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DESY 06{233SFB/CPP{06{58THE NEXT-TO-LADDER APPROXIMATION FOR LINEAR DYSON-SCHWINGEREQUATIONSISABELLA BIERENBAUM1, DIRK KREIMER2 AND STEFAN WEINZIERL1. Introdu
tionLadder approximations have been one of the most basi
 attempts to simplify and trun
ate Dyson{S
hwinger equations in �eld theory in a still meaningful way [1℄. From a mathemati
al viewpoint theysimplify the 
ombinatori
s of the forest formula 
onsiderably, and are solvable by a s
aling Ansatz for suÆ-
iently simple kinemati
s.Here, we dis
uss su
h a s
enario, but iterate one- and two-loop skeletons jointly, 
ombining some analyti
progress with a thorough dis
ussion of the underlying algebrai
 properties.1.1. Purpose of this paper. The main purpose is to sum an in�nite series of graphs based on the iterationof two underlying skeleton graphs. We progress in a manner su
h that our methods 
an be generalized toany 
ountable number of skeletons. We restri
t to linear Dyson S
hwinger equations, a 
ase relevant fortheories at a �xpoint of the renormalization group. We pro
eed using one-dimensional Mellin transforms, aprivilege of linearity of whi
h we make full use. See [2, 3, 4, 5℄ for the general approa
h.2. The Dyson{S
hwinger Equation2.1. The integral equation. The equation whi
h we 
onsider is in massless Yukawa theory in four-dimensional Minkowski spa
e M , for pedagogi
al purposes. We de�ne a renormalized Green fun
tion de-s
ribing the 
oupling of a s
alar parti
le to a fermion line byGR(a; ln(�q2=�2)) = 1� a ZM d4ki�2 � 1k=GR(a; ln(�k2=�2)) 1k= 1(k � q)2��+a2 ZM d4ki�2 ZM d4li�2 � l=(l=+ k=)GR(a; ln(�(k + l)2=�2))(l=+ k=)(k=+ q=)[(k + l)2℄2l2(k + q)2k2(l � q)2 �� ;(1)where fg� indi
ates subtra
tion at �2 = �q2, so that GR(a; 0) = 1:�GR(a; ln(�k2=�2))	� = GR(a; ln(�k2=�2))�GR(a; ln(�k2=� q2)):(2)The kinemati
s are su
h that the fermion has momentum q and the external s
alar parti
le 
arries zeromomentum. The equation 
an graphi
ally be represented asq
q0 = q

q0 + q
q0 + q

q0
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where the blob represents the unknown Green fun
tion GR(a; ln(�q2=�2)). This linear Dyson{S
hwingerequation 
an be solved by a s
aling solution, L = ln(�q2=�2),(3) GR(a; L) = exp f�
G(a)Lg:Indeed, this satis�es the desired normalization and leads to the equation(4) exp f�
G(a)Lg = 1 + (exp f�
G(a)Lg � 1) �aF1(
G) + a2F2(
G)� ;where the two Mellin transforms are the fun
tions determined by(5) F1 : �! � Z d4ki�2 1k2(k � q)2 �k2q2���and similarly(6) F2 : �! ZM d4ki�2 ZM d4li�2 l=(k=+ q=)(k + l)2l2(k + q)2k2(l � q)2 � (l + k)2q2 ��� :Clearing the fa
tor [expf�
G(a)Lg � 1℄ in this equation gives(7) 1 = aF1(
G) + a2F2(
G):It remains to determine F1; F2 expli
itely and solve this impli
it equation for 
G in terms of a. We do so inthe next se
tions but �rst dis
uss the perturbative stru
ture behind this solution.2.2. The algebrai
 stru
ture. We 
an identify any graph in this resummation with a word in two lettersu; v say, for example:(8)We have renormalized Feynman rules �R su
h that(9) �R(u)(L) = �L lim�!0 �F1(�);and(10) �R(v)(L) = �L lim�!0 �F2(�):The Green fun
tion GR(a; L) is obtained as the evaluation by �R of the �xpoint of the 
ombinatorialDyson S
hwinger equation(11) X(a) = I+ aBu+(X(a)) + a2Bv+(X(a)):We have(12) X(a) = 1 + au+ a2(uu+ v) + : : : = expg [au+ a2v℄;where g is the shu�e(13) Hlin �Hlin ! Hlin;(14) Bi+(w1) g Bj+(w2) = Bi+(w1 g Bj+(w2)) +Bj+(w2 g Bi+(w1));8i; j 2 fu; vg. Note that for example ug u = 2uu. 2



The two maps Bi+ are Ho
hs
hild one-
o
y
les, and X(a) is group-like:(15) �X(a) = X(a)
X(a):Correspondingly, de
omposing X(a) = 1 +Pk�1 ak
k, we have(16) �
k = kXj=0 
j 
 
k�j ;with 
0 = 1. This is a de
orated version of the Hopf algebra of unde
orated ladder trees tn with 
oprodu
t�tn =Pnj=0 tj 
 tn�j . Feynman rules be
ome iterated integrals as(17) �R(Bi+(w))(L) = Z ��(w)(ln k2=�2)d�i(k)	� ;where d�i is the obvious integral kernel for i 2 u; v, 
f. (1). Apart from the shu�e produ
t, we have disjointunion as a produ
t whi
h makes the Feynman rules into a 
hara
ter(18) �(w1 � w2) = �(w1)�(w2):These two 
ommutative produ
ts g; � allow to express the primitive elements asso
iated with shu�es ofletters u; v, see for example [7℄:Theorem 1. The primitive elements are given by polarization of the primitive elements pn of the unde
oratedladder trees tn. These are given by pn = 1n [S ? Y ℄(tn).Here, Y denotes the grading operator, de�ned by Y (tk) = ktk and the star produ
t is de�ned as usual byO1 ? O2 = � Æ (O1 
O2) Æ�. Polarization of the unde
orated primitive elements pn means that we de
orateea
h vertex of pn with u+ v.The set P(u; v) of primitive elements is hen
e spanned by elements piu;iv , where the integeres iu; iv 
ountthe number of letters u and v in the polarization of tiu+iv . For example the primitive element 
orrespondingto the unde
orated ladder tree t2 is p2 = t2 � 12 t1t1. Polarization yieldsp2;0 = 12(ug u� u � u) = uu� 12u � u; p0;2 = 12(v g v � v � v) = vv � 12v � v;(19) p1;1 = ug v � u � v = uv + vu� u � v:3. The Mellin transformsThe general stru
ture of the Mellin transform 
an be obtained from quite general 
onsiderations. The
ru
ial input 
omes from power
ounting and 
onformal symmetry.Theorem 2. The Mellin transforms above are invariant under the transformation �! 1� �.Proof: Expli
it 
omputation. We give it here for F1. We assume <� > 0 so that Fi is well de�ned as afun
tion. Then, the 
onformal inversion k� ! k0� = k�=k2 gives expli
itly(20) � Z d4k0i�2 1k02(k0 � q)2  k02q2 !�1+�for F1. F2 
an be treated similarly by 
onformal inversion in both Minkowski spa
es. �3.1. The Mellin transform of the one-loop kernel. This Mellin transform is readily integrated to deliver(21) F1(�) = � 1�(1� �) ;exhibiting the expe
ted 
onformal symmetry. 3



3.2. The Mellin transform of the two-loop kernel. Determining this Mellin transform is the 
ore partof this paper. We pro
eed by making use of the advantage that we remain in four dimensions, and use resultsof [6℄. We are interested in the integral(22) F2(�) = (�q2)� ZM d4ki�2 ZM d4li�2 l=(k=+ q=)[�(l + k)2℄��(k + l)2l2(k + q)2k2(l � q)2 :Integration is over the eight dimensional 
artesian produ
t of two Minkowski spa
es furnished with a qua-drati
 form(23) a2 = a20 � a21 � a22 � a23:A simple tensor 
al
ulus delivers(24) F2(�) = 12 f�2G4(1; 1 + �)G4(1; 1 + �) + I6(1; 1; �; 1; 1; 2� �) + I6(1; 1; 1 + �; 1; 1; 1� �)g ;where(25) GD(a; b) = �(a+ b�D=2)�(D=2� a)�(D=2� b)�(a)�(b)�(D � a� b) ;so that G4(1; 1 + �) = 1�(1��) . We use the notation of [6℄ for I6. In this notation, we have I6 = I6. Settingu! 0 and v = �� or v = 1� � we 
an determine the two I6 integrals as a limit u! 0 in Eq.(19)(op.
it.) as(26) I6(1; 1; 1� v; 1; 1; 1 + v) = 8 1Xn=1n�2n+1(1� 2�2n)v2n�2;and similarly for v = 1� �. We hen
e �nd the above DSE in the form(27) 1 = �a 1
G(1� 
G) � a2( 1
2G(1� 
G)2 � 4 1Xn=1n�2n+1(1� 2�2n) �
2n�2G + (1� 
G)2n�2�) :4. The solutionWe 
an solve for 
G in the above in two di�erent ways, expressing the solution as an in�nite produ
t orvia the logarithmi
 derivative of the � fun
tion.4.1. Solution as an in�nite produ
t. We have:(28) GR(a; L) = exp8<: Xp2P(u;v) ajpj�R(p)(L)9=;:Here, the sum is over all primitives p 2 P(u; v), where P is the set of primitives assigned to any tree tnde
orated arbitrarily by letters in the alphabet u; v, as des
ribed above. The proof is an elementary exer
isein the Taylor expansion of the two Mellin transforms. Note that �R(p)(L) is linear in L for primitive p,�2L�R(L) = 0. We hen
e �nd for 
G(a)(29) 
G(a) = �� lnG�L jL=0 = �Xp ajpj�R(p)=L:Convergen
e of the sum is 
overed by the impli
it fun
tion theorem, whi
h provides for 
G through the twoMellin transforms in the DSE. We hen
e pro
eed to the se
ond way of expressing the solution.4



4.2. Solution via the  -fun
tion. We 
an express the DSE using the logarithmi
 derivative of the �fun
tion and we obtain1 = �a 1
G(1� 
G) � a2� 1
2G(1� 
G)2(30) + 1
G [ 0 (1 + 
G)�  0 (1� 
G)℄ + 11� 
G [ 0 (2� 
G)�  0 (
G)℄� 12
G h 0 �1 + 
G2 ��  0 �1� 
G2 �i� 12(1� 
G) � 0�3� 
G2 ��  0�1 + 
G2 ��� :Here(31)  0(x) = d2dx2 ln �(x):Again, the two-loop solution shows expli
itly the 
onformal symmetry 
G ! 1�
G. Note that the apparentse
ond order poles at 
G = 0 and 
G = 1 on the rhs are only �rst order poles upon using standard propertiesof the logarithmi
 derivative of the � fun
tion, as it has to be. This provides an impli
it equation for 
G,whi
h 
an be solved numeri
ally. 5. Con
lusionsWe determined the Mellin transform of the two-loop massless vertex in Yukawa theory. We used it toresum a linear Dyson{S
hwinger equation. Following [2, 3, 4℄, more 
omplete appli
ations to non-linearDyson{S
hwinger equations will be provided elsewhere. Te
hniques to deal with non-linearity have indeedbeen developed re
ently [2, 3, 4℄, and involve trans
endental fun
tions even upon resummation of terms fromthe �rst Mellin transform [2℄. In the non-linear 
ase one gets indeed results very di�erent from s
aling, ashas been demonstrated early on in �eld theory [8℄. Finally, we note that the same two-loop Mellin transformalso appears in setting up the full DSE in other renormalizable theories [5℄.A
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