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Baryon sattering at high energies:wave funtion, impat fator, and gluon radiationJ. Bartels a) � and L. Motyka a);b) ya) II Institute for Theoretial Physis, University of Hamburg, Germanyb) Institute of Physis, Jagellonian University, Krak�ow, PolandNovember 14, 2007
AbstratThe sattering of a baryon onsisting of three massive quarks is investigated in the high energy limitof perturbative QCD. A model of a relativisti proton-like wave funtion, dependent on valene quarklongitudinal and transverse momenta and on quark heliities, is proposed, and we derive the baryonimpat fators for two, three and four t-hannel gluons. We �nd that the baryoni impat fator an bewritten as a sum of three piees: in the �rst one a subsystem onsisting of two of the three quarks behavesvery muh like the quark-antiquark pair in � sattering, whereas the third quark ats as a spetator. Theseond term belongs to the odderon, whereas in the third (C-even) piee all three quarks partiipate in thesattering. This term is new and has no analogue in � sattering. We also study the small x evolution ofgluon radiation for eah of these three terms. The �rst term follows the same pattern of gluon radiationas the �{initiated quark-antiquark dipole, and, in partiular, it ontains the BFKL evolution followedby the 2 ! 4 transition vertex (triple Pomeron vertex). The odderon-term is desribed by the standardBKP evolution, and the baryon ouples to both known odderon solutions, the Janik-Wosiek solution andthe BLV solution. Finally, the t-hannel evolution of the third term starts with a three reggeized gluonstate whih then, via a new 3 ! 4 transition vertex, ouples to the four gluon (two-Pomeron) state.We briey disuss a few onsequenes of these �ndings, in partiular the pattern of unitarization of highenergy baryon sattering amplitudes.
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1 IntrodutionIn reent years deep inelasti eletron proton or eletron nuleus sattering (DIS) at small x has attratedmuh interest, and it has stimulated intense studies of high energy QCD. At high energies, the total rosssetion of a virtual photon sattering on a target, in a �rst approximation, an be desribed in termsof a photon impat fator and a Balitsky-Fadin-Kuraev-Lipatov (BFKL) Green's funtion [1{3℄. Whenrestriting to the large N limit, and assuming a large target, unitarity orretions to this �rst approximationare desribed by the nonlinear Balitsky-Kovhegov (BK) equation [4, 5℄ whih, in the language of BFKLGreen's funtions, represents the in�nite sum of fan diagrams [6℄. The BK equation was initially obtainedin the s-hannel olor dipole piture (in the large N limit) [7, 8℄. Beyond the large N limit one has toinlude the full olor struture of the 2 ! 4 reggeized gluon vertex [9℄ whih leads to the Balitsky hierarhyof integral equations [4℄ or to the Jalilian-Marian{Ianu{MLerran{Weigert{Leonidov{Kovner (JIMWLK)equations [10℄. In many of these alulations the inoming virtual photon plays a vital rôle: its largevirtuality Q2 justi�es the use of perturbation theory, and its impat fator onsists of a quark-antiquarkpair whih forms a olor dipole on�guration. This simple struture is also intimately onneted with thefan-like struture of the diagrams resumed by the nonlinear BK equation.The advent of the LHC hallenges us with the task of developing a theoretial understanding of satteringin high energy proton-proton ollisions, whih is related to the struture of unitarity orretions in baryon-baryon sattering. In this paper we will perform a study of the high energy behavior of baryon satteringwithin perturbative QCD. It is lear that the problem of high energy nuleon sattering is muh moreomplex than it was in the virtual photon ase. First of all, in nuleon-nuleon or nuleon-nuleus satteringthe inoming projetiles are nonperturbative, and the auray of perturbative alulations is not undergood theoretial ontrol. We shall irumvent this problem by studying a �titious sattering proess of aheavy and small baryonium system, in analogy to the heavy onium proposed as a test ase for perturbativeunitarity orretions in DIS [8℄. For suh proesses the perturbative alulations provide reliable results.Next, the baryonium sattering is expeted to di�er signi�antly from the onium sattering. The mainreason is the di�erene of the olor struture: in ontrast to the olor dipole the baryon is a olor singletformed by three valene quarks. Also, the appliation of the large N limit whih played the ruial rôlein the onstrution of the dipole model is rather diÆult in the baryon ase: one needs exatly N quarksto build the olor singlet of the SU(N) group, and this system beomes rather omplex for N ! 1. Infat, a few years ago, it was expliitly pointed out [11℄ that the simple piture of gluon radiation whihhas emerged in the QCD dipole piture does not work in the ase of an inoming three quark olor singletsystem; however, no alternative solution had been derived. Thus, we shall address the issue of gluon radiationfrom three quarks at N = 3, within a perturbative baryoni system and ompare with the perturbativequark-antiquark system.The basi and universal objet that haraterizes properties of the baryon is its wave funtion. Inspiredby the suess of the onept of the photon wave funtion [7℄ whih turned out to be very fruitful in studies ofhigh energy sattering, we start from a loal three-fermion quark urrent operator with the quantum numbersof the proton and onstrut a relativisti invariant in�nite momentum frame wave funtion for the lowest2



Fok omponent of the baryon, onsisting of three valene quarks. The resulting wave funtion ontainsa non-trivial dependene on quark heliities and angular momenta. For the urrent operator we hose thebaryoni operator proposed by Io�e [12℄, whih has been shown to provide a reasonable phenomenologialpresription of the nuleon properties [13℄. In order to take into aount the nonperturbative nature of thebaryon we make use of the Borel transform tehnique whih has been developed in the ontext of QCD sumrules.This paper is not intended yet to deal with a detailed phenomenology of the baryon struture andsattering, | thus we do not attempt, for example, to tune the obtained wave funtion to desribe theexisting data on proton form-fators and high energy sattering. Nevertheless, apart from developing atheoretial laboratory for studying sattering of baryon states at high energies, one may hope that ourperturbative analysis �nds strutures whih remain also relevant beyond the perturbatively safe region. Anextrapolation of our results on the heavy baryonium to the realisti proton ase may, therefore, very wellallow for some useful phenomenology. More detailed studies in this diretion will be left for future work.Starting from integrals over squares of these baryoni wave funtions and oupling t-hannel gluons to thethree quark lines we de�ne baryoni impat fators, in lose analogy with the photon impat fator in deepinelasti eletron proton sattering. The small-x evolution of baryon sattering amplitude will be analyzed,again, following the strategy developed in the ontext of the virtual photon sattering [9, 14, 15℄. First weonsider, in lowest order, the elasti sattering of the baryoni system on a single quark: by oupling twot-hannel gluons to the three-quark system, the baryoni impat fator is obtained. Three or four t-hannelgluons appear if one onsiders, again at lowest order, multi-partile amplitudes, e.g. 3 ! 3 proesses ina suitably de�ned high energy limit. In the next step, one onsiders higher order diagrams in the leadinglogarithmi approximation: this leads to rapidity evolution equations, desribing the radiation of gluonsfrom the three-quark system.Our main results are the following. We propose a model of the baryon wave funtion with a non-trivialquark heliity and angular momentum struture. Then we express the baryon impat fator in terms of thewave funtion, for an arbitrary number of oupling gluons. The obtained baryoni impat fator an bewritten as a sum of several piees, eah of them having its own evolution equation. First, there is a term inwhih one pair out of the three quarks satters whereas the third quark ats as a spetator. Although thetwo quarks whih partiipate in the interation are in a olor anti-triplet on�guration, they behave verymuh like the quark{antiquark pair in the photon ase. In the lowest order, two t-hannel gluons ouple tothis quark pair. In higher order the two gluons start to reggeize and to produe the full BFKL ladder, whilethe third quark of the baryon state remains an inative spetator. Also, the well-known 2 ! 4 gluon vertexappears, indiating the beginning of the same fan-like struture as in the quark{antiquark ase. Altogether,this piee of the baryon impat fator radiates gluons in very muh the same way as the quark-antiquarkpair in the photon ase.Next, there is the odderon term, similar to the one disussed in [16℄: here all three quarks partiipate,and the t hannel state arries C = �. In lowest order, three gluons ouple to the three quarks; in higherorder the state evolves aording to the Bartels-Kwiei�nski-Prasza lowiz (BKP) evolution equation [17, 18℄.3



Figure 1: Energy disontinuity of the 2 ! 2 proess: � + q ! � + q.Finally, a third, C-even, piee of the baryoni impat fator appears in whih again all three quarkspartiipate. This piee has no ounterpart in the quark-antiquark ase and, together with the odderon, itmakes the baryon really behaving di�erently from the photon (or the vetor meson). The state onsists ofone reggeized gluon with even signature and two usual odd reggeized gluons. It obeys the BKP evolutionin the three Reggeon hannel and it deays into four reggeized gluons via a new gauge invariant 3 ! 4reggeized gluon vertex.The paper is organized as follows. We begin with a short setion desribing the general frameworkin whih our alulations are arried out. We then (Setion 3) turn to the baryon wave funtion whihenters the baryon impat fator. In the following Setion 4 we desribe the baryon impat fator and itsdeomposition into the three piees desribed above, and in Setion 5 we disuss the rapidity evolution ofthese piees. Setion 6 ontains a short disussion of the baryoni impat fator in on�guration spae,and in Setion 7 we analyze the quark{diquark limit of the baryon wave funtion. Finally, in Setion 8 wesummarize our results and disuss a few potential impliations.2 The frameworkIn our alulation we will follow the analysis of the sattering of a virtual photon desribed in [14, 15℄. Inleading order the sattering of a virtual photon o� a quark is desribed by the exhange of two gluons. Theoupling to the photon is desribed by the photon impat fator, D2;0, whih most easily is obtained bythe energy disontinuity of a losed quark loop (Fig. 1). Making use of the Regge fatorization, the sameimpat fator an also be used in other elasti sattering proesses, e.g. in the sattering of a virtual photonon a heavy onium target. Higher order orretions, in the leading logarithmi approximation, lead to thereggeization of the t-hannel gluons and to the exhange of a BFKL Pomeron between the photon impatfator and the target.If one is looking for orretions ontaining more than two reggeized t-hannel gluons one has to go beyondthe leading logarithmi approximation. In the elasti sattering proess � + q ! � + q , both leading4



Figure 2: Multiple energy disontinuities of the 3 ! 3 proess: � + q + q ! � + q + q:(a) lowest order diagram, (b) two examples of higher order diagrams.order and NLO orretions retain the struture of a single ladder. A t-hannel state with four reggeizedgluons appears �rst in NNLO. A onvenient way to avoid the ompliations onneted with suh a highorder alulation is the study of multi-partile proesses, e.g the 3 ! 3 proess � + q + q ! � + q + q ,the sattering of a virtual photon on two independent quarks (Fig. 2) in the triple Regge limit. Thisproess depends upon three independent energy variables, and the triple energy disontinuity an be easilyomputed in the approximation where, in eah order perturbation theory, the maximal number of largeenergy logarithms is kept. The lowest order ontribution is desribed by the exhange of four gluons. Inhigher order, these t-hannel gluons reggeize and start to interat. As disussed in detail in [14, 15℄, theall-order result an be ast into the two sets of diagrams shown in Fig. 3.The �rst term starts, at the photon impat fator, with a BFKL Green's funtion, then undergoes thetransition into the four gluons and ontinues with the BKP evolution of the four gluon state. In the large-Nlimit, the four gluon state turns into two noninterating BFKL systems, i.e. we see the beginning of thefan-diagram struture of the BK equation. The seond term onsists of a simple BFKL Green's funtion,with higher order splittings of the reggeized gluons at the lower end. As a remarkable feature of this results,in both ontributions only two reggeized gluons ouple to the photon impat fator, despite the fat thatdiagrams with four gluons | suh as the one shown in Fig. 2a | are inluded: the apparent `disappearane'of these ontributions is a result of the gluon reggeization whih manifests itself in generalized bootstraprelations.The same strategy an be used to investigate t-hannel states with higher number of t-hannel reggeizedgluons. For example, six gluons appear in the 8-point amplitude � + q + q + q ! � + q + q + q , i.e. thesattering of a virtual photon on three independent quarks. The analysis of this ase has been investigatedin [15℄.Although these results are | initially | derived in the ontext of a higher order multi-partile proesses(e.g. the 3 ! 3 sattering proess), they nevertheless an be used also in a 2 ! 2 proess. The diagrams5



Figure 3: Deomposition of the sum of all diagrams in Fig. 2b into (a) irreduible and (b) reggeizing piees.

Figure 4: Four gluon ontribution to the Reggeon unitarity equation of elasti �� sattering.shown in Fig. 3 satisfy Reggeon unitarity equations in all three t-hannels. Taking the disontinuity arossthe four Reggeon state, the partial wave above this an be used to onstrut the four Reggeon state in the2 ! 2 proess shown in Fig. 4.In this paper we will apply the same onstrution, replaing the virtual photon by a three quark system.Modeled by the four fermion operator introdued by Io�e in the ontext of the QCD sum rules [12, 19℄,the inoming `baryon' splits into three quarks whih then ouple to 2, 3, or 4 gluons. In order to take intoaount the non-loal nature of the inoming baryoni bound state we introdue a form fator: we employ atehnique used in the QCD sum rules [19℄ and use the Borel transform of the perturbative expression [20, 21℄.The exponential nature of this form fator also guarantees the onvergene of the momentum integrals insidethe impat fator. 6
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Figure 5: Multiple disontinuity of the impat fator for elasti baryon sattering.3 The baryon wave funtionWe onsider the multiple disontinuity of a non-forward baryon impat fator in elasti high energy sat-tering. Large momenta are direted along the z-axis, and the inoming and outgoing baryons move atsmall angles with respet to the z-axis, as shown in Fig. 5. Their momenta P , P 0 have a large \+" light-one omponent, P+, and their transverse momenta are denoted by PPP , PPP 0, respetively. We introdue thelight-like vetor q� = (q; 0; 0;�q), q2 = 0 with s = (P + q)2 ' 2P � q , and we assume that s is large:s�M2; PPP 2; PPP 02. The quark momenta pi arep�i = (p0i ; pppi; pzi ); p+i = p0i + pzi ; p�i = p0i � pzi : (1)For the longitudinal quark momenta it will sometimes be onvenient to use the notationp+i = �iP+; p�i = �iq�: (2)We shall use p̂ = �p� =  � p for ontration of four-vetors and Dira  matries. The adopted model ofthe proton state is de�ned by h0j�(0) jN(P; �) i = AN w�(P ); (3)where w�(P ) is the proton spinor with momentum P and heliity �,�(x) = " �1�2�3 [(u�1(x))TC� u�2(x)℄ �5 d�3(x) (4)is the baryoni Io�e urrent [12℄, C is the harge onjugation matrix, and �i are olor indies. The Io�eoperator is not the only possible hoie of the baryon urrent, | in the ontext of distribution amplitudes,the possible baryoni operators for the proton were lassi�ed in Ref. [22℄, and it was shown that the Io�eurrent gives a rather good desription of baryon form-fators [13℄. We therefore hose, as a test ase, theIo�e operator to model the baryoni impat fator.11It is worthwhile to stress that our baryon wave funtions are di�erent from the distribution amplitudes. In the ollinearapproah one probes the baryon with a hard external sale, Q2, and the baryon struture is represented by series of distributionamplitudes with inreasing twist, that is with inreasing power-like suppression at large Q2. The distribution amplitudes dependon the quark longitudinal momenta, and they obey evolution equations in logQ2. In ontrast to that, we are interested in thebaryon wave funtion with full momentum dependene probed at a moderate momentum sale, and the evolution applies to therapidity of gluons radiated from the baryon impat fator. 7



Figure 6: The proton vertex as given by the Io�e urrent.For the alulation of the baryoni impat fator we will need the matrix elements (Fig. 6) in the heliitybasis, � �d�3(p3) 5� w�(P ) � � � �u�1(p1) � C0 u��2(p2) � : (5)In the seond term we an also write: [ �u�1(p1) � v�2(p2) ℄ (6)where v (in the Dira notation) denotes the v-spinor of the u quark.3.1 The massless quark aseUsing the alulus desribed by Brodsky and Lepage [23℄ we ompute the Dira spinor matrix elements.The details of the alulations are desribed in Appendix A. For simpliity, we start from the massless quarkase, and the ase of massive quarks will be analyzed afterwards. Thus we obtain:� �d�(p3) 5�w�(P ) � � � �u�1(p1) � C0 u��2(p2) �p�1�2�3 = (7)= 2� Æ��1; �2 � Æ�1; � ��ppp2�2 �PPP� � �ppp1�1 � ppp3�3� � i� �ppp2�2 �PPP� � �ppp1�1 � ppp3�3� � ++ Æ�2; � ��ppp1�1 �PPP� � �ppp2�2 � ppp3�3� � i� �ppp1�1 �PPP� � �ppp2�2 � ppp3�3� �� ;and, � �d��(p3) 5� w�(P ) � � � �u�1(p1) � C0 u��2(p2) �p�1�2�3 = (8)= 2M Æ��1; �2 � Æ�1; � ���� � �ppp2�2 � ppp3�3� + Æ�2; � ���� � �ppp1�1 � ppp3�3� � ;where the transverse omplex vetor ���� is de�ned by���� = (1; i�); � = �1; (9)8



andPPP = ppp1+ppp2+ppp3 is the transverse momentum of the inoming baryon. The ross produt of two transversevetors ppp1 = (px1 ; py1) and ppp2 = (px2 ; py2) should be understood as a number ppp1 � ppp2 = px1 py2 � py1 px2 : Itturns out that formula (7) may be re-expressed in a more ompat form, by using the vetors ���� with thefollowing identity:(ppp1�����) (ppp2������) = (px1 + i�py1) (px2 � i�py2) = px1 px2 +py1 py2 + i�(py1 px2 � px1 py2 ) = ppp1�ppp2 � i �ppp1�ppp2; (10)whih holds for any pair of transverse vetors, ppp1 and ppp2. Using this relation one gets:� �d�(p3) 5�w�(P ) � � � �u�1(p1) � C0 u��2(p2) �p�1�2�3 == 2 Æ��1; �2 � � Æ�1; � ����� � �ppp2�2 �PPP�������� � �ppp1�1 � ppp3�3�� +Æ�2; � ����� � �ppp1�1 �PPP�������� � �ppp2�2 � ppp3�3��� : (11)In what follows, we shall express all formulae in this ompat notation.Next we ouple a gluon of momentum k = �q + kkk to one of the quark lines with momentum pi (Fig. 7).Fixing the momenta of the outgoing quarks at p1, p2, and p3, the quark line to the left of the gluon vertexarries momentum pi�k. Using, at the gluon vertex, the eikonal approximation, one arrives at the spinorialfator q̂. With 2 pi � q = �i s � ppp2i ; kkk2; et. , one obtains, for the upper u quark,�u(p1) q̂ (p̂1 � k̂) = 2p1 � q �u(p1 � k) + : : : ; (12)where : : : stands for terms whih are power suppressed in s. An analogous expression holds for the d quark,whereas for the seond u quark we use:(p̂2 � k̂) q̂ u�(p2) = 2 p2 � q u�(p2 � k) + : : : : (13)As a result, on the r.h.s. of Eqs. (12) and (13), the transverse momentum of the quark spinor oinides withthe transverse momentum of the internal quark line next to the baryon vertex. The sum of the outgoingtransverse momenta equals ppp1 + ppp2 + ppp3 = PPP + kkk: (14)Matrix elements orresponding to multi-gluon ouplings to spinor lines may be simpli�ed by iteratingEq. (12) in the following way:�u(p) q̂ [ � (p� k1)℄ q̂ : : : q̂ [ � (p� k1 � : : :� kn)℄ ' (2p � q)n �u(p� k1 � : : :� kn): (15)For ompleteness, we remind that, in the ase of an outgoing antiquark, an additional minus sign appears:�(p̂� k̂) q̂ v(p) = �2p � q v(p� k) + : : : ; (16)This minus sign is due to the opposite diretion of the momentum along the antifermion line. Similarly:[� � (p� k1 � : : :� kn) ℄ q̂ : : : q̂[� � (p� k1)℄ q̂ v(p) ' (�2p � q)n v(p� k1 � � � � � kn): (17)9
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3a) b) )Figure 7: Single gluon oupling to the baryon ! X transition.This hange in sign plays a ruial rôle in the photon impat fator [7℄.We are now ready to desribe the amplitude for the proess: baryon + gluon ! 3 quarks, de�ned bythe diagrams shown in Fig. 7. We de�ne the shifted momentum of the upper quarkppp01 = ppp1 � kkk; (18)with ppp01 + ppp2 + ppp3 = PPP ; (19)and use p012 = �1 M2 +PPP 2 � ppp012�1 � ppp22�2 � ppp32�3 ! ; (20)(and analogous expressions for the gluon oupling to quark lines 2 and 3). We introdue the amplitudes�(�1;�2)�� (f�ig; fppp1; ppp2; ppp3g;PPP ) = �N� 2p�1�2�3M2 +PPP 2 � ppp21�1 � ppp22�2 � ppp23�3 Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� � Æ�1; � ����� � �ppp2�2 �PPP�������� � �ppp1�1 � ppp3�3�� +Æ�2; � ����� ��ppp1�1 �PPP�������� � �ppp2�2 � ppp3�3��� ; (21)�(�1;�2)��� (f�ig; fppp1; ppp2; ppp3g; PPP ) = N� 2M p�1�2�3M2 +PPP 2 � ppp21�1 � ppp22�2 � ppp23�3 Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� � Æ�1; � ���� � �ppp2�2 � ppp3�3� + Æ�2; � ���� � �ppp1�1 � ppp3�3� � : (22)Here the upper three indies of � denote the heliities of the upper two u quarks with momenta ppp1 andppp2, and the lower d quark with momentum ppp3, respetively. The subsript refers to the heliity � of theinoming baryon. We leave the normalization onstant N� unspei�ed here; the normalization will be�xed at the level of baryon wave funtion. The amplitudes for the diagrams shown in Figs. 7a{7 are thensimply obtained from (21), (22) by the replaements ppp1 ! ppp01, ppp2;! ppp02 and ppp3 ! ppp03, respetively.22To be preise, the funtions � give the momentum dependent part of the sattering amplitudes, up to a global normalizationfator, that is proportional to the strong oupling onstant g. Obviously, the olor fators are not aounted for in (21) and(22), | they will be treated expliitly later on. 10



Note that, for eah of the three diagrams, the denominator is just the energy denominator in non-ovariant perturbation theory, for instane one obtains for Fig. 7a,Ebaryon �E 3 quark = 1P+  M2 +PPP 2 � ppp012�1 � ppp22�2 � ppp32�3 ! : (23)The amplitudes should be invariant under Lorentz boosts in the transverse diretions, parametrized by afour-veloity u� ' (1;uuu; 0), juuuj � 1:pppi ! ppp0i ' pppi + 12 p+i uuu; p+i ! p0+i ' p+i : (24)The numerators are manifestly invariant under these transformations, and the denominators may be alsorewritten in an expliitly invariant form using the identity�PPP 2 + ppp21�1 + ppp22�2 + ppp23�3 = �1�2�ppp1�1 � ppp2�2�2 + �1�3�ppp3�3 � ppp1�1�2 + �2�3�ppp2�2 � ppp3�3�2 ; (25)or �PPP 2 + ppp21�1 + ppp22�2 + ppp23�3 = (ppp1 � �1PPP )2�1 + (ppp2 � �2PPP )2�2 + (ppp3 � �3PPP )2�3 : (26)The denominators have poles for the invariant mass of the three-quark system equal to the protontransverse mass. Clearly, this is a onsequene of using a point-like vertex for the proton-quark ouplingand negleting the bound state e�ets. These e�ets annot be desribed within perturbative QCD andshould be modeled. Following [19, 20℄ we propose a model that preserves Lorentz and heliity strutures ofthe perturbative expressions, where the bound state e�ets are absorbed into the Borel transform.The Borel transform of a funtion f(s) is de�ned in the standard way:Bs[ f ℄(M2B) = limn!1 sn+1n! �� dds�n f(s); s!1; s=n!M2B; (27)where MB is the Borel parameter. In order to model the baryon sattering amplitude we shall apply twoindependent Borel transforms w.r.t. the negative virtualities: Q2 = �P 2 of the inoming and Q02 = �P 02of the outgoing baryon, to the perturbative amplitudes obtained with the point-like vertex. Formulae (21)and (22) were presented for P 2 = M2. The orresponding formulae for general virtualities are obtained bysubstitutions M2 ! P 2 in the denominators. In the baryon impat fator, the virtuality P 2 appears only inthe energy denominator of the vertex amplitude �(�1;�2)�3� (f�ig; fpppig; PPP ) of the inoming baryon, and thevirtuality P 02 only in the denominator of the amplitude h�(�1;�2) �3� (f�ig; fpppig; PPP 0)i� of the outgoing state(see Se. 4 for more details). Therefore the two Borel transforms may be performed independently for eah�, that is already at the level of the baryon wave funtion. Thus we evaluateBQ2 � 1Q2 + M2X � (M2B) = exp ��M2X=M2B� : (28)This result, applied to the amplitudes �, leads to the substitution1P 2 +PPP 2 �P3i=1 ppp2i�i �! � exp"� 1M2B  3Xi=1 ppp2i�i � PPP 2!# : (29)11



Before we omplete the model we shall perform some simpli�ations. We shall absorb into the wavefuntions a phase spae fator (�1�2�3)�1 that appears in the baryon impat fator as a result of on-mass-shell onditions of the ut quark lines. In this way, the fator p�1�2�3 present in the amplitudes � will beremoved from the wave funtions. Obviously, the integration measure will be suitably modi�ed as well. Forsimpliity, we introdue a normalization onstant, N , of the wave funtion that will be �xed later. Thus, wehoose the natural value of the Borel parameter MB = M and obtain a model of the baryon wave funtion,	(�1;�2)�� (f�ig; fpppig; PPP ) = � N e� 1M2��PPP 2+ppp12�1 +ppp22�2 +ppp32�3 � Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� � Æ�1; � ����� ��ppp2�2 �PPP�������� � �ppp1�1 � ppp3�3�� ++ Æ�2; � ����� � �ppp1�1 �PPP�������� � �ppp2�2 � ppp3�3��� ; (30)	(�1;�2)��� (f�ig; fpppig; PPP ) = N e� 1M2��PPP 2+ppp12�1 +ppp22�2 +ppp32�3 � Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� M � Æ�1; � ���� � �ppp2�2 � ppp3�3� + Æ�2; � ���� � �ppp1�1 � ppp3�3� � : (31)Clearly, the funtions 	 given by Eqs. (30) and (31) are symmetri under the interhange of the u quarks,labeled by 1 and 2. When ombined with the anti-symmetry in the olor degrees of freedom it impliesthat the full wave funtion is anti-symmetri under interhange of the u quarks, as it must be. Interestinglyenough, a similar Gaussian form of the wave funtion was proposed long ago [24℄ and it was shown to providea good desription of the nuleon form-fator data [25, 26℄. An important di�erene of our model, however,is the presene of angular momenta of the quarks. The baryon angular momentum struture following fromthe model is most transparent in the oordinate representation and will be disussed is Setion 6.The above derivation of the baryon wave funtion is based on perturbative QCD methods ombinedwith the Borel transform tehnique. Clearly, we are not able to ontrol the auray of this proedure forthe proton as it is a genuine non-perturbative objet. Therefore the obtained wave funtions an be onlyonsidered as a theoretially inspired model of the proton wave funtion. Therefore, in the next part we givethe formulae for the wave funtion of a baryon onsisting of three quarks with the same mass m, omingin two di�erent avors. These formulae will permit to onsider the �titious ase of a large quark mass,for whih the baryon beomes heavy and small, and the perturbative omputation of its wave funtion andsattering is formally justi�ed.3.2 Massive quarksWe now apply the proedure desribed in the previous setion to the ase of the massive quarks. We skipthe details of the derivation and present the result for the heliity amplitudes � of the transition: baryonto quarks, in whih all three quarks were assumed to have the mass m:12



�(�1;�2)�3� (f�ig; fpppig;PPP ) = N� 2p�1�2�3M2 +PPP 2 � ppp21+m2�1 � ppp22+m2�2 � ppp23+m2�3 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �
� �Æ�; �1 Æ�; �2 Æ�; �3 m �1 + �2�1�2 �ppp3�3 � ppp1 + ppp2�1 + �2� � ����� ++ � Æ�; �1 Æ�; �2 Æ�;��3 m �1 + �2�1�2 �M � m�3� ++ Æ�;��1 Æ�;��2 Æ�; �3 m �1 + �2�1�2 � ppp1 + ppp2�1 + �2 � PPP� � ���� ++ � Æ�; �1 Æ�;��2 Æ�; �3 ��ppp2�2 �PPP� � ���� �ppp1�1 � ppp3�3� � ����� + m �M�3 � m�1�2�� ++ � Æ�;��1 Æ�; �2 Æ�; �3 ��ppp1�1 �PPP� � ���� �ppp2�2 � ppp3�3� � ����� + m�M�3 � m�1�2�� ++ Æ�; �1 Æ�;��2 Æ�;��3 �M �ppp2�2 � ppp3�3� � ���� + m 1� �3�3 �ppp2�2 � ppp1 + ppp2�1 + �2� � ���� � ++ Æ�;��1 Æ�; �2 Æ�;��3 �M �ppp1�1 � ppp3�3� � ���� + m 1� �3�3 �ppp1�1 � ppp1 + ppp2�1 + �2� � ���� �� : (32)Note, that using relation (10) and taking m ! 0 one easily reovers formulae (21) and (22). The aboveformulae are promoted to the baryon wave funtions 	, by going through the same steps as in the masslessase, i.e. using the Borel transform and absorbing the � fators into the phase spae fator. The �nalexpressions for the wave funtions are obtained from Eq. (32) by the replaement whih ombines bothsteps: N� 2p�1�2�3M2 +PPP 2 �P3i=1 ppp2i+m2�i �! N exp "� 1M2  3Xi=1 ppp2i + m2�i � PPP 2!# : (33)4 Baryon impat fators4.1 General strutureThe amplitudes 	 may be ombined with their omplex onjugates to obtain the baryon impat fator.For the ase of two gluons oupled to lines 3 and 1 we illustrate one example in Fig. 8. It was shown inthe previous setion that, in the high energy limit the spinorial part of the multiple disontinuity an beexpressed in terms of universal matrix elements given by Eqs. (7) and (8), where the momenta of the quarksare evaluated at the quark-proton vertex. Also the denominator is determined by the virtuality of the quarkto whih the �rst gluon ouples, and the virtuality an expressed in terms of the momenta of the quarks atthe proton vertex. Thus, the impat fator an be obtained from overlap integrals, i.e. produts of wave13



Figure 8: A ontribution to the two gluon exhange in baryon-quark sattering.funtions with suitably adjusted momenta. As an example, we speify the overlap funtion orrespondingFig. 8: F ��0(fkkk;kkk0g;PPP ;PPP 0) = X�1;�2;�3 Z [d2pppi℄ [d�i℄ h	(�1;�2)�3�0 �f�ig; fppp01; ppp2; ppp3g;PPP 0�i�� 	(�1;�2) �3� �f�ig; fppp1; ppp2; ppp03g;PPP � ; (34)with the integration measure[d2pppi℄ = d2ppp1 d2ppp2 d2ppp3 ; [d�i℄ = d�1 d�2 d�3 Æ(�1 + �2 + �3 � 1): (35)In the overlap funtions F ��0 , the upper heliity labels refer to the inoming and outgoing baryon states,respetively. Analogous overlap funtions are de�ned for the other gluon ouplings, and for the full impatfator we will have to sum over all diagrams. When evaluating the sum over the intermediate heliities�1, �2, and �3 and summing over all diagrams, one �nds, for the forward diretion PPP = PPP 0 = 0, heliityonservation, i.e. the impat fator vanishes for � = ��0.Before inluding the remaining energy integrals and the olor fators we generalize to the ase of 3 and 4t-hannel gluons. As outlined in Setion 2, we have to onsider multiple energy disontinuities. An exampleis shown in Fig. 9. For one of the disontinuity lines (in the ase of Fig. 9, the entral line) we �x theintermediate quark momenta and denote them by ppp1; ppp2 ; ppp3. The orresponding overlap funtion (Fig. 10)takes the formF ��0(fkkki; kkk0jg;PPP ;PPP 0) = X�1;�2;�3 Z [d2pppi℄ [d�i℄ h	(�1;�2)�3�0 �f�ig; fppp1 + kkk01; ppp2 + kkk02; ppp3 + kkk03g;PPP 0�i�� 	(�1;�2)�3� (f�ig; fppp1 � kkk1; ppp2 � kkk2; ppp3 � kkk3g;PPP ) ; (36)where kkki (kkk0j) is the sum of momenta delivered by the gluons to the quark line i to the left (right) of theentral utting line. Obviously, Xi kkki +Xj kkk0j = PPP 0 �PPP : (37)14



Figure 9: A ontribution to the four gluon exhange in the sattering of a baryon on two independent quarks.

Figure 10: Example of a diagram de�ning the overlap funtion for a multiple disontinuity in Fig. 9.
15
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Figure 11: Baryon impat fator.Sine, as a onsequene of the exponential form fator, all transverse momentum integrals are �nite, weare allowed to shift, for eah diagram separately, the loop momenta, suh that to the right of the inomingbaryon vertex, the momenta beome ppp1, ppp2, and ppp3. At the outgoing baryon vertex the momenta are ppp1 + lll1,ppp2 + lll2, and ppp3 + lll3, where llli is the sum of transverse momenta of all gluons oupled to the quark line i(Fig. 10): llli = Xj2Li (kkkj + kkk0j ): (38)In the general ase the overlap funtion an be written as:F ��0(flllig;PPP ;PPP 0) = X�1;�2;�3 Z [d2pppi℄ [d�i℄ h	(�1;�2)�3�0 �f�ig; fpppi + lllig;PPP 0�i� 	(�1;�2)�3� (f�ig; fpppig;PPP ) :(39)We now omplete the de�nition of the baryoni impat fator (see Fig. 11). The general impat fatorI(N)AB for the transition A! B , with N gluons being oupled in the eikonal approximation, is de�ned asI(N)AB = Z d�12� d�22� : : : d�N�12� q�1 q�2 : : : q�Ns DisN�1 S �1 �2 ::: �NAB ; (40)where S �1 �2 ::: �NAB represents the amputated transition amplitude. In partiular, for the elasti sattering ofa single quark inside the baryon one obtains:I(N)qq = 1N Tr [ taN taN�1 : : : ta1 ℄ I(N)qq ; (41)where I(N)qq = (�ig)N : (42)The baryon impat fator for N t-hannel gluons is then given byB ��0N (flllig;PPP ;PPP 0) = I(N)qq XdiagramsF ��0(flllig;PPP ;PPP 0) CN (diagram); (43)where the olor fator reads:CN (diagram) = "�01�02�03 "�1�2�33! [ taltal�1 : : : ta1 ℄�01�1 h tbmtbm�1 : : : tb1i�02�2 [ tntn�1 : : : t1 ℄�03�3 : (44)In (43) the sum extends over all diagrams, and the numbers l, m and n of gluons, that ouple to quarklines 1, 2 and 3, take all possible values between 1 and N with the onstraint l + m + n = N . The overlap16



a) b)Figure 12: Diagrams de�ning B2;0.funtion F ��0(flllig;PPP ;PPP 0) is evaluated for eah diagram separately, and in eah ase it ontains a globaldelta funtion of the transverse momenta:F ��0(flll; lll0g;PPP ;PPP 0) = F ��0(lll1; lll2; lll3) Æ(2) Xi llli +PPP �PPP 0! : (45)We impose the normalization ondition:F ��0(lll1; lll2; lll3) ��� lll1=lll2=lll3=0 = Æ��0 : (46)Correspondingly, we also extrat a delta funtion from the impat fator:B ��0N (flllig;PPP ;PPP 0) = B ��0N (flllig) Æ(2) Xi llli +PPP �PPP 0! : (47)In the following we will restrit ourselves to the forward diretion, PPP = PPP 0 = 0. Beause of heliityonservation for the impat fator, we always have � = �0, and we will drop the upper heliity labels, i.e.F ��0(lll1; lll2; lll3) ! F (lll1; lll2; lll3) et. We will go through the ases of N = 2, N = 3, and N = 4 gluons. Wetherefore de�ne, for �xed N , the funtions BN ;0 (flllig) projeted on the C-even hannel throughB ��N (flllig;PPP ;PPP 0) ���C�evenPPP=PPP 0=0 = BN ;0 (flllig) Æ(2) �X llli� ; (48)and analogously for the C-odd projetions ~BN ;0 :In the remaining part of this setion the main emphasis will be on the olor struture of the impatfators, ontained in Eq. (44). As the main result, we will �nd a deomposition into a sum of terms whih,as it will be demonstrated in the subsequent setion, stays invariant under evolution in rapidity. We stressthat the results whih follow are valid for an arbitrary overlap funtion F (lll1; lll2; lll3) , i.e. they do not relyon a partiular model of the baryon wave funtion, provided the baryon has the valene degrees of freedomof three quarks.4.2 Two gluonsWe begin with the two-gluon oupling whih is C-even. All diagrams are proportional the olor tensor Æa1a2 ,and it is suggestive to group them into three sets: in the �rst one, the two gluons ouple to the quark pair(12), and quark 3 ats as a spetator (Fig. 12). In the seond one the gluons ouple to (13) and quark 2ats as spetator et. Inside eah set, we have four terms. We thus �nd:B2;0(kkk1; kkk2) = Æ a1a2 hDf1;2g2;0 (kkk1; kkk2) + Df1;3g2;0 (kkk1; kkk2) + Df2;3g2;0 (kkk1; kkk2) i ; (49)17



a) b) )Figure 13: Examples of diagrams de�ning B3;0 and ~B3;0.with Df1;2g2;0 (kkk1; kkk2) = �g212 [F (kkk; 0; 0) + F (0; kkk; 0) � F (kkk1; kkk2; 0)� F (kkk2; kkk1; 0)℄; (50)Df1;3g2;0 (kkk1; kkk2) = �g212 [F (kkk; 0; 0) + F (0; 0; kkk)� F (kkk1; 0; kkk2)� F (kkk2; 0; kkk1)℄; (51)Df2;3g2;0 (kkk2; kkk3) = �g212 [F (0; kkk; 0) + F (0; 0; kkk)� F (0; kkk1; kkk2)� F (0; kkk2; kkk1)℄; (52)where kkk1, kkk2 denote the gluon momenta and kkk = kkk1 + kkk2. On the r.h.s. of (50)|(52), the momentumarguments of the F funtions indiate whih diagrams they represent: in the �rst (seond) term of (50),both gluons ouple to quark line 1 (2). In the third term, the �rst gluon ouples to line 1, the seondto line 2, and so on. The relative signs arise from the olor struture. As a striking result, on the r.h.s.of (50)|(52), in eah line the four terms have the same struture as the impat fator of the photon. Inpartiular, eah set satis�es the Ward identities, i.e. it vanishes as any of its momenta goes to zero. Sinethe pair of sattering quarks fi; jg is in a olor anti-triplet state, one might, at �rst sight, interpret thisset as the elasti sattering of an `anti-triplet dipole'. However, it is important to stress that these threedipole-like omponents Dfi;jg2;0 , are not independent from eah other: the diagrams where two gluons oupleto the same quark line, say, line 3 in Fig. 12a, ontribute both to the pair (13) and (23). In this sense,one better views these quark pairs as `anti-triplets inside the baryon'. Also, these on�gurations where onequark pair interats whereas the third quark remains a spetator, should not simply be viewed as `diquarkstates': in transverse oordinate spae, the spetator quark an be far away from the quark pair (see thedisussion in Setion 7). One should also add that the normalization of the dipole-like omponents Dfi;jg2;0 ofthe baryon impat fator is exatly 1=2 of the normalization of the genuine olor dipole impat fator. Atthe two-gluon level, our results oinide with results of Ref. [27℄.If, instead of our model for the baryoni impat fator, we would have used a ompletely symmetribaryon form-fator F (s) (whih does not disriminate between u and d quarks) we would have arrived at afamiliar result [28℄: B(s)2;0(kkk1; kkk2) = �g22 Æa1a2 hF (s)(kkk; 0; 0) � F (s)(kkk1; kkk2; 0)i : (53)4.3 Three gluonsIn the ase of three gluons (Fig. 13) we have to distinguish between even and odd C parity: in the olortrae Eq. (44) we �nd both olor tensors, fa1a2a3 and da1a2a3 . The �rst one belongs to even (Pomeron), theseond to odd (odderon) C parity. 18



The C-odd baryon impat fator reads [16, 29, 30℄~B3;0(kkk1; kkk2; kkk3) = d a1a2a3 E3;0(kkk1; kkk2; kkk3); (54)where E3;0(kkk1; kkk2; kkk3) = ig324 X� "2F �(kkk1; kkk2; kkk3)� 3Xi=1 F �(kkki; kkk � kkki; 0) + F �(kkk; 0; 0)# ; (55)and F � denotes the F funtions, with its arguments being permuted by the permutation �:F �(lll1; lll2; lll3) = F �lll�(1); lll�(2); lll�(3)� : (56)In E3;0 the t-hannel three gluon state is Bose symmetri, that isE3;0 �kkk�(1); kkk�(2); kkk�(3)� = E3;0(kkk1; kkk2; kkk3) (57)for any permutation �, and it obeys the Ward identities:E3;0(kkk1; kkk2; kkk3) = 0 for any kkkj ! 0: (58)On the r.h.s. of Eq. (55), the momentum struture of �rst term indiates that the three gluons ouple tothree quarks. The seond and third term play the role of subtrations. This leads to the interpretationthat, in this piee of the baryoni impat fator, in ontrast to the struture found previously for 2 gluons,all three quarks partiipate in the interation. Sine eah of the three gluon has negative C parity, thist-hannel belongs to the C = � (odderon) state.For a ompletely symmetri model for the baryon form-fator expression (55), again, redues to a knownresult [29℄:~B(s)3;0(kkk1; kkk2; kkk3) = i g34 da1a2a3 "2F (s)(kkk1; kkk2; kkk3)� 3Xi=1 F (s)(kkki; kkk � kkki; 0) + F (s)(kkk; 0; 0)# : (59)Next we turn to the terms proportional to fa1a2a3 whih turn out to belong to even C. They an begrouped in the same `dipole-like' form as in (49):B3;0(kkk1; kkk2; kkk3) = Df1;2g3;0 (kkk1; kkk2; kkk3) + Df1;3g3;0 (kkk1; kkk2; kkk3) + Df2;3g3;0 (kkk1; kkk2; kkk3); (60)where the dipole-like omponents have the struture known from the photon ase,Dfi;jg3;0 (kkk1; kkk2; kkk3) = 12 g fa1a2a3 hDfi;jg2;0 (kkk1 + kkk2; kkk3)�Dfi;jg2;0 (kkk1 + kkk3; kkk2) + Dfi;jg2;0 (kkk2 + kkk3; kkk1)i : (61)As in the photon ase, the argument struture indiates the beginning of the reggeization of the gluons: forexample, in the �rst term, the �rst two gluons with momenta kkk1 and kkk2 `ollapse' into a single reggeizedgluon with momentum kkk1 + kkk2. The t-hannel system thus onsists of two reggeized gluons only and henebelongs to C-even. In the next setion we will show that this struture is preserved in the rapidity evolution.In the following it will be onvenient to use a shorthand notation by writing, instead of Dfi;jg2;0 (kkk1+kkk2; kkk3),simply Dfi;jg2;0 (12; 3) et. 19



4.4 Four gluonsIn the ase of four gluons (Fig. 14) the olor trae (44) ontains ff , dd, fd, and ÆÆ olor tensor strutures.Beginning with the fd piees, we �nd that they an be expressed in terms of the E-funtion (55) whih wehave obtained for the odderon hannel:~B4;0(1; 2; 3; 4) = (62)g2 � fa1a2b dba3a4 E3;0(12; 3; 4) + fa1a3b dba2a4 E3;0(13; 2; 4) + fa1a4b dba2a3 E3;0(14; 2; 3)+ fa2a3b dba1a4 E3;0(23; 1; 4) + fa2a4b dba1a3 E3;0(24; 1; 3) + fa3a4b dba1a2 E3;0(34; 1; 2)� :We then interpret this ontribution as the odderon on�guration with one reggeizing gluon. It agrees withthe result �rst found by C. Ewerz [16℄.
a) b) ) d)Figure 14: Examples of diagrams de�ning B4;0 and ~B4;0.Next the ff , dd, and ÆÆ terms. We �nd, in addition to a set of piees whih have the same struture asin the photon ase, a new struture, Q4;0. In detail:B4;0(1; 2; 3; 4) = Df1;2g4;0 (1; 2; 3; 4) + Df1;3g4;0 (1; 2; 3; 4) + Df2;3g4;0 (1; 2; 3; 4) + Q4;0(1; 2; 3; 4): (63)Here the �rst three terms are dipole-like, and they follow the reggeization pattern found for the photonsattering:Dfi;jg4;0 (1; 2; 3; 4) = �g2 n d a1a2a3a4 hDfi;jg2;0 (123; 4) + Dfi;jg2;0 (234; 1) �Dfi;jg2;0 (14; 23) i (64)+ d a1a2a4a3 hDfi;jg2;0 (124; 3) + Dfi;jg2;0 (134; 2) �Dfi;jg2;0 (12; 34) �Dfi;jg2;0 (13; 24) io ;with the olor tensor d a1a2a3a4 = Æ a1a2Æ a3a42N + d a1a2b d ba3a44 � f a1a2b f ba3a44 : (65)In the next setion we will study the rapidity evolution of these terms, and we will on�rm that they followthe photon impat fator to all orders.The new struture whih has no analogue in the ase of the photon looks as follows:Q4;0(1; 2; 3; 4) = �ig2 � d a1a2b d ba3a4 � 13 Æ a1a2 Æ a3a4� [E3;0(12; 3; 4) + E3;0(34; 1; 2) ℄ +�ig2 � d a1a3b d ba2a4 � 13 Æ a1a3 Æ a2a4� [E3;0(13; 2; 4) + E3;0(24; 1; 3) ℄ +�ig2 � d a1a4b d ba2a3 � 13Æ a1a4 Æ a2a3� [E3;0(14; 2; 3) + E3;0(23; 1; 4) ℄ : (66)20



The funtion E is the same as in the odderon ase, and, in partiular, all three quarks partiipate in theinteration. The t-hannel state whih ouples to Q4;0 is Bose symmetriQ4;0(�(1); �(2); �(3); �(4)) = Q4;0(1; 2; 3; 4) (67)for any permutation �, and it is gauge invariant:Q4;0(kkk1; kkk2; kkk3; kkk4) = 0 for any kkkj ! 0: (68)This property may be proven using the identity for olor tensors valid for N = 3 :d a1a2b d ba3a4 + d a1a3b d ba2a4 + d a1a4b d ba2a3 = 13 ( Æ a1a2 Æ a3a4 + Æ a1a3 Æ a2a4 + Æ a1a4 Æ a2a3 ) : (69)The analysis in the following setion will show that this novel piee of the baryon impat fator ouplesa three-gluon t-hannel on�guration in whih one of the reggeized gluons is an even-signature d-Reggeon.The overall C parity therefore is positive.5 Integral evolution equationsIn this setion we study higher order orretions in the (generalized) leading logarithmi (log s) approxima-tion. The all-order sum of these terms will be represented by integral equations [14, 15℄, written for Mellinmoments of the multiple disontinuities with respet to the energy s. In our notation the dependene of theamplitudes BN and ~BN (and also DN , EN and QN ) on the Mellin variable ! is impliit.Let us begin with the C-odd on�gurations. In the ase of three gluons, the impat fator E3;0 is simplyreplaed by the Green's funtion funtion E3, whih satis�es the BKP equation for three odd signatureReggeons, with the initial ondition given by E3;0: ! �Xi �(kkki)! E3 = E3;0 + X(r;s) K2!2(r; s) 
 E3; (70)where K2!2 is the real emission part of the BFKL kernel, and the odderon state with the full olor struturereads ~B3(1; 2; 3) = da1a2a3E3(1; 2; 3): (71)The four gluon ase has been studied in [16℄, and we simply quote the solution:~B4(1; 2; 3; 4) = (72)g2 h fa1a2b dba3a4 E3(12; 3; 4) + fa1a3b dba2a4 E3(13; 2; 4) + fa1a4b dba2a3 E3(14; 2; 3)+ fa2a3b dba1a4 E3(23; 1; 4) + fa2a4b dba1a3 E3(24; 1; 3) + fa3a4b dba1a2 E3(34; 1; 2) i :where the funtion E3 has been de�ned before in (70). Clearly, the solution is saturated by a reggeizingontribution: in eah term, one of the three f -Reggeons splits into two elementary gluons.21



We now turn to the C-even ontributions. The integral equations for the multiple disontinuities read(up to four gluons): ! �Xi �(kkki)! 2B = 2;0B + B2 (73) ! �Xi �(kkki)! B = B3;0 + X B + 2B (74) ! �Xi �(kkki)! B4 = 4;0B + X B4 + X
3B

+ B2 : (75)The integral kernels driving 2 ! 2; 3; 4; ::: Reggeon transitions, that appear in the above equations inludethe olor struture, and they are de�ned in Ref. [14, 15℄. The gluon Regge trajetory �(kkk) will be spei�edbelow. The ase of two gluons is the simplest one: B2 satis�es the BFKL equation. Aording to thestruture of the inhomogeneous term in Eq. (49), B2 an be written as the sum of three terms Dfi;jg2 ,B2(1; 2) = Æa1a2 hDf1;2g2 (1; 2) + Df1;3g2 (1; 2) + Df2;3g2 (1; 2) i ; (76)with  ! � 2Xi=1 �(kkki)! Dfi;jg2 = Dfi;jg2;0 + K2!2 
 Dfi;jg2 : (77)In the ase of three gluons, B3 is given by the sum of three dipole-like omponents (f. (60)):B3(1; 2; 3) = Df1;2g3 (1; 2; 3) + Df1;3g3 (1; 2; 3) + Df2;3g3 (1; 2; 3); (78)where eah term onsists of three reggeizing piees:Dfi;jg3 (1; 2; 3) = 12 g fa1a2a3 hDfi;jg2 (12; 3) �Dfi;jg2 (13; 2) + Dfi;jg2 (23; 1)i : (79)This struture oinides with the photon ase.The ase of B4 is more omplex. Following our result for the baryon impat fator in Eq. (63) wedeompose B4 in the following way:B4(1; 2; 3; 4) = Df1;2g4 (1; 2; 3; 4) + Df1;3g4 (1; 2; 3; 4) + Df2;3g4 (1; 2; 3; 4) + Q4(1; 2; 3; 4): (80)For the dipole-like piees Dfi;jg4 we make use of the `redution proedure' developed for the photon ase.Namely we deompose eah Dfi;jg4 into a reggeizing and an irreduible ontributionsDfi;jg4 (1; 2; 3; 4) = Dfi;jg ;R4 (1; 2; 3; 4) + Dfi;jg ;I4 (1; 2; 3; 4); (81)22



with the reggeizing ontribution given byDfi;jg ;R4 (1; 2; 3; 4) = �g2 nd a1a2a3a4 hDfi;jg2 (123; 4) + Dfi;jg2 (234; 1) �Dfi;jg2 (14; 23) i (82)+ d a1a2a4a3 hDfi;jg2 (124; 3) + Dfi;jg2 (134; 2) �Dfi;jg2 (12; 34) �Dfi;jg2 (13; 24) io :The reggeizing ontributions are simple BFKL ladders with one reggeizing gluon splitting into three gluonsor both reggeized gluons eah splitting into two gluons. The irreduible ontribution, ontaining the 2 ! 4Reggeon transition vertex, is illustrated in Fig. 15.

Figure 15: The omponent Dfi;jg ;I4 (1; 2; 3; 4).These results provide further evidene that the `dipole-like' piees of the baryoni impat fator reallybehave in exatly the same way as the olor dipole photon impat fator. In partiular, if we would applythe large N limit to the gluon evolution below the impat fator (whih, of ourse, would be inonsistentwith our �nite-N baryon), the four gluon system below the 2 ! 4 transition vertex would split into twonon-interating BFKL ladders, and we would arrive at the �rst iteration of the BK equation.After subtrating, from B4(1; 2; 3; 4) in (80), these dipole-like ontributions of the baryon we are leftwith Q4. As Q4 appears at level of four gluons, its evolution equation has simply the BKP form: ! �Xi �(kkki)! Q4 = Q 4;0 + X Q 4 : (83)Making use of the experiene with D4, we deompose the amplitude Q4 into a reggeizing piee QR4 and anirreduible ontribution QI4: Q4(1; 2; 3; 4) = QR4 (1; 2; 3; 4) + QI4(1; 2; 3; 4): (84)Going through steps similar to the ones outlined in [14, 15℄ we �nd that the reggeizing piees QR4 preserve
23



Figure 16: The new 3 ! 4 transition vertex W .the struture of Q4;0:QR4 (1; 2; 3; 4) = �ig2 � d a1a2b d ba3a4 � 13 Æ a1a2 Æ a3a4� [E3(12; 3; 4) + E3(34; 1; 2) ℄ +�ig2 � d a1a3b d ba2a4 � 13 Æ a1a3 Æ a2a4� [E3(13; 2; 4) + E3(24; 1; 3) ℄ +�ig2 � d a1a4b d ba2a3 � 13Æ a1a4 Æ a2a3� [E3(14; 2; 3) + E3(23; 1; 4) ℄ : (85)As seen from the olor and momentum struture, the three gluon state oupling to Q4;0 onsists of threereggeized gluons, one of whih is in a d state and deays into two elementary gluons (the piees proportionalto olor tensors ÆÆ play the role of subtrations; in partiular, they are needed in order to satisfy the Wardidentities). This state, onsisting of two odd signature f -Reggeon and one even signature d-Reggeon, belongsto even C, i.e. to the Pomeron hannel.The remaining piee, QI4, ontains a new transition vertex. We illustrate this ontribution in Fig. 16.This vertex desribes the transition from the three Reggeon state onsisting of two f and one d Reggeon tofour f Reggeons. In more detail, the vertex may be ompletely deomposed into non-onneted piees oftwo types: (i) the inoming d Reggeon together with one of the f Reggeons makes a transition into threef Reggeons whereas the remaining f Reggeon ats as a (t-hannel) spetator, and (ii): two f Reggeonsinterat via the BFKL kernel and the d Reggeon splits into two f Reggeons. The expliit funtional formof the vertex W , ating on the three Reggeon state �3 is the following:(W �3)(1; 2; 3; 4) = �g22 � Æ a1a2 Æ a3a4 1 2 3 4(W �3) + Æ a1a3 Æ a2a4 1 3 2 4(W �3) + Æ a1a4 Æ a2a3 1 4 2 3(W �3) � ; (86)where 1 2 3 4(W �3) = " 123G ��4�3 + 213G ��4�3 + 132G ��4�3 � (12)Æ3G ��4�3 + 121Æ2G ��(34)�3 #+ [ 3 $ 4 ℄ + [ 1 $ 3 ; 2 $ 4 ℄ + [ 1 $ 4 ; 2 $ 3 ℄: (87)Let us stress that this vertex ats on a ompletely symmetri funtion �3 with three arguments, whihinherits its struture from E3. This vertex is losely related to a 3 ! 4 vertex found in Ref. [31℄ in ananalysis of jet prodution amplitudes at small x. The symbol 123G denotes the integral operator G(1; 2; 3),24



introdued �rst in [14℄ and further investigated in [32℄. It ats on a two gluon amplitude, �2, and desribesa transition to three gluons. It onsists of two piees:G(1; 2; 3) = G1(1; 2; 3) + G2(1; 2; 3); (88)where the �rst one ontains s-hannel gluons (`onneted part'), the seond one reggeizing piees (`dison-neted part'): (G1�2)(kkk1; kkk2; kkk3) =Z d2l(2�)3 �(kkk2 + kkk3)2 lll2(lll � kkk1)2 + (kkk1 + kkk2)2 (kkk � lll)2(kkk � lll � kkk3)2 � kkk22 (kkk � lll)2 lll2(lll � kkk1)2 (kkk � lll � kkk3)2 � kkk2��2(lll; kkk � lll); (89)and N g2 (G2�2)(kkk1; kkk2; kkk3) =Z d2l(2�)3 lll2 (kkk � lll)2 n [�(kkk2 + kkk3)� �(kkk2) ℄ (2�)3 Æ(2)(lll � kkk1)+ [�(kkk1 + kkk2) � �(kkk2) ℄ (2�)3 Æ(2)(lll � kkk3)o �2(lll; kkk � lll); (90)with the gluon trajetory funtion�(kkki) = �Ng2 Z d2lll(2�)3 kkk2illl2 + (kkki � lll)2 1(kkki � lll)2 ; (91)and kkk = kkk1 +kkk2 +kkk3. In (87) we have used a short-hand notation for the argument struture introdued inRef. [31℄: in the �rst term, 123G ��4�3, �3 is the three gluon amplitude above the vertex W where the rightmostReggeon (momentum kkk4) is a spetator, and the G operator ats on the two left Reggeons, turning theminto the three gluons with momenta kkk1, kkk2, and kkk3. In the fourth term, (12)Æ3G ��4�3, Reggeon 4 is, again, aspetator, and the G operator (with zero momentum in the seond outgoing gluon) equals the BFKL kernelating on the two leftmost gluons inside �3: after this BFKL interation the leftmost gluon splits into twogluons with momenta kkk1 and kkk2, and the other one arries momentum kkk3. Finally, in the last term, 1Æ2G ��(34)�3 ,the rightmost spetator now splits into two gluons with momenta kkk3 and kkk4, and the G operator, like in theprevious term, equals the BFKL operator with outgoing momenta kkk1 and kkk2.The full vertex W in (86) is gauge invariant, infra-red �nite and Bose symmetri. As the vertex isexpressed in terms of the funtion G, it is also M�obius invariant [32℄. Finally, there is no violation ofsignature onservation: the inoming three Reggeon state, onsisting of one d-Reggeon and two f -Reggeons,has even signature; the same holds for the outgoing four Reggeon state (four f -Reggeons).As a result, the baryoni impat fator introdues a new ontribution to the Pomeron hannel whih hasno analogue in the photon dipole fator.
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6 Baryon wave funtions in the oordinate spaeThe baryon wave funtion in transverse position spae may be easily obtained by the Fourier transform:~	(�1;�2)�3� (f�ig; frrrig;PPP ) = Z d2p12� d2p22� d2p32� 	(�1;�2)�3� (f�ig; fpppig;PPP ) exp i 3Xi=1 pppi � rrri! : (92)The result takes a rather simple form:~	(�1;�2)�3� (f�ig; frrrig;PPP ) = ~N �1�2�3 exp"�M24 Xi �i (rrri �RRR)2 # exp( iPPP �RRR ) � (93)� ( �M Æ�; �1 Æ�;��2 Æ�; �3 [ (rrr2 �RRR) � ���� ℄ [ (rrr1 � rrr3) � ����� ℄+ �M Æ�;��1 Æ�; �2 Æ�; �3 [ (rrr1 �RRR) � ���� ℄ [ (rrr2 � rrr3) � ����� ℄ +� 2 i Æ�; �1 Æ�;��2 Æ�;��3 [ (rrr2 � rrr3) � ���� ℄ +� 2 i Æ�;��1 Æ�; �2 Æ�;��3 [(rrr1 � rrr3) � ���� ℄ ) ;where RRR denotes the light-one enter of mass position vetor,RRR = 3Xi=1 �i rrri: (94)The form of the wave funtion given by Eq. (93) whih follows from the Io�e urrent shows in detail theangular momentum struture of the baryon and the orrelations between the angular momenta and quarkheliities. In partiular, eah salar produt of the type (rrr1�RRR) ����� learly indiates a rotation of quark 1around the baryon enter-of-mass with the orbital angular momentum z-omponent, Lz, equal to �. Termsof the type (rrr1�rrr3) ����� orrespond to a similar rotation within the quark pair (1,3). Thus, in the masslessquark ase, all omponents of the baryon arry a non-zero angular momentum Lz for the Io�e operator. Aninspetion of the momentum spae expressions (32) shows that for the massive quark ase, one may haveIo�e baryon wave funtion omponents with Lz = 0.Using Eqs. (43) and (39), one may express the baryon impat fators B ��0N (flllig;PPP ;PPP 0) via the overlapfuntion F ��0(flllig;PPP ;PPP 0) de�ned in the oordinate spae:F ��0(flllig;PPP ;PPP 0) = (95)X�1;�2;�3 Z [d2rrri℄ [d�i℄ h~	(�1;�2)�3�0 �f�ig; frrrig;PPP 0�i� exp � i 3Xi=1 llli � rrri! ~	(�1;�2)�3� (f�ig; frrrig;PPP ) :It follows from Eqs. (45), (46) and (95) that the normalization ondition for the wave funtion reads:X�1;�2;�3 Z [d2rrri℄ [d�i℄ h~	(�1;�2)�3� �f�ig; frrrig;PPP 0�i� ~	(�1;�2) �3� (f�ig; frrrig;PPP ) = Æ(2) �PPP � PPP 0 � : (96)26



It is instrutive to evaluate a ontribution to the baryon two-gluon impat fator [ÆB2;0℄f1;2g orrespondingto a dipole-like piee, e.g. to Df1;2g2;0 , in the oordinate representation. The gluon olor labels are a1 and a2and momenta are denoted by kkk1 and kkk2 respetively. One obtains:hÆB ��02;0 (flllig;PPP ;PPP 0)if1;2g = 12 (�ig)2 Æa1a22N � (97)� X�1;�2;�3 Z [d2rrri℄ [d�i℄ h~	(�1;�2)�3�0 �f�ig; frrrig;PPP 0�i� ~	(�1;�2)�3� (f�ig; frrrig;PPP ) �� he� i (kkk1+kkk2)�rrr1 + e� i (kkk1+kkk2)�rrr2 � e� ikkk1�rrr1� ikkk2�rrr2 � e� ikkk1�rrr2 � ikkk2�rrr1 i :Assuming, for simpliity, the forward kinematis, kkk1 = kkk = �kkk2, one may rewrite the eikonal fators in thelast line of (97) in a fatorized form, found in the ase of the olor dipole sattering,h 1 � eikkk�(rrr2�rrr1)i h 1 � eikkk�(rrr2�rrr1)i� : (98)This equivalene of the strutures holds also beyond the forward limit (note that, for nonzero PPP , PPP 0 thewave funtions ~	(�1;�2)�3�0 ontain the phase fators eiPPPRRR). In Eq. (97), the prefator 1/2 in the �rst linereets the relative weight between the olor dipole sattering amplitude and the sattering amplitude ofthe dipole-like omponents of the baryon.7 The quark{diquark limitIn many phenomenologial appliations the nuleon is represented as a bound state of quark and a tightlybound diquark. The transverse size of the diquark is then assumed to be muh smaller than the size ofthe baryon, and the diquark state emerges in an anti-triplet olor representation. In this approximationthe baryon should resemble an (asymmetri) olor dipole. It is interesting to analyze the properties ofour baryon impat fator in this limit. Formally, the quark{diquark limit orresponds to the limit wherethe transverse separation of two quark lines shrinks to zero, and a t-hannel gluon no longer distinguishesbetween the two quark lines. In momentum spae, as seen in (95), the overlap funtion then only dependsupon the sum of the momenta of all gluons oupled to the two oiniding quark lines. To be de�nite, let usassume that quarks 2 and 3 move lose to eah other. Then all overlap funtions F degenerate to a funtionF 1(23) with only two arguments: F (kkk1; kkk2; kkk3) �!3!2 F 1(23)(kkk1; kkk2 + kkk3): (99)(note that the limit F 1(23)(kkk1; kkk2) is not neessarily symmetri in its arguments). Applying this argument tothe three dipole-like terms in (49) we immediately see that the dipole-like omponent Df2;3g2;0 vanishes if lines2 and 3 are ontrated: this is the well-known limit of a dipole with vanishing size (olor transpareny). Inmore detail, (52) shows that all terms in this impat fator tend to F 1(23)(0; kkk1 + kkk2), and they anel dueto opposite signs. The remaining dipole-like omponents Df1;2g2;0 and Df1;3g2;0 beome equal:Df1;2g2;0 (kkk1; kkk2); Df1;3g2;0 (kkk1; kkk2) �!3!2 Df1;(23)g2;0 (kkk1; kkk2); (100)27



withDf1;(23)g2;0 (kkk1; kkk2) = �g212 hF 1(23)(0; kkk1 + kkk2) + F 1(23)(kkk1 + kkk2; 0) � F 1(23)(kkk1; kkk2)� F 1(23)(kkk2; kkk1)i : (101)As we already disussed at the end of Setion 4.2, in (49) eah dipole-like term arries a olor fator 1=2,ompared to a genuine olor dipole fator seen in a olor singlet quark-antiquark system. Sine in thequark{diquark limit Df2;3g2;0 vanishes and the ontributions from Df1;2g2;0 and Df1;3g2;0 oinide, this part of thebaryoni impat fator adds up to a standard dipole ontribution D2;0(kkk1; kkk2) = 2Df1;(23)g2;0 (kkk1; kkk2).Next, we turn to the three-gluon impat fators. In the Pomeron hannel, one �nds only reggeizing pieesof the quark{diquark dipole impat fator. In the odderon hannel, the funtion E(kkk1; kkk2; kkk3) degenerates tothe struture found in the � ! � transition impat fator, whih ouples only to the Bartels-Lipatov-Vaa(BLV) odderon [33℄ but not to the Janik-Wosiek solution [34℄:E3;0(kkk1; kkk2; kkk3) �!3!2 Ef1;(23)g3;0 (kkk1; kkk2; kkk3); (102)with Ef1;(23)g3;0 (kkk1; kkk2; kkk3) = ig312 hF 1(23)(kkk1; kkk2 + kkk3) � F 1(23)(kkk2 + kkk3; kkk1) ++F 1(23)(kkk2; kkk1 + kkk3) � F 1(23)(kkk1 + kkk3; kkk2) + F 1(23)(kkk3; kkk1 + kkk2) � F 1(23)(kkk1 + kkk2; kkk3) ++F 1(23)(kkk1 + kkk2 + kkk3; 0) � F 1(23)(0; kkk1 + kkk2 + kkk3)i : (103)For the four gluon ase, one �nds the standard reggeizing pattern of Df1;(23)g2;0 and of Ef1;(23)g3;0 in thePomeron and the odderon hannel, respetively. The struture Q4;0 vanishes in the quark{diquark limit.This is the result of a nontrivial anellation of all three lines of Eq. (66), making use of the identity (69).The pattern given by the impat fators in the small diquark limit is preserved by the small x evolution, inpartiular Q4 vanishes.In summary, we have veri�ed that, in the quark{diquark limit, the baryon redues to a dipole-likeobjet with an asymmetri wave funtion, as it was expeted. Conversely, our analysis shows that, outsidethe diquark limit, the baryon impat fator ontains a new piee (related to Q4;0) whih aompanies theappearane of the third dipole-like term, Df2;3g2;0 . A more detailed study of the question, to what extent thebaryon wave funtions atually favors a diquark state, should start from the Fourier transform of the overlapfuntion, (95), whih desribes the distribution of the quarks in transverse oordinate spae. Further workalong these lines is in progress.8 DisussionIn this paper we have investigated the high energy behavior of a baryoni state. We have studied thestruture of a baryoni impat fator, its oupling to multi-gluon exhanges and the rapidity evolution ofthe t-hannel gluon states. We found it onvenient to follow very muh the same approah, whih has beendeveloped and used for the high energy behavior of a virtual photon (or a heavy quarkonium state). Forthe sattering of suh mesoni states, in the leading logarithmi approximation and in the large-N limit,28



the high energy behavior allows for the interpretation in terms of olor dipoles, and one of the motivationsof our investigation was the question to what extent this attrative physial piture an be used also for thesattering of baryoni states.Compared to the quark-antiquark system reated by the photon (or a heavy vetor meson), the high en-ergy sattering of baryoni systems onsisting of three quarks shows similarities, but also striking di�erenes.First, there is a omponent of the baryoni impat fator in whih two of the three quarks interat with thetarget whereas the third one ats as a spetator. Here the two-quark subsystem behaves very muh in thesame way as the olor singlet dipole of the quark-antiquark system. In partiular, the rapidity evolutionis the same as in the ase of a virtual photon. This on�guration, however, extends beyond the piture ofa small \diquark state": we have shown that, in the diquark limit, we reover the dipole piture. But thespetator quark is not neessarily linked (in transverse spae) to one of the partiipating quarks, and ouranalysis inludes also this more general on�guration. Seond, there is the piee of the baryon impat fatorto whih the C-odd three gluon state (odderon) ouples. Third, a new piee of the baryoni impat fatorexists whih ouples to a C-even three gluon t-hannel state, and there is a new vertex whih desribes thetransition from this three gluon state to the four gluon (two Pomeron) state. In the quark-antiquark ase,there is no analogue of this ontribution.This third piee may atually be quite essential for the restauration of s-hannel unitarity in baryonsattering and an therefore not be negleted. Namely, let us onsider the sattering of a hypothetial heavybaryon on a large nulear target; this represents the analogue of the Balitsky-Kovhegov problem for theolor dipole sattering. Based on our results, the baryon sattering amplitude B an be written symboliallyas a sum of the following piees:B = C�evenz }| {Df1;2g2 + Df1;3g2 + Df2;3g2 + Q4 + C�oddz}|{E3 : (104)Here the �rst three terms, Dfi;jg2 , stand for the dipole-like ontributions in whih the baryon ouples to thesame two-point gluon orrelator as the olor dipole in the sattering of a virtual photon. The strength ofthis oupling, however, is only 1=2 of that for the photon dipole. The piees Q4 and E3 probe three-pointgluon orrelators: the C-even and C-odd ones respetively. As it was observed in the ase of the olor dipolein deep inelasti sattering, where only a single BFKL Pomeron ould ouple to the dipole, we again see noindiations of a diret two Pomeron oupling to the valene degrees of freedom of the baryon. If we assumethat the two-gluon distribution probed by the �rst three terms in Eq. (104) is onsistent with saturationof the blak dis limit for olor dipoles of the sizes given by the baryon geometry, then the T -matries foreah of the Dfi;jg2 omponents would tend to 1=2, and the total ontribution of the dipole-like piees to thebaryon T -matrix would amount to 3=2. This would mean that s-hannel unitarity an be maintained onlyif Q4 and E3 give a ombined ontribution to the T -matrix smaller than �1=2. Thus, the three-Reggeonstates Q4 and E3 seem to be essential to guarantee the s-hannel unitarity. Interestingly enough, onemight go even further and arrive at a quantitative predition: if one postulates that the T -matries, bothfor the olor dipole and the baryon sattering at very large energies saturate the unitarity limit | one then�nds that in the blak dis limit: (i) the C-odd three point gluon orrelator should vanish; this omes from29



the requirement that both proton and anti-proton sattering should reah the blak dis limit, despite thefat that the amplitude E3 has opposite signs in these two ases; (ii) the C-even three point orrelator isstrongly onstrained: when oupled to the impat fator Q4;0 it must lead to the sattering amplitude equalto �1=2. In the diquark limit, both Df2;3g2 and Q4 vanish, and unitarization proeeds in the same way as inthe dipole ase.We interpret these results as a strong indiation that, in the ontext of baryon sattering, QCD Reggeon�eld theory has to be extended beyond the theory of BFKL Pomerons and their interations. First, it isdiÆult to justify the large-N limit, whih, in the sattering of virtual photon and mesoni states, allows toredue the evolution of BKP states onsisting of 2n-gluon to the propagation of n BFKL Pomerons. Seond,the three gluon state (and its BKP evolution) seems to play an important rôle, not only in the odderonhannel. As we have pointed out, this phenomenon is losely onneted with the existene of the d Reggeon,the even signature partner of the (odd signature) reggeized gluon.On a deeper level one may speulate that there exists an intimate onnetion between the number ofvalene objets in the impat fator in the fundamental SU(N) representation and the maximal number ofReggeons in the BKP state whih ouple to the impat fator. For the quark-antiquark olor dipole onlythe two-Reggeon BFKL Pomeron ouples, and for the baryon ontaining three quarks we have both two-and three-Reggeon states. We may onjeture that the number of the di�erent BKP states that oupleto the baryon in SU(N) gauge theory is related to the number of Casimir operators of the gauge group.There exist two Casimir operators of the SU(3) gauge group, and QCD Reggeon �eld theory (whose basidegrees of freedom are the reggeized gluons) exhibits two `fundamental exitations' whih, in the leading-logapproximation, are represented by the two-gluon BFKL Pomeron and by the three-gluon odderon state. Fora high energy SU(N) baryon we expet that the impat fator, onsisting of N quarks in the fundamentalrepresentation, would exhibit all the 2, 3, . . . , N gluon states, and it would hint that the number offundamental glue exitations may be related to the N � 1 Casimir operators of SU(N). It seems naturalthat the gauge group invariants should be mapped onto gauge invariant BKP states. The expliit onnetion,however, has not been yet established.Turning to more pratial and phenomenologial appliations, in this paper we have onsidered a baryonistate onsisting of three massive quarks being in a proton-like on�guration. One an view suh a `heavybaryonium' state as a onvenient theoretial laboratory, very muh in the same spirit as previous work onhigh energy QCD has made use of `heavy onium' states. On the other hand, we feel that our results mightalso allow for immediate phenomenologial appliations. In partiular, we have proposed a relativistiinvariant model of the proton wave funtion, inluding the heliity struture and orrelations betweenheliities and quark angular momenta. Both the model itself and the alulational tehnique applied maybe useful in studies of polarized sattering of the proton and of the proton form-fators. Another potentialplae of interest is the intermediate t region of proton{proton elasti sattering where, in the days of ISRexperiments, a very simple three gluon model had a striking phenomenologial suess [35℄. It should alsobe quite interesting to study other appliations of the model in the ontext of elasti pp and p�p satteringand exlusive di�ration at RHIC, Tevatron and the LHC. Finally, we would like to view our study as apreparation for a QCD analysis of multiple sattering in pp ollision at the LHC.30
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1CCCCCA ; �(#) = 1p2 0BBBBB� 010�1

1CCCCCA (107)in the Dira representation, and the Dira matries �̂ and �̂ are related to the -matries through �̂ = 0and �̂s = 0s; m is the mass of a fermion (or an anti-fermion). In the in�nite momentum frame, whenp+ !1 these spinors tend to the heliity eigenstates, u"#(p) ! u�(p), v"#(p) ! v�(p).In the alulation of the baryon ! quarks transition amplitudes it is suÆient to employ spinor matrixelements given in the following tables. Note that we onsider a general ase in whih the masses of the
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spinors u (or v) and u0 are given by m and m0, respetively.Matrix element�u0�0(p) : : : u�(q) � ! �0" ! "# ! # � ! �0" ! ## ! "�u0(p)pp+ + u(q)pq+ 2 0�u0(p)pp+ � u(q)pq+ 2p+q+ [(ppp � ����) (qqq � ����) + mm0℄ � 2p+q+ (m ppp � ���� � m0 qqq � ����)�u0(p)pp+ s? u(q)pq+ �s� ppp�����p+ + �s� qqq�����q+ ��s� �m0p+ � mq+�
Matrix element�v0�0(p) : : : u�(q) � ! �0" ! "# ! # � ! �0" ! ## ! "�v0(p)pp+ + u(q)pq+ 0 2�v0(p)pp+ � u(q)pq+ � 2p+q+ (m ppp � ���� + m0 qqq � ����) 2p+q+ [(ppp � ����) (qqq � ����) � mm0℄�v0(p)pp+ s? u(q)pq+ ��s� �m0p+ + mq+� �s� ppp�����p+ + �s� qqq�����q+As an example, we apply the above formulae to evaluate� �d�3(p3) � w�(P ) � � [ �u�1(p1) � v�2(p2) ℄qP+ p+1 p+2 p+3 = 12 � �d�(p3) + w�(P ) � � [ �u�1(p1) � v�2(p2) ℄qP+ p+1 p+2 p+3+ 12 � �d�(p3) � w�(P ) � � [ �u�1(p1) + v�2(p2) ℄qP+ p+1 p+2 p+3� � �d�(p3) s?w�(P ) � � [ �u�1(p1) s? v�2(p2) ℄qP+ p+1 p+2 p+3 (108)for � = �1 = ��2 = �3 = +1. The prefators: 1=2, 1=2 and �1 on the r.h.s. are the only non-vanishingelements of the ovariant metri tensor g�� in the light-one oordinates. In the alulations we �nd ituseful to make use of the following identities for transverse omplex vetors ����: ����+ = ����, ���2� = 0,
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���� � ���� = j����j2 = 2. Thus, assuming that the light quark masses vanish, we obtain:� �d�3(p3) � w�(P ) � � [ �v�2(p2) � u�1(p1) ℄�qP+ p+1 p+2 p+3 = 2[(ppp2 � ����)(ppp1 � ���+)℄�p+1 p+2 + 2(ppp3 � ����)(PPP � ���+)P+p+3�2(ppp3 � ����)(ppp2 � ����)�p+2 p+3 � 2(PPP � ���+)(ppp1 � ���+)�P+p+1= 2 �ppp2 � ���+p+2 � PPP � ���+P+ � �ppp1 � ����p+1 � ppp3 � ����p+3 � : (109)Using an identity3 �d�3(p3) 5 = �3 �d�3(p3) , and relation (10), one obtains one of the matrix elementsdesribed by (21). The matrix elements for all remaining hoies of heliities an be derived in the sameway.A.2 A redution formula for spinors in high energy limitWe shall prove the following identity for massive Dira spinors:�u(p) q̂ (p̂ + m + k̂) = 2 p � q �u(p + k) + : : : ; (110)whih holds, at the leading auray in s ' 2p � q, in the high energy limit: s� q2; k2; m2; p � k; q � k et.,and for k? � k+; k�. This identity is a useful tool for deriving quark sattering amplitudes by multi-gluonouplings in the eikonal approximation. Using the spinor equation of motion, �u(p)(p̂�m) = 0 , we get�u(p) q̂ (p̂ + m + k̂) = �u(p) � 2p � q + q̂ k̂ � ' s �u(p)� 1 + 12s h q̂ ; k̂ i� ; (111)where we used the fat that the antiommutator f q̂ ; k̂ g = 2k � q � s. Furthermore, using the light-onevariables, as de�ned in Se. 3, we haveh q̂ ; k̂ i = �2i �̂�� q� k� ' �2i �̂� r q� k r?; (112)where r is the Lorentz index of the transverse oordinates. Thus one obtains�u(p) q̂ (p̂ + m + k̂) ' s �u(p)� 1� i �̂� r k r?p+ � : (113)The matries �̂�� are proportional to the generators of the Lorentz transformations of the Dira spinors:exp�� i4���!��� u(p) = u(�(!)p); �u(p) exp� i4���!��� = �u(�(!)p); (114)where (�(!)p)� = [�(!)℄��p� ; �(!) = exp�12!��L��� ; (115)and the generators of Lorentz transformations in the vetor representation read[L�� ℄�� = g�� g�� � g�� g�� : (116)3For a non-zero quark mass m, the relation holds approximately in the large energy limit, �d�3(p3) 5 = �3 �d�3 (p3) +O(m=p+3 ). 33
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