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1 IntrodutionThe inlusive weak radiative �B-meson deay is known to be a sensitive probe of new physis.Its branhing ratio has been measured by CLEO [1℄, ALEPH [2℄, BELLE [3℄ and BABAR [4℄.The experimental world average [5℄BR[ �B ! Xs; (E > 120mb)℄ = (3:34 � 0:38)� 10�4 (1.1)agrees with the Standard Model (SM) preditions [6,7℄BR[ �B ! Xs; (E > 1:6 GeV)℄ = (3:57 � 0:30) � 10�4; (1.2)BR[ �B ! Xs; (E > 120mb)℄ ' 3:70 � 10�4: (1.3)Suh a good agreement implies onstraints on a variety of extensions of the SM, inludingthe Minimal Supersymmetri Standard Model with superpartner masses ranging up to severalhundreds GeV. These onstraints are expeted to be ruial for identi�ation of possible newphysis signals at the Tevatron, LHC and other high-energy olliders. However, any futureinrease of their power depends on whether the theoretial alulations manage to follow theimproving auray of the experimental determinations of BR[ �B ! Xs℄.As pointed out more than two years ago [6℄, the main theoretial unertainty in the SMpredition for BR[ �B ! Xs℄ originates from the perturbative alulation of the b! s ampli-tude. It is manifest when one onsiders the harm-quark mass renormalization ambiguity [6℄in the two-loop, Next-to-Leading Order (NLO) QCD orretions to this amplitude [8, 7℄. Theonly method for removing this ambiguity is alulating the three-loop, Next-to-Next-to-LeadingOrder (NNLO) QCD orretions. A sample NNLO diagram is shown in Fig. 1.su; ; tb W Figure 1: One of the O(103) three-loop diagrams that we have alulated.Sine mb � MW , suh diagrams are most onveniently alulated using an e�etive �eldtheory language. The eletroweak-sale ontributions are enoded into the mathing onditionsfor the Wilson oeÆients, while the b-quark-sale ontributions are seen as matrix elementsof several avour-hanging operators. Large logarithms ln(M2W=m2b) are resummed using thee�etive theory Renormalization Group Equations (RGE) that result from the operator mixingunder renormalization. 1



The mathing onditions and the matrix elements yield a renormalization-sheme indepen-dent ontribution to the amplitude only after ombining them together. Thus, both of themneed to be evaluated to the NNLO. It is impossible to remove the harm-quark mass am-biguity by alulating the matrix elements only, even though the mathing onditions arem-independent.In this paper, we present our alulation of the three-loop mathing onditions for the dipoleoperators (�sL���bR)F�� and (�sL���T abR)Ga�� . All the other mathing onditions that are rel-evant for b ! s at the NNLO originate from two-loop diagrams only, and were alulatedseveral years ago [9℄. Thus, our work ompletes the �rst (mathing) step of the full O(�2s)analysis of the onsidered proess.The long history of the lower-order (O(1) and O(�s)) analyses has been summarized inRef. [10℄. As far as the NNLO alulations are onerned, fermion-loop ontributions to thethree-loop matrix element of the urrent-urrent operator (�s)V�A(�b)V�A are already known[11℄. Three-loop anomalous dimensions of all the four-quark operators will soon be published[12℄. Work at the remaining anomalous dimensions and matrix elements is in progress.In our present three-loop mathing omputation, we follow the proedure outlined in Ref. [9℄.All the neessary diagrams are evaluated o�-shell, after expanding them in external momenta.The spurious infrared divergenes generated by the expansion are regulated dimensionally.They anel out in the mathing equation, i.e. in the di�erene between the full SM and thee�etive theory o�-shell amplitudes.The salar three-loop integrals are evaluated with the help of the pakage MATAD [13℄ designedfor alulating vauum diagrams. The fat that MATAD an deal with a single non-vanishingmass only is not an obstale against taking into aount the atually di�erent masses of theW boson and the top quark. Expansions starting from mt = MW and mt � MW allow us toaurately determine the three-loop mathing onditions for the physial values of mt and MW .Our paper is organized as follows. In Setion 2, we introdue the e�etive theory and giveall the neessary renormalization onstants. In Setion 3, the unrenormalized one-, two- andthree-loop SM amplitudes for b ! s and b ! sg are presented. Setion 4 is devoted to adisussion of the SM ounterterms. The mathing proedure is desribed in Setion 5. Expliitexpressions for the resulting Wilson oeÆients are given in Setion 6. We onlude in Setion 7.Appendix A ontains exat expressions for the oeÆients of the expansions in (1 �M2W=m2t )and M2W=m2t .2 The e�etive theorySine our approah follows Ref. [9℄ very losely, we shall not repeat all the details given there.While the present artile is self-ontained as far as the notation is onerned, Setions 2 and 5of Ref. [9℄ are referred to for pedagogial explanations.The e�etive theory that we onsider arises from the SM after deoupling of the heavyeletroweak bosons and the top quark. Its o�-shell Lagrangian readsLe� = LQCD�QED(u; d; s; ; b) + 4GFp2 Xi;j hV �sVbCi + V �tsVtbC tiiZijPj ; (2.1)2



where GF is the Fermi onstant and V stands for the Cabibbo-Kobayashi-Maskawa (CKM)matrix. The operators Pj an be found in Eqs. (2), (73) and (101) of Ref. [9℄.1 The ones thatare relevant for our present mathing omputation readP1 = (�sL�T aL)(�L�T abL);P2 = (�sL�L)(�L�bL);P4 = (�sL�T abL) Xq=u;d;s;;b(�q�T aq);P7 = Z�2g embg2 (�sL���bR)F��;P8 = Z�2g mbg (�sL���T abR)Ga�� ;P11 = (�sL���T aL)(�L���T abL)� 16P1: (2.2)Their Wilson oeÆients an be perturbatively expanded as followsCQi = CQ(0)i + e�sCQ(1)i + e�2sCQ(2)i + e�3sCQ(3)i +O(e�4s ); Q = ; t : (2.3)where e�s = �s=(4�) = g2=(4�)2 and CQ(n) originate from n-loop mathing onditions. Weneglet theO(�em) orretions to the r.h.s. of the above equation as well as additional operatorsthat arise at higher orders in the eletroweak interations.The goal of the present paper is �nding CQ(3)7 and CQ(3)8 at the renormalization sale�0 � (mt or MW ). As we shall see, it is onvenient to onsider di�erent sales �0 for Q = and Q = t. This is the reason why we refrain from applying unitarity of the CKM matrixthroughout the paper.The renormalization onstants Zij that enter Eq. (2.1) are all known to suÆiently highorders from previous alulations [14, 15℄. The ones that are neessary here read (in the MSsheme with D = 4 � 2�)Z17 = � 58243� e�2s +O(e�3s ); Z18 = 167648� e�2s +O(e�3s );Z27 = 11681� e�2s + �� 238482187�2 + 133902187�� e�3s +O(e�4s ); Z28 = 1927� e�2s + �� 72491458�2 + 57495832�� e�3s +O(e�4s );Z47 = � 50243� e�2s +O(e�3s ); Z48 = �1409648� e�2s +O(e�3s );Z(11)7 = 1096243 e�2s +O(e�3s ); Z(11)8 = � 761162 e�2s +O(e�3s );Z77 = 1� 73� e�s + � 353�2 + 65027�� e�2s +O(e�3s ); Z78 = 0;Z87 = �169� e�s + �1049�2 � 54881�� e�2s +O(e�3s ); Z88 = 1� 3� e�s + �16�2 + 1975108�� e�2s +O(e�3s ):(2.4)Their overall signs orrespond to the following sign onvention inside the ovariant derivativeating on a quark �eld  :D� = ��� + igGa�T a + ieQ A�� : (2.5)1For simpliity, we set Vub to zero here, whih makes irrelevant the operators P uj from Ref. [9℄. The operatorsP j from that paper are denoted by Pj here. Our �nal results are insensitive to whether Vub vanishes or not.3



For ompleteness, one should also mention the MS renormalization onstant for the QCD gaugeoupling in the �ve-avour e�etive theory (gbare = Zgg)Zg = 1 � 236� e�s + � 52924�2 � 293�� e�2s +O(e�3s ): (2.6)Following Ref. [9℄, we ignore the quark-mass and wave-funtion renormalization onstants in thee�etive theory2 beause their e�ets anel anyway in the mathing ondition with analogousontributions on the full SM side. Only the top-quark ontributions to these renormalizationonstants will be inluded in the SM ounterterms (see Setion 4).The oeÆients C t(n)k vanish for k = 1; 2; 11. At the tree-level, only C(0)(�0) = �1 isdi�erent from zero. All the CQ(1)i (�0) and CQ(2)i (�0) were found in Ref. [9℄ up to O(�) andO(1), respetively. In partiular, C(1)2 (�0) = 0 andC(1)1 (�0) = �15� 6 ln �20M2W + � �392 � �22 � 15 ln �20M2W � 3 ln2 �20M2W !+O(�2); (2.7)C(1)4 (�0) = 79 � 23 ln �20M2W + � 7754 � �218 + 79 ln �20M2W � 13 ln2 �20M2W !+O(�2); (2.8)C(1)11 (�0) = �32 � ln �20M2W +O(�); (2.9)C t(1)4 (�0) =  1 + � ln �20m2t ! �9x2 + 16x � 46(x� 1)4 x� � 1� + 7x3 + 21x2 � 42x � 436(x� 1)3 !+ � �45x2 + 38x + 2836(x � 1)4 lnx + 23x3 + 93x2 + 66x � 308216(x � 1)3 !+O(�2); (2.10)wherex = m2t (�0)M2W (2.11)has been introdued. For later onveniene we also de�ne the variablesw =  1� M2Wm2t (�0)! ; z = M2Wm2t (�0) ; y = MWmt(�0) : (2.12)In the following, the MS-renormalized top-quark mass mt(�0) will often be denoted by just mt.For our present purpose, CQ(1)7;8 and CQ(2)7;8 are needed up to O(�2) and O(�), respetively. Inpratie, this implies a neessity or repeating the one- and two-loop mathing omputations forthese oeÆients from srath. We shall desribe this alulation together with the three-loopone in the following three setions.2although their non-vanishing values were relevant in the alulations of Zij (2.4) and Zg (2.6)4



   Q Q W� W� Q Q �� ��b W� s b Q s b �� s b Q sFigure 2: One-loop 1PI diagrams for b ! s in the SM. There is no W��� oupling in thebakground �eld gauge.3 The unrenormalized SM amplitudesWe have to onsider all the one-, two- and three-loop one-partile-irreduible (1PI) diagramsontributing to the proesses b! s and b! sg. The one-loop b! s diagrams are shown inFig. 2. Higher-order diagrams are found by adding internal gluons together with loop orretionson their propagators.We use the 't Hooft-Feynman version of the bakground �eld gauge for the eletroweakinterations and QCD. Before performing the loop integration, the Feynman integrands areTaylor-expanded up to seond order in the (o�-shell) external momenta, and to the �rst or-der in the b-quark mass. Thus, e�etively, the only massive partiles in our alulation arethe top quark, the W boson and the harged pseudogoldstone salar �. The amputated 1PIb! s Green funtion an be ast into the following form:i4GFp2 ePR(4�)2 24V �sVb 13Xj=1Y j (x)Sj + V �tsVtb 13Xj=1Y tj (x)Sj35 ; (3.1)with PR = (1 + 5)=2,Y j (x) = Xn�1An� e�n�1s Y (n)j (x) ; (3.2)Y tj (x) = Xn�1An�t e�n�1s Y t(n)j (x) ; (3.3)A = 4��20M2W e� and At = 4��20m2t e�, where  is the Euler onstant. The symbols Sj stand for dif-ferent Dira strutures that depend on the inoming b-quark momentum p and on the outgoingphoton momentum kSj = ��p= k= ; � (p � k); �p2; �k2; p= k�; p= p�; k= p�; k= k�;mbk= �; mb�k= ; mbp= �; mb�p= ; M2W ��j : (3.4)The �rst two terms in the expansion of Y j (3.2) are x-independent, but the third (three-loop)and higher terms do depend on x.By analogy, the b! sg Green funtion readsi4GFp2 gPRT a(4�)2 8<:V �sVb 13Xj=1Gj(x)Sj + V �tsVtb 13Xj=1Gtj(x)Sj9=; ; (3.5)5



with Gj(x) = Xn�1An� e�n�1s G(n)j (x) ; (3.6)Gtj(x) = Xn�1An�t e�n�1s Gt(n)j (x) : (3.7)As shown in Refs. [16, 9℄, only the following linear ombinations of Y Q(n)j and GQ(n)j aresuÆient for �nding the oeÆients C7(�0) and C8(�0):CQ(n)7;bare � 14Y Q(n)2 + Y Q(n)10 ; (3.8)CQ(n)8;bare � 14GQ(n)2 +GQ(n)10 : (3.9)The alulation of CQ(2)k;bare up to O(�) requires supplementing Eqs. (57) and (58) of Ref. [9℄by higher orders in �, whih yields3I(2)n1n2n3 ====m2=0 (�1)N+1 (1 + 2�)N�5(1 + �)n2+n3�3(1 � �)1�n2(1� �)1�n3(n1 � 1)!(n2 � 1)!(n3 � 1)!(1 � �) �(1 + 2�)�(1 � �)�(1 + �) (3.10)andI(2)111 = 12(1 � �)(1� 2�) ��1 + r�2 + 2� r ln r + (1� 2r) ln2 r + 2(1� r)Li2 �1 � 1r�+2�(1� r) �Li3 (1� r)� Li3 �1� 1r�� Li2 �1 � 1r� ln r�+ ��r � 23� ln3 r +O(�2)�; (3.11)for the generi two-loop integralI(2)n1n2n3 = (m21)N�4+2��4�2� �(1 + �)2 Z d4�2�q1 d4�2�q2(q21 �m21)n1(q22 �m22)n2 [(q1 � q2)2℄n3 ; (3.12)where r = m22=m21, N = n1 + n2 + n3 and (a)n = �(a + n)=�(n). Otherwise, the alulationproeeds preisely as desribed in Setion 5 of that paper. The unrenormalized one- and two-loop results readC(1)7;bare = 2336 + 145�216 + 875�21296 + 23�2�2432 +O(�3); (3.13)C(1)8;bare = 13 + 11�18 + 85�2108 + �2�236 +O(�3); (3.14)C(2)7;bare = 11281� � 107243 � 4147�1458 + 56��281 +O(�2); (3.15)C(2)8;bare = 2327� + 833324 + 13429�1944 + 23��254 +O(�2); (3.16)C t(1)7;bare = �1 + �2�212 � �3x3�2x24(x�1)4 x��1� + 22x3�153x2+159x�4672(x�1)3 �3All the other equations in Setion 5.1 of Ref. [9℄ are valid to all orders in �.6



+� ��18x3+150x2�157x+4672(x�1)4 x��1� + 122x3�933x2+975x�290432(x�1)3 �+�2 ��108x3+918x2�977x+290432(x�1)4 lnx+ 694x3�5619x2+5937x�17502592(x�1)3 �+O(�3); (3.17)C t(1)8;bare = �1 + �2�212 � � �3x24(x�1)4 x��1� + 5x3�9x2+30x�824(x�1)3 �+� ��15x2�14x+824(x�1)4 x��1� + 13x3+15x2+186x�88144(x�1)3 �+�2 ��81x2�130x+88144(x�1)4 lnx+ 35x3+273x2+1110x�680864(x�1)3 �+O(�3); (3.18)C t(2)7;bare = 1� �1 + �2�26 � ��6x4�46x3+28x23(x�1)5 x��1� + 34x4+101x3+402x2�397x+7627(x�1)4 �+�16x4�122x3+80x2�8x9(x�1)4 H(x; �) + �333x4�2529x3+688x2+778x�22481(x�1)5 x��1�+�220x4+12952x3�9882x2+2407x�397243(x�1)4 + � �146x4�4289x3+2736x2+14x�22481(x�1)4 Li2 �1� 1x�+�879x4�50319x3+35810x2�5884x+428486(x�1)5 lnx+ �4381x4+148252x3�89391x2+8797x�7451458(x�1)4 i+O(�2); (3.19)C t(2)8;bare = 1� �1 + �2�26 � �17x3+31x22(x�1)5 x��1� + 35x4�170x3�447x2�338x+5636(x�1)4 �+�4x4+40x3+41x2+x6(x�1)4 H(x; �) + �144x4+4707x3+8887x2�122x�368216(x�1)5 x��1�+�1367x4�9646x3�76869x2+7442x+26801296(x�1)4 + � �641x4+184x3+8001x2�220x�368216(x�1)4 Li2 �1� 1x�+2982x4+30843x3+147437x2�7846x�66641296(x�1)5 lnx+ �22703x4�56674x3�934701x2�46090x+596567776(x�1)4 i+O(�2); (3.20)whereH(x; �) = Li2 �1 � 1x�+ � hLi3 (1� x)� Li3 �1 � 1x�+ Li2 �1 � 1x� lnx+ 16 ln3 xi : (3.21)In addition to the bare oeÆients, we shall also need those parts of C t(1)i;bare that originate fromthe mb-dependent Dira struture S10, as they play a separate role when mb gets renormalized.They readB7 � Y t(1)10 = �1 + �2�212 � ��3x2+2x6(x�1)3 x��1� + 5x2�3x12(x�1)2�+ � ��2x2+x4(x�1)3 x��1� + 11x2�5x24(x�1)2�+�2 ��12x2+5x24(x�1)3 lnx+ 23x2�9x48(x�1)2�+O(�3); (3.22)B8 � Gt(1)10 = �1 + �2�212 � � x2(x�1)3 x��1� + x2�3x4(x�1)2�+ � � 3x4(x�1)3 x��1� + x2�7x8(x�1)2�+�2 � 7x8(x�1)3 lnx+ x2�15x16(x�1)2�+O(�3): (3.23)The renormalization of mb will not matter in the harm setor beause Y (1)10 = G(1)10 = 0.Let us now turn to the main purpose of our paper, i.e. to the three-loop alulation. Oneof the O(103) diagrams that we have alulated at this level is shown in Fig. 1. Obviously,when the virtual top quark is present in the open fermion line, we have to deal with three-loopvauum integrals involving two mass sales, mt and MW . However, suh double-sale integrals7



are enountered in the harm-quark setor, too, when losed top-quark loops arise on the virtualgluon lines.At present, omplete three-loop algorithms exist for vauum integrals involving only a singlemass sale. We have redued our alulation to suh integrals by performing expansions aroundthe point mt =MW and for mt�MW . In the latter ase, the method of asymptoti expansionsof Feynman integrals has been applied [17℄. At the physial point where MW=mt � 0:5, bothexpansions work reasonably well (see Setion 6).Two di�erent approahes have been used for the alulation of the three-loop diagrams.The �rst one is based on a ompletely automated set-up where the diagrams are generated byQGRAF [18℄, further proessed with q2e [19℄ and exp [20℄, and �nally evaluated and expanded in� with the help of the pakage MATAD [13℄ written in Form [21℄. MATAD is designed to omputesingle-sale vauum integrals up to three loops. The individual pakages work hand in hand,and thus no additional manipulation from outside is neessary. Moreover, all the auxiliary �les,e.g. make-�les to ontrol the alulation or �les to sum the individual diagrams, are generatedautomatially.The program exp is designed to automatially apply the rules of asymptoti expansions in thelimit of large external momenta or masses. Thus, its output ruially depends on the limit weonsider. For the expansion around mt =MW , the asymptoti expansion redues to the usualTaylor expansion in powers of w � (1�M2W=m2t ) and thus exp essentially rewrites the outputof q2e to a format suitable for MATAD. However, for mt �MW , next to the Taylor expansion inz = M2W=m2t , more diagrams expanded in various small quantities ontribute aording to therules of asymptoti expansions. The pakage exp provides a proper input for MATAD whih thenperforms the expansions up to the required depth, and omputes the resulting salar vauumintegrals. The mass sale of the latter is either given by mt or MW .An important element of the alulation are the so-alled projetion operations that pik onlythe two Dira strutures we need (see Eqs. (3.8) and (3.9)), and thus bypass the time-onsumingtensor algebra.Using this method, we evaluated the expansions in z and w up to orders z4 and w6, respe-tively. Furthermore, it was possible to ompute the �rst few expansion terms for general gaugeparameter �, in order to hek that it drops out in the sum of all bare three-loop diagrams.This imposes a strong hek on the orretness of our results.In the seond approah, MATAD was also used for three-loop salar integrals involving a singlemass sale. However, the diagrams were generated using FeynArts [22℄. The remaining part ofthe alulation was performed with the help of self-written programs, largely overlapping withthose used several years ago for the alulation of three-loop anomalous dimension matries [14℄.No projetion operations were used, and all the Dira strutures (exept for the ones quadratiin k) appeared in the results, whih allowed for performing several onsisteny heks. Thisapproah was obviously muh slower, and was �nally brought through thanks to the use of theZ-Box omputer4 at the University of Z�urih. Only the expansion around mt =MW (up to w8)was alulated using this method.Although our results for the three-loop diagrams are known in terms of expansions only,4http://krone.physik.unizh.h/�stadel/zBox 8
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we are able to determine the exat x-dependene of their pole parts by using the mathingequation disussed in Setion 5. Of ourse, we have veri�ed that these pole parts have preiselythe same expansions in z and w as found from the diret alulation up to z4 and w8.Our results for CQ(3)7;bare and CQ(3)8;bare take the following form:C(3)7;bare = 107982187 �2 + 1� ��215162 � 8405x + 224243 lnx�+ f 7(x); (3.24)C(3)8;bare = 46751458 �2 + 1� �11783648 � 1692160x + 4681 lnx�+ f 8(x); (3.25)C t(3)7;bare = pt7(x) + f t7(x); (3.26)C t(3)8;bare = pt8(x) + f t8(x); (3.27)where the pole parts in the top setor readpt7(x) = 1�2 h�57x5+634x4+1911x3�1044x2�4x9(x�1)6 �lnx+ �2 ln2 x�+380x5�1099x4�8521x3�4385x2+5797x�81254(x�1)5 i+1� ��560x5+190x4+12410x3�6200x2+496x27(x�1)5 Li2 �1 � 1x�+�35586x5+223524x4+1345261x3�604386x2�55425x+208521458(x�1)6 lnx+�325132x6+7070681x5�72622435x4+48723685x3�11218745x2+1543882x+86443740x(x�1)5 i ; (3.28)pt8(x) = 1�2 h�199x4�3018x3�2535x2�8x12(x�1)6 �lnx+ �2 ln2 x�+2054x5�11080x4+52535x3+105505x2+26875x�3089360(x�1)5 i+1� ��140x5+964x4�4813x3�3440x2�59x18(x�1)5 Li2 �1 � 1x�+�75843x5�11835x4�9946790x3�8078850x2+114225x+1142939720(x�1)6 lnx+�5561837x6+4392955x5+397608280x4+760910570x3�79703785x2�4603813x+45630583200x(x�1)5 i : (3.29)For the UV- and IR-�nite funtions fQk (x), we write the expansions as follows:fQk (x) = Xn;m akQnm lnm xxn � Xn;m akQnm (�1)mzn lnm z ; (m � 3); (3.30)fQk (x) = Xn bkQn �1� 1x�n � Xn bkQn wn : (3.31)The values of akQnm and bkQn that we have found are listed in Appendix A.9



4 The SM ountertermsThe renormalization sheme that we apply on the SM side is hosen in suh a way that valuesof the renormalized �s, the light-quark wave-funtions and masses overlap with their MS oun-terparts in the �ve-avour e�etive theory. Thus, �s means �(5)s (�0) throughout the paper. Theone-loop renormalization onstant of the QCD gauge oupling in the SM reads (f. Eq. (2.6))ZSMg = 1 + e�s� ��236 + 13N��+O(e�2s ): (4.1)Here, N� parametrizes the one-loop threshold orretion that arises in the relation between �(6)sand �(5)s , i.e. when the top quark is deoupled from �s. A olletion of expliit expressions forsuh orretions (also alled \deoupling onstants") up to three loops an be found in Ref. [23℄.The valueN� =  4��20m2t !� �(1 + �) (4.2)is found (exatly in �) from the requirement that the top-quark loop ontribution to the o�-shellbakground gluon propagator with momentum q is renormalized away, up to e�ets of orderq2=m2t that math onto higher-dimensional operators in the e�etive theory.The same requirement applied to the light-quark propagators at two loops leads to thefollowing expressions for the renormalization onstants of their wave-funtions and masses( bare = Z  , mbare = Zmm)�Z � ZSM � Ze� : theory = e�2sN2� � 23� � 59�+O(e�3s ; �); (4.3)�Zm � ZSMm � Ze� : theorym = e�2sN2� �� 43�2 + 109� � 8927�+O(e�3s ; �): (4.4)In our alulation, the latter renormalization onstant matters for the b-quark only, beause weinlude linear terms in mb, while all the other light partiles are treated as massless.The di�erenes �Z and �Zm are everything we need to know about the renormalizationof the light-quark wave funtions and masses. Sine the wave-funtion renormalization mattersfor external �elds only, the remaining parts of the onsidered renormalization onstants anelout in the mathing equation, i.e. in the di�erene between the full SM and the e�etive theoryo�-shell amplitudes. It is worth notiing that sine �Z and �Zm arise at O(e�2s ) only, theyhad no e�et on the two-loop mathing omputation in Ref. [9℄.As far as the top-quark mass is onerned, we renormalize it in the MS sheme, at the sale�0, in the six-avour QCD. The orresponding renormalization onstant, when expressed interms of e�s � e�(5)s (�0), takes the following form (exatly in �)Zmt � 1 + e�sZ(1)mt + e�2sZ(2)mt +O(e�3s ) = 1 � 4� e�s + � 743�2 � 27� � 83�2N�� e�2s +O(e�3s ): (4.5)Two more QCD renormalization onstants need to be thought about in the ontext of ouralulation. The �rst of them is the external gluon wave-funtion renormalization onstant in10



the b ! sg ase. In the bakground �eld gauge, it just anels with the renormalization ofthe gauge oupling in the vertex where the external gluon is emitted.5 The seond one is therenormalization onstant of the QCD gauge-�xing parameter �. It plays no role either, beauseCQ(2)7;bare and CQ(2)8;bare are �-independent.6Last but not least, one needs to onsider possible eletroweak ounterterms. Sine we workat the leading order in the eletroweak interations, the only eletroweak ounterterms thatmay matter for us must have the �sb avour ontent. Their dimensionality annot exeed 4,and they must be invariant under the QCD and QED gauge transformations. These onditionsleave out only two possible eletroweak ounterterms: �sD= b and �sb. They originate from theavour-o�-diagonal renormalization of the quark wave-funtions and Yukawa matries. Sinewe refrain from applying unitarity of the CKM matrix (but set Vub to zero), we write theorresponding eletroweak ounterterm Lagrangian as follows:Lewounter = GF�p2 hV �sVbA� �s �iZ2;sbD= � Z0;sbmb� b + V �tsVtbA�t �s �iZ t2;sbD= � Z t0;sbmb� bi ; (4.6)with the fators A and At that have been de�ned below Eq. (3.3). The renormalizationonstants ZQ2;sb and ZQ0;sb are �xed by the requirement that the renormalized o�-shell light-quark propagators with momentum q remain avour-diagonal, up to e�ets of order q2=M2W thatmath onto higher-dimensional operators in the e�etive theory. A simple one-loop alulationgives Z2;sb = �2� 2�2 � � �(�); (4.7)Z0;sb = 0; (4.8)Z t2;sb = �(�) "�x2 � 1 + 2x2 + 3x� 22(x� 1)2 (x� � 1) + ��3x2 � x� 24(x � 1)+�2  4x2 � x+ 24(x� 1)2 lnx+ �7x2 � x� 28(x � 1) !+O(�3)# ; (4.9)Z t0;sb = x(x� � x)�(�)(1 � �)(x� 1) : (4.10)Higher-order (in e�s) ontributions to ZQ2;sb and ZQ0;sb are irrelevant to us, beause the oun-terterms (4.6) a�et our alulation only when inserted into two-loop diagrams ontainingtop-quark loops on the gluon lines. Otherwise, the loop integrals vanish in dimensional regu-larization after expanding them in external momenta, beause all the propagator denominatorsare massless. As far as the tree-level diagrams are onerned, they give no ontribution to therelevant strutures S2 and S10 in Eq. (3.4).5In the usual (non-bakground) 't Hooft-Feynman gauge, we would need to introdue, by analogy to Eqs. (4.3)and (4.4), � �ZgpZG� = e�2sN2� ��3=(4�2) + 5=(8�)� 89=48�+O(e�3s ; �).6Contrary to the bare two-loop Wilson oeÆients of the EOM-vanishing operators (Eq. (73) of Ref. [9℄).11



5 MathingWe are now ready to write down the mathing equation that follows from the requirementof equality of the e�etive theory and the full SM amputated 1PI Green funtions. The for-mer ones originate from tree-level diagrams only, beause all the loop integrals with masslessdenominators vanish in dimensional regularization, after expanding them in external momenta.For the oeÆients CQi (i = 7; 8), the mathing equation up to three loops takes the followingform:�Z2g e�s��1Xk CQk Zki = (1 + �Z ) 3Xn=1 e�n�1s ��ZSMg �2(n�1)An�QCQ(n)i;bare + ÆtQT (n)i �+ÆtQA�t�ZmBi + 1xA2�t A�Q e�2s �ZQ2;sbKi + ZQ0;sbRi�+O(e�3s ): (5.1)Non-vanishing ontributions on the l.h.s. arise for k = 1; 2; 4; 7; 8; 11 that we have onsideredin Setion 2. The e�et of mb-renormalization is ontained in the �ZmBi term, where Bi havebeen given in Eqs. (3.22) and (3.23).The quantities T (n)i originate from the top-quark mass renormalization. Replaing in thebare results mt by Zmtmt and Taylor-expanding in e�s, one �nds T (1)i = 0,T (2)i = 2A�tZ(1)mt  x ��x � �!C t(1)i;bare ; (5.2)T (3)i = A�t "2Z(2)mt  x ��x � �!+ �Z(1)mt �2  2x2 �2�x2 + (1 � 4�)x ��x + �+ 2�2!#C t(1)i;bare+2A2�t Z(1)mt  x ��x � 2�!C t(2)i;bare : (5.3)The expliit fators of � in the above equation are due to the fat that At depends on mt, too.The quantitiesKi andRi on the r.h.s. of Eq. (5.1) originate from two-loop b! s and b! sgdiagrams with insertions of the eletroweak ounterterm (4.6) and with losed top-quark loopson the gluon lines. We �ndK7 = � 8405 + 88 �6075 +O(�2); K8 = � 1692160 + 10333�64800 +O(�2);R7 = O(�2); R8 = 140� + 1931200 � 8441�36000 + �2�240 +O(�2): (5.4)It is interesting to notie that the mb�sb ounterterm from Eq. (4.6) is irrelevant for C t(3)7(beause R7 = O(�2)) and for the harm setor (beause Z0;sb = 0). Thus, it matters for C t(3)8only.At this point, all the ingredients of the r.h.s. of the Eq. (5.1) have been expliitly spei�ed.As far as the l.h.s. of this equation is onerned, Setion 2 provides us with all the neessaryrenormalization onstants and Wilson oeÆients, exept for CQ7 and CQ8 . Thus, we an �ndCQ(n)7 and CQ(n)8 for n = 1; 2; 3 by solving our mathing equation (5.1) order-by-order in e�s. Allthe 1=�2 and 1=� poles anel during this operation, as they should. The resulting �nite WilsonoeÆients are presented in the next setion. 12



6 ResultsOur �nal results for the renormalized Wilson oeÆients of the operators P7 and P8 are asfollows:C(1)7 (�0) = 2336 + ��145216 + 2336 ln �20M2W �+ �2 � 8751296 + 23�2432 + 145216 ln �20M2W + 2372 ln2 �20M2W �+O(�3);(6.1)C(1)8 (�0) = 13 + ��1118 + 13 ln �20M2W �+ �2 � 85108 + �236 + 1118 ln �20M2W + 16 ln2 �20M2W �+O(�3); (6.2)C(2)7 (�0) = �713243 � 481 ln �20M2W + ���73571458 + 37�281 � 820243 ln �20M2W + 11081 ln2 �20M2W �+O(�2); (6.3)C(2)8 (�0) = � 91324 + 427 ln �20M2W + ��62891944 + 8�227 + 371162 ln �20M2W + 2527 ln2 �20M2W �+O(�2); (6.4)C(3)7 (�0) = C(3)7 (�0 =MW ) + 137632187 ln �20M2W + 814729 ln2 �20M2W +O(�); (6.5)C(3)8 (�0) = C(3)8 (�0 =MW ) + 166075832 ln �20M2W + 397486 ln2 �20M2W +O(�); (6.6)C t(1)7 (�0) = �1 + � ln �20m2t + �22 ln2 �20m2t + �2�212 � �3x3�2x24(x�1)4 x��1� + 22x3�153x2+159x�4672(x�1)3 �+� �1 + � ln �20m2t � ��18x3+150x2�157x+4672(x�1)4 x��1� + 122x3�933x2+975x�290432(x�1)3 �+�2 ��108x3+918x2�977x+290432(x�1)4 lnx+ 694x3�5619x2+5937x�17502592(x�1)3 �+O(�3); (6.7)C t(1)8 (�0) = �1 + � ln �20m2t + �22 ln2 �20m2t + �2�212 � � �3x24(x�1)4 x��1� + 5x3�9x2+30x�824(x�1)3 �+� �1 + � ln �20m2t � ��15x2�14x+824(x�1)4 x��1� + 13x3+15x2+186x�88144(x�1)3 �+�2 ��81x2�130x+88144(x�1)4 lnx+ 35x3+273x2+1110x�680864(x�1)3 �+O(�3); (6.8)C t(2)7 (�0) = �16x4�122x3+80x2�8x9(x�1)4 H(x; �) �1+ 2� ln �20m2t �+ �387x4�1413x3+997x2�65x+481(x�1)5 x��1�+ 94x4+18665x3�20682x2+9113x�2006486(x�1)4 + � h146x4�4289x3+2736x2+14x�22481(x�1)4 Li2�1� 1x�+ �1203x4�43353x3+37031x2�10531x+1640486(x�1)5 lnx+ �6128x4+252839x3�183912x2+43607x�79102916(x�1)4 i+ � ln �20m2t ��720x4�3942x3+1685x2+713x�22081(x�1)5 lnx+ �346x4+44569x3�40446x2+13927x�2800486(x�1)4 �+ �ln �20m2t + 3�2 ln2 �20m2t + ��212 � ��6x4�46x3+28x23(x�1)5 x��1� + 34x4+101x3+402x2�397x+7627(x�1)4 �+O(�2); (6.9)C t(2)8 (�0) = �4x4+40x3+41x2+x6(x�1)4 H(x; �) �1+ 2� ln �20m2t �+ �144x4+3177x3+3661x2+250x�32216(x�1)5 x��1�+ 247x4�11890x3�31779x2+2966x�10161296(x�1)4 + � h641x4+184x3+8001x2�220x�368216(x�1)4 Li2�1 � 1x�+ 2982x4+22581x3+109751x2�1018x�29681296(x�1)5 lnx+ �18557x4�38590x3�661839x2�100078x+310967776(x�1)4 i13



+ � ln �20m2t ��72x4+1971x3+3137x2+32x�10054(x�1)5 lnx+ �140x4�2692x3�13581x2+1301x+208162(x�1)4 �+ �ln �20m2t + 3�2 ln2 �20m2t + ��212 � �17x3+31x22(x�1)5 x��1� + 35x4�170x3�447x2�338x+5636(x�1)4 �+O(�2); (6.10)C t(3)7 (�0) = C t(3)7 (�0 = mt) + ln �20m2t h�592x5�22x4+12814x3�6376x2+512x27(x�1)5 Li2 �1 � 1x�+�26838x5+25938x4+627367x3�331956x2+16989x�460729(x�1)6 lnx+34400x5+276644x4�2668324x3+1694437x2�323354x+530772187(x�1)5 i+ ln2 �20m2t h�63x5+532x4+2089x3�1118x29(x�1)6 lnx+1186x5�2705x4�24791x3�16099x2+19229x�2740162(x�1)5 i+O(�); (6.11)C t(3)8 (�0) = C t(3)8 (�0 = mt) + ln �20m2t h�148x5+1052x4�4811x3�3520x2�61x18(x�1)5 Li2 �1 � 1x�+�15984x5+152379x4�1358060x3�1201653x2�74190x+91881944(x�1)6 lnx+109669x5�1112675x4+6239377x3+8967623x2+768722x�4279611664(x�1)5 i+ ln2 �20m2t h�139x4�2938x3�2683x212(x�1)6 lnx+1295x5�7009x4+29495x3+64513x2+17458x�2072216(x�1)5 i+O(�): (6.12)As far as the three-loop quantities C(3)7 (�0 = MW ), C(3)8 (�0 = MW ), C t(3)7 (�0 = mt) andC t(3)8 (�0 = mt) are onerned, the mathing alulation desribed in the previous setions givesus expressions for their expansions at x ! 1 and x ! 1. Denoting, as before, z = 1=x andw = 1� z, we �ndC(3)7 (�0 =MW ) ' 1:525 � 0:1165z + 0:01975z ln z + 0:06283z2 + 0:005349z2 ln z+0:01005z2 ln2 z � 0:04202z3 + 0:01535z3 ln z � 0:00329z3 ln2 z+0:002372z4 � 0:0007910z4 ln z +O(z5); (6.13)C(3)7 (�0 =MW ) ' 1:432 + 0:06709w + 0:01257w2 + 0:004710w3 + 0:002373w4+0:001406w5 +0:0009216w6 +0:00064730w7 +0:0004779w8 +O(w9); (6.14)C(3)8 (�0 =MW ) ' �1:870 + 0:1010z � 0:1218z ln z + 0:1045z2 � 0:03748z2 ln z+0:01151z2 ln2 z � 0:01023z3 + 0:004342z3 ln z + 0:0003031z3 ln2 z�0:001537z4 + 0:0007532z4 ln z +O(z5); (6.15)C(3)8 (�0 =MW ) ' �1:676 � 0:1179w � 0:02926w2 � 0:01297w3 � 0:007296w4�0:004672w5 � 0:003248w6 � 0:002389w7 � 0:001831w8 +O(w9); (6.16)C t(3)7 (�0 = mt) ' 12:06 + 12:93z + 3:013z ln z + 96:71z2 + 52:73z2 ln z + 147:9z3+187:7z3 ln z � 144:9z4 + 236:1z4 ln z +O(z5); (6.17)C t(3)7 (�0 = mt) ' 11:74 + 0:3642w + 0:1155w2 � 0:003145w3 � 0:03263w4 � 0:03528w5�0:03076w6 � 0:02504w7 � 0:01985w8 +O(w9); (6.18)C t(3)8 (�0 = mt) ' �0:8954 � 7:043z � 98:34z2 � 46:21z2 ln z � 127:1z314
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Although we do not know the exat urves in the three-loop ase, the same pattern seemsto repeat. In fat, the harm-setor expansions perfetly overlap in the physial region. In thetop setor, one an (onservatively) onlude thatC t(3)7 (�0 = mt) = 12:05 � 0:05; (6.21)C t(3)8 (�0 = mt) = �1:2 � 0:1; (6.22)whih is perfetly aurate for any phenomenologial appliation. Let us note that a hangeof C t(3)7 (�0 = mt) from 12 to 13 would a�et the b ! s deay width by only 0.02%, while asimilar variation of C t(3)8 (�0 = mt) would ause even a smaller e�et.For the three-loop harm-setor oeÆients, the unertainty from the expansions is smallerthan the one from the experimental error in mt. Thus, one an safely use Eqs. (6.13){(6.16)as they stand, without any additional unertainty. Aurate values in the range 0:4 < y < 0:6an also be found from the following �ts:C(3)7 (�0 =MW ) = 1:458� mtMW �0:0338 ; (6.23)C(3)8 (�0 =MW ) = �1:718� mtMW �0:0598 : (6.24)It is instrutive to study the behaviour of the three-loop top-setor oeÆients in a plotwhere subsequent terms of our expansions are suessively taken into aount. This is shownin Fig. 5. The quality of the two expansions in various regions of y is transparent there.
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7 ConlusionsThe three-loop mathing onditions found in the present paper omplete the �rst out of threesteps (mathing, mixing and matrix elements) that are neessary for �nding the NNLO QCDorretions to �B ! Xs. The e�et of the NNLO mathing alone is sheme- and sale-dependent. In the MS sheme with MW < �0 < mt, it stays within 2% of the deay width,i.e. it is signi�antly smaller than the total higher-order perturbative unertainty that wasestimated in Ref. [6℄. This unertainty is expeted to get signi�antly suppressed in the nearfuture, after the remaining two steps of the NNLO alulation are performed.The methods that we have applied in the present work are, in priniple, appliable to anythree-loop mathing omputation involving several di�erent mass sales. A detailed desriptionthat we have presented for eah step of our proedure an serve as a guideline for treating similarproblems in various domains of partile phenomenology.AknowledgementsM.M. is grateful to Ben Moore, Joahim Stadel and Daniel Wyler for helpful disussions and ad-vie onerning the Z-Box omputer at the University of Z�urih. He aknowledges support fromthe Shweizerisher Nationalfonds, from the Polish Committee for Sienti� Researh under thegrant 2 P03B 121 20, and from the European Community's Human Potential Programme underthe ontrat HPRN-CT-2002-00311, EURIDICE.Appendix A: Three-loop expansion termsIn this appendix, we present our results for the oeÆients akQnm and bkQn from Eqs. (3.30)and (3.31) up to n = 4 and n = 8, respetively. They are given in terms of the followingsymbols (see also Eq. (16) of Ref. [13℄):D3 = 6�3 � 154 �4 � 6 �Cl2 ��3��2 ;B4 = �4�2 ln2 2 + 23 ln4 2 � 132 �4 + 16Li4 �12� ;S2 = 49p3Cl2 ��3� ;S"2 = �76332 � 9�p3 ln2 316 � 35�3p348 + 19516 �2 � 154 �3 + 5716�4+ 45p32 Cl2 ��3�� 27p3Im"Li3  e�i�=6p3 !# ;T "1 = �452 � �p3 ln2 38� 35�3p3216 � 92�2 + �3 + 6p3Cl2 ��3�� 6p3Im"Li3  e�i�=6p3 !# ; (A.1)18



where Cl2(x) = Im[Li2 (eix)℄.The expansion oeÆients that we have found reada7t00 = +70�(3)243 + 1587S2280 + 43�4405 + 416341�2612360 + 46D381 � 92B481 + 8206405339185400 ;a7t10 = +307721�(3)324 � 67T "118 � 284327S2840 + 96959�4116640 � 53880251�2816480 + 67S"227 + 680D381 � 1360B481 � 24697297994082400 ;a7t11 = �201S24 + 49�254 � 2669810 ;a7t12 = �116 ;a7t13 = �1918 ;a7t20 = +138245�(3)54 � 4073T "181 � 333063S2140 + 122821�458320 � 7316857�281648 + 8146S"2243 + 34D3 � 68B4 � 1981904129408240 ;a7t21 = �4073S26 + 3943�2162 + 3067691215 ;a7t22 = +461381 ;a7t23 = +14627 ;a7t30 = +138120863�(3)26244 � 3547685T "113122 � 98842253S29720 + 17476801�49447840 + 284448283�23149280 + 3547685S"219683+7432D381 � 14864B481 � 324584928071574640 ;a7t31 = �3547685S2972 + 506753�22916 + 4634218917496 ;a7t32 = +17518092916 ;a7t33 = +2513 ;a7t40 = +257322953�(3)26244 � 12491099T "113122 � 5628051553S2174960 � 54918881�49447840 + 12685755337�222044960 + 12491099S"219683+16166D381 � 32332B481 � 1904097096913149280 ;a7t41 = �12491099S2972 + 1978619�22916 + 53131699143740 ;a7t42 = +664799243 ;a7t43 = +34249 ; (A.2)b7t0 = �2901893�(3)38880 + 4909�22160 + 17976153718748000 ;b7t1 = +94143997�(3)1244160 � 6763�215120 � 113487750073979776000 ;b7t2 = +91942073�(3)860160 � 241�21512 � 1009261903634376814438400 ;b7t3 = +137418234607�(3)891813888 � 8�2135 � 1370939588276569173741860864000 ;b7t4 = +7490373009073�(3)35672555520 � 593�230240 � 596064423957741723597395476480 ;b7t5 = +467301421361�(3)1698693120 � 131�247520 � 643810324265488942919467851268096000 ;b7t6 = +329068267226885�(3)941755465728 + 1139�2249480 � 17987153985151353077594282927278981120000 ;b7t7 = +1164930029277053�(3)2690729902080 + 353�246332 � 445971686554467633047857084922534297600 ;b7t8 = +32688338029429333�(3)62185757736960 + 56293�26486480 � 1255512006992244632201187925319873056681818251591680000 ; (A.3)a8t00 = �22301�(3)648 + 22149S2224 + 17�42160 + 170659�225515 + 13D3216 � 13B4108 + 118962352961236000 ;19
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