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DESY 06{233SFB/CPP{06{58THE NEXT-TO-LADDER APPROXIMATION FOR LINEAR DYSON-SCHWINGEREQUATIONSISABELLA BIERENBAUM1, DIRK KREIMER2 AND STEFAN WEINZIERL1. IntrodutionLadder approximations have been one of the most basi attempts to simplify and trunate Dyson{Shwinger equations in �eld theory in a still meaningful way [1℄. From a mathematial viewpoint theysimplify the ombinatoris of the forest formula onsiderably, and are solvable by a saling Ansatz for suÆ-iently simple kinematis.Here, we disuss suh a senario, but iterate one- and two-loop skeletons jointly, ombining some analytiprogress with a thorough disussion of the underlying algebrai properties.1.1. Purpose of this paper. The main purpose is to sum an in�nite series of graphs based on the iterationof two underlying skeleton graphs. We progress in a manner suh that our methods an be generalized toany ountable number of skeletons. We restrit to linear Dyson Shwinger equations, a ase relevant fortheories at a �xpoint of the renormalization group. We proeed using one-dimensional Mellin transforms, aprivilege of linearity of whih we make full use. See [2, 3, 4, 5℄ for the general approah.2. The Dyson{Shwinger Equation2.1. The integral equation. The equation whih we onsider is in massless Yukawa theory in four-dimensional Minkowski spae M , for pedagogial purposes. We de�ne a renormalized Green funtion de-sribing the oupling of a salar partile to a fermion line byGR(a; ln(�q2=�2)) = 1� a ZM d4ki�2 � 1k=GR(a; ln(�k2=�2)) 1k= 1(k � q)2��+a2 ZM d4ki�2 ZM d4li�2 � l=(l=+ k=)GR(a; ln(�(k + l)2=�2))(l=+ k=)(k=+ q=)[(k + l)2℄2l2(k + q)2k2(l � q)2 �� ;(1)where fg� indiates subtration at �2 = �q2, so that GR(a; 0) = 1:�GR(a; ln(�k2=�2))	� = GR(a; ln(�k2=�2))�GR(a; ln(�k2=� q2)):(2)The kinematis are suh that the fermion has momentum q and the external salar partile arries zeromomentum. The equation an graphially be represented asq
q0 = q

q0 + q
q0 + q

q0
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where the blob represents the unknown Green funtion GR(a; ln(�q2=�2)). This linear Dyson{Shwingerequation an be solved by a saling solution, L = ln(�q2=�2),(3) GR(a; L) = exp f�G(a)Lg:Indeed, this satis�es the desired normalization and leads to the equation(4) exp f�G(a)Lg = 1 + (exp f�G(a)Lg � 1) �aF1(G) + a2F2(G)� ;where the two Mellin transforms are the funtions determined by(5) F1 : �! � Z d4ki�2 1k2(k � q)2 �k2q2���and similarly(6) F2 : �! ZM d4ki�2 ZM d4li�2 l=(k=+ q=)(k + l)2l2(k + q)2k2(l � q)2 � (l + k)2q2 ��� :Clearing the fator [expf�G(a)Lg � 1℄ in this equation gives(7) 1 = aF1(G) + a2F2(G):It remains to determine F1; F2 expliitely and solve this impliit equation for G in terms of a. We do so inthe next setions but �rst disuss the perturbative struture behind this solution.2.2. The algebrai struture. We an identify any graph in this resummation with a word in two lettersu; v say, for example:(8)We have renormalized Feynman rules �R suh that(9) �R(u)(L) = �L lim�!0 �F1(�);and(10) �R(v)(L) = �L lim�!0 �F2(�):The Green funtion GR(a; L) is obtained as the evaluation by �R of the �xpoint of the ombinatorialDyson Shwinger equation(11) X(a) = I+ aBu+(X(a)) + a2Bv+(X(a)):We have(12) X(a) = 1 + au+ a2(uu+ v) + : : : = expg [au+ a2v℄;where g is the shu�e(13) Hlin �Hlin ! Hlin;(14) Bi+(w1) g Bj+(w2) = Bi+(w1 g Bj+(w2)) +Bj+(w2 g Bi+(w1));8i; j 2 fu; vg. Note that for example ug u = 2uu. 2



The two maps Bi+ are Hohshild one-oyles, and X(a) is group-like:(15) �X(a) = X(a)
X(a):Correspondingly, deomposing X(a) = 1 +Pk�1 akk, we have(16) �k = kXj=0 j 
 k�j ;with 0 = 1. This is a deorated version of the Hopf algebra of undeorated ladder trees tn with oprodut�tn =Pnj=0 tj 
 tn�j . Feynman rules beome iterated integrals as(17) �R(Bi+(w))(L) = Z ��(w)(ln k2=�2)d�i(k)	� ;where d�i is the obvious integral kernel for i 2 u; v, f. (1). Apart from the shu�e produt, we have disjointunion as a produt whih makes the Feynman rules into a harater(18) �(w1 � w2) = �(w1)�(w2):These two ommutative produts g; � allow to express the primitive elements assoiated with shu�es ofletters u; v, see for example [7℄:Theorem 1. The primitive elements are given by polarization of the primitive elements pn of the undeoratedladder trees tn. These are given by pn = 1n [S ? Y ℄(tn).Here, Y denotes the grading operator, de�ned by Y (tk) = ktk and the star produt is de�ned as usual byO1 ? O2 = � Æ (O1 
O2) Æ�. Polarization of the undeorated primitive elements pn means that we deorateeah vertex of pn with u+ v.The set P(u; v) of primitive elements is hene spanned by elements piu;iv , where the integeres iu; iv ountthe number of letters u and v in the polarization of tiu+iv . For example the primitive element orrespondingto the undeorated ladder tree t2 is p2 = t2 � 12 t1t1. Polarization yieldsp2;0 = 12(ug u� u � u) = uu� 12u � u; p0;2 = 12(v g v � v � v) = vv � 12v � v;(19) p1;1 = ug v � u � v = uv + vu� u � v:3. The Mellin transformsThe general struture of the Mellin transform an be obtained from quite general onsiderations. Theruial input omes from powerounting and onformal symmetry.Theorem 2. The Mellin transforms above are invariant under the transformation �! 1� �.Proof: Expliit omputation. We give it here for F1. We assume <� > 0 so that Fi is well de�ned as afuntion. Then, the onformal inversion k� ! k0� = k�=k2 gives expliitly(20) � Z d4k0i�2 1k02(k0 � q)2  k02q2 !�1+�for F1. F2 an be treated similarly by onformal inversion in both Minkowski spaes. �3.1. The Mellin transform of the one-loop kernel. This Mellin transform is readily integrated to deliver(21) F1(�) = � 1�(1� �) ;exhibiting the expeted onformal symmetry. 3



3.2. The Mellin transform of the two-loop kernel. Determining this Mellin transform is the ore partof this paper. We proeed by making use of the advantage that we remain in four dimensions, and use resultsof [6℄. We are interested in the integral(22) F2(�) = (�q2)� ZM d4ki�2 ZM d4li�2 l=(k=+ q=)[�(l + k)2℄��(k + l)2l2(k + q)2k2(l � q)2 :Integration is over the eight dimensional artesian produt of two Minkowski spaes furnished with a qua-drati form(23) a2 = a20 � a21 � a22 � a23:A simple tensor alulus delivers(24) F2(�) = 12 f�2G4(1; 1 + �)G4(1; 1 + �) + I6(1; 1; �; 1; 1; 2� �) + I6(1; 1; 1 + �; 1; 1; 1� �)g ;where(25) GD(a; b) = �(a+ b�D=2)�(D=2� a)�(D=2� b)�(a)�(b)�(D � a� b) ;so that G4(1; 1 + �) = 1�(1��) . We use the notation of [6℄ for I6. In this notation, we have I6 = I6. Settingu! 0 and v = �� or v = 1� � we an determine the two I6 integrals as a limit u! 0 in Eq.(19)(op.it.) as(26) I6(1; 1; 1� v; 1; 1; 1 + v) = 8 1Xn=1n�2n+1(1� 2�2n)v2n�2;and similarly for v = 1� �. We hene �nd the above DSE in the form(27) 1 = �a 1G(1� G) � a2( 12G(1� G)2 � 4 1Xn=1n�2n+1(1� 2�2n) �2n�2G + (1� G)2n�2�) :4. The solutionWe an solve for G in the above in two di�erent ways, expressing the solution as an in�nite produt orvia the logarithmi derivative of the � funtion.4.1. Solution as an in�nite produt. We have:(28) GR(a; L) = exp8<: Xp2P(u;v) ajpj�R(p)(L)9=;:Here, the sum is over all primitives p 2 P(u; v), where P is the set of primitives assigned to any tree tndeorated arbitrarily by letters in the alphabet u; v, as desribed above. The proof is an elementary exerisein the Taylor expansion of the two Mellin transforms. Note that �R(p)(L) is linear in L for primitive p,�2L�R(L) = 0. We hene �nd for G(a)(29) G(a) = �� lnG�L jL=0 = �Xp ajpj�R(p)=L:Convergene of the sum is overed by the impliit funtion theorem, whih provides for G through the twoMellin transforms in the DSE. We hene proeed to the seond way of expressing the solution.4



4.2. Solution via the  -funtion. We an express the DSE using the logarithmi derivative of the �funtion and we obtain1 = �a 1G(1� G) � a2� 12G(1� G)2(30) + 1G [ 0 (1 + G)�  0 (1� G)℄ + 11� G [ 0 (2� G)�  0 (G)℄� 12G h 0 �1 + G2 ��  0 �1� G2 �i� 12(1� G) � 0�3� G2 ��  0�1 + G2 ��� :Here(31)  0(x) = d2dx2 ln �(x):Again, the two-loop solution shows expliitly the onformal symmetry G ! 1�G. Note that the apparentseond order poles at G = 0 and G = 1 on the rhs are only �rst order poles upon using standard propertiesof the logarithmi derivative of the � funtion, as it has to be. This provides an impliit equation for G,whih an be solved numerially. 5. ConlusionsWe determined the Mellin transform of the two-loop massless vertex in Yukawa theory. We used it toresum a linear Dyson{Shwinger equation. Following [2, 3, 4℄, more omplete appliations to non-linearDyson{Shwinger equations will be provided elsewhere. Tehniques to deal with non-linearity have indeedbeen developed reently [2, 3, 4℄, and involve transendental funtions even upon resummation of terms fromthe �rst Mellin transform [2℄. In the non-linear ase one gets indeed results very di�erent from saling, ashas been demonstrated early on in �eld theory [8℄. Finally, we note that the same two-loop Mellin transformalso appears in setting up the full DSE in other renormalizable theories [5℄.AknowledgmentsWe thank Roman Jakiw for pointing his thesis [8℄ out to us.Referenes[1℄ R. Delbourgo, A. Kalloniatis, G. Thompson, Dimensional renormalization: ladders to rainbows, Phys. Rev. D54 (1996)5373, hep-th/9605107.[2℄ D. J. Broadhurst and D. Kreimer, Exat solutions of Dyson-Shwinger equations for iterated one-loop integrals andpropagator-oupling duality, Nul. Phys. B 600 (2001) 403 [arXiv:hep-th/0012146℄.[3℄ D. Kreimer, Dyson Shwinger equations: From Hopf algebras to number theory, arXiv:hep-th/0609004.[4℄ D. Kreimer and K. Yeats, An etude in non-linear Dyson-Shwinger equations, Nul. Phys. Pro. Suppl. 160 (2006) 116[arXiv:hep-th/0605096℄.[5℄ D. Kreimer and K. Yeats, Reursion and growth Estimates in renormalizable quantum �eld theory, BU-CMP/06-05[arXiv:hep-th/0612179℄.[6℄ D. J. Broadhurst, J. A. Graey and D. Kreimer, Beyond the triangle and uniqueness relations: Non-zeta ounterterms atlarge N from positive knots, Z. Phys. C 75 (1997) 559 [arXiv:hep-th/9607174℄.[7℄ D. J. Broadhurst and D. Kreimer, Towards ohomology of renormalization: Bigrading the ombinatorial Hopf algebra ofrooted trees, Commun. Math. Phys. 215 (2000) 217 [arXiv:hep-th/0001202℄.[8℄ R. Jakiw, Dynamis at high momentum and the vertex funtion of spinor eletrodynamis, Annals of Physis, Volume 48,Issue 2 (1968) 292.isabella.bierenbaum�desy.de, DESY, Zeuthen; kreimer�ihes.fr, IHES (http://www.ihes.fr) and Boston U.(http://math.bu.edu); stefanw�thep.physik.uni-mainz.de, ThEP, Institut f�ur Physik, Universit�at Mainz
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