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Abstra
tThe s
attering of a baryon 
onsisting of three massive quarks is investigated in the high energy limitof perturbative QCD. A model of a relativisti
 proton-like wave fun
tion, dependent on valen
e quarklongitudinal and transverse momenta and on quark heli
ities, is proposed, and we derive the baryonimpa
t fa
tors for two, three and four t-
hannel gluons. We �nd that the baryoni
 impa
t fa
tor 
an bewritten as a sum of three pie
es: in the �rst one a subsystem 
onsisting of two of the three quarks behavesvery mu
h like the quark-antiquark pair in 
� s
attering, whereas the third quark a
ts as a spe
tator. These
ond term belongs to the odderon, whereas in the third (C-even) pie
e all three quarks parti
ipate in thes
attering. This term is new and has no analogue in 
� s
attering. We also study the small x evolution ofgluon radiation for ea
h of these three terms. The �rst term follows the same pattern of gluon radiationas the 
�{initiated quark-antiquark dipole, and, in parti
ular, it 
ontains the BFKL evolution followedby the 2 ! 4 transition vertex (triple Pomeron vertex). The odderon-term is des
ribed by the standardBKP evolution, and the baryon 
ouples to both known odderon solutions, the Janik-Wosiek solution andthe BLV solution. Finally, the t-
hannel evolution of the third term starts with a three reggeized gluonstate whi
h then, via a new 3 ! 4 transition vertex, 
ouples to the four gluon (two-Pomeron) state.We brie
y dis
uss a few 
onsequen
es of these �ndings, in parti
ular the pattern of unitarization of highenergy baryon s
attering amplitudes.

DESY 07{198hep-ph/0711.2196

�Email: bartels�mail.desy.deyE-mail: motyka�th.if.uj.edu.pl

http://arxiv.org/abs/0711.2196v1


1 Introdu
tionIn re
ent years deep inelasti
 ele
tron proton or ele
tron nu
leus s
attering (DIS) at small x has attra
tedmu
h interest, and it has stimulated intense studies of high energy QCD. At high energies, the total 
rossse
tion of a virtual photon s
attering on a target, in a �rst approximation, 
an be des
ribed in termsof a photon impa
t fa
tor and a Balitsky-Fadin-Kuraev-Lipatov (BFKL) Green's fun
tion [1{3℄. Whenrestri
ting to the large N
 limit, and assuming a large target, unitarity 
orre
tions to this �rst approximationare des
ribed by the nonlinear Balitsky-Kov
hegov (BK) equation [4, 5℄ whi
h, in the language of BFKLGreen's fun
tions, represents the in�nite sum of fan diagrams [6℄. The BK equation was initially obtainedin the s-
hannel 
olor dipole pi
ture (in the large N
 limit) [7, 8℄. Beyond the large N
 limit one has toin
lude the full 
olor stru
ture of the 2 ! 4 reggeized gluon vertex [9℄ whi
h leads to the Balitsky hierar
hyof integral equations [4℄ or to the Jalilian-Marian{Ian
u{M
Lerran{Weigert{Leonidov{Kovner (JIMWLK)equations [10℄. In many of these 
al
ulations the in
oming virtual photon plays a vital rôle: its largevirtuality Q2 justi�es the use of perturbation theory, and its impa
t fa
tor 
onsists of a quark-antiquarkpair whi
h forms a 
olor dipole 
on�guration. This simple stru
ture is also intimately 
onne
ted with thefan-like stru
ture of the diagrams resumed by the nonlinear BK equation.The advent of the LHC 
hallenges us with the task of developing a theoreti
al understanding of s
atteringin high energy proton-proton 
ollisions, whi
h is related to the stru
ture of unitarity 
orre
tions in baryon-baryon s
attering. In this paper we will perform a study of the high energy behavior of baryon s
atteringwithin perturbative QCD. It is 
lear that the problem of high energy nu
leon s
attering is mu
h more
omplex than it was in the virtual photon 
ase. First of all, in nu
leon-nu
leon or nu
leon-nu
leus s
atteringthe in
oming proje
tiles are nonperturbative, and the a

ura
y of perturbative 
al
ulations is not undergood theoreti
al 
ontrol. We shall 
ir
umvent this problem by studying a �
titious s
attering pro
ess of aheavy and small baryonium system, in analogy to the heavy onium proposed as a test 
ase for perturbativeunitarity 
orre
tions in DIS [8℄. For su
h pro
esses the perturbative 
al
ulations provide reliable results.Next, the baryonium s
attering is expe
ted to di�er signi�
antly from the onium s
attering. The mainreason is the di�eren
e of the 
olor stru
ture: in 
ontrast to the 
olor dipole the baryon is a 
olor singletformed by three valen
e quarks. Also, the appli
ation of the large N
 limit whi
h played the 
ru
ial rôlein the 
onstru
tion of the dipole model is rather diÆ
ult in the baryon 
ase: one needs exa
tly N
 quarksto build the 
olor singlet of the SU(N
) group, and this system be
omes rather 
omplex for N
 ! 1. Infa
t, a few years ago, it was expli
itly pointed out [11℄ that the simple pi
ture of gluon radiation whi
hhas emerged in the QCD dipole pi
ture does not work in the 
ase of an in
oming three quark 
olor singletsystem; however, no alternative solution had been derived. Thus, we shall address the issue of gluon radiationfrom three quarks at N
 = 3, within a perturbative baryoni
 system and 
ompare with the perturbativequark-antiquark system.The basi
 and universal obje
t that 
hara
terizes properties of the baryon is its wave fun
tion. Inspiredby the su

ess of the 
on
ept of the photon wave fun
tion [7℄ whi
h turned out to be very fruitful in studies ofhigh energy s
attering, we start from a lo
al three-fermion quark 
urrent operator with the quantum numbersof the proton and 
onstru
t a relativisti
 invariant in�nite momentum frame wave fun
tion for the lowest2
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k 
omponent of the baryon, 
onsisting of three valen
e quarks. The resulting wave fun
tion 
ontainsa non-trivial dependen
e on quark heli
ities and angular momenta. For the 
urrent operator we 
hose thebaryoni
 operator proposed by Io�e [12℄, whi
h has been shown to provide a reasonable phenomenologi
alpres
ription of the nu
leon properties [13℄. In order to take into a

ount the nonperturbative nature of thebaryon we make use of the Borel transform te
hnique whi
h has been developed in the 
ontext of QCD sumrules.This paper is not intended yet to deal with a detailed phenomenology of the baryon stru
ture ands
attering, | thus we do not attempt, for example, to tune the obtained wave fun
tion to des
ribe theexisting data on proton form-fa
tors and high energy s
attering. Nevertheless, apart from developing atheoreti
al laboratory for studying s
attering of baryon states at high energies, one may hope that ourperturbative analysis �nds stru
tures whi
h remain also relevant beyond the perturbatively safe region. Anextrapolation of our results on the heavy baryonium to the realisti
 proton 
ase may, therefore, very wellallow for some useful phenomenology. More detailed studies in this dire
tion will be left for future work.Starting from integrals over squares of these baryoni
 wave fun
tions and 
oupling t-
hannel gluons to thethree quark lines we de�ne baryoni
 impa
t fa
tors, in 
lose analogy with the photon impa
t fa
tor in deepinelasti
 ele
tron proton s
attering. The small-x evolution of baryon s
attering amplitude will be analyzed,again, following the strategy developed in the 
ontext of the virtual photon s
attering [9, 14, 15℄. First we
onsider, in lowest order, the elasti
 s
attering of the baryoni
 system on a single quark: by 
oupling twot-
hannel gluons to the three-quark system, the baryoni
 impa
t fa
tor is obtained. Three or four t-
hannelgluons appear if one 
onsiders, again at lowest order, multi-parti
le amplitudes, e.g. 3 ! 3 pro
esses ina suitably de�ned high energy limit. In the next step, one 
onsiders higher order diagrams in the leadinglogarithmi
 approximation: this leads to rapidity evolution equations, des
ribing the radiation of gluonsfrom the three-quark system.Our main results are the following. We propose a model of the baryon wave fun
tion with a non-trivialquark heli
ity and angular momentum stru
ture. Then we express the baryon impa
t fa
tor in terms of thewave fun
tion, for an arbitrary number of 
oupling gluons. The obtained baryoni
 impa
t fa
tor 
an bewritten as a sum of several pie
es, ea
h of them having its own evolution equation. First, there is a term inwhi
h one pair out of the three quarks s
atters whereas the third quark a
ts as a spe
tator. Although thetwo quarks whi
h parti
ipate in the intera
tion are in a 
olor anti-triplet 
on�guration, they behave verymu
h like the quark{antiquark pair in the photon 
ase. In the lowest order, two t-
hannel gluons 
ouple tothis quark pair. In higher order the two gluons start to reggeize and to produ
e the full BFKL ladder, whilethe third quark of the baryon state remains an ina
tive spe
tator. Also, the well-known 2 ! 4 gluon vertexappears, indi
ating the beginning of the same fan-like stru
ture as in the quark{antiquark 
ase. Altogether,this pie
e of the baryon impa
t fa
tor radiates gluons in very mu
h the same way as the quark-antiquarkpair in the photon 
ase.Next, there is the odderon term, similar to the one dis
ussed in [16℄: here all three quarks parti
ipate,and the t 
hannel state 
arries C = �. In lowest order, three gluons 
ouple to the three quarks; in higherorder the state evolves a

ording to the Bartels-Kwie
i�nski-Prasza lowi
z (BKP) evolution equation [17, 18℄.3



Figure 1: Energy dis
ontinuity of the 2 ! 2 pro
ess: 
� + q ! 
� + q.Finally, a third, C-even, pie
e of the baryoni
 impa
t fa
tor appears in whi
h again all three quarksparti
ipate. This pie
e has no 
ounterpart in the quark-antiquark 
ase and, together with the odderon, itmakes the baryon really behaving di�erently from the photon (or the ve
tor meson). The state 
onsists ofone reggeized gluon with even signature and two usual odd reggeized gluons. It obeys the BKP evolutionin the three Reggeon 
hannel and it de
ays into four reggeized gluons via a new gauge invariant 3 ! 4reggeized gluon vertex.The paper is organized as follows. We begin with a short se
tion des
ribing the general frameworkin whi
h our 
al
ulations are 
arried out. We then (Se
tion 3) turn to the baryon wave fun
tion whi
henters the baryon impa
t fa
tor. In the following Se
tion 4 we des
ribe the baryon impa
t fa
tor and itsde
omposition into the three pie
es des
ribed above, and in Se
tion 5 we dis
uss the rapidity evolution ofthese pie
es. Se
tion 6 
ontains a short dis
ussion of the baryoni
 impa
t fa
tor in 
on�guration spa
e,and in Se
tion 7 we analyze the quark{diquark limit of the baryon wave fun
tion. Finally, in Se
tion 8 wesummarize our results and dis
uss a few potential impli
ations.2 The frameworkIn our 
al
ulation we will follow the analysis of the s
attering of a virtual photon des
ribed in [14, 15℄. Inleading order the s
attering of a virtual photon o� a quark is des
ribed by the ex
hange of two gluons. The
oupling to the photon is des
ribed by the photon impa
t fa
tor, D2;0, whi
h most easily is obtained bythe energy dis
ontinuity of a 
losed quark loop (Fig. 1). Making use of the Regge fa
torization, the sameimpa
t fa
tor 
an also be used in other elasti
 s
attering pro
esses, e.g. in the s
attering of a virtual photonon a heavy onium target. Higher order 
orre
tions, in the leading logarithmi
 approximation, lead to thereggeization of the t-
hannel gluons and to the ex
hange of a BFKL Pomeron between the photon impa
tfa
tor and the target.If one is looking for 
orre
tions 
ontaining more than two reggeized t-
hannel gluons one has to go beyondthe leading logarithmi
 approximation. In the elasti
 s
attering pro
ess 
� + q ! 
� + q , both leading4



Figure 2: Multiple energy dis
ontinuities of the 3 ! 3 pro
ess: 
� + q + q ! 
� + q + q:(a) lowest order diagram, (b) two examples of higher order diagrams.order and NLO 
orre
tions retain the stru
ture of a single ladder. A t-
hannel state with four reggeizedgluons appears �rst in NNLO. A 
onvenient way to avoid the 
ompli
ations 
onne
ted with su
h a highorder 
al
ulation is the study of multi-parti
le pro
esses, e.g the 3 ! 3 pro
ess 
� + q + q ! 
� + q + q ,the s
attering of a virtual photon on two independent quarks (Fig. 2) in the triple Regge limit. Thispro
ess depends upon three independent energy variables, and the triple energy dis
ontinuity 
an be easily
omputed in the approximation where, in ea
h order perturbation theory, the maximal number of largeenergy logarithms is kept. The lowest order 
ontribution is des
ribed by the ex
hange of four gluons. Inhigher order, these t-
hannel gluons reggeize and start to intera
t. As dis
ussed in detail in [14, 15℄, theall-order result 
an be 
ast into the two sets of diagrams shown in Fig. 3.The �rst term starts, at the photon impa
t fa
tor, with a BFKL Green's fun
tion, then undergoes thetransition into the four gluons and 
ontinues with the BKP evolution of the four gluon state. In the large-N
limit, the four gluon state turns into two nonintera
ting BFKL systems, i.e. we see the beginning of thefan-diagram stru
ture of the BK equation. The se
ond term 
onsists of a simple BFKL Green's fun
tion,with higher order splittings of the reggeized gluons at the lower end. As a remarkable feature of this results,in both 
ontributions only two reggeized gluons 
ouple to the photon impa
t fa
tor, despite the fa
t thatdiagrams with four gluons | su
h as the one shown in Fig. 2a | are in
luded: the apparent `disappearan
e'of these 
ontributions is a result of the gluon reggeization whi
h manifests itself in generalized bootstraprelations.The same strategy 
an be used to investigate t-
hannel states with higher number of t-
hannel reggeizedgluons. For example, six gluons appear in the 8-point amplitude 
� + q + q + q ! 
� + q + q + q , i.e. thes
attering of a virtual photon on three independent quarks. The analysis of this 
ase has been investigatedin [15℄.Although these results are | initially | derived in the 
ontext of a higher order multi-parti
le pro
esses(e.g. the 3 ! 3 s
attering pro
ess), they nevertheless 
an be used also in a 2 ! 2 pro
ess. The diagrams5



Figure 3: De
omposition of the sum of all diagrams in Fig. 2b into (a) irredu
ible and (b) reggeizing pie
es.

Figure 4: Four gluon 
ontribution to the Reggeon unitarity equation of elasti
 
�
� s
attering.shown in Fig. 3 satisfy Reggeon unitarity equations in all three t-
hannels. Taking the dis
ontinuity a
rossthe four Reggeon state, the partial wave above this 
an be used to 
onstru
t the four Reggeon state in the2 ! 2 pro
ess shown in Fig. 4.In this paper we will apply the same 
onstru
tion, repla
ing the virtual photon by a three quark system.Modeled by the four fermion operator introdu
ed by Io�e in the 
ontext of the QCD sum rules [12, 19℄,the in
oming `baryon' splits into three quarks whi
h then 
ouple to 2, 3, or 4 gluons. In order to take intoa

ount the non-lo
al nature of the in
oming baryoni
 bound state we introdu
e a form fa
tor: we employ ate
hnique used in the QCD sum rules [19℄ and use the Borel transform of the perturbative expression [20, 21℄.The exponential nature of this form fa
tor also guarantees the 
onvergen
e of the momentum integrals insidethe impa
t fa
tor. 6
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Figure 5: Multiple dis
ontinuity of the impa
t fa
tor for elasti
 baryon s
attering.3 The baryon wave fun
tionWe 
onsider the multiple dis
ontinuity of a non-forward baryon impa
t fa
tor in elasti
 high energy s
at-tering. Large momenta are dire
ted along the z-axis, and the in
oming and outgoing baryons move atsmall angles with respe
t to the z-axis, as shown in Fig. 5. Their momenta P , P 0 have a large \+" light-
one 
omponent, P+, and their transverse momenta are denoted by PPP , PPP 0, respe
tively. We introdu
e thelight-like ve
tor q� = (q; 0; 0;�q), q2 = 0 with s = (P + q)2 ' 2P � q , and we assume that s is large:s�M2; PPP 2; PPP 02. The quark momenta pi arep�i = (p0i ; pppi; pzi ); p+i = p0i + pzi ; p�i = p0i � pzi : (1)For the longitudinal quark momenta it will sometimes be 
onvenient to use the notationp+i = �iP+; p�i = �iq�: (2)We shall use p̂ = 
�p� = 
 � p for 
ontra
tion of four-ve
tors and Dira
 
 matri
es. The adopted model ofthe proton state is de�ned by h0j�(0) jN(P; �) i = AN w�(P ); (3)where w�(P ) is the proton spinor with momentum P and heli
ity �,�(x) = " �1�2�3 [(u�1(x))TC
� u�2(x)℄ 
�
5 d�3(x) (4)is the baryoni
 Io�e 
urrent [12℄, C is the 
harge 
onjugation matrix, and �i are 
olor indi
es. The Io�eoperator is not the only possible 
hoi
e of the baryon 
urrent, | in the 
ontext of distribution amplitudes,the possible baryoni
 operators for the proton were 
lassi�ed in Ref. [22℄, and it was shown that the Io�e
urrent gives a rather good des
ription of baryon form-fa
tors [13℄. We therefore 
hose, as a test 
ase, theIo�e operator to model the baryoni
 impa
t fa
tor.11It is worthwhile to stress that our baryon wave fun
tions are di�erent from the distribution amplitudes. In the 
ollinearapproa
h one probes the baryon with a hard external s
ale, Q2, and the baryon stru
ture is represented by series of distributionamplitudes with in
reasing twist, that is with in
reasing power-like suppression at large Q2. The distribution amplitudes dependon the quark longitudinal momenta, and they obey evolution equations in logQ2. In 
ontrast to that, we are interested in thebaryon wave fun
tion with full momentum dependen
e probed at a moderate momentum s
ale, and the evolution applies to therapidity of gluons radiated from the baryon impa
t fa
tor. 7



Figure 6: The proton vertex as given by the Io�e 
urrent.For the 
al
ulation of the baryoni
 impa
t fa
tor we will need the matrix elements (Fig. 6) in the heli
itybasis, � �d�3(p3) 
5
� w�(P ) � � � �u�1(p1) 
� C
0 u��2(p2) � : (5)In the se
ond term we 
an also write: [ �u�1(p1) 
� v�2(p2) ℄ (6)where v (in the Dira
 notation) denotes the v-spinor of the u quark.3.1 The massless quark 
aseUsing the 
al
ulus des
ribed by Brodsky and Lepage [23℄ we 
ompute the Dira
 spinor matrix elements.The details of the 
al
ulations are des
ribed in Appendix A. For simpli
ity, we start from the massless quark
ase, and the 
ase of massive quarks will be analyzed afterwards. Thus we obtain:� �d�(p3) 
5
�w�(P ) � � � �u�1(p1) 
� C
0 u��2(p2) �p�1�2�3 = (7)= 2� Æ��1; �2 � Æ�1; � ��ppp2�2 �PPP� � �ppp1�1 � ppp3�3� � i� �ppp2�2 �PPP� � �ppp1�1 � ppp3�3� � ++ Æ�2; � ��ppp1�1 �PPP� � �ppp2�2 � ppp3�3� � i� �ppp1�1 �PPP� � �ppp2�2 � ppp3�3� �� ;and, � �d��(p3) 
5
� w�(P ) � � � �u�1(p1) 
� C
0 u��2(p2) �p�1�2�3 = (8)= 2M Æ��1; �2 � Æ�1; � ���� � �ppp2�2 � ppp3�3� + Æ�2; � ���� � �ppp1�1 � ppp3�3� � ;where the transverse 
omplex ve
tor ���� is de�ned by���� = (1; i�); � = �1; (9)8



andPPP = ppp1+ppp2+ppp3 is the transverse momentum of the in
oming baryon. The 
ross produ
t of two transverseve
tors ppp1 = (px1 ; py1) and ppp2 = (px2 ; py2) should be understood as a number ppp1 � ppp2 = px1 py2 � py1 px2 : Itturns out that formula (7) may be re-expressed in a more 
ompa
t form, by using the ve
tors ���� with thefollowing identity:(ppp1�����) (ppp2������) = (px1 + i�py1) (px2 � i�py2) = px1 px2 +py1 py2 + i�(py1 px2 � px1 py2 ) = ppp1�ppp2 � i �ppp1�ppp2; (10)whi
h holds for any pair of transverse ve
tors, ppp1 and ppp2. Using this relation one gets:� �d�(p3) 
5
�w�(P ) � � � �u�1(p1) 
� C
0 u��2(p2) �p�1�2�3 == 2 Æ��1; �2 � � Æ�1; � ����� � �ppp2�2 �PPP�������� � �ppp1�1 � ppp3�3�� +Æ�2; � ����� � �ppp1�1 �PPP�������� � �ppp2�2 � ppp3�3��� : (11)In what follows, we shall express all formulae in this 
ompa
t notation.Next we 
ouple a gluon of momentum k = �q + kkk to one of the quark lines with momentum pi (Fig. 7).Fixing the momenta of the outgoing quarks at p1, p2, and p3, the quark line to the left of the gluon vertex
arries momentum pi�k. Using, at the gluon vertex, the eikonal approximation, one arrives at the spinorialfa
tor q̂. With 2 pi � q = �i s � ppp2i ; kkk2; et
. , one obtains, for the upper u quark,�u(p1) q̂ (p̂1 � k̂) = 2p1 � q �u(p1 � k) + : : : ; (12)where : : : stands for terms whi
h are power suppressed in s. An analogous expression holds for the d quark,whereas for the se
ond u quark we use:(p̂2 � k̂) q̂ u�(p2) = 2 p2 � q u�(p2 � k) + : : : : (13)As a result, on the r.h.s. of Eqs. (12) and (13), the transverse momentum of the quark spinor 
oin
ides withthe transverse momentum of the internal quark line next to the baryon vertex. The sum of the outgoingtransverse momenta equals ppp1 + ppp2 + ppp3 = PPP + kkk: (14)Matrix elements 
orresponding to multi-gluon 
ouplings to spinor lines may be simpli�ed by iteratingEq. (12) in the following way:�u(p) q̂ [
 � (p� k1)℄ q̂ : : : q̂ [
 � (p� k1 � : : :� kn)℄ ' (2p � q)n �u(p� k1 � : : :� kn): (15)For 
ompleteness, we remind that, in the 
ase of an outgoing antiquark, an additional minus sign appears:�(p̂� k̂) q̂ v(p) = �2p � q v(p� k) + : : : ; (16)This minus sign is due to the opposite dire
tion of the momentum along the antifermion line. Similarly:[�
 � (p� k1 � : : :� kn) ℄ q̂ : : : q̂[�
 � (p� k1)℄ q̂ v(p) ' (�2p � q)n v(p� k1 � � � � � kn): (17)9
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)Figure 7: Single gluon 
oupling to the baryon ! X transition.This 
hange in sign plays a 
ru
ial rôle in the photon impa
t fa
tor [7℄.We are now ready to des
ribe the amplitude for the pro
ess: baryon + gluon ! 3 quarks, de�ned bythe diagrams shown in Fig. 7. We de�ne the shifted momentum of the upper quarkppp01 = ppp1 � kkk; (18)with ppp01 + ppp2 + ppp3 = PPP ; (19)and use p012 = �1 M2 +PPP 2 � ppp012�1 � ppp22�2 � ppp32�3 ! ; (20)(and analogous expressions for the gluon 
oupling to quark lines 2 and 3). We introdu
e the amplitudes�(�1;�2)�� (f�ig; fppp1; ppp2; ppp3g;PPP ) = �N� 2p�1�2�3M2 +PPP 2 � ppp21�1 � ppp22�2 � ppp23�3 Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� � Æ�1; � ����� � �ppp2�2 �PPP�������� � �ppp1�1 � ppp3�3�� +Æ�2; � ����� ��ppp1�1 �PPP�������� � �ppp2�2 � ppp3�3��� ; (21)�(�1;�2)��� (f�ig; fppp1; ppp2; ppp3g; PPP ) = N� 2M p�1�2�3M2 +PPP 2 � ppp21�1 � ppp22�2 � ppp23�3 Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� � Æ�1; � ���� � �ppp2�2 � ppp3�3� + Æ�2; � ���� � �ppp1�1 � ppp3�3� � : (22)Here the upper three indi
es of � denote the heli
ities of the upper two u quarks with momenta ppp1 andppp2, and the lower d quark with momentum ppp3, respe
tively. The subs
ript refers to the heli
ity � of thein
oming baryon. We leave the normalization 
onstant N� unspe
i�ed here; the normalization will be�xed at the level of baryon wave fun
tion. The amplitudes for the diagrams shown in Figs. 7a{7
 are thensimply obtained from (21), (22) by the repla
ements ppp1 ! ppp01, ppp2;! ppp02 and ppp3 ! ppp03, respe
tively.22To be pre
ise, the fun
tions � give the momentum dependent part of the s
attering amplitudes, up to a global normalizationfa
tor, that is proportional to the strong 
oupling 
onstant g. Obviously, the 
olor fa
tors are not a

ounted for in (21) and(22), | they will be treated expli
itly later on. 10



Note that, for ea
h of the three diagrams, the denominator is just the energy denominator in non-
ovariant perturbation theory, for instan
e one obtains for Fig. 7a,Ebaryon �E 3 quark = 1P+  M2 +PPP 2 � ppp012�1 � ppp22�2 � ppp32�3 ! : (23)The amplitudes should be invariant under Lorentz boosts in the transverse dire
tions, parametrized by afour-velo
ity u� ' (1;uuu; 0), juuuj � 1:pppi ! ppp0i ' pppi + 12 p+i uuu; p+i ! p0+i ' p+i : (24)The numerators are manifestly invariant under these transformations, and the denominators may be alsorewritten in an expli
itly invariant form using the identity�PPP 2 + ppp21�1 + ppp22�2 + ppp23�3 = �1�2�ppp1�1 � ppp2�2�2 + �1�3�ppp3�3 � ppp1�1�2 + �2�3�ppp2�2 � ppp3�3�2 ; (25)or �PPP 2 + ppp21�1 + ppp22�2 + ppp23�3 = (ppp1 � �1PPP )2�1 + (ppp2 � �2PPP )2�2 + (ppp3 � �3PPP )2�3 : (26)The denominators have poles for the invariant mass of the three-quark system equal to the protontransverse mass. Clearly, this is a 
onsequen
e of using a point-like vertex for the proton-quark 
ouplingand negle
ting the bound state e�e
ts. These e�e
ts 
annot be des
ribed within perturbative QCD andshould be modeled. Following [19, 20℄ we propose a model that preserves Lorentz and heli
ity stru
tures ofthe perturbative expressions, where the bound state e�e
ts are absorbed into the Borel transform.The Borel transform of a fun
tion f(s) is de�ned in the standard way:Bs[ f ℄(M2B) = limn!1 sn+1n! �� dds�n f(s); s!1; s=n!M2B; (27)where MB is the Borel parameter. In order to model the baryon s
attering amplitude we shall apply twoindependent Borel transforms w.r.t. the negative virtualities: Q2 = �P 2 of the in
oming and Q02 = �P 02of the outgoing baryon, to the perturbative amplitudes obtained with the point-like vertex. Formulae (21)and (22) were presented for P 2 = M2. The 
orresponding formulae for general virtualities are obtained bysubstitutions M2 ! P 2 in the denominators. In the baryon impa
t fa
tor, the virtuality P 2 appears only inthe energy denominator of the vertex amplitude �(�1;�2)�3� (f�ig; fpppig; PPP ) of the in
oming baryon, and thevirtuality P 02 only in the denominator of the amplitude h�(�1;�2) �3� (f�ig; fpppig; PPP 0)i� of the outgoing state(see Se
. 4 for more details). Therefore the two Borel transforms may be performed independently for ea
h�, that is already at the level of the baryon wave fun
tion. Thus we evaluateBQ2 � 1Q2 + M2X � (M2B) = exp ��M2X=M2B� : (28)This result, applied to the amplitudes �, leads to the substitution1P 2 +PPP 2 �P3i=1 ppp2i�i �! � exp"� 1M2B  3Xi=1 ppp2i�i � PPP 2!# : (29)11



Before we 
omplete the model we shall perform some simpli�
ations. We shall absorb into the wavefun
tions a phase spa
e fa
tor (�1�2�3)�1 that appears in the baryon impa
t fa
tor as a result of on-mass-shell 
onditions of the 
ut quark lines. In this way, the fa
tor p�1�2�3 present in the amplitudes � will beremoved from the wave fun
tions. Obviously, the integration measure will be suitably modi�ed as well. Forsimpli
ity, we introdu
e a normalization 
onstant, N , of the wave fun
tion that will be �xed later. Thus, we
hoose the natural value of the Borel parameter MB = M and obtain a model of the baryon wave fun
tion,	(�1;�2)�� (f�ig; fpppig; PPP ) = � N e� 1M2��PPP 2+ppp12�1 +ppp22�2 +ppp32�3 � Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� � Æ�1; � ����� ��ppp2�2 �PPP�������� � �ppp1�1 � ppp3�3�� ++ Æ�2; � ����� � �ppp1�1 �PPP�������� � �ppp2�2 � ppp3�3��� ; (30)	(�1;�2)��� (f�ig; fpppig; PPP ) = N e� 1M2��PPP 2+ppp12�1 +ppp22�2 +ppp32�3 � Æ��1; �2 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �� M � Æ�1; � ���� � �ppp2�2 � ppp3�3� + Æ�2; � ���� � �ppp1�1 � ppp3�3� � : (31)Clearly, the fun
tions 	 given by Eqs. (30) and (31) are symmetri
 under the inter
hange of the u quarks,labeled by 1 and 2. When 
ombined with the anti-symmetry in the 
olor degrees of freedom it impliesthat the full wave fun
tion is anti-symmetri
 under inter
hange of the u quarks, as it must be. Interestinglyenough, a similar Gaussian form of the wave fun
tion was proposed long ago [24℄ and it was shown to providea good des
ription of the nu
leon form-fa
tor data [25, 26℄. An important di�eren
e of our model, however,is the presen
e of angular momenta of the quarks. The baryon angular momentum stru
ture following fromthe model is most transparent in the 
oordinate representation and will be dis
ussed is Se
tion 6.The above derivation of the baryon wave fun
tion is based on perturbative QCD methods 
ombinedwith the Borel transform te
hnique. Clearly, we are not able to 
ontrol the a

ura
y of this pro
edure forthe proton as it is a genuine non-perturbative obje
t. Therefore the obtained wave fun
tions 
an be only
onsidered as a theoreti
ally inspired model of the proton wave fun
tion. Therefore, in the next part we givethe formulae for the wave fun
tion of a baryon 
onsisting of three quarks with the same mass m, 
omingin two di�erent 
avors. These formulae will permit to 
onsider the �
titious 
ase of a large quark mass,for whi
h the baryon be
omes heavy and small, and the perturbative 
omputation of its wave fun
tion ands
attering is formally justi�ed.3.2 Massive quarksWe now apply the pro
edure des
ribed in the previous se
tion to the 
ase of the massive quarks. We skipthe details of the derivation and present the result for the heli
ity amplitudes � of the transition: baryonto quarks, in whi
h all three quarks were assumed to have the mass m:12



�(�1;�2)�3� (f�ig; fpppig;PPP ) = N� 2p�1�2�3M2 +PPP 2 � ppp21+m2�1 � ppp22+m2�2 � ppp23+m2�3 Æ(2)(ppp1 + ppp2 + ppp3 �PPP ) �
� �Æ�; �1 Æ�; �2 Æ�; �3 m �1 + �2�1�2 �ppp3�3 � ppp1 + ppp2�1 + �2� � ����� ++ � Æ�; �1 Æ�; �2 Æ�;��3 m �1 + �2�1�2 �M � m�3� ++ Æ�;��1 Æ�;��2 Æ�; �3 m �1 + �2�1�2 � ppp1 + ppp2�1 + �2 � PPP� � ���� ++ � Æ�; �1 Æ�;��2 Æ�; �3 ��ppp2�2 �PPP� � ���� �ppp1�1 � ppp3�3� � ����� + m �M�3 � m�1�2�� ++ � Æ�;��1 Æ�; �2 Æ�; �3 ��ppp1�1 �PPP� � ���� �ppp2�2 � ppp3�3� � ����� + m�M�3 � m�1�2�� ++ Æ�; �1 Æ�;��2 Æ�;��3 �M �ppp2�2 � ppp3�3� � ���� + m 1� �3�3 �ppp2�2 � ppp1 + ppp2�1 + �2� � ���� � ++ Æ�;��1 Æ�; �2 Æ�;��3 �M �ppp1�1 � ppp3�3� � ���� + m 1� �3�3 �ppp1�1 � ppp1 + ppp2�1 + �2� � ���� �� : (32)Note, that using relation (10) and taking m ! 0 one easily re
overs formulae (21) and (22). The aboveformulae are promoted to the baryon wave fun
tions 	, by going through the same steps as in the massless
ase, i.e. using the Borel transform and absorbing the � fa
tors into the phase spa
e fa
tor. The �nalexpressions for the wave fun
tions are obtained from Eq. (32) by the repla
ement whi
h 
ombines bothsteps: N� 2p�1�2�3M2 +PPP 2 �P3i=1 ppp2i+m2�i �! N exp "� 1M2  3Xi=1 ppp2i + m2�i � PPP 2!# : (33)4 Baryon impa
t fa
tors4.1 General stru
tureThe amplitudes 	 may be 
ombined with their 
omplex 
onjugates to obtain the baryon impa
t fa
tor.For the 
ase of two gluons 
oupled to lines 3 and 1 we illustrate one example in Fig. 8. It was shown inthe previous se
tion that, in the high energy limit the spinorial part of the multiple dis
ontinuity 
an beexpressed in terms of universal matrix elements given by Eqs. (7) and (8), where the momenta of the quarksare evaluated at the quark-proton vertex. Also the denominator is determined by the virtuality of the quarkto whi
h the �rst gluon 
ouples, and the virtuality 
an expressed in terms of the momenta of the quarks atthe proton vertex. Thus, the impa
t fa
tor 
an be obtained from overlap integrals, i.e. produ
ts of wave13



Figure 8: A 
ontribution to the two gluon ex
hange in baryon-quark s
attering.fun
tions with suitably adjusted momenta. As an example, we spe
ify the overlap fun
tion 
orrespondingFig. 8: F ��0(fkkk;kkk0g;PPP ;PPP 0) = X�1;�2;�3 Z [d2pppi℄ [d�i℄ h	(�1;�2)�3�0 �f�ig; fppp01; ppp2; ppp3g;PPP 0�i�� 	(�1;�2) �3� �f�ig; fppp1; ppp2; ppp03g;PPP � ; (34)with the integration measure[d2pppi℄ = d2ppp1 d2ppp2 d2ppp3 ; [d�i℄ = d�1 d�2 d�3 Æ(�1 + �2 + �3 � 1): (35)In the overlap fun
tions F ��0 , the upper heli
ity labels refer to the in
oming and outgoing baryon states,respe
tively. Analogous overlap fun
tions are de�ned for the other gluon 
ouplings, and for the full impa
tfa
tor we will have to sum over all diagrams. When evaluating the sum over the intermediate heli
ities�1, �2, and �3 and summing over all diagrams, one �nds, for the forward dire
tion PPP = PPP 0 = 0, heli
ity
onservation, i.e. the impa
t fa
tor vanishes for � = ��0.Before in
luding the remaining energy integrals and the 
olor fa
tors we generalize to the 
ase of 3 and 4t-
hannel gluons. As outlined in Se
tion 2, we have to 
onsider multiple energy dis
ontinuities. An exampleis shown in Fig. 9. For one of the dis
ontinuity lines (in the 
ase of Fig. 9, the 
entral line) we �x theintermediate quark momenta and denote them by ppp1; ppp2 ; ppp3. The 
orresponding overlap fun
tion (Fig. 10)takes the formF ��0(fkkki; kkk0jg;PPP ;PPP 0) = X�1;�2;�3 Z [d2pppi℄ [d�i℄ h	(�1;�2)�3�0 �f�ig; fppp1 + kkk01; ppp2 + kkk02; ppp3 + kkk03g;PPP 0�i�� 	(�1;�2)�3� (f�ig; fppp1 � kkk1; ppp2 � kkk2; ppp3 � kkk3g;PPP ) ; (36)where kkki (kkk0j) is the sum of momenta delivered by the gluons to the quark line i to the left (right) of the
entral 
utting line. Obviously, Xi kkki +Xj kkk0j = PPP 0 �PPP : (37)14



Figure 9: A 
ontribution to the four gluon ex
hange in the s
attering of a baryon on two independent quarks.

Figure 10: Example of a diagram de�ning the overlap fun
tion for a multiple dis
ontinuity in Fig. 9.
15
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Figure 11: Baryon impa
t fa
tor.Sin
e, as a 
onsequen
e of the exponential form fa
tor, all transverse momentum integrals are �nite, weare allowed to shift, for ea
h diagram separately, the loop momenta, su
h that to the right of the in
omingbaryon vertex, the momenta be
ome ppp1, ppp2, and ppp3. At the outgoing baryon vertex the momenta are ppp1 + lll1,ppp2 + lll2, and ppp3 + lll3, where llli is the sum of transverse momenta of all gluons 
oupled to the quark line i(Fig. 10): llli = Xj2Li (kkkj + kkk0j ): (38)In the general 
ase the overlap fun
tion 
an be written as:F ��0(flllig;PPP ;PPP 0) = X�1;�2;�3 Z [d2pppi℄ [d�i℄ h	(�1;�2)�3�0 �f�ig; fpppi + lllig;PPP 0�i� 	(�1;�2)�3� (f�ig; fpppig;PPP ) :(39)We now 
omplete the de�nition of the baryoni
 impa
t fa
tor (see Fig. 11). The general impa
t fa
torI(N)AB for the transition A! B , with N gluons being 
oupled in the eikonal approximation, is de�ned asI(N)AB = Z d�12� d�22� : : : d�N�12� q�1 q�2 : : : q�Ns Dis
N�1 S �1 �2 ::: �NAB ; (40)where S �1 �2 ::: �NAB represents the amputated transition amplitude. In parti
ular, for the elasti
 s
attering ofa single quark inside the baryon one obtains:I(N)qq = 1N
 Tr [ taN taN�1 : : : ta1 ℄ I(N)qq ; (41)where I(N)qq = (�ig)N : (42)The baryon impa
t fa
tor for N t-
hannel gluons is then given byB ��0N (flllig;PPP ;PPP 0) = I(N)qq XdiagramsF ��0(flllig;PPP ;PPP 0) CN (diagram); (43)where the 
olor fa
tor reads:CN (diagram) = "�01�02�03 "�1�2�33! [ taltal�1 : : : ta1 ℄�01�1 h tbmtbm�1 : : : tb1i�02�2 [ t
nt
n�1 : : : t
1 ℄�03�3 : (44)In (43) the sum extends over all diagrams, and the numbers l, m and n of gluons, that 
ouple to quarklines 1, 2 and 3, take all possible values between 1 and N with the 
onstraint l + m + n = N . The overlap16



a) b)Figure 12: Diagrams de�ning B2;0.fun
tion F ��0(flllig;PPP ;PPP 0) is evaluated for ea
h diagram separately, and in ea
h 
ase it 
ontains a globaldelta fun
tion of the transverse momenta:F ��0(flll; lll0g;PPP ;PPP 0) = F ��0(lll1; lll2; lll3) Æ(2) Xi llli +PPP �PPP 0! : (45)We impose the normalization 
ondition:F ��0(lll1; lll2; lll3) ��� lll1=lll2=lll3=0 = Æ��0 : (46)Correspondingly, we also extra
t a delta fun
tion from the impa
t fa
tor:B ��0N (flllig;PPP ;PPP 0) = B ��0N (flllig) Æ(2) Xi llli +PPP �PPP 0! : (47)In the following we will restri
t ourselves to the forward dire
tion, PPP = PPP 0 = 0. Be
ause of heli
ity
onservation for the impa
t fa
tor, we always have � = �0, and we will drop the upper heli
ity labels, i.e.F ��0(lll1; lll2; lll3) ! F (lll1; lll2; lll3) et
. We will go through the 
ases of N = 2, N = 3, and N = 4 gluons. Wetherefore de�ne, for �xed N , the fun
tions BN ;0 (flllig) proje
ted on the C-even 
hannel throughB ��N (flllig;PPP ;PPP 0) ���C�evenPPP=PPP 0=0 = BN ;0 (flllig) Æ(2) �X llli� ; (48)and analogously for the C-odd proje
tions ~BN ;0 :In the remaining part of this se
tion the main emphasis will be on the 
olor stru
ture of the impa
tfa
tors, 
ontained in Eq. (44). As the main result, we will �nd a de
omposition into a sum of terms whi
h,as it will be demonstrated in the subsequent se
tion, stays invariant under evolution in rapidity. We stressthat the results whi
h follow are valid for an arbitrary overlap fun
tion F (lll1; lll2; lll3) , i.e. they do not relyon a parti
ular model of the baryon wave fun
tion, provided the baryon has the valen
e degrees of freedomof three quarks.4.2 Two gluonsWe begin with the two-gluon 
oupling whi
h is C-even. All diagrams are proportional the 
olor tensor Æa1a2 ,and it is suggestive to group them into three sets: in the �rst one, the two gluons 
ouple to the quark pair(12), and quark 3 a
ts as a spe
tator (Fig. 12). In the se
ond one the gluons 
ouple to (13) and quark 2a
ts as spe
tator et
. Inside ea
h set, we have four terms. We thus �nd:B2;0(kkk1; kkk2) = Æ a1a2 hDf1;2g2;0 (kkk1; kkk2) + Df1;3g2;0 (kkk1; kkk2) + Df2;3g2;0 (kkk1; kkk2) i ; (49)17



a) b) 
)Figure 13: Examples of diagrams de�ning B3;0 and ~B3;0.with Df1;2g2;0 (kkk1; kkk2) = �g212 [F (kkk; 0; 0) + F (0; kkk; 0) � F (kkk1; kkk2; 0)� F (kkk2; kkk1; 0)℄; (50)Df1;3g2;0 (kkk1; kkk2) = �g212 [F (kkk; 0; 0) + F (0; 0; kkk)� F (kkk1; 0; kkk2)� F (kkk2; 0; kkk1)℄; (51)Df2;3g2;0 (kkk2; kkk3) = �g212 [F (0; kkk; 0) + F (0; 0; kkk)� F (0; kkk1; kkk2)� F (0; kkk2; kkk1)℄; (52)where kkk1, kkk2 denote the gluon momenta and kkk = kkk1 + kkk2. On the r.h.s. of (50)|(52), the momentumarguments of the F fun
tions indi
ate whi
h diagrams they represent: in the �rst (se
ond) term of (50),both gluons 
ouple to quark line 1 (2). In the third term, the �rst gluon 
ouples to line 1, the se
ondto line 2, and so on. The relative signs arise from the 
olor stru
ture. As a striking result, on the r.h.s.of (50)|(52), in ea
h line the four terms have the same stru
ture as the impa
t fa
tor of the photon. Inparti
ular, ea
h set satis�es the Ward identities, i.e. it vanishes as any of its momenta goes to zero. Sin
ethe pair of s
attering quarks fi; jg is in a 
olor anti-triplet state, one might, at �rst sight, interpret thisset as the elasti
 s
attering of an `anti-triplet dipole'. However, it is important to stress that these threedipole-like 
omponents Dfi;jg2;0 , are not independent from ea
h other: the diagrams where two gluons 
oupleto the same quark line, say, line 3 in Fig. 12a, 
ontribute both to the pair (13) and (23). In this sense,one better views these quark pairs as `anti-triplets inside the baryon'. Also, these 
on�gurations where onequark pair intera
ts whereas the third quark remains a spe
tator, should not simply be viewed as `diquarkstates': in transverse 
oordinate spa
e, the spe
tator quark 
an be far away from the quark pair (see thedis
ussion in Se
tion 7). One should also add that the normalization of the dipole-like 
omponents Dfi;jg2;0 ofthe baryon impa
t fa
tor is exa
tly 1=2 of the normalization of the genuine 
olor dipole impa
t fa
tor. Atthe two-gluon level, our results 
oin
ide with results of Ref. [27℄.If, instead of our model for the baryoni
 impa
t fa
tor, we would have used a 
ompletely symmetri
baryon form-fa
tor F (s) (whi
h does not dis
riminate between u and d quarks) we would have arrived at afamiliar result [28℄: B(s)2;0(kkk1; kkk2) = �g22 Æa1a2 hF (s)(kkk; 0; 0) � F (s)(kkk1; kkk2; 0)i : (53)4.3 Three gluonsIn the 
ase of three gluons (Fig. 13) we have to distinguish between even and odd C parity: in the 
olortra
e Eq. (44) we �nd both 
olor tensors, fa1a2a3 and da1a2a3 . The �rst one belongs to even (Pomeron), these
ond to odd (odderon) C parity. 18



The C-odd baryon impa
t fa
tor reads [16, 29, 30℄~B3;0(kkk1; kkk2; kkk3) = d a1a2a3 E3;0(kkk1; kkk2; kkk3); (54)where E3;0(kkk1; kkk2; kkk3) = ig324 X� "2F �(kkk1; kkk2; kkk3)� 3Xi=1 F �(kkki; kkk � kkki; 0) + F �(kkk; 0; 0)# ; (55)and F � denotes the F fun
tions, with its arguments being permuted by the permutation �:F �(lll1; lll2; lll3) = F �lll�(1); lll�(2); lll�(3)� : (56)In E3;0 the t-
hannel three gluon state is Bose symmetri
, that isE3;0 �kkk�(1); kkk�(2); kkk�(3)� = E3;0(kkk1; kkk2; kkk3) (57)for any permutation �, and it obeys the Ward identities:E3;0(kkk1; kkk2; kkk3) = 0 for any kkkj ! 0: (58)On the r.h.s. of Eq. (55), the momentum stru
ture of �rst term indi
ates that the three gluons 
ouple tothree quarks. The se
ond and third term play the role of subtra
tions. This leads to the interpretationthat, in this pie
e of the baryoni
 impa
t fa
tor, in 
ontrast to the stru
ture found previously for 2 gluons,all three quarks parti
ipate in the intera
tion. Sin
e ea
h of the three gluon has negative C parity, thist-
hannel belongs to the C = � (odderon) state.For a 
ompletely symmetri
 model for the baryon form-fa
tor expression (55), again, redu
es to a knownresult [29℄:~B(s)3;0(kkk1; kkk2; kkk3) = i g34 da1a2a3 "2F (s)(kkk1; kkk2; kkk3)� 3Xi=1 F (s)(kkki; kkk � kkki; 0) + F (s)(kkk; 0; 0)# : (59)Next we turn to the terms proportional to fa1a2a3 whi
h turn out to belong to even C. They 
an begrouped in the same `dipole-like' form as in (49):B3;0(kkk1; kkk2; kkk3) = Df1;2g3;0 (kkk1; kkk2; kkk3) + Df1;3g3;0 (kkk1; kkk2; kkk3) + Df2;3g3;0 (kkk1; kkk2; kkk3); (60)where the dipole-like 
omponents have the stru
ture known from the photon 
ase,Dfi;jg3;0 (kkk1; kkk2; kkk3) = 12 g fa1a2a3 hDfi;jg2;0 (kkk1 + kkk2; kkk3)�Dfi;jg2;0 (kkk1 + kkk3; kkk2) + Dfi;jg2;0 (kkk2 + kkk3; kkk1)i : (61)As in the photon 
ase, the argument stru
ture indi
ates the beginning of the reggeization of the gluons: forexample, in the �rst term, the �rst two gluons with momenta kkk1 and kkk2 `
ollapse' into a single reggeizedgluon with momentum kkk1 + kkk2. The t-
hannel system thus 
onsists of two reggeized gluons only and hen
ebelongs to C-even. In the next se
tion we will show that this stru
ture is preserved in the rapidity evolution.In the following it will be 
onvenient to use a shorthand notation by writing, instead of Dfi;jg2;0 (kkk1+kkk2; kkk3),simply Dfi;jg2;0 (12; 3) et
. 19



4.4 Four gluonsIn the 
ase of four gluons (Fig. 14) the 
olor tra
e (44) 
ontains ff , dd, fd, and ÆÆ 
olor tensor stru
tures.Beginning with the fd pie
es, we �nd that they 
an be expressed in terms of the E-fun
tion (55) whi
h wehave obtained for the odderon 
hannel:~B4;0(1; 2; 3; 4) = (62)g2 � fa1a2b dba3a4 E3;0(12; 3; 4) + fa1a3b dba2a4 E3;0(13; 2; 4) + fa1a4b dba2a3 E3;0(14; 2; 3)+ fa2a3b dba1a4 E3;0(23; 1; 4) + fa2a4b dba1a3 E3;0(24; 1; 3) + fa3a4b dba1a2 E3;0(34; 1; 2)� :We then interpret this 
ontribution as the odderon 
on�guration with one reggeizing gluon. It agrees withthe result �rst found by C. Ewerz [16℄.
a) b) 
) d)Figure 14: Examples of diagrams de�ning B4;0 and ~B4;0.Next the ff , dd, and ÆÆ terms. We �nd, in addition to a set of pie
es whi
h have the same stru
ture asin the photon 
ase, a new stru
ture, Q4;0. In detail:B4;0(1; 2; 3; 4) = Df1;2g4;0 (1; 2; 3; 4) + Df1;3g4;0 (1; 2; 3; 4) + Df2;3g4;0 (1; 2; 3; 4) + Q4;0(1; 2; 3; 4): (63)Here the �rst three terms are dipole-like, and they follow the reggeization pattern found for the photons
attering:Dfi;jg4;0 (1; 2; 3; 4) = �g2 n d a1a2a3a4 hDfi;jg2;0 (123; 4) + Dfi;jg2;0 (234; 1) �Dfi;jg2;0 (14; 23) i (64)+ d a1a2a4a3 hDfi;jg2;0 (124; 3) + Dfi;jg2;0 (134; 2) �Dfi;jg2;0 (12; 34) �Dfi;jg2;0 (13; 24) io ;with the 
olor tensor d a1a2a3a4 = Æ a1a2Æ a3a42N
 + d a1a2b d ba3a44 � f a1a2b f ba3a44 : (65)In the next se
tion we will study the rapidity evolution of these terms, and we will 
on�rm that they followthe photon impa
t fa
tor to all orders.The new stru
ture whi
h has no analogue in the 
ase of the photon looks as follows:Q4;0(1; 2; 3; 4) = �ig2 � d a1a2b d ba3a4 � 13 Æ a1a2 Æ a3a4� [E3;0(12; 3; 4) + E3;0(34; 1; 2) ℄ +�ig2 � d a1a3b d ba2a4 � 13 Æ a1a3 Æ a2a4� [E3;0(13; 2; 4) + E3;0(24; 1; 3) ℄ +�ig2 � d a1a4b d ba2a3 � 13Æ a1a4 Æ a2a3� [E3;0(14; 2; 3) + E3;0(23; 1; 4) ℄ : (66)20



The fun
tion E is the same as in the odderon 
ase, and, in parti
ular, all three quarks parti
ipate in theintera
tion. The t-
hannel state whi
h 
ouples to Q4;0 is Bose symmetri
Q4;0(�(1); �(2); �(3); �(4)) = Q4;0(1; 2; 3; 4) (67)for any permutation �, and it is gauge invariant:Q4;0(kkk1; kkk2; kkk3; kkk4) = 0 for any kkkj ! 0: (68)This property may be proven using the identity for 
olor tensors valid for N
 = 3 :d a1a2b d ba3a4 + d a1a3b d ba2a4 + d a1a4b d ba2a3 = 13 ( Æ a1a2 Æ a3a4 + Æ a1a3 Æ a2a4 + Æ a1a4 Æ a2a3 ) : (69)The analysis in the following se
tion will show that this novel pie
e of the baryon impa
t fa
tor 
ouplesa three-gluon t-
hannel 
on�guration in whi
h one of the reggeized gluons is an even-signature d-Reggeon.The overall C parity therefore is positive.5 Integral evolution equationsIn this se
tion we study higher order 
orre
tions in the (generalized) leading logarithmi
 (log s) approxima-tion. The all-order sum of these terms will be represented by integral equations [14, 15℄, written for Mellinmoments of the multiple dis
ontinuities with respe
t to the energy s. In our notation the dependen
e of theamplitudes BN and ~BN (and also DN , EN and QN ) on the Mellin variable ! is impli
it.Let us begin with the C-odd 
on�gurations. In the 
ase of three gluons, the impa
t fa
tor E3;0 is simplyrepla
ed by the Green's fun
tion fun
tion E3, whi
h satis�es the BKP equation for three odd signatureReggeons, with the initial 
ondition given by E3;0: ! �Xi �(kkki)! E3 = E3;0 + X(r;s) K2!2(r; s) 
 E3; (70)where K2!2 is the real emission part of the BFKL kernel, and the odderon state with the full 
olor stru
turereads ~B3(1; 2; 3) = da1a2a3E3(1; 2; 3): (71)The four gluon 
ase has been studied in [16℄, and we simply quote the solution:~B4(1; 2; 3; 4) = (72)g2 h fa1a2b dba3a4 E3(12; 3; 4) + fa1a3b dba2a4 E3(13; 2; 4) + fa1a4b dba2a3 E3(14; 2; 3)+ fa2a3b dba1a4 E3(23; 1; 4) + fa2a4b dba1a3 E3(24; 1; 3) + fa3a4b dba1a2 E3(34; 1; 2) i :where the fun
tion E3 has been de�ned before in (70). Clearly, the solution is saturated by a reggeizing
ontribution: in ea
h term, one of the three f -Reggeons splits into two elementary gluons.21



We now turn to the C-even 
ontributions. The integral equations for the multiple dis
ontinuities read(up to four gluons): ! �Xi �(kkki)! 2B = 2;0B + B2 (73) ! �Xi �(kkki)! B = B3;0 + X B + 2B (74) ! �Xi �(kkki)! B4 = 4;0B + X B4 + X
3B

+ B2 : (75)The integral kernels driving 2 ! 2; 3; 4; ::: Reggeon transitions, that appear in the above equations in
ludethe 
olor stru
ture, and they are de�ned in Ref. [14, 15℄. The gluon Regge traje
tory �(kkk) will be spe
i�edbelow. The 
ase of two gluons is the simplest one: B2 satis�es the BFKL equation. A

ording to thestru
ture of the inhomogeneous term in Eq. (49), B2 
an be written as the sum of three terms Dfi;jg2 ,B2(1; 2) = Æa1a2 hDf1;2g2 (1; 2) + Df1;3g2 (1; 2) + Df2;3g2 (1; 2) i ; (76)with  ! � 2Xi=1 �(kkki)! Dfi;jg2 = Dfi;jg2;0 + K2!2 
 Dfi;jg2 : (77)In the 
ase of three gluons, B3 is given by the sum of three dipole-like 
omponents (
f. (60)):B3(1; 2; 3) = Df1;2g3 (1; 2; 3) + Df1;3g3 (1; 2; 3) + Df2;3g3 (1; 2; 3); (78)where ea
h term 
onsists of three reggeizing pie
es:Dfi;jg3 (1; 2; 3) = 12 g fa1a2a3 hDfi;jg2 (12; 3) �Dfi;jg2 (13; 2) + Dfi;jg2 (23; 1)i : (79)This stru
ture 
oin
ides with the photon 
ase.The 
ase of B4 is more 
omplex. Following our result for the baryon impa
t fa
tor in Eq. (63) wede
ompose B4 in the following way:B4(1; 2; 3; 4) = Df1;2g4 (1; 2; 3; 4) + Df1;3g4 (1; 2; 3; 4) + Df2;3g4 (1; 2; 3; 4) + Q4(1; 2; 3; 4): (80)For the dipole-like pie
es Dfi;jg4 we make use of the `redu
tion pro
edure' developed for the photon 
ase.Namely we de
ompose ea
h Dfi;jg4 into a reggeizing and an irredu
ible 
ontributionsDfi;jg4 (1; 2; 3; 4) = Dfi;jg ;R4 (1; 2; 3; 4) + Dfi;jg ;I4 (1; 2; 3; 4); (81)22



with the reggeizing 
ontribution given byDfi;jg ;R4 (1; 2; 3; 4) = �g2 nd a1a2a3a4 hDfi;jg2 (123; 4) + Dfi;jg2 (234; 1) �Dfi;jg2 (14; 23) i (82)+ d a1a2a4a3 hDfi;jg2 (124; 3) + Dfi;jg2 (134; 2) �Dfi;jg2 (12; 34) �Dfi;jg2 (13; 24) io :The reggeizing 
ontributions are simple BFKL ladders with one reggeizing gluon splitting into three gluonsor both reggeized gluons ea
h splitting into two gluons. The irredu
ible 
ontribution, 
ontaining the 2 ! 4Reggeon transition vertex, is illustrated in Fig. 15.

Figure 15: The 
omponent Dfi;jg ;I4 (1; 2; 3; 4).These results provide further eviden
e that the `dipole-like' pie
es of the baryoni
 impa
t fa
tor reallybehave in exa
tly the same way as the 
olor dipole photon impa
t fa
tor. In parti
ular, if we would applythe large N
 limit to the gluon evolution below the impa
t fa
tor (whi
h, of 
ourse, would be in
onsistentwith our �nite-N
 baryon), the four gluon system below the 2 ! 4 transition vertex would split into twonon-intera
ting BFKL ladders, and we would arrive at the �rst iteration of the BK equation.After subtra
ting, from B4(1; 2; 3; 4) in (80), these dipole-like 
ontributions of the baryon we are leftwith Q4. As Q4 appears at level of four gluons, its evolution equation has simply the BKP form: ! �Xi �(kkki)! Q4 = Q 4;0 + X Q 4 : (83)Making use of the experien
e with D4, we de
ompose the amplitude Q4 into a reggeizing pie
e QR4 and anirredu
ible 
ontribution QI4: Q4(1; 2; 3; 4) = QR4 (1; 2; 3; 4) + QI4(1; 2; 3; 4): (84)Going through steps similar to the ones outlined in [14, 15℄ we �nd that the reggeizing pie
es QR4 preserve
23



Figure 16: The new 3 ! 4 transition vertex W .the stru
ture of Q4;0:QR4 (1; 2; 3; 4) = �ig2 � d a1a2b d ba3a4 � 13 Æ a1a2 Æ a3a4� [E3(12; 3; 4) + E3(34; 1; 2) ℄ +�ig2 � d a1a3b d ba2a4 � 13 Æ a1a3 Æ a2a4� [E3(13; 2; 4) + E3(24; 1; 3) ℄ +�ig2 � d a1a4b d ba2a3 � 13Æ a1a4 Æ a2a3� [E3(14; 2; 3) + E3(23; 1; 4) ℄ : (85)As seen from the 
olor and momentum stru
ture, the three gluon state 
oupling to Q4;0 
onsists of threereggeized gluons, one of whi
h is in a d state and de
ays into two elementary gluons (the pie
es proportionalto 
olor tensors ÆÆ play the role of subtra
tions; in parti
ular, they are needed in order to satisfy the Wardidentities). This state, 
onsisting of two odd signature f -Reggeon and one even signature d-Reggeon, belongsto even C, i.e. to the Pomeron 
hannel.The remaining pie
e, QI4, 
ontains a new transition vertex. We illustrate this 
ontribution in Fig. 16.This vertex des
ribes the transition from the three Reggeon state 
onsisting of two f and one d Reggeon tofour f Reggeons. In more detail, the vertex may be 
ompletely de
omposed into non-
onne
ted pie
es oftwo types: (i) the in
oming d Reggeon together with one of the f Reggeons makes a transition into threef Reggeons whereas the remaining f Reggeon a
ts as a (t-
hannel) spe
tator, and (ii): two f Reggeonsintera
t via the BFKL kernel and the d Reggeon splits into two f Reggeons. The expli
it fun
tional formof the vertex W , a
ting on the three Reggeon state �3 is the following:(W �3)(1; 2; 3; 4) = �g22 � Æ a1a2 Æ a3a4 1 2 3 4(W �3) + Æ a1a3 Æ a2a4 1 3 2 4(W �3) + Æ a1a4 Æ a2a3 1 4 2 3(W �3) � ; (86)where 1 2 3 4(W �3) = " 123G ��4�3 + 213G ��4�3 + 132G ��4�3 � (12)Æ3G ��4�3 + 121Æ2G ��(34)�3 #+ [ 3 $ 4 ℄ + [ 1 $ 3 ; 2 $ 4 ℄ + [ 1 $ 4 ; 2 $ 3 ℄: (87)Let us stress that this vertex a
ts on a 
ompletely symmetri
 fun
tion �3 with three arguments, whi
hinherits its stru
ture from E3. This vertex is 
losely related to a 3 ! 4 vertex found in Ref. [31℄ in ananalysis of jet produ
tion amplitudes at small x. The symbol 123G denotes the integral operator G(1; 2; 3),24



introdu
ed �rst in [14℄ and further investigated in [32℄. It a
ts on a two gluon amplitude, �2, and des
ribesa transition to three gluons. It 
onsists of two pie
es:G(1; 2; 3) = G1(1; 2; 3) + G2(1; 2; 3); (88)where the �rst one 
ontains s-
hannel gluons (`
onne
ted part'), the se
ond one reggeizing pie
es (`dis
on-ne
ted part'): (G1�2)(kkk1; kkk2; kkk3) =Z d2l(2�)3 �(kkk2 + kkk3)2 lll2(lll � kkk1)2 + (kkk1 + kkk2)2 (kkk � lll)2(kkk � lll � kkk3)2 � kkk22 (kkk � lll)2 lll2(lll � kkk1)2 (kkk � lll � kkk3)2 � kkk2��2(lll; kkk � lll); (89)and N
 g2 (G2�2)(kkk1; kkk2; kkk3) =Z d2l(2�)3 lll2 (kkk � lll)2 n [�(kkk2 + kkk3)� �(kkk2) ℄ (2�)3 Æ(2)(lll � kkk1)+ [�(kkk1 + kkk2) � �(kkk2) ℄ (2�)3 Æ(2)(lll � kkk3)o �2(lll; kkk � lll); (90)with the gluon traje
tory fun
tion�(kkki) = �N
g2 Z d2lll(2�)3 kkk2illl2 + (kkki � lll)2 1(kkki � lll)2 ; (91)and kkk = kkk1 +kkk2 +kkk3. In (87) we have used a short-hand notation for the argument stru
ture introdu
ed inRef. [31℄: in the �rst term, 123G ��4�3, �3 is the three gluon amplitude above the vertex W where the rightmostReggeon (momentum kkk4) is a spe
tator, and the G operator a
ts on the two left Reggeons, turning theminto the three gluons with momenta kkk1, kkk2, and kkk3. In the fourth term, (12)Æ3G ��4�3, Reggeon 4 is, again, aspe
tator, and the G operator (with zero momentum in the se
ond outgoing gluon) equals the BFKL kernela
ting on the two leftmost gluons inside �3: after this BFKL intera
tion the leftmost gluon splits into twogluons with momenta kkk1 and kkk2, and the other one 
arries momentum kkk3. Finally, in the last term, 1Æ2G ��(34)�3 ,the rightmost spe
tator now splits into two gluons with momenta kkk3 and kkk4, and the G operator, like in theprevious term, equals the BFKL operator with outgoing momenta kkk1 and kkk2.The full vertex W in (86) is gauge invariant, infra-red �nite and Bose symmetri
. As the vertex isexpressed in terms of the fun
tion G, it is also M�obius invariant [32℄. Finally, there is no violation ofsignature 
onservation: the in
oming three Reggeon state, 
onsisting of one d-Reggeon and two f -Reggeons,has even signature; the same holds for the outgoing four Reggeon state (four f -Reggeons).As a result, the baryoni
 impa
t fa
tor introdu
es a new 
ontribution to the Pomeron 
hannel whi
h hasno analogue in the photon dipole fa
tor.
25



6 Baryon wave fun
tions in the 
oordinate spa
eThe baryon wave fun
tion in transverse position spa
e may be easily obtained by the Fourier transform:~	(�1;�2)�3� (f�ig; frrrig;PPP ) = Z d2p12� d2p22� d2p32� 	(�1;�2)�3� (f�ig; fpppig;PPP ) exp i 3Xi=1 pppi � rrri! : (92)The result takes a rather simple form:~	(�1;�2)�3� (f�ig; frrrig;PPP ) = ~N �1�2�3 exp"�M24 Xi �i (rrri �RRR)2 # exp( iPPP �RRR ) � (93)� ( �M Æ�; �1 Æ�;��2 Æ�; �3 [ (rrr2 �RRR) � ���� ℄ [ (rrr1 � rrr3) � ����� ℄+ �M Æ�;��1 Æ�; �2 Æ�; �3 [ (rrr1 �RRR) � ���� ℄ [ (rrr2 � rrr3) � ����� ℄ +� 2 i Æ�; �1 Æ�;��2 Æ�;��3 [ (rrr2 � rrr3) � ���� ℄ +� 2 i Æ�;��1 Æ�; �2 Æ�;��3 [(rrr1 � rrr3) � ���� ℄ ) ;where RRR denotes the light-
one 
enter of mass position ve
tor,RRR = 3Xi=1 �i rrri: (94)The form of the wave fun
tion given by Eq. (93) whi
h follows from the Io�e 
urrent shows in detail theangular momentum stru
ture of the baryon and the 
orrelations between the angular momenta and quarkheli
ities. In parti
ular, ea
h s
alar produ
t of the type (rrr1�RRR) ����� 
learly indi
ates a rotation of quark 1around the baryon 
enter-of-mass with the orbital angular momentum z-
omponent, Lz, equal to �. Termsof the type (rrr1�rrr3) ����� 
orrespond to a similar rotation within the quark pair (1,3). Thus, in the masslessquark 
ase, all 
omponents of the baryon 
arry a non-zero angular momentum Lz for the Io�e operator. Aninspe
tion of the momentum spa
e expressions (32) shows that for the massive quark 
ase, one may haveIo�e baryon wave fun
tion 
omponents with Lz = 0.Using Eqs. (43) and (39), one may express the baryon impa
t fa
tors B ��0N (flllig;PPP ;PPP 0) via the overlapfun
tion F ��0(flllig;PPP ;PPP 0) de�ned in the 
oordinate spa
e:F ��0(flllig;PPP ;PPP 0) = (95)X�1;�2;�3 Z [d2rrri℄ [d�i℄ h~	(�1;�2)�3�0 �f�ig; frrrig;PPP 0�i� exp � i 3Xi=1 llli � rrri! ~	(�1;�2)�3� (f�ig; frrrig;PPP ) :It follows from Eqs. (45), (46) and (95) that the normalization 
ondition for the wave fun
tion reads:X�1;�2;�3 Z [d2rrri℄ [d�i℄ h~	(�1;�2)�3� �f�ig; frrrig;PPP 0�i� ~	(�1;�2) �3� (f�ig; frrrig;PPP ) = Æ(2) �PPP � PPP 0 � : (96)26



It is instru
tive to evaluate a 
ontribution to the baryon two-gluon impa
t fa
tor [ÆB2;0℄f1;2g 
orrespondingto a dipole-like pie
e, e.g. to Df1;2g2;0 , in the 
oordinate representation. The gluon 
olor labels are a1 and a2and momenta are denoted by kkk1 and kkk2 respe
tively. One obtains:hÆB ��02;0 (flllig;PPP ;PPP 0)if1;2g = 12 (�ig)2 Æa1a22N
 � (97)� X�1;�2;�3 Z [d2rrri℄ [d�i℄ h~	(�1;�2)�3�0 �f�ig; frrrig;PPP 0�i� ~	(�1;�2)�3� (f�ig; frrrig;PPP ) �� he� i (kkk1+kkk2)�rrr1 + e� i (kkk1+kkk2)�rrr2 � e� ikkk1�rrr1� ikkk2�rrr2 � e� ikkk1�rrr2 � ikkk2�rrr1 i :Assuming, for simpli
ity, the forward kinemati
s, kkk1 = kkk = �kkk2, one may rewrite the eikonal fa
tors in thelast line of (97) in a fa
torized form, found in the 
ase of the 
olor dipole s
attering,h 1 � eikkk�(rrr2�rrr1)i h 1 � eikkk�(rrr2�rrr1)i� : (98)This equivalen
e of the stru
tures holds also beyond the forward limit (note that, for nonzero PPP , PPP 0 thewave fun
tions ~	(�1;�2)�3�0 
ontain the phase fa
tors eiPPPRRR). In Eq. (97), the prefa
tor 1/2 in the �rst linere
e
ts the relative weight between the 
olor dipole s
attering amplitude and the s
attering amplitude ofthe dipole-like 
omponents of the baryon.7 The quark{diquark limitIn many phenomenologi
al appli
ations the nu
leon is represented as a bound state of quark and a tightlybound diquark. The transverse size of the diquark is then assumed to be mu
h smaller than the size ofthe baryon, and the diquark state emerges in an anti-triplet 
olor representation. In this approximationthe baryon should resemble an (asymmetri
) 
olor dipole. It is interesting to analyze the properties ofour baryon impa
t fa
tor in this limit. Formally, the quark{diquark limit 
orresponds to the limit wherethe transverse separation of two quark lines shrinks to zero, and a t-
hannel gluon no longer distinguishesbetween the two quark lines. In momentum spa
e, as seen in (95), the overlap fun
tion then only dependsupon the sum of the momenta of all gluons 
oupled to the two 
oin
iding quark lines. To be de�nite, let usassume that quarks 2 and 3 move 
lose to ea
h other. Then all overlap fun
tions F degenerate to a fun
tionF 1(23) with only two arguments: F (kkk1; kkk2; kkk3) �!3!2 F 1(23)(kkk1; kkk2 + kkk3): (99)(note that the limit F 1(23)(kkk1; kkk2) is not ne
essarily symmetri
 in its arguments). Applying this argument tothe three dipole-like terms in (49) we immediately see that the dipole-like 
omponent Df2;3g2;0 vanishes if lines2 and 3 are 
ontra
ted: this is the well-known limit of a dipole with vanishing size (
olor transparen
y). Inmore detail, (52) shows that all terms in this impa
t fa
tor tend to F 1(23)(0; kkk1 + kkk2), and they 
an
el dueto opposite signs. The remaining dipole-like 
omponents Df1;2g2;0 and Df1;3g2;0 be
ome equal:Df1;2g2;0 (kkk1; kkk2); Df1;3g2;0 (kkk1; kkk2) �!3!2 Df1;(23)g2;0 (kkk1; kkk2); (100)27



withDf1;(23)g2;0 (kkk1; kkk2) = �g212 hF 1(23)(0; kkk1 + kkk2) + F 1(23)(kkk1 + kkk2; 0) � F 1(23)(kkk1; kkk2)� F 1(23)(kkk2; kkk1)i : (101)As we already dis
ussed at the end of Se
tion 4.2, in (49) ea
h dipole-like term 
arries a 
olor fa
tor 1=2,
ompared to a genuine 
olor dipole fa
tor seen in a 
olor singlet quark-antiquark system. Sin
e in thequark{diquark limit Df2;3g2;0 vanishes and the 
ontributions from Df1;2g2;0 and Df1;3g2;0 
oin
ide, this part of thebaryoni
 impa
t fa
tor adds up to a standard dipole 
ontribution D2;0(kkk1; kkk2) = 2Df1;(23)g2;0 (kkk1; kkk2).Next, we turn to the three-gluon impa
t fa
tors. In the Pomeron 
hannel, one �nds only reggeizing pie
esof the quark{diquark dipole impa
t fa
tor. In the odderon 
hannel, the fun
tion E(kkk1; kkk2; kkk3) degenerates tothe stru
ture found in the 
� ! �
 transition impa
t fa
tor, whi
h 
ouples only to the Bartels-Lipatov-Va

a(BLV) odderon [33℄ but not to the Janik-Wosiek solution [34℄:E3;0(kkk1; kkk2; kkk3) �!3!2 Ef1;(23)g3;0 (kkk1; kkk2; kkk3); (102)with Ef1;(23)g3;0 (kkk1; kkk2; kkk3) = ig312 hF 1(23)(kkk1; kkk2 + kkk3) � F 1(23)(kkk2 + kkk3; kkk1) ++F 1(23)(kkk2; kkk1 + kkk3) � F 1(23)(kkk1 + kkk3; kkk2) + F 1(23)(kkk3; kkk1 + kkk2) � F 1(23)(kkk1 + kkk2; kkk3) ++F 1(23)(kkk1 + kkk2 + kkk3; 0) � F 1(23)(0; kkk1 + kkk2 + kkk3)i : (103)For the four gluon 
ase, one �nds the standard reggeizing pattern of Df1;(23)g2;0 and of Ef1;(23)g3;0 in thePomeron and the odderon 
hannel, respe
tively. The stru
ture Q4;0 vanishes in the quark{diquark limit.This is the result of a nontrivial 
an
ellation of all three lines of Eq. (66), making use of the identity (69).The pattern given by the impa
t fa
tors in the small diquark limit is preserved by the small x evolution, inparti
ular Q4 vanishes.In summary, we have veri�ed that, in the quark{diquark limit, the baryon redu
es to a dipole-likeobje
t with an asymmetri
 wave fun
tion, as it was expe
ted. Conversely, our analysis shows that, outsidethe diquark limit, the baryon impa
t fa
tor 
ontains a new pie
e (related to Q4;0) whi
h a

ompanies theappearan
e of the third dipole-like term, Df2;3g2;0 . A more detailed study of the question, to what extent thebaryon wave fun
tions a
tually favors a diquark state, should start from the Fourier transform of the overlapfun
tion, (95), whi
h des
ribes the distribution of the quarks in transverse 
oordinate spa
e. Further workalong these lines is in progress.8 Dis
ussionIn this paper we have investigated the high energy behavior of a baryoni
 state. We have studied thestru
ture of a baryoni
 impa
t fa
tor, its 
oupling to multi-gluon ex
hanges and the rapidity evolution ofthe t-
hannel gluon states. We found it 
onvenient to follow very mu
h the same approa
h, whi
h has beendeveloped and used for the high energy behavior of a virtual photon (or a heavy quarkonium state). Forthe s
attering of su
h mesoni
 states, in the leading logarithmi
 approximation and in the large-N
 limit,28



the high energy behavior allows for the interpretation in terms of 
olor dipoles, and one of the motivationsof our investigation was the question to what extent this attra
tive physi
al pi
ture 
an be used also for thes
attering of baryoni
 states.Compared to the quark-antiquark system 
reated by the photon (or a heavy ve
tor meson), the high en-ergy s
attering of baryoni
 systems 
onsisting of three quarks shows similarities, but also striking di�eren
es.First, there is a 
omponent of the baryoni
 impa
t fa
tor in whi
h two of the three quarks intera
t with thetarget whereas the third one a
ts as a spe
tator. Here the two-quark subsystem behaves very mu
h in thesame way as the 
olor singlet dipole of the quark-antiquark system. In parti
ular, the rapidity evolutionis the same as in the 
ase of a virtual photon. This 
on�guration, however, extends beyond the pi
ture ofa small \diquark state": we have shown that, in the diquark limit, we re
over the dipole pi
ture. But thespe
tator quark is not ne
essarily linked (in transverse spa
e) to one of the parti
ipating quarks, and ouranalysis in
ludes also this more general 
on�guration. Se
ond, there is the pie
e of the baryon impa
t fa
torto whi
h the C-odd three gluon state (odderon) 
ouples. Third, a new pie
e of the baryoni
 impa
t fa
torexists whi
h 
ouples to a C-even three gluon t-
hannel state, and there is a new vertex whi
h des
ribes thetransition from this three gluon state to the four gluon (two Pomeron) state. In the quark-antiquark 
ase,there is no analogue of this 
ontribution.This third pie
e may a
tually be quite essential for the restauration of s-
hannel unitarity in baryons
attering and 
an therefore not be negle
ted. Namely, let us 
onsider the s
attering of a hypotheti
al heavybaryon on a large nu
lear target; this represents the analogue of the Balitsky-Kov
hegov problem for the
olor dipole s
attering. Based on our results, the baryon s
attering amplitude B 
an be written symboli
allyas a sum of the following pie
es:B = C�evenz }| {Df1;2g2 + Df1;3g2 + Df2;3g2 + Q4 + C�oddz}|{E3 : (104)Here the �rst three terms, Dfi;jg2 , stand for the dipole-like 
ontributions in whi
h the baryon 
ouples to thesame two-point gluon 
orrelator as the 
olor dipole in the s
attering of a virtual photon. The strength ofthis 
oupling, however, is only 1=2 of that for the photon dipole. The pie
es Q4 and E3 probe three-pointgluon 
orrelators: the C-even and C-odd ones respe
tively. As it was observed in the 
ase of the 
olor dipolein deep inelasti
 s
attering, where only a single BFKL Pomeron 
ould 
ouple to the dipole, we again see noindi
ations of a dire
t two Pomeron 
oupling to the valen
e degrees of freedom of the baryon. If we assumethat the two-gluon distribution probed by the �rst three terms in Eq. (104) is 
onsistent with saturationof the bla
k dis
 limit for 
olor dipoles of the sizes given by the baryon geometry, then the T -matri
es forea
h of the Dfi;jg2 
omponents would tend to 1=2, and the total 
ontribution of the dipole-like pie
es to thebaryon T -matrix would amount to 3=2. This would mean that s-
hannel unitarity 
an be maintained onlyif Q4 and E3 give a 
ombined 
ontribution to the T -matrix smaller than �1=2. Thus, the three-Reggeonstates Q4 and E3 seem to be essential to guarantee the s-
hannel unitarity. Interestingly enough, onemight go even further and arrive at a quantitative predi
tion: if one postulates that the T -matri
es, bothfor the 
olor dipole and the baryon s
attering at very large energies saturate the unitarity limit | one then�nds that in the bla
k dis
 limit: (i) the C-odd three point gluon 
orrelator should vanish; this 
omes from29



the requirement that both proton and anti-proton s
attering should rea
h the bla
k dis
 limit, despite thefa
t that the amplitude E3 has opposite signs in these two 
ases; (ii) the C-even three point 
orrelator isstrongly 
onstrained: when 
oupled to the impa
t fa
tor Q4;0 it must lead to the s
attering amplitude equalto �1=2. In the diquark limit, both Df2;3g2 and Q4 vanish, and unitarization pro
eeds in the same way as inthe dipole 
ase.We interpret these results as a strong indi
ation that, in the 
ontext of baryon s
attering, QCD Reggeon�eld theory has to be extended beyond the theory of BFKL Pomerons and their intera
tions. First, it isdiÆ
ult to justify the large-N
 limit, whi
h, in the s
attering of virtual photon and mesoni
 states, allows toredu
e the evolution of BKP states 
onsisting of 2n-gluon to the propagation of n BFKL Pomerons. Se
ond,the three gluon state (and its BKP evolution) seems to play an important rôle, not only in the odderon
hannel. As we have pointed out, this phenomenon is 
losely 
onne
ted with the existen
e of the d Reggeon,the even signature partner of the (odd signature) reggeized gluon.On a deeper level one may spe
ulate that there exists an intimate 
onne
tion between the number ofvalen
e obje
ts in the impa
t fa
tor in the fundamental SU(N
) representation and the maximal number ofReggeons in the BKP state whi
h 
ouple to the impa
t fa
tor. For the quark-antiquark 
olor dipole onlythe two-Reggeon BFKL Pomeron 
ouples, and for the baryon 
ontaining three quarks we have both two-and three-Reggeon states. We may 
onje
ture that the number of the di�erent BKP states that 
oupleto the baryon in SU(N
) gauge theory is related to the number of Casimir operators of the gauge group.There exist two Casimir operators of the SU(3) gauge group, and QCD Reggeon �eld theory (whose basi
degrees of freedom are the reggeized gluons) exhibits two `fundamental ex
itations' whi
h, in the leading-logapproximation, are represented by the two-gluon BFKL Pomeron and by the three-gluon odderon state. Fora high energy SU(N
) baryon we expe
t that the impa
t fa
tor, 
onsisting of N
 quarks in the fundamentalrepresentation, would exhibit all the 2, 3, . . . , N
 gluon states, and it would hint that the number offundamental glue ex
itations may be related to the N
 � 1 Casimir operators of SU(N
). It seems naturalthat the gauge group invariants should be mapped onto gauge invariant BKP states. The expli
it 
onne
tion,however, has not been yet established.Turning to more pra
ti
al and phenomenologi
al appli
ations, in this paper we have 
onsidered a baryoni
state 
onsisting of three massive quarks being in a proton-like 
on�guration. One 
an view su
h a `heavybaryonium' state as a 
onvenient theoreti
al laboratory, very mu
h in the same spirit as previous work onhigh energy QCD has made use of `heavy onium' states. On the other hand, we feel that our results mightalso allow for immediate phenomenologi
al appli
ations. In parti
ular, we have proposed a relativisti
invariant model of the proton wave fun
tion, in
luding the heli
ity stru
ture and 
orrelations betweenheli
ities and quark angular momenta. Both the model itself and the 
al
ulational te
hnique applied maybe useful in studies of polarized s
attering of the proton and of the proton form-fa
tors. Another potentialpla
e of interest is the intermediate t region of proton{proton elasti
 s
attering where, in the days of ISRexperiments, a very simple three gluon model had a striking phenomenologi
al su

ess [35℄. It should alsobe quite interesting to study other appli
ations of the model in the 
ontext of elasti
 pp and p�p s
atteringand ex
lusive di�ra
tion at RHIC, Tevatron and the LHC. Finally, we would like to view our study as apreparation for a QCD analysis of multiple s
attering in pp 
ollision at the LHC.30
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hNo. 1 P03B 028 28.A AppendixA.1 Spinorial matrix elementsThe 
al
ulations of the baryon wave fun
tions and of the baryon s
attering amplitudes are performed usingthe light-
one formalism summarized in [23℄.Thus we employ the spinor basis de�ned byu"(p)u#(p) ) = 1pp+ (p+ + �̂m + �̂�� � ppp)�( �(")�(#) (105)and v"(p)v#(p) ) = 1pp+ (p+ � �̂m + �̂�� � ppp)�( �(#)�("); (106)where �(") = 1p2 0BBBBB� 1010
1CCCCCA ; �(#) = 1p2 0BBBBB� 010�1

1CCCCCA (107)in the Dira
 representation, and the Dira
 matri
es �̂ and �̂ are related to the 
-matri
es through �̂ = 
0and �̂s = 
0
s; m is the mass of a fermion (or an anti-fermion). In the in�nite momentum frame, whenp+ !1 these spinors tend to the heli
ity eigenstates, u"#(p) ! u�(p), v"#(p) ! v�(p).In the 
al
ulation of the baryon ! quarks transition amplitudes it is suÆ
ient to employ spinor matrixelements given in the following tables. Note that we 
onsider a general 
ase in whi
h the masses of the
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spinors u (or v) and u0 are given by m and m0, respe
tively.Matrix element�u0�0(p) : : : u�(q) � ! �0" ! "# ! # � ! �0" ! ## ! "�u0(p)pp+ 
+ u(q)pq+ 2 0�u0(p)pp+ 
� u(q)pq+ 2p+q+ [(ppp � ����) (qqq � ����) + mm0℄ � 2p+q+ (m ppp � ���� � m0 qqq � ����)�u0(p)pp+ 
s? u(q)pq+ �s� ppp�����p+ + �s� qqq�����q+ ��s� �m0p+ � mq+�
Matrix element�v0�0(p) : : : u�(q) � ! �0" ! "# ! # � ! �0" ! ## ! "�v0(p)pp+ 
+ u(q)pq+ 0 2�v0(p)pp+ 
� u(q)pq+ � 2p+q+ (m ppp � ���� + m0 qqq � ����) 2p+q+ [(ppp � ����) (qqq � ����) � mm0℄�v0(p)pp+ 
s? u(q)pq+ ��s� �m0p+ + mq+� �s� ppp�����p+ + �s� qqq�����q+As an example, we apply the above formulae to evaluate� �d�3(p3) 
� w�(P ) � � [ �u�1(p1) 
� v�2(p2) ℄qP+ p+1 p+2 p+3 = 12 � �d�(p3) 
+ w�(P ) � � [ �u�1(p1) 
� v�2(p2) ℄qP+ p+1 p+2 p+3+ 12 � �d�(p3) 
� w�(P ) � � [ �u�1(p1) 
+ v�2(p2) ℄qP+ p+1 p+2 p+3� � �d�(p3) 
s?w�(P ) � � [ �u�1(p1) 
s? v�2(p2) ℄qP+ p+1 p+2 p+3 (108)for � = �1 = ��2 = �3 = +1. The prefa
tors: 1=2, 1=2 and �1 on the r.h.s. are the only non-vanishingelements of the 
ovariant metri
 tensor g�� in the light-
one 
oordinates. In the 
al
ulations we �nd ituseful to make use of the following identities for transverse 
omplex ve
tors ����: ����+ = ����, ���2� = 0,
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���� � ���� = j����j2 = 2. Thus, assuming that the light quark masses vanish, we obtain:� �d�3(p3) 
� w�(P ) � � [ �v�2(p2) 
� u�1(p1) ℄�qP+ p+1 p+2 p+3 = 2[(ppp2 � ����)(ppp1 � ���+)℄�p+1 p+2 + 2(ppp3 � ����)(PPP � ���+)P+p+3�2(ppp3 � ����)(ppp2 � ����)�p+2 p+3 � 2(PPP � ���+)(ppp1 � ���+)�P+p+1= 2 �ppp2 � ���+p+2 � PPP � ���+P+ � �ppp1 � ����p+1 � ppp3 � ����p+3 � : (109)Using an identity3 �d�3(p3) 
5 = �3 �d�3(p3) , and relation (10), one obtains one of the matrix elementsdes
ribed by (21). The matrix elements for all remaining 
hoi
es of heli
ities 
an be derived in the sameway.A.2 A redu
tion formula for spinors in high energy limitWe shall prove the following identity for massive Dira
 spinors:�u(p) q̂ (p̂ + m + k̂) = 2 p � q �u(p + k) + : : : ; (110)whi
h holds, at the leading a

ura
y in s ' 2p � q, in the high energy limit: s� q2; k2; m2; p � k; q � k et
.,and for k? � k+; k�. This identity is a useful tool for deriving quark s
attering amplitudes by multi-gluon
ouplings in the eikonal approximation. Using the spinor equation of motion, �u(p)(p̂�m) = 0 , we get�u(p) q̂ (p̂ + m + k̂) = �u(p) � 2p � q + q̂ k̂ � ' s �u(p)� 1 + 12s h q̂ ; k̂ i� ; (111)where we used the fa
t that the anti
ommutator f q̂ ; k̂ g = 2k � q � s. Furthermore, using the light-
onevariables, as de�ned in Se
. 3, we haveh q̂ ; k̂ i = �2i �̂�� q� k� ' �2i �̂� r q� k r?; (112)where r is the Lorentz index of the transverse 
oordinates. Thus one obtains�u(p) q̂ (p̂ + m + k̂) ' s �u(p)� 1� i �̂� r k r?p+ � : (113)The matri
es �̂�� are proportional to the generators of the Lorentz transformations of the Dira
 spinors:exp�� i4���!��� u(p) = u(�(!)p); �u(p) exp� i4���!��� = �u(�(!)p); (114)where (�(!)p)� = [�(!)℄��p� ; �(!) = exp�12!��L��� ; (115)and the generators of Lorentz transformations in the ve
tor representation read[L�� ℄�� = g�� g�� � g�� g�� : (116)3For a non-zero quark mass m, the relation holds approximately in the large energy limit, �d�3(p3) 
5 = �3 �d�3 (p3) +O(m=p+3 ). 33



Sin
e the parameter multiplying �̂� r in Eq. (113) is small, �r = kr?=p+ � 1, one may write�u(p) ( 1� i �̂�r �r ) = �u(p) [exp (�i �̂ 0r�r=2) exp ( i �̂ 3r�r=2 ) ℄ + O(�2); (117)where we used the identity 
� = 12(
0 � 
3). This equation 
orresponds to two subsequent in�nitesimalLorentz transformations a
ting on �u(p) with the parameters !r01 = �!0r1 = �r and !3r2 = �!r32 = �r(and all other 
omponents !��1;2 = 0). This is an in�nitesimal boost along the transverse dire
tion ���, and anin�nitesimal rotation in the plane spanned by the transverse ve
tor ��� around the z-axis. Using (114) one seesthat, in leading order in �r, the boost transforms p in the following way : p0 ! p0; ppp! ppp + p0���; p3 ! p3;and the rotation a
ts as: p0 ! p0; ppp! ppp + p3���; p3 ! p3. Thus one obtains�u(p) ( 1� i �̂�r �r ) = �u(p0) + O(�2); (118)with p0 = (p0; ppp + ���p+; p3). This proves Eq. (110). The equation for multiple eikonal 
ouplings, Eq. (15),follows immediately from Eq. (110), after all spinor 
ontra
tions, q̂ (p̂� k̂1 � : : :� k̂i +m) q̂ ' 2p � q q̂; areexe
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