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Hints on the high-energy seesawmehanism from the low-energy neutrinospetrumJ.A. Casas1, A. Ibarra2 and F. Jim�enez-Alburquerque1�1IFT-UAM/CSIC, C-XVI, Univ. Aut�onoma de Madrid, 28049 Madrid, Spain2DESY, Theory Group, Notkestrasse 85, D-22603 Hamburg, Germany.AbstratIt is an experimental fat that the mass ratio for the two heavier neutrinos,h = m3=m2 <� 6, is muh smaller than the typial quark and lepton hierar-hies, whih are O(20 � 300). We have explored whether this peuliar patternof neutrino masses an be a onsequene of the peuliar way they are generatedthrough a see-saw mehanism, determining 1) How the present experimentaldata restrit the struture of the high-energy seesaw parameters and 2) Whihhoies, among the allowed ones, produe more naturally the observed patternof neutrino masses. We have studied in partiular if starting with hierarhi-al neutrino Yukawa ouplings, as for the other fermions, one an naturallyget the observed h <� 6 ratio. To perform the analysis we have put forward atop-down parametrization of the see-saw mehanism in terms of (high-energy)basis-independent quantities. Among the main results, we �nd that in mostases m2=m1 � m3=m2, so m1 should be extremely tiny. Also, the VR matrixassoiated to the neutrino Yukawa ouplings has a far from random struture,naturally resembling VCKM. In fat we show that identifying VR and VCKM, aswell as neutrino and u�quark Yukawa ouplings an reprodue hexp in a highlynon-trivial way, whih is very suggestive. The physial impliations of theseresults are also disussed.Deember 2006
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Figure 1: Experimental mass ratio of the two heavier neutrinos, m2=m3, vs. the mass of the lightest,m1, in the ase of normal hierarhy.1 IntrodutionThe avour struture of the leptoni setor of the Standard Model shows hallengingdi�erenes with respet to the hadroni one. Muh attention has been attrated by theneutrino mixing matrix, UMNS, whih presents two large mixing angles and a small one,in ontrast to the three small mixing angles of the CKM matrix. On the other hand,the neutrino spetrum is not as well known as the neutrino mixings. In partiular,we still do not know whether the spetrum has a normal or an inverse hierarhy (i.e.whether the most split neutrino is the heaviest or the lightest), or whether it is quasi-degenerate [1℄. However, the amount of available information allows us to notie that,in either ase, the pattern of neutrino masses is neatly di�erent from those of quarksand harged-leptons. Aording to the last analyses of neutrino osillation experiments[2℄, the two independent ��mass splittings are (at 2�)�m2sol = (7:3� 8:5)� 10�5 eV2; �m2atm = (2:2� 3:0)� 10�3 eV2: (1)Hene, even in the ase of a normal hierarhy, the mass of the heaviest neutrino is atmost � 6 times the mass of the seond heaviest one. The preise value depends onthe mass of the lightest neutrino, as shown in Fig. 1. This ontrasts to the hierarhyobserved in quarks and harged leptons, where the typial mass ratios are O(20) (for1



d�quarks and �/� leptons) and O(300) (for u�quarks and e/� leptons) [3℄. Of ourse,if the ��spetrum is quasi degenerate or with inverted hierarhy, the di�erene withthe mass pattern of the other fermions is muh more onspiuous. In any ase we ansafely onlude that the hierarhy between the two heaviest neutrinos is muh softerthan the one for the orresponding quarks or harged leptons.Aording to the see-saw mehanism [4℄, whih is the most popular mehanismfor generating neutrino masses, these arise in a slightly more ompliated way thanthe masses of quarks and harged leptons. Namely, beside the onventional Yukawaouplings between the Higgs, the left{handed and the right{handed neutrinos, oneassumes Majorana masses for the right{handed ones. Upon deoupling of the latter,the light neutrino states have an e�etive Majorana mass matrix, M� / YTM�1Y,where Y is the initial matrix of Yukawa ouplings andM is the Majorana mass matrixof the right-handed neutrinos. So, unlike quarks and harged leptons, neutrino massesare not proportional to the Yukawa ouplings. Then one may wonder whether thepeuliar pattern of neutrino masses an be a onsequene of the peuliar way they aregenerated. If so, the spetrum of light neutrinos may shed light on the unknown featuresof the seesaw mehanism. In partiular one may ask 1) How the present experimentaldata restrit the struture of the high-energy seesaw parameters and 2) Whih hoies,among the allowed ones, produe more naturally (i.e. without unpleasant �ne-tunings)the observed pattern of neutrino masses. In other words, one an examine how possibleand how plausible is for the seesaw mehanism to reprodue the experimental data,and what is the orresponding information that we an learn about the underlyinghigh-energy theory. Also, from suh analysis, one an hopefully extrat hints on thestill unknown part of the low-energy ��spetrum. The investigation of these questionsand their physial impliations is the goal of this paper.In set. 2 we �x the notation and put forward a basis-independent top-down parametriza-tion for the see-saw, whih is speially useful to study the pattern of ��masses. Wedisuss how the VR mixing matrix assoiated to Y plays here a key role. In set. 3we analyze the 2-neutrino ase, as a simple and useful warm-up. In set. 4 we studythe 3-neutrino ase. We give general analytial results, ompleting (and on�rming)them with numerial surveys. We pay speial attention to the possibility that the��spetrum ould arise from hierarhial Yukawa ouplings, as for the other fermions,and work out the required struture of the high energy parameters and some onse-2



quenes for the unknown part of the low-energy ��spetrum. In set. 5 we exploresuggestive ans�atze for the VR, showing in partiular that identifying VR and VCKM, aswell as �� and u�quark Yukawa ouplings an reprodue the experimental ��spetrumin a highly non-trivial way, whih is remarkable. In setions 5 and we present the on-lusions and an outlook disussing physial impliations of these results. Finally, inthe Appendix we give useful formulas onerning the eigenvalues of a (general or not)matrix.2 Bottom-up and Top-down parametrizations of thesee-saw2.1 Notation and onventionsWe will use a standard notation that an be used for both the Standard Model (SM) andthe supersymmetri (SUSY) versions of the seesaw mehanism. The seesaw Lagrangianis given by L � e TR YeL � �H + � TR YL �H � 12� TR M�R + h:: (2)where Li (i = e; �; �) are the left-handed lepton doublets (generation indies are sup-pressed), (eR)i are the harged lepton singlets, �Ri the right-handed neutrino singletsand H is the (hyperharge = +1=2) Higgs doublet. Ye;Y are the 3 � 3 matries ofharged-leptons and neutrino Yukawa ouplings. Finally, M is a 3� 3 Majorana massmatrix for the right-handed neutrinos. BelowM we an integrate out the right-handedneutrinos, obtaining the usual e�etive Lagrangian that ontains a Majorana massterm for the left-handed neutrinos:ÆL = �12�TM�� + h:: (3)where M� = v2 � ; (4)with v = hH0i ' 174 GeV and � = YTM�1Y (5)3



The previous equations are valid for a SUSY theory understanding all the �elds ineqs.(2, 3) as super�elds, and replaing L ! W , ÆL ! ÆW , i.e. the superpotentialand the e�etive superpotential (with no h.. terms). In addition H ! H2, i.e.the (hyperharge = +1=2) SUSY Higgs doublet and hH0i ! hH02 i = v sin �, withtan � � hH02 i=hH01i, as usual.Working in the basis in whih the harged-lepton Yukawa matrix (Ye) and gaugeinterations are avour-diagonal, the neutrino mass matrix, �, an be expressed as� = U�MNS D� U yMNS; D� � diag(�1; �2; �3); (6)where �i � 0 (with the onvention �1 � �2 � �3 and thus m1 � m2 � m3) and UMNSis a unitary matrix that an be written as1UMNS = V � diag(e�i�=2; e�i�0=2; 1) ; (7)where � and �0 are CP violating phases (if di�erent from 0 or �) and V has the ordinaryform of a CKM matrixV = 0B� 1312 13s12 s13e�iÆ�23s12 � s23s1312eiÆ 2312 � s23s13s12eiÆ s2313s23s12 � 23s1312eiÆ �s2312 � 23s13s12eiÆ 2313 1CA : (8)Finally, note that the observable neutrino masses are given bymi = v2�i (SM)mi = v2 sin2 � �i (SUSY) (9)Sine we will be mainly interested in the mi=mj = �i=�j ratios, we will work most ofthe time with �i rather than with mi. This avoids the proliferation of annoying v2,v2 sin2 � fators and permits a uni�ed treatment of the SM and SUSY ases [note thateq.(5) is the same for both ases℄. Atually, all the results in the paper are equallyvalid for the SM and the SUSY ases, exept for some slight di�erenes due to radiativee�ets disussed in set. 5.1As is known, in eq.(7) V an be multiplied from the left by a diagonal unitary matrix with threeindependent phases. However, these phases an be absorbed in phase rede�nitions of the eR �elds, sothey are no physial.
4



2.2 Basis-independent quantitiesIn order to perform basis-independent analyses, it is extremely onvenient to work withbasis-independent quantities. For this matter, note that under a hange of basis�L ! XL�L ; �R ! XR�R (10)(XL;R are arbitrary unitary matries), the Yukawa and mass matries transform asY! XyRYXL ; M! XyRMX�R ; �! XTL�XL (11)Now the low-energy neutrino Lagrangian, eq.(3), ontains 9 independent (i.e. notabsorbable in �eld rede�nitions) parameters. They orrespond to the three mass \eigen-values" �i (stritly speaking they are the positive square roots of the ��y eigenvalues)and the six parameters of UMNS, whih is by onstrution a basis-independent quantity(it is de�ned in a partiular and well-determined basis of the �L �elds).On the other hand the see-saw (high-energy) Lagrangian, eq.(2), ontains 18 inde-pendent parameters. These an be de�ned in the following way. From eq.(11) is learthat one an always go to a �R basis where M is diagonal, with positive entries:M! diag(M1;M2;M3) � DM (12)where we adopt the onvention M1 � M2 � M3. Obviously Mi are basis-independentquantities. Working in the �L and �R bases whereYe andM, respetively, are diagonal,the neutrino Yukawa matrix, Y, an be expressed asY = VRDY V yL ; DY � diag(y1; y2; y3); (13)where, again, yi � 0 and y1 � y2 � y3. The three yi parameters are obviouslybasis-independent quantities. Besides Mi and yi, there are 12 independent high-energyparameters ontained in VL; VR. Generially, both matries an be written �1V�2,where �1;2 are diagonal unitary matries and V has the same funtional form as (8)[replaing the �ij angles and the Æ phase by new �Lij, ÆL and �Rij, ÆR respetively℄.However, for VR the �2 matrix an be absorbed into the de�nition of VL [see eq.(13)℄,soVR = 0BBBBB� ei�1 ei�2 1
1CCCCCA0BBBBB� R13R12 R13sR12 sR13e�iÆR�R23sR12 � sR23sR13R12eiÆR R23R12 � sR23sR13sR12eiÆR sR23R13sR23sR12 � R23sR13R12eiÆR �sR23R12 � R23sR13sR12eiÆR R23R13

1CCCCCA :(14)5



Likewise, for VL the �1 matrix an be absorbed into phase de�nitions of L = (�L; eL)Tand eR (keeping Ye diagonal). Then VL has a struture similar to UMNS in (7), i.e.VL = V (�L12; �L23; �L13; ÆL) � diag(ei�1 ; ei�2; 1). Hene, VL and VR have 6 independentparameters eah, whih, beside Mi and yi, omplete the 18 independent parameters ofthe see-saw Lagrangian2.In summary, in the see-saw framework, the 18 (9) independent parameters of thehigh(low)-energy neutrino Lagrangian are given by the following basis-independentquantities: High� Energy Low � Energyyi �iMi UMNSVR �!VL|||| ||||18 parameters 9 parameters (15)
2.3 Bottom-up and Top-down parametrizationsSine the number of independent parameters of the see-saw mehanism is larger in thehigh-energy than in the e�etive theory, one �nds often the problem of using the avail-able (low-energy) experimental information to onstrain the high-energy parameters.This is a bottom-up problem. It was shown in ref. [6℄ that, working in the basis whereYe;M are diagonal and positive, for given D�, UMNS, the Yukawa matrix Y has theform Y = DpMRDp�U yMNS (16)where DpM = pDM (with Mi arbitrary) and R is a omplex orthogonal matrix (withthree arbitrary omplex angles). Thus DM and R ontain the 9 additional parametersof the high-energy theory with respet to the low-energy one. Eq.(16) represents abottom-up parametrization of the see-saw. If desired, one an extrat yi, VL and VRfrom Y upon diagonalization.2A similar disussion an be found in ref. [5℄. 6



However, for some kinds of problems it is more onvenient a top-down parametriza-tion, i.e. a way to obtain, as diretly as possible, the physial low-energy parametersfrom the high-energy ones. This is preisely the sort of problem onsidered here: whatkind of low-energy neutrino spetrum an we naturally expet, starting with reasonableor well-motivated hoies of the high-energy parameters3. Obviously, starting with thehigh-energy parameters in (15) one an use eqs.(13, 5) to write � in the basis whereYe;M are diagonal� = YTDM�1Y = V �LDY V TRDM�1VRDY V yL ; (17)and then, upon diagonalization, determine UMNS and �i. Nevertheless it would beuseful to �nd a more diret way to extrat the neutrino masses, �i, from the high-energy parameters. To this end it is interesting to notie that �i do not depend on VL.In partiular, they an be obtained upon diagonalization of�0 = DY V TRDM�1VRDY ; (18)whih is simply � after rede�ning �L as in eq.(10) with XL = VL. This means thatD� =W TL �0WL for a ertain unitary WL matrix, or, in other words,D�2 = Eigenvf�0�0yg (19)Therefore, given DY and DM , the VR matrix tells the values of �i. VL and UMNSget ompletely deoupled from this ux of information: note that 1) eq.(19) does notdepend on VL and 2) the onnetion of VL and UMNS is given byUMNS = VLWL (20)where WL has been de�ned after eq.(18). This means that for any hoie of VR, onean always hoose VL so that the experimental UMNS is reprodued.Eqs.(19, 20) [with �0, WL de�ned in eq.(18) and the lines below℄ represent a top-down parametrization of the see-saw whih is useful for our purposes. The VR matrix, inpartiular, plays here a similar role as the R matrix in the bottom-up parametrization(16). They enode the ux of information about matrix eigenvalues along the top-downand bottom-up diretions,3Related work on top-down parametrizations and analysis of top-down questions an be found e.g.in ref. [7℄ 7



DY ; DM VR�! D� (21)D�; DM R�! DY ; (22)through eqs.(16, 19) respetively. UMNS gets ompletely deoupled from this ux ofinformation and an always be �tted. [This has been just explained for the top-downparametrization. For the bottom-up one, note from (16) that DY depends on D�, DMand R, but not on UMNS.℄ Hene, it is not surprising that VR and R ontain the samenumber of parameters (6 for three families of neutrinos). The onnetion between themis given by Y Y y = DpMRD�RyDpM = VRDY 2V yR : (23)It is worth mentioning that VR has a preise physial meaning: it measures the mis-alignment between Y and M. If VR is non-diagonal, there is no �R basis in whih Yand M an get simultaneously diagonal. The VR entries an be identi�ed as genuinephysial inputs (and in fat they play a relevant role in ertain physial proesses,as those related to leptogenesis). On the other hand, R has a more obsure physialmeaning, even though it is a useful tool for phenomenologial analyses.3 The 2-neutrino systemAlthough the ase of two families of (left and right) neutrinos is obviously non-realisti4,it is very useful in order to gain intuition about the form of the low-energy spetrumfor typial high-energy inputs. In this ase VR has the formVR = " ei� 1 # " R sR�sR R # (24)We will �rst obtain some simple and general relations involving VR, DM , DY and D�,whih however ontain muh information. In partiular they put useful onstraintson VR to ahieve a soft normal hierarhy, �2=�1 � 6, or quasi-degeneray, �2=�1 � 14Atually, the analysis presented in this setion is also valid for the ase of three left-handedneutrinos and two right-handed neutrinos, whih is the minimal version of the see-saw model apableof aommodating the low-energy observations [8℄.8



(whih for two neutrinos is equivalent to a inverse hierarhy). The tehniques used forthis general analysis will be useful for the 3-neutrino ase, to be studied in the nextsetion.Then we will get exat results by solving analytially the seular equation (19)[something too umbersome for three families℄.3.1 General resultsFrom eqs.(18, 19) is lear thatdetfD�g = �1�2 = y21y22M1M2 ; (25)whih does not depend on VR. On the other hand, the hierarhy between the physialmasses, say h, an be written ash � �2�1 = �22detfD�g ; (26)so any information about �2 translates automatially into h. Now, using eq.(19) wean obtain additional information on �2 from the fat that �0�0y is a positive hermitianmatrix, whih means in partiular that its largest eigenvalue is larger than any diagonalentry, i.e.�22 � ��0�0y�ii = Xj=1;2 j�0ijj2 = y2i Xj=1;2 y2j ���(VR)kiM�1k (VR)kj���2 ; i = 1; 2 (27)At this point we an try an ansatz for some of the high-energy parameters. Let usassume for the moment that the hierarhy between y1 and y2 is similar to the hierarhyof Yukawa ouplings observed in harged fermions: y2=y1 = O(20� 300). This meansthat the r.h.s. of eq.(27) is generially dominated by ��0�0y�22, in partiular by theterm proportional to y42:�22 � ��0�0y�22 = y42M21 ����(VR)212 + M1M2 (VR)222����2 +O  y21y22M21 ! (28)where the subdominant terms are positive. In fat, the previous inequality is typiallylose to an equality: note that from �22 � tr(�0�0y), it follows that�22 � ��0�0y�22 � ��0�0y�11 = O  y21y22M21 ! : (29)9



Therefore, eq.(28) is an equality up to terms suppressed by O(y21y22 ).5Plugging eq.(28) into eq.(26), we obtain an exat inequality for h,h = �2�1 � y22y21 M2M1 ����(VR)212 + M1M2 (VR)222����2 (30)Clearly, for random values of the VR entries we expet a low-energy hierarhy h =O �y22y21 M2M1�, muh stronger than that of Yukawa ouplings and, of ourse, than theexperimental one, hexp <� 6. E.g. for M1 ' M2 we expet h = O(102�5); for M2=M1 �y2=y1 we expet h = O(103�7).Consequently, either we give up the natural assumption that the Yukawa ouplingsfor neutrinos present a hierarhy similar to the other fermions', or we aept that the(VR) entries are far from random. (This is already a strong onlusion that holds for thethree-generation ase, as we will see in the next setion.) Let us take the seond pointof view and determine the onstraints on VR to ahieve degeneray or soft hierarhy inthe neutrino spetrum, h ' 1, h <� 6 respetively.Let us �rst onsider the degenerate (h = 1) ase, i.e. �21; �22 ! y21y22=(M1M2).Then, if VR has real entries, eq.(30) requires (VR)412 � y21y22 M1M2 � 1 [ie. sR ' 0 in theparametrization (24)℄. In addition, taking i = 1 in (27), we get an extra inequality for�2 �22 � y41M21 ����(VR)211 + M1M2 (VR)221����2 : (31)Multiplying (30) and (31) it is straightforward to hek that the degenerate ase is onlyobtainable when (VR)21 = 0 (i.e. sR = 0) and, besides, M2=M1 = y22=y21.On the other hand, if VR has omplex entries [� 6= 0; � in eq.(24)℄, a anellationinside the r.h.s. of (28) is possible (in the absene of suh anellation the previousresults essentially hold). This requires(VR)212 ' �M1M2 (VR)222 ; (32)whih in turn implies � ' ��=2 in (24) (in the next subsetion we will show that� = ��=2 exatly6). In addition, M1=M2 annot be arbitrarily small. From (32) we5Another inequality for �22, similar to eq.(29) arises from onsidering the Gershgorin irle assoi-ated to ��0�0y�22, as disussed in Appenddix A.6Let us mention that � = ��=2 does not mean maximum CP -violation. On the ontrary, suhphase an be absorbed ompletely in the de�nition of DM [see eg. eqs.(17, 18)℄, whih now ontainsnegative, but real entries. Hene this value of � does not amount to any CP -violation. Nevertheless,non-trivial CP -violating phases an still appear from the VL setor. These translate into CP -phasesin UMNS . 10



see that very smallM1=M2 implies j(VR)21j � 1, j(VR)22j = j(VR)11j ' 1, whih pluggedinto (31) gives M1=M2 >� y21=y22, thus setting a lower bound on M1=M2. Eq.(32) tellsthat, unless M2=M1 = O(1), the degeneray an only be obtained by �ne-tuning sRto a very small, but di�erent from zero, value. (This is the ase in partiular forM2=M1 ' y2=y1.) For random values of sR one is led to a huge hierarhy between thephysial masses, as expeted.Let us now say how the previous onditions are relaxed if, instead of exat degen-eray (h = 1), we require a soft hierarhy (h <� 6). For the real ase we get a relaxedondition on the Mi hierarhy: h�1 <� (M1=M2)(y22=y21) <� h. The upper bound orre-sponds to sR = 0. Otherwise a tuning of sR is required. For the omplex ase, whenevera anellation inside eq.(28) is needed, the same ondition (32) is obtained, thus re-quiring a small and tuned value of sR. This ours in partiular for M2=M1 ' y2=y1.In summary, starting with a hierarhy of neutrino Yukawa ouplings similar tothat for the harged fermions leads typially to a very strong hierarhy of low-energyneutrino masses (unlike the observed one). Nevertheless, adjusting the VR entries itis possible to get the desired degeneray or soft hierarhy at low-energy. The prieis a �ne-tuning between y2=y1, M2=M1 and VR. Normally a very small, but di�erentfrom zero angle in eq.(24) is required. If nature had just two speies of neutrinos wewould onlude that, unless a theoretial reason is found for this tuning, the see-sawmehanism annot naturally lead to the observed low-energy neutrino spetrum if onestarts with hierarhial neutrino Yukawa ouplings similar to those of other fermions.(This applies to the model with two right-handed neutrinos and three left-handedneutrinos mentioned in footnote 3.)3.2 Some exat resultsFor the 2-neutrino system, the mass eigenvalues an be obtained from eq.(19) in termsof the high-energy parameters in a ompletely analytial way. The results are parti-ularly simple and illustrative for the degenerate ase. Then eq.(19) an be written as�2d1 = �0�0y, with �2d � �21 = �22 = y21y22=(M1M2). Consequently,DM�1VRDY 2V yRDM�1 = �2dV �RDY �2V TR (33)
11



Comparing the matrix entries of the two sides one onludes that the degeneray isonly ahieved when� = �=2 ; os2 �R = M2y22 �M1y21(M1 +M2)(y22 � y21) ; (34)whih implies in turn y21y22 � M1M2 : (35)This on�rms the fat that for any hoie of yi, Mi satisfying the inequality (35), thereis a hoie of VR [given by eq.(34)℄ that produes exatly degenerate neutrinos, �1 = �2.On the other hand, one an hek that the degeneray is generially ahieved thanksto a �ne-tuning of the high-energy parameters. This is illustrated for y2=y1 =M2=M1 =300 (i.e. the same hierarhy as u�quarks) in Fig. 2, whih shows the mass-ratiom2=m1 = �2=�1 a funtion of �R for di�erent values of the � phase. As expeted,the exat degeneray is only possible for � = �=2 and at a very small (but di�erentfrom zero) value of �R [see eq.(34) and the disussion after eq.(32)℄. Changing �R and� from their ritial values, even if very slightly, pushes rapidly m2=m1 out from theallowed experimental region (yellow band in the �gure). For larger values of �R, onegets m2=m1 ! O �y22y21 M2M1�, in agreement with the disussion of subset. 3.1. To thisrespet, notie that in the �gure only a small range of �R values has been represented(for the sake of larity).The onlusions are similar when M1 ' M2, the only di�erene being that theritial value of �R is not small.4 The 3-neutrino systemLet us now examine the realisti ase with three neutrino speies and a hierarhybetween the two heavy ones, h = m3=m2 = �3=�2, in the experimental range: fromh ' 1 (quasi-degeneray or inverse hierarhy) to h ' 6 (normal but soft hierarhy).From the results of the previous setion, we an already foresee some onlusions.First, to ahieve a neutrino spetrum where the three neutrinos are quasi-degenerateor present a soft hierarhy will be probably as unnatural as for the 2-neutrino ase. Wewill see that this indeed the ase. On the other hand, to ahieve the atual experimentalonstraint, namely soft hierarhy or quasi-degeneray just for the two heavy neutrinos12
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Figure 2: Mass-ratio m2=m1 in a 2-neutrino system vs. the �R angle for several values of the��phase (see the notation of eq. (24)) when y1 : y2 =M1 :M2 = 1 : 300.(the latter ase orresponds to an inverse hierarhy) an be muh easier. Eg. if VR hasonly sizeable entries in f1; 2g box, (i.e. �23 = �13 = 0) �1 (�2) will derease (inrease)signi�antly, as �12 departs from zero, while �3 will not hange. In onsequene weexpet in this ase a very large �2=�1 hierarhy but a softened �3=�2 one. This isonsistent with experiment and does not imply �ne-tunings (only small, but not tuned,values for ertain angles). As we will see, other possibilities an also work, but theyare not very di�erent from the one just out-lined.4.1 General resultsLet us reall that the neutrino masses, �i, depend on the high-energy parameters,yi;Mi; VR through eq.(19). As for the 2-neutrino ase, the determinantdetfD�g = �1�2�3 = y21y22y23M1M2M3 ; (36)
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does not depend on VR. The hierarhy between the two heavy neutrino masses an bewritten as h = m3m2 = �3�2 = �23�1detfD�g ; (37)Now, in order to get information about h we need information on �3; �1.Using the fat [eq.(19)℄ that �2i are the eigenvalues of �0�0y, whih is a positivehermitian matrix, we an write�23 � ��0�0y�ii = Xj=1;2;3 j�0ijj2 = y2i Xj=1;2;3 y2j j(VR)kiM�1k (VR)kjj2 ; i = 1; 2; 3 (38)At this point we an try again an ansatz for the spetrum of high-energy parameters.So let us assume for the moment that the hierarhy between the yi is similar to thehierarhy of Yukawa ouplings observed in harged fermions: y3=y2; y2=y1 = O(20 �300). Then eq.(38) is generially dominated by ��0�0y�33, in partiular by the termproportional to y43, whih orresponds to i = j = 3:�23 � ��0�0y�33 = y43M21 ����(VR)213 + M1M2 (VR)223 + M1M3 (VR)233����2 +O y23y22M21 ! (39)where the subdominant terms are positive. As for two neutrinos, the previous inequalityis typially lose to an equality: from �23 � tr(�0�0y), it follows that�23 � ��0�0y�33 � ��0�0y�11 + ��0�0y�22 = O  y23y22M21 ! ; (40)so (39) holds as an equality up to y22y23 {suppressed terms7.On the other hand we an obtain information on �1 by onsidering �0�1(�0�1)y,whih is a positive hermitian matrix with ��2i eigenvalues. The largest eigenvalue, ��21 ,satis�es��21 � ��0�1(�0�1)y�ii = Xj=1;2;3 j�0�1ij j2 = y�2i Xj=1;2;3 y�2j j(VR)kiMk(VR)kjj2; i = 1; 2; 3(41)This equation is typially dominated by ��0�1(�0�1)y�11, in partiular by the i = 1; j = 1term, �21 � y41M23 ����(VR)231 + M2M3 (VR)221 + M1M3 (VR)211�����2 �O y61y22M23 ! (42)7An inequality similar to (40) arises from the Gershgorin theorem, as disussed in Appendix A.14



where the subdominant terms are negative (so ignoring them still represents an ex-at inequality). Again, this inequality is typially lose to an equality: from ��21 �tr h�0�1(�0�1)yi it follows that8�21 � 24 Xi;j=1;2;3 j�0�1ij j235�1 ; (43)whih is dominated by i = j = 1:�21 � y41M23 ����(VR)231 + M2M3 (VR)221 + M1M3 (VR)211�����2 �O y61y22M23 ! (44)Note that in eq.(44) the subdominant terms are negative (so ignoring them here rep-resents an approximate inequality). In any ase, omparing (42) and (44), we see thateq.(42) holds as an equality up to y21y22 {suppressed terms.Similarly to the 2-neutrino ase, plugging eqs.(39, 44) into eq.(37) we get aninequality9 for h,h = m3m2 = �3�2 >� y23y22 M2M1 ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2���(VR)231 + M2M3 (VR)221 + M1M3 (VR)211��� : (45)From this expression it is lear that for random values of the VR entries we expet alow-energy hierarhy muh stronger than that of Yukawa ouplings.Only for y3=y2, M2=M1 = O(1) an the experimental value hexp <� 6 be naturallyobtained. For a yi=yj hierarhy similar to quarks and harged leptons, we expet weexpet h = O(102�5) if M1 'M2 'M3, and h = O(103�7) if Mi=Mj � yi=yj (whih isprobably a more attrative possibility), in any ase way too large.So we arrive to a similar onlusion as for two neutrinos: either we give up thenatural assumption that the neutrino Yukawa ouplings present a hierarhy similar toother fermions, or we aept that the VR entries are far from random. However, in thisase \far from random" does not neessarily mean \�ne-tuned", as will be shown insubset. 4.3.We will devote subsets. 4.2 and 4.3 to determine the pattern of VR required toahieve the desired soft hierarhy (or quasi-degeneray) for the three neutrinos or just8One more, an inequality similar to (43) arises from the Gershgorin theorem, see Appendix A.9Plugging eq.(43) instead of eq.(44) into eq.(37) we obtain an exat inequality for h, though slightlymore involved than (45). On the other hand, a simpler approximate inequality is obtained from (45)by noting that the absolute value in the denominator is � 1.15



for the two heavy ones respetively. Let us advane that sine the absolute value inthe denominator of (45) is � 1, then ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2 � 1 must beful�lled in all ases.Connetion with models of anarhi neutrinosWe would like to make a very short digression about the use of the previous ap-proah to analyze senarios of anarhi neutrinos [9℄. The basis-independent top-downformulation of the see-saw mehanism that we are using may be onvenient to makestatistial onsiderations about the high-energy parameters that de�ne the theory, asis done in models of anarhi neutrinos. In partiular, in the absene of additionalassumptions, it makes sense to san yi and the 6 parameters de�ning VR instead of theY matrix, whih ontains 18 parameters (3 of them redundant and 6 not related tothe neutrino masses).Then, from (45) we notie that for average values of the VR entries, in partiular forj(VR)13j2 � j(VR)31j2 � 1=3, we get a hierarhy h � 13 y23y22 M2M1 . Therefore the expetablepattern of neutrino masses depends ruially on the range in whih the yi;Mi param-eters are allowed to vary. E.g. if one uses yi 2 [1=a; a℄y0, Mi 2 [1=a; a℄M0, with a > 1,one expets h � a3=3.4.2 Degeneray or soft hierarhy for the three neutrinosLet us �rst onsider the ase of ompletely degenerate low-energy neutrinos. Fromeq.(36) this means �21 = �22 = �23 � �2deg =  y21y22y23M1M2M3!2=3 (46)Now we will use the inequalities (38, 41) for i = j = 1; 3. This produes four inequali-ties, whih are given by eqs.(39, 42) and�23 � y41M23 ����(VR)231 + M3M2 (VR)221 + M3M1 (VR)211����2 (47)�21 � y43M21 ����(VR)213 + M2M1 (VR)223 + M3M1 (VR)233�����2 (48)16



Again we assume a strong hierarhy among the yi, say similar to the hierarhy ofYukawa ouplings observed in harged fermions: y3=y2; y2=y1 = O(20 � 300). Wedo not assume a priori any partiular hierarhy between the three Mi, exept theonventional ordering M1 �M2 �M3.Let us suppose for the moment that there are no deliate anellations among theterms in the right-hand sides of eqs.(39, 42, 47, 48). This means that the absolutevalue of eah term inside the straight brakets is <� the absolute value of the sumof them (note that \ <� " beomes \�" for real VR). Then, sine y23=M1 � �deg,y21=M3 � �deg, it is lear from eqs.(39) and (42) that j(VR)13j2 � 1 and j(VR)31j2 � 1respetively. Besides, the unitarity of VR implies that either a) j(VR)23j2; j(VR)32j2 � 1or b) j(VR)21j2; j(VR)12j2 � 1, i.e. VR is approximately box-diagonal. Furthermore,looking at the (VR)2ij-term with smaller fator in eqs.(39) and (42) we obtainy23M3 <� �deg ; y21M1 >� �deg (49)respetively. This implies M3=M1 >� y23=y21. (This works similar to the ase of twoneutrinos, see eq.(35).) Suppose VR falls in the possibility a) above, whih meansj(VR)33j2 = O(1). Then eq.(48) implies y23=M3 >� �deg whih, together with the �rstequation in (49), requires y23M3 ' �deg (50)This orresponds to the fat that VR is essentially diagonal, exept in the 1-2 box.Eqs.(50, 46) imply y21y22M1M2 ' �2deg. Due to the large y�hierarhy, this means y21M2 ��deg � y22M1 . Applying this to the seond term in the r.h.s. of eq.(42), we onludej(VR)21j2 � 1 (and j(VR)11j2 ' 1, j(VR)12j2 � 1 by unitarity). So VR is essentially1. Atually, from the third term of (47) we obtain y21M1 <� �deg, whih together witheq.(49), implies y22M2 ' �deg. Had we started with the possibility b) above, we wouldhave obtained the same onlusion. In summary, if there are no preise anellationsin the r.h.s. of eqs.(39, 42, 47, 48), the only hoie of high-energy parameters givingompletely degenerate neutrinos isy21M1 ' y22M2 ' y23M3 ' �2deg ; VR ' 1 (51)This is similar to the 2-neutrino ase. 17



If the yi;Mi; VR parameters are not in the relation (51), we are fored to admitnon-trivial anellations between the various terms in the right-hand-sides of eqs.(39,42, 47, 48). In partiular, if suh anellation exists in the r.h.s. of eq.(39) and eq.(42),the onstraints (49) [and the subsequent M3=M1 >� y23=y21 inequality℄ do not apply.Atually, for a wide range of yi;Mi parameters, the entries of VR an be arrangedso that the two anellations take plae and �1 = �2 = �3 = �deg (see below formore details). However, this amounts to a very aurate (and thus unplausible) �ne-tuning. This result annot be easily appreiated if one just uses the bottom-up see-sawparametrization, eq.(16), sine this automatially gives sets of working yi parametersfor arbitrary Mi; R. An intermediate situation ours when the anellation takesplae \just" in one of the right-hand-sides of eqs.(39, 42, 47, 48). Eg. suppose thatthe anellation just ours in the r.h.s. of eq.(42). Then, from eqs.(39, 48) we easilyonlude that y23M2 j(VR)23j2 <� �deg <� y23M3 (1 � j(VR)23j2)�1, whih implies that either y23M3or y23M2 must be lose to �deg.In any ase, we have seen that unless the high-energy parameters satisfy (51),�ne anellations are required in order to obtain degenerate neutrinos. Then, in theabsene of an explanation for suh anellations, we onlude that degenerate neutrinosare not natural within the see-saw framework if the neutrino Yukawa ouplings presenta hierarhy similar to other fermions10. Let us also note that sometimes is stated that(see-saw) degenerate neutrinos naturally require degenerate right-handed Majoranamasses, Mi, as well. Now we see that this is only true if the Yukawa ouplings aredegenerate as well, aording to eq.(51). Otherwise a �ne-tuning for the VR entries isneeded, exatly as for other hoies of Mi.Let us now be more preise about what onditions must ful�ll the yi;Mi parametersin order to exist a hoie of VR that implements degenerate neutrinos. First of all,notie that if y22M2 = �deg, the problem redues to a 2-neutrino one, in this ase the 1and 3 neutrinos. [This ours in partiular when both the yi� and the Mi�hierarhiesare regular, i.e. y3=y2 = y2=y1, M3=M2 = M2=M1.℄ Then, from the results of theprevious setion, we know that, provided M3=M1 � y23=y21, there will be a non-trivialsolution. The orresponding VR matrix is non-trivial in the 1{3 box. Sine the y23=y21ratio is normally very large, the �ne-tuning in the values of the VR entries must beextremely preise. More generally, we an obtain neessary onditions for yi;Mi in10See ref.[10℄ for the disussion of a partiular theoretial model18



order to aommodate degenerate neutrinos as follows. Using the bottom-up see-sawparametrization (16), if neutrinos are degenerate we an writeY Y y = �degqDMRRyqDM (52)where �deg is given by (46). Sine Y Y y is a positive hermitian matrix, its largesteigenvalue, y23, must be larger than the diagonal entries, i.e.y23 � �degfMi(RRy)iig; i = 1; 2; 3 (53)Taking into aount (RRy)ii � 1 (this an be readily heked using eg. the parametriza-tion of R given in ref. [6℄) we �nally obtainy23 � �degM3 (54)A similar argument applied to the (Y Y y)�1 matrix leads toy21 � �degM1 (55)Note that eqs.(54, 55) implyM3=M1 � y23=y21. Let us stress that these are neessary butnot suÆient onditions to guarantee the existene of a VR matrix produing degenerateneutrinos. Nevertheless the numerial analysis shows that in most ases satisfying theabove onditions suh VR matrix an be found. Note that onditions (54, 55) are onlyompatible with the onstraints (49) [obtained under the assumption of no �ne-tuningsin VR℄ when eq.(51) is ful�lled, in agreement with the previous disussion.In summary, if neutrino Yukawa ouplings present a hierarhy similar to otherfermions, a spetrum of ompletely degenerate (or quasi-degenerate) neutrinos is pos-sible but quite unnatural. For random VR the hierarhy of neutrino masses is atuallymuh stronger than that of Yukawa ouplings, in absolute onit with experimentaldata. For VR = 1 a degenerate spetrum if the Yukawa ouplings, yi, and the right-handed masses, Mi are in the preise proportion (51). For arbitrary yi, Mi satisfying(54, 55) it is in general possible to �nd a partiular VR giving degenerate neutrinos,but this amounts to a strong �ne-tuning.Finally, let us remark that these onlusions still hold (although somewhat softened)if instead degenerate neutrinos one demands hierarhial neutrinos with a soft hierarhybetween the three families, e.g. �3=�2 <� 6 (this is obliged by experimental data) and�2=�1 <� 6 (this is just an hypothesis).These results strongly suggest to onsider soft hierarhy or quasi-degeneray justfor the two heavy neutrinos, whih we study next.19



4.3 Degeneray or soft hierarhy for m3=m2We will fous now on the possibility of ful�lling h = m3m2 = �3�2 <� 6 (i.e. the onlyexperimental onstraint on the ratio of neutrino masses), starting with hierarhialYukawa ouplings. Again we will assume for the moment that the hierarhy betweenthe yi is similar to the hierarhy of Yukawa ouplings observed in harged fermions:y3=y2; y2=y1 = O(20� 300).For onveniene for the disussion we repeat here the previous bound (45) on thevalue of h, h >� y23y22 M2M1 ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2���(VR)231 + M2M3 (VR)221 + M1M3 (VR)211��� ; (56)As disussed in subset.4.1, this equation tells us that for random values of the VRentries we expet h � y23y22 M2M1 � 6. Therefore we need to imagine ways to get h muhsmaller than the \random" result, preferably without �ne-tunings. Obviously this ismuh easier to ahieve if the ombination of VR elements in the denominator of (56) isas large as possible. From (42) this orresponds to �1 as small as possible. Thereforegenerially it is far more natural to get the experimental result h <� 6 if the lightestneutrino presents a muh stronger hierarhy than the two heavy ones, whih is aninteresting onlusion11.However, a denominator as large as possible is not enough to render h <� 6: theexpression in straight brakets in the denominator is � 1, so a small numerator,���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2 � 1, is always obliged. If M1 = M2 = M3 (i.e.degenerate right-handed neutrinos) this an only be aomplished by a anellationbetween the various terms in the numerator. On the ontrary, if M1 �M2 �M3 thisould be ahieved without anellations. We examine next the two ases separately.M1 �M2 �M3If we do not allow �ne anellations in the numerator of eq.(56), this gets minimalwhen is dominated by the (VR)233 term. This requires j(VR)13j2 and j(VR)23j2 � 1;1211An exeption to this rule ours when the yi;Mi values are in the proportion (51). Then VR � 1leads naturally to degenerate or soft-hierarhial neutrinos.12If the hierarhy of Mi is very strong, the dominane of the (VR)233 term may be non-ompulsory.More preisely, if M1=M2 <� y23=y22, then the ondition j(VR)23j2 � 1 an be relaxed (j(VR)13j2 � 1annot). 20



more preisely j(VR)13j2 < M1=M3 and j(VR)23j2 < M2=M3. Then (VR)231 in the denom-inator is also very small (by unitarity of VR) and eq.(56) an normally be approximatedas h >� y23y22 M1M3 1j(VR)221 + M1M2 (VR)211j : (57)In partiular, h >� y23y22 M1M3 1j(VR)21j2 if j(VR)21j2 >� (M1=M2): (58)h >� y23y22 M2M3 otherwise : (59)E.g. if Mi=Mj = yi=yj (whih we �nd a reasonable assumption) in a regular hierarhy,i.e. y1y2 = y2y3 , then the ase (58) beomes h <� j(VR)21j�2. As a matter of fat, takingj(VR)21j = 1 and (VR)11, (VR)13 = 0, leads exatly to �3 = �2 and thus inverse hierarhy.This an be easily heked using the exat results of subset.3.2, sine in this limit theproblem involves only two neutrinos. More generally, for sizeable j(VR)21j2 we get asoft hierarhy for the two heavy neutrinos. E.g. for j(VR)21j2 >� 1=6 we get h <� 6, inagreement with experiment. Notie that there are no deliate anellations (and thusno �ne-tuning) involved in this instane: hanges in the VR entries amount to hangesin h in a similar proportion. On the other hand, for very small j(VR)21j (and thus verysmall j(VR)12j by unitarity) eq.(57) beomes h >� y23y22 M2M3 = y3y2 , whih is too large.Let us stress that the above possibility of getting an experimentally viable h with no�ne-tunings requires very small j(VR)13j, j(VR)23j, and sizeable j(VR)21j.13 This oinidesexatly with the struture of the CKM matrix, whih we �nd very suggestive. Atually,the oinidene is even stronger sine the previous disussion suggests j(VR)13j2 �j(VR)23j � j(VR)21j = sizeable, as for CKM. We will turn to a more areful exam ofthis CKM-like form for VR in set.5.Another (less attrative) possibility to get a small numerator in eq.(56) is to allowfor anellations between the various terms inside the straight brakets. This requiresj(VR)13j2 >�M1=M3 and/or j(VR)23j2 >�M2=M3. Still, this possibility requires very small13An intuitive way to understand the pattern obtained for VR is to realize that it simply orrespondsto a \random" 2� 2 box for the two lighter neutrinos and the rest lose to the identity matrix. Then�1 and �2 split enormously, as shown in set.3, and thus �2 approahes �3 (whih hanges little),while �1 gets extremely small. 21



j(VR)13j. The largest possible value for j(VR)13j ours when it anels against the (VR)223term, so j(VR)13j2 <� M2M3 : (60)These results are illustrated in Fig. 3, where we show the density of allowed pointsin the j(VR)13j � j(VR)23j plane for �xed values of j(VR)12j [this determines the VRmatrix up to phases, aording to eq.(14)℄ and y1 : y2 : y3 = 1 : 300 : 9 � 104,M1 :M2 :M3 = 1 : 300 : 9� 104. In eah point, we have evaluated h for 1000 randomvalues of the phases in VR, and ounted the number of points that are ompatiblewith the observed hierarhy, h <� 6. White areas are exluded, while olored areasare allowed, orresponding the redder (darker in blak and white printer) areas to theregions with higher density of allowed points. The reddest areas preisely orrespondto the hoies of VR that reprodue naturally (with no anellations) the observedmass hierarhy. As disussed just before eq.(57), this ours for j(VR)13j2 < M1=M3and j(VR)23j2 < M2=M3, thus the size and shape of the reddest \retangle". The lightblue (light grey in blak and white) areas orrespond to the hoies of VR that anreprodue the observations with a ertain amount of tuning. As argued above, forsmall j(VR)12j it is not possible to reprodue hexp, unless a �ne-tuning in the numeratorof (56) takes plae, thus the tiny light allowed areas for j(VR)12j2 <� 1=6, in agreementwith the previous disussion. The bound (60) is also learly visible.The shape of the omplete allowed region an be analytially understood as follows.For not too small j(VR)23j2 [in partiular when we allow for anellations in the nu-merator of (56)℄, the denominator of (56) is dominated by j(VR)31j2, whih satis�es theunitarity onstraint j(VR)31j2 � j(VR)13j2+ j(VR)23j2. On the other hand, the numeratorof (56) is minimal when the maximum anellation between the various terms ours.Thus we an writeh >� y23y22 M2M1 Min ��� � ���j(VR)13j2 � M1M2 j(VR)23j2���+ M1M3 (1� j(VR)13j2 � j(VR)23j2) ���2j(VR)13j2 + j(VR)23j2 : (61)Moreover, when the two possibilities inside j j2 in the numerator of (61) have oppositesigns, then it is possible to ahieve an exat anellation by adjusting the phases ofthe various terms in the numerator of (56). The values of j(VR)13j and j(VR)23j thatsaturate the approximate analytial bound (61) for h = 6 are indiated in the last plotof Fig. 3 with a solid line, whih desribes the exat allowed region in a fair way.22



0 0.2 0.4 0.6 0.8 1Figure 3: Region in the j(VR)13j � j(VR)23j plane whih gives m3=m2 � 6 for some hoie of thephases of VR (see eq.(14)). For eah point, 1000 random hoies are probed. The olor indiates thefration of unsuessful hoies: from red (omplete suess) to light blue. The senario is de�nedby M1 = M2 = M3 = y1 : y2 : y3 = 1 : 300 : 9 � 104. Eah plot orresponds to a di�erent value ofj(VR)12j. The dashed line in the last plot orresponds to the limit of unitarity of VR, while the solidline orresponds to the approximate analytial bound disussed at eq. (61).23



Notie that for j(VR)23j2 � j(VR)13j2, eq.(61) gets simpli�ed toh >� y23y22 M2M1 hj(VR)13j2 � M1M2 j(VR)23j2i2j(VR)13j2 + j(VR)23j2 ; (62)whih is responsible for the long and light strip in the plots. Notie also that for thisregion, the anellation requires the (VR)213 and (VR)223 terms in (56) to have di�erentsigns, so �2 ' ��=2.Of ourse, eq.(61) ould be further re�ned to inlude the e�et of j(VR)12j, throughthe modi�ation of the unitarity onstraints on j(VR)31j2, although the exat expressionis too ompliated to be of any pratial use. In any ase, we already disussed theimpat of the value of j(VR)12j on the possibility to get hexp with no �ne-tunings.Using a less strong hierarhy for the Yukawas, suh as y1 : y2 : y3 = 1 : 20 : 400,the results are similar, exept that the allowed area in Fig. 3 is larger and the required�ne-tuning in the phases is less severe.Finally note that all these results and plots apply equally for the SUSY ase.M1 'M2 'M3If M1 = M2 = M3, the expression within straight brakets in the denominatorof eq.(45) (whih is always � 1) is naturally O(1), unless there is some -undesired-anellation inside. Hene we an writeh = �3�2 >� y23y22 ���(VR)213 + (VR)223 + (VR)233���2 ; (63)Sine y23y22 is far larger than hexp <� 6, a strong anellation between the three termsinside the straight brakets is mandatory. Hene, we an already onlude that for(approximately) degenerate right-handed masses and hierarhial Yukawa ouplings(as for the other fermions), the observed spetrum of neutrinos an only be obtainedby �ne-tuning the high-energy parameters.The allowed region, hexp � 6, in the j(VR)13j � j(VR)23j plane is shown in Fig. 4 for�xed values of j(VR)12j, taking again y1 : y2 : y3 = 1 : 300 : 9 � 104. In this ase theresults do not depend muh on the value of j(VR)12j, as is lear from (63). The shapeof the allowed region an be understood by reasoning in a similar way as for eq.(61).Now we geth >� y23y22 Min ��� � ���j(VR)13j2 � j(VR)23j2���+ �1� j(VR)13j2 � j(VR)23j2� ���2 : (64)24



Again, when the two possibilities inside j j2 in the numerator of (64) have oppositesigns, then it is possible to ahieve an exat anellation by adjusting the phases of thevarious terms in the r.h.s. of eq.(63). The solid line in the �rst plot of Fig. 4 showsthe bound h = 6 obtained with the approximate analytial form (64), whih learlydesribes very well the exat results.It is worth mentioning that in this ase a CKM-like form for VR annot lead to arealisti spetrum, sine [for any hoie of the phases in eq.(14)℄ it is not onsistent witha anellation in the r.h.s. of eq.(63). However, it is funny that a MNS-like form anwork orretly. More preisely, when j(VR)13j � 1, as is the MNS ase, the onditionfor anellation in eq.(63) is approximately j(VR)13j2 � (j(VR)23j2 � j(VR)33j2) ' 0. Interms of the parametrization (14), this readstan2 �R13 ' j os 2�R23j : (65)This ondition is preisely ful�lled by an MNS-like matrix, thanks to the smallness of�13 and the near-to-maximal �23.5 A suggestive ansatzIn set. 4 we have not made any partiular assumption about the (high-energy) param-eters of the see-saw, apart from onsidering hierarhial neutrino Yukawa ouplings,similar to those of quarks and harged leptons. Nevertheless, we showed that if theright-handed neutrino masses are hierarhial, a CKM-pattern for VR was naturallypreferred in order to reprodue the experimental ratio between the two heavier neu-trinos, h = �3=�2 <� 6, whih is the only experimental onstraint on ratios of neutrinomasses. Similarly, we saw that if the right-handed neutrino masses are approximatelydegenerate, an MNS-like pattern for VR ould equally work, but always with a ertain�ne-tuning. In this setion we study more in deep these suggestive oinidenes.VR = VCKM ansatzWe start by onsidering the possibility that VR oinides with the CKM matrix, VCKM.From eq.(14) VR has two phases, �1; �2, that, unlike the quark CKM matrix, annotbe absorbed into rede�nitions of the �elds. Thus, the identi�ation of VR with VCKMhas to be up to these two independent phases,VR = diag �ei�1 ; ei�2 ; 1�VCKM (66)25



Figure 4: Region in the j(VR)13j � j(VR)23j plane whih gives m3=m2 � 6 for some hoie of thephases of VR (see eq.(14)). The yellow olor indiates that in that region only less than 0.1% of thehoies are suessful. The senario is de�ned by M1 =M2 =M3 and y1 : y2 : y3 = 1 : 300 : 9� 104.Eah plot orresponds to a di�erent value of j(VR)12j. The dashed line is the limit of unitarity ofVR, while the solid line in the �rst plot orresponds to the approximate analytial bound disussed ateq.(64). 26



This identi�ation of VR with VCKM evokes the SU(5) onnetion between the VLmixing matrix for d�quarks and the VR one for harged leptons, whih omes fromthe relation Yd = YTl between the orresponding Yukawa matries. Following thisanalogy, we an make the ansatz that the eigenvalues of neutrino Yukawa ouplings,fy1; y2; y3g, oinide with the u�quark ones, fyu; y; ytg. We are not onsidering ade�nite GUT framework to justify this assumption (although it ould proeed e.g.from some SO(10) onstrution), but only exploring if it an work in pratie, whihis ertainly non-trivial.The �rst step to probe this ansatz is to write both VCKM and fyu; y; ytg at thesale of right-handed masses, M � 1013 GeV, where the see-saw mehanism takesplae and the identi�ation (66) should be done14. In the SM the RG hange in theratios mu : m : mt = yu : y : yt from low- to high-energy isyu : y : yt = 1:3� 10�5 : 7:1� 10�3 : 1 at low sale! yu : y : yt = 1:1� 10�5 : 3:2� 10�3 : 1 at high sale (67)Note that the RGE hange onsiderably the hierarhy of u�quarks (whih, inidentally,beomes remarkably regular, on top of strong ). This is due mainly to the importante�et of the top Yukawa oupling. On the other hand, the RGE for the neutrino massmatrix below the M�sale is avour-blind, exept for small e�ets proportional to thesquared of the tau Yukawa oupling. This produes very small e�ets in the hierarhyof neutrino masses and in the MNS matrix (whih we are not onsidering here anyhow),espeially in the ase of a soft hierarhy [11℄. Thus we an neglet here the RGE e�etsfor the neutrino setor. VCKM undergoes a ertain hange as well for the same reasons.In magnitude,jVCKMj ' 0BBBBB� 0:97 0:23 0:00430:23 0:973 0:0420:008 0:04 1
1CCCCCAlow sale�!

0BBBBB� 0:97 0:23 0:00490:23 0:973 0:0470:009 0:047 1
1CCCCCAhigh sale (68)The CP-phase, ÆCKM ' 1 rad, does not hange appreiably along the running. Ofourse, eqs. (67, 68) have experimental errors. For our purposes the most signi�ant14A more GUT-inspired alternative is to run VCKM up to MX , perform the identi�ation (66) andthen run VR down to the seesaw sale. This proedure is more umbersome and, given the losenessof the M and MX sales, the former approah is suÆiently preise.27



ones are those assoiated to (VCKM)13 and (VCKM)23. Using the most reent analy-ses [3℄ and running onsistently the quoted errors up to the M�sale [13,14℄, we get(VCKM)13 = (4:9� 0:3)� 10�3, (VCKM)23 = (47� 0:7)� 10�3.In addition we will onsider, as mentioned, hierarhial right-handed masses, hoos-ing a hierarhy equal to that of the Yukawa ouplings. This is of ourse a somewhatarbitrary hoie, but we �nd it simple and reasonable, and it does not amount to anyextra assumption for a di�erent hierarhy.In summary, we will make the assumptiony1 : y2 : y3 = M1 :M2 :M3 = 1:1� 10�5 : 3:2� 10�3 : 1VR = diag �ei�1 ; ei�2 ; 1�VCKM(M) (69)where VCKM(M) is essentially given by (68).Notie from (19, 18) that hoosing VR = 1 we would get a hierarhy of neutrinomasses equal to that of Yukawa ouplings, i.e. h = �3=�2 � 300 [see eq.(69)℄. Thiswould be ompletely inonsistent with the experimental h = �3=�2 <� 6, by a fator of50. On the other hand, as is lear from the disussion around eq.(45), a random VRwould give h = O(107), i.e. orders of magnitude away from the experimental range.Therefore, it is ertainly non-trivial that the assumption (69) ould be onsistent withthe experiment.To illustrate these fats and show the results, we give in Fig.5, upper plots, theallowed region in the j(VR)13j�j(VR)23j plane for �xed j(VR)12j = j(VCKM)12j. Again, foreah point we have evaluated h = �3=�2 for 1000 random values of the �1, �2 phasesin VR (ÆR is �xed at ÆCKM), and ounted the number of points that are ompatiblewith the observed hierarhy, h <� 6. White areas are exluded, while olored areas areallowed. As expeted only a tiny part of fj(VR)13j; j(VR)23jg values are allowed [a goodanalytial approximation of the size and shape of the allowed region is given by (61)℄.Remarkably, the CKM value for these quantities (represented by the ross in the �gure)falls inside the allowed region, whih we �nd very suggestive and highly non-trivial.Notie also that VCKM is the only experimentally known example of a mixing matrixfor Yukawas15, as VR is (VMNS is not, unless neutrinos are pure Dira). All this makesthe suess of the CKM ansatz even more remarkable. It would be ertainly nie to15Reall that, if desired, one an go to a basis of quark doublets where VCKM is assoiated just toYd or Yu. 28



Figure 5: Region in the j(VR)13j � j(VR)23j plane whih, for j(VR)12j = j(VCKM)12j, ÆR = ÆCKM, andsome hoie of the �1, �2 phases (see eq.(14)), gives m3=m2 � 6. The Yukawa ouplings, yi, andright-handed masses,Mi, are taken as indiated at eq.(69). The ross orresponds to the CKM valuesfor j(VR)13j, j(VR)23j (within experimental unertainties). The upper (lower) plots orrespond to theSM (SUSY) ase. The olor ode is as in Fig. 3.onstrut models (maybe in the GUT framework) to aommodate this \CKM-ansatz".In order to gain analytial understanding for the suess of the \CKM-ansatz" it isonvenient to use the Wolfenstein parametrization of the CKM matrix:VCKM = 0BBBBBBB� 1� �22 � A�3(�� i�)�� 1� �22 A�2A�3(1� �� i�) �A�2 1
1CCCCCCCA+O(�4); (70)where � is determined with a very good preision in semileptoni K deays, giving � '0:23, and A is measured in semileptoni B deays, giving A ' 0:82. The parameters29



� and � are more poorly measured, although a rough estimate is � ' 0:1, � ' 0:3[12℄ (therefore (� � i�) ' 0:3eiÆ, whih is fairly lose to � in absolute value). Athigh energies, only the parameter A hanges substantially [14℄, being A ' 0:92 at thesaleM � 1013GeV. Furthermore, we will use the following phenomenologial relationsamong the up-type quark Yukawa ouplings evaluated at high energies, that we assumealso valid for the right-handed neutrino masses:y1 : y2 : y3 � M1 :M2 :M3 � �8 : �4 : 1 (71)Substituting this ansatz in eq. (45) we obtain:h = m3m2 >� ��6 jA2(�� i�)2e2i�1 + A2�2e2i�2 + �2j2jA2(1� �� i�)2 + 1 + �2e2i�2 j � O(��2) (72)It is already remarkable the large redution of the hierarhy that results just from thepeuliar pattern of VCKM (without taking into aount the values of �1, �2): for randomVR, the natural size of the hierarhy is ditated by the y23y22 M2M1 � ��12 fator in eq. (45).Now, thanks to the struture of VCKM given in eq.(70), the seond fator in eq. (45)(i.e. the fration of absolute values) gets O(�10), leading to (72). Plugging numbers,for random �1, �2, this amounts to a redution from h � O(107) to h � 100. This isstill too large ompared to hexp � 6, but shows that VCKM does soften h in an extremelyeÆient way. Choosing �1 � Æ � �2 ; 3�2 and �2 � 0; � the numerator of eq. (72) getsmuh smaller due to a anellation among the three terms. This is possible thanks tothe fat that the three terms have similar magnitude, whih is a fortunate oinidene(hanging VR, even keeping the same pattern, this fat generally disappears). Then weget h = O(1), i.e. onsistent with the experiment. This hoie of phases is as good asany other else, implying that there is no need of �ne tuning of the phases to get thedesired result.Coming bak to the numerial omputation, the previous arguments are illustratedin Fig.6, left plot, whih shows the region of experimentally aeptable values of hin the �1 � �2 plane. More preisely, the green area orresponds to 5:5 � h � 6,whih is the experimental 1 � � value of hexp when m2=m1 � 1 (see Fig. 1), as isthe ase. As noted above this allowed region repliates with periodiity �. All theremaining parameters of VR have been taken at the entral values of VCKM. Clearly,the allowed region for �1, �2 is quite \marosopi", i.e. it is not �ne-tuned. In fat,the minimal value for h is lose to the experimental value h � 6 (note that sine �1 is30



2.4 2.45 2.5 2.55 2.6 2.65
Α1

2.8

2.9

3

3.1

3.2

3.3

Α
2

2.2 2.3 2.4 2.5 2.6 2.7 2.8
Α1

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Α
2

Figure 6: Region of the �1��2 plane that gives values of m3=m2 onsistent with the experiment forall the remaining parameters of VR (see Right and left plots orrespond to the SM and SUSY asesrespetively. Note the di�erent sales of the two plots.hierarhially smaller, as will be ommented shortly, the value of h must be lose toits experimental upper bound). This is funny sine the region of minimal values of his naturally enhaned in size (near a minimum the funtion hanges little).Let us indiate that the mass of the lightest neutrino, �1, beomes orders of mag-nitude smaller than �2, in agreement with the general results of set. 4.3 (see thedisussion after eq.[56)℄. To be preise, the value of the lightest neutrino mass pre-dited by this ansatz ism1 = v�1 ' 3� 10�6m2 = 3� 10�8eV (73)The SUSY ase works in a similar way. The main di�erene are the RGEs, whihare a bit di�erent and, besides, depend on the value of tan�, though not dramatially.The results for the CKM ansatz are also similar, and even better, as shown in Fig. 5(lower plots) and Fig. 6 (right plot) for a typial ase (tan� = 10).Finally, let us mention that hoosing a hierarhy for the Yukawa ouplings as that ofd�quarks (whih is quite milder) enhanes the allowed region in the j(VR)13j� j(VR)23jplane. Then the CKM point ontinues to fall inside the allowed region.VR = VMNS ansatzLet us now onsider the VR � VMNS possibility. As disussed at the end of subset.4.3,31



Figure 7: The same as Fig. 5 but for VCKM ! VMNS and taking M1 =M2 =M3. The ÆMNS phaseis left free, sine it is experimentally unknown. The left (right) plot orresponds to the SM (SUSY)ase. The olor ode is as in Fig. 4.this an work if the right-handed masses are quasi-degenerate; for simpliity we willassume M1 =M2 =M3. As for the CKM ase, the identi�ation of VMNS and VR anonly be made up to the two independent �1, �2 phases in (14). The Majorana phasesof VMNS at from the opposite side, see eq.(7), and annot be identi�ed with �1, �2. Inany ase, we do not have any experimental information about these Majorana phases,nor about Æ, in the MNS matrix. So we takeVR = diag �ei�1 ; ei�2 ; 1�V (74)where V is the \non-Majorana" part of the MNS matrix, given in eq.(8). More preisely[2℄, sin2 �12 = 0:26� 0:36; sin2 �23 = 0:38� 0:63; sin2 �13 � 0:025; (75)the value of Æ is left free. Conerning Yukawa ouplings, as in the CKM ase we identifythem with the u{quark Yukawa ouplings at high energy, whih for the SM are givenin eq.(67).The results are given in Fig.7, left plot, whih shows the allowed region in thej(VR)13j � j(VR)23j plane for �xed j(VR)12j = j(VMNS)12j. Again, olored areas are on-sistent (for some hoie of the phases) with the observed hierarhy, h <� 6, while whiteareas are exluded. The MNS value for j(VR)13j; j(VR)23j is represented by a ross inthe �gure, falling inside the allowed region.32



Although this is perhaps less suggestive than the good performane of VCKM in thease of hierarhial right-handed masses, it is still quite remarkable. Conerning thevalues of the phases that do the job, it is lear from (63) that the neessary anellationinside the straight brakets requires in this ase �2 ' �i�, sine (VR)213 ' 0. Theprevious anellation must be quite �ne as an be seen noting that the ratio of squaredYukawa ouplings in the right hand side of (63) is � 105, so the j j2 fator must bevery small in order to obtain h ' 6 (a tunning of <� 1% is needed).The performane of the SUSY ase is similar, as shown in Fig. 7, right plot.6 Summary and onlusionsIn this paper we have started from the fat that the observed mass ratio for the twoheavier low-energy neutrinos, h = m3=m2 <� 6, is muh smaller than the orrespondingratios observed for quarks and harged leptons, whih are O(20) or O(300) (for theother independent neutrino mass ratio, m2=m1, there is no experimental onstraint).We have wondered whether this peuliar pattern of neutrino masses an be a onse-quene of the peuliar way they are generated through a see-saw mehanism, inves-tigating how the present experimental data restrit the struture of the high-energyseesaw parameters and whih hoies, among the allowed ones, produe more naturallythe observed pattern of neutrino masses. We have studied in partiular (but not only)if starting with hierarhial neutrino Yukawa ouplings, as for the other fermions, onean naturally get the observed m3=m2 <� 6 ratio.To perform this analysis we have �rst put forward a top-down parametrization of thesee-saw mehanism in terms of (high-energy) basis-independent quantities: the Yukawaand right-handed-mass "eigenvalues", fyi;Mig, and two unitary matries, VL; VR, as-soiated to the diagonalization of the Yukawa matrix, as shown in eqs.(12, 13). Fromthese 18 independent parameters, we have shown that the neutrino mass eigenvaluesdepend just on 12 of them: fyi;Mig and VR, whih simpli�es the analysis a lot. On theother hand, VL an be derived from the other parameters and VMNS. This is summarizedin eqs.(15, 18{20). A parametrization of VR is given in (14).In our analysis (whih is valid for both the SM and the SUSY versions of the see-saw) we have made an extensive use of some analytial inequalities satis�ed by theeigenvalues of a general hermitian matrix. This allows to obtain very simple expres-33



sions that desribe faithfully the exat results and permit to gain intuition on theproblem, e.g. the useful lower bound on h given by eq.(45). This analytial study wasomplemented by a numerial and statistial survey, in order to obtain and presentaurate results.Our main onlusions are the following:� For random values of the VR entries we expet a low-energy neutrino hierarhyh = m3m2 >� y23y22 M2M1 . If the Yukawa ouplings are hierarhial, similarly to the otherfermions, then we expet h orders of magnitude larger than the experimentalvalue and the hierarhy of Yukawas itself. So, either we give up the naturalassumption that the neutrino Yukawa ouplings present a hierarhy similar toother fermions, or we aept that the VR entries are far from random. In theseond ase the struture of VR beomes strongly onstrained. In partiular, fromeq.(45), ���(VR)213 + M1M2 (VR)223 + M1M3 (VR)233���2 � 1 is required, and (VR)12 sizeable isdesirable.� If we keep the assumption of hierarhial neutrino Yukawa ouplings, a low-energyspetrum of quasi-degeneray or soft hierarhy for the three neutrinos requireseither Mi=Mj ' y2i =y2j , VR ' 1, or a very deliate tuning between fyi;Mig andVR. In the absene of an explanation for this strong �ne-tuning we onsider thissenario as unnatural.� On the other hand, if we just attempt to reprodue the only experimentallyonstrained mass ratio, h = m3=m2 <� 6, the prospets are muh more interesting:a harateristi pattern for the VR matrix emerges, but there is no need of �ne-tuning between the parameters.{ If the right-handed neutrino masses are hierarhial, M1 � M2 � M3, theseleted pattern for VR is haraterized by very small j(VR)13j, j(VR)23j, andsizeable j(VR)21j, whih remarkably resembles the struture of the CKM ma-trix. (atually the disussion before eq.(57) suggests j(VR)13j2 � j(VR)23j2,also in oinidene with CKM).{ If the right-handed neutrino masses are degenerate, M1 ' M2 ' M3, it isnot possible to reprodue hexp without a ertain �ne-tuning. The seleted34



form for VR is not ompatible with VCKM, but, quite amusingly, it is withVMNS (altough, in this ase, other patterns for VR very di�erent from VMNSwork as well).In all the ases, the mass of the lightest neutrino, m1, is naturally orders ofmagnitude smaller thanm2, whih omes out as a natural predition of a senariowith hierarhial neutrino Yukawa ouplings.� Motivated by the previous oinidenes we have expliitely heked that identi-fying VR with VCKM and taking a hierarhy of neutrino Yukawa ouplings (andright-handed masses) equal to that of the u�quarks, gives h onsistent withthe experimental limit, hexp <� 6. This is highly non-trivial sine VR = 1 givesh ' 300 and a random VR typially gives h = O(106). We have not attempted toonstrut a GUT model to aommodate this suggestive feature, but it might bean interesting line of work. For the SUSY ase there are slight di�erenes omingfrom the form of the RGE, but the results are very similar (and even better).Likewise using VMNS in the same ontext, but with degenerate right-handed neu-trino masses, is also onsistent with the experiment.7 OutlookThe fat that VR is very onstrained one a hierarhial struture for the Yukawas isassumed, has an important impat on several physial issues.Constraints from UMNSWe have explored the onstraints on VR from the peuliar pattern of physial neutrinomasses. Similarly, the experimental UMNS may onstrain the high-energy parameters.Although we have seen, eq.(20), that VL an always be adjusted to give the observedUMNS, it is not guaranteed that suh hoie is without tunings for all the possible VR.This may shed additional light on the struture of the high-energy theory.Relation to the R{parametrizationThe onnetion of the botton-up parametrization (16), based on an orthogonal omplexmatrixR and the top-down parametrization (18{20), based on the VR matrix, is given in35



(23). Nevertheless, it would be very helpful for phenomenologial studies to determinefrom the beginning the form of R onsistent with e.g. hierarhial neutrino Yukawaouplings. This would give an indiation about whih Rs are more natural, and wouldmake easier in general the exploration of phenomenologial signatures of top-downassumptions.LeptogenesisIf one ignores avour e�ets, the rate of leptogenesis produed by the deay of theright-handed neutrinos is proportional to partiular entries of the matrixY Y y = VRDY 2V yR : (76)where DY 2 = diagfy21; y22; y23g. Sine the assumption of hierarhial yi strongly on-strains VR, the orresponding results for leptogenesis are diretly a�eted.For the two-neutrino ase (see set. 3), the impliations are partiularly nitid: theCP Majorana phase of VR (the only soure of CP violation for this issue) must belose to a CP-onserving value, whih would make the leptogenesis proess ineÆient.Nevertheless, avour e�ets an resue this senario when the temperature at whihleptogenesis takes plae is smaller than � 1012GeV, as was shown in [15℄ (note thatthis senario would orrespond to the ase R real). The analysis for three neutrinos isa bit more involved but it has an obvious interest.In a supersymmetri framework, another mehanism to generate the observed baryonasymmetry is A�ek-Dine leptogenesis [16℄. Thermal e�ets and gravitino overprodu-tion onstrain the smallest neutrino mass to be m1 <� 10�8eV [17℄. Despite the largehierarhy between m2 and m1 might seem a priory unnaturally strong, we have shownthat it is in fat a predition of the see-saw mehanism with the suggestive ansatzproposed in setion 5 [see eq.(73)℄.Rare LFV proessesIn the ontext of SUSY, it is well known that even starting with universal soft massesat high energy, one ends up with avour-violating entries in the mass-matries, mainlydue to the e�et of the neutrino Yukawa ouplings in the running between the high-energy sale (Mp in the gravity-mediated ase) and the sale of the right-handed masses36



[18℄. Suh e�et is proportional toY yY = VLDY 2V yL : (77)Although VL is not diretly onstrained from the low-energy spetrum, one VR isdetermined, VL is obtained from eq.(20). The orresponding rates for LFV proesses,suh as � ! e; , may onstrain further the senario and o�er preditions for presentand future experiments.GUT onstrutionsAs mentioned above, identifying VR with VCKM and taking a hierarhy of neutrinoYukawa ouplings (and right-handed masses) equal to that of the u�quarks, is (non-trivially) onsistent with the experiment. It would be very interesting to build a GUTmodel able to aommodate this appealing feature.Anarhi neutrinosAs mentioned at the end of subset. 4.1, the basis-independent top-down parametriza-tion of the see-saw mehanism that we have used is likely very appropriate to studysenarios of anarhi neutrinos [9℄, sine these are based on statistial onsiderationsabout the high-energy parameters that de�ne the theory, and it is highly desirable thatthese parameters are basis-independent. We gave there a simple example of how suhanalysis an be, but learly muh work ould be done in this diretion.||||||Work along the above lines is urrently in progress.AknowledgementsWe thank C. Savoy for useful disussions. This work was supported by the SpanishMinistry of Eduation and Siene through a MEC projet (FPA 2004-02015) and bya Comunidad de Madrid projet (HEPHACOS; P-ESP-00346). FJ aknowledges the�nantial support of the FPU (MEC) grant, ref. AP-2004-2949.
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AppendixHere we summarize some useful formulas onerning the eigenvalues of a (general ornot) matrix.Aording to the Gershgorin Cirle Theorem, every eigenvalue of any omplex n�nmatrix A lies within at least one of the n Gershgorin diss de�ned asD(Aii; Ri) � fz : jz � Aiij � Rig : (78)where Ri is the Gershgorin radius of the Gershgorin dis entered at Aii,Ri =Xj 6=i jAijj : (79)For the proof, let � be an eigenvalue of A with eigenvetor v � fvjg. De�ne jvij =maxjjvjj (always jvij > 0). Then the eigenvalue equation Av = �v an be written as�vi � Aiivi =Xj 6=iAijvj (80)Dividing both sides by vi and taking the norm we obtainj�� Aiij = ������Xj 6=iAijvj=vi������ �Xj 6=i jAijj = Ri (81)Working with AT instead of A we get an analogous expression for the same eigenvalueshanging Ri ! Pj 6=i jAjij. I.e. for eah diagonal element, there is one Gershgorinradius assoiated with the row and one with the olumn. Furthermore it an be shownthat if the n diss an be partitioned into disjoint subsets of the omplex plane theneah subset ontains the same number of eigenvalues as diss.If the original matrix A is hermitian, then the eigenvalues of A, say �i, and diagonalelements, Aii, are real, so the diss beome segments in the real line. Furthermore, theGershgorin segments assoiated with the rows and the olumns oinide.All this an be applied to eq.(19). In partiular, for the ase of three neutrinos withhierarhial Yukawa ouplings, y1 � y2 � y3, the diagonal entry ��0�0y�33 is normallymuh larger than the others and the orresponding Gershgorin radius is muh smaller(see below), so the Gershgorin dis is usually disjoint from the others. This means thatthe largest eigenvalue, �23, satis�es����23 � ��0�0y�33��� �Xj 6=3 ������0�0y�3j���� (82)38



whih is similar to eq.(39) [note that the right-hand-side of eq.(82), i.e. the Gershgorinradius, is supressed by a y2y3�fator with respet to ��0�0y�33℄.Analogous inequalities an be produed for �21. In this ase, the most eÆient onesome from onsidering the inverse matrix, �0�1(�0�1)y, whih is a positive hermitianmatrix with ��2i eigenvalues.The inequalities for �3, �1 produed in this way an be plugged into (37) to givebounds on h similar to those onsidered in set. 4.Let us reall that in that setion we found more eÆient for the sake of larityto use the fat that in a positive hermitian matrix, suh as �0�0y and �0�1(�0�1)y, thelargest eigenvalue (�23 and ��21 respetively) must be larger than any diagonal entry ofthe matrix.For the proof, let A be a positive hermitian n�n matrix with eigenvalues f�ig andeigenvetors fvig, ordered as �1 � �2 � � � ��n. Writing the normalized vetor in theith-diretion, ei, as ei = P aijvj with P jaijj2 = 1, theneiyAei = Aii =X�jjaijj2 � �n (83)Similarly it an be shown that �1 � Aii (for any i). The above lower bound for �nis omplemented with the obvious upper bound �n � trA. This allows to orner therange of values where �n lies. (This proedure is very eÆient for �0�0y and �0�1(�0�1)y,sine the trae is strongly dominated by the largest diagonal entry.)These inequalities an be made stronger replaing Aii by the eigenvalues of any m�m submatrix of A (with m � n). This an be seen by diagonalizing the submatrix withA0 = V yAV , where V is a unitary matrix whih is trivial exept in the orrespondingm�m box, and then applying the same argument to A0.All these kinds of inequalities an be plugged into (37) to obtain alternative boundson h. Also they an be used to put bounds on the ratio �3=�1, whih gives a diretmeasure of how far is the neutrino spetrum from the exatly degenerate ase.Referenes[1℄ For a review on neutrino physis, see M. C. Gonzalez-Garia and Y. Nir, Rev.Mod. Phys. 75 (2003) 345 [arXiv:hep-ph/0202058℄.39
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