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Abstra
tThis report reviews methods of pattern re
ognition and event re
onstru
tionused in modern high energy physi
s experiments. After a brief introdu
tioninto general 
on
epts of parti
le dete
tors and statisti
al evaluation, di�erentapproa
hes in global and lo
al methods of tra
k pattern re
ognition are reviewedwith their typi
al strengths and short
omings. The emphasis is then moved tomethods whi
h estimate the parti
le properties from the signals whi
h patternre
ognition has asso
iated. Finally, the global re
onstru
tion of the event isbrie
y addressed.
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1 Introdu
tionS
ienti�
 dis
overy in elementary parti
le physi
s is largely driven by the questfor higher and higher energies, whi
h allow delving ever more deeply into the�ne stru
ture of the mi
ros
opi
 universe. Higher energies lead in general to anin
reased multipli
ity of parti
les. Sin
e the a

eleration of ele
trons is limitedeither by syn
hrotron radiation in 
ase of storage rings, or by �eld gradients in
ase of linear 
olliders, multi-TeV energies are in the near future only a

essibleby a

elerating hadrons, the 
ollision of whi
h generates even more parti
les.Re
onstru
tion of 
harged parti
les from signals of tra
king dete
tors in spe
-trometers has always shown aspe
ts of a dis
ipline of art, sin
e the variety ofexperimental setups lead to development of very diverse pattern re
ognition meth-ods, whi
h 
ould not easily be ranked among ea
h other. An general overview hasbeen given in an earlier review [1℄. It is remarkable that even today, no generallya

epted standard software pa
kage exists whi
h performs tra
k �nding in a va-riety of dete
tor setups, a situation whi
h is in marked 
ontrast e.g. to dete
torsimulation. A new generation of experiments is now emerging in whi
h the tra
kdensity is so high that su

ess will 
ru
ially depend on the power of the re
on-stru
tion methods. One example for the development in tra
king demands over15 years is illustrated in �g. 1, whi
h shows in dire
t 
omparison an event fromthe experiment ARGUS [2℄, whi
h took data of e+e� 
ollisions in the � range inthe period 1982{1992, and the ATLAS experiment [3℄ whi
h is 
urrently under
onstru
tion and will operate from 2007 on with proton 
ollisions at the LHC.The new experiments also require huge 
omputing resour
es for re
onstru
tionof their data. Sin
e tra
k �nding is usually the most time 
onsuming part inre
onstru
tion, the sophisti
ation and e
onomy of pattern re
ognition methodshas 
onsiderable impa
t on the 
omputing e�ort.Pattern re
ognition plays an important rôle also in other dete
tor 
omponents,for example 
luster re
onstru
tion in 
alorimeters, or ring �nding in ring imaging�Cerenkov dete
tors (RICH). It is however in tra
k re
onstru
tion where the newgenerations of experiments pose the most 
ru
ial 
hallenges. This arti
le willtherefore fo
us on tra
k re
onstru
tion as well as to related aspe
ts of eventre
onstru
tion.The �rst of the following 
hapters will provide an introdu
tion into basi
dete
tor 
on
epts and tra
king devi
es and summarize mathemati
al tools forestimating parameters and performan
e that will be used later on. The twofollowing 
hapters fo
us on tra
k pattern re
ognition with various methods, in-
luding appli
ations in several experiments. The next 
hapter then 
on
entrateson parameter estimation from parti
le traje
tories, whi
h is { in 
ontrast to tra
k�nding { in prin
iple a straight-forward mathemati
al problem, but 
ontains sev-eral detailed issues worth mentioning. The last 
hapter brie
y dis
usses sometra
k-related aspe
ts of event re
onstru
tion.3



ATLAS
Figure 1: Comparison of event 
omplexity in the experiments ARGUS and AT-LAS. The ARGUS event (top) 
onsists of two re
onstru
ted B mesons, one ofthem being a 
andidate for the 
harmless de
ay B� ! K�4�� (from [2℄). TheATLAS display (bottom) shows a simulation of an event in the inner dete
torwith a Higgs boson in the de
ay mode H0 ! b�b, in
luding the pileup at full LHCluminosity (from [3℄). 4



2 Basi
sThis se
tion provides a brief introdu
tion into the basi
 elements in
uen
ing eventre
onstru
tion. It is not intended to 
over the subje
t of parti
le dete
tors in fulldetail, instead the dete
tor literature (see for example [4, 5, 6℄) is referred to.2.1 Dete
tor LayoutsModern dete
tors in high energy physi
s are usually sampling dete
tors. Thedete
tor volume is �lled with devi
es whi
h the parti
les traverse and in whi
hthey leave elementary pie
es of information, as e.g. an ex
itation in a solid-statedete
tor, a primary ionization in a gaseous 
hamber or an energy deposition ina sensitive volume of a 
alorimeter. The event re
ord of an experiment 
onsistsof the amassed volume of the signals from all parti
les of an intera
tion { orpossibly even several intera
tions { joined together. After sorting out whi
hbits of information are related to the same parti
le { this pro
ess is 
alled patternre
ognition { the kinemati
al properties of ea
h parti
le have to be re
onstru
ted,to reveal the physi
al nature of the whole event.In general, experiments nowadays strive to re
ord the intera
tion as a whole,with all (signi�
ant) parti
les produ
ed in the pro
ess. This has lead to thedevelopment of 4� dete
tors, where almost the whole solid angle region, as seenfrom the intera
tion, is 
overed.In general, two main 
on
epts have to be distinguished, whi
h will be dis
ussedin the following.
Beam

Target

Vertex
detector

Spectrometer
magnet

Main tracking
system

ECAL
HCAL

Muon system

Figure 2: Typi
al geometry of a forward spe
trometer, as used e.g. in �xed-targetsetups. 5



2.1.1 Forward or �xed target geometryWhen the intera
tion is generated by an in
ident beam hitting a �xed target,the 
entre-of-mass system of the parti
ipating parti
les is seen under a strongLorentz boost, and the emerging parti
les are moving within a 
one into theforward dire
tion. In this 
ase, the dete
tor setup must 
over this forward 
onewith instrumentation, while the more ba
kward part of the solid angle is generallynegle
ted. This s
enario is 
alled a forward dete
tor geometry. Similar situationsexist where the dynami
s of the intera
tion result in all relevant parti
les to beprodu
ed under a huge Lorentz boost, like heavy 
avour produ
tion at largehadron 
olliders.Figure 2 s
hemati
ally shows a forward dete
tor geometry as it is used in �xedtarget experiments. The event is generated through 
ollision of a beam parti
lewith a nu
leus in the target. Be
ause of the momentum of the in
ident beamparti
les, the whole event is seen under a Lorentz boost in the beam dire
tion, sothat the emerging parti
les are 
on�ned to a 
one whose opening angle dependson the typi
al transverse momenta generated in the intera
tion, and the size ofthe Lorentz boost.The main 
omponents of a typi
al forward spe
trometer are:� the vertex dete
tor, whi
h is a pre
ision tra
king system very 
lose to theintera
tion point. Its main purpose is the improvement of tra
k resolutionnear the intera
tion point whi
h allows re
onstru
tion of se
ondary verti
esor distin
tion of deta
hed tra
ks whi
h is used e.g. for the tagging of heavy
avour de
ays.� the spe
trometer magnet with the main tra
king system, whi
h measurestraje
tories of 
harged parti
les and determines their momentumand 
hargesign from the 
urvature.� the 
alorimeter system, whi
h is often split into an ele
tromagneti
 anda hadroni
 part. The 
alorimeter allows identi�
ation of ele
trons andhadrons by their deposited shower energy, and very often provide essen-tial signals for the trigger system. The 
alorimeter 
an also measure ener-gies of individual neutral parti
les, in parti
ular photons, though the a
tual
apability in this task depends strongly on the parti
le density in the event.� the muon dete
tor, whi
h 
onsists of tra
king devi
es in 
ombination withabsorbers. Only muons are able to traverse the intermediate material, andare then measured in the dedi
ated tra
king layers.The design of a forward spe
trometer is in
uen
ed by several fa
tors. Thesheer size of the tra
king volume depends on the leverage required for the momen-tum resolution, sin
e at suÆ
iently high momentum the resolution is inverselyproportional to the integral of the magneti
 �eld along the traje
tory [7℄, as will6



be dis
ussed in more detail in se
. 5. Depending on the s
ope of the experiment,further dete
tor 
omponents may be introdu
ed to provide parti
le identi�
a-tion, for example ring-imaging �Cerenkov 
ounters (RICH) or transition radiationdete
tors (TRD).2.1.2 Collider dete
tor geometryWhen two beams 
ollide head-on, the 
entre-of-mass system of the intera
tionsis either at rest or moving moderately. In this 
ase, the dete
tor should try to
over the full solid angle. This beam setup usually leads to 
ylindri
al dete
torlayouts with a solenoid �eld parallel to the beam axis (�g. 3). In 
omparison to
Vertex dete
torDrift 
hamberCalorimeterYoke/AbsorberMuon 
hambers� � � ��Figure 3: Typi
al setup of a 
ollider dete
tor.the forward geometry dete
tor, the 
ylindri
al geometry di�ers in several details:� the vertex dete
tor requires modules parallel to the beam, at least in the
entral part of the angular a

eptan
e, often referred to as the barrel part.� the main tra
king system is generally 
ontained in the magneti
 �eld. Coiland yoke of the magnet usually have to be within the dete
tor volume,where the general 
hoi
e is to have the 
oil between drift 
hamber and
alorimeter, where parti
les traverse it before their energy being measuredin the 
alorimeter, or to make it large enough to en
lose the 
alorimeter,7



whi
h may be more 
ostly to build and operate and where the �eld mayhave adverse e�e
ts on the 
alorimeter itself.� the 
alorimeter system now requires barrel and end 
ap parts to 
over thesolid angle. A main fun
tionality at high energy 
olliders is the measure-ment of jets.� for the muon dete
tor, the yoke of the solenoid lends itself readily as ab-sorber.

8



2.2 Typi
al Tra
king Devi
es2.2.1 Linear single-
oordinate measurements

Figure 4: Lower half barrel part of the Zeus mi
ro-vertex dete
torA widespread type of tra
king devi
e measures one 
oordinate of the parti
lewhose traje
tory interse
ts the devi
e. A good example for this type representsili
on strip dete
tors, whi
h are semi
ondu
tor-based devi
es stru
tured in stripstypi
ally down to widths of 25 �m. Ea
h strip works like a small diode, with avoltage applied su
h that the border area is depleted and the resistan
e is high. Atraversing 
harged parti
le will then 
reate pairs of ele
trons and 
orrespondingholes whi
h drift apart under the voltage and 
an be registered as a pulse. Ingeneral several strips will register a signal under traversal of a parti
le, and thepulse heights of the parti
ipating 
hannels 
an be evaluated with suitable 
luster-ing algorithms, for example 
entre-of-gravity based, and determine the lo
ationat whi
h the parti
le has passed. Solid-state dete
tors are presently the tra
k-ing devi
es with the highest spatial resolution, and they are often installed very
lose to the intera
tion region as vertex dete
tors where they allow or improve there
onstru
tion of primary and se
ondary verti
es. Another favourable propertyof solid-state dete
tors is their resilien
e against radiation damage. The 
urrentlimitation is in the size of individual dete
tor modules, whi
h makes them expen-sive for 
overage of large volumes. Figure 4 shows the mi
ro-vertex dete
tor of9



the ZEUS experiment [8℄, prior to its installation in 2001.2.2.2 Radial single-
oordinate measurementsThe size of the tra
king volumes is important, sin
e momentum measurementrequires the parti
le to traverse a magneti
 �eld, where the length of the pathprovides the leverage that determines the pre
ision of the momentum re
on-stru
tion. This is one of the reasons why gaseous 
hambers, in parti
ular drift
hambers are very 
ommonly employed when large areas have to be 
overed.
Figure 5: S
hemati
 view of a drift 
hamber 
ell. The �lled 
ir
les indi
ate wires,with the sense wire in the middle of the 
ell and the �eld wires on the outside. Thebla
k arrow shows the traje
tory of a parti
le, the grey arrows denote primaryionization 
harges drifting towards the sense wire.The basi
 prin
iple of the drift 
hamber is displayed in �g. 5. A drift 
ell
onsists of an anode wire in the 
entre and an arrangement of �eld wires. Thegeometry shown is very similar to that in the ARGUS drift 
hamber [9℄ (seealso �g. 34 in se
tion 4). The drift 
ell need not be of re
tangular shape, inthe drift 
hamber of the BaBar experiment, for example, it is hexagonal [10℄.Along the path of the parti
le, primary ionization o

urs. The 
harges drift tothe anode wire, where they 
reate a lo
ally 
on�ned avalan
he of parti
les withinthe large ele
tri
al �eld 
lose to the wire. This e�e
t results in a multipli
ationof the ionization whi
h is 
alled gas ampli�
ation. The rising edge of the signalpi
ked up by the anode wire triggers a time-to-digital 
onverter (TDC) whi
hthen measures the time until a 
ommon stop signal. This allows measuring ofthe drift time for those 
harges that are the �rst to arrive. In the simplest 
ase,the drift �eld will be shaped su
h that the drift velo
ity is uniform, and thetime resolution 
an be dire
tly transformed into a uniform resolution of the drift10



distan
e. In pra
ti
e, numerous e�e
ts 
an lead to a non-linear drift-time/spa
erelation, and the spatial resolution will depend on the pre
ise lo
ation of thetraversal of the parti
le.
Figure 6: Left: event display from the ZEUS 
entral tra
king dete
tor (CTD),showing sense wires and re
onstru
ted tra
ks. Right: 
loseup around the tra
kin the lower left area. The bla
k dots represent the sense wires, the grey dotsindi
ate the drift distan
e end points on both sides of the 
orresponding wire.Sin
e the time measured by the TDC 
orresponds to the arrival of the �rst
harges, usually those with the smallest distan
e to the wire, the drift 
hambermeasures the distan
e of 
losest approa
h of the parti
le to the wire. In 
aseswhere more than one parti
le traverses the same drift 
ell within the same in-tera
tion window, in general only the parti
le 
losest to the wire is registered.This e�e
t may 
ause 
ompli
ations for pattern re
ognition whi
h depend on thedegree of o

upan
y. Another typi
al property of drift 
hambers is that the sin-gle measurement 
annot distinguish on whi
h side of the wire the parti
le hastraversed; this un
ertainty is 
alled left-right ambiguity. In the worst 
ase, left-right ambiguity may lead to a mirror tra
k that 
annot be distinguished fromthe real one. Con
epts have therefore been developed how to design drift 
ham-bers su
h that left-right ambiguity 
an be resolved in all 
ases, e.g. the butter
ygeometry [11℄.Drift in gases is in
uen
ed also by magneti
 �elds. The deviation of the gasdrift dire
tion from the ve
tor of the ele
tri
 �eld is des
ribed by the Lorentzangle. Figure 6 shows an event display of the 
entral tra
king dete
tor (CTD) ofthe ZEUS experiment, in the view along the beam axis, whi
h has been 
reated11



using the tool des
ribed in [12℄. The Lorentz angle in this 
ase is 45Æ, and it isre
e
ted in the design of the 
ell stru
ture.2.2.3 Stereo angles
x

u

x

u

x

uFigure 7: Hit ambiguities with two stereo viewsDevi
es measuring single 
oordinates do not provide three-dimensional2 pointson a traje
tory, but measure only in a proje
ted spa
e. While su
h devi
es 
an bevery e
onomi
 in the sense that a relatively small number of 
hannels is neededto 
over a region at good resolution, 3D information 
an only be obtained by
ombining several proje
tions, usually named stereo views. While two views arein prin
iple suÆ
ient to re
onstru
t spatial information, the presen
e of more thanone tra
k leads in general to ambiguities regarding the assignment of proje
tedinformation. This is illustrated in �g. 7, where two parti
les are measured in twostrip dete
tor views of 0Æ (x) and 45Æ (u). Ambiguity in the assignment of themeasured hits in the x and u views to ea
h other leads to the re
onstru
tion of twoghost points. This illustrates that in general at least three views are ne
essaryto avoid this kind of ambiguities. On the other hand, in spe
ial 
ases of limited2The shorthands 2D (two-dimensional) and 3D (three-dimensional) will frequently be usedin the following. 12



TC PC MC SI
Figure 8: Layout of the HERA-B spe
trometer. The labels TC, PC, MC and SIindi
ate groups of tra
king stations that 
omprise the vertex and main tra
kingsystem.tra
k density, the use of only two views may be justi�ed, sin
e in this 
ase themajority of ghosts may be dis
arded for geometri
al reasons. This 
an alreadybe guessed from �g. 7: sin
e the true tra
ks are well separated, the uppermostghost 
ombination is already just outside the 
hamber a

eptan
e of the u view.Su
h 
on
epts are 
alled all-stereo designs.An example for a spe
trometer that 
ombines several types of single-
oordinatemeasurements is the HERA-B dete
tor [13, 14, 15℄ whi
h is shown in �g. 8. Thevertex dete
tor (labelled SI) 
onsists of eight superlayers of sili
on strip dete
torswith four di�erent stereo angles. The design of the main tra
ker is stru
turedinto the three areas within the magnet (MC), between magnet and RICH (PC)and between RICH and 
alorimeter (TC), it 
ontains 13 superlayers of honey-
omb drift 
hamber modules for the outer area and 10 superlayers of mi
ro-stripgaseous 
hambers (MSGC) for the region 
lose to the beam3.2.2.4 Three-dimensional measurementsIn general pattern re
ognition will bene�t 
onsiderably if the tra
king devi
e itselfis able to measure 3D spa
e points. A modern example is solid-state pixel dete
-tors, as for example the CCD-based vertex dete
tor of the SLD experiment [17℄,3The layout of tra
king stations has been modi�ed later with the shift of emphasis awayfrom B physi
s. 13



Figure 9: TPC of the STAR experiment (from [16℄).where the pixels have a size of 20� 20 �m2. A gaseous dete
tor 
apable of 
over-ing large tra
king volumes with 3D measurement is the time proje
tion 
hamber(TPC). Figure 9 shows the TPC of the STAR experiment [16℄. The gas volumeitself is free of wires; instead, an axial ele
tri
al �eld, produ
ed with the help ofa membrane ele
trode in the middle plane, lets the primary 
harges drift to theanodes at the end 
aps, where they are registered, for example with multi-wireproportional 
hambers with pad readout. While this provides a dire
t measure-ment of the x and y 
oordinates, the z 
oordinate is inferred from the timemeasurement. The magneti
 �eld is also axial, and plays an important rôle inlimiting di�usion e�e
ts during the drift.2.3 Tra
k Models and Parameter Representations2.3.1 Forward geometryIn the forward geometry, the intera
tion region lies very often in an area withoutmagneti
 �eld, sin
e the spe
trometer magnet is lo
ated further downstream.The natural 
hoi
e of parameters, assuming that the z 
oordinate points downthe spe
trometer axis and x and y are the transverse 
oordinates, is thenx0 the x 
oordinate at the referen
e z0y0 the y 
oordinate at the referen
e z0tx = tan �x the tra
k slope in the xz planety = tan �y the tra
k slope in the yz plane14



Q=p the inverse parti
le momentum, signed a

ording to 
hargewhere z0 denotes the lo
ation of a suitable referen
e plane transverse to the beam,for example at the position of the target, or at the nominal intera
tion point. Theslope parameters allow for a 
onvenient transformation of the parameters to adi�erent referen
e z value, as is needed during vertex re
onstru
tion. In 
asesof a very homogeneous magneti
 �eld, it may be advantageous to substitute theparameter Q=p by Q=p?, where p? is the momentum in the plane transverse tothe magneti
 �eld, or by � = Q=R, the signed inverse radius of 
urvature.2.3.2 Cylindri
al geometryIn 
ollider dete
tors with 
ylindri
al geometry, the magneti
 �eld normally en-
ompasses the whole tra
king volume, in
luding the intera
tion region where theparti
les are produ
ed. In a homogeneous solenoid �eld, the parti
le traje
torywill be a helix 
urling around an axis parallel to the magneti
 �eld. Assumingthe z 
oordinate is oriented along the dete
tor axis, and the radius is given byr = px2 + y2, typi
al tra
k parameters given at a referen
e value r = r0 may be�0 the azimuth angle where the traje
tory interse
ts the referen
e radiusz0 the z value where the traje
tory interse
ts the referen
e radius 0 the phase angle of the helix at the referen
e radius interse
tion, whi
h 
orre-sponds to the angle of the tangent at this pointQ=R the signed inverse 
urvature radius of the helixtan � where � = ar
tan pz=p? is the dip angle of the helix2.4 Parameter EstimationThe estimation of the kinemati
al parameters of a parti
le, as position (or impa
tparameter), dire
tion of 
ight and momentum at its point of origin from spatialmeasurements along its traje
tory is generally referred to as tra
k �tting. We as-sume at this point that the measurements related to a parti
le have been 
orre
tlyidenti�ed in the pattern re
ognition step (whi
h will be dis
ussed in more detailin se
tions 3 and 4). A very general approa
h to parameter estimation is themaximum likelihood method, whi
h shall not be dis
ussed here in detail; insteadwe refer to the textbook literature [18, 19, 20, 21, 22℄. The maximum likelihoodmethod 
an take very general distributions of the observed variables into a

ount,for example exponential distributions as they may o

ur when de
ay lengths aremeasured. However, its appli
ation in multi-parameter problems 
an be very
omplex, in parti
ular the error analysis. In 
ases where the distribution of therandom variables is Gaussian, at least approximately, the least squares method is15



generally su

essful. Sin
e many observables in tra
k re
onstru
tion do at leastapproximately follow a Gaussian distribution, this method will be fo
ussed on inthe following.2.4.1 Least squares estimationIf the traje
tory of a parti
le 
an be des
ribed by a 
losed expression f~�(`), where~� stands for the set of parameters, ` is the 
ight path and f is the 
oordinate whi
h
ould be measured, a set of measurements fmig with errors f�ig will provide anestimate of the parameters a

ording to the least squares prin
ipleX2 =X (mi � f~�(`i))2�2i != min (1)One 
an easily 
onvin
e oneself that in the 
ase of normally distributed measure-ments mi, the above impression is proportional to the negative logarithm of the
orresponding likelihood fun
tion, whi
h shows dire
tly the equivalen
e of leastsquares prin
iple and maximum likelihood prin
iple for this 
ase.Symbolizing the derivative matrix4 of f with respe
t to the parameters asF and the (diagonal) error matrix of the measurements as V = diagf�2i g, theexpression to be minimized is(~m� F~�)TV �1(~m� F~�) (2)and requiring the derivative to vanish at the minimum leads to the matrix equa-tion F TV �1 ~f = F TV �1 ~m (3)In 
ase of a linear problem, ~f = F~�, the above 
ondition 
an be dire
tly inverted~� = (F TV �1F )�1F TV �1~m (4)and the estimated parameters are a linear fun
tion of the measurements. Thematrix (F TV �1F )�1 that needs to be inverted is of the shape N� � N� (whereN� is the number of parameters des
ribing the parti
le), whi
h is inexpensive interms of 
omputation. Also the 
ovarian
e matrix of the parameter estimate 
anbe dire
tly determined as
ov(~�) = C� = (F TV �1F )�1 (5)The popularity of the least squares method 
an be attributed to its optimalityproperties in the linear 
ase:4We denote the derivative matrix as �f�� , where ��f���ij = �f~�(`i)��j .16



� the estimate is unbiased, i.e. the expe
tation value of the estimate is thetrue value� the estimate is eÆ
ient, whi
h means that, of all unbiased estimates whi
hare linear fun
tions of the observables, the least squares estimate has thesmallest varian
e. This is 
alled the \Gauss-Markov-Theorem".Though these properties are stri
tly guaranteed only for the linear 
ase, they arestill retained in most 
ases where the fun
tion f~� 
an be lo
ally approximated bya linear expansion.The expression X2 in equation 1 will follow a �2 distribution if the fun
tion f�is (suÆ
iently) linear and if the measurements mi follow a normal distribution.This property 
an be used for statisti
al tests. In parti
ular the se
ond 
onditionshould be always kept in mind, as its relevan
e will be
ome apparent later.2.4.2 The Kalman �lter te
hniqueThe least squares parameter estimation as des
ribed in the previous se
tion re-quires the global availability of all measurements at �tting time. There are 
aseswhen this requirement is not 
onvenient, for example in real-time tra
king ofobje
ts, or in pattern re
ognition s
hemes whi
h are based on tra
k following,where it is not 
lear a-priori if the hit 
ombination under 
onsideration doesreally belong to an a
tual tra
k.The Kalman �lter te
hnique was developed to determine the traje
tory of thestate ve
tor of a dynami
al system from a set of measurements taken at di�erenttimes [23℄. In 
ontrast to a global �t, the Kalman �lter pro
eeds progressivelyfrom one measurement to the next, improving the knowledge about the traje
torywith ea
h new measurement. Tra
king of a ballisti
 obje
t on a radar s
reen mayserve as a te
hni
al example. With a traditional global �t, this would require atime 
onsuming 
omplete re�t of the traje
tory with ea
h added measurement.Several properties make the Kalman �lter te
hnique an ideal instrument fortra
k (and vertex) re
onstru
tion [24, 25, 26℄. The predi
tion step, in whi
h anestimate is made for the next measurement from the 
urrent knowledge of thestate ve
tor, is very useful to dis
ard noise signals and hits from other tra
ks fromthe �t. The �lter step whi
h updates the state ve
tor does not require inversionof a matrix with dimension of the state ve
tor as in a global �t, but only withthe dimension of the measurement, leading to a very fast algorithm. Finally,the problem of random perturbations on the traje
tory, as multiple s
attering orenergy loss, 
an be a

ounted for in a very eÆ
ient way. In its �nal result, theKalman �lter pro
ess is equivalent to a least squares �t.In this arti
le the implementation and nomen
lature from [25, 27℄ is used, andthese do
uments are referred to for a more detailed explanation of the Kalman�lter method. In this notation, the system state ve
tor at the time k, i.e. afterin
lusion of k measurements is denoted by ~xk, its 
ovarian
e matrix by Ck. In17



our 
ase ~xk 
ontains the parameters of the �tted tra
k, given at the position ofthe kth hit. The matrix Fk des
ribes the propagation of the tra
k parametersfrom the (k � 1)th to the kth hit.5 For example, in a planar geometry with one-dimensional measurements and straight-line tra
ks, the propagation takes theform  xtx !k =  1 zk � zk�10 1 ! xtx !k�1 (6)where a subset of the tra
k parametrization in se
tion 2.3.1 has been used. The
oordinate measured by the kth hit is denoted by mk. In general mk is a ve
torwith the dimension of that spe
i�
 measurement. For tra
king devi
es measuringonly one 
oordinate, mk is an ordinary number. The measurement error is de-s
ribed by the 
ovarian
e matrix Vk. The relation between the tra
k parameters~xk and the predi
ted measurement is des
ribed by the proje
tion matrix Hk. Inthe example in se
tion 2.2.3, the measured 
oordinate in the stereo view u isH  xy ! = � 
os�st � sin�st � xy ! (7)with �st as the stereo angle (45Æ in the example).In ea
h �lter step, the state ve
tor and its 
ovarian
e matrix are propagatedto the lo
ation or time of the next measurement with the predi
tion equations:~xk�1k = Fk~xk�1 Ck�1k = FkCk�1F Tk +Qk (8)and the estimated residual be
omesrk�1k = mk �Hk~xk�1k Rk�1k = Vk +HkCk�1k HTk (9)Here Qk denotes the additional error introdu
ed by pro
ess noise, i.e. randomperturbations of the parti
le traje
tory, for example multiple s
attering. We willsee later (se
. 5.2) how this treatment works in detail. The updating of the systemstate ve
tor with the kth measurement is performed with the �lter equations:Kk = Ck�1k HT (Vk +HkCk�1k HTk )�1 (10)~xk = ~xk�1k +Kk(mk �Hk~xk�1k )Ck = (1�KkHk)Ck�1kwith the �ltered residualsrk = (1�HkKk) rk�1k Rk = (1 �HkKk)Vk (11)5We assume at this stage a linear system, so that Fk and Hk are matri
es in the propersense. For treatment of the non-linear 
ase see below.18



Kk is sometimes 
alled the gain matrix. The �2 
ontribution of the �ltered pointis then given by�2k;F = rTkR�1k rk (12)The system state ve
tor at the last �ltered point 
ontains always the full infor-mation from all points. If one needs the full state ve
tor at every point of thetraje
tory, the new information has to be passed upstream with the smootherequations:Ak = CkF Tk+1(Ckk+1)�1 (13)~xnk = ~xk +Ak(~xnk+1 � ~xkk+1)Cnk = Ck +Ak(Cnk+1 � Ckk+1)ATkrnk = mk �Hk~xnkRnk = Rk �HkAk(Cnk+1 � Ckk+1)ATkHTkThus, smoothing is also a re
ursive operation whi
h pro
eeds step by step in thedire
tion opposite to that of the �lter. The quantities used in ea
h step have been
al
ulated in the pre
eding �lter pro
ess. If pro
ess noise is taken into a

ount,e.g. to model multiple s
attering, the smoothed traje
tory may in general 
ontainsmall kinks and thus reprodu
e more 
losely the real path of the parti
le.In the equations above, F and H are just ordinary matri
es if both transportand proje
tion in measurement spa
e are linear operations. In 
ase of non-linearsystems, they have to be repla
ed by the 
orresponding fun
tions and their deriva-tives:Fk~xk ! fk(~xk) Hk~xk ! hk(~xk) (14)using for 
ovarian
e matrix transformationsFk ! �fk�~xk Hk ! �hk�~xk (15)The dependen
e of fk and hk on the state ve
tor estimate will in general requireiteration until the traje
tory 
onverges su
h that all derivatives are 
al
ulatedat their proper positions. We will 
ontinue to 
all �fk=�~xk the transport matrixand �hk=�~xk the proje
tion matrix of our system.The Kalman �lter has also been found to be parti
ularly suited for implemen-tation in obje
t-oriented programming language [28℄.2.5 Evaluation of Performan
eWhen it 
omes to quantifying the performan
e of methods in tra
k pattern re
og-nition, a
tual numbers will in general strongly depend of the de�nition of 
riteria,whi
h 
omparisons should take into a

ount.19



2.5.1 The referen
e setAssessment of tra
k �nding eÆ
ien
y requires �rstly a de�nition of a referen
e setof tra
ks that an ideally performing algorithm should �nd. Normally tra
ks willbe provided by a Monte Carlo simulation, and the sele
tion of referen
e tra
ks willdepend on the physi
s motivation of the experiment. Low momentum parti
lesarising from se
ondary intera
tions in the material are normally not within thephysi
s s
ope but merely an obsta
le and should be ex
luded. Parti
les travellingoutside of the geometri
al a

eptan
e, for example within the beam hole of a
ollider experiment 
annot be tra
ed by the dete
tor and should be disregardedas well. Also parti
les straddling the border of a dete
tor and e.g. traversing onlya small number of tra
king layers will often be regarded as outside of the designtra
king volume. A typi
al 
onvention may be to regard parti
les whi
h traverseO(80%) of the nominal tra
king layers as 
onstituents of the referen
e set.The de�nition of the referen
e set 
an then be regarded as a de�nition ofe�e
tive geometri
al a

eptan
e�geo = NrefNtotal (16)with N denoting the number of parti
les of interest in the referen
e set and intotal.2.5.2 Tra
k �nding eÆ
ien
yDe�nition of the tra
k �nding eÆ
ien
y requires a 
riterion whi
h spe
i�es whethera 
ertain parti
le has been found by the algorithm or not. There are two ratherdi�erent 
on
epts:Hit mat
hing This method analyzes the simulated origin of ea
h hit in the re-
onstru
ted tra
k using the Monte Carlo truth information. If the quali�edmajority of hits, for example at least 70% originates from the same trueparti
le, the tra
k is said to re
onstru
t this parti
le. This method is stablein the limit of very high tra
k densities, but it requires the Monte Carlotruth information to be mapped meti
ulously through the whole simulation.Parameter mat
hing The re
onstru
ted parameters of a tra
k are 
omparedwith those of all true parti
les. If the parameter sets agree within 
ertainlimits (whi
h should be motivated by the physi
s goals of the experiment),the 
orresponding tra
k is said to re
onstru
t this parti
le. This methodrequires less fun
tionality from the simulation 
hain, but it bears the dan-ger of a

epting random 
oin
iden
es between true parti
les and artifa
tsfrom the pattern re
ognition algorithm. In extreme 
ases, this 
an leadto the paradox impression that the tra
k �nding eÆ
ien
y improves within
reasing hit density. 20



The re
onstru
tion eÆ
ien
y is then de�ned as�re
o = N re
orefNref (17)where N re
oref is the number of referen
e parti
les that are re
onstru
ted by atleast one tra
k. It should be noted that this de�nition is su
h that a value ofone 
annot be ex
eeded, and multiple re
onstru
tions of the same tra
k will notin
rease the tra
k �nding eÆ
ien
y. One should also 
ontrol the abundan
e ofnon-referen
e tra
ks whi
h are re
onstru
ted (N re
onon�ref ): normally the relationN re
onon�refNtotal �Nref � �re
o (18)should hold, otherwise the referen
e 
riteria might be too stri
t.2.5.3 GhostsTra
ks produ
ed by the pattern re
ognition algorithm that do not re
onstru
tany true parti
le within or without the referen
e set are 
alled ghosts. A ghostrate 
an be de�ned as�ghost = NghostNref (19)Sin
e the ghost rate may be dominated by a small subset of events with 
opioushit multipli
ity, it is also informative to spe
ify the mean number of ghosts perevent.2.5.4 ClonesThe above de�nitions for eÆ
ien
y and ghost rate are intentionally insensitiveto multiple re
onstru
tions of a parti
le. Su
h redundant re
onstru
tions aresometimes 
alled 
lones. For a given parti
le m with N re
om tra
ks re
onstru
tingit, the number of 
lones isN 
lonem = ( N re
om � 1; ifN re
om > 00 ; otherwise (20)and the 
lone rate be
omes�
lone = PmN 
lonemNref (21)In pra
ti
e, 
lones 
an usually be eliminated at the end of the re
onstru
tion
hain by means of a 
ompatibility analysis [29℄.21



2.5.5 Parameter resolutionThe quality of re
onstru
ted parti
le parameters and error estimates from re
on-stru
tion in a subdete
tor is essential for mat
hing and propagation into anothersubsystem. For the whole dete
tor, it determines dire
tly the physi
s perfor-man
e. The quality of the estimate of a tra
k parameter Xi is re
e
ted in theparameter residualR(Xi) = Xre
i �X truei (22)From the parameter residual distribution, one 
an then obtain the parameter es-timate bias hR(Xi)i, and the parameter resolution as a measure of its width. Theestimate of the parameter 
ovarian
e matrix 
an be used to de�ne the normalizedparameter residualP (Xi) = Xre
i �X trueipCii (23)whi
h is often 
alled the pull of this parameter. Ideally, the pull should follow aGaussian distribution with a mean value of zero and a standard deviation of one.2.5.6 InterplayResults for the individual performan
e estimators may very mu
h depend on thede�nitions, so it is advisable to always judge several of the above quantities in
ombination. For example, the tra
k �nding eÆ
ien
y should be always seentogether with the ghost rate, sin
e a less stri
t de�nition of the 
riterion if atra
k re
onstru
ts a parti
le will lead to a higher tra
k �nding eÆ
ien
y but alsoto a higher ghost rate. Also the parameter resolution will tell if the re
onstru
tion
riterion is 
orre
t, be
ause in 
ase of an inadequately generous assignment, theparameter residuals are likely to show an in
reased width, or tails from improperlyre
ognized tra
ks. When parameter mat
hing is used, generous de�nition of themat
hing 
riteria will also in
rease the tra
k �nding eÆ
ien
y, but reveal itselfin a high 
lone rate.Ex
essive tightening of the referen
e set 
riteria 
an potentially also amelio-rate the visible tra
k �nding eÆ
ien
y, but it will be at the 
ost of the e�e
tivea

eptan
e, sin
e the total yield of parti
les with a 
ertain physi
al signature isproportional to the produ
t�total = �re
o � �geo (24)always assuming that relation (18) holds.22



3 Global Methods of Pattern Re
ognitionThe task of pattern re
ognition in general 
an be des
ribed by the illustrationin �g. 10. The physi
al properties of the parti
les that are subje
t to measure-ment are des
ribed by a set of parameters, as point of origin, tra
k dire
tion ormomentum. Ea
h parti
le 
an therefore be represented by a point in the featurespa
e spanned by these parameters. The signals the parti
le leave in the ele
-troni
 dete
tors are of a di�erent kind, they are measured hit 
oordinates thenature of whi
h is governed by the type of devi
e. These 
oordinates are repre-sented in the pattern spa
e. While the 
onversion from feature to pattern is doneby nature, or by sophisti
ated simulation algorithms in 
ase of modelled events,the reverse pro
edure is the task of the 
ombined pattern re
ognition and tra
k�tting pro
ess.
z

x

x0

tan θ

Pattern Space Feature Space

Figure 10: S
hemati
 illustration of Pattern Spa
e (left) and Feature Spa
e (right)Global methods assess the pattern re
ognition task by treating all dete
torhits in a similar way. The result should be independent of the starting point orthe order in whi
h hits are pro
essed. This is unlike the lo
al methods that willbe dis
ussed in se
tion 4, whi
h depend on suitable seeds for tra
k 
andidates.Global methods aim to avoid any kind of seeding bias.3.1 Template Mat
hingThe simplest method of pattern re
ognition 
an be applied if the number ofpossible patterns is �nite and the 
omplexity limited enough to handle them all.In this 
ase, for ea
h possible pattern a template 
an be de�ned, for example aset of drift 
hamber 
ells through whi
h tra
k 
andidates in a 
ertain area willpass. Su
h a te
hnique has been used for the Little Tra
k Finder, whi
h waspart of the se
ond trigger level of the ARGUS experiment [30℄, and whi
h workedby 
omparing the hits in the drift 
ells of the axial layers to masks stored in23



random a

ess memory. This method allowed for basi
 tra
k �nding in a 2Dparameter spa
e, the tra
k azimuth and the 
urvature in the R=� proje
tion,within 20 �s. The granularity of the ARGUS drift 
hamber was moderate, whi
hlimited the number of templates that had to be generated. The 
on
ept was laterextended to the ARGUS vertex trigger [31℄, whi
h used the hits of the mi
ro-vertex dete
tor [32℄ and generalized the algorithm to three dimensions and fourparameters (tra
k 
urvature being negligible), whi
h allowed to measure the tra
korigin in z to reje
t ba
kground intera
tions in the beam pipe. This algorithmrequired the de�nition of more than 245000 masks, where a �ve-fold symmetryof the dete
tor had already been exploited.

Figure 11: S
hemati
 illustration of the tree-sear
h algorithm: in several steps(in this 
ase four), the tra
k is mat
hed with templates of in
reasing granularityand resolution. Ea
h step des
ends into the next level of template hierar
hy.Template mat
hing algorithms are mathemati
ally so simple that they 
anbe hard-wired as tra
k roads, provided that the hit eÆ
ien
y of ea
h element is
lose to one. Remarkably, the 
omputing time may be independent of the event
omplexity, sin
e the number of templates to be 
he
ked is always the same.However, template mat
hing does not s
ale very well when the problem requireshigh dimensionality or granularity. On one side, with in
reasing granularity thenumber of templates qui
kly ex
eeds limits of feasibility already when storing24



them. Also the number of 
omputations in
reases strongly with a �ner resolutionof templates. Keeping the granularity low, on the other hand, means that densesituations 
annot be resolved, and other methods have to be used to disentanglethem.An elegant solution to both problems is the tree-sear
h algorithm, whi
h usestemplates of in
reasing stru
tural resolution that are ordered in a hierar
hy [33,34℄. In the �rst step, the hit stru
ture is viewed at a very 
oarse resolution with asmall set of templates (�g. 11). For those templates that have \�red", i.e. whi
hmat
h a stru
ture prevalent in the event, a set of daughter templates with �nergranularity is applied whi
h are all 
ompatible with the �rst mat
hed template.This subdivision of templates is iterated until either a mat
hing template on the�nest level of granularity is rea
hed { indi
ating that a good tra
k 
andidate hasbeen found { or a pattern mat
hed at a 
ertain resolution level 
annot be resolvedat the next level, in whi
h 
ase it is attributed to a random 
ombination of hits.The tree-sear
h approa
h avoids the linear growth of the number of 
omputa-tions with in
reasing granularity that would develop in a purely sequential sear
h;instead, the 
omputing e�ort, at least for small o

upan
y, in
reases only loga-rithmi
ally with the number of dete
tor 
hannels. The algorithm be
omes evenhandier when storage of all possible templates 
an be avoided: in many 
asessymmetries of the dete
tor 
an be used to formulate rules how the daughter tem-plates 
an be derived from the parent at run-time, and how they are 
onne
tedwith the event data. The tree-sear
h algorithm is used for example in the patternre
ognition of the HERMES spe
trometer, where the �nal dete
tor resolution of250 �m is rea
hed in 14 steps [35℄. Appli
ation of tree-sear
h ideally requires
onsiderable simpli
ity and symmetry in the dete
tor design, and therefore 
an-not be easily used in many 
omplex 
ases. In parti
ular inhomogeneous magneti
�elds 
an 
ompli
ate the appli
ation.3.2 The Fuzzy Radon TransformIn a very general sense, the observed hit density in the event 
an be des
ribedby a fun
tion �(x), where x is a very general des
ription of the measured set ofhit quantities. In absen
e of sto
hasti
 e�e
ts, the expe
ted hit density in thepattern spa
e 
an be des
ribed by an integral�(x) = ZP �p(x)D(p)dp (25)where D(p) des
ribes the prevalent population of the feature spa
e, typi
ally asum of delta fun
tions 
entred at the parameters of the parti
les, and �p(x) isthe average response fun
tion in pattern spa
e for a parti
le with parameters p,in
luding all dete
tor layout and resolution e�e
ts [36℄.Pattern re
ognition 
an then be regarded as an inversion of the above integralfrom a sto
hasti
ally distorted �(x). The Fuzzy Radon transform of the fun
tion25



�p(x) is de�ned as~D(p) = ZX �(x)�p(x)dx (26)This transformation requires pre
ise knowledge of the response fun
tion, in par-ti
ular the dete
tor resolution. Tra
k 
andidates are then identi�ed by sear
hinglo
al maxima of the fun
tion ~D(p).This method shall be illustrated in a simple example with a tra
king system
onsisting of ten equidistant layers in two dimensions without magneti
 �eld.Tra
ks are parametrized by an impa
t parameter x0 and a tra
k slope tx =tan �x as de�ned in se
. 2.3.1. As the measurement is one-dimensional, ea
hhit 
oordinate gives a linear warp-like 
onstraint in the parameter plane, wherethe width of the warp re
e
ts the e�e
t of the dete
tor resolution (�g. 12a).For a �
titious situation with three superimposed tra
ks, the resulting FuzzyRadon transform is shown in �g. 12b. The three peaks are very pronoun
ed,but development of additional lo
al minima is already visible even in this 
leansituation.In [36℄ this method has been explored for a 
ylindri
al geometry in the 
ase oftwo very 
lose tra
ks whi
h only di�er by a small di�eren
e in the 
urvature value(�g. 13), with additional noise taken into a

ount. Figure 14 shows the resultingRadon transform ~D(�; �; 
) as a series of �ve images around the 
entral values (
stands for the z speed of the parti
le whi
h is a measure of the dip angle tangentexplained in se
tion 2.3.2), where also the resolution parameter � has been varied.The images show that the individual tra
ks 
an in fa
t be distinguished (
entreimage), but it is essential that the assumed resolution parameter mat
hes thereal one. It should be noted that automated re
ognition of the \tra
k signals" insu
h images would not be a trivial task, and that, for pra
ti
al purposes, analysisof fuzzy Radon transforms in multi-dimensional parameter spa
es are in generalvery demanding in terms of 
omputing power.Another generalization of the Radon transform has been investigated in [37℄.3.3 HistogrammingAs seen in the previous se
tion, the fuzzy Radon transform allows taking thepre
ise dete
tor resolution into a

ount in an elegant manner. In 
ases wheree�e
ts of the resolution 
an be negle
ted, the response fun
tion �p(x) only needsto des
ribe the traje
tory, and takes the shape of a delta-fun
tion whose argumentvanishes for points on the traje
tory. This spe
ial form of the Radon transformis often 
alled Hough transform [39℄. The Hough transform of ea
h point-likehit in two dimensions be
omes a line; in more generality it de�nes a surfa
e inthe feature spa
e. Completion of the pattern re
ognition task is thus 
onvertedinto �nding those points in feature spa
e where many of su
h lines or surfa
esinterse
t, or at least approa
h ea
h other 
losely in shape of knots [39℄.26
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Figure 12: Fuzzy Radon transform ~D(x0; tx) of the hit signals of a single tra
k(a), and in a s
enario with three tra
ks (b), where x0 and tx are the tra
k o�setand slope. 27



Figure 13: Two simulated tra
ks di�ering only by 
urvature (taken from [36℄)

Figure 14: Fuzzy Radon transform of the two tra
ks in �g. 13 displayed in (�; �)spa
e, with the third tra
k parameter 
 as des
ribed in the text (taken from [36℄).The transform is shown for three values of the resolution parameter � in �p(x),where the value in the middle row 
orresponds to the simulated resolution.28
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Figure 15: Illustration of wire orientations in the ZEUS straw-tube tra
ker. Inthis representation, the beam is oriented verti
al to the page, displa
ed towardsthe bottom of the page (from [38℄).Histogramming 
an be regarded as a dis
rete implementation of the Houghtransform. Hit information is 
onverted to a 
onstraint in a binned feature spa
e,and the frequen
y of entries in a bin above a 
ertain limit is indi
ative for atra
k 
andidate. However, in most tra
king devi
es a single measurement isnot suÆ
ient to 
onstrain all tra
k parameters. One solution is then to 
onvertea
h measurement into a dis
retized 
urve or surfa
e in parameter spa
e, andto sample the 
ontribution of all hits in 
orresponding a

umulator 
ells. Anexample for su
h an implementation is shown for the straw-tube tra
ker (STT)of the ZEUS experiment [38℄. This dete
tor system is used as a forward tra
kerand 
onsists of two superlayers with eight layers of straw tubes ea
h. The strawsare arranged in the four di�erent stereo views 0Æ, �15Æ and 30Æ, as illustratedin �g. 15. The 0Æ straws are oriented su
h that the point of 
losest approa
h tothe beam line is in the middle of the straw. Taking the beam spot into a

ountand negle
ting the 
urvature of the segment within the 
on�nes of the straw tubetra
ker, ea
h hit provides an ar
-like 
onstraint in the parameter spa
e spannedby polar angle � and the azimuth angle �. This stru
ture is displayed in thehistogram from four views for a single tra
k in �g. 16. The hits from the 0Æ strawsgive a transform whi
h is symmetri
 in azimuth, while the yields from the otherviews are slightly skewed in 
orresponden
e to the stereo angle. The parametersof the tra
k are 
learly indi
ated by the interse
tion of the four 
onstraints. Theresulting histogram is already mu
h more 
omplex in a sample with 10 simulatedtra
ks, where 
ombinatorial overlaps o

ur (�g. 17).Another popular way of avoiding the under
onstrained 
ase is to 
ombine29



Figure 16: Hough transform of a single simulated tra
k in the ZEUS straw-tubetra
ker (from [38℄).
30



Figure 17: Hough transform of a set of simulated tra
ks in the ZEUS straw-tubetra
ker (from [38℄).
31



several hits to tra
k segments before applying the Hough transform. For example,in a 2D pattern spa
e without magneti
 �eld, two measured 
oordinates in thesame proje
tion from nearby hits in di�erent dete
tor layers give a straight tra
ksegment whi
h represents a point in the feature spa
e. Histogramming all segmententries in the feature spa
e should then reveal tra
k 
andidates as lo
al maxima.This pro
edure is often referred to as lo
al Hough transform [40℄.��	 ����
 ��RHHjbands
Figure 18: Lo
al Hough transform in a simulated event with �ve intera
tions, inthe feature spa
e spanned by impa
t parameter x0 and tra
k slope tx = tan �x(from [41℄). The parameters of true parti
les are illustrated by 
ir
les. The
olour intensity in ea
h pixel 
orresponds to the 
ount of segments falling intothis square. While the histogram shows the expe
ted enhan
ements at the trueparameters of most simulated parti
les, it also displays arti�
ial stru
tures, indi-
ated as bands in the plot that 
ompli
ate the analysis.In general, a pri
e has to be paid for this arti�
ial 
onstru
tion of a higherdimension of measurement, sin
e random 
ombinations of hits of di�erent originlead to ghost segments. The abundan
e of su
h 
ontaminations depends stronglyon the hit and parti
le density. A pra
ti
al example illustrating this problem isshown in �g. 18 (taken from [41℄). The geometry 
orresponds to the \PC" part ofthe HERA-B spe
trometer (see �g. 8), whi
h 
onsists of four tra
king superlayers,as indi
ated in �g. 19a, though in the latter the drawing has been simpli�edfrom six to three individual layers per superlayer. A simulated high-multipli
ityevent with �ve simultaneous pN intera
tions has been passed through a lo
al32



Hough transform, from whi
h a 
loseup is shown in �g. 18. The genuine tra
ksas generated by the Monte Carlo are indi
ated as 
ir
les in the feature spa
e.While enhan
ements on the histogram are 
learly seen at the tra
k parametersof the true parti
les (indi
ated by 
ir
les), the histogram shows a signi�
antnumber of bands whi
h are 
aused by the interferen
e of tra
k patterns. Su
hinterferen
e o

urs when several tra
ks 
ross the same superlayer of the tra
kingsystem within a 
lose distan
e, as illustrated in �g. 19b for four interse
tingtra
ks: the proximity gives rise to a multitude of 
ombinatorial segments, whi
hhave roughly the 
orre
t spatial information (xSL3), but a wide range of deviatingslopes shadowing the entries with the proper value. These segments enter thehistogram with their spatial 
oordinate transformed to the referen
e plane relativeto whi
h all impa
t parameters are de�ned (in this 
ase given by z = zref ) in themannerx0 = xSL3 + (zref � zSL3) � tan �x (27)The wide spread in the slope tan �x results in a band in the parameter spa
e,where the tilt of the bandd tan �xdx0 = 1zref � zSL3 (28)re
e
ts the distan
e of the superlayer (at zSLi) from the referen
e plane (at zref).It is therefore not surprising that in the given dete
tor example with four super-layers, bands of four di�erent slopes 
an o

ur.Even in absen
e of ghost segments from tra
k overlap, the pattern of tra
ksignals in the dis
retized feature spa
e will in general re
e
t the underlying layerstru
ture of the tra
king system. The lo
al Hough transform is usually based onshort segments, i.e. those 
omposed of hits in subsequent or at least nearby lay-ers, whi
h has the advantage that the line topology of the tra
k is exploited andthe ba
kground from random hit 
ombinations is still relatively small. However,due to the small leverage, the angular error 
an be sizeable, whi
h may imposeadditional diÆ
ulty in identifying the tra
k 
andidates in the Hough transform.Long segments spanning a
ross many layers of the tra
king system have the prin-
ipal advantage of better angular resolution. However, a wide variety of hitshave to be 
ombined, so that the number of random 
ombinations in
reases a
-
ordingly. The performan
e of di�erent approa
hes has been analyzed in detailin [42℄. For the individual appli
ation, the optimal 
hoi
e will depend on therelative importan
e of resolution and multiple s
attering e�e
ts.3.4 Neural Network Te
hniquesThe human brain is parti
ularly skilled in re
ognizing patterns. It is 
apable ofanalyzing patterns in a global manner; it is self-organizing, adaptive and fault-tolerant. It is therefore not surprising that methods have been sought for whi
h33
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Figure 19: (a) Illustration of the model dete
tor with four tra
king superlayersdis
ussed in the text, with the response of a single passing tra
k. (b) S
hemati
illustration of tra
k segments for a lo
al Hough transform generated from fourtra
ks interse
ting in superlayer SL3, showing the abundan
e of ghost segments
ompared to the proper ones.aim at solving pattern re
ognition problems bymeans of arti�
ial neural networks.Another intriguing aspe
t of the human brain is the massively parallel pro
essingof information, whi
h raises hopes that algorithms 
an be derived whi
h 
an takefull advantage of inherently parallel 
omputing ar
hite
tures. Be
ause of the wides
ope of this subje
t, this arti
le 
annot give a full introdu
tion into this �eld. A
olle
tion of 
lassi
 papers reprinted is available in [43℄.An arti�
ial neuron manifests a simple pro
essing unit, whi
h evaluates anumber of input signals and produ
es an output signal. A neural network 
onsistsof many neurons intera
ting with ea
h other - the output signal of a neuron isfed into the input of many other neurons. While many 
lassi�
ation problems
an be atta
ked with simpli�ed layouts, the feed-forward networks, tra
k patternre
ognition in general uses fully 
oupled topologies.3.4.1 The Hop�eld neuronIn the Hop�eld model [44℄, ea
h neuron is in general intera
ting with every otherneuron. All intera
tions are symmetri
, and the state of ea
h neuron, expressedby its a
tivation Si, 
an only be either a
tive (1) or ina
tive (0). The intera
tionis simulated by updating the state of a neuron a

ording to the a
tivations of allother neurons. The update rule in the Hop�eld model sets the new state of aneuron toSi = �0�Xj (wijSj � si)1A (29)34
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Figure 20: Three typi
al 
ases for adja
ent tra
k segments in the Denby-Petersonalgorithm. The �rst two 
ombinations 
orrespond to in
ompatible segments, inthe third 
ase, both segments are likely to 
ome from the same tra
k. (from [41℄)where the weights wij determine the strength of ea
h intera
tion, si are thresholdvalues. The theta fun
tion �(: : :), whose value is zero for negative argumentsand one otherwise, is only the simplest example of an a
tivation fun
tion, whi
hrelates the updated a
tivation to the weighted sum of the other a
tivations. It
an be shown [44℄ that su
h intera
tions 
hara
terize a system with an energyfun
tionE = �12 0�Xij wijSiSj � 2Xi siSi1A (30)and that the intera
tion leads to a �nal state whi
h 
orresponds to the minimumof the energy fun
tion [44, 45℄.3.4.2 The Denby-Peterson methodAn adaptation of Hop�eld networks to tra
k �nding has been developed byDenby [46℄ and Peterson [47℄. The basi
 idea is to asso
iate ea
h possible 
on-ne
tion between two hits with a neuron. A
tivation of su
h a neuron meansthat both hits are part of the same tra
k. It is then essential to de�ne an in-tera
tion su
h that in the global energy minimum only neurons 
orresponding tovalid 
onne
tions will be a
tive. Intera
tion is only meaningful with neurons thathave one hit in 
ommon. An approa
h to su
h an energy fun
tion is illustratedin �g. 20 [41℄: while in the �rst two 
ases the neurons (ij) and (jk) representsegments in
ompatible with the same tra
k and therefore must have a repulsiveintera
tion, the third 
ase is mu
h more tra
k-like and should have an attra
tiveintera
tion. This desired behaviour 
an be obtained by an energy fun
tionE = �12X Æjk� 
osm �ijldij + djl SijSkl35



+12�0�Xl6=j SijSil +Xk 6=i SijSkj1A+ 12Æ �XSkl �N�2 (31)where Sij is the a
tivation of the neuron asso
iated with the segment (ij), i.e.the 
onne
tion between hits i and j, and �ijl is the angle between the segments(ij) and (jl). The variables � and Æ are Lagrange multipliers pre
eding termsthat suppress unwanted 
ombinations as the �rst two 
ases in �g. 20, and �xthe number of a
tive segments to the number of hits, N . Tra
k �nding is thenredu
ed to �nding the global minimum of this multivariate energy fun
tion. Theintera
tion is simulated by re
al
ulating the a
tivity of ea
h neuron with theupdate rule, whi
h takes the a
tivations of all other neurons into a

ount.It is remarkable that the Denby-Peterson method works without a
tual knowl-edge of a tra
k model { it favours series of hits that 
an be 
onne
ted by a line asstraight as possible, but also allows small bending angles from one segment to thenext. Thus also 
urved tra
ks 
an be found, provided that a suÆ
ient numberof intermediate measurements exists whi
h split the tra
k into a large number ofalmost 
ollinear segments. The Denby-Peterson algorithm is in parti
ular indif-ferent about the global shape of the tra
k - a 
ir
le and a wavy tra
k with thesame lo
al bending angles but alternating dire
tions are of equal value.One of the �rst explorations of the Denby-Peterson method has been per-formed on tra
k 
oordinates measured by the ALEPH TPC [48℄. The algorithmfound tra
ks in hadroni
 Z0 de
ays rather a

urately, whi
h may be at least par-tially attributed to three favourable 
ir
umstan
es: pattern re
ognition bene�ts
onsiderably from the the 3D nature of the hits measured in the TPC, and equallyfrom the 
lean event stru
ture and the low o

upan
y. Moreover, the algorithmis applied su
h that the initialization a
tivates only neurons that already 
orre-spond to plausible 
onne
tions of hits. The authors of [48℄ have also investigatedthe behaviour of the method on events with mu
h higher tra
k numbers, sim-ulated by piling up Monte-Carlo events, and found that the total CPU time ofthe neural network algorithm is dominated by the initialization of the neurons,whi
h indi
ates the degree of sele
tion already involved at this stage.
Figure 21: Wrong a
tivations in the 
ase of nearby tra
ks (from [41℄).36



The behaviour of the Denby-Peterson method under high tra
k densities hasbeen further investigated in [41℄ by applying it to a four superlayer geometryresembling the \PC" part of the HERA-B tra
ker (see �g. 8). These studiesfound that the 
lassi
al Denby-Peterson method 
annot be relied on to 
onvergesafely in 
ases of nearby parallel tra
ks. This behaviour is explained in �g. 21:there is no possibility of resolving a 
ross-wise misassignment, sin
e the systemhas rea
hed a lo
al energy minimum, and no additional segment 
an be atta
hedbe
ause it would temporarily lead to an illi
it bran
hing of the tra
k a

ordingto the rules illustrated in �g. 20 and formulated in eq. 31.
Figure 22: Modi�ed energy fun
tion versus angle �ijk (left) and generalized seg-ment length dij (right) as used in [41℄.The situation 
an be improved, as shown in [41℄ by dropping the bran
hingrestri
tion and instead a

ounting for undesired angles in the 
ost fun
tion, bythe repla
ement� 
osm �ijldij + djl ! f(
osm �ij;kl) (32)where the angle-dependent part is 
hosen su
h that only segments with angles
lose to 180Æ give a strong negative 
ontribution, and by adding a term propor-tional to (Æ � 1=dij) for ea
h neuron, whi
h introdu
es a typi
al inverse segmentlength Æ into the energy fun
tion, where the length of an individual segment dij isgeneralized su
h that the superlayer stru
ture of the tra
ker is taken into a

ount.(The full de�nitions are given in [41℄.) The energy as fun
tion of segment angleand length is displayed in �g. 22.The e�e
t of this variation of the method is visible in �g. 23, whi
h showsthe system after one iteration applied to an event with low tra
k multipli
ity. Atthis point, there are still bran
hings that would not be allowed in the 
lassi
alDenby-Peterson approa
h, and whi
h disappear under further iteration. Withthese modi�
ations the algorithm obtains reasonable eÆ
ien
y and ghost ratevalues [49, 41℄, as displayed in �g. 24. 37
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Figure 23: State of the network after one iteration [41℄. Crosses denote thelo
ations of the simulated hits.
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ien
y and ghost rate for pattern re
ognition using the modi�ed2D Denby-Peterson algorithm on simulated events in a �xed target geometry(from [49℄).Several properties of the Denby-Peterson algorithm limit its appli
ation atprodu
tion s
ale in the general 
ase. The fa
t that it does not take any ex-pli
it tra
k model into a

ount lets it ignore valuable information, whi
h 
ouldotherwise help to resolve ambiguous situations. A straight tra
k with randomperturbations e.g. is equivalent to a slightly 
urved tra
k. Neither is there a wayto take expli
itly the resolution of the dete
tor into a

ount. The 
omputing timeper event in
reases with the third power of the tra
k density, sin
e the number ofneurons that have to be generated is proportional to the number of hits squaredand the number of non-zero elements in the weight matrix in
reases with the num-ber of neurons in the vi
inity of the tra
k. Perhaps the dominant short
oming ofthe Denby-Peterson method is the fa
t that it does not have a dire
t extensionfor �nding 3D tra
ks on the basis of single-
oordinate measurements (see 2.2.1),though it is in prin
iple possible to 
ir
umvent this problem by �rst formingspa
e points or segments out of the hits, provided that the ghost 
ombinationsare properly eliminated later. Su
h an approa
h has been su

essfully followedin [50℄, where a method resembling a dis
rete form of a Denby-Peterson net, re-ferred to as 
ellular automaton [51℄, was used to sele
t optimal 
ombinations ofspa
e points, 
omplemented by a subsequent tra
k following step.39



3.4.3 Elasti
 arms and deformable templatesThe above-mentioned limitations of the Denby-Peterson algorithm are over
omewith the elasti
 arms algorithm [40, 52℄, whi
h was introdu
ed by Ohlsson, Pe-terson and Yuille in 1992. The basi
 idea 
an be des
ribed as follows: a set ofM deformable templates is 
reated, whi
h 
orrespond to valid parametrizationsof tra
ks with parameters ft1, ... tMg. The number M must be adjusted to theapproximate number of tra
ks in the event. The algorithm should then move anddeform these templates su
h that they �t the pattern given by the positions ofN dete
tor hits, whi
h are represented by f�1 ... �Ng.As in the Denby-Peterson 
ase, the approa
h pro
eeds by formulation of anenergy fun
tion, whose absolute minimum is at the set of parameters whi
h solvethe pattern re
ognition problem. This requires two elements: an a
tivation-likequantity Sia whose value is one if hit i is assigned to tra
k a, and zero otherwise,and a fun
tion Mia(�i; ta) des
ribing a metri
 between tra
k template and hit,typi
ally the square of the spatial distan
e. The energy fun
tion 
an then bede�ned as~E(S; �; t) = NXi=1 MXa=1SiaMia(�i; ta) (33)To avoid trivial solutions, it is ne
essary to introdu
e the 
ondition that ea
h hitmust be assigned to some template in the formMXa=1Sia = 1 (34)for ea
h hit i. This requirement is 
alled Potts 
ondition [53℄. One immediate
onsequen
e of this 
ondition is the ne
essity to introdu
e a spe
ial template towhi
h noise hits 
an be assigned.The main 
hallenge is then to �nd the global minimum of the energy fun
-tion. Sin
e this fun
tion tends to be very spiky, as will be illustrated in moredetail below, this problem is usually ta
kled by extending the energy fun
tiona

ording to a sto
hasti
 model, whi
h simulates a thermal motion in the systemand smoothens out the spike stru
ture. Sear
h of the minimum starts then athigh temperature, and the temperature is su

essively lowered. At zero temper-ature, the extended energy fun
tion be
omes identi
al to the original one. Thiste
hnique is 
alled simulated annealing.Instead of the temperature T , normally its inverse � = 1=T is used. At�nite temperature, the Sia are repla
ed by their thermal mean values Via, whi
htake 
ontinuous values and lead to a fuzzy hit-to-tra
k assignment. They 
an bederived from the metri
 fun
tion asVia = e��Miae��� +PMb=1 e��Mib (35)40



where the index b in the sum in the denominator runs over all templates ex
eptfor the noise template. Via is 
alled the Potts fa
tor. The temperature determinesthe range of in
uen
e for a hit: at zero temperature (� !1), the hit is assignedonly to the nearest template, with the 
orresponding Via equal to one. At highertemperature, the degree of the assignment de
reases smoothly with in
reasingdistan
e. The noise parameter � represents the symboli
 noise template whi
h, inthe limit of zero temperature, takes over hits that are further than p� away fromthe nearest genuine template. It is therefore logi
al to set � in 
orresponden
eto the dete
tor resolution, typi
ally as three or �ve standard deviations. Theterm e��� a

ounts for assignments to the noise template. The Potts fa
tor ofthe noise template is 
al
ulated asVi0 = 1�Xa 6=0Via (36)instead of eq. 35, sin
e the 
on
ept of a distan
e does not make sense here.The only remaining steps ne
essary to solve the pattern re
ognition problemare1. to �nd a suitable initialization for the templates, and2. to �nd the absolute minimum of the energy fun
tion.It turns out that both are non-trivial in pra
ti
al appli
ations. Before turning torealisti
 s
enarios, it is very instru
tive to look at the shape of the energy fun
tionin a very trivial example (taken from [41℄), whi
h 
onsists of a dete
tor measuringonly one spatial 
oordinate, named x, and a tra
k model 
onsisting only of oneparameter for ea
h template. Two hits are 
onsidered with 
oordinates x1 andx2, and two templates with parameters xa and xb.The energy as a fun
tion of the template parameters is shown in �g. 25 ata high temperature (the hits being at 
oordinates xa = �1 and xb = +1). Atthis temperature, the templates per
eive only a blurred image of the hit pat-tern. The global minimum is at the 
oordinates in the 
entre between the hits.When the temperature is lowered to a 
riti
al temperature T
, a saddle pointdevelops (�g. 26), and the previous single minimum splits into two. The 
riti
altemperature is related to the 
oordinates asT
 = 1�
 = �xa � xb2 � (37)At very low temperature (�g. 27), two minima have developed at positions
orresponding to the two equally valid solutions, xa = x1 ^ xb = x2 andxa = x2 ^ xb = x1. The potential ridge at the line xa = xb 
an be interpreted asa repulsive for
e between the templates [40℄.The presen
e of the noise template parameter � introdu
es further lo
al min-ima into the energy fun
tion. An example is shown in �g. 28 with three hits (with41



Figure 25: Representations of the energy fun
tion of a one-dimensional dete
torwith two hits, as a fun
tion of the parameters of two templates xa and xb at hightemperature [41℄.

Figure 26: Energy fun
tion at 
riti
al temperature [41℄.42



Figure 27: Energy fun
tion at low temperature [41℄.

Figure 28: Energy fun
tion with three hits at low temperature, with � = 0:4 [41℄43



x
 = 0:24) and � = 0:4. While the previous solutions are still valid, additionalminima appear that 
orrespond to either one or two of the genuine hits beingattributed to noise.The 
omplexity of the energy fun
tion for this very simple example is alreadystaggering, and illustrates why initialization and 
onvergen
e are serious issues.In their initial study, Ohlsson, Peterson and Yuille [40℄ applied the methodto hits from the DELPHI TPC. Re
onstru
tion was restri
ted to tra
ks 
omingfrom a vertex spot 
ommon to all events, so that tra
k 
andidates were des
ribedby only three parameters, whi
h simpli�ed the situation 
onsiderably. The ini-tialization was obtained with a lo
al Hough transform. The moderate hit densityallowed performing �rst the Hough transform in the proje
tion transverse to themagneti
 �eld, sear
hing for tra
k 
andidates in the spa
e of 
urvature and az-imuth. For ea
h 
andidate found as a narrow peak in this proje
tion, all hitswithin a 
ertain neighbourhood were used to 
al
ulate the longitudinal tilt angle,whi
h was again histogrammed.The elasti
 arms phase then used gradient des
ent to minimize the energyfun
tion at a given temperature. The temperature was lowered by 5% in ea
hstep. The Hough transform produ
ed an abundan
e of templates. The ex
essivetemplates were either attra
ted to noise, or 
onverged to tra
ks that had alreadytemplates asso
iated with them; these had to be weeded out at the end. Theresult was found to be rather independent of algorithm parameters. The CPUtime per event was dominated by the elasti
 arms step (1 min on a 
ontemporary
omputer), in 
ontrast to the Hough transform initialization (1 s).On
e more one has to note that pattern re
ognition in the TPC (here DEL-PHI's) bene�ts strongly from the 
lean event stru
ture with a moderate tra
kdensity, and the remarkable 3D measurement 
apabilities of the 
hamber. Aninteresting study targeted at mu
h more dense events with 2D measurements hasbeen performed in 1995 [54℄. The algorithm was applied to the barrel part of theTransition Radiation Tra
ker (TRT) of the ATLAS dete
tor, with 40 layers ofstraw drift-tubes with a diameter of 4 mm and a hit resolution of 150 �m. Sin
ethe required hit resolution 
ould only be obtained using the drift-time measure-ment, the left-right ambiguity had to be resolved. This problem was approa
hedwith the elegant method from [55℄, whi
h introdu
es energy terms for both left-right assignments (in the nomen
lature of eq. 33)~E(S; �; t) = NXi=1 MXa=1Sia �s+iaM+ia(�i; ta) + s�iaM�ia(�i; ta)� (38)where the left-right assignment parameters s�ia, whi
h satisfy the 
ondition s+ia +s�ia = 1, introdu
e a repulsive intera
tion between the alternative left-right as-signments, so that a tra
k 
an only be assigned to one of the two ambiguities ofa hit.The initialization again used a lo
al Hough transform. The minimizationphase of the elasti
 arms step at a given temperature, however, did not rely on44



simple gradient des
ent, but used the Hessian matrix, i.e. the se
ond derivative ofthe energy with respe
t to the parameters, in a multidimensional generalization ofthe Newton method. The eÆ
ien
ywas found to be 85% for fast tra
ks 
ompletely
ontained in the barrel TRT. The eÆ
ien
y was pra
ti
ally identi
al to the oneof the Hough transform itself, indi
ating that the elasti
 arms part did not �ndany new tra
ks that had not been properly 
overed by the initialization. Themain appli
ation of the elasti
 arms part was therefore to verify tra
k 
andidatesfound by the Hough transform and resolve the hit asso
iations.

Figure 29: Illustration of segment initialization in the zx proje
tion. The 
ir
lesare drift distan
e iso
hrones of ea
h hit with the drift 
ell indi
ated by a surround-ing hexagon. The light grey lines are the simulated parti
les, the bla
k straightlines 
onne
ting the hits are the segments produ
ed to initialize the elasti
 armsalgorithm [41℄.The tra
k �nding 
apabilities of elasti
 arms have been further investigatedin [41℄ and [56℄ with events passed through a full Geant simulation of the \PC"area of the HERA-B spe
trometer (see �g. 8). Sin
e the interpretation of theHough transform turned out problemati
 in the �xed target geometry understudy, a di�erent approa
h was followed. Tra
k 
andidates were initialized bysear
hing hit triplets in the 0Æ proje
tion in ea
h of four superlayers (�g. 29). Alltriplets with a straight-line-�t yielding �2 < 3:8 were a

epted, and then mat
heda

ording to their tra
k parameters. Combinations with triplet segments from allfour superlayers were used to initialize the templates in the horizontal plane. The45



elasti
 arms algorithm was then used to perform the pattern re
ognition together
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4Figure 30: Development of �2 with in
reasing � (
orresponding to de
reasingtemperature) with 10 muon tra
ks [41℄.with the stereo layers, arranging the tra
ks verti
ally. Proper operation of thismethod was shown with test events with ten muon tra
ks, where the 
onvergen
eof the tra
ks in the annealing from a temperature parameter of 0:1 
m�2 to104 
m�2 is illustrated in �g. 30 by the de
rease of the �2 per tra
k. While thealgorithm was a
tually performing the task of verti
al pattern re
ognition afterhorizontal initialization, the 
omputing time for the annealing with 10 tra
ksturned out to be already about 4000s, and it in
reased at least with the se
ondpower of the number of templates. For this reason, dense events with 100 andmore tra
k 
andidates 
ould not be seriously addressed with this method.For this reason, a subsequent study [56℄ fo
used on the redu
tion of the pro-
essing e�ort. The �rst major step was the extension of the segment initialisationto 3D. This was a
hieved by using the segments found from triplets in the xz pro-je
tion to 
onvert the information from the stereo layers to 3D 
oordinates: the46
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Figure 31: S
heme of 
onverting information from stereo layers to verti
al (y)
oordinates, by using the horizontal proje
tion tra
k 
andidate that is indi
atedby p. The true tra
k is indi
ated by a dotted arrow labelled t. The ovals �lledeither in bla
k or grey are 
oordinates measured under the stereo angle �� pro-je
ted into the xz plane. The lines labelled h are stereo hits stemming from thetrue tra
k, these fall on the traje
tory t when the y 
oordinate is inferred witheq. 40. Other hits of di�erent origin (labelled h0) lead to ba
kground hits in theverti
al plane (from [56℄).
47



segment in the proje
tion de�ned a verti
al plane in whi
h the tra
k 
andidatehad to be 
ontained (�g. 31). Interse
tions of stereo wires with this plane lead toindire
t measurements in the verti
al 
oordinate y; the measurement equationu[v℄ = x 
os� � (�)y sin� (39)was inverted toy = �x 
os� � u[v℄sin� (40)and the triplet and segment �nding pro
eeded with the stereo layers in a similarfashion. The stereo 
oordinates u and v took drift distan
e measurements intoa

ount, whi
h improved the resolution but lead to left-right ambiguities also inthe verti
al segment �nding.The se
ond 
ru
ial improvement 
on
erned the minimization algorithm withinea
h annealing step. The simpli
ity of the gradient des
ent method has made ithighly popular for neural network appli
ations, but as already observed in [54℄,it is by far not the most eÆ
ient method. One of its main drawba
ks is thefa
t that its 
onvergen
e slows down as it approa
hes the minimum where thesurfa
e of the energy fun
tion 
attens out. On the other hand, large gradients asthey 
an easily o

ur at lower temperatures (see �g. 28) tend to in
rease the stepsize drasti
ally and throw the algorithm 
ompletely o� the mark. These e�e
ts
ontribute largely to the high 
omputing demands.It is therefore promising to explore more eÆ
ient minimization te
hniques forhigh-dimensioned fun
tions [56℄. The Qui
kprop algorithm [57℄ parametrizes thedependen
e of the energy fun
tion on a template parameter t(k)a (where a is theidenti�er of the template and k the index of the template parameter) in se
ondorder E �t(k)a �ftag = 
0 + 
1t(k)a + 
2 �t(k)a �2 (41)and repla
es the parameter in iteration step (i+1) with the value at the minimumof the parabola, whi
h is 
al
ulated using the gradients of the two previous stepsi and (i� 1):�t(k)a;i+1 = � �E�t(k)a ���i�E�t(k)a ���i � �E�t(k)a ���i�1�t(k)a;i (42)Another more sophisti
ated minimization method, the RPROP algorithm [58℄,eliminates entirely the dependen
e of the step width of the gradient by usingonly its sign. Ea
h 
omponent of the template parameter set has its own stepwidth, whi
h is redu
ed in ea
h step if the sign of the partial derivative has not
hanged, and somewhat in
reased if the sign has 
hanged, indi
ating a step a
rossthe minimum. 48



In appli
ation to fully simulated events, the RPROP algorithm turned outto be ten times faster than simple gradient des
ent. The Qui
kprop algorithmredu
ed the 
omputing time by yet another fa
tor of two, but failed to 
onvergeproperly on about 10% of the tra
ks, so that the RPROP algorithm was �nally
hosen for further study [56℄.Nint Segment initialization Elasti
 arms (in
l. initialization)EÆ
ien
y Ghostrate CPU time EÆ
ien
y Ghostrate CPU time1 91% 38% 4s 90% 3.7% 15s2 91% 100% 14s 89% 5.9% 40s3 89% 240% 47s 87% 7.5% 105s4 87% 440% 107s 86% 10% 198s5 85% 1100% 234s 83% 13% 371sTable 1: EÆ
ien
y of segment initialization and elasti
 arms algorithm as 
om-piled from [56℄, as a fun
tion of the number of superimposed intera
tions, Nint. Inthe elasti
 arms se
tion of the table, eÆ
ien
y, ghost rate and CPU time in
ludethe e�e
ts of the segment initialization.The segment initialization a
hieved a tra
k eÆ
ien
y of 91% for single inter-a
tions, whi
h dropped to 85% for �ve superimposed intera
tions in an event(tab. 1). The relative eÆ
ien
y of the subsequent elasti
 arms phase was alwaysbetter than 98%, indi
ating that hardly any of the good tra
ks the initializationhad found were lost. On the other hand, the elasti
 arms algorithm stronglyredu
ed the rate of ghost tra
ks prevalent in the initialization. The CPU time
onsumption, determined on a HP9000/735 pro
essor with 125 MHz 
lo
k rate,was still relatively high, but with slightly more than 2 minutes for �ve simul-taneous intera
tions already in a feasible range. With in
reasing tra
k densitythe CPU fra
tion of the initialization in
reased steadily and ex
eeded that of theelasti
 arms part beyond three superimposed intera
tions.The investigations underline that elasti
 arms 
an in prin
iple be employed inan eÆ
ient manner, but require a very good initialization of the tra
k 
andidates.This has lead to the general per
eption that elasti
 arms should not be used fortra
k �nding from s
rat
h, but should rather be seen as a tool to optimize assign-ment of hits to tra
ks, to resolve left-right or other ambiguities, or to dete
t andeliminate outlier hits. A similar philosophy is followed in [50℄. A very interestingdevelopment in this 
ontext is the deterministi
 annealing �lter (DAF) [59, 60℄,whi
h extends the tra
k �t with the Kalman �lter with a fuzzy hit assignmentand obtains a mathemati
al equivalent of the elasti
 arms pro
edure.49



4 Lo
al Methods of Pattern Re
ognitionWhile global methods of pattern re
ognition have the 
ommon property to treatall hit information in an equal and unbiased way, simultaneous 
onsideration ofall hits 
an be very ineÆ
ient in terms of speed. In fa
t many dete
tor layoutsprovide suÆ
iently 
ontinuous measurements so that the sheer proximity of hitsmakes it already likely that they belong to the same tra
k. This is one of the rea-sons why lo
al methods of tra
k pattern re
ognition, often 
alled tra
k following,are the workhorses of many re
onstru
tion programs in high energy physi
s.Tra
k following methods are essentially based on three elements:� A parametri
 tra
k model, whi
h 
onne
ts a parti
le traje
tory with a setof tra
k parameters and provides a method of transport, i.e. extrapolationalong the traje
tory� A method to generate tra
k seeds, i.e. rudimentary initial tra
k 
andidatesformed by just a minimal set of hits whi
h serve as starting point for thetra
k following pro
edure� A quality 
riterion, whi
h allows distinguishing good tra
k 
andidates fromghosts so that the latter 
an be dis
ardedA related variant of tra
k following is the propagation of a tra
k 
andidate foundin one part of the tra
king system into another, 
olle
ting suitable hits on theway. In this 
ase the initial tra
k 
andidate takes the rôle of the seed.4.1 SeedsThere are di�erent possible philosophies how seeds 
an be 
onstru
ted. This isillustrated in �g. 32, whi
h shows s
hemati
ally a tra
king system with equidis-tant layers. Starting from the last layer L, where the hit density is lowest, seeds
an be obtained by 
ombining the hit with suitable others in the neighbouringlayer K (left side). This is the natural 
hoi
e whi
h exploits the lo
al proximityof hits as a sele
tion 
riterion. The angular pre
ision of su
h a short segmentis in general limited be
ause of the small leverage, but the rate of fake seeds isrelatively small, sin
e most wrong 
ombinations tend to obtain a steep slope thatis in
ompatible with the relevant physi
al tra
ks and 
an be dis
arded immedi-ately. A 
ompletely di�erent alternative is to 
ombine hits for example from thedistant layers K and A to 
onstru
t seeds. These seeds have potentially a mu
hbetter pre
ision in angle, but the number of 
hoi
es to be 
onsidered is also mu
hhigher. The gain of pre
ision 
an in fa
t be very limited if the material withinthe tra
ker introdu
es sizable multiple s
attering dilution. For the latter reasons,seed 
ombinations from nearby layers are often preferred in pra
ti
al appli
ations.50
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hemes with nearby (left) and distant layers (right).Though the number of hits required for a seed is in general di
tated by thedimensionality of the parameter spa
e, additional hits 
an very eÆ
iently de
reasethe ghost rate of the seeds. Figure 33 shows the 
onstru
tion of seeds 
onsistingof three drift 
hamber hits ea
h [61℄. In this example without magneti
 �eld,only two hits would be minimally needed to de�ne a seed, but the example showsthat using hit triplets redu
es the 
ombinatori
s 
onsiderably.4.2 2D Versus 3D propagationMany dete
tor layouts allow tra
k following in a proje
tion. For example, drift
hambers with many wires parallel and of same length may allow separation ofa pattern spa
e that is measured in a plane orthogonal to the wires. This meansthat parameter propagation during the tra
k following pro
ess is far less 
ostlyin terms of 
omputations, and that the seeds 
an be 
onstru
ted from only twomeasured hits in the 
ase of a �eld-free area, or from three hits within a magneti
�eld. It should be noted that in presen
e of a magneti
 �eld, a 2D treatment isonly possible if the �eld is oriented parallel to the wire, and homogeneous in wiredire
tion. An example for su
h an appli
ation is the pattern re
ognition in theARGUS drift 
hamber (�g. 34), where the seeds are 
onstru
ted from three hitsin the outer layers, and the tra
k following pro
eeds towards the beam line [62℄.However, pattern re
ognition in proje
tions 
annot avoid that at some point,3D information must be inferred. This 
an be a
hieved by performing tra
k�nding independently in all available proje
tions, and then merging 
ompatibleproje
ted tra
k 
andidates into a 3D obje
t. For an unbiased tra
king, at leastthree independent views must exist (see se
t. 2.2.3), and ea
h view must possess51



Figure 33: Creating seeds from drift 
hamber hit triplets. The style of displayeditems is similar to �g. 29. Crosses indi
ate the hit 
oordinates used to 
onstru
tthe triplets(from [61℄).
Figure 34: Close-up of the drift 
hamber area from the ARGUS event display in�g. 1 [2℄. The tra
ks are obtained by a tra
k-following algorithm that pro
eedsfrom the outer towards the inner layers.52



enough hit information to �nd the tra
k by itself with good eÆ
ien
y. A typi
alsymmetri
 arrangement 
onsists of three views with 0Æ, 120Æ and 240Æ stereoangle, among whi
h all layers are evenly distributed. This approa
h leads tovirtually azimuth-independent tra
k parameter resolutions.A more e
onomi
 alternative is a design with an asymmetri
 layer distribu-tion whi
h is less 
ostly in terms of the number of 
hannels but requires suitablepattern re
ognition algorithms. It is possible to perform �rst the pattern re
og-nition in the 0Æ proje
tion, and then use the resulting tra
k 
andidate to 
onvertthe measurements in the +� and �� layers into the verti
al 
oordinate [62℄, asalready illustrated in a di�erent 
ontext in �g. 31. The next step then pro
eedswith tra
k �nding in the verti
al proje
tion. In this 
ase, only the 0Æ proje
tionneeds to be equipped with enough layers for a standalone tra
k �nding, whilethe two stereo views are 
ombined and thus the number of layers per stereo view
an be smaller. A reasonable s
enario for this design 
omprises 50% of the layersoriented at 0Æ, 25% in the +� and 25% in the �� proje
tion.In the 
ase of genuine 3D measurements, 3D seeds 
an be easily 
onstru
tedfrom two hits in the �eld-free 
ase, and from three hits in the 
ase with magneti
�eld, whi
h normally will hardly lead to 
ombinatorial problems. This is thesituation in the barrel part of the CMS inner dete
tor [63, 64℄, where three layersof sili
on pixel dete
tors with 150 �m pixel size will be used to initiate tra
kseeds, or in TPCs. In 
ase of intrinsi
ally 2D measurements, 3D seeding has thegeneral disadvantage that the seeds will be
ome rather 
omplex, 
onsisting of 4{5measurements and under high parti
le density also many false seeds will be gen-erated. Also left-right ambiguities have a strong impa
t here: a seed 
onstru
tedfrom �ve drift 
hamber hits yields 32 ambiguous tra
k parameter sets upon ex-panson of all possible left-right assignments. On
e the seed is 
onstru
ted, thetra
k following step involves many extrapolations of the tra
k parameters whi
hare more 
ostly with the full set of parameters, in parti
ular if the 
ovarian
ematrix is to be transported as well.On the other hand, 3D propagation is easier to apply in the sense that the full
oordinate information is always available, so that e.g. the de
ision if the tra
k
andidate interse
ts a parti
ular dete
tor volume or not 
an be made unambigu-ously and multiple s
attering e�e
ts 
an be a

ounted for with good pre
ision.The issue of merging the di�erent proje
tions is also avoided.4.3 Na�ive Tra
k FollowingThe na�ive variant shall be dis
ussed here essentially to allow for 
omparisonwith the more sophisti
ated approa
hes. Starting from a seed, the traje
tory isextrapolated to the dete
tor part where the next hit is expe
ted. If a suitable hitis found, it is appended to the tra
k 
andidate. Where several hits are at disposal,na�ive tra
k following sele
ts the one 
losest to the extrapolated traje
tory. Thispro
edure is 
ontinued until the end of the tra
king area is rea
hed, or no further53



suitable hit 
an be found.Na�ive tra
k following is relatively easy to apply to tra
king s
enarios withmoderate tra
k density and often leads to a reasonable 
omputational e�ort sin
ethe number of hits to be 
onsidered is roughly proportional to both the numberof layers and the number of tra
ks. The appli
ation to situations with large hitdensity soon rea
hes its limitations, sin
e in dense environments, tra
k followingruns the risk of losing its trail whenever several possible 
ontinuations exist. Themain 
ompli
ations 
an be summarized as follows:1. Some expe
ted hits may be missing be
ause of limited devi
e eÆ
ien
y,whi
h will be 
alled a tra
k fault in the following. This also in
ludes the
ase where the hit is existing, but out of expe
ted 
oordinate bounds, forexample be
ause of delta ele
trons 
reated by the impa
t of the parti
le. Indrift 
hambers with single hit readout, the drift time measurement of thefollowed tra
k 
an be superseded by another parti
le passing the same 
ell
loser to the signal wire.2. Wrong hits may be 
loser to the presumed traje
tory than the proper hitsand be pi
ked up in their stead. This 
an happen easily just after theseeding phase when the pre
ision of the tra
k parameters is still limited, orwhen some false hits have already been a

umulated. A wrong hit may stemfrom another re
onstru
table tra
k, from a non-re
onstru
table low-energyparti
le, or from dete
tor noise.3. Left-right ambiguities in wire drift 
hambers double the number of 
hoi
es.Espe
ially in small drift 
ells, e.g. in straw tube tra
kers, wrong left-rightassignments are to some degree unavoidable and need to be 
oped with.These aspe
ts 
an pose a parti
ular problem if the tra
k density is subje
t tostrong variations, e.g. due to a 
u
tuating number of simultaneous intera
tionsunder LHC-like 
onditions.4.4 Combinatorial Tra
k FollowingThis variant is aware of possible ambiguities, and in ea
h tra
k following step,ea
h 
ontinuation hit whi
h is possible within a wide toleran
e gives rise to anew bran
h of the pro
edure, so that in general a whole tree of tra
k 
andidatesemerges. The �nal sele
tion of the best 
andidate must be done in a subsequentstep, whi
h may involve a full tra
k �t on ea
h 
andidate. This kind of method ispotentially unbeatable in terms of tra
k eÆ
ien
y, but in general highly resour
e
onsuming and therefore only used in spe
ial 
ases with limited 
ombinatori
s.54



4.5 Use of The Kalman FilterAll tra
k following approa
hes have to evaluate if a 
ertain hit is 
ompatible withthe presumed traje
tory and thus suitable to be added to the tra
k 
andidate.The suitability of a hit should be based on 
riteria whi
h exploit all the knowledgebased on those hits that have been a

umulated so far. Not only the tra
kparameters themselves, also their pre
ision needs to be known. The ideal tool inthis situation is the progressive �t implemented by the Kalman �lter, whi
h hasbeen dis
ussed in se
tion 2.4.2.The Kalman �lter predi
tion already provides an ex
ellent 
riterion for hitsele
tion. When a hit is 
onsidered to be appended to the tra
k, �rst the predi
tedresidual rk�1k from equation 9 
an be used as a rough 
riterion. After passing ahit through the �lter pro
ess (see eq. 10), the �ltered �2 de�ned in equation 12 isan even more pre
ise measure. In general, the de
ision power will in
rease whenmore and more hits are a

umulated in the tra
k 
andidate. On
e the full tra
kis available, the result of the Kalman smoother (eq. 13) 
an be used to dete
tand remove further outlier hits.4.6 ArbitrationIn pra
ti
al appli
ations of tra
k following, means are required to redu
e its de-penden
y on the starting point, and to de
rease its vulnerability against sto
has-ti
 in
uen
es. This pro
ess is 
alled arbitration. For example, it is mandatorynot to depend on a single option of seeding tra
ks, whi
h would lead to loss of atra
k if one of the seeding layer happens to be ineÆ
ient, but one will normallyuse several 
ombinations of layers for seeding. Su
h redundan
y in
reases theprobability to obtain a seed for a tra
k even in presen
e of devi
e ineÆ
ien
y.When an expe
ted hit appears to be missing in a layer during propagation, it maybe advisable not to dis
ard the 
andidate immediately, but to pro
eed furtheruntil a fault limit is ex
eeded. In a 
ase where more than one hit 
ould present asuitable 
ontinuation for a tra
k, one might want not to de
ide immediately forthe 
losest hit but 
reate bran
hes into di�erent 
andidates whi
h are pursuedindependently. When a hit appears to be �ne for a 
ontinuation, the algorithmshould a

ount for the possibility that this hit is wrong and the right hit hasdisappeared for some reason. However, na�ively applied, all these extensions leadto either vast 
ombinatori
s, whi
h will explode with in
reasing hit density, orsu�er from ad-ho
 limitations. A method to over
ome these problems will bedetailed in the following. 55



4.7 An Example for Arbitrated Tra
k FollowingThis se
tion dis
usses the 
on
urrent tra
k evolution algorithm as an example foran approa
h to tra
k following with arbitration, whi
h is in detail des
ribed in[61, 65℄.4.7.1 AlgorithmThe basi
 idea is to allow for 
on
urren
y of a 
ertain number of tra
k 
andidatesat any time during the propagation of a 
ertain seed, or even a set of seeds. Thesetra
ks are propagated in a syn
hronized manner from one sensitive tra
king vol-ume to the next. At ea
h propagation step for ea
h tra
k 
andidate, bran
hinginto several paths is possible and will in general o

ur. Multiple bran
hes appearwhen several 
ontinuation hits are 
onsistent with the present knowledge of tra
kparameters, or when more than one tra
king volume is within rea
h. Also thepossibility that the expe
ted hit is simply missing, e.g. be
ause of devi
e inef-�
ien
y, gives rise to a new bran
h. Thus the pro
edure explores the availablepaths for all tra
k 
andidates 
on
urrently whi
h leads to a rapid 
reation of newtra
k 
andidates. On the other hand, the number of tra
k 
andidates should notgrow beyond 
ontrol. This is a
hieved by applying a quality sele
tion on thewhole set of 
on
urrent tra
k 
andidates after ea
h round of propagation, usingsuitable estimators for the quality of a tra
k. This leads to a favourable timingbehaviour even for high multipli
ity events. Con
urrent tra
k evolution 
an thusbe regarded as a variant of deferred arbitration [66℄. The a
tual propagation isbased on the Kalman �lter.An illustration of this strategy is shown in �g. 35 taken from [61℄, whi
h showsa potentially ambiguous situation 
aused by two nearby tra
ks T1 and T2 plus alarge angle tra
k T3 in �ve layers of honey
omb drift 
hambers. For simpli
ity,it is assumed here that the algorithm dis
ards tra
k 
andidates with more thanone missing hit (fault) in a row, and that the maximum number of 
on
urrent
andidates is three { in reality, higher limits may be used. It is also assumedthat a seed of hits from tra
k T1 has been formed on the right side outside of the�gure. The propagation pro
eeds upstream from right to left. The illustrationshows how three parallel 
andidates arise from di�erent left-right assignments tothe two drift 
hamber hits in layer E, whi
h are propagated through layers D andC { in
luding the toleran
e of a fault on tra
k T1 in layer D. In layers B and A,the false paths are dis
arded be
ause of a

umulating too many faults, and theproper re
onstru
tion of tra
k T1 is retained. Tra
k T2 should then be foundlater with a di�erent seed, while tra
k T3 is likely to be non-re
onstru
table.Tra
k following in the na�ive sense would always a

ept the hit with the small-est �2 
ontribution, possibly a good solution when the hit density is small. In thepresen
e of multiple s
attering and high hit densities, a wrong hit will frequentlyhave a smaller �2 
ontribution than the proper one, or repla
e a proper hit whi
h56
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T3Figure 35: S
hemati
 view of 
on
urrent tra
k evolution in a �ve-layered part ofa tra
king system with hexagonal drift 
ells, whi
h is traversed by three parti
les,labelled T1, T2 and T3. The simulated drift time iso
hrones are indi
ated by
ir
les. The propagation pro
eeds upstream from the right to the left and startswith a seed of hits from tra
k T1 outside of the pi
ture (from [61℄).is missing due to dete
tor ineÆ
ien
y, or shadowed by another tra
k passing thesame 
ell. On the other hand, full evaluation of all possible hit 
ombinationswould ex
eed all bounds of 
omputing resour
es when applied to dense events.Thus, the 
on
urrent tra
k evolution strategy 
ombines the virtues of tra
k fol-lowing and 
ombinatorial approa
hes. As will be shown below, the optimizationin ea
h evolution step using a quality estimator provides an elegant means to dealwith the main problems in high o

upan
y tra
k propagation.4.7.2 ParametersThe algorithm is 
ontrolled by parameters whi
h determine the sele
tion of hitsfor propagation of 
andidates, and for optimization of 
on
urrent 
andidates onea
h level. The parameter Æmaxu is the range around the predi
ted 
oordinatein the next 
onsidered tra
king layer, in whi
h 
ontinuation hits are sear
hed.The parameter Æ�2max stands for the maximum tolerable �ltered �2 in
rementa

ording to eq. 12. Missing hits (faults) are in general tolerated but only a
ertain number of subsequent faults (NmaxFaults) are a

epted. The pruning of tra
k
andidates after ea
h evolution step is then regulated with absolute and relative
uts. The quality of a tra
k 
andidate 
an be estimated with a fun
tion of the57



form Q = f(NSteps;NFaults; �2i ; :::) (43)where NSteps is the number of evolution steps passed so far, and �2i stands forthe 
ontribution of the a

umulated hit i to the total �2. If needed, also a biasfrom the tra
k parameters 
ould be introdu
ed here, whi
h suppresses e.g. tra
ksthat are very steep or have very low momentum. A 
onvenient simple qualityestimator isQ = NSteps�NFaults � w�2 �Xi �2i (44)whi
h applies a 
ertain malus (in this 
ase 1) for ea
h missing hit, whi
h is equiva-lent to an ill-mat
hing hit with a �2 
ontribution of 1=w�2 (in the 
on�guration oftab. 2 equal to 10). Furthermore, 
uts are applied relative to the best 
andidate
urrently in the set: 
andidates whose quality di�ers from the best 
andidateby more than Æqmin are dis
arded. Finally, all 
on
urrent tra
k 
andidates areranked in de
reasing order of quality, and only the �rst Rmax 
andidates in rankare retained. If propagation 
annot be 
ontinued though the end of the tra
kingsystem is not rea
hed, this may have a natural reason, e.g. the parti
le may havebeen stopped or de
ayed in 
ight. In su
h 
ases, the best remaining tra
k 
andi-date on the last level is kept if it 
omprises at least a 
ertain minimum numberof hits, NminHits.4.8 Tra
k Following And Impa
t of Dete
tor Design Pa-rametersThe pra
ti
al behaviour of su
h an algorithm, as it has been developed for theHERA-B spe
trometer has been studied in [61℄, in
luding an investigation of theimpa
t of dete
tor design and performan
e on the pattern re
ognition 
apabil-ity. As the experiment has never routinely taken physi
s data at the high designintera
tion rate of 40 MHz, the results have been obtained from a full Geantsimulation with on average �ve superimposed pN intera
tions, one of them 
on-taining beauty hadrons. As seen in �g. 8, the inner part of the HERA-B mainspe
trometer a

eptan
e within about 25 
m radius from the beam line is 
overedby mi
ro-strip gaseous 
hambers (MSGC), while the outer part is instrumentedwith Honey
omb drift 
hambers [13, 14, 15℄. The pattern tra
ker 
onsists of foursuperlayers outside of the magneti
 �eld, whi
h 
onsist of 6 individual layers ea
h(the area marked \PC" in �g. 8), ex
ept for the inner part of the two middle su-perlayers that have only four layers ea
h. Half of the layers measure a horizontal
oordinate (0Æ orientation), the other half are arranged at �100 mrad stereo an-gle. The seeds were produ
ed from hit triplets in the hindmost two superlayersfor upstream, and in the foremost two superlayers for downstream propagation58



Parameter Value Parameter ValueNminHits(x) 9 NmaxFaults(x) 2NminHits(y) 9 NmaxFaults(y) 2Æ�2max(x) 8 Rmax 5Æ�2max(y) 16 w�2 0.1Æqmin �1Table 2: Table of parameters used in the implementation in [61℄(�g. 33). Tra
k �nding was performed �rst in the 0Æ proje
tion, then 
ontinuedin the 
ombined stereo layers, where the verti
al 
oordinates were determinedusing the horizontal proje
tion of the tra
k 
andidate with the method explainedin se
. 3.4.3 (see eq. 40 and �g. 31).The algorithm parameters used are summarized in table 2. The parametersallow for a deli
ate adjustment of balan
e between the extremes of na�ive tra
kfollowing (Rmax = 1), where always the apparently best path is followed, and
ombinatorial tra
k following (Rmax =1), whi
h retains all paths. The detailedsimulation allowed to study some prin
ipal e�e
ts of tra
king system propertieson pattern re
ognition parameters whi
h will be shown in the following.4.8.1 In
uen
e of dete
tor eÆ
ien
yFigure 36 shows how the hit eÆ
ien
y of the dete
tor devi
es a�e
ts the patternre
ognition performan
e on tra
ks emerging from B de
ays. Above �HIT = 95%,the hit ineÆ
ien
y is well 
ompensated by the algorithm (operating with NFaults =2), resulting in an ex
ellent tra
k �nding performan
e. Smaller hit eÆ
ien
y leadsto sizeable loss in the fra
tion of dete
ted parti
les.4.8.2 E�e
t of dete
tor resolutionThe in
uen
e of the spatial resolution is shown in �g. 37. The simulated res-olutions of outer and inner tra
king system were varied independently. It isinteresting to see that the eÆ
ien
y degrades only slowly with the resolution be-ing in
reased up to 1 mm. The slight drop in eÆ
ien
y at 100 �m in �g. 37a is anartifa
t due to numeri
al approximations. Both �gures indi
ate that the e�e
tof resolution on tra
k �nding eÆ
ien
y should not be overrated. Mu
h strongeris the e�e
t on the ghost rate, the plots underline that a good resolution helps
onsiderably to suppress fake re
onstru
tions.4.8.3 In
uen
e of double tra
k separationThe simulation of the inner tra
ker devi
es allowed varying of the double tra
kresolution, i.e. the distan
e down to whi
h nearby tra
ks 
an be resolved as59
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ien
yon simulated events 
onsisting of one pN intera
tion with a B0 meson with thede
ay 
hain B0 ! J= K0S ! `+`��+��, where `+`� 
an be a pair of muonsor ele
trons, superimposed with on average four unbiased inelasti
 intera
tions.The �lled squares show the tra
k �nding eÆ
ien
y for 
harged parti
les withmomentum above 1 GeV, the �lled 
ir
les are for parti
les from the B de
ay.The triangles indi
ate the 
ombined eÆ
ien
y of all four B de
ay parti
les [61℄.
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Figure 37: Pattern re
ognition eÆ
ien
y for di�erent outer (a) and inner tra
kerresolutions (b), for parti
les from the B0 ! J= K0S de
ay mode as detailed inthe 
aption of �g. 37. Only tra
ks passing at least 17 out of 24 possible tra
kinglayers were 
onsidered. Also the ghost rate is displayed (open 
ir
les) [61℄.
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intera
tions superimposed to one b�b intera
tion [61℄, normalized to the value atNINEL = 4.individual hits in a devi
e. In mi
ro-strip gaseous 
hambers (MSGC) as they areused by HERA-B, the double tra
k separation distan
e is in general larger thanthe resolution, sin
e it depends on the 
luster sizes. As visible in �g. 38, theeÆ
ien
y drops signi�
antly with double tra
k resolutions worse than 800 �m.4.8.4 Exe
ution speedAs already seen in se
. 3.4.3, the CPU time 
onsumption is an essential aspe
t forthe sele
tion of a pattern re
ognition algorithm. The 
on
urrent tra
k evolutionalgorithm was tested on the same geometry and event type as the elasti
 armsalgorithm implementation (see tab. 1), and required on average 4s per eventwith four superimposed inelasti
 intera
tions, 
ompared to several minutes forthe elasti
 arms method on the same type of pro
essor. Also the behaviour within
reasing tra
k density is important, sin
e steep in
reases with a sizable powerof the tra
k multipli
ity, as they may arise from 
ombinatori
s, 
an have a very63



negative impa
t on use of a re
onstru
tion program at produ
tion s
ale. Fig-ure 39 shows the average 
omputing time per event normalized to that for thenominal four superimposed inelasti
 intera
tions. At high intera
tion multipli
-ity, the 
omputing time per event settled rather gra
efully on a roughly lineardependen
e, indi
ating a 
onstant amount of time per tra
k, at an a

eptableloss of eÆ
ien
y, whi
h 
an be 
onsidered a good-natured behaviour. With thespeed shown above, the algorithm is fast enough to be used in quasi-online re-
onstru
tion [67℄.4.9 Tra
k Propagation in a Magneti
 FieldIn general the above tra
k following strategy 
an be applied also within a magneti
�eld. The main di�eren
e is that the transport fun
tion in eq. 8 be
omes non-linear, and the transport matrix be
omes a lo
al derivative as displayed in eq. 15.If the �eld is homogeneous, or if inhomogeneity 
an at least be negle
ted withintypi
al transport distan
es, the transport fun
tion and matrix 
an usually beexpressed analyti
ally.In many 
ases, however, the �eld is neither homogeneous nor des
ribable inan analyti
 expression, instead, it is parametrized in terms of a �eld map, whi
hhas been measured with Hall probes, or 
omputed by means of a �eld simulationprogram. In this 
ase, numeri
al methods have to be used to derive the transportfun
tion. A very suitable method is the Runge-Kutta pro
edure [68℄, whi
hintegrates the equations of motion by expanding the traje
tory up to a 
ertainorder and sampling the �eld at a series of intermediate points, whi
h are 
hosenand weighted su
h that all powers of the errors below a 
ertain order 
an
el.Even this pro
edure meets 
onsiderable 
hallenges when the �eld varies stronglyand a very high pre
ision, mat
hing the dete
tor resolution, must be warranted.In this situation, an embedded Runge-Kutta method with adaptive step size 
anhelp: the next highest order of Runge-Kutta is 
ompared with the pre
eding oneand the di�eren
e serves as an error estimate, whi
h is then used to adjust thestep size.Appli
ation of the Kalman �lter does not only require a transport fun
tion forthe tra
k parameters, but also the derivative matrix of the new parameters withrespe
t to the old is needed (see eq. 15). Cal
ulation of this derivative matrix 
anbe eÆ
iently performed within the same Runge-Kutta framework that is used forthe parameter transport itself [69℄.An extension of the 
on
urrent tra
k evolution algorithm for tra
k followingin the magneti
 �eld has been developed and tested on the HERA-B geometryin [65℄. Tra
k segments found in the �eld-free part of the spe
trometer were fol-lowed upstream through the inhomogeneous �eld of the magnet tra
ker. Figure 40shows an event display with simulated tra
ks in
luding a B de
ay re
onstru
tedwith this method. The algorithm a
hieved a high tra
k propagation eÆ
ien
y inspite of the large tra
k density. 64



(a)
(b) �+���+��

Figure 40: (a) Display of a simulated event with one intera
tion 
ontaining thegolden B de
ay and six superimposed inelasti
 intera
tions, fo
ussed on the mag-net area, where the pole shoe of the magnet is indi
ated by the large 
ir
le [65℄.Both the Monte Carlo tra
ks (light grey) and the re
onstru
ted tra
ks (thi
k darklines) are show (re
onstru
ted hit points denoted by 
rosses). (b) Same event,with the display restri
ted to parti
les from the golden B de
ay.65



5 Fitting of Parti
le Traje
toriesAfter pattern re
ognition has done its work, the dete
tor hits are separated intosets ea
h of whi
h, ideally, 
ontains manifestations of one spe
i�
 parti
le. Itis then the task of the tra
k �t to evaluate the tra
k parameters and thus thekinemati
al properties of the parti
le with optimal pre
ision. Even if the patternre
ognition itself is already providing tra
k parameters and 
ovarian
e matri
esto some degree, obtained for example by means of the Kalman �lter, it will ingeneral be left to a �nal tra
k �t to take all ne
essary e�e
ts into a

ount whi
hare often negle
ted at the tra
k �nding stage be
ause they are 
ostly to applyunder the full 
ombinatori
s of pattern re
ognition.5.1 Random PerturbationsIn the easiest 
ase, tra
k parameters 
ould be derived from the measurements byapplying the least squares �t formulas from eq. 4 and 5 in se
. 2.4.1. In real-isti
 appli
ations, the problem is usually more involved be
ause of the way thetraje
tory of the parti
le is in
uen
ed by random perturbations that dilute the in-formation 
ontent of the measurements, most 
ommonly multiple s
attering andionization or radiative energy loss. Their in
uen
e is s
hemati
ally displayed in�g. 41. One 
an interpret the diagram in su
h a way that, from step to step, themeasurements, labelled on the right side, improve the degree of amount of infor-mation about the kinemati
al properties of the parti
le, while the perturbationslabelled on the left side redu
e it.5.2 Treatment of Multiple S
atteringMultiple s
attering o

urs through the elasti
 s
attering of 
harged parti
les inthe Coulomb �eld of the nu
lei in the dete
tor material. Sin
e the nu
lei areusually mu
h heavier than the traversing parti
les, the absolute momentum ofthe latter remains una�e
ted, while the dire
tion is 
hanged. If the longitudi-nal extension of the traversed material blo
k 
an be negle
ted (this is normallyreferred to as thin s
atterer approximation), only tra
k parameters related toparti
le dire
tion are a�e
ted dire
tly, for example the tra
k slopes tx = tan �xand ty = tan �y introdu
ed in se
tion 2.3.1. The sto
hasti
 nature of multiples
attering is that of a Markov pro
ess.The distribution of the de
e
tion angle follows a bell-like shape, though it
annot be a

urately des
ribed by a Gaussian be
ause of its pronoun
ed tails. Thevarian
e of the proje
ted multiple s
attering angle is 
al
ulated within Moli�eretheory [70, 71, 72℄ asCMS =  13:6MeV�p
 !2 t [1 + 0:038 ln t℄2 (45)66
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where t is the traversed path length in terms of radiation lengths xR, usually
alled radiation thi
kness. (While the radiation length is frequently abbreviatedas x0 in the literature, the symbol xR is used here instead to avoid 
onfusion withother uses of x0 throughout this arti
le.) For a planar obje
t arranged in a planeverti
al to the z axis, the radiation thi
kness along z is given by~t = Z dzxR(z) (46)Taking the tra
k in
lination against the z axis into a

ount, one obtains thee�e
tive radiation thi
knesst = ~tq1 + t2x + t2y (47)so that the �nal formula be
omes (assuming � � 1)CMS =  13:6MeVp
 !2q1 + t2x + t2y ~t h1 + 0:038 ln q1 + t2x + t2y ~t i2 (48)In general, multiple s
attering 
ould be treated in the tra
k �t by expressing theangular un
ertainty of ea
h thin s
atterer as an additional 
ontribution to theerror of ea
h a�e
ted measurement. Sin
e a multiple s
attering de
e
tion willin
uen
e all downstream measurement errors in a 
orrelated way, this introdu
esarti�
ial 
orrelations into the hitherto un
orrelated measurements, so that thematrix V in se
tion 2.4.1 is no longer diagonal. Evaluation of eq. 4 requiresthen inversion of non-trivial matri
es whose dimension is not only the number ofparameters but the number of measurements. Straight-forward solutions of thisproblem have been devised [73℄, whi
h intrinsi
ally treat all multiple s
atteringangles as free parameters. In many pra
ti
al situations however, where the num-ber of parameters may be �ve and the number of measurements perhaps as largeas 70, this 
an lead to serious problems.The generally a

epted solution for the above problem is provided by theKalman �lter te
hnique. The multiple s
attering dilution is added as pro
essnoise (represented by the matrix Qk in the transport equation, eq. 8) at thevery position in the traje
tory where it originates. The Kalman �lter normallypro
eeds in the inverse 
ight dire
tion along the path of the parti
le and takesthe in
uen
es illustrated in �g. 41 into a

ount. Mathemati
ally, the result willbe identi
al to a straight-forward least squares �t as des
ribed in the previousparagraph, but the detailed pro
edure avoids handling of huge matri
es.In Kalman �lter language, the resulting 
ovarian
e matrix 
ontribution forthin s
atterers is
ov(tx; tx) = (1 + t2x)(1 + t2x + t2y)CMS (49)
ov(ty; ty) = (1 + t2y)(1 + t2x + t2y)CMS
ov(tx; ty) = txty (1 + t2x + t2y)CMS68
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t parameter resolution at the �rst tra
k point, separately forthe 
oordinate in the bending plane (x, 
ir
les) and the non-bending plane (y,triangles).(These and related formulas and their derivation 
an be found in [74℄).It may be interesting to see how su
h a �t works in pra
ti
e. In the following,results of a study are shown whi
h has been performed on basis of simulatedevents in the HERA-B geometry (�g. 8), applying a Kalman �lter based tra
k �tto the simulated hits [75℄. This kind of geometry is typi
al for modern forwardspe
trometers, and generally similar to COMPASS [76℄ or the planned LHCb [77℄and bTEV [78℄. The study was based on dete
tor design resolutions and not in-tended to make quantitative statements on the a
tual spe
trometer performan
e,but to provide insight into the e�e
ts of 
ombining various di�erent dete
tortypes, the sizable number of hits per tra
k, and the 
onsiderable amounts of ma-terial in the tra
king area that make an a

urate treatment of multiple s
atteringessential. 69
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5.2.1 Impa
t parameter and angular resolutionsThe visible tra
k parameter resolution was obtained by 
al
ulating the tra
kparameter residual for ea
h tra
k using the Monte Carlo truth, and applyinga Gaussian �t to the distribution. (The term visible is used to distinguish thisresolution from the one estimated by the �t.) The impa
t parameter resolution fortra
ks passing the Sili
on mi
ro-vertex dete
tor and the outer tra
ker as a fun
tionof momentum is shown in �g. 42. Sin
e this impa
t parameter is de�ned withrespe
t to the position of the �rst hit of the tra
k 
ounting from the intera
tionpoint, the resolution is governed by the error of the �rst 
oordinate and onlyweakly dependent on momentum. Multiple s
attering a
ts like a �lter whi
hdilutes the information from the following layers, only at higher momentum their
ontribution to the resolution at the �rst point be
omes visible.Sin
e the vertex dete
tor measurement a

ura
y is approximately isotropi
,horizontal and verti
al resolution are almost identi
al, the deviation at p =100 MeV is explained by the fa
t that the strips in the �rst vertex dete
tor layerare oriented almost parallel to the y axis. The resolution of tra
k slopes is shownin �g. 43 and turns out to be dominated by the pronoun
ed / 1=p behaviour ex-pe
ted in a multiple s
attering-dominated regime. At high momentum, the onsetof 
oordinate resolution e�e
ts appears to be just visible, where the slightly bet-ter resolution of the horizontal slope (tx) may be due to the dominantly verti
alorientation (parallel to y) of the wires in the main tra
king system.The impa
t parameter resolution given above should not be 
onfused withthe quantities relevant for physi
s performan
e where assignment to verti
es isimportant. In the latter 
ase, the tra
k parameters must be extrapolated fromthe �rst tra
k point to the intera
tion area. With extrapolation distan
es oftypi
ally O(10 
m), the resolution of the extrapolated impa
t parameters willgenerally be fully dominated by the angular resolution rather than the impa
tparameter resolution at the �rst point.5.2.2 Momentum resolutionA very 
entral design issue in spe
trometers is resolution of momentum, sin
eit determines the reje
tion power against ba
kground in parti
le spe
trometry.The relative momentum resolution, labelled dp=p, as a fun
tion of momentum isshown in �g. 44 for parti
les traversing the areas SI, MC and PC of the spe
-trometer (see �g. 8 for de�nition) in the polar angle area 0:1 < � < 0:15. The
ir
le symbols show the relative momentum resolution that results with multiples
attering swit
hed o� in the simulation, leading to a stri
tly linear dependen
eon p. This behaviour is expe
ted sin
e the resolution is then only determined bythe 
oordinate resolution and the geometri
al layout of the spe
trometer - sizeand number of layers - that provides the leverage for momentum measurementtogether with the magneti
 �eld. The result re
e
ts the fa
t that the 
urvature �,71
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urvature, 
an be measured with a pre
isionthat is independent of its a
tual value, hen
e Æ�=
onst. On the other hand the
urvature is inversely proportional to the momentum, so that dp=p / p. In pres-en
e of multiple s
attering, the resolution shows a multiple s
attering-dominatedregime below momenta of � 50 GeV, and a transition into a linear rise at highmomentum. Superimposed is a �t with a 
onstant and a linear resolution termadded in quadrature. This parametrization, whi
h 
orresponds to a 
ommonlyused fun
tion introdu
ed by Glu
kstern [7℄ for an even spa
ing of tra
king sta-tions does not �t the visible resolution very well in the momentum mid-range,whi
h 
an be attributed to the uneven distribution of measurements, resolutions,material and magneti
 �eld strength in the spe
trometer.5.2.3 E�e
ts of �t non-linearityThe presen
e of the inhomogeneous magneti
 �eld introdu
es parti
ular e�e
ts ofnon-linearity into the �tting problem. The least squares �t te
hnique, whi
h theKalman �lter is built on, 
an still be applied, with the transport matri
es nowobtained as derivatives of the transport fun
tion. As already noted in se
. 2.4.1,the optimal properties of the least squares te
hnique are still retained on the
ondition that the derivatives are taken at the position of the �nal traje
tory.Sin
e this is initially not ne
essarily the 
ase, the �t must be repeated iterativelyuntil the pro
edure 
onverges. 73
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les), SI{PC(squares) and SI{TC (triangles) spe
trometer ranges, together with the �ts de-s
ribed in the text. The dashed line is the upper �t in �g. 44.The pra
ti
al impli
ations of non-linearity are visible in �g. 45, whi
h showsthe mean relative deviation of the re
onstru
ted from the true momentum value.Small systemati
 shifts of re
onstru
ted momentum are observed for momentumbelow 5 GeV with two �t passes applied. These shifts re
e
t the 
onvergen
ebehaviour of the �t due to non-linearity. They are found to be virtually removedwhen a third pass is applied.5.2.4 Contributions of di�erent parts of the spe
trometerFor understanding dete
tor design, it is also important to investigate how mu
hdi�erent parts of the spe
trometer 
ontribute to the momentum measurement.In the HERA-B geometry (�g.8), the tra
king system is grouped into the vertexdete
tor (SI), the 
hambers within the magnet (MC), the 
hambers just behindthe magnet (PC) and the so-
alled trigger 
hambers (TC), whi
h are separatedfrom the PC part by the ring-imaging �Cerenkov dete
tor (RICH). In order toseparate the 
ontributions of the di�erent spe
trometer parts, the range of the �twas modi�ed by omitting the vertex dete
tor hits (labelled MC{PC range) andby adding the hits from the tra
king 
hambers at the end of the main tra
king74



system (SI{TC range). The resulting momentum resolutions are displayed in�g. 46. It turns out that without in
luding the vertex dete
tor (MC{PC), themomentum resolution is well des
ribed by a 
onstant and a linear term addedin quadrature. In the regime of linear rise, the poorer 
oordinate resolution isre
e
ted in 
omparison to the system in
luding the vertex dete
tor. When the�t on the other hand is extended into the \TC" region whi
h is mainly designedto support the trigger (SI{TC), these additional measurements with their hugelever arm are expe
ted to improve the 
oordinate 
ontribution of the resolution.Su
h an improvement is visible in �g. 46 for p � 100 GeV , where it is hardlyrelevant for the physi
s s
ope of the experiment. A third term proportional to thesquare-root of the momentum had to be added in quadrature to �t the resolutionfor the latter two ranges.5.2.5 Parameter 
ovarian
e matrix estimationA very important task of the tra
k �t is the quanti�
ation of the 
ovarian
ematrix of the estimated tra
k parameters. The reliability of parameter errorestimation 
an be studied by investigating distributions of normalized parameterresiduals (see eq. 23 in se
. 2.5.5), whi
h use the estimated error for normalization.In the example at hand, the resulting pull distributions are shown in �g. 47,where unbiased �ts with a Gaussian fun
tion are superimposed. Distortions ofthe parameter estimates would show up as deviations of the mean values fromzero, whi
h are however not present in this 
ase. The Gaussian 
ores of thepulls agree in all 
ases with unity width, indi
ating a reliable estimate of the
ovarian
e matrix. One should note that only mean value and varian
e of thepull distribution are indi
ators of the quality of the estimate. The a
tual shapeof the distribution, e.g. whether it is Gaussian or not, re
e
ts the underlyingstru
ture of the problem, as will be more 
learly visible in the next se
tion.5.2.6 Goodness of �tSin
e the Kalman �lter is mathemati
ally equivalent to a least-squares estimator,the sum of the �ltered �2 
ontributions will follow a �2 distribution, provided thatthe random variables entering into the �t have Gaussian distributions. In this
ase the �2 probability P�2 = �2Z�1 f(~�2) d~�2where f(~�2) is the standard �2 distribution for the appropriate number of degreesof freedom, should be evenly distributed between 0 and 1. (P�2 is often 
alled
on�den
e level.) This prerequisite is not stri
tly ful�lled in 
ase of Moli�eres
attering, so that deviations are to be expe
ted. These e�e
ts have potentiallylarge in
uen
e in modern radiation hard drift 
hambers, where the drift 
ells75
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Figure 48: Distributions of �2 probability (
on�den
e level) for the tra
k �t for a10 GeV parti
le, (a) with Gaussian form of multiple s
attering, (b) with Moli�eres
attering.are en
losed in a multitude of small gas volumes and a 
onsiderable amount ofmaterial is introdu
ed into the tra
king area.Figure 48 
ompares the distribution of the �2 probability for the Gaussianform of multiple s
attering (a) and Moli�ere s
attering (b). The peak at smallprobabilities in (b) obviously does not indi
ate a bad behaviour of the �t, butinstead shows the inadequateness of the �2 test with non-Gaussian random vari-ables. The probability distribution for various momentum values is displayed in�g. 49. The in
reasing prominen
e of the peak at low probability is 
learly seenwith de
reasing momentum. Small �2 probability does not ne
essarily imply abad estimation of the parameters, hen
e spe
ial 
are is required when a �2 
ut isto be used to eliminate improperly re
onstru
ted tra
ks.77
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Figure 49: Distribution of �2 probabilities as a fun
tion of momentum, (a)3.5 GeV, (b) 10 GeV, (
) 30 GeV and (d) 100 GeV.78



5.3 Treatment of Ionization Energy Loss And Radiation5.3.1 Ionisation energy lossFor minimal ionizing parti
les in the GeV energy range, energy loss due to ion-ization within the tra
king system depends in good approximation only on theamount of material that is traversed. In this 
ase, it is not the radiation thi
kness(as de�ned in eq. 46), but the geometri
al thi
kness multiplied by the mass den-sity of the material that is relevant. Sin
e the energy loss depends only weaklyon the energy itself in this range, the e�e
t will be
ome most noti
eable for lowmomentum parti
les. This behaviour is illustrated in �g. 50, whi
h shows thenormalized residual of the momentum parameter Q=p for �+ parti
les of 3.5 and10 GeV with ionization energy loss simulation turned on. The residual distribu-tions are shifted towards positive values of Q=p, re
e
ting an underestimation ofthe energy, whi
h is 
aused by the ionization energy loss, in parti
ular upstreamof the magnet. The visible shift 
orresponds to an energy loss of 12 MeV. On theother hand, the width of the residual distributions is not signi�
antly in
reased,whi
h in the 10 GeV 
ase 
an dire
tly be seen by 
omparing with �g. 47.A 
orre
tion 
an be applied in ea
h �lter step if the dE=dx of the parti
le inthe material is known, sin
eEafter = Ebefore � (dE=dx)ion � ` (50)where ` is the traversed thi
kness of the material. This requires in general theknowledge of the parti
le mass. Sin
e ionization energy loss will be most notablefor small parti
le energies where the resolution is governed by multiple s
attering,no 
orre
tion to the momentumerror has been applied. The bottom part of �g. 50displays the same normalized residuals with the energy loss 
orre
tion applied.The bias of the momentum estimate is su

essfully eliminated by the 
orre
tion.5.3.2 Radiative energy lossThe 
orre
tions dis
ussed up to now are usually suÆ
ient for minimum ionizingparti
les. For ele
trons6 however, the situation is more 
ompli
ated sin
e abovethe 
riti
al energy, whi
h is of the order of MeV, these parti
les lose more en-ergy through radiation of photons than through ionization when they traversematerial. This pro
ess is also of a more notably sto
hasti
 nature than ionizationenergy loss, as 
onsiderable fra
tions of the ele
tron energy 
an be transferred tothe photon. Modern radiation-hard dete
tors as e.g. those under 
onstru
tionfor the LHC are 
onfronted with this problem to a mu
h higher degree than tra-ditional dete
tors, be
ause of the signi�
ant amount of material in the tra
kingsystem, whi
h 
an easily ex
eed 50% of a radiation length.6in this se
tion the term ele
tron should be interpreted to imply positron as well79
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Figure 50: Pull distribution of the momentum parameter for �+ parti
les of3 GeV (a,
) and 10 GeV (b,d). The upper pi
tures show the e�e
t of dE=dx ifno 
orre
tion is applied. The lower plots show the same when the 
orre
tion isapplied in the �t. 80



Region 1 Region 2 Region 3Figure 51: Regions 1{3 for 
lassifying radiative energy loss illustrated in thegeometry of the HERA-B spe
trometer. The simulated geometry di�ers in somedetails from the one in �g. 8. Also the traje
tory of a simulated ele
tron is shown,whi
h radiates a photon within the magnet that 
onverts into a e+e� pair furtherdownstream. .
81



For the relevan
e of photon radiation on measurement of the ele
tron, three
ases have to be distinguished regarding the range where the radiation o

urs(indi
ated as regions 1{3 in �g. 51):Region 1: between intera
tion point and spe
trometer magnet If the pointof origin of the parti
le is not yet within the magneti
 �eld { as is typi
alfor �xed-target setups rather than for 
ollider dete
tors { radiation will not
hange the ele
tron traje
tory and thus not interfere with the quality of the�t; however, the spe
trometer will only measure the remaining momentumof the ele
tron after the radiation.Region 2: within the magneti
 �eld In this 
ase, the 
urvature of the tra-je
tory 
hanges be
ause of the radiation, whi
h means that the energy
hange is { in prin
iple { measurable. Ignoring the radiation in the �twill lead to a bad des
ription of the traje
tory and to distortions of theparameter estimates.Region 3: beyond the magneti
 �eld If the ele
tron loses energy downstreamof the magnet, this will have no in
uen
e on the momentum measurementin the spe
trometer. However, pair 
reation from radiated photons maylead to a

ompanying parti
les that 
an disturb pattern re
ognition in thedownstream area.The dilution due to energy loss of ele
trons and positrons through emission ofele
tromagneti
 radiation 
an be treated by the method by Stampfer et al. [79℄.A

ording to the Bethe-Heitler equation [80℄, this energy loss is des
ribed by dEdx !rad = ExR (51)where xR is the radiation length of the traversed material (see se
tion 5.2). Thisleads to the relation* EafterEbefore+ = e�t (52)where t is the traversed distan
e measured in radiation lengths as de�ned before.For a tra
k propagation whi
h follows the tra
k opposite to its physi
al movement,one obtains on average Qp !0 = Qp +� Qp ! = Qp � Qp Ebefore � EafterEbefore = Qp e�t (53)The 
ontribution to the propagated 
ovarian
e matrix emerges as�
ov Qp ; Qp ! =  Qp !2 �e�t ln3ln2 � e�2t� (54)This 
ontribution 
an be in
luded into the Kalman �lter pro
ess noise as intro-du
ed in eq. 8. 82



no radiation 
orre
tion with radiation 
orre
tion
xRC - xMC [cm]

N

1

10

10 2

10 3

10 4

-0.04 -0.02 0 0.02 0.04

(a)x
xRC - xMC [cm]

N
1

10

10 2

10 3

10 4

-0.04 -0.02 0 0.02 0.04

(b)x
tx

RC - tx
MC

N

10

10 2

10 3

10 4

-0.002 0 0.002

(
)tx
tx

RC - tx
MC

N

10

10 2

10 3

10 4

-0.002 0 0.002

(d)tx
 1/p
RC
 -  1/p
MC
 
[
GeV
-1
]


N



10


10
2


10
3


-0.02
 0
 0.02
 0.04


(e)1p
 1/p
RC
 -  1/p
MC
 
[
GeV
-1
]


N



10


10
2


10
3


-0.02
 0
 0.02
 0.04


(f)1pFigure 52: Distributions of parameter residuals for ele
trons of 100 GeV based on5000 tra
ks, where x is the impa
t parameter in the bending plane, tx = tan �xis the 
orresponding tra
k slope, and 1/p the inverse momentum. The tra
k �twas applied to all hits within the spe
trometer magnet (region 2 in �g. 51).83



Magnetic field

Point of radiation

True e− path

Fitted e− path

γ

Figure 53: Illustration of how radiation within the magneti
 �eld 
an a�e
t theestimate of the �tted tra
k slope. The magneti
 �eld ve
tor is pointing into thedrawing plane. The ele
tron, whose true path is shown by a solid line, emitsa photon, whi
h leads to an in
rease of 
urvature for the subsequent part ofits traje
tory within the magnet. This is illustrated by the 
urvature radii ofthe heli
es as dotted lines. The �tted traje
tory (dashed line) assumes a single
urvature, whi
h leads to an overestimation of the initial slope of the tra
k. The
urvatures drawn are intentionally exaggerated.
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Radiation 
orre
tion mode Fra
tion of �ts within momentum deviation�0:1 < Æp=p < +0:1 �0:2 < Æp=p < +0:2none 0:566 � 0:004 0:678 � 0:003within magnet 0:635 � 0:003 0:728 � 0:003within full spe
trometer 0:321 � 0:003 0:786 � 0:002Table 3: Fra
tion of �ts within given limits of momentum deviation, for threevariants of radiation 
orre
tion5.3.3 Radiation energy loss 
orre
tion within the magneti
 �eldEnergy loss through radiation 
an not only interfere with the momentummeasure-ment, but may also a�e
t other tra
k parameters. This is shown in �gs. 52a,
,ewhi
h display the residuals of the parameters x, tx and 1=p for ele
trons pro-du
ed with 100 GeV momentum, where the �t was restri
ted to the magnet area(MC). Without bremsstrahlung 
orre
tion, the tra
k slope estimate tx shows atail towards overestimated values, whi
h is re
e
ted in an underestimation of the
orresponding impa
t parameter, x. The explanation for this e�e
t is illustratedin �g. 53 whi
h for simpli
ity assumes a homogeneous �eld: the 
urvature of theele
tron tra
k is abruptly in
reased beyond the point of radiation. Fitting thetra
k with a 
onstant momentum leads to an intermediate 
urvature resulting ina shift in the measured initial tra
k slope.The residual distribution of the momentum parameter, 1=p, displays a tailtowards higher values, 
orresponding to a mean momentum shift of � 13%.Also the parameter errors are underestimated, whi
h is evident from the nor-malized residuals in �gs. 54a,
,e (un
orre
ted 
ase), where the widths of the txand Q=p pull distributions are signi�
antly enlarged.Figures 52b,d,f show the result with the radiation 
orre
tion applied in the�t. One 
an see that the tails in the parameter estimates of x and tx are far lesspronoun
ed, and the bias in the impa
t parameter and tra
k slope is 
onsider-ably redu
ed. Also the distortion of the mean re
onstru
ted inverse momentumÆ(1=p) � Æp=p2 is redu
ed from 1:3 �10�3 GeV�1 to 7 �10�4 GeV�1, and the stan-dard deviation (RMS width) of the parameter estimates is redu
ed by 11% (x),48% (tx) and 14% (Q=p), respe
tively. Moreover, the radiation 
orre
tion bringsthe RMS widths of the pull distributions 
lose to unity (�gs. 54b,d,f), whi
hindi
ates a reliable 
ovarian
e matrix estimate. The �t probability distributionis shown in �g. 55. It re
e
ts a non-�2 type distribution of the goodness-of-�t,whi
h is expe
ted sin
e the radiation of bremsstrahlung introdu
es a stronglynon-Gaussian random perturbation.The situation is di�erent if one attempts to extend the radiation 
orre
tion tothe full tra
king system in
luding regions 1 and 3 whi
h are outside of the mag-neti
 �eld, most notably the vertex dete
tor whose material 
auses a signi�
antenergy loss for ele
trons. Outside of the magneti
 �eld, however, the traje
tory85



no radiation 
orre
tion with radiation 
orre
tion
(xRC - xMC)/σ(x)

N

0

100

200

300

400

500

600

-5 -4 -3 -2 -1 0 1 2 3 4 5

(a)x
(xRC - xMC)/σ(x)

N

0

100

200

300

400

500

600

-5 -4 -3 -2 -1 0 1 2 3 4 5

(b)x
(tx

RC - tx
MC)/σ(tx)

N

0

100

200

300

400

500

600

-5 -4 -3 -2 -1 0 1 2 3 4 5

(
)tx
(tx

RC - tx
MC)/σ(tx)

N

0

100

200

300

400

500

600

-5 -4 -3 -2 -1 0 1 2 3 4 5

(d)tx
(1/pRC - 1/pMC)/σ(1/p)

N

0

100

200

300

400

500

600

700

800

900

1000

-3 -2 -1 0 1 2 3 4 5

(e)1p
(1/pRC - 1/pMC)/σ(1/p)

N

0

100

200

300

400

500

600

700

800

900

1000

-3 -2 -1 0 1 2 3 4 5

(f)1pFigure 54: Distribution of normalized parameter residuals (pulls) for ele
trons of100 GeV based on 5000 tra
ks, where x is the impa
t parameter in the bendingplane, tx = tan �x is the 
orresponding tra
k slope, and 1/p the inverse momen-tum. The tra
k �t was applied to all hits within the spe
trometer magnet (region2 in �g. 51). 86
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ker. The radiation 
orre
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king system, leading to the shift of the peaks des
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shape is not modi�ed by radiation, whi
h means that the �t will only apply theon-average 
orre
tion a

ording to the traversed radiation thi
kness. This 
anlead to bizarre results as seen in �g. 56, whi
h shows the distribution of the 1=pparameter residual multiplied by the momentum itself as well as the 
orrespond-ing pull distribution. The peak has moved away from zero to negative residualvalues, implying that ele
trons in the peak obtain an over
orre
ted energy value.In �g. 56b, the mean value of the pull is near zero, and the RMS width is 
loseto one, indi
ating that the 
ompensation works 
orre
tly in the statisti
al sense.For intuitive plausibility, however, it is relevant that a large fra
tion of measure-ments are in the immediate vi
inity of the quoted value. A test of this 
riterion isshown in table 3, whi
h summarizes the fra
tion of �ts with momentumdeviationof within 10% or 20% of the real value for the three 
orre
tion s
enarios. Withthe 10% 
riterion, the full spe
trometer 
orre
tion appears worse than even inthe un
orre
ted 
ase, while the 
orre
tion restri
ted to the magnet gives the bestdes
ription in the intuitive sense. In 
on
lusion, the magnet-based 
orre
tionappears to be provide the best 
ompromise, though this will in general have tobe evaluated in ea
h spe
i�
 appli
ation.5.4 Robust EstimationThe pre
eding se
tions have shown how intrinsi
ally non-Gaussian in
uen
es, asmultiple s
attering, or radiative energy loss of ele
trons, 
an 
ompli
ate the esti-mate of essential kinemati
 parameters and their interpretation. A fully adequatetreatment of profoundly non-Gaussian variables is in general beyond the 
apabil-ities of least squares estimation. Likelihood methods, on the other hand, are inprin
iple able to 
ope with random variables of any distribution, but often 
annotbe used with as eÆ
ient a ma
hinery, in parti
ular when it 
omes to 
omputationof error matri
es.During the last years, promising 
on
epts have been developed that permittreatment of non-Gaussian random variables, but still allow to use mu
h of thepowerful ma
hinery developed with least squares estimation. These methods are
alled robust estimation te
hniques. One very attra
tive idea is based on the fa
tthat non-Gaussian distributions 
an often be approximated as superposition ofa limited number of Gaussian distributions [81, 82℄. For example, a distributionresembling a Gaussian in the 
entre, but featuring long tails, as is 
ommon withmultiple s
attering, 
an be approximated by a sum of a narrow Gaussian dis-tribution and a wide one. If one performs two parallel least squares estimates,ea
h based on one of the Gaussians, the resulting parameter estimates, 
ombinedwith appropriate weights, will re
e
t the underlying statisti
s better than a singleestimate with a single Gaussian approximation. Thus, the o

uren
e of randomvariables in the tail of the distribution does not pull the estimate as far awayas it would with a traditional least square estimator, leading to a more robustbehaviour of the �t. 88



This is the basi
 idea of the Gaussian Sum Filter (GSF) [81, 82, 83, 84, 85℄,whi
h uses the Kalman �lter to in
orporate the individual Gaussian 
omponents.Upon ea
h o

urren
e of pro
ess noise, the distribution of whi
h is approximatedby a sum of N Gaussians, the �lter splits into N parallel bran
hes ea
h of whi
hobtains a 
orresponding weight. In a dete
tor geometry with many s
atteringelements, this will lead to a repeated multipli
ation of the number of linear �ltersto be evaluated. To avoid the explosion of the 
omputing e�ort, the number ofparallel 
omponents is limited by 
ollapsing or 
lustering 
omponents of similarshape. It has been shown that the algorithm 
an be designed su
h that the 
om-puting e�ort in
reases linearly with the maximumnumber of parallel 
omponents(M), and that M � 6� 8 already gives good results [84℄. In a similar way, radia-tive energy loss of ele
trons 
an be treated by approximating the radiated energydistribution by superposition of several Gaussians [86℄.6 Event Re
onstru
tionAfter parti
le tra
ks have been re
onstru
ted, they form the basis for the re
on-stru
tion of the whole event. This will ultimately in
lude parti
le identi�
ationbased on dE=dx, time-of-
ight, �Cerenkov or transition radiation, muon 
hambersand 
alorimetry, as well as kinemati
al re
onstru
tion of 
omposite parti
les andjets. This arti
le will restri
t itself to a brief dis
ussion of vertex re
onstru
tionand kinemati
al 
onstraints.6.1 Vertex Pattern Re
ognition
B−

B+

Primary 
vertexFigure 57: S
hemati
 view of the event stru
ture in an intera
tion of the typee+e� ! B+B� +XThe vertex is an essential element of the spa
e-time stru
ture of an intera
-tion. Verti
es indi
ate either the lo
ation where an intera
tion has taken pla
e,for example the primary intera
tion that is the ultimate origin of all emergingparti
les, or the pla
e where an unstable parti
le has de
ayed. This is illustrated89



in �g. 57, whi
h s
hemati
ally sket
hes the �nal state of an intera
tion with as-so
iated produ
tion of two beauty mesons, as it 
an o

ur for example at a highenergy e+e� 
ollider. The beauty hadrons, here a B+ and a B�, are produ
edtogether with a

ompanying 
harged parti
les at the intera
tion point, travel in-visibly for some distan
e that is, on average, determined by their lifetime andmomentum, whereupon they de
ay into daughter parti
les. The 
harged tra
ks
oming from these de
ays 
an be used to re
onstru
t the de
ay lo
ations of the Bmesons as se
ondary verti
es7. The other tra
ks, together with the re
onstru
tedB mesons form the primary vertex, whi
h indi
ates the intera
tion point.
n = 0 n = 1

n = 2 n = 3

Beam spot

Figure 58: Illustration of the iterative 
onstru
tion of a (primary) vertex, wheren is the number of tra
ks used to de�ne the vertex in ea
h step. The shadedarea indi
ates the 
ovarian
e ellipse of the proje
ted vertex after ea
h step. Thedashed line indi
ates an outlier tra
k.In many pra
ti
al appli
ations, the vertex is 
onstru
ted by an iterative pro-
edure as it is illustrated in �g. 58. In most 
ases, some a-priori knowledge aboutthe vertex position exists, for example the shape of the beam spot, in whi
h in-tera
tions o

ur in the �rst pla
e. Then a �rst tra
k is sele
ted as a vertex seed,whi
h already narrows down the 
ovarian
e ellipsoid in two dimensions. Whena se
ond suitable tra
k is added, the vertex is already 
losely de�ned in all 
o-ordinates. This provides strong reje
tion power against o�-vertex parti
les when7We negle
t here the 
ompli
ation that the B meson is likely to de
ay to a �nal state witha 
harmed parti
le whi
h again has a non-negligible lifetime.90



adding more tra
ks.As in the tra
k pattern re
ognition 
ase, the danger lies in the dependen
eon the starting point. It is therefore ne
essary to use iterative 
riteria whi
hensure that the tra
k forming the vertex seed is well 
hosen, and even then itmust be possible to s
rutinize the tra
k ensemble of a vertex, to remove tra
ksthat have turned out to be o� the mark, and to re
onne
t tra
ks that had beendis
arded at an earlier stage of the 
onstru
tion. The vertex algorithm used inthe ZEUS experiment [87℄, whi
h internally uses the �tting methods of [88℄ mayserve as an example: it uses the proton beam line as a soft 
onstraint, and thenprodu
es a set of all tra
k pairs that would be 
ompatible with a 
ommon vertextogether with the beam line 
onstraint within a suitable �2 margin. The tra
kpairs are then ordered a

ording to their degree of 
ompatibility with other tra
kpairs, de�ned by the 
riterion above. The tra
k pair of highest 
ompatibilityforms then the �rst vertex seed to be used, though also other tra
k pairs of high
ompatibility level are tried, and in the end the best set is 
hosen based on a
riterion of number of tra
ks and total �2. Other approa
hes start by 
onne
tingall tra
ks to a di�use master vertex, whi
h is then su

essively split into verti
es ofsmaller multipli
ities and isolated tra
ks. A systemati
 investigation of di�erentmethods for vertex re
onstru
tion in the 
ontext of the CMS experiment 
an befound in [89℄.An entirely di�erent approa
h is pursued in the topologi
al vertex �ndingalgorithm [90℄ developed for the vertex dete
tor of the SLD experiment [17℄.This method assigns a Gaussian tube around ea
h tra
k extrapolation to indi
atethe likelihood of an assigned vertex on a single tra
k basis. The Gaussian tubesof all tra
ks are then 
ombined to �nd points with maximum probability of avertex. This method resembles the Fuzzy Radon Transform for tra
ks dis
ussed inse
tion 3.2. The sear
h for maxima is then performed by sophisti
ated 
lusteringalgorithms. A parti
ularly intriguing feature is the eÆ
ient resolution of heavy
avour 
as
ade de
ays.Dire
t vertex sear
h by Hough transform is possible in 
ases where the vertexlo
ation is already strongly 
onstrained in some 
oordinates, for example throughthe shape of a wire target [91℄.6.2 Vertex FittingThe least-squares prin
iple 
an also be readily applied for vertex �tting [92, 93,94℄. The parameters of the tra
ks ~p1 : : : ~pn at a given referen
e surfa
e plus thea-priori knowledge of the vertex are the input, and the 
al
ulated vertex positiontogether with the redu
ed tra
k parameters of ea
h parti
le, whi
h 
ontain onlydire
tional and momentum information at the 
ommon vertex, are the output.A general property of vertex �tting is the fa
t that, unlike tra
k �tting, the �tis always non-linear, sin
e even with straight-line tra
ks the extrapolation to thevertex introdu
es a 
oupling between positional and dire
tional parameters.91



As noted earlier, already vertex pattern re
ognition requires in
remental, pro-gressive �tting, with tra
ks added or removed one by one. It is therefore notsurprising that also for vertex �tting, the Kalman �lter is in many 
ases themethod of 
hoi
e [95℄. In the vertex �tting 
ase, the transport be
omes trivial,and also pro
ess noise does not have an equivalent. The �lter step adds anothertra
k to the vertex and updates the vertex position as well as the redu
ed tra
kparameters. It is very easy to remove an already �ltered tra
k from the vertex
andidate, sin
e in the �lter equations, the inverse 
ovarian
e matrix of the tra
ka
ts as the weight of the tra
k information, and setting its sign to negative willsubtra
t the tra
k from the vertex �t. We prefer not to display the Kalman �lterequations for vertex �tting here expli
itly, but refer to the literature [27℄.6.3 Kinemati
al ConstraintsPattern re
ognition deals with merging of measured information with a-prioriknowledge. For example, in tra
k pattern re
ognition the tra
k model enhan
esthe measurement power of ea
h individual hit, while vertex assignment improvesthe spatial information of ea
h asso
iated tra
k. In similar fashion, a-priori knowl-edge 
an be used in many 
ases in the further re
onstru
tion of the event. A typ-i
al example is the beam energy 
onstraint: in e+e� b-physi
s experiments whi
hoperate at the �(4S) energy, as BaBar, BELLE, CLEO and the earlier ARGUS,the B mesons are produ
ed in an ex
lusive de
ay of the �(4S) resonan
e, and theenergy of the B mesons is pre
isely the beam energy, whi
h is known to a mu
hbetter pre
ision than the B meson energy re
onstru
ted from its measured de
ayparti
les. Imposing the beam energy 
onstraint improves then also the resolutionof the B 
andidate mass; this method has been a vital tool in the investigationof ex
lusive B de
ays (see for example [96℄).Also masses of intermediate parti
les in a de
ay 
hain, for example B0 !D�+�+����, D�+ ! D0�+, D0 ! K��+ 
an be used to imply kinemati
al
onstraints. In this 
ase, theD0 is a rather stable parti
le whose width is too smallto resolve by dire
t kinemati
al re
onstru
tion in a spe
trometer. Therefore,the established knowledge of the D0 mass [97℄ 
an be imposed as a kinemati
al
onstraint. For example, if ~� denotes the re
onstru
ted parameters of theK� and�+ parti
les and V� their 
ovarian
e matrix, the re
onstru
ted D0 mass will bea fun
tion M(�) of these parameters, and introdu
tion of a Lagrange multiplier� leads to the expressionX2 = (~�
 � ~�)TV �1� (~�
 � ~�) + 2�(M( ~�
)�mD0) (55)whi
h has to be minimized with respe
t to the 
onstrained parameters ~�
. If thedaughter parti
les form a se
ondary vertex, its parameters 
an be optimized aswell. The D0 mass 
onstraint leads in general to a 
onsiderable improvement ofthe D� mass peak, whi
h be
omes mu
h narrower than the experimental resolu-tion. In 
omparison to the popular mass di�eren
e method, whi
h bene�ts from92



the 
orrelation in the errors of the re
onstru
ted D and D� masses, this approa
hhas the advantage that the result 
an be used in turn to re
onstru
t more 
om-plex de
ay 
hains of angular ex
itations in the D systems, or of B hadrons. In anext step of B re
onstru
tion, even the tabulated D� mass 
ould be imposed asanother independent 
onstraint.7 Con
luding RemarksThe variety of pattern re
ognition tasks in parti
le physi
s tra
king dete
torshas lead to a multitude of di�erent approa
hes. Several of the global methods,as template mat
hing or Hough transform/histogramming play an un
hallengedrôle in spe
ial appli
ations, while Hop�eld networks and deformable templatesfrequently appear to be either limited to favourable s
enarios (e.g. with 3Dmeasurements and moderate o

upan
y), or need an ex
ellent initialization or
ombination with a tra
k following algorithm to be
ome appli
able at produ
tions
ale. In the 
ase of elasti
 arms, also the 
hoi
e of an eÆ
ient minimizationte
hnique is essential. Lo
al methods of pattern re
ognition are still going strong,with the Kalman �lter as the mathemati
al ba
kbone, and a

ompanied by subtlearbitration te
hniques they 
an 
ope well even with high tra
k densities andsizable amounts of material in the tra
king area. The new generation of highenergy hadron 
olliders, in parti
ular the LHC with huge tra
k densities in piled-up events will be
ome an important ben
hmark for algorithm performan
e. It 
anbe expe
ted that sophisti
ated 
ombination of both global and lo
al approa
hesin di�erent passes of the pro
edure, mat
hed to the parti
ular layout of ea
hexperiment, will be
ome a promising path to a
hieving the best performan
e.The in
reasing abundan
e of material in radiation hard dete
tors poses alsoadditional 
hallenges to tra
k �tting. While the 
orre
tion of multiple s
atter-ing with the Kalman �lter has be
ome the a

epted general standard, Moli�eres
attering tails require a 
areful interpretation of the results. Ele
tron energy re-
onstru
tion with sizable radiative energy loss is a major 
hallenge and requiresvery 
areful treatment, and be
omes a rewarding subje
t for robust methods be-yond least square estimation. Also vertex pattern re
ognition 
an be expe
tedto re
eive in
reasing attention in very 
omplex event topologies at LHC, wherereliable tagging of heavy 
avour is a 
ru
ial prerequisite to s
ienti�
 dis
overy.A
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