3r (1 +K2)1=3KAJJ ; (4)and Æ = 131 IAI �5=4n�1=8r �9=8w �2(KAJJ )2(1 +K2)1=8 : (5)The following notations are introdued here: IA = 17 kA is the Alfven urrent, �n = � isthe rms normalized emittane, � = �E=m2 is the rms energy spread (in units of the restenergy), AJJ = 1 for a helial undulator and AJJ = J0(K2=2(1+K2))�J1(K2=2(1+K2))for a planar undulator, J0 and J1 are the Bessel funtions of the �rst kind.The formula (3) provides an auray better than 5 % in the domain of parameters de�nedas follows1 < 2���r < 5 (6)Æ < 2:5 (1� exp "�12 �2���r �2#) (7)Note that the ondition (6) is usually satis�ed in realisti designs of VUV and X-ray FELswhen one does optimization for the shortest wavelength (de�ning the total undulatorlength). The ondition (7) is pratially not a limitation. To illustrate the auray of theformula (3) we present a numerial example. The following nominal operating point ishosen: �r = 1 nm, �w = 3 m, K = 1, I = 2:5 kA, �n = 2 �m, �E = 1 MeV, energy is 2.8GeV, undulator is planar. We san over di�erent parameters and ompare the gain lengthalulated with formula (3) and by solving the eigenvalue equation [15℄. The results arepresented in Figs. 1-6. 4



We also present here an approximate expression for the optimal beta-funtion (an aurayis about 10 % in the above mentioned parameter range):�opt ' 11:2�IAI �1=2 �3=2n �1=2w�rKAJJ (1 + 8Æ)�1=3 (8)Note that dependene of the gain length on beta-funtion is rather weak when � > �opt.Finally, let us note that the saturation length annot be diretly found from the eigenvalueequation. However, with an auray 10-20 % one an aept the following estimate:Lsat ' 10 Lg (9)3 Inuene of quantum di�usion in an undulator on saturation lengthEnergy spread growth due to the quantum utuations of the spontaneous undulatorradiation an be an important e�et [3,16℄ in future SASE FELs. The rate of the energydi�usion is given by [17℄:d�2dz = 1415�re4�3wK2F (K) ; (10)where � = 3:86 � 10�11 m, re = 2:82� 10�13 m, �w = 2�=�w, andF (K)= 1:42K + (1 + 1:50K + 0:95K2)�1 for helial undulatorF (K)= 1:70K + (1 + 1:88K + 0:80K2)�1 for planar undulator (11)To estimate the FEL saturation length, we aept the following sheme. First, we negletenergy di�usion and �nd a zeroth order approximation to the saturation length from (9),(3)-(5). Then we alulate an indued energy spread in the middle of the undulator from(10), add it quadratially to the initial energy spread, and �nd a new expression for Æ.Then, using (9), (3)-(5), we �nd the �rst approximation to the saturation length. Thenwe do the next iteration, et. Finally, the saturation length an be estimated asLsat ' 10 Lg0 1 + Æ1� Æq ; (12)5



whereÆq = 5:5� 104 �IAI �3=2 �re�2n�11=4r �5=4w (1 +K2)9=4F (K)KA3JJ (13)Note that in the latter formula the powers are somewhat simpli�ed. Comparing Eqs. (9)and (12), we an introdue an e�etive parameterÆe� = Æ + Æq1� Æq ; (14)whih should be used instead of Æ in (7) to hek the appliability range and in (8) toestimate the optimal beta-funtion.Although formula (12) is rather rude estimate, it an be used for quik orientation inthe parameter spae with a posteriori hek using a numerial simulation ode.4 Examples of SASE FEL optimization4.1 Optimized FEL with a negligible energy spreadFormulas, presented in the previous Setions, an be used for the optimization of undulatorparameters as soon as a spei� type of the undulator is hosen. We demonstrate suh apossibility with the planar NdFeB undulator of whih magneti �eld an be desribed bythe following formula [8℄:Bmax[T℄ = 3:694 exp "�5:068 g�w + 1:52� g�w�2# for 0:1 < g=�w < 1 ; (15)where g is the undulator gap. The rms value of the parameter K is given by Eq. (2) withBrms = Bmax=p2.We assume that the energy spread e�et on the FEL operation an be negleted (Æ ; Æq !0). Then, using (3), (2) and (15), we minimize the gain length for a given undulator gap.The optimal undulator period is found to be(�w)opt[m℄ ' 1 + 2 g [m℄ for g > 0:5 m (16)6



The optimal value of K is then de�ned from (15) and (2), the eletron beam energy - from(1), and the optimal beta-funtion - from (8). The minimal gain length an be expressed(in pratial units) as follows:(Lg)min[m℄' 20 �5=6n [�m℄ g1=2[m℄I1=2[kA℄�2=3r [�A℄ : (17)Using estimate of the saturation length (9), we �nd the minimal wavelength at whihSASE FEL an saturate within the given undulator length Lw:(�r)min[�A℄ ' 3� 103 �5=4n [�m℄ g3=4[m℄I3=4[kA℄L3=2w [m℄ (18)4.2 SASE FEL at the Compton wavelengthAnother example is the optimization of sub-Angstrom FELs for whih the e�et of quan-tum di�usion in the undulator an play an important role. We onsider the ase when theenergy spread is dominated by the quantum di�usion, and neglet initial energy spread(Æ ! 0). Optimizing undulator period and parameter K in (12), we get the followingestimate for the minimal wavelength 2 :(�r)qmin[�A℄ ' 4 �n[�m℄I3=5[kA℄L2=5w [m℄ (19)Note that in some ases the optimal undulator parameters an be impratial. In anyase, the estimate (19) gives a lower limit. The following numerial examples show thatone an be lose to this limit with tehnially feasible undulator parameters.Let us onsider the eletron beam parameters (peak urrent and emittane) assumed in[18℄. One of the examples, onsidered in [18℄, is a SASE FEL operating at �r = 0:28�Awith I = 5kA and �n = 0:3�m. Another example is even more ambitious: �r = 0:12�Awith I = 5kA and �n = 0:1�m.We try to push the wavelength loser to the extreme given by Eq. (19). In our �rstexample we assume I = 5kA and �n = 0:3�m. With these parameters the wavelength2 One an notie the di�erene with more rude estimate presented in [16℄7



�r = 0:1�A an be reahed at the eletron beam energy 23 GeV in a planar undulatorwith �w = 2 m and K = 1 (with the gap g = 0:7 m aording to (15) and (2)). Theoptimal beta-funtion is about 40 m, and the saturation length is estimated at 160 m.The seond example is a SASE FEL operating at the Compton wavelength, �r = � =0:0234�A (photon energy is 0.5 MeV). We assume the eletron beam with I = 5kA and�n = 0:1�m, the energy is 40 GeV. We hoose a helial undulator with �w = 2 m andK = 0:7. The optimal beta-funtion is about 35 m, and the saturation is reahed within200 m. Our estimates show that quantum e�ets, other than energy di�usion, give smallorretions to the lassial desription and an be negleted.
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Fig. 1. Gain length versus resonant wavelength for the following set of parameters: �w = 3 m,K = 1, I = 2:5 kA, �n = 2 �m, �E = 1 MeV. Undulator is planar, resonane is maintained bytuning eletron beam energy, beta-funtion is optimized for eah ase. Line is the solution of theeigenvalue equation [15℄, and the irles are alulated using formula (3).
Fig. 2. Gain length versus undulator period for the following set of parameters: �r = 1 nm,K = 1, I = 2:5 kA, �n = 2 �m, �E = 1 MeV. Undulator is planar, resonane is maintained bytuning eletron beam energy, beta-funtion is optimized for eah ase. Line is the solution of theeigenvalue equation [15℄, and the irles are alulated using formula (3).9



Fig. 3. Gain length versus undulator parameter K for the following set of parameters: �r = 1 nm,�w = 3 m, I = 2:5 kA, �n = 2 �m, �E = 1 MeV. Undulator is planar, resonane is maintainedby tuning eletron beam energy, beta-funtion is optimized for eah ase. Line is the solution ofthe eigenvalue equation [15℄, and the irles are alulated using formula (3).
Fig. 4. Gain length versus normalized emittane for the following set of parameters: �r = 1 nm,�w = 3 m, K = 1, I = 2:5 kA, �E = 1 MeV. Undulator is planar, beta-funtion is optimizedfor eah ase. Line is the solution of the eigenvalue equation [15℄, and the irles are alulatedusing formula (3). 10



Fig. 5. Gain length versus urrent for the following set of parameters: �r = 1 nm, �w = 3 m,K = 1, �n = 2 �m, �E = 1 MeV. Undulator is planar, beta-funtion is optimized for eah ase.Line is the solution of the eigenvalue equation [15℄, and the irles are alulated using formula(3).
Fig. 6. Gain length versus energy spread for the following set of parameters: �r = 1 nm, �w = 3m, K = 1, I = 2:5 kA, �n = 2 �m. Undulator is planar, beta-funtion is optimized for eahase. Line is the solution of the eigenvalue equation [15℄, and the irles are alulated usingformula (3). 11



Referenes[1℄ V. Ayvazyan et al., Phys. Rev. Lett. 88(2002)104802[2℄ V. Ayvazyan et al., Eur. Phys. J. D20(2002)149[3℄ Ya.S. Derbenev, A.M. Kondratenko and E.L. Saldin, Nul. Instrum. and Methods193(1982)415[4℄ J. Rossbah, Nul. Instrum. and Methods A 375(1996)269[5℄ M. Abo-Bakr et al., Nul. Instrum. and Methods A 483(2002)470[6℄ T. Shintake et al., in Pro. of EPAC2002, 840(2002)[7℄ Lina Coherent Light Soure (LCLS) Design Report, SLAC-R-593 (2002)[8℄ TESLA Tehnial Design Report, DESY 2001-011 (2001); TESLA XFEL, Supplement,DESY 2002-167 (2002)[9℄ E.L. Saldin, E.A. Shneidmiller and M.V. Yurkov, \The Physis of Free Eletron Lasers",Springer, Berlin, 1999[10℄ K.J. Kim, Phys. Rev. Lett. 57(1986)1871[11℄ L.H. Yu and S. Krinsky, Physis Lett. A129(1988)463[12℄ L.H. Yu, S. Krinsky and R.L. Glukstern, Phys. Rev. Lett. 64(1990)3011[13℄ Y.H. Chin, K.J. Kim and M. Xie, Nul. Instrum. and Methods A318(1992)481[14℄ M. Xie, Nul. Instrum. and Methods A 445(2000)59[15℄ E.L. Saldin, E.A. Shneidmiller and M.V. Yurkov, Nul. Instrum. and Methods A475(2001)86[16℄ J. Rossbah et al., Nul. Instrum. and Methods A 374(1996)401[17℄ E.L. Saldin, E.A. Shneidmiller and M.V. Yurkov, Nul. Instrum. and Methods A393(1997)152[18℄ M. Cornahia et al., SLAC-PUB-10133 (2003)
12


