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Pattern Reognition and Event Reonstrutionin Partile Physis ExperimentsR. Mankel1Deutshes Elektronen-Synhrotron DESY, Hamburg
AbstratThis report reviews methods of pattern reognition and event reonstrutionused in modern high energy physis experiments. After a brief introdutioninto general onepts of partile detetors and statistial evaluation, di�erentapproahes in global and loal methods of trak pattern reognition are reviewedwith their typial strengths and shortomings. The emphasis is then moved tomethods whih estimate the partile properties from the signals whih patternreognition has assoiated. Finally, the global reonstrution of the event isbriey addressed.
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1 IntrodutionSienti� disovery in elementary partile physis is largely driven by the questfor higher and higher energies, whih allow delving ever more deeply into the�ne struture of the mirosopi universe. Higher energies lead in general to aninreased multipliity of partiles. Sine the aeleration of eletrons is limitedeither by synhrotron radiation in ase of storage rings, or by �eld gradients inase of linear olliders, multi-TeV energies are in the near future only aessibleby aelerating hadrons, the ollision of whih generates even more partiles.Reonstrution of harged partiles from signals of traking detetors in spe-trometers has always shown aspets of a disipline of art, sine the variety ofexperimental setups lead to development of very diverse pattern reognition meth-ods, whih ould not easily be ranked among eah other. An general overview hasbeen given in an earlier review [1℄. It is remarkable that even today, no generallyaepted standard software pakage exists whih performs trak �nding in a va-riety of detetor setups, a situation whih is in marked ontrast e.g. to detetorsimulation. A new generation of experiments is now emerging in whih the trakdensity is so high that suess will ruially depend on the power of the reon-strution methods. One example for the development in traking demands over15 years is illustrated in �g. 1, whih shows in diret omparison an event fromthe experiment ARGUS [2℄, whih took data of e+e� ollisions in the � range inthe period 1982{1992, and the ATLAS experiment [3℄ whih is urrently underonstrution and will operate from 2007 on with proton ollisions at the LHC.The new experiments also require huge omputing resoures for reonstrutionof their data. Sine trak �nding is usually the most time onsuming part inreonstrution, the sophistiation and eonomy of pattern reognition methodshas onsiderable impat on the omputing e�ort.Pattern reognition plays an important rôle also in other detetor omponents,for example luster reonstrution in alorimeters, or ring �nding in ring imaging�Cerenkov detetors (RICH). It is however in trak reonstrution where the newgenerations of experiments pose the most ruial hallenges. This artile willtherefore fous on trak reonstrution as well as to related aspets of eventreonstrution.The �rst of the following hapters will provide an introdution into basidetetor onepts and traking devies and summarize mathematial tools forestimating parameters and performane that will be used later on. The twofollowing hapters fous on trak pattern reognition with various methods, in-luding appliations in several experiments. The next hapter then onentrateson parameter estimation from partile trajetories, whih is { in ontrast to trak�nding { in priniple a straight-forward mathematial problem, but ontains sev-eral detailed issues worth mentioning. The last hapter briey disusses sometrak-related aspets of event reonstrution.3



ATLAS
Figure 1: Comparison of event omplexity in the experiments ARGUS and AT-LAS. The ARGUS event (top) onsists of two reonstruted B mesons, one ofthem being a andidate for the harmless deay B� ! K�4�� (from [2℄). TheATLAS display (bottom) shows a simulation of an event in the inner detetorwith a Higgs boson in the deay mode H0 ! b�b, inluding the pileup at full LHCluminosity (from [3℄). 4



2 BasisThis setion provides a brief introdution into the basi elements inuening eventreonstrution. It is not intended to over the subjet of partile detetors in fulldetail, instead the detetor literature (see for example [4, 5, 6℄) is referred to.2.1 Detetor LayoutsModern detetors in high energy physis are usually sampling detetors. Thedetetor volume is �lled with devies whih the partiles traverse and in whihthey leave elementary piees of information, as e.g. an exitation in a solid-statedetetor, a primary ionization in a gaseous hamber or an energy deposition ina sensitive volume of a alorimeter. The event reord of an experiment onsistsof the amassed volume of the signals from all partiles of an interation { orpossibly even several interations { joined together. After sorting out whihbits of information are related to the same partile { this proess is alled patternreognition { the kinematial properties of eah partile have to be reonstruted,to reveal the physial nature of the whole event.In general, experiments nowadays strive to reord the interation as a whole,with all (signi�ant) partiles produed in the proess. This has lead to thedevelopment of 4� detetors, where almost the whole solid angle region, as seenfrom the interation, is overed.In general, two main onepts have to be distinguished, whih will be disussedin the following.
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Figure 2: Typial geometry of a forward spetrometer, as used e.g. in �xed-targetsetups. 5



2.1.1 Forward or �xed target geometryWhen the interation is generated by an inident beam hitting a �xed target,the entre-of-mass system of the partiipating partiles is seen under a strongLorentz boost, and the emerging partiles are moving within a one into theforward diretion. In this ase, the detetor setup must over this forward onewith instrumentation, while the more bakward part of the solid angle is generallynegleted. This senario is alled a forward detetor geometry. Similar situationsexist where the dynamis of the interation result in all relevant partiles to beprodued under a huge Lorentz boost, like heavy avour prodution at largehadron olliders.Figure 2 shematially shows a forward detetor geometry as it is used in �xedtarget experiments. The event is generated through ollision of a beam partilewith a nuleus in the target. Beause of the momentum of the inident beampartiles, the whole event is seen under a Lorentz boost in the beam diretion, sothat the emerging partiles are on�ned to a one whose opening angle dependson the typial transverse momenta generated in the interation, and the size ofthe Lorentz boost.The main omponents of a typial forward spetrometer are:� the vertex detetor, whih is a preision traking system very lose to theinteration point. Its main purpose is the improvement of trak resolutionnear the interation point whih allows reonstrution of seondary vertiesor distintion of detahed traks whih is used e.g. for the tagging of heavyavour deays.� the spetrometer magnet with the main traking system, whih measurestrajetories of harged partiles and determines their momentumand hargesign from the urvature.� the alorimeter system, whih is often split into an eletromagneti anda hadroni part. The alorimeter allows identi�ation of eletrons andhadrons by their deposited shower energy, and very often provide essen-tial signals for the trigger system. The alorimeter an also measure ener-gies of individual neutral partiles, in partiular photons, though the atualapability in this task depends strongly on the partile density in the event.� the muon detetor, whih onsists of traking devies in ombination withabsorbers. Only muons are able to traverse the intermediate material, andare then measured in the dediated traking layers.The design of a forward spetrometer is inuened by several fators. Thesheer size of the traking volume depends on the leverage required for the momen-tum resolution, sine at suÆiently high momentum the resolution is inverselyproportional to the integral of the magneti �eld along the trajetory [7℄, as will6



be disussed in more detail in se. 5. Depending on the sope of the experiment,further detetor omponents may be introdued to provide partile identi�a-tion, for example ring-imaging �Cerenkov ounters (RICH) or transition radiationdetetors (TRD).2.1.2 Collider detetor geometryWhen two beams ollide head-on, the entre-of-mass system of the interationsis either at rest or moving moderately. In this ase, the detetor should try toover the full solid angle. This beam setup usually leads to ylindrial detetorlayouts with a solenoid �eld parallel to the beam axis (�g. 3). In omparison to
Vertex detetorDrift hamberCalorimeterYoke/AbsorberMuon hambers� � � ��Figure 3: Typial setup of a ollider detetor.the forward geometry detetor, the ylindrial geometry di�ers in several details:� the vertex detetor requires modules parallel to the beam, at least in theentral part of the angular aeptane, often referred to as the barrel part.� the main traking system is generally ontained in the magneti �eld. Coiland yoke of the magnet usually have to be within the detetor volume,where the general hoie is to have the oil between drift hamber andalorimeter, where partiles traverse it before their energy being measuredin the alorimeter, or to make it large enough to enlose the alorimeter,7



whih may be more ostly to build and operate and where the �eld mayhave adverse e�ets on the alorimeter itself.� the alorimeter system now requires barrel and end ap parts to over thesolid angle. A main funtionality at high energy olliders is the measure-ment of jets.� for the muon detetor, the yoke of the solenoid lends itself readily as ab-sorber.
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2.2 Typial Traking Devies2.2.1 Linear single-oordinate measurements

Figure 4: Lower half barrel part of the Zeus miro-vertex detetorA widespread type of traking devie measures one oordinate of the partilewhose trajetory intersets the devie. A good example for this type representsilion strip detetors, whih are semiondutor-based devies strutured in stripstypially down to widths of 25 �m. Eah strip works like a small diode, with avoltage applied suh that the border area is depleted and the resistane is high. Atraversing harged partile will then reate pairs of eletrons and orrespondingholes whih drift apart under the voltage and an be registered as a pulse. Ingeneral several strips will register a signal under traversal of a partile, and thepulse heights of the partiipating hannels an be evaluated with suitable luster-ing algorithms, for example entre-of-gravity based, and determine the loationat whih the partile has passed. Solid-state detetors are presently the trak-ing devies with the highest spatial resolution, and they are often installed verylose to the interation region as vertex detetors where they allow or improve thereonstrution of primary and seondary verties. Another favourable propertyof solid-state detetors is their resiliene against radiation damage. The urrentlimitation is in the size of individual detetor modules, whih makes them expen-sive for overage of large volumes. Figure 4 shows the miro-vertex detetor of9



the ZEUS experiment [8℄, prior to its installation in 2001.2.2.2 Radial single-oordinate measurementsThe size of the traking volumes is important, sine momentum measurementrequires the partile to traverse a magneti �eld, where the length of the pathprovides the leverage that determines the preision of the momentum reon-strution. This is one of the reasons why gaseous hambers, in partiular drifthambers are very ommonly employed when large areas have to be overed.
Figure 5: Shemati view of a drift hamber ell. The �lled irles indiate wires,with the sense wire in the middle of the ell and the �eld wires on the outside. Theblak arrow shows the trajetory of a partile, the grey arrows denote primaryionization harges drifting towards the sense wire.The basi priniple of the drift hamber is displayed in �g. 5. A drift ellonsists of an anode wire in the entre and an arrangement of �eld wires. Thegeometry shown is very similar to that in the ARGUS drift hamber [9℄ (seealso �g. 34 in setion 4). The drift ell need not be of retangular shape, inthe drift hamber of the BaBar experiment, for example, it is hexagonal [10℄.Along the path of the partile, primary ionization ours. The harges drift tothe anode wire, where they reate a loally on�ned avalanhe of partiles withinthe large eletrial �eld lose to the wire. This e�et results in a multipliationof the ionization whih is alled gas ampli�ation. The rising edge of the signalpiked up by the anode wire triggers a time-to-digital onverter (TDC) whihthen measures the time until a ommon stop signal. This allows measuring ofthe drift time for those harges that are the �rst to arrive. In the simplest ase,the drift �eld will be shaped suh that the drift veloity is uniform, and thetime resolution an be diretly transformed into a uniform resolution of the drift10



distane. In pratie, numerous e�ets an lead to a non-linear drift-time/spaerelation, and the spatial resolution will depend on the preise loation of thetraversal of the partile.
Figure 6: Left: event display from the ZEUS entral traking detetor (CTD),showing sense wires and reonstruted traks. Right: loseup around the trakin the lower left area. The blak dots represent the sense wires, the grey dotsindiate the drift distane end points on both sides of the orresponding wire.Sine the time measured by the TDC orresponds to the arrival of the �rstharges, usually those with the smallest distane to the wire, the drift hambermeasures the distane of losest approah of the partile to the wire. In aseswhere more than one partile traverses the same drift ell within the same in-teration window, in general only the partile losest to the wire is registered.This e�et may ause ompliations for pattern reognition whih depend on thedegree of oupany. Another typial property of drift hambers is that the sin-gle measurement annot distinguish on whih side of the wire the partile hastraversed; this unertainty is alled left-right ambiguity. In the worst ase, left-right ambiguity may lead to a mirror trak that annot be distinguished fromthe real one. Conepts have therefore been developed how to design drift ham-bers suh that left-right ambiguity an be resolved in all ases, e.g. the butterygeometry [11℄.Drift in gases is inuened also by magneti �elds. The deviation of the gasdrift diretion from the vetor of the eletri �eld is desribed by the Lorentzangle. Figure 6 shows an event display of the entral traking detetor (CTD) ofthe ZEUS experiment, in the view along the beam axis, whih has been reated11



using the tool desribed in [12℄. The Lorentz angle in this ase is 45Æ, and it isreeted in the design of the ell struture.2.2.3 Stereo angles
x

u

x

u

x

uFigure 7: Hit ambiguities with two stereo viewsDevies measuring single oordinates do not provide three-dimensional2 pointson a trajetory, but measure only in a projeted spae. While suh devies an bevery eonomi in the sense that a relatively small number of hannels is neededto over a region at good resolution, 3D information an only be obtained byombining several projetions, usually named stereo views. While two views arein priniple suÆient to reonstrut spatial information, the presene of more thanone trak leads in general to ambiguities regarding the assignment of projetedinformation. This is illustrated in �g. 7, where two partiles are measured in twostrip detetor views of 0Æ (x) and 45Æ (u). Ambiguity in the assignment of themeasured hits in the x and u views to eah other leads to the reonstrution of twoghost points. This illustrates that in general at least three views are neessaryto avoid this kind of ambiguities. On the other hand, in speial ases of limited2The shorthands 2D (two-dimensional) and 3D (three-dimensional) will frequently be usedin the following. 12



TC PC MC SI
Figure 8: Layout of the HERA-B spetrometer. The labels TC, PC, MC and SIindiate groups of traking stations that omprise the vertex and main trakingsystem.trak density, the use of only two views may be justi�ed, sine in this ase themajority of ghosts may be disarded for geometrial reasons. This an alreadybe guessed from �g. 7: sine the true traks are well separated, the uppermostghost ombination is already just outside the hamber aeptane of the u view.Suh onepts are alled all-stereo designs.An example for a spetrometer that ombines several types of single-oordinatemeasurements is the HERA-B detetor [13, 14, 15℄ whih is shown in �g. 8. Thevertex detetor (labelled SI) onsists of eight superlayers of silion strip detetorswith four di�erent stereo angles. The design of the main traker is struturedinto the three areas within the magnet (MC), between magnet and RICH (PC)and between RICH and alorimeter (TC), it ontains 13 superlayers of honey-omb drift hamber modules for the outer area and 10 superlayers of miro-stripgaseous hambers (MSGC) for the region lose to the beam3.2.2.4 Three-dimensional measurementsIn general pattern reognition will bene�t onsiderably if the traking devie itselfis able to measure 3D spae points. A modern example is solid-state pixel dete-tors, as for example the CCD-based vertex detetor of the SLD experiment [17℄,3The layout of traking stations has been modi�ed later with the shift of emphasis awayfrom B physis. 13



Figure 9: TPC of the STAR experiment (from [16℄).where the pixels have a size of 20� 20 �m2. A gaseous detetor apable of over-ing large traking volumes with 3D measurement is the time projetion hamber(TPC). Figure 9 shows the TPC of the STAR experiment [16℄. The gas volumeitself is free of wires; instead, an axial eletrial �eld, produed with the help ofa membrane eletrode in the middle plane, lets the primary harges drift to theanodes at the end aps, where they are registered, for example with multi-wireproportional hambers with pad readout. While this provides a diret measure-ment of the x and y oordinates, the z oordinate is inferred from the timemeasurement. The magneti �eld is also axial, and plays an important rôle inlimiting di�usion e�ets during the drift.2.3 Trak Models and Parameter Representations2.3.1 Forward geometryIn the forward geometry, the interation region lies very often in an area withoutmagneti �eld, sine the spetrometer magnet is loated further downstream.The natural hoie of parameters, assuming that the z oordinate points downthe spetrometer axis and x and y are the transverse oordinates, is thenx0 the x oordinate at the referene z0y0 the y oordinate at the referene z0tx = tan �x the trak slope in the xz planety = tan �y the trak slope in the yz plane14



Q=p the inverse partile momentum, signed aording to hargewhere z0 denotes the loation of a suitable referene plane transverse to the beam,for example at the position of the target, or at the nominal interation point. Theslope parameters allow for a onvenient transformation of the parameters to adi�erent referene z value, as is needed during vertex reonstrution. In asesof a very homogeneous magneti �eld, it may be advantageous to substitute theparameter Q=p by Q=p?, where p? is the momentum in the plane transverse tothe magneti �eld, or by � = Q=R, the signed inverse radius of urvature.2.3.2 Cylindrial geometryIn ollider detetors with ylindrial geometry, the magneti �eld normally en-ompasses the whole traking volume, inluding the interation region where thepartiles are produed. In a homogeneous solenoid �eld, the partile trajetorywill be a helix urling around an axis parallel to the magneti �eld. Assumingthe z oordinate is oriented along the detetor axis, and the radius is given byr = px2 + y2, typial trak parameters given at a referene value r = r0 may be�0 the azimuth angle where the trajetory intersets the referene radiusz0 the z value where the trajetory intersets the referene radius 0 the phase angle of the helix at the referene radius intersetion, whih orre-sponds to the angle of the tangent at this pointQ=R the signed inverse urvature radius of the helixtan � where � = artan pz=p? is the dip angle of the helix2.4 Parameter EstimationThe estimation of the kinematial parameters of a partile, as position (or impatparameter), diretion of ight and momentum at its point of origin from spatialmeasurements along its trajetory is generally referred to as trak �tting. We as-sume at this point that the measurements related to a partile have been orretlyidenti�ed in the pattern reognition step (whih will be disussed in more detailin setions 3 and 4). A very general approah to parameter estimation is themaximum likelihood method, whih shall not be disussed here in detail; insteadwe refer to the textbook literature [18, 19, 20, 21, 22℄. The maximum likelihoodmethod an take very general distributions of the observed variables into aount,for example exponential distributions as they may our when deay lengths aremeasured. However, its appliation in multi-parameter problems an be veryomplex, in partiular the error analysis. In ases where the distribution of therandom variables is Gaussian, at least approximately, the least squares method is15



generally suessful. Sine many observables in trak reonstrution do at leastapproximately follow a Gaussian distribution, this method will be foussed on inthe following.2.4.1 Least squares estimationIf the trajetory of a partile an be desribed by a losed expression f~�(`), where~� stands for the set of parameters, ` is the ight path and f is the oordinate whihould be measured, a set of measurements fmig with errors f�ig will provide anestimate of the parameters aording to the least squares prinipleX2 =X (mi � f~�(`i))2�2i != min (1)One an easily onvine oneself that in the ase of normally distributed measure-ments mi, the above impression is proportional to the negative logarithm of theorresponding likelihood funtion, whih shows diretly the equivalene of leastsquares priniple and maximum likelihood priniple for this ase.Symbolizing the derivative matrix4 of f with respet to the parameters asF and the (diagonal) error matrix of the measurements as V = diagf�2i g, theexpression to be minimized is(~m� F~�)TV �1(~m� F~�) (2)and requiring the derivative to vanish at the minimum leads to the matrix equa-tion F TV �1 ~f = F TV �1 ~m (3)In ase of a linear problem, ~f = F~�, the above ondition an be diretly inverted~� = (F TV �1F )�1F TV �1~m (4)and the estimated parameters are a linear funtion of the measurements. Thematrix (F TV �1F )�1 that needs to be inverted is of the shape N� � N� (whereN� is the number of parameters desribing the partile), whih is inexpensive interms of omputation. Also the ovariane matrix of the parameter estimate anbe diretly determined asov(~�) = C� = (F TV �1F )�1 (5)The popularity of the least squares method an be attributed to its optimalityproperties in the linear ase:4We denote the derivative matrix as �f�� , where ��f���ij = �f~�(`i)��j .16



� the estimate is unbiased, i.e. the expetation value of the estimate is thetrue value� the estimate is eÆient, whih means that, of all unbiased estimates whihare linear funtions of the observables, the least squares estimate has thesmallest variane. This is alled the \Gauss-Markov-Theorem".Though these properties are stritly guaranteed only for the linear ase, they arestill retained in most ases where the funtion f~� an be loally approximated bya linear expansion.The expression X2 in equation 1 will follow a �2 distribution if the funtion f�is (suÆiently) linear and if the measurements mi follow a normal distribution.This property an be used for statistial tests. In partiular the seond onditionshould be always kept in mind, as its relevane will beome apparent later.2.4.2 The Kalman �lter tehniqueThe least squares parameter estimation as desribed in the previous setion re-quires the global availability of all measurements at �tting time. There are aseswhen this requirement is not onvenient, for example in real-time traking ofobjets, or in pattern reognition shemes whih are based on trak following,where it is not lear a-priori if the hit ombination under onsideration doesreally belong to an atual trak.The Kalman �lter tehnique was developed to determine the trajetory of thestate vetor of a dynamial system from a set of measurements taken at di�erenttimes [23℄. In ontrast to a global �t, the Kalman �lter proeeds progressivelyfrom one measurement to the next, improving the knowledge about the trajetorywith eah new measurement. Traking of a ballisti objet on a radar sreen mayserve as a tehnial example. With a traditional global �t, this would require atime onsuming omplete re�t of the trajetory with eah added measurement.Several properties make the Kalman �lter tehnique an ideal instrument fortrak (and vertex) reonstrution [24, 25, 26℄. The predition step, in whih anestimate is made for the next measurement from the urrent knowledge of thestate vetor, is very useful to disard noise signals and hits from other traks fromthe �t. The �lter step whih updates the state vetor does not require inversionof a matrix with dimension of the state vetor as in a global �t, but only withthe dimension of the measurement, leading to a very fast algorithm. Finally,the problem of random perturbations on the trajetory, as multiple sattering orenergy loss, an be aounted for in a very eÆient way. In its �nal result, theKalman �lter proess is equivalent to a least squares �t.In this artile the implementation and nomenlature from [25, 27℄ is used, andthese douments are referred to for a more detailed explanation of the Kalman�lter method. In this notation, the system state vetor at the time k, i.e. afterinlusion of k measurements is denoted by ~xk, its ovariane matrix by Ck. In17



our ase ~xk ontains the parameters of the �tted trak, given at the position ofthe kth hit. The matrix Fk desribes the propagation of the trak parametersfrom the (k � 1)th to the kth hit.5 For example, in a planar geometry with one-dimensional measurements and straight-line traks, the propagation takes theform  xtx !k =  1 zk � zk�10 1 ! xtx !k�1 (6)where a subset of the trak parametrization in setion 2.3.1 has been used. Theoordinate measured by the kth hit is denoted by mk. In general mk is a vetorwith the dimension of that spei� measurement. For traking devies measuringonly one oordinate, mk is an ordinary number. The measurement error is de-sribed by the ovariane matrix Vk. The relation between the trak parameters~xk and the predited measurement is desribed by the projetion matrix Hk. Inthe example in setion 2.2.3, the measured oordinate in the stereo view u isH  xy ! = � os�st � sin�st � xy ! (7)with �st as the stereo angle (45Æ in the example).In eah �lter step, the state vetor and its ovariane matrix are propagatedto the loation or time of the next measurement with the predition equations:~xk�1k = Fk~xk�1 Ck�1k = FkCk�1F Tk +Qk (8)and the estimated residual beomesrk�1k = mk �Hk~xk�1k Rk�1k = Vk +HkCk�1k HTk (9)Here Qk denotes the additional error introdued by proess noise, i.e. randomperturbations of the partile trajetory, for example multiple sattering. We willsee later (se. 5.2) how this treatment works in detail. The updating of the systemstate vetor with the kth measurement is performed with the �lter equations:Kk = Ck�1k HT (Vk +HkCk�1k HTk )�1 (10)~xk = ~xk�1k +Kk(mk �Hk~xk�1k )Ck = (1�KkHk)Ck�1kwith the �ltered residualsrk = (1�HkKk) rk�1k Rk = (1 �HkKk)Vk (11)5We assume at this stage a linear system, so that Fk and Hk are matries in the propersense. For treatment of the non-linear ase see below.18



Kk is sometimes alled the gain matrix. The �2 ontribution of the �ltered pointis then given by�2k;F = rTkR�1k rk (12)The system state vetor at the last �ltered point ontains always the full infor-mation from all points. If one needs the full state vetor at every point of thetrajetory, the new information has to be passed upstream with the smootherequations:Ak = CkF Tk+1(Ckk+1)�1 (13)~xnk = ~xk +Ak(~xnk+1 � ~xkk+1)Cnk = Ck +Ak(Cnk+1 � Ckk+1)ATkrnk = mk �Hk~xnkRnk = Rk �HkAk(Cnk+1 � Ckk+1)ATkHTkThus, smoothing is also a reursive operation whih proeeds step by step in thediretion opposite to that of the �lter. The quantities used in eah step have beenalulated in the preeding �lter proess. If proess noise is taken into aount,e.g. to model multiple sattering, the smoothed trajetory may in general ontainsmall kinks and thus reprodue more losely the real path of the partile.In the equations above, F and H are just ordinary matries if both transportand projetion in measurement spae are linear operations. In ase of non-linearsystems, they have to be replaed by the orresponding funtions and their deriva-tives:Fk~xk ! fk(~xk) Hk~xk ! hk(~xk) (14)using for ovariane matrix transformationsFk ! �fk�~xk Hk ! �hk�~xk (15)The dependene of fk and hk on the state vetor estimate will in general requireiteration until the trajetory onverges suh that all derivatives are alulatedat their proper positions. We will ontinue to all �fk=�~xk the transport matrixand �hk=�~xk the projetion matrix of our system.The Kalman �lter has also been found to be partiularly suited for implemen-tation in objet-oriented programming language [28℄.2.5 Evaluation of PerformaneWhen it omes to quantifying the performane of methods in trak pattern reog-nition, atual numbers will in general strongly depend of the de�nition of riteria,whih omparisons should take into aount.19



2.5.1 The referene setAssessment of trak �nding eÆieny requires �rstly a de�nition of a referene setof traks that an ideally performing algorithm should �nd. Normally traks willbe provided by a Monte Carlo simulation, and the seletion of referene traks willdepend on the physis motivation of the experiment. Low momentum partilesarising from seondary interations in the material are normally not within thephysis sope but merely an obstale and should be exluded. Partiles travellingoutside of the geometrial aeptane, for example within the beam hole of aollider experiment annot be traed by the detetor and should be disregardedas well. Also partiles straddling the border of a detetor and e.g. traversing onlya small number of traking layers will often be regarded as outside of the designtraking volume. A typial onvention may be to regard partiles whih traverseO(80%) of the nominal traking layers as onstituents of the referene set.The de�nition of the referene set an then be regarded as a de�nition ofe�etive geometrial aeptane�geo = NrefNtotal (16)with N denoting the number of partiles of interest in the referene set and intotal.2.5.2 Trak �nding eÆienyDe�nition of the trak �nding eÆieny requires a riterion whih spei�es whethera ertain partile has been found by the algorithm or not. There are two ratherdi�erent onepts:Hit mathing This method analyzes the simulated origin of eah hit in the re-onstruted trak using the Monte Carlo truth information. If the quali�edmajority of hits, for example at least 70% originates from the same truepartile, the trak is said to reonstrut this partile. This method is stablein the limit of very high trak densities, but it requires the Monte Carlotruth information to be mapped metiulously through the whole simulation.Parameter mathing The reonstruted parameters of a trak are omparedwith those of all true partiles. If the parameter sets agree within ertainlimits (whih should be motivated by the physis goals of the experiment),the orresponding trak is said to reonstrut this partile. This methodrequires less funtionality from the simulation hain, but it bears the dan-ger of aepting random oinidenes between true partiles and artifatsfrom the pattern reognition algorithm. In extreme ases, this an leadto the paradox impression that the trak �nding eÆieny improves withinreasing hit density. 20



The reonstrution eÆieny is then de�ned as�reo = N reorefNref (17)where N reoref is the number of referene partiles that are reonstruted by atleast one trak. It should be noted that this de�nition is suh that a value ofone annot be exeeded, and multiple reonstrutions of the same trak will notinrease the trak �nding eÆieny. One should also ontrol the abundane ofnon-referene traks whih are reonstruted (N reonon�ref ): normally the relationN reonon�refNtotal �Nref � �reo (18)should hold, otherwise the referene riteria might be too strit.2.5.3 GhostsTraks produed by the pattern reognition algorithm that do not reonstrutany true partile within or without the referene set are alled ghosts. A ghostrate an be de�ned as�ghost = NghostNref (19)Sine the ghost rate may be dominated by a small subset of events with opioushit multipliity, it is also informative to speify the mean number of ghosts perevent.2.5.4 ClonesThe above de�nitions for eÆieny and ghost rate are intentionally insensitiveto multiple reonstrutions of a partile. Suh redundant reonstrutions aresometimes alled lones. For a given partile m with N reom traks reonstrutingit, the number of lones isN lonem = ( N reom � 1; ifN reom > 00 ; otherwise (20)and the lone rate beomes�lone = PmN lonemNref (21)In pratie, lones an usually be eliminated at the end of the reonstrutionhain by means of a ompatibility analysis [29℄.21



2.5.5 Parameter resolutionThe quality of reonstruted partile parameters and error estimates from reon-strution in a subdetetor is essential for mathing and propagation into anothersubsystem. For the whole detetor, it determines diretly the physis perfor-mane. The quality of the estimate of a trak parameter Xi is reeted in theparameter residualR(Xi) = Xrei �X truei (22)From the parameter residual distribution, one an then obtain the parameter es-timate bias hR(Xi)i, and the parameter resolution as a measure of its width. Theestimate of the parameter ovariane matrix an be used to de�ne the normalizedparameter residualP (Xi) = Xrei �X trueipCii (23)whih is often alled the pull of this parameter. Ideally, the pull should follow aGaussian distribution with a mean value of zero and a standard deviation of one.2.5.6 InterplayResults for the individual performane estimators may very muh depend on thede�nitions, so it is advisable to always judge several of the above quantities inombination. For example, the trak �nding eÆieny should be always seentogether with the ghost rate, sine a less strit de�nition of the riterion if atrak reonstruts a partile will lead to a higher trak �nding eÆieny but alsoto a higher ghost rate. Also the parameter resolution will tell if the reonstrutionriterion is orret, beause in ase of an inadequately generous assignment, theparameter residuals are likely to show an inreased width, or tails from improperlyreognized traks. When parameter mathing is used, generous de�nition of themathing riteria will also inrease the trak �nding eÆieny, but reveal itselfin a high lone rate.Exessive tightening of the referene set riteria an potentially also amelio-rate the visible trak �nding eÆieny, but it will be at the ost of the e�etiveaeptane, sine the total yield of partiles with a ertain physial signature isproportional to the produt�total = �reo � �geo (24)always assuming that relation (18) holds.22



3 Global Methods of Pattern ReognitionThe task of pattern reognition in general an be desribed by the illustrationin �g. 10. The physial properties of the partiles that are subjet to measure-ment are desribed by a set of parameters, as point of origin, trak diretion ormomentum. Eah partile an therefore be represented by a point in the featurespae spanned by these parameters. The signals the partile leave in the ele-troni detetors are of a di�erent kind, they are measured hit oordinates thenature of whih is governed by the type of devie. These oordinates are repre-sented in the pattern spae. While the onversion from feature to pattern is doneby nature, or by sophistiated simulation algorithms in ase of modelled events,the reverse proedure is the task of the ombined pattern reognition and trak�tting proess.
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Figure 10: Shemati illustration of Pattern Spae (left) and Feature Spae (right)Global methods assess the pattern reognition task by treating all detetorhits in a similar way. The result should be independent of the starting point orthe order in whih hits are proessed. This is unlike the loal methods that willbe disussed in setion 4, whih depend on suitable seeds for trak andidates.Global methods aim to avoid any kind of seeding bias.3.1 Template MathingThe simplest method of pattern reognition an be applied if the number ofpossible patterns is �nite and the omplexity limited enough to handle them all.In this ase, for eah possible pattern a template an be de�ned, for example aset of drift hamber ells through whih trak andidates in a ertain area willpass. Suh a tehnique has been used for the Little Trak Finder, whih waspart of the seond trigger level of the ARGUS experiment [30℄, and whih workedby omparing the hits in the drift ells of the axial layers to masks stored in23



random aess memory. This method allowed for basi trak �nding in a 2Dparameter spae, the trak azimuth and the urvature in the R=� projetion,within 20 �s. The granularity of the ARGUS drift hamber was moderate, whihlimited the number of templates that had to be generated. The onept was laterextended to the ARGUS vertex trigger [31℄, whih used the hits of the miro-vertex detetor [32℄ and generalized the algorithm to three dimensions and fourparameters (trak urvature being negligible), whih allowed to measure the trakorigin in z to rejet bakground interations in the beam pipe. This algorithmrequired the de�nition of more than 245000 masks, where a �ve-fold symmetryof the detetor had already been exploited.

Figure 11: Shemati illustration of the tree-searh algorithm: in several steps(in this ase four), the trak is mathed with templates of inreasing granularityand resolution. Eah step desends into the next level of template hierarhy.Template mathing algorithms are mathematially so simple that they anbe hard-wired as trak roads, provided that the hit eÆieny of eah element islose to one. Remarkably, the omputing time may be independent of the eventomplexity, sine the number of templates to be heked is always the same.However, template mathing does not sale very well when the problem requireshigh dimensionality or granularity. On one side, with inreasing granularity thenumber of templates quikly exeeds limits of feasibility already when storing24



them. Also the number of omputations inreases strongly with a �ner resolutionof templates. Keeping the granularity low, on the other hand, means that densesituations annot be resolved, and other methods have to be used to disentanglethem.An elegant solution to both problems is the tree-searh algorithm, whih usestemplates of inreasing strutural resolution that are ordered in a hierarhy [33,34℄. In the �rst step, the hit struture is viewed at a very oarse resolution with asmall set of templates (�g. 11). For those templates that have \�red", i.e. whihmath a struture prevalent in the event, a set of daughter templates with �nergranularity is applied whih are all ompatible with the �rst mathed template.This subdivision of templates is iterated until either a mathing template on the�nest level of granularity is reahed { indiating that a good trak andidate hasbeen found { or a pattern mathed at a ertain resolution level annot be resolvedat the next level, in whih ase it is attributed to a random ombination of hits.The tree-searh approah avoids the linear growth of the number of omputa-tions with inreasing granularity that would develop in a purely sequential searh;instead, the omputing e�ort, at least for small oupany, inreases only loga-rithmially with the number of detetor hannels. The algorithm beomes evenhandier when storage of all possible templates an be avoided: in many asessymmetries of the detetor an be used to formulate rules how the daughter tem-plates an be derived from the parent at run-time, and how they are onnetedwith the event data. The tree-searh algorithm is used for example in the patternreognition of the HERMES spetrometer, where the �nal detetor resolution of250 �m is reahed in 14 steps [35℄. Appliation of tree-searh ideally requiresonsiderable simpliity and symmetry in the detetor design, and therefore an-not be easily used in many omplex ases. In partiular inhomogeneous magneti�elds an ompliate the appliation.3.2 The Fuzzy Radon TransformIn a very general sense, the observed hit density in the event an be desribedby a funtion �(x), where x is a very general desription of the measured set ofhit quantities. In absene of stohasti e�ets, the expeted hit density in thepattern spae an be desribed by an integral�(x) = ZP �p(x)D(p)dp (25)where D(p) desribes the prevalent population of the feature spae, typially asum of delta funtions entred at the parameters of the partiles, and �p(x) isthe average response funtion in pattern spae for a partile with parameters p,inluding all detetor layout and resolution e�ets [36℄.Pattern reognition an then be regarded as an inversion of the above integralfrom a stohastially distorted �(x). The Fuzzy Radon transform of the funtion25



�p(x) is de�ned as~D(p) = ZX �(x)�p(x)dx (26)This transformation requires preise knowledge of the response funtion, in par-tiular the detetor resolution. Trak andidates are then identi�ed by searhingloal maxima of the funtion ~D(p).This method shall be illustrated in a simple example with a traking systemonsisting of ten equidistant layers in two dimensions without magneti �eld.Traks are parametrized by an impat parameter x0 and a trak slope tx =tan �x as de�ned in se. 2.3.1. As the measurement is one-dimensional, eahhit oordinate gives a linear warp-like onstraint in the parameter plane, wherethe width of the warp reets the e�et of the detetor resolution (�g. 12a).For a �titious situation with three superimposed traks, the resulting FuzzyRadon transform is shown in �g. 12b. The three peaks are very pronouned,but development of additional loal minima is already visible even in this leansituation.In [36℄ this method has been explored for a ylindrial geometry in the ase oftwo very lose traks whih only di�er by a small di�erene in the urvature value(�g. 13), with additional noise taken into aount. Figure 14 shows the resultingRadon transform ~D(�; �; ) as a series of �ve images around the entral values (stands for the z speed of the partile whih is a measure of the dip angle tangentexplained in setion 2.3.2), where also the resolution parameter � has been varied.The images show that the individual traks an in fat be distinguished (entreimage), but it is essential that the assumed resolution parameter mathes thereal one. It should be noted that automated reognition of the \trak signals" insuh images would not be a trivial task, and that, for pratial purposes, analysisof fuzzy Radon transforms in multi-dimensional parameter spaes are in generalvery demanding in terms of omputing power.Another generalization of the Radon transform has been investigated in [37℄.3.3 HistogrammingAs seen in the previous setion, the fuzzy Radon transform allows taking thepreise detetor resolution into aount in an elegant manner. In ases wheree�ets of the resolution an be negleted, the response funtion �p(x) only needsto desribe the trajetory, and takes the shape of a delta-funtion whose argumentvanishes for points on the trajetory. This speial form of the Radon transformis often alled Hough transform [39℄. The Hough transform of eah point-likehit in two dimensions beomes a line; in more generality it de�nes a surfae inthe feature spae. Completion of the pattern reognition task is thus onvertedinto �nding those points in feature spae where many of suh lines or surfaesinterset, or at least approah eah other losely in shape of knots [39℄.26
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Figure 12: Fuzzy Radon transform ~D(x0; tx) of the hit signals of a single trak(a), and in a senario with three traks (b), where x0 and tx are the trak o�setand slope. 27



Figure 13: Two simulated traks di�ering only by urvature (taken from [36℄)

Figure 14: Fuzzy Radon transform of the two traks in �g. 13 displayed in (�; �)spae, with the third trak parameter  as desribed in the text (taken from [36℄).The transform is shown for three values of the resolution parameter � in �p(x),where the value in the middle row orresponds to the simulated resolution.28
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Figure 15: Illustration of wire orientations in the ZEUS straw-tube traker. Inthis representation, the beam is oriented vertial to the page, displaed towardsthe bottom of the page (from [38℄).Histogramming an be regarded as a disrete implementation of the Houghtransform. Hit information is onverted to a onstraint in a binned feature spae,and the frequeny of entries in a bin above a ertain limit is indiative for atrak andidate. However, in most traking devies a single measurement isnot suÆient to onstrain all trak parameters. One solution is then to onverteah measurement into a disretized urve or surfae in parameter spae, andto sample the ontribution of all hits in orresponding aumulator ells. Anexample for suh an implementation is shown for the straw-tube traker (STT)of the ZEUS experiment [38℄. This detetor system is used as a forward trakerand onsists of two superlayers with eight layers of straw tubes eah. The strawsare arranged in the four di�erent stereo views 0Æ, �15Æ and 30Æ, as illustratedin �g. 15. The 0Æ straws are oriented suh that the point of losest approah tothe beam line is in the middle of the straw. Taking the beam spot into aountand negleting the urvature of the segment within the on�nes of the straw tubetraker, eah hit provides an ar-like onstraint in the parameter spae spannedby polar angle � and the azimuth angle �. This struture is displayed in thehistogram from four views for a single trak in �g. 16. The hits from the 0Æ strawsgive a transform whih is symmetri in azimuth, while the yields from the otherviews are slightly skewed in orrespondene to the stereo angle. The parametersof the trak are learly indiated by the intersetion of the four onstraints. Theresulting histogram is already muh more omplex in a sample with 10 simulatedtraks, where ombinatorial overlaps our (�g. 17).Another popular way of avoiding the underonstrained ase is to ombine29



Figure 16: Hough transform of a single simulated trak in the ZEUS straw-tubetraker (from [38℄).
30



Figure 17: Hough transform of a set of simulated traks in the ZEUS straw-tubetraker (from [38℄).
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several hits to trak segments before applying the Hough transform. For example,in a 2D pattern spae without magneti �eld, two measured oordinates in thesame projetion from nearby hits in di�erent detetor layers give a straight traksegment whih represents a point in the feature spae. Histogramming all segmententries in the feature spae should then reveal trak andidates as loal maxima.This proedure is often referred to as loal Hough transform [40℄.��	 ���� ��RHHjbands
Figure 18: Loal Hough transform in a simulated event with �ve interations, inthe feature spae spanned by impat parameter x0 and trak slope tx = tan �x(from [41℄). The parameters of true partiles are illustrated by irles. Theolour intensity in eah pixel orresponds to the ount of segments falling intothis square. While the histogram shows the expeted enhanements at the trueparameters of most simulated partiles, it also displays arti�ial strutures, indi-ated as bands in the plot that ompliate the analysis.In general, a prie has to be paid for this arti�ial onstrution of a higherdimension of measurement, sine random ombinations of hits of di�erent originlead to ghost segments. The abundane of suh ontaminations depends stronglyon the hit and partile density. A pratial example illustrating this problem isshown in �g. 18 (taken from [41℄). The geometry orresponds to the \PC" part ofthe HERA-B spetrometer (see �g. 8), whih onsists of four traking superlayers,as indiated in �g. 19a, though in the latter the drawing has been simpli�edfrom six to three individual layers per superlayer. A simulated high-multipliityevent with �ve simultaneous pN interations has been passed through a loal32



Hough transform, from whih a loseup is shown in �g. 18. The genuine traksas generated by the Monte Carlo are indiated as irles in the feature spae.While enhanements on the histogram are learly seen at the trak parametersof the true partiles (indiated by irles), the histogram shows a signi�antnumber of bands whih are aused by the interferene of trak patterns. Suhinterferene ours when several traks ross the same superlayer of the trakingsystem within a lose distane, as illustrated in �g. 19b for four intersetingtraks: the proximity gives rise to a multitude of ombinatorial segments, whihhave roughly the orret spatial information (xSL3), but a wide range of deviatingslopes shadowing the entries with the proper value. These segments enter thehistogram with their spatial oordinate transformed to the referene plane relativeto whih all impat parameters are de�ned (in this ase given by z = zref ) in themannerx0 = xSL3 + (zref � zSL3) � tan �x (27)The wide spread in the slope tan �x results in a band in the parameter spae,where the tilt of the bandd tan �xdx0 = 1zref � zSL3 (28)reets the distane of the superlayer (at zSLi) from the referene plane (at zref).It is therefore not surprising that in the given detetor example with four super-layers, bands of four di�erent slopes an our.Even in absene of ghost segments from trak overlap, the pattern of traksignals in the disretized feature spae will in general reet the underlying layerstruture of the traking system. The loal Hough transform is usually based onshort segments, i.e. those omposed of hits in subsequent or at least nearby lay-ers, whih has the advantage that the line topology of the trak is exploited andthe bakground from random hit ombinations is still relatively small. However,due to the small leverage, the angular error an be sizeable, whih may imposeadditional diÆulty in identifying the trak andidates in the Hough transform.Long segments spanning aross many layers of the traking system have the prin-ipal advantage of better angular resolution. However, a wide variety of hitshave to be ombined, so that the number of random ombinations inreases a-ordingly. The performane of di�erent approahes has been analyzed in detailin [42℄. For the individual appliation, the optimal hoie will depend on therelative importane of resolution and multiple sattering e�ets.3.4 Neural Network TehniquesThe human brain is partiularly skilled in reognizing patterns. It is apable ofanalyzing patterns in a global manner; it is self-organizing, adaptive and fault-tolerant. It is therefore not surprising that methods have been sought for whih33
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Figure 19: (a) Illustration of the model detetor with four traking superlayersdisussed in the text, with the response of a single passing trak. (b) Shematiillustration of trak segments for a loal Hough transform generated from fourtraks interseting in superlayer SL3, showing the abundane of ghost segmentsompared to the proper ones.aim at solving pattern reognition problems bymeans of arti�ial neural networks.Another intriguing aspet of the human brain is the massively parallel proessingof information, whih raises hopes that algorithms an be derived whih an takefull advantage of inherently parallel omputing arhitetures. Beause of the widesope of this subjet, this artile annot give a full introdution into this �eld. Aolletion of lassi papers reprinted is available in [43℄.An arti�ial neuron manifests a simple proessing unit, whih evaluates anumber of input signals and produes an output signal. A neural network onsistsof many neurons interating with eah other - the output signal of a neuron isfed into the input of many other neurons. While many lassi�ation problemsan be attaked with simpli�ed layouts, the feed-forward networks, trak patternreognition in general uses fully oupled topologies.3.4.1 The Hop�eld neuronIn the Hop�eld model [44℄, eah neuron is in general interating with every otherneuron. All interations are symmetri, and the state of eah neuron, expressedby its ativation Si, an only be either ative (1) or inative (0). The interationis simulated by updating the state of a neuron aording to the ativations of allother neurons. The update rule in the Hop�eld model sets the new state of aneuron toSi = �0�Xj (wijSj � si)1A (29)34
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Figure 20: Three typial ases for adjaent trak segments in the Denby-Petersonalgorithm. The �rst two ombinations orrespond to inompatible segments, inthe third ase, both segments are likely to ome from the same trak. (from [41℄)where the weights wij determine the strength of eah interation, si are thresholdvalues. The theta funtion �(: : :), whose value is zero for negative argumentsand one otherwise, is only the simplest example of an ativation funtion, whihrelates the updated ativation to the weighted sum of the other ativations. Itan be shown [44℄ that suh interations haraterize a system with an energyfuntionE = �12 0�Xij wijSiSj � 2Xi siSi1A (30)and that the interation leads to a �nal state whih orresponds to the minimumof the energy funtion [44, 45℄.3.4.2 The Denby-Peterson methodAn adaptation of Hop�eld networks to trak �nding has been developed byDenby [46℄ and Peterson [47℄. The basi idea is to assoiate eah possible on-netion between two hits with a neuron. Ativation of suh a neuron meansthat both hits are part of the same trak. It is then essential to de�ne an in-teration suh that in the global energy minimum only neurons orresponding tovalid onnetions will be ative. Interation is only meaningful with neurons thathave one hit in ommon. An approah to suh an energy funtion is illustratedin �g. 20 [41℄: while in the �rst two ases the neurons (ij) and (jk) representsegments inompatible with the same trak and therefore must have a repulsiveinteration, the third ase is muh more trak-like and should have an attrativeinteration. This desired behaviour an be obtained by an energy funtionE = �12X Æjk� osm �ijldij + djl SijSkl35



+12�0�Xl6=j SijSil +Xk 6=i SijSkj1A+ 12Æ �XSkl �N�2 (31)where Sij is the ativation of the neuron assoiated with the segment (ij), i.e.the onnetion between hits i and j, and �ijl is the angle between the segments(ij) and (jl). The variables � and Æ are Lagrange multipliers preeding termsthat suppress unwanted ombinations as the �rst two ases in �g. 20, and �xthe number of ative segments to the number of hits, N . Trak �nding is thenredued to �nding the global minimum of this multivariate energy funtion. Theinteration is simulated by realulating the ativity of eah neuron with theupdate rule, whih takes the ativations of all other neurons into aount.It is remarkable that the Denby-Peterson method works without atual knowl-edge of a trak model { it favours series of hits that an be onneted by a line asstraight as possible, but also allows small bending angles from one segment to thenext. Thus also urved traks an be found, provided that a suÆient numberof intermediate measurements exists whih split the trak into a large number ofalmost ollinear segments. The Denby-Peterson algorithm is in partiular indif-ferent about the global shape of the trak - a irle and a wavy trak with thesame loal bending angles but alternating diretions are of equal value.One of the �rst explorations of the Denby-Peterson method has been per-formed on trak oordinates measured by the ALEPH TPC [48℄. The algorithmfound traks in hadroni Z0 deays rather aurately, whih may be at least par-tially attributed to three favourable irumstanes: pattern reognition bene�tsonsiderably from the the 3D nature of the hits measured in the TPC, and equallyfrom the lean event struture and the low oupany. Moreover, the algorithmis applied suh that the initialization ativates only neurons that already orre-spond to plausible onnetions of hits. The authors of [48℄ have also investigatedthe behaviour of the method on events with muh higher trak numbers, sim-ulated by piling up Monte-Carlo events, and found that the total CPU time ofthe neural network algorithm is dominated by the initialization of the neurons,whih indiates the degree of seletion already involved at this stage.
Figure 21: Wrong ativations in the ase of nearby traks (from [41℄).36



The behaviour of the Denby-Peterson method under high trak densities hasbeen further investigated in [41℄ by applying it to a four superlayer geometryresembling the \PC" part of the HERA-B traker (see �g. 8). These studiesfound that the lassial Denby-Peterson method annot be relied on to onvergesafely in ases of nearby parallel traks. This behaviour is explained in �g. 21:there is no possibility of resolving a ross-wise misassignment, sine the systemhas reahed a loal energy minimum, and no additional segment an be attahedbeause it would temporarily lead to an illiit branhing of the trak aordingto the rules illustrated in �g. 20 and formulated in eq. 31.
Figure 22: Modi�ed energy funtion versus angle �ijk (left) and generalized seg-ment length dij (right) as used in [41℄.The situation an be improved, as shown in [41℄ by dropping the branhingrestrition and instead aounting for undesired angles in the ost funtion, bythe replaement� osm �ijldij + djl ! f(osm �ij;kl) (32)where the angle-dependent part is hosen suh that only segments with angleslose to 180Æ give a strong negative ontribution, and by adding a term propor-tional to (Æ � 1=dij) for eah neuron, whih introdues a typial inverse segmentlength Æ into the energy funtion, where the length of an individual segment dij isgeneralized suh that the superlayer struture of the traker is taken into aount.(The full de�nitions are given in [41℄.) The energy as funtion of segment angleand length is displayed in �g. 22.The e�et of this variation of the method is visible in �g. 23, whih showsthe system after one iteration applied to an event with low trak multipliity. Atthis point, there are still branhings that would not be allowed in the lassialDenby-Peterson approah, and whih disappear under further iteration. Withthese modi�ations the algorithm obtains reasonable eÆieny and ghost ratevalues [49, 41℄, as displayed in �g. 24. 37
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3.4.3 Elasti arms and deformable templatesThe above-mentioned limitations of the Denby-Peterson algorithm are overomewith the elasti arms algorithm [40, 52℄, whih was introdued by Ohlsson, Pe-terson and Yuille in 1992. The basi idea an be desribed as follows: a set ofM deformable templates is reated, whih orrespond to valid parametrizationsof traks with parameters ft1, ... tMg. The number M must be adjusted to theapproximate number of traks in the event. The algorithm should then move anddeform these templates suh that they �t the pattern given by the positions ofN detetor hits, whih are represented by f�1 ... �Ng.As in the Denby-Peterson ase, the approah proeeds by formulation of anenergy funtion, whose absolute minimum is at the set of parameters whih solvethe pattern reognition problem. This requires two elements: an ativation-likequantity Sia whose value is one if hit i is assigned to trak a, and zero otherwise,and a funtion Mia(�i; ta) desribing a metri between trak template and hit,typially the square of the spatial distane. The energy funtion an then bede�ned as~E(S; �; t) = NXi=1 MXa=1SiaMia(�i; ta) (33)To avoid trivial solutions, it is neessary to introdue the ondition that eah hitmust be assigned to some template in the formMXa=1Sia = 1 (34)for eah hit i. This requirement is alled Potts ondition [53℄. One immediateonsequene of this ondition is the neessity to introdue a speial template towhih noise hits an be assigned.The main hallenge is then to �nd the global minimum of the energy fun-tion. Sine this funtion tends to be very spiky, as will be illustrated in moredetail below, this problem is usually takled by extending the energy funtionaording to a stohasti model, whih simulates a thermal motion in the systemand smoothens out the spike struture. Searh of the minimum starts then athigh temperature, and the temperature is suessively lowered. At zero temper-ature, the extended energy funtion beomes idential to the original one. Thistehnique is alled simulated annealing.Instead of the temperature T , normally its inverse � = 1=T is used. At�nite temperature, the Sia are replaed by their thermal mean values Via, whihtake ontinuous values and lead to a fuzzy hit-to-trak assignment. They an bederived from the metri funtion asVia = e��Miae��� +PMb=1 e��Mib (35)40



where the index b in the sum in the denominator runs over all templates exeptfor the noise template. Via is alled the Potts fator. The temperature determinesthe range of inuene for a hit: at zero temperature (� !1), the hit is assignedonly to the nearest template, with the orresponding Via equal to one. At highertemperature, the degree of the assignment dereases smoothly with inreasingdistane. The noise parameter � represents the symboli noise template whih, inthe limit of zero temperature, takes over hits that are further than p� away fromthe nearest genuine template. It is therefore logial to set � in orrespondeneto the detetor resolution, typially as three or �ve standard deviations. Theterm e��� aounts for assignments to the noise template. The Potts fator ofthe noise template is alulated asVi0 = 1�Xa 6=0Via (36)instead of eq. 35, sine the onept of a distane does not make sense here.The only remaining steps neessary to solve the pattern reognition problemare1. to �nd a suitable initialization for the templates, and2. to �nd the absolute minimum of the energy funtion.It turns out that both are non-trivial in pratial appliations. Before turning torealisti senarios, it is very instrutive to look at the shape of the energy funtionin a very trivial example (taken from [41℄), whih onsists of a detetor measuringonly one spatial oordinate, named x, and a trak model onsisting only of oneparameter for eah template. Two hits are onsidered with oordinates x1 andx2, and two templates with parameters xa and xb.The energy as a funtion of the template parameters is shown in �g. 25 ata high temperature (the hits being at oordinates xa = �1 and xb = +1). Atthis temperature, the templates pereive only a blurred image of the hit pat-tern. The global minimum is at the oordinates in the entre between the hits.When the temperature is lowered to a ritial temperature T, a saddle pointdevelops (�g. 26), and the previous single minimum splits into two. The ritialtemperature is related to the oordinates asT = 1� = �xa � xb2 � (37)At very low temperature (�g. 27), two minima have developed at positionsorresponding to the two equally valid solutions, xa = x1 ^ xb = x2 andxa = x2 ^ xb = x1. The potential ridge at the line xa = xb an be interpreted asa repulsive fore between the templates [40℄.The presene of the noise template parameter � introdues further loal min-ima into the energy funtion. An example is shown in �g. 28 with three hits (with41



Figure 25: Representations of the energy funtion of a one-dimensional detetorwith two hits, as a funtion of the parameters of two templates xa and xb at hightemperature [41℄.

Figure 26: Energy funtion at ritial temperature [41℄.42



Figure 27: Energy funtion at low temperature [41℄.

Figure 28: Energy funtion with three hits at low temperature, with � = 0:4 [41℄43



x = 0:24) and � = 0:4. While the previous solutions are still valid, additionalminima appear that orrespond to either one or two of the genuine hits beingattributed to noise.The omplexity of the energy funtion for this very simple example is alreadystaggering, and illustrates why initialization and onvergene are serious issues.In their initial study, Ohlsson, Peterson and Yuille [40℄ applied the methodto hits from the DELPHI TPC. Reonstrution was restrited to traks omingfrom a vertex spot ommon to all events, so that trak andidates were desribedby only three parameters, whih simpli�ed the situation onsiderably. The ini-tialization was obtained with a loal Hough transform. The moderate hit densityallowed performing �rst the Hough transform in the projetion transverse to themagneti �eld, searhing for trak andidates in the spae of urvature and az-imuth. For eah andidate found as a narrow peak in this projetion, all hitswithin a ertain neighbourhood were used to alulate the longitudinal tilt angle,whih was again histogrammed.The elasti arms phase then used gradient desent to minimize the energyfuntion at a given temperature. The temperature was lowered by 5% in eahstep. The Hough transform produed an abundane of templates. The exessivetemplates were either attrated to noise, or onverged to traks that had alreadytemplates assoiated with them; these had to be weeded out at the end. Theresult was found to be rather independent of algorithm parameters. The CPUtime per event was dominated by the elasti arms step (1 min on a ontemporaryomputer), in ontrast to the Hough transform initialization (1 s).One more one has to note that pattern reognition in the TPC (here DEL-PHI's) bene�ts strongly from the lean event struture with a moderate trakdensity, and the remarkable 3D measurement apabilities of the hamber. Aninteresting study targeted at muh more dense events with 2D measurements hasbeen performed in 1995 [54℄. The algorithm was applied to the barrel part of theTransition Radiation Traker (TRT) of the ATLAS detetor, with 40 layers ofstraw drift-tubes with a diameter of 4 mm and a hit resolution of 150 �m. Sinethe required hit resolution ould only be obtained using the drift-time measure-ment, the left-right ambiguity had to be resolved. This problem was approahedwith the elegant method from [55℄, whih introdues energy terms for both left-right assignments (in the nomenlature of eq. 33)~E(S; �; t) = NXi=1 MXa=1Sia �s+iaM+ia(�i; ta) + s�iaM�ia(�i; ta)� (38)where the left-right assignment parameters s�ia, whih satisfy the ondition s+ia +s�ia = 1, introdue a repulsive interation between the alternative left-right as-signments, so that a trak an only be assigned to one of the two ambiguities ofa hit.The initialization again used a loal Hough transform. The minimizationphase of the elasti arms step at a given temperature, however, did not rely on44



simple gradient desent, but used the Hessian matrix, i.e. the seond derivative ofthe energy with respet to the parameters, in a multidimensional generalization ofthe Newton method. The eÆienywas found to be 85% for fast traks ompletelyontained in the barrel TRT. The eÆieny was pratially idential to the oneof the Hough transform itself, indiating that the elasti arms part did not �ndany new traks that had not been properly overed by the initialization. Themain appliation of the elasti arms part was therefore to verify trak andidatesfound by the Hough transform and resolve the hit assoiations.

Figure 29: Illustration of segment initialization in the zx projetion. The irlesare drift distane isohrones of eah hit with the drift ell indiated by a surround-ing hexagon. The light grey lines are the simulated partiles, the blak straightlines onneting the hits are the segments produed to initialize the elasti armsalgorithm [41℄.The trak �nding apabilities of elasti arms have been further investigatedin [41℄ and [56℄ with events passed through a full Geant simulation of the \PC"area of the HERA-B spetrometer (see �g. 8). Sine the interpretation of theHough transform turned out problemati in the �xed target geometry understudy, a di�erent approah was followed. Trak andidates were initialized bysearhing hit triplets in the 0Æ projetion in eah of four superlayers (�g. 29). Alltriplets with a straight-line-�t yielding �2 < 3:8 were aepted, and then mathedaording to their trak parameters. Combinations with triplet segments from allfour superlayers were used to initialize the templates in the horizontal plane. The45



elasti arms algorithm was then used to perform the pattern reognition together
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segment in the projetion de�ned a vertial plane in whih the trak andidatehad to be ontained (�g. 31). Intersetions of stereo wires with this plane lead toindiret measurements in the vertial oordinate y; the measurement equationu[v℄ = x os� � (�)y sin� (39)was inverted toy = �x os� � u[v℄sin� (40)and the triplet and segment �nding proeeded with the stereo layers in a similarfashion. The stereo oordinates u and v took drift distane measurements intoaount, whih improved the resolution but lead to left-right ambiguities also inthe vertial segment �nding.The seond ruial improvement onerned the minimization algorithm withineah annealing step. The simpliity of the gradient desent method has made ithighly popular for neural network appliations, but as already observed in [54℄,it is by far not the most eÆient method. One of its main drawbaks is thefat that its onvergene slows down as it approahes the minimum where thesurfae of the energy funtion attens out. On the other hand, large gradients asthey an easily our at lower temperatures (see �g. 28) tend to inrease the stepsize drastially and throw the algorithm ompletely o� the mark. These e�etsontribute largely to the high omputing demands.It is therefore promising to explore more eÆient minimization tehniques forhigh-dimensioned funtions [56℄. The Quikprop algorithm [57℄ parametrizes thedependene of the energy funtion on a template parameter t(k)a (where a is theidenti�er of the template and k the index of the template parameter) in seondorder E �t(k)a �ftag = 0 + 1t(k)a + 2 �t(k)a �2 (41)and replaes the parameter in iteration step (i+1) with the value at the minimumof the parabola, whih is alulated using the gradients of the two previous stepsi and (i� 1):�t(k)a;i+1 = � �E�t(k)a ���i�E�t(k)a ���i � �E�t(k)a ���i�1�t(k)a;i (42)Another more sophistiated minimization method, the RPROP algorithm [58℄,eliminates entirely the dependene of the step width of the gradient by usingonly its sign. Eah omponent of the template parameter set has its own stepwidth, whih is redued in eah step if the sign of the partial derivative has nothanged, and somewhat inreased if the sign has hanged, indiating a step arossthe minimum. 48



In appliation to fully simulated events, the RPROP algorithm turned outto be ten times faster than simple gradient desent. The Quikprop algorithmredued the omputing time by yet another fator of two, but failed to onvergeproperly on about 10% of the traks, so that the RPROP algorithm was �nallyhosen for further study [56℄.Nint Segment initialization Elasti arms (inl. initialization)EÆieny Ghostrate CPU time EÆieny Ghostrate CPU time1 91% 38% 4s 90% 3.7% 15s2 91% 100% 14s 89% 5.9% 40s3 89% 240% 47s 87% 7.5% 105s4 87% 440% 107s 86% 10% 198s5 85% 1100% 234s 83% 13% 371sTable 1: EÆieny of segment initialization and elasti arms algorithm as om-piled from [56℄, as a funtion of the number of superimposed interations, Nint. Inthe elasti arms setion of the table, eÆieny, ghost rate and CPU time inludethe e�ets of the segment initialization.The segment initialization ahieved a trak eÆieny of 91% for single inter-ations, whih dropped to 85% for �ve superimposed interations in an event(tab. 1). The relative eÆieny of the subsequent elasti arms phase was alwaysbetter than 98%, indiating that hardly any of the good traks the initializationhad found were lost. On the other hand, the elasti arms algorithm stronglyredued the rate of ghost traks prevalent in the initialization. The CPU timeonsumption, determined on a HP9000/735 proessor with 125 MHz lok rate,was still relatively high, but with slightly more than 2 minutes for �ve simul-taneous interations already in a feasible range. With inreasing trak densitythe CPU fration of the initialization inreased steadily and exeeded that of theelasti arms part beyond three superimposed interations.The investigations underline that elasti arms an in priniple be employed inan eÆient manner, but require a very good initialization of the trak andidates.This has lead to the general pereption that elasti arms should not be used fortrak �nding from srath, but should rather be seen as a tool to optimize assign-ment of hits to traks, to resolve left-right or other ambiguities, or to detet andeliminate outlier hits. A similar philosophy is followed in [50℄. A very interestingdevelopment in this ontext is the deterministi annealing �lter (DAF) [59, 60℄,whih extends the trak �t with the Kalman �lter with a fuzzy hit assignmentand obtains a mathematial equivalent of the elasti arms proedure.49



4 Loal Methods of Pattern ReognitionWhile global methods of pattern reognition have the ommon property to treatall hit information in an equal and unbiased way, simultaneous onsideration ofall hits an be very ineÆient in terms of speed. In fat many detetor layoutsprovide suÆiently ontinuous measurements so that the sheer proximity of hitsmakes it already likely that they belong to the same trak. This is one of the rea-sons why loal methods of trak pattern reognition, often alled trak following,are the workhorses of many reonstrution programs in high energy physis.Trak following methods are essentially based on three elements:� A parametri trak model, whih onnets a partile trajetory with a setof trak parameters and provides a method of transport, i.e. extrapolationalong the trajetory� A method to generate trak seeds, i.e. rudimentary initial trak andidatesformed by just a minimal set of hits whih serve as starting point for thetrak following proedure� A quality riterion, whih allows distinguishing good trak andidates fromghosts so that the latter an be disardedA related variant of trak following is the propagation of a trak andidate foundin one part of the traking system into another, olleting suitable hits on theway. In this ase the initial trak andidate takes the rôle of the seed.4.1 SeedsThere are di�erent possible philosophies how seeds an be onstruted. This isillustrated in �g. 32, whih shows shematially a traking system with equidis-tant layers. Starting from the last layer L, where the hit density is lowest, seedsan be obtained by ombining the hit with suitable others in the neighbouringlayer K (left side). This is the natural hoie whih exploits the loal proximityof hits as a seletion riterion. The angular preision of suh a short segmentis in general limited beause of the small leverage, but the rate of fake seeds isrelatively small, sine most wrong ombinations tend to obtain a steep slope thatis inompatible with the relevant physial traks and an be disarded immedi-ately. A ompletely di�erent alternative is to ombine hits for example from thedistant layers K and A to onstrut seeds. These seeds have potentially a muhbetter preision in angle, but the number of hoies to be onsidered is also muhhigher. The gain of preision an in fat be very limited if the material withinthe traker introdues sizable multiple sattering dilution. For the latter reasons,seed ombinations from nearby layers are often preferred in pratial appliations.50
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Figure 33: Creating seeds from drift hamber hit triplets. The style of displayeditems is similar to �g. 29. Crosses indiate the hit oordinates used to onstrutthe triplets(from [61℄).
Figure 34: Close-up of the drift hamber area from the ARGUS event display in�g. 1 [2℄. The traks are obtained by a trak-following algorithm that proeedsfrom the outer towards the inner layers.52



enough hit information to �nd the trak by itself with good eÆieny. A typialsymmetri arrangement onsists of three views with 0Æ, 120Æ and 240Æ stereoangle, among whih all layers are evenly distributed. This approah leads tovirtually azimuth-independent trak parameter resolutions.A more eonomi alternative is a design with an asymmetri layer distribu-tion whih is less ostly in terms of the number of hannels but requires suitablepattern reognition algorithms. It is possible to perform �rst the pattern reog-nition in the 0Æ projetion, and then use the resulting trak andidate to onvertthe measurements in the +� and �� layers into the vertial oordinate [62℄, asalready illustrated in a di�erent ontext in �g. 31. The next step then proeedswith trak �nding in the vertial projetion. In this ase, only the 0Æ projetionneeds to be equipped with enough layers for a standalone trak �nding, whilethe two stereo views are ombined and thus the number of layers per stereo viewan be smaller. A reasonable senario for this design omprises 50% of the layersoriented at 0Æ, 25% in the +� and 25% in the �� projetion.In the ase of genuine 3D measurements, 3D seeds an be easily onstrutedfrom two hits in the �eld-free ase, and from three hits in the ase with magneti�eld, whih normally will hardly lead to ombinatorial problems. This is thesituation in the barrel part of the CMS inner detetor [63, 64℄, where three layersof silion pixel detetors with 150 �m pixel size will be used to initiate trakseeds, or in TPCs. In ase of intrinsially 2D measurements, 3D seeding has thegeneral disadvantage that the seeds will beome rather omplex, onsisting of 4{5measurements and under high partile density also many false seeds will be gen-erated. Also left-right ambiguities have a strong impat here: a seed onstrutedfrom �ve drift hamber hits yields 32 ambiguous trak parameter sets upon ex-panson of all possible left-right assignments. One the seed is onstruted, thetrak following step involves many extrapolations of the trak parameters whihare more ostly with the full set of parameters, in partiular if the ovarianematrix is to be transported as well.On the other hand, 3D propagation is easier to apply in the sense that the fulloordinate information is always available, so that e.g. the deision if the trakandidate intersets a partiular detetor volume or not an be made unambigu-ously and multiple sattering e�ets an be aounted for with good preision.The issue of merging the di�erent projetions is also avoided.4.3 Na�ive Trak FollowingThe na�ive variant shall be disussed here essentially to allow for omparisonwith the more sophistiated approahes. Starting from a seed, the trajetory isextrapolated to the detetor part where the next hit is expeted. If a suitable hitis found, it is appended to the trak andidate. Where several hits are at disposal,na�ive trak following selets the one losest to the extrapolated trajetory. Thisproedure is ontinued until the end of the traking area is reahed, or no further53



suitable hit an be found.Na�ive trak following is relatively easy to apply to traking senarios withmoderate trak density and often leads to a reasonable omputational e�ort sinethe number of hits to be onsidered is roughly proportional to both the numberof layers and the number of traks. The appliation to situations with large hitdensity soon reahes its limitations, sine in dense environments, trak followingruns the risk of losing its trail whenever several possible ontinuations exist. Themain ompliations an be summarized as follows:1. Some expeted hits may be missing beause of limited devie eÆieny,whih will be alled a trak fault in the following. This also inludes thease where the hit is existing, but out of expeted oordinate bounds, forexample beause of delta eletrons reated by the impat of the partile. Indrift hambers with single hit readout, the drift time measurement of thefollowed trak an be superseded by another partile passing the same ellloser to the signal wire.2. Wrong hits may be loser to the presumed trajetory than the proper hitsand be piked up in their stead. This an happen easily just after theseeding phase when the preision of the trak parameters is still limited, orwhen some false hits have already been aumulated. A wrong hit may stemfrom another reonstrutable trak, from a non-reonstrutable low-energypartile, or from detetor noise.3. Left-right ambiguities in wire drift hambers double the number of hoies.Espeially in small drift ells, e.g. in straw tube trakers, wrong left-rightassignments are to some degree unavoidable and need to be oped with.These aspets an pose a partiular problem if the trak density is subjet tostrong variations, e.g. due to a utuating number of simultaneous interationsunder LHC-like onditions.4.4 Combinatorial Trak FollowingThis variant is aware of possible ambiguities, and in eah trak following step,eah ontinuation hit whih is possible within a wide tolerane gives rise to anew branh of the proedure, so that in general a whole tree of trak andidatesemerges. The �nal seletion of the best andidate must be done in a subsequentstep, whih may involve a full trak �t on eah andidate. This kind of method ispotentially unbeatable in terms of trak eÆieny, but in general highly resoureonsuming and therefore only used in speial ases with limited ombinatoris.54



4.5 Use of The Kalman FilterAll trak following approahes have to evaluate if a ertain hit is ompatible withthe presumed trajetory and thus suitable to be added to the trak andidate.The suitability of a hit should be based on riteria whih exploit all the knowledgebased on those hits that have been aumulated so far. Not only the trakparameters themselves, also their preision needs to be known. The ideal tool inthis situation is the progressive �t implemented by the Kalman �lter, whih hasbeen disussed in setion 2.4.2.The Kalman �lter predition already provides an exellent riterion for hitseletion. When a hit is onsidered to be appended to the trak, �rst the preditedresidual rk�1k from equation 9 an be used as a rough riterion. After passing ahit through the �lter proess (see eq. 10), the �ltered �2 de�ned in equation 12 isan even more preise measure. In general, the deision power will inrease whenmore and more hits are aumulated in the trak andidate. One the full trakis available, the result of the Kalman smoother (eq. 13) an be used to detetand remove further outlier hits.4.6 ArbitrationIn pratial appliations of trak following, means are required to redue its de-pendeny on the starting point, and to derease its vulnerability against stohas-ti inuenes. This proess is alled arbitration. For example, it is mandatorynot to depend on a single option of seeding traks, whih would lead to loss of atrak if one of the seeding layer happens to be ineÆient, but one will normallyuse several ombinations of layers for seeding. Suh redundany inreases theprobability to obtain a seed for a trak even in presene of devie ineÆieny.When an expeted hit appears to be missing in a layer during propagation, it maybe advisable not to disard the andidate immediately, but to proeed furtheruntil a fault limit is exeeded. In a ase where more than one hit ould present asuitable ontinuation for a trak, one might want not to deide immediately forthe losest hit but reate branhes into di�erent andidates whih are pursuedindependently. When a hit appears to be �ne for a ontinuation, the algorithmshould aount for the possibility that this hit is wrong and the right hit hasdisappeared for some reason. However, na�ively applied, all these extensions leadto either vast ombinatoris, whih will explode with inreasing hit density, orsu�er from ad-ho limitations. A method to overome these problems will bedetailed in the following. 55



4.7 An Example for Arbitrated Trak FollowingThis setion disusses the onurrent trak evolution algorithm as an example foran approah to trak following with arbitration, whih is in detail desribed in[61, 65℄.4.7.1 AlgorithmThe basi idea is to allow for onurreny of a ertain number of trak andidatesat any time during the propagation of a ertain seed, or even a set of seeds. Thesetraks are propagated in a synhronized manner from one sensitive traking vol-ume to the next. At eah propagation step for eah trak andidate, branhinginto several paths is possible and will in general our. Multiple branhes appearwhen several ontinuation hits are onsistent with the present knowledge of trakparameters, or when more than one traking volume is within reah. Also thepossibility that the expeted hit is simply missing, e.g. beause of devie inef-�ieny, gives rise to a new branh. Thus the proedure explores the availablepaths for all trak andidates onurrently whih leads to a rapid reation of newtrak andidates. On the other hand, the number of trak andidates should notgrow beyond ontrol. This is ahieved by applying a quality seletion on thewhole set of onurrent trak andidates after eah round of propagation, usingsuitable estimators for the quality of a trak. This leads to a favourable timingbehaviour even for high multipliity events. Conurrent trak evolution an thusbe regarded as a variant of deferred arbitration [66℄. The atual propagation isbased on the Kalman �lter.An illustration of this strategy is shown in �g. 35 taken from [61℄, whih showsa potentially ambiguous situation aused by two nearby traks T1 and T2 plus alarge angle trak T3 in �ve layers of honeyomb drift hambers. For simpliity,it is assumed here that the algorithm disards trak andidates with more thanone missing hit (fault) in a row, and that the maximum number of onurrentandidates is three { in reality, higher limits may be used. It is also assumedthat a seed of hits from trak T1 has been formed on the right side outside of the�gure. The propagation proeeds upstream from right to left. The illustrationshows how three parallel andidates arise from di�erent left-right assignments tothe two drift hamber hits in layer E, whih are propagated through layers D andC { inluding the tolerane of a fault on trak T1 in layer D. In layers B and A,the false paths are disarded beause of aumulating too many faults, and theproper reonstrution of trak T1 is retained. Trak T2 should then be foundlater with a di�erent seed, while trak T3 is likely to be non-reonstrutable.Trak following in the na�ive sense would always aept the hit with the small-est �2 ontribution, possibly a good solution when the hit density is small. In thepresene of multiple sattering and high hit densities, a wrong hit will frequentlyhave a smaller �2 ontribution than the proper one, or replae a proper hit whih56
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form Q = f(NSteps;NFaults; �2i ; :::) (43)where NSteps is the number of evolution steps passed so far, and �2i stands forthe ontribution of the aumulated hit i to the total �2. If needed, also a biasfrom the trak parameters ould be introdued here, whih suppresses e.g. traksthat are very steep or have very low momentum. A onvenient simple qualityestimator isQ = NSteps�NFaults � w�2 �Xi �2i (44)whih applies a ertain malus (in this ase 1) for eah missing hit, whih is equiva-lent to an ill-mathing hit with a �2 ontribution of 1=w�2 (in the on�guration oftab. 2 equal to 10). Furthermore, uts are applied relative to the best andidateurrently in the set: andidates whose quality di�ers from the best andidateby more than Æqmin are disarded. Finally, all onurrent trak andidates areranked in dereasing order of quality, and only the �rst Rmax andidates in rankare retained. If propagation annot be ontinued though the end of the trakingsystem is not reahed, this may have a natural reason, e.g. the partile may havebeen stopped or deayed in ight. In suh ases, the best remaining trak andi-date on the last level is kept if it omprises at least a ertain minimum numberof hits, NminHits.4.8 Trak Following And Impat of Detetor Design Pa-rametersThe pratial behaviour of suh an algorithm, as it has been developed for theHERA-B spetrometer has been studied in [61℄, inluding an investigation of theimpat of detetor design and performane on the pattern reognition apabil-ity. As the experiment has never routinely taken physis data at the high designinteration rate of 40 MHz, the results have been obtained from a full Geantsimulation with on average �ve superimposed pN interations, one of them on-taining beauty hadrons. As seen in �g. 8, the inner part of the HERA-B mainspetrometer aeptane within about 25 m radius from the beam line is overedby miro-strip gaseous hambers (MSGC), while the outer part is instrumentedwith Honeyomb drift hambers [13, 14, 15℄. The pattern traker onsists of foursuperlayers outside of the magneti �eld, whih onsist of 6 individual layers eah(the area marked \PC" in �g. 8), exept for the inner part of the two middle su-perlayers that have only four layers eah. Half of the layers measure a horizontaloordinate (0Æ orientation), the other half are arranged at �100 mrad stereo an-gle. The seeds were produed from hit triplets in the hindmost two superlayersfor upstream, and in the foremost two superlayers for downstream propagation58



Parameter Value Parameter ValueNminHits(x) 9 NmaxFaults(x) 2NminHits(y) 9 NmaxFaults(y) 2Æ�2max(x) 8 Rmax 5Æ�2max(y) 16 w�2 0.1Æqmin �1Table 2: Table of parameters used in the implementation in [61℄(�g. 33). Trak �nding was performed �rst in the 0Æ projetion, then ontinuedin the ombined stereo layers, where the vertial oordinates were determinedusing the horizontal projetion of the trak andidate with the method explainedin se. 3.4.3 (see eq. 40 and �g. 31).The algorithm parameters used are summarized in table 2. The parametersallow for a deliate adjustment of balane between the extremes of na�ive trakfollowing (Rmax = 1), where always the apparently best path is followed, andombinatorial trak following (Rmax =1), whih retains all paths. The detailedsimulation allowed to study some prinipal e�ets of traking system propertieson pattern reognition parameters whih will be shown in the following.4.8.1 Inuene of detetor eÆienyFigure 36 shows how the hit eÆieny of the detetor devies a�ets the patternreognition performane on traks emerging from B deays. Above �HIT = 95%,the hit ineÆieny is well ompensated by the algorithm (operating with NFaults =2), resulting in an exellent trak �nding performane. Smaller hit eÆieny leadsto sizeable loss in the fration of deteted partiles.4.8.2 E�et of detetor resolutionThe inuene of the spatial resolution is shown in �g. 37. The simulated res-olutions of outer and inner traking system were varied independently. It isinteresting to see that the eÆieny degrades only slowly with the resolution be-ing inreased up to 1 mm. The slight drop in eÆieny at 100 �m in �g. 37a is anartifat due to numerial approximations. Both �gures indiate that the e�etof resolution on trak �nding eÆieny should not be overrated. Muh strongeris the e�et on the ghost rate, the plots underline that a good resolution helpsonsiderably to suppress fake reonstrutions.4.8.3 Inuene of double trak separationThe simulation of the inner traker devies allowed varying of the double trakresolution, i.e. the distane down to whih nearby traks an be resolved as59
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negative impat on use of a reonstrution program at prodution sale. Fig-ure 39 shows the average omputing time per event normalized to that for thenominal four superimposed inelasti interations. At high interation multipli-ity, the omputing time per event settled rather graefully on a roughly lineardependene, indiating a onstant amount of time per trak, at an aeptableloss of eÆieny, whih an be onsidered a good-natured behaviour. With thespeed shown above, the algorithm is fast enough to be used in quasi-online re-onstrution [67℄.4.9 Trak Propagation in a Magneti FieldIn general the above trak following strategy an be applied also within a magneti�eld. The main di�erene is that the transport funtion in eq. 8 beomes non-linear, and the transport matrix beomes a loal derivative as displayed in eq. 15.If the �eld is homogeneous, or if inhomogeneity an at least be negleted withintypial transport distanes, the transport funtion and matrix an usually beexpressed analytially.In many ases, however, the �eld is neither homogeneous nor desribable inan analyti expression, instead, it is parametrized in terms of a �eld map, whihhas been measured with Hall probes, or omputed by means of a �eld simulationprogram. In this ase, numerial methods have to be used to derive the transportfuntion. A very suitable method is the Runge-Kutta proedure [68℄, whihintegrates the equations of motion by expanding the trajetory up to a ertainorder and sampling the �eld at a series of intermediate points, whih are hosenand weighted suh that all powers of the errors below a ertain order anel.Even this proedure meets onsiderable hallenges when the �eld varies stronglyand a very high preision, mathing the detetor resolution, must be warranted.In this situation, an embedded Runge-Kutta method with adaptive step size anhelp: the next highest order of Runge-Kutta is ompared with the preeding oneand the di�erene serves as an error estimate, whih is then used to adjust thestep size.Appliation of the Kalman �lter does not only require a transport funtion forthe trak parameters, but also the derivative matrix of the new parameters withrespet to the old is needed (see eq. 15). Calulation of this derivative matrix anbe eÆiently performed within the same Runge-Kutta framework that is used forthe parameter transport itself [69℄.An extension of the onurrent trak evolution algorithm for trak followingin the magneti �eld has been developed and tested on the HERA-B geometryin [65℄. Trak segments found in the �eld-free part of the spetrometer were fol-lowed upstream through the inhomogeneous �eld of the magnet traker. Figure 40shows an event display with simulated traks inluding a B deay reonstrutedwith this method. The algorithm ahieved a high trak propagation eÆieny inspite of the large trak density. 64
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Figure 40: (a) Display of a simulated event with one interation ontaining thegolden B deay and six superimposed inelasti interations, foussed on the mag-net area, where the pole shoe of the magnet is indiated by the large irle [65℄.Both the Monte Carlo traks (light grey) and the reonstruted traks (thik darklines) are show (reonstruted hit points denoted by rosses). (b) Same event,with the display restrited to partiles from the golden B deay.65



5 Fitting of Partile TrajetoriesAfter pattern reognition has done its work, the detetor hits are separated intosets eah of whih, ideally, ontains manifestations of one spei� partile. Itis then the task of the trak �t to evaluate the trak parameters and thus thekinematial properties of the partile with optimal preision. Even if the patternreognition itself is already providing trak parameters and ovariane matriesto some degree, obtained for example by means of the Kalman �lter, it will ingeneral be left to a �nal trak �t to take all neessary e�ets into aount whihare often negleted at the trak �nding stage beause they are ostly to applyunder the full ombinatoris of pattern reognition.5.1 Random PerturbationsIn the easiest ase, trak parameters ould be derived from the measurements byapplying the least squares �t formulas from eq. 4 and 5 in se. 2.4.1. In real-isti appliations, the problem is usually more involved beause of the way thetrajetory of the partile is inuened by random perturbations that dilute the in-formation ontent of the measurements, most ommonly multiple sattering andionization or radiative energy loss. Their inuene is shematially displayed in�g. 41. One an interpret the diagram in suh a way that, from step to step, themeasurements, labelled on the right side, improve the degree of amount of infor-mation about the kinematial properties of the partile, while the perturbationslabelled on the left side redue it.5.2 Treatment of Multiple SatteringMultiple sattering ours through the elasti sattering of harged partiles inthe Coulomb �eld of the nulei in the detetor material. Sine the nulei areusually muh heavier than the traversing partiles, the absolute momentum ofthe latter remains una�eted, while the diretion is hanged. If the longitudi-nal extension of the traversed material blok an be negleted (this is normallyreferred to as thin satterer approximation), only trak parameters related topartile diretion are a�eted diretly, for example the trak slopes tx = tan �xand ty = tan �y introdued in setion 2.3.1. The stohasti nature of multiplesattering is that of a Markov proess.The distribution of the deetion angle follows a bell-like shape, though itannot be aurately desribed by a Gaussian beause of its pronouned tails. Thevariane of the projeted multiple sattering angle is alulated within Moli�eretheory [70, 71, 72℄ asCMS =  13:6MeV�p !2 t [1 + 0:038 ln t℄2 (45)66
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where t is the traversed path length in terms of radiation lengths xR, usuallyalled radiation thikness. (While the radiation length is frequently abbreviatedas x0 in the literature, the symbol xR is used here instead to avoid onfusion withother uses of x0 throughout this artile.) For a planar objet arranged in a planevertial to the z axis, the radiation thikness along z is given by~t = Z dzxR(z) (46)Taking the trak inlination against the z axis into aount, one obtains thee�etive radiation thiknesst = ~tq1 + t2x + t2y (47)so that the �nal formula beomes (assuming � � 1)CMS =  13:6MeVp !2q1 + t2x + t2y ~t h1 + 0:038 ln q1 + t2x + t2y ~t i2 (48)In general, multiple sattering ould be treated in the trak �t by expressing theangular unertainty of eah thin satterer as an additional ontribution to theerror of eah a�eted measurement. Sine a multiple sattering deetion willinuene all downstream measurement errors in a orrelated way, this introduesarti�ial orrelations into the hitherto unorrelated measurements, so that thematrix V in setion 2.4.1 is no longer diagonal. Evaluation of eq. 4 requiresthen inversion of non-trivial matries whose dimension is not only the number ofparameters but the number of measurements. Straight-forward solutions of thisproblem have been devised [73℄, whih intrinsially treat all multiple satteringangles as free parameters. In many pratial situations however, where the num-ber of parameters may be �ve and the number of measurements perhaps as largeas 70, this an lead to serious problems.The generally aepted solution for the above problem is provided by theKalman �lter tehnique. The multiple sattering dilution is added as proessnoise (represented by the matrix Qk in the transport equation, eq. 8) at thevery position in the trajetory where it originates. The Kalman �lter normallyproeeds in the inverse ight diretion along the path of the partile and takesthe inuenes illustrated in �g. 41 into aount. Mathematially, the result willbe idential to a straight-forward least squares �t as desribed in the previousparagraph, but the detailed proedure avoids handling of huge matries.In Kalman �lter language, the resulting ovariane matrix ontribution forthin satterers isov(tx; tx) = (1 + t2x)(1 + t2x + t2y)CMS (49)ov(ty; ty) = (1 + t2y)(1 + t2x + t2y)CMSov(tx; ty) = txty (1 + t2x + t2y)CMS68
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5.2.1 Impat parameter and angular resolutionsThe visible trak parameter resolution was obtained by alulating the trakparameter residual for eah trak using the Monte Carlo truth, and applyinga Gaussian �t to the distribution. (The term visible is used to distinguish thisresolution from the one estimated by the �t.) The impat parameter resolution fortraks passing the Silion miro-vertex detetor and the outer traker as a funtionof momentum is shown in �g. 42. Sine this impat parameter is de�ned withrespet to the position of the �rst hit of the trak ounting from the interationpoint, the resolution is governed by the error of the �rst oordinate and onlyweakly dependent on momentum. Multiple sattering ats like a �lter whihdilutes the information from the following layers, only at higher momentum theirontribution to the resolution at the �rst point beomes visible.Sine the vertex detetor measurement auray is approximately isotropi,horizontal and vertial resolution are almost idential, the deviation at p =100 MeV is explained by the fat that the strips in the �rst vertex detetor layerare oriented almost parallel to the y axis. The resolution of trak slopes is shownin �g. 43 and turns out to be dominated by the pronouned / 1=p behaviour ex-peted in a multiple sattering-dominated regime. At high momentum, the onsetof oordinate resolution e�ets appears to be just visible, where the slightly bet-ter resolution of the horizontal slope (tx) may be due to the dominantly vertialorientation (parallel to y) of the wires in the main traking system.The impat parameter resolution given above should not be onfused withthe quantities relevant for physis performane where assignment to verties isimportant. In the latter ase, the trak parameters must be extrapolated fromthe �rst trak point to the interation area. With extrapolation distanes oftypially O(10 m), the resolution of the extrapolated impat parameters willgenerally be fully dominated by the angular resolution rather than the impatparameter resolution at the �rst point.5.2.2 Momentum resolutionA very entral design issue in spetrometers is resolution of momentum, sineit determines the rejetion power against bakground in partile spetrometry.The relative momentum resolution, labelled dp=p, as a funtion of momentum isshown in �g. 44 for partiles traversing the areas SI, MC and PC of the spe-trometer (see �g. 8 for de�nition) in the polar angle area 0:1 < � < 0:15. Theirle symbols show the relative momentum resolution that results with multiplesattering swithed o� in the simulation, leading to a stritly linear dependeneon p. This behaviour is expeted sine the resolution is then only determined bythe oordinate resolution and the geometrial layout of the spetrometer - sizeand number of layers - that provides the leverage for momentum measurementtogether with the magneti �eld. The result reets the fat that the urvature �,71
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system (SI{TC range). The resulting momentum resolutions are displayed in�g. 46. It turns out that without inluding the vertex detetor (MC{PC), themomentum resolution is well desribed by a onstant and a linear term addedin quadrature. In the regime of linear rise, the poorer oordinate resolution isreeted in omparison to the system inluding the vertex detetor. When the�t on the other hand is extended into the \TC" region whih is mainly designedto support the trigger (SI{TC), these additional measurements with their hugelever arm are expeted to improve the oordinate ontribution of the resolution.Suh an improvement is visible in �g. 46 for p � 100 GeV , where it is hardlyrelevant for the physis sope of the experiment. A third term proportional to thesquare-root of the momentum had to be added in quadrature to �t the resolutionfor the latter two ranges.5.2.5 Parameter ovariane matrix estimationA very important task of the trak �t is the quanti�ation of the ovarianematrix of the estimated trak parameters. The reliability of parameter errorestimation an be studied by investigating distributions of normalized parameterresiduals (see eq. 23 in se. 2.5.5), whih use the estimated error for normalization.In the example at hand, the resulting pull distributions are shown in �g. 47,where unbiased �ts with a Gaussian funtion are superimposed. Distortions ofthe parameter estimates would show up as deviations of the mean values fromzero, whih are however not present in this ase. The Gaussian ores of thepulls agree in all ases with unity width, indiating a reliable estimate of theovariane matrix. One should note that only mean value and variane of thepull distribution are indiators of the quality of the estimate. The atual shapeof the distribution, e.g. whether it is Gaussian or not, reets the underlyingstruture of the problem, as will be more learly visible in the next setion.5.2.6 Goodness of �tSine the Kalman �lter is mathematially equivalent to a least-squares estimator,the sum of the �ltered �2 ontributions will follow a �2 distribution, provided thatthe random variables entering into the �t have Gaussian distributions. In thisase the �2 probability P�2 = �2Z�1 f(~�2) d~�2where f(~�2) is the standard �2 distribution for the appropriate number of degreesof freedom, should be evenly distributed between 0 and 1. (P�2 is often alledon�dene level.) This prerequisite is not stritly ful�lled in ase of Moli�eresattering, so that deviations are to be expeted. These e�ets have potentiallylarge inuene in modern radiation hard drift hambers, where the drift ells75
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5.3 Treatment of Ionization Energy Loss And Radiation5.3.1 Ionisation energy lossFor minimal ionizing partiles in the GeV energy range, energy loss due to ion-ization within the traking system depends in good approximation only on theamount of material that is traversed. In this ase, it is not the radiation thikness(as de�ned in eq. 46), but the geometrial thikness multiplied by the mass den-sity of the material that is relevant. Sine the energy loss depends only weaklyon the energy itself in this range, the e�et will beome most notieable for lowmomentum partiles. This behaviour is illustrated in �g. 50, whih shows thenormalized residual of the momentum parameter Q=p for �+ partiles of 3.5 and10 GeV with ionization energy loss simulation turned on. The residual distribu-tions are shifted towards positive values of Q=p, reeting an underestimation ofthe energy, whih is aused by the ionization energy loss, in partiular upstreamof the magnet. The visible shift orresponds to an energy loss of 12 MeV. On theother hand, the width of the residual distributions is not signi�antly inreased,whih in the 10 GeV ase an diretly be seen by omparing with �g. 47.A orretion an be applied in eah �lter step if the dE=dx of the partile inthe material is known, sineEafter = Ebefore � (dE=dx)ion � ` (50)where ` is the traversed thikness of the material. This requires in general theknowledge of the partile mass. Sine ionization energy loss will be most notablefor small partile energies where the resolution is governed by multiple sattering,no orretion to the momentumerror has been applied. The bottom part of �g. 50displays the same normalized residuals with the energy loss orretion applied.The bias of the momentum estimate is suessfully eliminated by the orretion.5.3.2 Radiative energy lossThe orretions disussed up to now are usually suÆient for minimum ionizingpartiles. For eletrons6 however, the situation is more ompliated sine abovethe ritial energy, whih is of the order of MeV, these partiles lose more en-ergy through radiation of photons than through ionization when they traversematerial. This proess is also of a more notably stohasti nature than ionizationenergy loss, as onsiderable frations of the eletron energy an be transferred tothe photon. Modern radiation-hard detetors as e.g. those under onstrutionfor the LHC are onfronted with this problem to a muh higher degree than tra-ditional detetors, beause of the signi�ant amount of material in the trakingsystem, whih an easily exeed 50% of a radiation length.6in this setion the term eletron should be interpreted to imply positron as well79
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Region 1 Region 2 Region 3Figure 51: Regions 1{3 for lassifying radiative energy loss illustrated in thegeometry of the HERA-B spetrometer. The simulated geometry di�ers in somedetails from the one in �g. 8. Also the trajetory of a simulated eletron is shown,whih radiates a photon within the magnet that onverts into a e+e� pair furtherdownstream. .
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For the relevane of photon radiation on measurement of the eletron, threeases have to be distinguished regarding the range where the radiation ours(indiated as regions 1{3 in �g. 51):Region 1: between interation point and spetrometer magnet If the pointof origin of the partile is not yet within the magneti �eld { as is typialfor �xed-target setups rather than for ollider detetors { radiation will nothange the eletron trajetory and thus not interfere with the quality of the�t; however, the spetrometer will only measure the remaining momentumof the eletron after the radiation.Region 2: within the magneti �eld In this ase, the urvature of the tra-jetory hanges beause of the radiation, whih means that the energyhange is { in priniple { measurable. Ignoring the radiation in the �twill lead to a bad desription of the trajetory and to distortions of theparameter estimates.Region 3: beyond the magneti �eld If the eletron loses energy downstreamof the magnet, this will have no inuene on the momentum measurementin the spetrometer. However, pair reation from radiated photons maylead to aompanying partiles that an disturb pattern reognition in thedownstream area.The dilution due to energy loss of eletrons and positrons through emission ofeletromagneti radiation an be treated by the method by Stampfer et al. [79℄.Aording to the Bethe-Heitler equation [80℄, this energy loss is desribed by dEdx !rad = ExR (51)where xR is the radiation length of the traversed material (see setion 5.2). Thisleads to the relation* EafterEbefore+ = e�t (52)where t is the traversed distane measured in radiation lengths as de�ned before.For a trak propagation whih follows the trak opposite to its physial movement,one obtains on average Qp !0 = Qp +� Qp ! = Qp � Qp Ebefore � EafterEbefore = Qp e�t (53)The ontribution to the propagated ovariane matrix emerges as�ov Qp ; Qp ! =  Qp !2 �e�t ln3ln2 � e�2t� (54)This ontribution an be inluded into the Kalman �lter proess noise as intro-dued in eq. 8. 82
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Radiation orretion mode Fration of �ts within momentum deviation�0:1 < Æp=p < +0:1 �0:2 < Æp=p < +0:2none 0:566 � 0:004 0:678 � 0:003within magnet 0:635 � 0:003 0:728 � 0:003within full spetrometer 0:321 � 0:003 0:786 � 0:002Table 3: Fration of �ts within given limits of momentum deviation, for threevariants of radiation orretion5.3.3 Radiation energy loss orretion within the magneti �eldEnergy loss through radiation an not only interfere with the momentummeasure-ment, but may also a�et other trak parameters. This is shown in �gs. 52a,,ewhih display the residuals of the parameters x, tx and 1=p for eletrons pro-dued with 100 GeV momentum, where the �t was restrited to the magnet area(MC). Without bremsstrahlung orretion, the trak slope estimate tx shows atail towards overestimated values, whih is reeted in an underestimation of theorresponding impat parameter, x. The explanation for this e�et is illustratedin �g. 53 whih for simpliity assumes a homogeneous �eld: the urvature of theeletron trak is abruptly inreased beyond the point of radiation. Fitting thetrak with a onstant momentum leads to an intermediate urvature resulting ina shift in the measured initial trak slope.The residual distribution of the momentum parameter, 1=p, displays a tailtowards higher values, orresponding to a mean momentum shift of � 13%.Also the parameter errors are underestimated, whih is evident from the nor-malized residuals in �gs. 54a,,e (unorreted ase), where the widths of the txand Q=p pull distributions are signi�antly enlarged.Figures 52b,d,f show the result with the radiation orretion applied in the�t. One an see that the tails in the parameter estimates of x and tx are far lesspronouned, and the bias in the impat parameter and trak slope is onsider-ably redued. Also the distortion of the mean reonstruted inverse momentumÆ(1=p) � Æp=p2 is redued from 1:3 �10�3 GeV�1 to 7 �10�4 GeV�1, and the stan-dard deviation (RMS width) of the parameter estimates is redued by 11% (x),48% (tx) and 14% (Q=p), respetively. Moreover, the radiation orretion bringsthe RMS widths of the pull distributions lose to unity (�gs. 54b,d,f), whihindiates a reliable ovariane matrix estimate. The �t probability distributionis shown in �g. 55. It reets a non-�2 type distribution of the goodness-of-�t,whih is expeted sine the radiation of bremsstrahlung introdues a stronglynon-Gaussian random perturbation.The situation is di�erent if one attempts to extend the radiation orretion tothe full traking system inluding regions 1 and 3 whih are outside of the mag-neti �eld, most notably the vertex detetor whose material auses a signi�antenergy loss for eletrons. Outside of the magneti �eld, however, the trajetory85
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shape is not modi�ed by radiation, whih means that the �t will only apply theon-average orretion aording to the traversed radiation thikness. This anlead to bizarre results as seen in �g. 56, whih shows the distribution of the 1=pparameter residual multiplied by the momentum itself as well as the orrespond-ing pull distribution. The peak has moved away from zero to negative residualvalues, implying that eletrons in the peak obtain an overorreted energy value.In �g. 56b, the mean value of the pull is near zero, and the RMS width is loseto one, indiating that the ompensation works orretly in the statistial sense.For intuitive plausibility, however, it is relevant that a large fration of measure-ments are in the immediate viinity of the quoted value. A test of this riterion isshown in table 3, whih summarizes the fration of �ts with momentumdeviationof within 10% or 20% of the real value for the three orretion senarios. Withthe 10% riterion, the full spetrometer orretion appears worse than even inthe unorreted ase, while the orretion restrited to the magnet gives the bestdesription in the intuitive sense. In onlusion, the magnet-based orretionappears to be provide the best ompromise, though this will in general have tobe evaluated in eah spei� appliation.5.4 Robust EstimationThe preeding setions have shown how intrinsially non-Gaussian inuenes, asmultiple sattering, or radiative energy loss of eletrons, an ompliate the esti-mate of essential kinemati parameters and their interpretation. A fully adequatetreatment of profoundly non-Gaussian variables is in general beyond the apabil-ities of least squares estimation. Likelihood methods, on the other hand, are inpriniple able to ope with random variables of any distribution, but often annotbe used with as eÆient a mahinery, in partiular when it omes to omputationof error matries.During the last years, promising onepts have been developed that permittreatment of non-Gaussian random variables, but still allow to use muh of thepowerful mahinery developed with least squares estimation. These methods arealled robust estimation tehniques. One very attrative idea is based on the fatthat non-Gaussian distributions an often be approximated as superposition ofa limited number of Gaussian distributions [81, 82℄. For example, a distributionresembling a Gaussian in the entre, but featuring long tails, as is ommon withmultiple sattering, an be approximated by a sum of a narrow Gaussian dis-tribution and a wide one. If one performs two parallel least squares estimates,eah based on one of the Gaussians, the resulting parameter estimates, ombinedwith appropriate weights, will reet the underlying statistis better than a singleestimate with a single Gaussian approximation. Thus, the ourene of randomvariables in the tail of the distribution does not pull the estimate as far awayas it would with a traditional least square estimator, leading to a more robustbehaviour of the �t. 88



This is the basi idea of the Gaussian Sum Filter (GSF) [81, 82, 83, 84, 85℄,whih uses the Kalman �lter to inorporate the individual Gaussian omponents.Upon eah ourrene of proess noise, the distribution of whih is approximatedby a sum of N Gaussians, the �lter splits into N parallel branhes eah of whihobtains a orresponding weight. In a detetor geometry with many satteringelements, this will lead to a repeated multipliation of the number of linear �ltersto be evaluated. To avoid the explosion of the omputing e�ort, the number ofparallel omponents is limited by ollapsing or lustering omponents of similarshape. It has been shown that the algorithm an be designed suh that the om-puting e�ort inreases linearly with the maximumnumber of parallel omponents(M), and that M � 6� 8 already gives good results [84℄. In a similar way, radia-tive energy loss of eletrons an be treated by approximating the radiated energydistribution by superposition of several Gaussians [86℄.6 Event ReonstrutionAfter partile traks have been reonstruted, they form the basis for the reon-strution of the whole event. This will ultimately inlude partile identi�ationbased on dE=dx, time-of-ight, �Cerenkov or transition radiation, muon hambersand alorimetry, as well as kinematial reonstrution of omposite partiles andjets. This artile will restrit itself to a brief disussion of vertex reonstrutionand kinematial onstraints.6.1 Vertex Pattern Reognition
B−

B+

Primary 
vertexFigure 57: Shemati view of the event struture in an interation of the typee+e� ! B+B� +XThe vertex is an essential element of the spae-time struture of an intera-tion. Verties indiate either the loation where an interation has taken plae,for example the primary interation that is the ultimate origin of all emergingpartiles, or the plae where an unstable partile has deayed. This is illustrated89



in �g. 57, whih shematially skethes the �nal state of an interation with as-soiated prodution of two beauty mesons, as it an our for example at a highenergy e+e� ollider. The beauty hadrons, here a B+ and a B�, are produedtogether with aompanying harged partiles at the interation point, travel in-visibly for some distane that is, on average, determined by their lifetime andmomentum, whereupon they deay into daughter partiles. The harged traksoming from these deays an be used to reonstrut the deay loations of the Bmesons as seondary verties7. The other traks, together with the reonstrutedB mesons form the primary vertex, whih indiates the interation point.
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Figure 58: Illustration of the iterative onstrution of a (primary) vertex, wheren is the number of traks used to de�ne the vertex in eah step. The shadedarea indiates the ovariane ellipse of the projeted vertex after eah step. Thedashed line indiates an outlier trak.In many pratial appliations, the vertex is onstruted by an iterative pro-edure as it is illustrated in �g. 58. In most ases, some a-priori knowledge aboutthe vertex position exists, for example the shape of the beam spot, in whih in-terations our in the �rst plae. Then a �rst trak is seleted as a vertex seed,whih already narrows down the ovariane ellipsoid in two dimensions. Whena seond suitable trak is added, the vertex is already losely de�ned in all o-ordinates. This provides strong rejetion power against o�-vertex partiles when7We neglet here the ompliation that the B meson is likely to deay to a �nal state witha harmed partile whih again has a non-negligible lifetime.90



adding more traks.As in the trak pattern reognition ase, the danger lies in the dependeneon the starting point. It is therefore neessary to use iterative riteria whihensure that the trak forming the vertex seed is well hosen, and even then itmust be possible to srutinize the trak ensemble of a vertex, to remove traksthat have turned out to be o� the mark, and to reonnet traks that had beendisarded at an earlier stage of the onstrution. The vertex algorithm used inthe ZEUS experiment [87℄, whih internally uses the �tting methods of [88℄ mayserve as an example: it uses the proton beam line as a soft onstraint, and thenprodues a set of all trak pairs that would be ompatible with a ommon vertextogether with the beam line onstraint within a suitable �2 margin. The trakpairs are then ordered aording to their degree of ompatibility with other trakpairs, de�ned by the riterion above. The trak pair of highest ompatibilityforms then the �rst vertex seed to be used, though also other trak pairs of highompatibility level are tried, and in the end the best set is hosen based on ariterion of number of traks and total �2. Other approahes start by onnetingall traks to a di�use master vertex, whih is then suessively split into verties ofsmaller multipliities and isolated traks. A systemati investigation of di�erentmethods for vertex reonstrution in the ontext of the CMS experiment an befound in [89℄.An entirely di�erent approah is pursued in the topologial vertex �ndingalgorithm [90℄ developed for the vertex detetor of the SLD experiment [17℄.This method assigns a Gaussian tube around eah trak extrapolation to indiatethe likelihood of an assigned vertex on a single trak basis. The Gaussian tubesof all traks are then ombined to �nd points with maximum probability of avertex. This method resembles the Fuzzy Radon Transform for traks disussed insetion 3.2. The searh for maxima is then performed by sophistiated lusteringalgorithms. A partiularly intriguing feature is the eÆient resolution of heavyavour asade deays.Diret vertex searh by Hough transform is possible in ases where the vertexloation is already strongly onstrained in some oordinates, for example throughthe shape of a wire target [91℄.6.2 Vertex FittingThe least-squares priniple an also be readily applied for vertex �tting [92, 93,94℄. The parameters of the traks ~p1 : : : ~pn at a given referene surfae plus thea-priori knowledge of the vertex are the input, and the alulated vertex positiontogether with the redued trak parameters of eah partile, whih ontain onlydiretional and momentum information at the ommon vertex, are the output.A general property of vertex �tting is the fat that, unlike trak �tting, the �tis always non-linear, sine even with straight-line traks the extrapolation to thevertex introdues a oupling between positional and diretional parameters.91



As noted earlier, already vertex pattern reognition requires inremental, pro-gressive �tting, with traks added or removed one by one. It is therefore notsurprising that also for vertex �tting, the Kalman �lter is in many ases themethod of hoie [95℄. In the vertex �tting ase, the transport beomes trivial,and also proess noise does not have an equivalent. The �lter step adds anothertrak to the vertex and updates the vertex position as well as the redued trakparameters. It is very easy to remove an already �ltered trak from the vertexandidate, sine in the �lter equations, the inverse ovariane matrix of the trakats as the weight of the trak information, and setting its sign to negative willsubtrat the trak from the vertex �t. We prefer not to display the Kalman �lterequations for vertex �tting here expliitly, but refer to the literature [27℄.6.3 Kinematial ConstraintsPattern reognition deals with merging of measured information with a-prioriknowledge. For example, in trak pattern reognition the trak model enhanesthe measurement power of eah individual hit, while vertex assignment improvesthe spatial information of eah assoiated trak. In similar fashion, a-priori knowl-edge an be used in many ases in the further reonstrution of the event. A typ-ial example is the beam energy onstraint: in e+e� b-physis experiments whihoperate at the �(4S) energy, as BaBar, BELLE, CLEO and the earlier ARGUS,the B mesons are produed in an exlusive deay of the �(4S) resonane, and theenergy of the B mesons is preisely the beam energy, whih is known to a muhbetter preision than the B meson energy reonstruted from its measured deaypartiles. Imposing the beam energy onstraint improves then also the resolutionof the B andidate mass; this method has been a vital tool in the investigationof exlusive B deays (see for example [96℄).Also masses of intermediate partiles in a deay hain, for example B0 !D�+�+����, D�+ ! D0�+, D0 ! K��+ an be used to imply kinematialonstraints. In this ase, theD0 is a rather stable partile whose width is too smallto resolve by diret kinematial reonstrution in a spetrometer. Therefore,the established knowledge of the D0 mass [97℄ an be imposed as a kinematialonstraint. For example, if ~� denotes the reonstruted parameters of theK� and�+ partiles and V� their ovariane matrix, the reonstruted D0 mass will bea funtion M(�) of these parameters, and introdution of a Lagrange multiplier� leads to the expressionX2 = (~� � ~�)TV �1� (~� � ~�) + 2�(M( ~�)�mD0) (55)whih has to be minimized with respet to the onstrained parameters ~�. If thedaughter partiles form a seondary vertex, its parameters an be optimized aswell. The D0 mass onstraint leads in general to a onsiderable improvement ofthe D� mass peak, whih beomes muh narrower than the experimental resolu-tion. In omparison to the popular mass di�erene method, whih bene�ts from92



the orrelation in the errors of the reonstruted D and D� masses, this approahhas the advantage that the result an be used in turn to reonstrut more om-plex deay hains of angular exitations in the D systems, or of B hadrons. In anext step of B reonstrution, even the tabulated D� mass ould be imposed asanother independent onstraint.7 Conluding RemarksThe variety of pattern reognition tasks in partile physis traking detetorshas lead to a multitude of di�erent approahes. Several of the global methods,as template mathing or Hough transform/histogramming play an unhallengedrôle in speial appliations, while Hop�eld networks and deformable templatesfrequently appear to be either limited to favourable senarios (e.g. with 3Dmeasurements and moderate oupany), or need an exellent initialization orombination with a trak following algorithm to beome appliable at produtionsale. In the ase of elasti arms, also the hoie of an eÆient minimizationtehnique is essential. Loal methods of pattern reognition are still going strong,with the Kalman �lter as the mathematial bakbone, and aompanied by subtlearbitration tehniques they an ope well even with high trak densities andsizable amounts of material in the traking area. The new generation of highenergy hadron olliders, in partiular the LHC with huge trak densities in piled-up events will beome an important benhmark for algorithm performane. It anbe expeted that sophistiated ombination of both global and loal approahesin di�erent passes of the proedure, mathed to the partiular layout of eahexperiment, will beome a promising path to ahieving the best performane.The inreasing abundane of material in radiation hard detetors poses alsoadditional hallenges to trak �tting. While the orretion of multiple satter-ing with the Kalman �lter has beome the aepted general standard, Moli�eresattering tails require a areful interpretation of the results. Eletron energy re-onstrution with sizable radiative energy loss is a major hallenge and requiresvery areful treatment, and beomes a rewarding subjet for robust methods be-yond least square estimation. Also vertex pattern reognition an be expetedto reeive inreasing attention in very omplex event topologies at LHC, wherereliable tagging of heavy avour is a ruial prerequisite to sienti� disovery.AknowledgementIt is a pleasure to thank E. Lohrmann for his valuable omments on the manusript.93



Referenes[1℄ H. Grote, Review of Pattern Reognition in High Energy Physis, Reportson Progress in Physis 50 (1987) 473-500.[2℄ H. Albreht et al., Searh for Rare B Deays, Phys. Lett. B 353 (1995)554-562.[3℄ ATLAS Collaboration, ATLAS Inner Detetor Tehnial Design ReportVol.I, CERN/LHCC/97-16, CERN (1997).[4℄ C. Grupen, Partile Detetors, Cambridge Monographs on Partile Physis,1996.[5℄ K. Kleinkneht, Detetors for Partile Radiation, Cambridge UniversityPress (1999).[6℄ D. Green, The Physis of Partile Detetors, Cambridge University Press(2000)[7℄ R.L. Glukstern, Unertainties in Trak Momentum and Diretion, Dueto Multiple Sattering and Measurement Errors, Nul. Instr. and Meth. 24(1963) 381{389.[8℄ R. Carlin et al. (ZEUS Collaboration), The ZEUS Mirovertex Detetor,Nul. Instr. and Meth. A511 (2003) 23{37.[9℄ M. Danilov et al., The ARGUS Drift Chamber, Nul. Instr. and Meth. 217(1983) 153-159.[10℄ G. Siolla et al. (BaBar Collaboration), The BaBar Drift Chamber, Nul.Instr. and Meth. A419 (1998) 310-314.[11℄ F. Bruyant, J.M. Leseux and R.J. Plano, The Buttery Drift ChamberGeometry: an Optimal Four-Plane Drift Chamber for Use in a High TrakMultipliity Environment, Nul. Instr. and Meth. 176 (1980) 409.[12℄ O. Kind et al., A ROOT-Based Client-Server Event Display for the ZEUSExperiment, Pro. Computing in High Energy Physis Conferene, La Jolla2003, Preprint hep-ex/0305095.[13℄ P. Kri�zan et al., HERA-B, an Experiment to Study CP Violation at TheHERA Proton Ring Using an Internal Target, Nul.Instr. and Meth. A351(1994) 111-131.[14℄ E. Hartouni et al., HERA-B: an Experiment to Study CP Violation in TheB System Using an Internal Target at The HERA Proton Ring. DesignReport, DESY-PRC-95-01 (1995).94



[15℄ R. Mankel, The HERA-B Experiment: Overview And Conepts, Pro. In-ternational Conferene on High-Energy Physis (ICHEP 98), Vanouver1998 (Canada), Vol. 2, 1513{1518.[16℄ H. Wieman et al., STAR TPC at RHIC, IEEE Trans. Nul. Si. NS-44(1997) 671{678.J.H. Thomas, A TPC for Measuring High Multipliity Events at RHIC,Nul. Instr. and Meth. A478 (2002) 166-169.M. Anderson et al., The STAR Time Projetion Chamber: a Unique Toolfor Studying High Multipliity Events at RHIC, Nul. Instr. and Meth. A499(2003) 659-678.[17℄ F.E. Taylor et al, Design and Performane of a 307 Million Pixel CCD Ver-tex Detetor, Pro. 28th International Conferene on High Energy Physis(ICHEP 96), vol. 2* 1739-1742, Warsaw, (1996).[18℄ S. Brandt, Datenanalyse (in German), Bibliographishes InstitutMannheim 1992.[19℄ V. Blobel and E. Lohrmann, Statistishe und Numerishe Methoden derDatenanalyse (in German), Teubner (1998)[20℄ P. Bevington and D. Robertson, Data Redution and Error Analysis for thePhysial Sienes, MGraw/Hill 1992.[21℄ W.T. Eadie et al., Statistial Methods in Experimental Physis, North-Holland 1971.[22℄ A.G. Frodesen, O. Skjeggestad and H. Tofte, Probability and Statistis inPartile Physis, Universitetsforlaget 1979.[23℄ R.E. Kalman, A New Approah to Linear Filtering and Predition Prob-lems, Transations of ASME Journ. Basi Engineering 82 (1960) 35-45.R.E. Kalman and R.S. Buy, New Results in Linear Filtering PreditionTheory, Transations of ASME Journ. Basi Engineering 83 (1961) 95-108.[24℄ P. Billoir, Trak Fitting with Multiple Sattering: a New Method, Nul.Instr. and Meth. 225 (1984) 352-366.[25℄ R. Fr�uhwirth, Appliation of Kalman Filtering, Nul. Instr. and Meth. A262(1987) 444-450.[26℄ P. Billoir, S. Qian, Simultaneous Pattern Reognition and Trak Fitting bythe Kalman Filtering Method, Nul. Instr. and Meth. A294 (1990) 219-228.95



[27℄ R.H. B�ok, H. Grote, D. Notz and M. Regler, Data Analysis Tehniquesfor High-Energy Physis Experiments, Cambridge Univ. Press (1990). 2ndedition (with R. Fr�uhwirth) (2000)[28℄ D.N. Brown, E.A. Charles and D.A. Roberts, The BaBar Trak FittingAlgorithm, Pro. Computing in High Energy Physis Conferene, Padova(2000).[29℄ R. Mankel and A. Spiridonov, Compatibility Analysis, HERA-B InternalNote 99-111 (1999).[30℄ H.D. Shulz and H.J. Stukenberg, Pro. Topial Conferene on the Ap-pliation of Miroproessors in High Energy Physis Experiments, CERN81-07 (1981).[31℄ N. Koh et al., The ARGUS Vertex Trigger, Nul. Instr. and Meth. A373(1996) 387-405.[32℄ S. Seidel et al. (ARGUS Collaboration), The ARGUS Miro-Vertex DriftChamber, Pro. APS Conferene Partiles and Fields, Vol. 2, 1158-1163,Vanouver (1991).[33℄ M. Dell'Orso and L. Ristori, A Highly Parallel Algorithm for Trak �nding,Nul. Instr. and Meth. A287 (1990) 436-438.[34℄ P. Battaiotto et al., The Tree-Searh Proessor for Real-Time Trak PatternReognition, Nul. Instr. and Meth. A287 (1990) 431-435.[35℄ K. Akersta� et al., The HERMES Spetrometer, Nul. Instr. and Meth.A417 (1998) 230-265.[36℄ J. Blom et al., A Fuzzy Radon Transform for Trak Reognition, Pro.Computing in High Energy Physis Conferene, San Franiso (1994).[37℄ M. Gyulassy and M. Harlander, Elasti Traking and Neural Network Al-gorithms for Complex Pattern Reognition, Comp. Phys. Comm. 66 (1991)31{46.[38℄ A. Antonov (Mosow Engineering and Physis Institute), private ommu-niation.[39℄ P.V.C. Hough, Mahine Analysis of Bubble Chamber Pitures, Int. Conf.on High Energy Aelerators and Instrumentation, 554{556, CERN, 1959.[40℄ M. Ohlsson, C. Peterson and A.L. Yuille, Trak Finding with DeformableTemplates: The Elasti Arms Approah, Comput. Phys. Commun. 71(1992) 77-98. 96



[41℄ C. Borgmeier, Global Pattern Reognition in the HERA-B Traking System(in German), Diploma thesis, Humboldt University Berlin (1996).[42℄ T. Shober, Investigation of Hough Transforms as Global Approahes toPattern Reognition in the HERA-B Main Traking System (in German),Diploma thesis, Humboldt University Berlin (1996).[43℄ J.A.Anderson and E. Rosenfeld, Neuroomputing: Foundations of Researh,MIT Press, Cambridge (1988).[44℄ J.J. Hop�eld, Neural Networks and Physial Systems with Emergent Col-letive Computational Abilities, Pro. National Aademy of Siene, USA,79 (1982) 2554-2558. Reprinted in [43℄.[45℄ Y. Shrivastava, S. Dasgupta and S.M. Reddy, Guaranteed Convergene in aClass of Hop�eld Networks, IEEE Transations on Neural Networks Vol.3,No.6 (1992) 951-961. Reprinted in [43℄.[46℄ B. Denby, Neural Networks and Cellular Automata in Experimental Highenergy Physis, Comput. Phys. Commun. 49 (1988) 429-448.[47℄ C. Peterson, Trak Finding with Neural Networks, Nul. Instr. and Meth.A279 (1989) 537-549.[48℄ G. Stimp-Abele and L. Garrido, Fast Trak Finding With Neural Net-works, Comput. Phys. Commun. 64 (1991) 46-56.[49℄ R. Mankel, Pattern Reognition Algorithms For B Meson Reonstrution inHadroni Collisions, Pro. Computing in High Energy Physis Conferene,Berlin (1997). URL http://www.ifh.de/CHEP97/paper/183.ps[50℄ I. Abt et al., Cellular Automaton And Kalman Filter Based Trak Searh inThe HERA-B Pattern Traker, Nul. Instr. and Meth. A490 (2002) 546-558.[51℄ I. Abt et al., CATS: a Cellular Automaton for Traking in Silion for TheHERA-B Vertex Detetor, Nul. Instr. and Meth. A489 (2002) 389-405.[52℄ M. Ohlsson, Extensions and Explorations of the Elasti Arms Algorithm,Comput. Phys. Commun. 77 (1993) 19-32.[53℄ C. Peterson and B. S�oderberg, A New Method for Mapping OptimizationProblems onto Neural Networks, Int. Journal of Neural Systems 1 (1989)3-22.[54℄ M. Lindstr�om, Trak Reonstrution in The ATLAS Detetor Using ElastiArms, Nul. Instr. and Meth. A357 (1995) 129-149.97



[55℄ R. Blanenbeler, Deformable Templates { Revised And Extended { Withan OOP Implementation, Comput. Phys. Commun. 81 (1994) 318-334.[56℄ A. Paus, Pattern Reognition in the Traking System of the HERA-B De-tetor With an Elasti Arms Algorithm (in German), Diploma thesis, Hum-boldt University Berlin (1997).[57℄ S.E. Fahlmann, Faster-Learning Variations on Bak-Propagation: an Em-pirial Study, Pro. Connetionist Models Summer Shool, San Mateo(1988).[58℄ A. Riedmiller and H. Braun, A Diret Adaptive Method for Faster Bak-propagation Learning: the RPROP Algorithm, Pro. IEEE InternationalConferene of Neural Networks, San Franiso (1993).[59℄ R. Fr�uhwirth and A. Strandlie, Trak Fitting with Ambiguities and Noise:a Study of Elasti Traking and Nonlinear Filters, Comp. Phys. Comm. 120(1999) 197-214.[60℄ A. Strandlie and R. Fr�uhwirth, Adaptive Multitrak Fitting, Comp. Phys.Comm. 133 (2000) 34-42.[61℄ R. Mankel, A Conurrent Trak Evolution Algorithm for Pattern Reogni-tion in the HERA-B Main Traking System, Nul. Instr. and Meth. A395(1997) 169-184.[62℄ H. Albreht, private ommuniation.[63℄ A. Khanov et al., Traking in CMS: Software Framework And Traker Per-formane, Nul. Instr. and Meth. A478 (2002) 460-464.[64℄ M.M. Angarano et al. (CMS Traker Collaboration), The Silion StripTraker for CMS, Nul. Instr. and Meth. A501 (2003) 93-99.[65℄ R. Mankel and A. Spiridonov, The Conurrent Trak Evolution Algorithm:Extension for Trak Finding in The Inhomogeneous Magneti Field of TheHERA-B Spetrometer, Nul. Instr. and Meth. A426 (1999) 268-282.[66℄ M. Regler, R. Fr�uhwirth and W. Mitaro�, Filter Methods in Trak AndVertex Reonstrution, Int. Journ. Mod. Phys. C7 (1996) 521-542.[67℄ R. Mankel, Online Trak Reonstrution for HERA-B, Nul. Instr. andMeth. A384 (1996) 201-206.[68℄ W.H. Press et al., Numerial Reipes in C: the Art of Sienti� Computing,2nd edition, Cambridge University Press, 1993.98



[69℄ T. Oest, Partile Traing Through The HERA-B Magneti Field, HERA-BInternal Note 97-165 (1997).[70℄ H.A. Bethe, Moli�ere's Theory of Multiple Sattering, Phys. Rev. 89 (1953)1256-1266.[71℄ V.L. Highland, Some Pratial Remarks on Multiple Sattering, Nul. Instr.and Meth. 129 (1975) 497-499.Erratum Nul. Instr. and Meth. 161 (1979) 171.[72℄ G.R. Lynh and O.L. Dahl, Approximations for Multiple Coulomb Satter-ing, Nul. Instr. and Meth. B58 (1991) 6-10.[73℄ G. Lutz, Optimum Trak Fitting in The Presene of Multiple Sattering,Nul. Instr. and Meth. A273 (1988) 349-374.[74℄ E.J. Wolin and L.L. Ho, Covariane Matries for Trak Fitting With TheKalman Filter, Nul. Instr. and Meth. A329 (1993) 493-500.[75℄ R. Mankel, The Objet-Oriented Trak Fit, HERA-B Internal Note 98-079.[76℄ G. Baum et al. (COMPASS Collaboration), Common Muon and ProtonApparatus for Struture and Spetrosopy (Proposal), CERN/SPSLC 96-14.[77℄ S. Amato et al. (LHCb Collaboration), LHCB Tehnial Proposal, CERN-LHCC-98-4, CERN-LHCC-P-4 (1998).[78℄ V. Papavassiliou et al. (BTeV Collaboration), BTeV: A Proposal for a NewB Physis Experiment at the Fermilab Tevatron Collider La Thuile 2000,Results And Perspetives in Partile Physis, 843-864 (2000)[79℄ D. Stampfer, M. Regler and R. Fr�uhwirth, Trak Fitting With Energy Loss,Comput. Phys. Commun. 79 (1994) 157-164.[80℄ H.A. Bethe and W. Heitler, Pro. Roy. So. A146 (1934) 83.[81℄ G. Kitagawa, Non-Gaussian Seasonal Adjustment, Comp. and Math. Appl.18 (1989) 503-514.[82℄ G. Kitagawa, The Two-Filter Formula for Smoothing And an Implementa-tion of The Gaussian-Sum Smoother, Annals Inst. Statist. Math. 46 (1994)605-623.[83℄ R. Fr�uhwirth, Trak Fitting With Long-Tailed Noise: a Bayesian Approah,Comput. Phys. Comm. 85 (1995) 189-199.99



[84℄ R. Fr�uhwirth, Trak Fitting With Non-Gaussian Noise, Comput. Phys.Comm. 100 (1997) 1-16.[85℄ R. Fr�uhwirth and M. Regler, On the Quantitative Modelling of Tails andCore of Multiple Sattering by Gaussian Mixtures, Nul. Instr. and Meth.A456 (2001) 369.[86℄ R. Fr�uhwirth and S. Fr�uhwirth-Shnatter, On the Treatment of Energy Lossin Trak Fitting, Comput. Phys. Comm. 110 (1998) 80-86.[87℄ G.F. Hartner, VCTRAK Brie�ng: Program and Math, ZEUS Internal Note98-058, 1998.[88℄ P. Billoir and S. Qian, Fast Vertex Fitting with Loal Parametrization ofTraks, Nul.Instr. and Meth. A311 (1992) 139-150.[89℄ R. Fr�uhwirth et al., New Vertex Reonstrution Algorithms for CMS, Pro.Computing in High Energy Physis Conferene, La Jolla 2003, Preprintphysis/0306012.[90℄ D.J. Jakson, A Topologial Vertex Reonstrution Algorithm for HadroniJets, Nul. Instr. and Meth. A388 (1997) 247-253.[91℄ T. Lohse, Vertex Reonstrution and Fitting, HERA-B Internal Note 95-013, 1995.[92℄ D.H. Saxon, Three-Dimensional Trak and Vertex Fitting in Chambers withStereo Wires, Nul. Instr. and Meth. A234 (1985) 258-266.[93℄ G.E. Forden and D.H. Saxon, Improving Vertex Position DeterminationUsing a Kinemati Fit, Nul. Instr. and Meth. A248 (1986) 439-450.[94℄ D.H. Saxon, Vertex Detetion and Traking at Future Aelerators,Hadroni J. 10 (1987) 117-139.[95℄ R. Luhsinger and C. Grab, Vertex Reonstrution by Means of the KalmanFilter, Comput. Phys. Comm. 76 (1993) 263-280.[96℄ H. Albreht et al., Exlusive Hadroni Deays of B Mesons, Z. Phys. C48(1990) 543{551.[97℄ Partile Data Group (K. Hagiwara et al.), Review of Partile Physis, Phys.Rev. D66 (2002). 100


	Introduction
	Basics
	Detector Layouts
	Forward or fixed target geometry
	Collider detector geometry

	Typical Tracking Devices
	Linear single-coordinate measurements
	Radial single-coordinate measurements
	Stereo angles
	Three-dimensional measurements

	Track Models and Parameter Representations
	Forward geometry
	Cylindrical geometry

	Parameter Estimation
	Least squares estimation
	The Kalman filter technique

	Evaluation of Performance
	The reference set
	Track finding efficiency
	Ghosts
	Clones
	Parameter resolution
	Interplay


	Global Methods of Pattern Recognition
	Template Matching
	The Fuzzy Radon Transform
	Histogramming
	Neural Network Techniques
	The Hopfield neuron
	The Denby-Peterson method
	Elastic arms and deformable templates


	Local Methods of Pattern Recognition
	Seeds
	2D Versus 3D propagation
	Naïve Track Following
	Combinatorial Track Following
	Use of The Kalman Filter
	Arbitration
	An Example for Arbitrated Track Following
	Algorithm
	Parameters

	Track Following And Impact of Detector Design Parameters
	Influence of detector efficiency
	Effect of detector resolution
	Influence of double track separation
	Execution speed

	Track Propagation in a Magnetic Field

	Fitting of Particle Trajectories
	Random Perturbations
	Treatment of Multiple Scattering
	Impact parameter and angular resolutions
	Momentum resolution
	Effects of fit non-linearity
	Contributions of different parts of the spectrometer
	Parameter covariance matrix estimation
	Goodness of fit

	Treatment of Ionization Energy Loss And Radiation
	Ionisation energy loss
	Radiative energy loss
	Radiation energy loss correction within the magnetic field

	Robust Estimation

	Event Reconstruction
	Vertex Pattern Recognition
	Vertex Fitting
	Kinematical Constraints

	Concluding Remarks
	Acknowledgement
	References

