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Hints on the high-energy seesawme
hanism from the low-energy neutrinospe
trumJ.A. Casas1, A. Ibarra2 and F. Jim�enez-Alburquerque1�1IFT-UAM/CSIC, C-XVI, Univ. Aut�onoma de Madrid, 28049 Madrid, Spain2DESY, Theory Group, Notkestrasse 85, D-22603 Hamburg, Germany.Abstra
tIt is an experimental fa
t that the mass ratio for the two heavier neutrinos,h = m3=m2 <� 6, is mu
h smaller than the typi
al quark and lepton hierar-
hies, whi
h are O(20 � 300). We have explored whether this pe
uliar patternof neutrino masses 
an be a 
onsequen
e of the pe
uliar way they are generatedthrough a see-saw me
hanism, determining 1) How the present experimentaldata restri
t the stru
ture of the high-energy seesaw parameters and 2) Whi
h
hoi
es, among the allowed ones, produ
e more naturally the observed patternof neutrino masses. We have studied in parti
ular if starting with hierar
hi-
al neutrino Yukawa 
ouplings, as for the other fermions, one 
an naturallyget the observed h <� 6 ratio. To perform the analysis we have put forward atop-down parametrization of the see-saw me
hanism in terms of (high-energy)basis-independent quantities. Among the main results, we �nd that in most
ases m2=m1 � m3=m2, so m1 should be extremely tiny. Also, the VR matrixasso
iated to the neutrino Yukawa 
ouplings has a far from random stru
ture,naturally resembling VCKM. In fa
t we show that identifying VR and VCKM, aswell as neutrino and u�quark Yukawa 
ouplings 
an reprodu
e hexp in a highlynon-trivial way, whi
h is very suggestive. The physi
al impli
ations of theseresults are also dis
ussed.De
ember 2006
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Figure 1: Experimental mass ratio of the two heavier neutrinos, m2=m3, vs. the mass of the lightest,m1, in the 
ase of normal hierar
hy.1 Introdu
tionThe 
avour stru
ture of the leptoni
 se
tor of the Standard Model shows 
hallengingdi�eren
es with respe
t to the hadroni
 one. Mu
h attention has been attra
ted by theneutrino mixing matrix, UMNS, whi
h presents two large mixing angles and a small one,in 
ontrast to the three small mixing angles of the CKM matrix. On the other hand,the neutrino spe
trum is not as well known as the neutrino mixings. In parti
ular,we still do not know whether the spe
trum has a normal or an inverse hierar
hy (i.e.whether the most split neutrino is the heaviest or the lightest), or whether it is quasi-degenerate [1℄. However, the amount of available information allows us to noti
e that,in either 
ase, the pattern of neutrino masses is neatly di�erent from those of quarksand 
harged-leptons. A

ording to the last analyses of neutrino os
illation experiments[2℄, the two independent ��mass splittings are (at 2�)�m2sol = (7:3� 8:5)� 10�5 eV2; �m2atm = (2:2� 3:0)� 10�3 eV2: (1)Hen
e, even in the 
ase of a normal hierar
hy, the mass of the heaviest neutrino is atmost � 6 times the mass of the se
ond heaviest one. The pre
ise value depends onthe mass of the lightest neutrino, as shown in Fig. 1. This 
ontrasts to the hierar
hyobserved in quarks and 
harged leptons, where the typi
al mass ratios are O(20) (for1



d�quarks and �/� leptons) and O(300) (for u�quarks and e/� leptons) [3℄. Of 
ourse,if the ��spe
trum is quasi degenerate or with inverted hierar
hy, the di�eren
e withthe mass pattern of the other fermions is mu
h more 
onspi
uous. In any 
ase we 
ansafely 
on
lude that the hierar
hy between the two heaviest neutrinos is mu
h softerthan the one for the 
orresponding quarks or 
harged leptons.A

ording to the see-saw me
hanism [4℄, whi
h is the most popular me
hanismfor generating neutrino masses, these arise in a slightly more 
ompli
ated way thanthe masses of quarks and 
harged leptons. Namely, beside the 
onventional Yukawa
ouplings between the Higgs, the left{handed and the right{handed neutrinos, oneassumes Majorana masses for the right{handed ones. Upon de
oupling of the latter,the light neutrino states have an e�e
tive Majorana mass matrix, M� / YTM�1Y,where Y is the initial matrix of Yukawa 
ouplings andM is the Majorana mass matrixof the right-handed neutrinos. So, unlike quarks and 
harged leptons, neutrino massesare not proportional to the Yukawa 
ouplings. Then one may wonder whether thepe
uliar pattern of neutrino masses 
an be a 
onsequen
e of the pe
uliar way they aregenerated. If so, the spe
trum of light neutrinos may shed light on the unknown featuresof the seesaw me
hanism. In parti
ular one may ask 1) How the present experimentaldata restri
t the stru
ture of the high-energy seesaw parameters and 2) Whi
h 
hoi
es,among the allowed ones, produ
e more naturally (i.e. without unpleasant �ne-tunings)the observed pattern of neutrino masses. In other words, one 
an examine how possibleand how plausible is for the seesaw me
hanism to reprodu
e the experimental data,and what is the 
orresponding information that we 
an learn about the underlyinghigh-energy theory. Also, from su
h analysis, one 
an hopefully extra
t hints on thestill unknown part of the low-energy ��spe
trum. The investigation of these questionsand their physi
al impli
ations is the goal of this paper.In se
t. 2 we �x the notation and put forward a basis-independent top-down parametriza-tion for the see-saw, whi
h is spe
ially useful to study the pattern of ��masses. Wedis
uss how the VR mixing matrix asso
iated to Y plays here a key role. In se
t. 3we analyze the 2-neutrino 
ase, as a simple and useful warm-up. In se
t. 4 we studythe 3-neutrino 
ase. We give general analyti
al results, 
ompleting (and 
on�rming)them with numeri
al surveys. We pay spe
ial attention to the possibility that the��spe
trum 
ould arise from hierar
hi
al Yukawa 
ouplings, as for the other fermions,and work out the required stru
ture of the high energy parameters and some 
onse-2



quen
es for the unknown part of the low-energy ��spe
trum. In se
t. 5 we exploresuggestive ans�atze for the VR, showing in parti
ular that identifying VR and VCKM, aswell as �� and u�quark Yukawa 
ouplings 
an reprodu
e the experimental ��spe
trumin a highly non-trivial way, whi
h is remarkable. In se
tions 5 and we present the 
on-
lusions and an outlook dis
ussing physi
al impli
ations of these results. Finally, inthe Appendix we give useful formulas 
on
erning the eigenvalues of a (general or not)matrix.2 Bottom-up and Top-down parametrizations of thesee-saw2.1 Notation and 
onventionsWe will use a standard notation that 
an be used for both the Standard Model (SM) andthe supersymmetri
 (SUSY) versions of the seesaw me
hanism. The seesaw Lagrangianis given by L � e
 TR YeL � �H + �
 TR YL �H � 12�
 TR M�
R + h:
: (2)where Li (i = e; �; �) are the left-handed lepton doublets (generation indi
es are sup-pressed), (e
R)i are the 
harged lepton singlets, �Ri the right-handed neutrino singletsand H is the (hyper
harge = +1=2) Higgs doublet. Ye;Y are the 3 � 3 matri
es of
harged-leptons and neutrino Yukawa 
ouplings. Finally, M is a 3� 3 Majorana massmatrix for the right-handed neutrinos. BelowM we 
an integrate out the right-handedneutrinos, obtaining the usual e�e
tive Lagrangian that 
ontains a Majorana massterm for the left-handed neutrinos:ÆL = �12�TM�� + h:
: (3)where M� = v2 � ; (4)with v = hH0i ' 174 GeV and � = YTM�1Y (5)3



The previous equations are valid for a SUSY theory understanding all the �elds ineqs.(2, 3) as super�elds, and repla
ing L ! W , ÆL ! ÆW , i.e. the superpotentialand the e�e
tive superpotential (with no h.
. terms). In addition H ! H2, i.e.the (hyper
harge = +1=2) SUSY Higgs doublet and hH0i ! hH02 i = v sin �, withtan � � hH02 i=hH01i, as usual.Working in the basis in whi
h the 
harged-lepton Yukawa matrix (Ye) and gaugeintera
tions are 
avour-diagonal, the neutrino mass matrix, �, 
an be expressed as� = U�MNS D� U yMNS; D� � diag(�1; �2; �3); (6)where �i � 0 (with the 
onvention �1 � �2 � �3 and thus m1 � m2 � m3) and UMNSis a unitary matrix that 
an be written as1UMNS = V � diag(e�i�=2; e�i�0=2; 1) ; (7)where � and �0 are CP violating phases (if di�erent from 0 or �) and V has the ordinaryform of a CKM matrixV = 0B� 
13
12 
13s12 s13e�iÆ�
23s12 � s23s13
12eiÆ 
23
12 � s23s13s12eiÆ s23
13s23s12 � 
23s13
12eiÆ �s23
12 � 
23s13s12eiÆ 
23
13 1CA : (8)Finally, note that the observable neutrino masses are given bymi = v2�i (SM)mi = v2 sin2 � �i (SUSY) (9)Sin
e we will be mainly interested in the mi=mj = �i=�j ratios, we will work most ofthe time with �i rather than with mi. This avoids the proliferation of annoying v2,v2 sin2 � fa
tors and permits a uni�ed treatment of the SM and SUSY 
ases [note thateq.(5) is the same for both 
ases℄. A
tually, all the results in the paper are equallyvalid for the SM and the SUSY 
ases, ex
ept for some slight di�eren
es due to radiativee�e
ts dis
ussed in se
t. 5.1As is known, in eq.(7) V 
an be multiplied from the left by a diagonal unitary matrix with threeindependent phases. However, these phases 
an be absorbed in phase rede�nitions of the eR �elds, sothey are no physi
al.
4



2.2 Basis-independent quantitiesIn order to perform basis-independent analyses, it is extremely 
onvenient to work withbasis-independent quantities. For this matter, note that under a 
hange of basis�L ! XL�L ; �R ! XR�R (10)(XL;R are arbitrary unitary matri
es), the Yukawa and mass matri
es transform asY! XyRYXL ; M! XyRMX�R ; �! XTL�XL (11)Now the low-energy neutrino Lagrangian, eq.(3), 
ontains 9 independent (i.e. notabsorbable in �eld rede�nitions) parameters. They 
orrespond to the three mass \eigen-values" �i (stri
tly speaking they are the positive square roots of the ��y eigenvalues)and the six parameters of UMNS, whi
h is by 
onstru
tion a basis-independent quantity(it is de�ned in a parti
ular and well-determined basis of the �L �elds).On the other hand the see-saw (high-energy) Lagrangian, eq.(2), 
ontains 18 inde-pendent parameters. These 
an be de�ned in the following way. From eq.(11) is 
learthat one 
an always go to a �R basis where M is diagonal, with positive entries:M! diag(M1;M2;M3) � DM (12)where we adopt the 
onvention M1 � M2 � M3. Obviously Mi are basis-independentquantities. Working in the �L and �R bases whereYe andM, respe
tively, are diagonal,the neutrino Yukawa matrix, Y, 
an be expressed asY = VRDY V yL ; DY � diag(y1; y2; y3); (13)where, again, yi � 0 and y1 � y2 � y3. The three yi parameters are obviouslybasis-independent quantities. Besides Mi and yi, there are 12 independent high-energyparameters 
ontained in VL; VR. Generi
ally, both matri
es 
an be written �1V�2,where �1;2 are diagonal unitary matri
es and V has the same fun
tional form as (8)[repla
ing the �ij angles and the Æ phase by new �Lij, ÆL and �Rij, ÆR respe
tively℄.However, for VR the �2 matrix 
an be absorbed into the de�nition of VL [see eq.(13)℄,soVR = 0BBBBB� ei�1 ei�2 1
1CCCCCA0BBBBB� 
R13
R12 
R13sR12 sR13e�iÆR�
R23sR12 � sR23sR13
R12eiÆR 
R23
R12 � sR23sR13sR12eiÆR sR23
R13sR23sR12 � 
R23sR13
R12eiÆR �sR23
R12 � 
R23sR13sR12eiÆR 
R23
R13

1CCCCCA :(14)5



Likewise, for VL the �1 matrix 
an be absorbed into phase de�nitions of L = (�L; eL)Tand eR (keeping Ye diagonal). Then VL has a stru
ture similar to UMNS in (7), i.e.VL = V (�L12; �L23; �L13; ÆL) � diag(ei�1 ; ei�2; 1). Hen
e, VL and VR have 6 independentparameters ea
h, whi
h, beside Mi and yi, 
omplete the 18 independent parameters ofthe see-saw Lagrangian2.In summary, in the see-saw framework, the 18 (9) independent parameters of thehigh(low)-energy neutrino Lagrangian are given by the following basis-independentquantities: High� Energy Low � Energyyi �iMi UMNSVR �!VL|||| ||||18 parameters 9 parameters (15)
2.3 Bottom-up and Top-down parametrizationsSin
e the number of independent parameters of the see-saw me
hanism is larger in thehigh-energy than in the e�e
tive theory, one �nds often the problem of using the avail-able (low-energy) experimental information to 
onstrain the high-energy parameters.This is a bottom-up problem. It was shown in ref. [6℄ that, working in the basis whereYe;M are diagonal and positive, for given D�, UMNS, the Yukawa matrix Y has theform Y = DpMRDp�U yMNS (16)where DpM = pDM (with Mi arbitrary) and R is a 
omplex orthogonal matrix (withthree arbitrary 
omplex angles). Thus DM and R 
ontain the 9 additional parametersof the high-energy theory with respe
t to the low-energy one. Eq.(16) represents abottom-up parametrization of the see-saw. If desired, one 
an extra
t yi, VL and VRfrom Y upon diagonalization.2A similar dis
ussion 
an be found in ref. [5℄. 6



However, for some kinds of problems it is more 
onvenient a top-down parametriza-tion, i.e. a way to obtain, as dire
tly as possible, the physi
al low-energy parametersfrom the high-energy ones. This is pre
isely the sort of problem 
onsidered here: whatkind of low-energy neutrino spe
trum 
an we naturally expe
t, starting with reasonableor well-motivated 
hoi
es of the high-energy parameters3. Obviously, starting with thehigh-energy parameters in (15) one 
an use eqs.(13, 5) to write � in the basis whereYe;M are diagonal� = YTDM�1Y = V �LDY V TRDM�1VRDY V yL ; (17)and then, upon diagonalization, determine UMNS and �i. Nevertheless it would beuseful to �nd a more dire
t way to extra
t the neutrino masses, �i, from the high-energy parameters. To this end it is interesting to noti
e that �i do not depend on VL.In parti
ular, they 
an be obtained upon diagonalization of�0 = DY V TRDM�1VRDY ; (18)whi
h is simply � after rede�ning �L as in eq.(10) with XL = VL. This means thatD� =W TL �0WL for a 
ertain unitary WL matrix, or, in other words,D�2 = Eigenvf�0�0yg (19)Therefore, given DY and DM , the VR matrix tells the values of �i. VL and UMNSget 
ompletely de
oupled from this 
ux of information: note that 1) eq.(19) does notdepend on VL and 2) the 
onne
tion of VL and UMNS is given byUMNS = VLWL (20)where WL has been de�ned after eq.(18). This means that for any 
hoi
e of VR, one
an always 
hoose VL so that the experimental UMNS is reprodu
ed.Eqs.(19, 20) [with �0, WL de�ned in eq.(18) and the lines below℄ represent a top-down parametrization of the see-saw whi
h is useful for our purposes. The VR matrix, inparti
ular, plays here a similar role as the R matrix in the bottom-up parametrization(16). They en
ode the 
ux of information about matrix eigenvalues along the top-downand bottom-up dire
tions,3Related work on top-down parametrizations and analysis of top-down questions 
an be found e.g.in ref. [7℄ 7



DY ; DM VR�! D� (21)D�; DM R�! DY ; (22)through eqs.(16, 19) respe
tively. UMNS gets 
ompletely de
oupled from this 
ux ofinformation and 
an always be �tted. [This has been just explained for the top-downparametrization. For the bottom-up one, note from (16) that DY depends on D�, DMand R, but not on UMNS.℄ Hen
e, it is not surprising that VR and R 
ontain the samenumber of parameters (6 for three families of neutrinos). The 
onne
tion between themis given by Y Y y = DpMRD�RyDpM = VRDY 2V yR : (23)It is worth mentioning that VR has a pre
ise physi
al meaning: it measures the mis-alignment between Y and M. If VR is non-diagonal, there is no �R basis in whi
h Yand M 
an get simultaneously diagonal. The VR entries 
an be identi�ed as genuinephysi
al inputs (and in fa
t they play a relevant role in 
ertain physi
al pro
esses,as those related to leptogenesis). On the other hand, R has a more obs
ure physi
almeaning, even though it is a useful tool for phenomenologi
al analyses.3 The 2-neutrino systemAlthough the 
ase of two families of (left and right) neutrinos is obviously non-realisti
4,it is very useful in order to gain intuition about the form of the low-energy spe
trumfor typi
al high-energy inputs. In this 
ase VR has the formVR = " ei� 1 # " 
R sR�sR 
R # (24)We will �rst obtain some simple and general relations involving VR, DM , DY and D�,whi
h however 
ontain mu
h information. In parti
ular they put useful 
onstraintson VR to a
hieve a soft normal hierar
hy, �2=�1 � 6, or quasi-degenera
y, �2=�1 � 14A
tually, the analysis presented in this se
tion is also valid for the 
ase of three left-handedneutrinos and two right-handed neutrinos, whi
h is the minimal version of the see-saw model 
apableof a

ommodating the low-energy observations [8℄.8



(whi
h for two neutrinos is equivalent to a inverse hierar
hy). The te
hniques used forthis general analysis will be useful for the 3-neutrino 
ase, to be studied in the nextse
tion.Then we will get exa
t results by solving analyti
ally the se
ular equation (19)[something too 
umbersome for three families℄.3.1 General resultsFrom eqs.(18, 19) is 
lear thatdetfD�g = �1�2 = y21y22M1M2 ; (25)whi
h does not depend on VR. On the other hand, the hierar
hy between the physi
almasses, say h, 
an be written ash � �2�1 = �22detfD�g ; (26)so any information about �2 translates automati
ally into h. Now, using eq.(19) we
an obtain additional information on �2 from the fa
t that �0�0y is a positive hermitianmatrix, whi
h means in parti
ular that its largest eigenvalue is larger than any diagonalentry, i.e.�22 � ��0�0y�ii = Xj=1;2 j�0ijj2 = y2i Xj=1;2 y2j ���(VR)kiM�1k (VR)kj���2 ; i = 1; 2 (27)At this point we 
an try an ansatz for some of the high-energy parameters. Let usassume for the moment that the hierar
hy between y1 and y2 is similar to the hierar
hyof Yukawa 
ouplings observed in 
harged fermions: y2=y1 = O(20� 300). This meansthat the r.h.s. of eq.(27) is generi
ally dominated by ��0�0y�22, in parti
ular by theterm proportional to y42:�22 � ��0�0y�22 = y42M21 ����(VR)212 + M1M2 (VR)222����2 +O  y21y22M21 ! (28)where the subdominant terms are positive. In fa
t, the previous inequality is typi
ally
lose to an equality: note that from �22 � tr(�0�0y), it follows that�22 � ��0�0y�22 � ��0�0y�11 = O  y21y22M21 ! : (29)9



Therefore, eq.(28) is an equality up to terms suppressed by O(y21y22 ).5Plugging eq.(28) into eq.(26), we obtain an exa
t inequality for h,h = �2�1 � y22y21 M2M1 ����(VR)212 + M1M2 (VR)222����2 (30)Clearly, for random values of the VR entries we expe
t a low-energy hierar
hy h =O �y22y21 M2M1�, mu
h stronger than that of Yukawa 
ouplings and, of 
ourse, than theexperimental one, hexp <� 6. E.g. for M1 ' M2 we expe
t h = O(102�5); for M2=M1 �y2=y1 we expe
t h = O(103�7).Consequently, either we give up the natural assumption that the Yukawa 
ouplingsfor neutrinos present a hierar
hy similar to the other fermions', or we a

ept that the(VR) entries are far from random. (This is already a strong 
on
lusion that holds for thethree-generation 
ase, as we will see in the next se
tion.) Let us take the se
ond pointof view and determine the 
onstraints on VR to a
hieve degenera
y or soft hierar
hy inthe neutrino spe
trum, h ' 1, h <� 6 respe
tively.Let us �rst 
onsider the degenerate (h = 1) 
ase, i.e. �21; �22 ! y21y22=(M1M2).Then, if VR has real entries, eq.(30) requires (VR)412 � y21y22 M1M2 � 1 [ie. sR ' 0 in theparametrization (24)℄. In addition, taking i = 1 in (27), we get an extra inequality for�2 �22 � y41M21 ����(VR)211 + M1M2 (VR)221����2 : (31)Multiplying (30) and (31) it is straightforward to 
he
k that the degenerate 
ase is onlyobtainable when (VR)21 = 0 (i.e. sR = 0) and, besides, M2=M1 = y22=y21.On the other hand, if VR has 
omplex entries [� 6= 0; � in eq.(24)℄, a 
an
ellationinside the r.h.s. of (28) is possible (in the absen
e of su
h 
an
ellation the previousresults essentially hold). This requires(VR)212 ' �M1M2 (VR)222 ; (32)whi
h in turn implies � ' ��=2 in (24) (in the next subse
tion we will show that� = ��=2 exa
tly6). In addition, M1=M2 
annot be arbitrarily small. From (32) we5Another inequality for �22, similar to eq.(29) arises from 
onsidering the Gershgorin 
ir
le asso
i-ated to ��0�0y�22, as dis
ussed in Appenddix A.6Let us mention that � = ��=2 does not mean maximum CP -violation. On the 
ontrary, su
hphase 
an be absorbed 
ompletely in the de�nition of DM [see eg. eqs.(17, 18)℄, whi
h now 
ontainsnegative, but real entries. Hen
e this value of � does not amount to any CP -violation. Nevertheless,non-trivial CP -violating phases 
an still appear from the VL se
tor. These translate into CP -phasesin UMNS . 10



see that very smallM1=M2 implies j(VR)21j � 1, j(VR)22j = j(VR)11j ' 1, whi
h pluggedinto (31) gives M1=M2 >� y21=y22, thus setting a lower bound on M1=M2. Eq.(32) tellsthat, unless M2=M1 = O(1), the degenera
y 
an only be obtained by �ne-tuning sRto a very small, but di�erent from zero, value. (This is the 
ase in parti
ular forM2=M1 ' y2=y1.) For random values of sR one is led to a huge hierar
hy between thephysi
al masses, as expe
ted.Let us now say how the previous 
onditions are relaxed if, instead of exa
t degen-era
y (h = 1), we require a soft hierar
hy (h <� 6). For the real 
ase we get a relaxed
ondition on the Mi hierar
hy: h�1 <� (M1=M2)(y22=y21) <� h. The upper bound 
orre-sponds to sR = 0. Otherwise a tuning of sR is required. For the 
omplex 
ase, whenevera 
an
ellation inside eq.(28) is needed, the same 
ondition (32) is obtained, thus re-quiring a small and tuned value of sR. This o

urs in parti
ular for M2=M1 ' y2=y1.In summary, starting with a hierar
hy of neutrino Yukawa 
ouplings similar tothat for the 
harged fermions leads typi
ally to a very strong hierar
hy of low-energyneutrino masses (unlike the observed one). Nevertheless, adjusting the VR entries itis possible to get the desired degenera
y or soft hierar
hy at low-energy. The pri
eis a �ne-tuning between y2=y1, M2=M1 and VR. Normally a very small, but di�erentfrom zero angle in eq.(24) is required. If nature had just two spe
ies of neutrinos wewould 
on
lude that, unless a theoreti
al reason is found for this tuning, the see-sawme
hanism 
annot naturally lead to the observed low-energy neutrino spe
trum if onestarts with hierar
hi
al neutrino Yukawa 
ouplings similar to those of other fermions.(This applies to the model with two right-handed neutrinos and three left-handedneutrinos mentioned in footnote 3.)3.2 Some exa
t resultsFor the 2-neutrino system, the mass eigenvalues 
an be obtained from eq.(19) in termsof the high-energy parameters in a 
ompletely analyti
al way. The results are parti
-ularly simple and illustrative for the degenerate 
ase. Then eq.(19) 
an be written as�2d1 = �0�0y, with �2d � �21 = �22 = y21y22=(M1M2). Consequently,DM�1VRDY 2V yRDM�1 = �2dV �RDY �2V TR (33)
11



Comparing the matrix entries of the two sides one 
on
ludes that the degenera
y isonly a
hieved when� = �=2 ; 
os2 �R = M2y22 �M1y21(M1 +M2)(y22 � y21) ; (34)whi
h implies in turn y21y22 � M1M2 : (35)This 
on�rms the fa
t that for any 
hoi
e of yi, Mi satisfying the inequality (35), thereis a 
hoi
e of VR [given by eq.(34)℄ that produ
es exa
tly degenerate neutrinos, �1 = �2.On the other hand, one 
an 
he
k that the degenera
y is generi
ally a
hieved thanksto a �ne-tuning of the high-energy parameters. This is illustrated for y2=y1 =M2=M1 =300 (i.e. the same hierar
hy as u�quarks) in Fig. 2, whi
h shows the mass-ratiom2=m1 = �2=�1 a fun
tion of �R for di�erent values of the � phase. As expe
ted,the exa
t degenera
y is only possible for � = �=2 and at a very small (but di�erentfrom zero) value of �R [see eq.(34) and the dis
ussion after eq.(32)℄. Changing �R and� from their 
riti
al values, even if very slightly, pushes rapidly m2=m1 out from theallowed experimental region (yellow band in the �gure). For larger values of �R, onegets m2=m1 ! O �y22y21 M2M1�, in agreement with the dis
ussion of subse
t. 3.1. To thisrespe
t, noti
e that in the �gure only a small range of �R values has been represented(for the sake of 
larity).The 
on
lusions are similar when M1 ' M2, the only di�eren
e being that the
riti
al value of �R is not small.4 The 3-neutrino systemLet us now examine the realisti
 
ase with three neutrino spe
ies and a hierar
hybetween the two heavy ones, h = m3=m2 = �3=�2, in the experimental range: fromh ' 1 (quasi-degenera
y or inverse hierar
hy) to h ' 6 (normal but soft hierar
hy).From the results of the previous se
tion, we 
an already foresee some 
on
lusions.First, to a
hieve a neutrino spe
trum where the three neutrinos are quasi-degenerateor present a soft hierar
hy will be probably as unnatural as for the 2-neutrino 
ase. Wewill see that this indeed the 
ase. On the other hand, to a
hieve the a
tual experimental
onstraint, namely soft hierar
hy or quasi-degenera
y just for the two heavy neutrinos12
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Figure 2: Mass-ratio m2=m1 in a 2-neutrino system vs. the �R angle for several values of the��phase (see the notation of eq. (24)) when y1 : y2 =M1 :M2 = 1 : 300.(the latter 
ase 
orresponds to an inverse hierar
hy) 
an be mu
h easier. Eg. if VR hasonly sizeable entries in f1; 2g box, (i.e. �23 = �13 = 0) �1 (�2) will de
rease (in
rease)signi�
antly, as �12 departs from zero, while �3 will not 
hange. In 
onsequen
e weexpe
t in this 
ase a very large �2=�1 hierar
hy but a softened �3=�2 one. This is
onsistent with experiment and does not imply �ne-tunings (only small, but not tuned,values for 
ertain angles). As we will see, other possibilities 
an also work, but theyare not very di�erent from the one just out-lined.4.1 General resultsLet us re
all that the neutrino masses, �i, depend on the high-energy parameters,yi;Mi; VR through eq.(19). As for the 2-neutrino 
ase, the determinantdetfD�g = �1�2�3 = y21y22y23M1M2M3 ; (36)
13



does not depend on VR. The hierar
hy between the two heavy neutrino masses 
an bewritten as h = m3m2 = �3�2 = �23�1detfD�g ; (37)Now, in order to get information about h we need information on �3; �1.Using the fa
t [eq.(19)℄ that �2i are the eigenvalues of �0�0y, whi
h is a positivehermitian matrix, we 
an write�23 � ��0�0y�ii = Xj=1;2;3 j�0ijj2 = y2i Xj=1;2;3 y2j j(VR)kiM�1k (VR)kjj2 ; i = 1; 2; 3 (38)At this point we 
an try again an ansatz for the spe
trum of high-energy parameters.So let us assume for the moment that the hierar
hy between the yi is similar to thehierar
hy of Yukawa 
ouplings observed in 
harged fermions: y3=y2; y2=y1 = O(20 �300). Then eq.(38) is generi
ally dominated by ��0�0y�33, in parti
ular by the termproportional to y43, whi
h 
orresponds to i = j = 3:�23 � ��0�0y�33 = y43M21 ����(VR)213 + M1M2 (VR)223 + M1M3 (VR)233����2 +O y23y22M21 ! (39)where the subdominant terms are positive. As for two neutrinos, the previous inequalityis typi
ally 
lose to an equality: from �23 � tr(�0�0y), it follows that�23 � ��0�0y�33 � ��0�0y�11 + ��0�0y�22 = O  y23y22M21 ! ; (40)so (39) holds as an equality up to y22y23 {suppressed terms7.On the other hand we 
an obtain information on �1 by 
onsidering �0�1(�0�1)y,whi
h is a positive hermitian matrix with ��2i eigenvalues. The largest eigenvalue, ��21 ,satis�es��21 � ��0�1(�0�1)y�ii = Xj=1;2;3 j�0�1ij j2 = y�2i Xj=1;2;3 y�2j j(VR)kiMk(VR)kjj2; i = 1; 2; 3(41)This equation is typi
ally dominated by ��0�1(�0�1)y�11, in parti
ular by the i = 1; j = 1term, �21 � y41M23 ����(VR)231 + M2M3 (VR)221 + M1M3 (VR)211�����2 �O y61y22M23 ! (42)7An inequality similar to (40) arises from the Gershgorin theorem, as dis
ussed in Appendix A.14



where the subdominant terms are negative (so ignoring them still represents an ex-a
t inequality). Again, this inequality is typi
ally 
lose to an equality: from ��21 �tr h�0�1(�0�1)yi it follows that8�21 � 24 Xi;j=1;2;3 j�0�1ij j235�1 ; (43)whi
h is dominated by i = j = 1:�21 � y41M23 ����(VR)231 + M2M3 (VR)221 + M1M3 (VR)211�����2 �O y61y22M23 ! (44)Note that in eq.(44) the subdominant terms are negative (so ignoring them here rep-resents an approximate inequality). In any 
ase, 
omparing (42) and (44), we see thateq.(42) holds as an equality up to y21y22 {suppressed terms.Similarly to the 2-neutrino 
ase, plugging eqs.(39, 44) into eq.(37) we get aninequality9 for h,h = m3m2 = �3�2 >� y23y22 M2M1 ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2���(VR)231 + M2M3 (VR)221 + M1M3 (VR)211��� : (45)From this expression it is 
lear that for random values of the VR entries we expe
t alow-energy hierar
hy mu
h stronger than that of Yukawa 
ouplings.Only for y3=y2, M2=M1 = O(1) 
an the experimental value hexp <� 6 be naturallyobtained. For a yi=yj hierar
hy similar to quarks and 
harged leptons, we expe
t weexpe
t h = O(102�5) if M1 'M2 'M3, and h = O(103�7) if Mi=Mj � yi=yj (whi
h isprobably a more attra
tive possibility), in any 
ase way too large.So we arrive to a similar 
on
lusion as for two neutrinos: either we give up thenatural assumption that the neutrino Yukawa 
ouplings present a hierar
hy similar toother fermions, or we a

ept that the VR entries are far from random. However, in this
ase \far from random" does not ne
essarily mean \�ne-tuned", as will be shown insubse
t. 4.3.We will devote subse
ts. 4.2 and 4.3 to determine the pattern of VR required toa
hieve the desired soft hierar
hy (or quasi-degenera
y) for the three neutrinos or just8On
e more, an inequality similar to (43) arises from the Gershgorin theorem, see Appendix A.9Plugging eq.(43) instead of eq.(44) into eq.(37) we obtain an exa
t inequality for h, though slightlymore involved than (45). On the other hand, a simpler approximate inequality is obtained from (45)by noting that the absolute value in the denominator is � 1.15



for the two heavy ones respe
tively. Let us advan
e that sin
e the absolute value inthe denominator of (45) is � 1, then ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2 � 1 must beful�lled in all 
ases.Conne
tion with models of anar
hi
 neutrinosWe would like to make a very short digression about the use of the previous ap-proa
h to analyze s
enarios of anar
hi
 neutrinos [9℄. The basis-independent top-downformulation of the see-saw me
hanism that we are using may be 
onvenient to makestatisti
al 
onsiderations about the high-energy parameters that de�ne the theory, asis done in models of anar
hi
 neutrinos. In parti
ular, in the absen
e of additionalassumptions, it makes sense to s
an yi and the 6 parameters de�ning VR instead of theY matrix, whi
h 
ontains 18 parameters (3 of them redundant and 6 not related tothe neutrino masses).Then, from (45) we noti
e that for average values of the VR entries, in parti
ular forj(VR)13j2 � j(VR)31j2 � 1=3, we get a hierar
hy h � 13 y23y22 M2M1 . Therefore the expe
tablepattern of neutrino masses depends 
ru
ially on the range in whi
h the yi;Mi param-eters are allowed to vary. E.g. if one uses yi 2 [1=a; a℄y0, Mi 2 [1=a; a℄M0, with a > 1,one expe
ts h � a3=3.4.2 Degenera
y or soft hierar
hy for the three neutrinosLet us �rst 
onsider the 
ase of 
ompletely degenerate low-energy neutrinos. Fromeq.(36) this means �21 = �22 = �23 � �2deg =  y21y22y23M1M2M3!2=3 (46)Now we will use the inequalities (38, 41) for i = j = 1; 3. This produ
es four inequali-ties, whi
h are given by eqs.(39, 42) and�23 � y41M23 ����(VR)231 + M3M2 (VR)221 + M3M1 (VR)211����2 (47)�21 � y43M21 ����(VR)213 + M2M1 (VR)223 + M3M1 (VR)233�����2 (48)16



Again we assume a strong hierar
hy among the yi, say similar to the hierar
hy ofYukawa 
ouplings observed in 
harged fermions: y3=y2; y2=y1 = O(20 � 300). Wedo not assume a priori any parti
ular hierar
hy between the three Mi, ex
ept the
onventional ordering M1 �M2 �M3.Let us suppose for the moment that there are no deli
ate 
an
ellations among theterms in the right-hand sides of eqs.(39, 42, 47, 48). This means that the absolutevalue of ea
h term inside the straight bra
kets is <� the absolute value of the sumof them (note that \ <� " be
omes \�" for real VR). Then, sin
e y23=M1 � �deg,y21=M3 � �deg, it is 
lear from eqs.(39) and (42) that j(VR)13j2 � 1 and j(VR)31j2 � 1respe
tively. Besides, the unitarity of VR implies that either a) j(VR)23j2; j(VR)32j2 � 1or b) j(VR)21j2; j(VR)12j2 � 1, i.e. VR is approximately box-diagonal. Furthermore,looking at the (VR)2ij-term with smaller fa
tor in eqs.(39) and (42) we obtainy23M3 <� �deg ; y21M1 >� �deg (49)respe
tively. This implies M3=M1 >� y23=y21. (This works similar to the 
ase of twoneutrinos, see eq.(35).) Suppose VR falls in the possibility a) above, whi
h meansj(VR)33j2 = O(1). Then eq.(48) implies y23=M3 >� �deg whi
h, together with the �rstequation in (49), requires y23M3 ' �deg (50)This 
orresponds to the fa
t that VR is essentially diagonal, ex
ept in the 1-2 box.Eqs.(50, 46) imply y21y22M1M2 ' �2deg. Due to the large y�hierar
hy, this means y21M2 ��deg � y22M1 . Applying this to the se
ond term in the r.h.s. of eq.(42), we 
on
ludej(VR)21j2 � 1 (and j(VR)11j2 ' 1, j(VR)12j2 � 1 by unitarity). So VR is essentially1. A
tually, from the third term of (47) we obtain y21M1 <� �deg, whi
h together witheq.(49), implies y22M2 ' �deg. Had we started with the possibility b) above, we wouldhave obtained the same 
on
lusion. In summary, if there are no pre
ise 
an
ellationsin the r.h.s. of eqs.(39, 42, 47, 48), the only 
hoi
e of high-energy parameters giving
ompletely degenerate neutrinos isy21M1 ' y22M2 ' y23M3 ' �2deg ; VR ' 1 (51)This is similar to the 2-neutrino 
ase. 17



If the yi;Mi; VR parameters are not in the relation (51), we are for
ed to admitnon-trivial 
an
ellations between the various terms in the right-hand-sides of eqs.(39,42, 47, 48). In parti
ular, if su
h 
an
ellation exists in the r.h.s. of eq.(39) and eq.(42),the 
onstraints (49) [and the subsequent M3=M1 >� y23=y21 inequality℄ do not apply.A
tually, for a wide range of yi;Mi parameters, the entries of VR 
an be arrangedso that the two 
an
ellations take pla
e and �1 = �2 = �3 = �deg (see below formore details). However, this amounts to a very a

urate (and thus unplausible) �ne-tuning. This result 
annot be easily appre
iated if one just uses the bottom-up see-sawparametrization, eq.(16), sin
e this automati
ally gives sets of working yi parametersfor arbitrary Mi; R. An intermediate situation o

urs when the 
an
ellation takespla
e \just" in one of the right-hand-sides of eqs.(39, 42, 47, 48). Eg. suppose thatthe 
an
ellation just o

urs in the r.h.s. of eq.(42). Then, from eqs.(39, 48) we easily
on
lude that y23M2 j(VR)23j2 <� �deg <� y23M3 (1 � j(VR)23j2)�1, whi
h implies that either y23M3or y23M2 must be 
lose to �deg.In any 
ase, we have seen that unless the high-energy parameters satisfy (51),�ne 
an
ellations are required in order to obtain degenerate neutrinos. Then, in theabsen
e of an explanation for su
h 
an
ellations, we 
on
lude that degenerate neutrinosare not natural within the see-saw framework if the neutrino Yukawa 
ouplings presenta hierar
hy similar to other fermions10. Let us also note that sometimes is stated that(see-saw) degenerate neutrinos naturally require degenerate right-handed Majoranamasses, Mi, as well. Now we see that this is only true if the Yukawa 
ouplings aredegenerate as well, a

ording to eq.(51). Otherwise a �ne-tuning for the VR entries isneeded, exa
tly as for other 
hoi
es of Mi.Let us now be more pre
ise about what 
onditions must ful�ll the yi;Mi parametersin order to exist a 
hoi
e of VR that implements degenerate neutrinos. First of all,noti
e that if y22M2 = �deg, the problem redu
es to a 2-neutrino one, in this 
ase the 1and 3 neutrinos. [This o

urs in parti
ular when both the yi� and the Mi�hierar
hiesare regular, i.e. y3=y2 = y2=y1, M3=M2 = M2=M1.℄ Then, from the results of theprevious se
tion, we know that, provided M3=M1 � y23=y21, there will be a non-trivialsolution. The 
orresponding VR matrix is non-trivial in the 1{3 box. Sin
e the y23=y21ratio is normally very large, the �ne-tuning in the values of the VR entries must beextremely pre
ise. More generally, we 
an obtain ne
essary 
onditions for yi;Mi in10See ref.[10℄ for the dis
ussion of a parti
ular theoreti
al model18



order to a

ommodate degenerate neutrinos as follows. Using the bottom-up see-sawparametrization (16), if neutrinos are degenerate we 
an writeY Y y = �degqDMRRyqDM (52)where �deg is given by (46). Sin
e Y Y y is a positive hermitian matrix, its largesteigenvalue, y23, must be larger than the diagonal entries, i.e.y23 � �degfMi(RRy)iig; i = 1; 2; 3 (53)Taking into a

ount (RRy)ii � 1 (this 
an be readily 
he
ked using eg. the parametriza-tion of R given in ref. [6℄) we �nally obtainy23 � �degM3 (54)A similar argument applied to the (Y Y y)�1 matrix leads toy21 � �degM1 (55)Note that eqs.(54, 55) implyM3=M1 � y23=y21. Let us stress that these are ne
essary butnot suÆ
ient 
onditions to guarantee the existen
e of a VR matrix produ
ing degenerateneutrinos. Nevertheless the numeri
al analysis shows that in most 
ases satisfying theabove 
onditions su
h VR matrix 
an be found. Note that 
onditions (54, 55) are only
ompatible with the 
onstraints (49) [obtained under the assumption of no �ne-tuningsin VR℄ when eq.(51) is ful�lled, in agreement with the previous dis
ussion.In summary, if neutrino Yukawa 
ouplings present a hierar
hy similar to otherfermions, a spe
trum of 
ompletely degenerate (or quasi-degenerate) neutrinos is pos-sible but quite unnatural. For random VR the hierar
hy of neutrino masses is a
tuallymu
h stronger than that of Yukawa 
ouplings, in absolute 
on
i
t with experimentaldata. For VR = 1 a degenerate spe
trum if the Yukawa 
ouplings, yi, and the right-handed masses, Mi are in the pre
ise proportion (51). For arbitrary yi, Mi satisfying(54, 55) it is in general possible to �nd a parti
ular VR giving degenerate neutrinos,but this amounts to a strong �ne-tuning.Finally, let us remark that these 
on
lusions still hold (although somewhat softened)if instead degenerate neutrinos one demands hierar
hi
al neutrinos with a soft hierar
hybetween the three families, e.g. �3=�2 <� 6 (this is obliged by experimental data) and�2=�1 <� 6 (this is just an hypothesis).These results strongly suggest to 
onsider soft hierar
hy or quasi-degenera
y justfor the two heavy neutrinos, whi
h we study next.19



4.3 Degenera
y or soft hierar
hy for m3=m2We will fo
us now on the possibility of ful�lling h = m3m2 = �3�2 <� 6 (i.e. the onlyexperimental 
onstraint on the ratio of neutrino masses), starting with hierar
hi
alYukawa 
ouplings. Again we will assume for the moment that the hierar
hy betweenthe yi is similar to the hierar
hy of Yukawa 
ouplings observed in 
harged fermions:y3=y2; y2=y1 = O(20� 300).For 
onvenien
e for the dis
ussion we repeat here the previous bound (45) on thevalue of h, h >� y23y22 M2M1 ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2���(VR)231 + M2M3 (VR)221 + M1M3 (VR)211��� ; (56)As dis
ussed in subse
t.4.1, this equation tells us that for random values of the VRentries we expe
t h � y23y22 M2M1 � 6. Therefore we need to imagine ways to get h mu
hsmaller than the \random" result, preferably without �ne-tunings. Obviously this ismu
h easier to a
hieve if the 
ombination of VR elements in the denominator of (56) isas large as possible. From (42) this 
orresponds to �1 as small as possible. Thereforegeneri
ally it is far more natural to get the experimental result h <� 6 if the lightestneutrino presents a mu
h stronger hierar
hy than the two heavy ones, whi
h is aninteresting 
on
lusion11.However, a denominator as large as possible is not enough to render h <� 6: theexpression in straight bra
kets in the denominator is � 1, so a small numerator,���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2 � 1, is always obliged. If M1 = M2 = M3 (i.e.degenerate right-handed neutrinos) this 
an only be a

omplished by a 
an
ellationbetween the various terms in the numerator. On the 
ontrary, if M1 �M2 �M3 this
ould be a
hieved without 
an
ellations. We examine next the two 
ases separately.M1 �M2 �M3If we do not allow �ne 
an
ellations in the numerator of eq.(56), this gets minimalwhen is dominated by the (VR)233 term. This requires j(VR)13j2 and j(VR)23j2 � 1;1211An ex
eption to this rule o

urs when the yi;Mi values are in the proportion (51). Then VR � 1leads naturally to degenerate or soft-hierar
hi
al neutrinos.12If the hierar
hy of Mi is very strong, the dominan
e of the (VR)233 term may be non-
ompulsory.More pre
isely, if M1=M2 <� y23=y22, then the 
ondition j(VR)23j2 � 1 
an be relaxed (j(VR)13j2 � 1
annot). 20



more pre
isely j(VR)13j2 < M1=M3 and j(VR)23j2 < M2=M3. Then (VR)231 in the denom-inator is also very small (by unitarity of VR) and eq.(56) 
an normally be approximatedas h >� y23y22 M1M3 1j(VR)221 + M1M2 (VR)211j : (57)In parti
ular, h >� y23y22 M1M3 1j(VR)21j2 if j(VR)21j2 >� (M1=M2): (58)h >� y23y22 M2M3 otherwise : (59)E.g. if Mi=Mj = yi=yj (whi
h we �nd a reasonable assumption) in a regular hierar
hy,i.e. y1y2 = y2y3 , then the 
ase (58) be
omes h <� j(VR)21j�2. As a matter of fa
t, takingj(VR)21j = 1 and (VR)11, (VR)13 = 0, leads exa
tly to �3 = �2 and thus inverse hierar
hy.This 
an be easily 
he
ked using the exa
t results of subse
t.3.2, sin
e in this limit theproblem involves only two neutrinos. More generally, for sizeable j(VR)21j2 we get asoft hierar
hy for the two heavy neutrinos. E.g. for j(VR)21j2 >� 1=6 we get h <� 6, inagreement with experiment. Noti
e that there are no deli
ate 
an
ellations (and thusno �ne-tuning) involved in this instan
e: 
hanges in the VR entries amount to 
hangesin h in a similar proportion. On the other hand, for very small j(VR)21j (and thus verysmall j(VR)12j by unitarity) eq.(57) be
omes h >� y23y22 M2M3 = y3y2 , whi
h is too large.Let us stress that the above possibility of getting an experimentally viable h with no�ne-tunings requires very small j(VR)13j, j(VR)23j, and sizeable j(VR)21j.13 This 
oin
idesexa
tly with the stru
ture of the CKM matrix, whi
h we �nd very suggestive. A
tually,the 
oin
iden
e is even stronger sin
e the previous dis
ussion suggests j(VR)13j2 �j(VR)23j � j(VR)21j = sizeable, as for CKM. We will turn to a more 
areful exam ofthis CKM-like form for VR in se
t.5.Another (less attra
tive) possibility to get a small numerator in eq.(56) is to allowfor 
an
ellations between the various terms inside the straight bra
kets. This requiresj(VR)13j2 >�M1=M3 and/or j(VR)23j2 >�M2=M3. Still, this possibility requires very small13An intuitive way to understand the pattern obtained for VR is to realize that it simply 
orrespondsto a \random" 2� 2 box for the two lighter neutrinos and the rest 
lose to the identity matrix. Then�1 and �2 split enormously, as shown in se
t.3, and thus �2 approa
hes �3 (whi
h 
hanges little),while �1 gets extremely small. 21



j(VR)13j. The largest possible value for j(VR)13j o

urs when it 
an
els against the (VR)223term, so j(VR)13j2 <� M2M3 : (60)These results are illustrated in Fig. 3, where we show the density of allowed pointsin the j(VR)13j � j(VR)23j plane for �xed values of j(VR)12j [this determines the VRmatrix up to phases, a

ording to eq.(14)℄ and y1 : y2 : y3 = 1 : 300 : 9 � 104,M1 :M2 :M3 = 1 : 300 : 9� 104. In ea
h point, we have evaluated h for 1000 randomvalues of the phases in VR, and 
ounted the number of points that are 
ompatiblewith the observed hierar
hy, h <� 6. White areas are ex
luded, while 
olored areasare allowed, 
orresponding the redder (darker in bla
k and white printer) areas to theregions with higher density of allowed points. The reddest areas pre
isely 
orrespondto the 
hoi
es of VR that reprodu
e naturally (with no 
an
ellations) the observedmass hierar
hy. As dis
ussed just before eq.(57), this o

urs for j(VR)13j2 < M1=M3and j(VR)23j2 < M2=M3, thus the size and shape of the reddest \re
tangle". The lightblue (light grey in bla
k and white) areas 
orrespond to the 
hoi
es of VR that 
anreprodu
e the observations with a 
ertain amount of tuning. As argued above, forsmall j(VR)12j it is not possible to reprodu
e hexp, unless a �ne-tuning in the numeratorof (56) takes pla
e, thus the tiny light allowed areas for j(VR)12j2 <� 1=6, in agreementwith the previous dis
ussion. The bound (60) is also 
learly visible.The shape of the 
omplete allowed region 
an be analyti
ally understood as follows.For not too small j(VR)23j2 [in parti
ular when we allow for 
an
ellations in the nu-merator of (56)℄, the denominator of (56) is dominated by j(VR)31j2, whi
h satis�es theunitarity 
onstraint j(VR)31j2 � j(VR)13j2+ j(VR)23j2. On the other hand, the numeratorof (56) is minimal when the maximum 
an
ellation between the various terms o

urs.Thus we 
an writeh >� y23y22 M2M1 Min ��� � ���j(VR)13j2 � M1M2 j(VR)23j2���+ M1M3 (1� j(VR)13j2 � j(VR)23j2) ���2j(VR)13j2 + j(VR)23j2 : (61)Moreover, when the two possibilities inside j j2 in the numerator of (61) have oppositesigns, then it is possible to a
hieve an exa
t 
an
ellation by adjusting the phases ofthe various terms in the numerator of (56). The values of j(VR)13j and j(VR)23j thatsaturate the approximate analyti
al bound (61) for h = 6 are indi
ated in the last plotof Fig. 3 with a solid line, whi
h des
ribes the exa
t allowed region in a fair way.22



0 0.2 0.4 0.6 0.8 1Figure 3: Region in the j(VR)13j � j(VR)23j plane whi
h gives m3=m2 � 6 for some 
hoi
e of thephases of VR (see eq.(14)). For ea
h point, 1000 random 
hoi
es are probed. The 
olor indi
ates thefra
tion of unsu

essful 
hoi
es: from red (
omplete su

ess) to light blue. The s
enario is de�nedby M1 = M2 = M3 = y1 : y2 : y3 = 1 : 300 : 9 � 104. Ea
h plot 
orresponds to a di�erent value ofj(VR)12j. The dashed line in the last plot 
orresponds to the limit of unitarity of VR, while the solidline 
orresponds to the approximate analyti
al bound dis
ussed at eq. (61).23



Noti
e that for j(VR)23j2 � j(VR)13j2, eq.(61) gets simpli�ed toh >� y23y22 M2M1 hj(VR)13j2 � M1M2 j(VR)23j2i2j(VR)13j2 + j(VR)23j2 ; (62)whi
h is responsible for the long and light strip in the plots. Noti
e also that for thisregion, the 
an
ellation requires the (VR)213 and (VR)223 terms in (56) to have di�erentsigns, so �2 ' ��=2.Of 
ourse, eq.(61) 
ould be further re�ned to in
lude the e�e
t of j(VR)12j, throughthe modi�
ation of the unitarity 
onstraints on j(VR)31j2, although the exa
t expressionis too 
ompli
ated to be of any pra
ti
al use. In any 
ase, we already dis
ussed theimpa
t of the value of j(VR)12j on the possibility to get hexp with no �ne-tunings.Using a less strong hierar
hy for the Yukawas, su
h as y1 : y2 : y3 = 1 : 20 : 400,the results are similar, ex
ept that the allowed area in Fig. 3 is larger and the required�ne-tuning in the phases is less severe.Finally note that all these results and plots apply equally for the SUSY 
ase.M1 'M2 'M3If M1 = M2 = M3, the expression within straight bra
kets in the denominatorof eq.(45) (whi
h is always � 1) is naturally O(1), unless there is some -undesired-
an
ellation inside. Hen
e we 
an writeh = �3�2 >� y23y22 ���(VR)213 + (VR)223 + (VR)233���2 ; (63)Sin
e y23y22 is far larger than hexp <� 6, a strong 
an
ellation between the three termsinside the straight bra
kets is mandatory. Hen
e, we 
an already 
on
lude that for(approximately) degenerate right-handed masses and hierar
hi
al Yukawa 
ouplings(as for the other fermions), the observed spe
trum of neutrinos 
an only be obtainedby �ne-tuning the high-energy parameters.The allowed region, hexp � 6, in the j(VR)13j � j(VR)23j plane is shown in Fig. 4 for�xed values of j(VR)12j, taking again y1 : y2 : y3 = 1 : 300 : 9 � 104. In this 
ase theresults do not depend mu
h on the value of j(VR)12j, as is 
lear from (63). The shapeof the allowed region 
an be understood by reasoning in a similar way as for eq.(61).Now we geth >� y23y22 Min ��� � ���j(VR)13j2 � j(VR)23j2���+ �1� j(VR)13j2 � j(VR)23j2� ���2 : (64)24



Again, when the two possibilities inside j j2 in the numerator of (64) have oppositesigns, then it is possible to a
hieve an exa
t 
an
ellation by adjusting the phases of thevarious terms in the r.h.s. of eq.(63). The solid line in the �rst plot of Fig. 4 showsthe bound h = 6 obtained with the approximate analyti
al form (64), whi
h 
learlydes
ribes very well the exa
t results.It is worth mentioning that in this 
ase a CKM-like form for VR 
annot lead to arealisti
 spe
trum, sin
e [for any 
hoi
e of the phases in eq.(14)℄ it is not 
onsistent witha 
an
ellation in the r.h.s. of eq.(63). However, it is funny that a MNS-like form 
anwork 
orre
tly. More pre
isely, when j(VR)13j � 1, as is the MNS 
ase, the 
onditionfor 
an
ellation in eq.(63) is approximately j(VR)13j2 � (j(VR)23j2 � j(VR)33j2) ' 0. Interms of the parametrization (14), this readstan2 �R13 ' j 
os 2�R23j : (65)This 
ondition is pre
isely ful�lled by an MNS-like matrix, thanks to the smallness of�13 and the near-to-maximal �23.5 A suggestive ansatzIn se
t. 4 we have not made any parti
ular assumption about the (high-energy) param-eters of the see-saw, apart from 
onsidering hierar
hi
al neutrino Yukawa 
ouplings,similar to those of quarks and 
harged leptons. Nevertheless, we showed that if theright-handed neutrino masses are hierar
hi
al, a CKM-pattern for VR was naturallypreferred in order to reprodu
e the experimental ratio between the two heavier neu-trinos, h = �3=�2 <� 6, whi
h is the only experimental 
onstraint on ratios of neutrinomasses. Similarly, we saw that if the right-handed neutrino masses are approximatelydegenerate, an MNS-like pattern for VR 
ould equally work, but always with a 
ertain�ne-tuning. In this se
tion we study more in deep these suggestive 
oin
iden
es.VR = VCKM ansatzWe start by 
onsidering the possibility that VR 
oin
ides with the CKM matrix, VCKM.From eq.(14) VR has two phases, �1; �2, that, unlike the quark CKM matrix, 
annotbe absorbed into rede�nitions of the �elds. Thus, the identi�
ation of VR with VCKMhas to be up to these two independent phases,VR = diag �ei�1 ; ei�2 ; 1�VCKM (66)25



Figure 4: Region in the j(VR)13j � j(VR)23j plane whi
h gives m3=m2 � 6 for some 
hoi
e of thephases of VR (see eq.(14)). The yellow 
olor indi
ates that in that region only less than 0.1% of the
hoi
es are su

essful. The s
enario is de�ned by M1 =M2 =M3 and y1 : y2 : y3 = 1 : 300 : 9� 104.Ea
h plot 
orresponds to a di�erent value of j(VR)12j. The dashed line is the limit of unitarity ofVR, while the solid line in the �rst plot 
orresponds to the approximate analyti
al bound dis
ussed ateq.(64). 26



This identi�
ation of VR with VCKM evokes the SU(5) 
onne
tion between the VLmixing matrix for d�quarks and the VR one for 
harged leptons, whi
h 
omes fromthe relation Yd = YTl between the 
orresponding Yukawa matri
es. Following thisanalogy, we 
an make the ansatz that the eigenvalues of neutrino Yukawa 
ouplings,fy1; y2; y3g, 
oin
ide with the u�quark ones, fyu; y
; ytg. We are not 
onsidering ade�nite GUT framework to justify this assumption (although it 
ould pro
eed e.g.from some SO(10) 
onstru
tion), but only exploring if it 
an work in pra
ti
e, whi
his 
ertainly non-trivial.The �rst step to probe this ansatz is to write both VCKM and fyu; y
; ytg at thes
ale of right-handed masses, M � 1013 GeV, where the see-saw me
hanism takespla
e and the identi�
ation (66) should be done14. In the SM the RG 
hange in theratios mu : m
 : mt = yu : y
 : yt from low- to high-energy isyu : y
 : yt = 1:3� 10�5 : 7:1� 10�3 : 1 at low s
ale! yu : y
 : yt = 1:1� 10�5 : 3:2� 10�3 : 1 at high s
ale (67)Note that the RGE 
hange 
onsiderably the hierar
hy of u�quarks (whi
h, in
identally,be
omes remarkably regular, on top of strong ). This is due mainly to the importante�e
t of the top Yukawa 
oupling. On the other hand, the RGE for the neutrino massmatrix below the M�s
ale is 
avour-blind, ex
ept for small e�e
ts proportional to thesquared of the tau Yukawa 
oupling. This produ
es very small e�e
ts in the hierar
hyof neutrino masses and in the MNS matrix (whi
h we are not 
onsidering here anyhow),espe
ially in the 
ase of a soft hierar
hy [11℄. Thus we 
an negle
t here the RGE e�e
tsfor the neutrino se
tor. VCKM undergoes a 
ertain 
hange as well for the same reasons.In magnitude,jVCKMj ' 0BBBBB� 0:97 0:23 0:00430:23 0:973 0:0420:008 0:04 1
1CCCCCAlow s
ale�!

0BBBBB� 0:97 0:23 0:00490:23 0:973 0:0470:009 0:047 1
1CCCCCAhigh s
ale (68)The CP-phase, ÆCKM ' 1 rad, does not 
hange appre
iably along the running. Of
ourse, eqs. (67, 68) have experimental errors. For our purposes the most signi�
ant14A more GUT-inspired alternative is to run VCKM up to MX , perform the identi�
ation (66) andthen run VR down to the seesaw s
ale. This pro
edure is more 
umbersome and, given the 
losenessof the M and MX s
ales, the former approa
h is suÆ
iently pre
ise.27



ones are those asso
iated to (VCKM)13 and (VCKM)23. Using the most re
ent analy-ses [3℄ and running 
onsistently the quoted errors up to the M�s
ale [13,14℄, we get(VCKM)13 = (4:9� 0:3)� 10�3, (VCKM)23 = (47� 0:7)� 10�3.In addition we will 
onsider, as mentioned, hierar
hi
al right-handed masses, 
hoos-ing a hierar
hy equal to that of the Yukawa 
ouplings. This is of 
ourse a somewhatarbitrary 
hoi
e, but we �nd it simple and reasonable, and it does not amount to anyextra assumption for a di�erent hierar
hy.In summary, we will make the assumptiony1 : y2 : y3 = M1 :M2 :M3 = 1:1� 10�5 : 3:2� 10�3 : 1VR = diag �ei�1 ; ei�2 ; 1�VCKM(M) (69)where VCKM(M) is essentially given by (68).Noti
e from (19, 18) that 
hoosing VR = 1 we would get a hierar
hy of neutrinomasses equal to that of Yukawa 
ouplings, i.e. h = �3=�2 � 300 [see eq.(69)℄. Thiswould be 
ompletely in
onsistent with the experimental h = �3=�2 <� 6, by a fa
tor of50. On the other hand, as is 
lear from the dis
ussion around eq.(45), a random VRwould give h = O(107), i.e. orders of magnitude away from the experimental range.Therefore, it is 
ertainly non-trivial that the assumption (69) 
ould be 
onsistent withthe experiment.To illustrate these fa
ts and show the results, we give in Fig.5, upper plots, theallowed region in the j(VR)13j�j(VR)23j plane for �xed j(VR)12j = j(VCKM)12j. Again, forea
h point we have evaluated h = �3=�2 for 1000 random values of the �1, �2 phasesin VR (ÆR is �xed at ÆCKM), and 
ounted the number of points that are 
ompatiblewith the observed hierar
hy, h <� 6. White areas are ex
luded, while 
olored areas areallowed. As expe
ted only a tiny part of fj(VR)13j; j(VR)23jg values are allowed [a goodanalyti
al approximation of the size and shape of the allowed region is given by (61)℄.Remarkably, the CKM value for these quantities (represented by the 
ross in the �gure)falls inside the allowed region, whi
h we �nd very suggestive and highly non-trivial.Noti
e also that VCKM is the only experimentally known example of a mixing matrixfor Yukawas15, as VR is (VMNS is not, unless neutrinos are pure Dira
). All this makesthe su

ess of the CKM ansatz even more remarkable. It would be 
ertainly ni
e to15Re
all that, if desired, one 
an go to a basis of quark doublets where VCKM is asso
iated just toYd or Yu. 28



Figure 5: Region in the j(VR)13j � j(VR)23j plane whi
h, for j(VR)12j = j(VCKM)12j, ÆR = ÆCKM, andsome 
hoi
e of the �1, �2 phases (see eq.(14)), gives m3=m2 � 6. The Yukawa 
ouplings, yi, andright-handed masses,Mi, are taken as indi
ated at eq.(69). The 
ross 
orresponds to the CKM valuesfor j(VR)13j, j(VR)23j (within experimental un
ertainties). The upper (lower) plots 
orrespond to theSM (SUSY) 
ase. The 
olor 
ode is as in Fig. 3.
onstru
t models (maybe in the GUT framework) to a

ommodate this \CKM-ansatz".In order to gain analyti
al understanding for the su

ess of the \CKM-ansatz" it is
onvenient to use the Wolfenstein parametrization of the CKM matrix:VCKM = 0BBBBBBB� 1� �22 � A�3(�� i�)�� 1� �22 A�2A�3(1� �� i�) �A�2 1
1CCCCCCCA+O(�4); (70)where � is determined with a very good pre
ision in semileptoni
 K de
ays, giving � '0:23, and A is measured in semileptoni
 B de
ays, giving A ' 0:82. The parameters29



� and � are more poorly measured, although a rough estimate is � ' 0:1, � ' 0:3[12℄ (therefore (� � i�) ' 0:3eiÆ, whi
h is fairly 
lose to � in absolute value). Athigh energies, only the parameter A 
hanges substantially [14℄, being A ' 0:92 at thes
aleM � 1013GeV. Furthermore, we will use the following phenomenologi
al relationsamong the up-type quark Yukawa 
ouplings evaluated at high energies, that we assumealso valid for the right-handed neutrino masses:y1 : y2 : y3 � M1 :M2 :M3 � �8 : �4 : 1 (71)Substituting this ansatz in eq. (45) we obtain:h = m3m2 >� ��6 jA2(�� i�)2e2i�1 + A2�2e2i�2 + �2j2jA2(1� �� i�)2 + 1 + �2e2i�2 j � O(��2) (72)It is already remarkable the large redu
tion of the hierar
hy that results just from thepe
uliar pattern of VCKM (without taking into a

ount the values of �1, �2): for randomVR, the natural size of the hierar
hy is di
tated by the y23y22 M2M1 � ��12 fa
tor in eq. (45).Now, thanks to the stru
ture of VCKM given in eq.(70), the se
ond fa
tor in eq. (45)(i.e. the fra
tion of absolute values) gets O(�10), leading to (72). Plugging numbers,for random �1, �2, this amounts to a redu
tion from h � O(107) to h � 100. This isstill too large 
ompared to hexp � 6, but shows that VCKM does soften h in an extremelyeÆ
ient way. Choosing �1 � Æ � �2 ; 3�2 and �2 � 0; � the numerator of eq. (72) getsmu
h smaller due to a 
an
ellation among the three terms. This is possible thanks tothe fa
t that the three terms have similar magnitude, whi
h is a fortunate 
oin
iden
e(
hanging VR, even keeping the same pattern, this fa
t generally disappears). Then weget h = O(1), i.e. 
onsistent with the experiment. This 
hoi
e of phases is as good asany other else, implying that there is no need of �ne tuning of the phases to get thedesired result.Coming ba
k to the numeri
al 
omputation, the previous arguments are illustratedin Fig.6, left plot, whi
h shows the region of experimentally a

eptable values of hin the �1 � �2 plane. More pre
isely, the green area 
orresponds to 5:5 � h � 6,whi
h is the experimental 1 � � value of hexp when m2=m1 � 1 (see Fig. 1), as isthe 
ase. As noted above this allowed region repli
ates with periodi
ity �. All theremaining parameters of VR have been taken at the 
entral values of VCKM. Clearly,the allowed region for �1, �2 is quite \ma
ros
opi
", i.e. it is not �ne-tuned. In fa
t,the minimal value for h is 
lose to the experimental value h � 6 (note that sin
e �1 is30
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Figure 6: Region of the �1��2 plane that gives values of m3=m2 
onsistent with the experiment forall the remaining parameters of VR (see Right and left plots 
orrespond to the SM and SUSY 
asesrespe
tively. Note the di�erent s
ales of the two plots.hierar
hi
ally smaller, as will be 
ommented shortly, the value of h must be 
lose toits experimental upper bound). This is funny sin
e the region of minimal values of his naturally enhan
ed in size (near a minimum the fun
tion 
hanges little).Let us indi
ate that the mass of the lightest neutrino, �1, be
omes orders of mag-nitude smaller than �2, in agreement with the general results of se
t. 4.3 (see thedis
ussion after eq.[56)℄. To be pre
ise, the value of the lightest neutrino mass pre-di
ted by this ansatz ism1 = v�1 ' 3� 10�6m2 = 3� 10�8eV (73)The SUSY 
ase works in a similar way. The main di�eren
e are the RGEs, whi
hare a bit di�erent and, besides, depend on the value of tan�, though not dramati
ally.The results for the CKM ansatz are also similar, and even better, as shown in Fig. 5(lower plots) and Fig. 6 (right plot) for a typi
al 
ase (tan� = 10).Finally, let us mention that 
hoosing a hierar
hy for the Yukawa 
ouplings as that ofd�quarks (whi
h is quite milder) enhan
es the allowed region in the j(VR)13j� j(VR)23jplane. Then the CKM point 
ontinues to fall inside the allowed region.VR = VMNS ansatzLet us now 
onsider the VR � VMNS possibility. As dis
ussed at the end of subse
t.4.3,31



Figure 7: The same as Fig. 5 but for VCKM ! VMNS and taking M1 =M2 =M3. The ÆMNS phaseis left free, sin
e it is experimentally unknown. The left (right) plot 
orresponds to the SM (SUSY)
ase. The 
olor 
ode is as in Fig. 4.this 
an work if the right-handed masses are quasi-degenerate; for simpli
ity we willassume M1 =M2 =M3. As for the CKM 
ase, the identi�
ation of VMNS and VR 
anonly be made up to the two independent �1, �2 phases in (14). The Majorana phasesof VMNS a
t from the opposite side, see eq.(7), and 
annot be identi�ed with �1, �2. Inany 
ase, we do not have any experimental information about these Majorana phases,nor about Æ, in the MNS matrix. So we takeVR = diag �ei�1 ; ei�2 ; 1�V (74)where V is the \non-Majorana" part of the MNS matrix, given in eq.(8). More pre
isely[2℄, sin2 �12 = 0:26� 0:36; sin2 �23 = 0:38� 0:63; sin2 �13 � 0:025; (75)the value of Æ is left free. Con
erning Yukawa 
ouplings, as in the CKM 
ase we identifythem with the u{quark Yukawa 
ouplings at high energy, whi
h for the SM are givenin eq.(67).The results are given in Fig.7, left plot, whi
h shows the allowed region in thej(VR)13j � j(VR)23j plane for �xed j(VR)12j = j(VMNS)12j. Again, 
olored areas are 
on-sistent (for some 
hoi
e of the phases) with the observed hierar
hy, h <� 6, while whiteareas are ex
luded. The MNS value for j(VR)13j; j(VR)23j is represented by a 
ross inthe �gure, falling inside the allowed region.32



Although this is perhaps less suggestive than the good performan
e of VCKM in the
ase of hierar
hi
al right-handed masses, it is still quite remarkable. Con
erning thevalues of the phases that do the job, it is 
lear from (63) that the ne
essary 
an
ellationinside the straight bra
kets requires in this 
ase �2 ' �i�, sin
e (VR)213 ' 0. Theprevious 
an
ellation must be quite �ne as 
an be seen noting that the ratio of squaredYukawa 
ouplings in the right hand side of (63) is � 105, so the j j2 fa
tor must bevery small in order to obtain h ' 6 (a tunning of <� 1% is needed).The performan
e of the SUSY 
ase is similar, as shown in Fig. 7, right plot.6 Summary and 
on
lusionsIn this paper we have started from the fa
t that the observed mass ratio for the twoheavier low-energy neutrinos, h = m3=m2 <� 6, is mu
h smaller than the 
orrespondingratios observed for quarks and 
harged leptons, whi
h are O(20) or O(300) (for theother independent neutrino mass ratio, m2=m1, there is no experimental 
onstraint).We have wondered whether this pe
uliar pattern of neutrino masses 
an be a 
onse-quen
e of the pe
uliar way they are generated through a see-saw me
hanism, inves-tigating how the present experimental data restri
t the stru
ture of the high-energyseesaw parameters and whi
h 
hoi
es, among the allowed ones, produ
e more naturallythe observed pattern of neutrino masses. We have studied in parti
ular (but not only)if starting with hierar
hi
al neutrino Yukawa 
ouplings, as for the other fermions, one
an naturally get the observed m3=m2 <� 6 ratio.To perform this analysis we have �rst put forward a top-down parametrization of thesee-saw me
hanism in terms of (high-energy) basis-independent quantities: the Yukawaand right-handed-mass "eigenvalues", fyi;Mig, and two unitary matri
es, VL; VR, as-so
iated to the diagonalization of the Yukawa matrix, as shown in eqs.(12, 13). Fromthese 18 independent parameters, we have shown that the neutrino mass eigenvaluesdepend just on 12 of them: fyi;Mig and VR, whi
h simpli�es the analysis a lot. On theother hand, VL 
an be derived from the other parameters and VMNS. This is summarizedin eqs.(15, 18{20). A parametrization of VR is given in (14).In our analysis (whi
h is valid for both the SM and the SUSY versions of the see-saw) we have made an extensive use of some analyti
al inequalities satis�ed by theeigenvalues of a general hermitian matrix. This allows to obtain very simple expres-33



sions that des
ribe faithfully the exa
t results and permit to gain intuition on theproblem, e.g. the useful lower bound on h given by eq.(45). This analyti
al study was
omplemented by a numeri
al and statisti
al survey, in order to obtain and presenta

urate results.Our main 
on
lusions are the following:� For random values of the VR entries we expe
t a low-energy neutrino hierar
hyh = m3m2 >� y23y22 M2M1 . If the Yukawa 
ouplings are hierar
hi
al, similarly to the otherfermions, then we expe
t h orders of magnitude larger than the experimentalvalue and the hierar
hy of Yukawas itself. So, either we give up the naturalassumption that the neutrino Yukawa 
ouplings present a hierar
hy similar toother fermions, or we a

ept that the VR entries are far from random. In these
ond 
ase the stru
ture of VR be
omes strongly 
onstrained. In parti
ular, fromeq.(45), ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2 � 1 is required, and (VR)12 sizeable isdesirable.� If we keep the assumption of hierar
hi
al neutrino Yukawa 
ouplings, a low-energyspe
trum of quasi-degenera
y or soft hierar
hy for the three neutrinos requireseither Mi=Mj ' y2i =y2j , VR ' 1, or a very deli
ate tuning between fyi;Mig andVR. In the absen
e of an explanation for this strong �ne-tuning we 
onsider thiss
enario as unnatural.� On the other hand, if we just attempt to reprodu
e the only experimentally
onstrained mass ratio, h = m3=m2 <� 6, the prospe
ts are mu
h more interesting:a 
hara
teristi
 pattern for the VR matrix emerges, but there is no need of �ne-tuning between the parameters.{ If the right-handed neutrino masses are hierar
hi
al, M1 � M2 � M3, thesele
ted pattern for VR is 
hara
terized by very small j(VR)13j, j(VR)23j, andsizeable j(VR)21j, whi
h remarkably resembles the stru
ture of the CKM ma-trix. (a
tually the dis
ussion before eq.(57) suggests j(VR)13j2 � j(VR)23j2,also in 
oin
iden
e with CKM).{ If the right-handed neutrino masses are degenerate, M1 ' M2 ' M3, it isnot possible to reprodu
e hexp without a 
ertain �ne-tuning. The sele
ted34



form for VR is not 
ompatible with VCKM, but, quite amusingly, it is withVMNS (altough, in this 
ase, other patterns for VR very di�erent from VMNSwork as well).In all the 
ases, the mass of the lightest neutrino, m1, is naturally orders ofmagnitude smaller thanm2, whi
h 
omes out as a natural predi
tion of a s
enariowith hierar
hi
al neutrino Yukawa 
ouplings.� Motivated by the previous 
oin
iden
es we have expli
itely 
he
ked that identi-fying VR with VCKM and taking a hierar
hy of neutrino Yukawa 
ouplings (andright-handed masses) equal to that of the u�quarks, gives h 
onsistent withthe experimental limit, hexp <� 6. This is highly non-trivial sin
e VR = 1 givesh ' 300 and a random VR typi
ally gives h = O(106). We have not attempted to
onstru
t a GUT model to a

ommodate this suggestive feature, but it might bean interesting line of work. For the SUSY 
ase there are slight di�eren
es 
omingfrom the form of the RGE, but the results are very similar (and even better).Likewise using VMNS in the same 
ontext, but with degenerate right-handed neu-trino masses, is also 
onsistent with the experiment.7 OutlookThe fa
t that VR is very 
onstrained on
e a hierar
hi
al stru
ture for the Yukawas isassumed, has an important impa
t on several physi
al issues.Constraints from UMNSWe have explored the 
onstraints on VR from the pe
uliar pattern of physi
al neutrinomasses. Similarly, the experimental UMNS may 
onstrain the high-energy parameters.Although we have seen, eq.(20), that VL 
an always be adjusted to give the observedUMNS, it is not guaranteed that su
h 
hoi
e is without tunings for all the possible VR.This may shed additional light on the stru
ture of the high-energy theory.Relation to the R{parametrizationThe 
onne
tion of the botton-up parametrization (16), based on an orthogonal 
omplexmatrixR and the top-down parametrization (18{20), based on the VR matrix, is given in35



(23). Nevertheless, it would be very helpful for phenomenologi
al studies to determinefrom the beginning the form of R 
onsistent with e.g. hierar
hi
al neutrino Yukawa
ouplings. This would give an indi
ation about whi
h Rs are more natural, and wouldmake easier in general the exploration of phenomenologi
al signatures of top-downassumptions.LeptogenesisIf one ignores 
avour e�e
ts, the rate of leptogenesis produ
ed by the de
ay of theright-handed neutrinos is proportional to parti
ular entries of the matrixY Y y = VRDY 2V yR : (76)where DY 2 = diagfy21; y22; y23g. Sin
e the assumption of hierar
hi
al yi strongly 
on-strains VR, the 
orresponding results for leptogenesis are dire
tly a�e
ted.For the two-neutrino 
ase (see se
t. 3), the impli
ations are parti
ularly nitid: theCP Majorana phase of VR (the only sour
e of CP violation for this issue) must be
lose to a CP-
onserving value, whi
h would make the leptogenesis pro
ess ineÆ
ient.Nevertheless, 
avour e�e
ts 
an res
ue this s
enario when the temperature at whi
hleptogenesis takes pla
e is smaller than � 1012GeV, as was shown in [15℄ (note thatthis s
enario would 
orrespond to the 
ase R real). The analysis for three neutrinos isa bit more involved but it has an obvious interest.In a supersymmetri
 framework, another me
hanism to generate the observed baryonasymmetry is A�e
k-Dine leptogenesis [16℄. Thermal e�e
ts and gravitino overprodu
-tion 
onstrain the smallest neutrino mass to be m1 <� 10�8eV [17℄. Despite the largehierar
hy between m2 and m1 might seem a priory unnaturally strong, we have shownthat it is in fa
t a predi
tion of the see-saw me
hanism with the suggestive ansatzproposed in se
tion 5 [see eq.(73)℄.Rare LFV pro
essesIn the 
ontext of SUSY, it is well known that even starting with universal soft massesat high energy, one ends up with 
avour-violating entries in the mass-matri
es, mainlydue to the e�e
t of the neutrino Yukawa 
ouplings in the running between the high-energy s
ale (Mp in the gravity-mediated 
ase) and the s
ale of the right-handed masses36



[18℄. Su
h e�e
t is proportional toY yY = VLDY 2V yL : (77)Although VL is not dire
tly 
onstrained from the low-energy spe
trum, on
e VR isdetermined, VL is obtained from eq.(20). The 
orresponding rates for LFV pro
esses,su
h as � ! e; 
, may 
onstrain further the s
enario and o�er predi
tions for presentand future experiments.GUT 
onstru
tionsAs mentioned above, identifying VR with VCKM and taking a hierar
hy of neutrinoYukawa 
ouplings (and right-handed masses) equal to that of the u�quarks, is (non-trivially) 
onsistent with the experiment. It would be very interesting to build a GUTmodel able to a

ommodate this appealing feature.Anar
hi
 neutrinosAs mentioned at the end of subse
t. 4.1, the basis-independent top-down parametriza-tion of the see-saw me
hanism that we have used is likely very appropriate to studys
enarios of anar
hi
 neutrinos [9℄, sin
e these are based on statisti
al 
onsiderationsabout the high-energy parameters that de�ne the theory, and it is highly desirable thatthese parameters are basis-independent. We gave there a simple example of how su
hanalysis 
an be, but 
learly mu
h work 
ould be done in this dire
tion.||||||Work along the above lines is 
urrently in progress.A
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AppendixHere we summarize some useful formulas 
on
erning the eigenvalues of a (general ornot) matrix.A

ording to the Gershgorin Cir
le Theorem, every eigenvalue of any 
omplex n�nmatrix A lies within at least one of the n Gershgorin dis
s de�ned asD(Aii; Ri) � fz : jz � Aiij � Rig : (78)where Ri is the Gershgorin radius of the Gershgorin dis
 
entered at Aii,Ri =Xj 6=i jAijj : (79)For the proof, let � be an eigenvalue of A with eigenve
tor v � fvjg. De�ne jvij =maxjjvjj (always jvij > 0). Then the eigenvalue equation Av = �v 
an be written as�vi � Aiivi =Xj 6=iAijvj (80)Dividing both sides by vi and taking the norm we obtainj�� Aiij = ������Xj 6=iAijvj=vi������ �Xj 6=i jAijj = Ri (81)Working with AT instead of A we get an analogous expression for the same eigenvalues
hanging Ri ! Pj 6=i jAjij. I.e. for ea
h diagonal element, there is one Gershgorinradius asso
iated with the row and one with the 
olumn. Furthermore it 
an be shownthat if the n dis
s 
an be partitioned into disjoint subsets of the 
omplex plane thenea
h subset 
ontains the same number of eigenvalues as dis
s.If the original matrix A is hermitian, then the eigenvalues of A, say �i, and diagonalelements, Aii, are real, so the dis
s be
ome segments in the real line. Furthermore, theGershgorin segments asso
iated with the rows and the 
olumns 
oin
ide.All this 
an be applied to eq.(19). In parti
ular, for the 
ase of three neutrinos withhierar
hi
al Yukawa 
ouplings, y1 � y2 � y3, the diagonal entry ��0�0y�33 is normallymu
h larger than the others and the 
orresponding Gershgorin radius is mu
h smaller(see below), so the Gershgorin dis
 is usually disjoint from the others. This means thatthe largest eigenvalue, �23, satis�es����23 � ��0�0y�33��� �Xj 6=3 ������0�0y�3j���� (82)38



whi
h is similar to eq.(39) [note that the right-hand-side of eq.(82), i.e. the Gershgorinradius, is supressed by a y2y3�fa
tor with respe
t to ��0�0y�33℄.Analogous inequalities 
an be produ
ed for �21. In this 
ase, the most eÆ
ient ones
ome from 
onsidering the inverse matrix, �0�1(�0�1)y, whi
h is a positive hermitianmatrix with ��2i eigenvalues.The inequalities for �3, �1 produ
ed in this way 
an be plugged into (37) to givebounds on h similar to those 
onsidered in se
t. 4.Let us re
all that in that se
tion we found more eÆ
ient for the sake of 
larityto use the fa
t that in a positive hermitian matrix, su
h as �0�0y and �0�1(�0�1)y, thelargest eigenvalue (�23 and ��21 respe
tively) must be larger than any diagonal entry ofthe matrix.For the proof, let A be a positive hermitian n�n matrix with eigenvalues f�ig andeigenve
tors fvig, ordered as �1 � �2 � � � ��n. Writing the normalized ve
tor in theith-dire
tion, ei, as ei = P aijvj with P jaijj2 = 1, theneiyAei = Aii =X�jjaijj2 � �n (83)Similarly it 
an be shown that �1 � Aii (for any i). The above lower bound for �nis 
omplemented with the obvious upper bound �n � trA. This allows to 
orner therange of values where �n lies. (This pro
edure is very eÆ
ient for �0�0y and �0�1(�0�1)y,sin
e the tra
e is strongly dominated by the largest diagonal entry.)These inequalities 
an be made stronger repla
ing Aii by the eigenvalues of any m�m submatrix of A (with m � n). This 
an be seen by diagonalizing the submatrix withA0 = V yAV , where V is a unitary matrix whi
h is trivial ex
ept in the 
orrespondingm�m box, and then applying the same argument to A0.All these kinds of inequalities 
an be plugged into (37) to obtain alternative boundson h. Also they 
an be used to put bounds on the ratio �3=�1, whi
h gives a dire
tmeasure of how far is the neutrino spe
trum from the exa
tly degenerate 
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