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Abstract

In most of the mass range encompassed by the limits from the direct search and
the electroweak precision tests, the Higgs boson of the standard model preferably
decays to bottom quarks. We present, in analytic form, the dominant two-loop
electroweak correction, of O(GZm{), to the partial width of this decay. It amplifies
the familiar enhancement due to the O(GFm?) one-loop correction by about +16%
and thus more than compensates the screening by about —8% through strong-
interaction effects of order O(asGpm?).
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The standard model (SM) of elementary-particle physics, whose fermion and gauge
sectors have been impressively confirmed by an enormous wealth of experimental data,
predicts the existence of a last undiscovered fundamental particle, the Higgs boson H,
whose mass My is a free parameter of the theory. The direct search for the Higgs boson at
the CERN Large Electron-Positron Collider LEP 2 led to a lower bound of My > 114 GeV
at 95% confidence level (CL) [I]. On the other hand, high-precision measurements, espe-
cially at LEP and the SLAC Linear Collider SLC, were sensitive to the Higgs-boson mass
via electroweak radiative corrections, yielding to the value My = (85f§g) GeV together
with an upper limit of My < 166 GeV at 95% CL [2]. The vacuum-stability and triviality
bounds suggest that 130< My <180 GeV if the SM is valid up to the grand-unification
scale (for a review, see Ref. [3]). If the Higgs mechanism of spontaneous symmetry break-
ing, as implemented in the SM, is realized in nature, then we are now being on the eve
of a groundbreaking discovery, to be made at the CERN Large Hadron Collider (LHC),
which will go into operation in a just few months from now. After finding a new scalar
particle, the burning question will be whether it is in fact the Higgs boson of the SM,
or lives in some extended Higgs sector. Therefore, it is indispensable to know the SM
predictions for the production and decay rates of the SM Higgs boson with high preci-
sion. Its decay to a bottom-quark pair, H — bb, is of paramount interest, as it is by far
the dominant decay channel for My <140 GeV (see, e.g., Ref. [4]). On the other hand,
the inverse process, bb — H, was identified to be a crucial hadroproduction mechanism,
appreciably enhancing the yield due to gluon fusion [5]. Precise knowledge of the bottom
Yukawa coupling is also requisite for reliable predictions of associated hadroproduction of
Higgs bosons and bottom quarks [6].

The purpose of this Letter is to fill a long-standing gap in our knowledge of the
quantum corrections to the partial width T', of the H — bb decay, by providing, in analytic
form, the dominant two-loop electroweak correction, of O(G%m;), where G is Fermi’s
constant and m, is the top-quark mass. This correction also applies to the cross section
of bb — H. Surprisingly, it turns out to be more than twice as large as the O(a,Grm?)
one, which is formally enhanced by one power of the strong-coupling constant a;. In
the discussion of virtual top-quark effects, it is useful to distinguish between universal
corrections, which are independent of the produced fermion flavor, and non-universal
corrections, which are specific for the H — bb decay because bottom is the weak-isospin
partner of top. Here, we have to consider both types.

Prior to going into details with our calculation, we briefly review the current status of
the radiative corrections to [', in the intermediate mass range, defined by My, < Mg <
2My,. As for effects arising solely from quantum chromodynamics (QCD), the full m,
dependence is known in O(a;) [7]. In O(a?), the leading [8] and next-to-leading [9] terms
of the expansion in m?/M% of the Feynman diagrams without top quarks are available.
Those involving top quarks either contain gluon self-energy insertions or represent cuts
through three-loop double-triangle diagrams; the former contribution is exactly known
[10], while the four leading terms of the expansion in M%/m? are known in the latter
case [I1]. In O(a?), the diagrams containing only light degrees of freedom were evaluated
directly [12], while those involving the top quark were treated in the framework of an



appropriate effective field theory [I3]. As for purely electroweak corrections, the one-
loop result is completely known [I4]. At two loops, the dominant universal correction,
of O(G%m;), was already studied in Ref. [15], while the non-universal one is considered
here for the first time. As for mixed corrections, the universal [I6] and non-universal [17]
O(a,Grm?) terms at two loops and the universal [18] and non-universal [19] O(a?Grm?)
terms at three loops are available.

We now outline the course of our calculation and exhibit the structure of our results.
Full details will be presented in a forthcoming communication [20]. For convenience,
we work in 't Hooft-Feynman gauge. As usual, we extract the ultraviolet divergences
by means of dimensional regularization, with D = 4 — 2¢ space-time dimensions and
't Hooft mass scale u. We do not encounter ambiguities related to the treatment of s
in D dimensions and are thus entitled to use the anti-commuting definition. We adopt
Sirlin’s formulation of the electroweak on-shell renormalization scheme [21], which uses G g
and the physical particle masses as basic parameters. We take the Cabibbo-Kobayashi-
Maskawa quark mixing matrix to be unity, which is well justified because the third quark
generation is, to good approximation, decoupled from the first two [22]. For convenience,
we renormalize the Higgs sector by introducing counterterm vertices involving tadpole and
Higgs-boson mass counterterms, 6t and § My, respectively [23]. Specifically, dt is adjusted
so that it exactly cancels the sum of all one-particle-irreducible tadpole diagrams.

Detailed inspection reveals that, to the orders considered here, the amputated matrix
element of H — bb exhibits the simple structure

A=A+B(p-p)w_, (1)

where wy = (1++3)/2 are the helicity projection operators, p and p are the four-momenta
of b and b, respectively, and A and B are Lorentz scalars. Including the wave-function
renormalizations of the external particles and employing the Dirac equation, we find the
transition matrix element to be

T =\ Zu (\/ Zy 1.2y, RA + meb,LB) s, (2)

where s = wu(p, r)v(p,7), with r and 7 being spin labels. Owing to parity violation, the
left- and right-handed components of the bottom-quark field, bz, r = w<b, participate dif-
ferently in the electroweak interactions and thus receive different wave-function renormal-
izations, Zy 1 r. At tree-level, we have A® = —m;, /v and B = 0, where v = 2_1/467’1;1/2
is the Higgs vacuum expectation value. Here and in the following, superscripts enclosed
in parentheses denote the loop order. In Sirlin’s formulation of the electroweak on-shell
scheme, where Fermi’s constant is introduced to the SM through a charged-current pro-
cess, namely muon decay, the SU(2) gauge coupling g = 2My /v does not receive power
corrections in my, so that [24]

)

My _ My )

to the orders considered here, which implies that the renormalization of v is reduced to
the one of My,. Here and in the following, bare quantities carry the subscript 0. It hence
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follows that we need to perform a genuine two-loop renormalization of Zy, my, Zy 1/ r, and
My, while a one-loop renormalization of Mz and m; is sufficient. As usual, we denote
the sums of all one-particle-irreducible H, f (f = b,t), and W self-energy diagrams at
four-momentum transfer ¢ as iXpg(¢), i[¢(w_Y7L(¢*) +wiEfr(¢%)) + mpoXss(q?)], and
—i[(¢" — ¢"¢" | *)Swr(?) + (¢"q"/¢*) Ew..(¢%)], and split the bare masses as M?I/W,O =
M?{/W + 5M12{/W and myo = my+0my. Imposing the on-shell renormalization conditions
on the dressed propagators then yields

OMjy =S (M),

1
Iypg=——e
T, (MY
6mf . 1 1
my o Jfm3)
1
ZfLir= :
’ frim2)\’
(1 + Ef,L/R(m%)) <1 — m%—f(m?f) )
O My = Swr(Myy), (4)

where

o (S
) = s, 0 @)+ Sl @) ©)

Relations that, to the order of our analysis, are equivalent to Eq. () were found in Ref. [25]
using an alternative approach.
Performing a loop expansion and eliminating all bare masses, we thus obtain

7(0)

Ranm—'l (U
s )
1
? — A0, BO 4 A (50 4 X0,
T2 1)
=A@ 4y, B® 4+ AW XM mbB(1)5ZbL
S
o)
+(AD 4, BO 4 AOXDY |50 1 2(1 ) ome
my
s MY 1om" , .
_ A0 5@ L x@ 4 2% (570)
|t P+ Xy S (6237

where
2(1
s — 162(1) 1 5MV[£ :
SRR N Ve



1 1 M2 1
52 = 562}?) — 5 ap T |5 + 21—
W
2
y omy) 25M5V<” Ry 7
are the universal corrections and
X0 = T’; +3 (6231 +02%) - (8)

The Feynman diagrams contributing to A(()Z) and BSZ) are depicted in Fig. [l They
are generated and drawn using the program FeynArts [26] and evaluated using the pro-
gram MATAD [27], which is written in the programming language FORM [28], by applying
the asymptotic-expansion technique (for a careful introduction, see Ref. [29]). Here, x
and ¢ denote the neutral and charged Higgs-Kibble ghosts with masses My and My,
respectively. The crosses in Figs. [[l(s) and (t) indicate the insertions of the Higgs-boson
mass and tadpole counterterms i6t/vy and —i (6t/vy + M%) /vy in a ¢-boson line and
a Ho¢ vertex, respectively. In the soft-Higgs limit, My < my, which is underlying our
analysis, the diagrams in Figs. [[[a)—(s) can also be evaluated by applying a low-energy
theorem (see Ref. [30] and references cited therein) to the corresponding b-quark self-
energy diagrams that emerge by removing the external Higgs-boson line. This provides
a powerful check for our calculation. Apart from the diagrams in Fig. [ we also need to
calculate the relevant one-particle-irreducible H, b, and W self-energy diagrams at two
loops. Furthermore, we need to expand all the relevant one-loop diagrams through O(e).

We are now in a position to present our final results for the universal correction
parameter d, and the relative correction to I'y. They read

7 ) 29 49
Oy = :L‘thg + l‘th <3 — 6((2) + Ncﬁ)
o 19 ((2)
— NC a4 |
F[, 7 2
b
49 a 157
27 -5 _ -
+ N, 9] +fL’tﬂ_CF { 36—|—Nc< 19 <(2)>] ) (10)

where N, = 3 and Cp = (N? —1)/(2N,) = 4/3 are color factors, z, = (Gpm?)/(87%\/2),
¢(2) = 7?/6, and

N

- — 11
8 M% (11)

If we convert Eq. (@) to a mixed renormalization scheme which uses the on-shell definitions
for the particle masses and the definitions of the modified minimal-subtraction (MS)

_ V2N.GpMgm} ( 4mg>3/2
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Figure 1: Diagrams contributing to H — bb at O(G%m}).

scheme for all other basic parameters, then we find agreement with Eq. (15) for z = 0 in
the paper by Djouadi et al. [I5]. However, the corresponding result for the electroweak
on-shell scheme presented in their Eq. (27) for z = 0 disagrees with our Eq. ([@). We
can trace this discrepancy to the absence in their Eq. (25) of the additional finite term
0 Ap™) which arises from the renormalization of the one-loop result in their Eq. (7)
according to the prescription in their Eq. (18). The O(G%m;) term in Eq. (I0) represents
a new result.

In Eqs. @) and (I0), we have also included the two-loop O(a;Grm?) corrections
[16/17], which we reproduced using our calculational techniques. As for the QCD renor-
malization, it is understood that m, appearing in Eq. (II)) is defined in the MS scheme
as my = My(Mp), while the electroweak part of the renormalization remains in the on-
shell scheme. This modification ensures that large logarithms of the type In (M%/m})
that would otherwise appear already at O(ay) and spoil the convergence behavior of the
perturbation expansion are properly resummed according to the renormalization group
(RG) [7]. Since we wish to treat m; on the same footing as mj;, we adopt this mixed
scheme for m; as well. The analysis at O(a?Grm?) [1819] reveals that Eqs. (9) and (I0)
may be further RG-improved by taking m; and a, to be m; = 7,(m;) and a, = a8 (m,),
respectively.

Finally, we explore the phenomenological implications of our results. Adopting from
Ref. [22] the values G = 1.16637 x 107° GeV~2, ol (M) = 0.1176, M, = 91.1876 GeV,



Table 1: Relative corrections to I';, T, and ['y at O(Gpm?), O(GZm}), and O(a,Grm?).
Order r.,/;r® r r® r,/r?
O(Gpm?) | 42.021% +2.021% +0.289%
O(G%m;) | 40.064% +0.064% +0.047%
O(aGpm2) | +0.060% +0.452% —0.022%

and mP® = 174.2 GeV for our input parameters, so that a®(m;) = 0.1076 and m, =

166.2 GeV, we evaluate Eqs. (@) and (I0) to O(Grm?), O(GZm}), and O(a,Grm?). For
comparison, we also evaluate the relative corrections to I'; and I';, where [ = e, i, 7 and
q = u,d, s, c, which, to the orders considered here, are given by

I

oy = (1+30.)" =1, (12)

Fl

r

rTg) = (1+Aqep)(1+du)* — 1, (13)
q

where [7]
17

; (14)

(6
AQCD — = OF
s

is the O(ay) correction in the limit m, < Mp.

The results are listed in Table [l We observe that the O(G%m}) correction to T},
increases the enhancement due to the O(Grm?) one by about 16% and has more than
twice the magnitude of the negative O(a;Grm?) one. Also in the case of [';, the O(G%mj})
correction exceeds the O(a;Grm?) one. The situation is quite different for the case of
I';, which is due to the additional appearance of the sizeable product term QAQCD@(}) in
Eq. (I3).

In conclusion, we analytically calculated the dominant electroweak two-loop correc-
tion, of order O(G%m}), to the H — bb decay width T', of an intermediate-mass Higgs
boson, with My < m,;. We performed various checks for our analysis. The ultraviolet di-
vergences cancelled through genuine two-loop renormalization. Our final result is devoid
of infrared divergences related to infinitesimal scalar-boson masses. We reproduced those
Hbb vertex diagrams where the external Higgs boson is coupled to an internal top-quark
line, which we had computed directly, through application of a low-energy theorem. After
switching to a hybrid renormalization scheme, our O(G%m}) result for the universal cor-
rection §, agrees with Ref. [I5]. Using our computational techniques, we also recovered
the O(a;Grm7) corrections to d, and T',. The O(G%m;) correction to ', amplifies the
familiar enhancement due to the O(GFm?) correction by about +16% and thus more than
compensates the screening by about —8% through QCD effects of O(a,Grm?).
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This work was supported in part by the German Federal Ministry for Education and Re-
search BMBF through Grant No. 05 HT6GUA and by the German Research Foundation
DFG through Graduate School No. GRK 602 Future Developments in Particle Physics.

7



References

1]

[15]

ALEPH Collaboration, DELPHI Collaboration, L.3 Collaboration, OPAL Collabora-
tion and The LEP Working Group for Higgs Boson Searches, R. Barate et al., Phys.
Lett. B 565, 61 (2003).

LEP Electroweak Working Group, D. Abbaneo et al., Report No. LEPEWWG /2005-
01; see also URL: http://lepewwg.web.cern.ch/LEPEWWG/.

B.A. Kniehl, Int. J. Mod. Phys. A 17, 1457 (2002).
B.A. Kniehl, Phys. Rept. 240, 211 (1994); M. Spira, Fortsch. Phys. 46, 203 (1998).

F. Maltoni, Z. Sullivan, and S. Willenbrock, Phys. Rev. D 67, 093005 (2003);
R.V. Harlander and W.B. Kilgore, ibid. 68, 013001 (2003); A. Belyaev, P.M. Nadol-
sky, and C-P. Yuan, JHEP 0604, 004 (2006).

S. Dawson, C.B. Jackson, L. Reina, and D. Wackeroth, Phys. Rev. D 69, 074027
(2004); Phys. Rev. Lett. 94, 031802 (2005); Int. J. Mod. Phys. A 20, 3353 (2005);
Mod. Phys. Lett. A 21, 89 (2006); E. Boos and T. Plehn, Phys. Rev. D 69, 094005
(2004); S. Dittmaier, M. Kramer, and M. Spira, ibid. 70, 074010 (2004); F. Maltoni,
T. McElmurry, and S. Willenbrock, ibid. 72, 074024 (2005).

E. Braaten and J.P. Leveille, Phys. Rev. D 22, 715 (1980); N. Sakai, ibid. 22, 2220
(1980); T. Inami and T. Kubota, Nucl. Phys. B179, 171 (1981); M. Drees and
K. Hikasa, Phys. Lett. B 240, 455 (1990); 262, 497(E) (1991).

S.G. Gorishny, A.L. Kataev, S.A. Larin, and L.R. Surguladze, Mod. Phys. Lett. A
5, 2703 (1990); Phys. Rev. D 43, 1633 (1991).

L.R. Surguladze, Phys. Lett. B 341, 60 (1994).

B.A. Kniehl, Phys. Lett. B 343, 299 (1995).

K.G. Chetyrkin and A. Kwiatkowski, Nucl. Phys. B461, 3 (1996).
K.G. Chetyrkin, Phys. Lett. B 390, 309 (1997).

K.G. Chetyrkin and M. Steinhauser, Phys. Lett. B 408, 320 (1997).

J. Fleischer and F. Jegerlehner, Phys. Rev. D 23, 2001 (1981); D.Yu. Bardin,
B.M. Vilenskii, and P.Kh. Khristova, Yad. Fiz. 53, 240 (1991) [Sov. J. Nucl. Phys.
53, 152 (1991)]; B.A. Kniehl, Nucl. Phys. B376, 3 (1992); A. Dabelstein and W. Hol-
lik, Z. Phys. C 53, 507 (1992).

A. Djouadi, P. Gambino, and B.A. Kniehl, Nucl. Phys. B523, 17 (1998).


http://lepewwg.web.cern.ch/LEPEWWG/

[16] B.A. Kniehl and A. Sirlin, Phys. Lett. B 318, 367 (1993); B.A. Kniehl, Phys. Rev.
D 50, 3314 (1994); A. Djouadi and P. Gambino, Phys. Rev. D 51, 218 (1995).

[17] B.A. Kniehl and M. Spira, Nucl. Phys. B432, 39 (1994); A. Kwiatkowski and
M. Steinhauser, Phys. Lett. B 338, 66 (1994); 342, 455(E) (1995).

[18] B.A. Kniehl and M. Steinhauser, Nucl. Phys. B454, 485 (1995); Phys. Lett. B 365,
297 (1996).

[19] K.G. Chetyrkin, B.A. Kniehl, and M. Steinhauser, Phys. Rev. Lett. 78, 594 (1997);
Nucl. Phys. B490, 19 (1997).

[20] M. Butenschon, F. Fugel, and B.A. Kniehl (in preparation).

[21] A. Sirlin, Phys. Rev. D 22, 971 (1980).

[22] Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1 (2006).

[23] A. Denner, Fortsch. Phys. 41, 307 (1993).

[24] M. Consoli, W. Hollik, and F. Jegerlehner, Phys. Lett. B 227, 167 (1989).
[25] M. Faisst, Diploma thesis, University of Karlsruhe, 2000.

[26] T. Hahn, Comput. Phys. Commun. 140, 418 (2001).

[27] M. Steinhauser, Comput. Phys. Commun. 134, 335 (2001).

[28] J.A.M. Vermaseren, Symbolic Manipulation with FORM, (Computer Algebra Nether-
lands, Amsterdam, 1991).

[29] V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses, (Springer,
Heidelberg, 2001).

[30] B.A. Kniehl and M. Spira, Z. Phys. C 69, 77 (1995); W. Kilian, ibid. 69, 89 (1995).



