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DESY 07-195Some numerial studies of the evolutionof generalized parton distributionsM. Diehl and W. KuglerDeutshes Elektronen-Synhroton DESY, 22603 Hamburg, GermanyAbstrat: We study the evolution behavior of generalized parton distributions at small longitudinal mo-mentum fration. Partiular attention is paid to the ratio of a generalized parton distribution and its forwardlimit, to the mixing between quarks and gluons, and to the dependene on the squared momentum transfer t.1 IntrodutionA harateristi property of generalized parton distri-butions (GPDs) is their renormalization sale depen-dene, desribed by evolution equations whose deriva-tion led to the very disovery of these funtions morethan a deade ago [1℄. On a pratial level, the saledependene of GPDs is of diret importane for thequantitative desription of exlusive sattering pro-esses. Moreover, understanding general features ofthe evolution behavior should be helpful for developingrealisti models and parameterizations of GPDs. Thequestion how a given input distribution hanges whenevolved to higher sales has been addressed in severalstudies, both numerially and analytially [2{8℄. Fur-ther progress has been ahieved reently [9,10℄ by on-struting expliit solutions of the evolution equationswith methods that generalize the familiar Mellin mo-ment inversion for parton density funtions (PDFs).The aim of the present ontribution is to study anumber of aspets in the evolution of GPDs at a nu-merial level. We will largely onentrate on the valueof the GPDs at x = �, whih at leading order in �s de-termines the imaginary part of sattering amplitudes,and via dispersion relations also gives their real partup to a � independent onstant [11℄. Furthermore wewill fous on the region of small �, where the behaviorof distributions an be onveniently approximated bya power-law behavior. We will pay speial attentionto the mixing between the gluon GPD Hg(x; �; t) andHS(x; �; t) = nfXq �Hq(x; �; t)�Hq(�x; �; t)� ; (1)whose forward limitHS(x; 0; 0) = S(x) = nfXq �q(x) + �q(x)� (2)

is the familiar singlet ombination of quark and an-tiquark PDFs. For omparison we will also onsiderHu�d(x; �; t) = Hu(x; �; t) �Hd(x; �; t) as a represen-tative of the non-singlet setor.After speifying in Set. 2 the GPD model used asinitial ondition for the evolution, we devote most ofSet. 3 to a quantitative study of the old question howthe ratio of GPDs and PDFs behaves when evolvedto higher sales. We shall in addition take a look atthe behavior of the GPDs around x = �. In Sets. 4and 5 we turn to the dependene of GPDs on thesquared momentum transfer t. Both theoretial on-siderations [12℄ and lattie QCD alulations [13℄ in-diate that this dependene is orrelated with the oneon the longitudinal variables x and �. Sine evolutiona�ets the x dependene at given � and t, it also af-fets the t dependene at given x and � in a nontrivialfashion, whih we will quantify in two model senarios.For our alulations we have used the numerial odeof [14℄, whih provides a numerially fast and sta-ble implementation of GPD evolution at leading or-der (LO) in �s. The e�ets of next-to-leading (NLO)and next-to-next-to-leading order (NNLO) terms inthe evolution kernels have been studied [8,15℄ and areknown to be important, espeially at small � in thegluon and singlet setor. This should be kept in mindas a aveat when interpreting our results, but we thinkthat a study at LO is still of some relevane. On onehand, the arguments in [5,7℄ about the pattern of evo-lution to higher sales are based on the LO kernels, sothat this order is adequate to test the numerial valid-ity of these arguments. On the other hand, evolutione�ets on the t dependene are barely known at all,and LO results should at least provide a valid startingpoint for further investigation.In the evolution kernels and the running ouplingwe take nf = 4 for m � � < mb and nf = 5 for1
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� � mb, with the harm and bottom quark massesm = 1:3GeV and mb = 4:5GeV used in the CTEQ6parton analysis [16℄, whih we use for alulating themodel GPDs at the starting sale of evolution. We fur-thermore follow the CTEQ6 analysis in taking the two-loop running oupling with �(4) = 326MeV and �(5) =226MeV, whih orresponds to �(4)s (m) = 0:40 and�(5)s (MZ) = 0:118. We shall not onsider sales be-low � = 1:3GeV, whih we regard as a ompromisebetween starting evolution at a \low sale" and stay-ing in a region where �s is not so large that the LOapproximation beomes more and more questionable.2 Initial onditionsAt the starting sale of evolution, we use the Musatov-Radyushkin ansatz, whih is based on double distribu-tions [7℄. With the onventional de�nitions of Hq andHg, given e.g. in [17℄, we an write this ansatz asHq(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x � � � ��)� hb(�; �)Hq(�; 0; t) ;Hg(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x � � � ��)� hb(�; �)Hg(�; 0; t) (3)withhb(�; �) = �(2b+ 2)22b+1�2(b+ 1) [(1� j�j)2 � �2℄b(1� j�j)2b+1 : (4)In this work we will use di�erent values of the pro�leparameter b, whih for simpliity will always be takenequal for all quark and gluon distributions. The ansatz(3) has been extensively used in the literature so far.One should keep in mind that it does not exhaust thepossibilities of modeling, and other approahes [18{21℄are being pursued in the literature. As we will see,this model does however provide enough exibility toaddress a number of important questions.The model also permits useful analyti approxima-tions at small �. At x = � the integrals in (3) arerestrited to � < 2�, so that for � � 1 one an negletthe � dependene in hb(�; �). Approximating 1+ � by1 in the integration limits, one then has [7℄H i(�; �; t)� 1� Z 2�0 d� hb�0; 1� �� �H i(�; 0; t)= �(2b+ 2)�2(b+ 1) Z 10 dz (1� z)bzbH i(2�z; 0; t) (5)

with i = q; g. We will use this approximation shortly.3 Evolution at �xed tIn this setion we study the evolution of GPDs at a�xed value of t. We take t = 0 and do not display thisvariable for brevity. To quantify the di�erene betweengeneralized and usual parton distributions we use theonventional skewness ratiosRg(�; �) = Hg(�; �;�)Hg(2�; 0;�) ;Rq(�; �) = Hq(�; �;�)Hq(2�; 0;�) ; (6)where we have expliitly displayed the dependene onthe sale � in the distributions.As is well known, the PDFs obtained from �ts todata follow an approximate power-law behavior atsmall x, xg(x) � ax�� ; xq(x) � ax�� (7)at given �, where a and � depend of ourse on theparton speies. With the ansatz (3) for GPDs thisleads to a power-law behaviorHg(�; �) � ��� ; �Hq(�; �) � ��� (8)of the GPDs at small � aording to (5), with the samepowers � as for the orresponding PDFs. The skewnessratios at small � are readily obtained asRgb (�) = �(2b+ 2)�(2b+ 2� �) �(b+ 1� �)�(b+ 1) ;Rqb(�) = �(2b+ 2)�(2b+ 1� �) �(b� �)�(b+ 1) (9)at the sale � where the ansatz (3) is made. Numeri-ally, we �nd that the approximate power-laws (7) and(8) remain valid under evolution to higher sales, withpowers � that depend on � but remain the same forthe forward distributions and the GPDs.Based on the onsiderations using the Shuvaevtransformation, it has been argued in [5℄ that at small� and high enough sale, the skewness ratio should begiven by [4, 22℄RgSh(�) = 22�+3p� �(�+ 52 )�(�+ 4) ;RqSh(�) = 22�+3p� �(�+ 52 )�(�+ 3) (10)for gluons and quarks, respetively. Here � is thepower in (7) at the sale where Rg(�; �) or Rq(�; �)2



is evaluated. More preisely, the ratios in (10) are ob-tained if (7) holds and if all Gegenbauer moments ofthe GPD in question are independent of �. Musatovand Radyushkin [7℄ have shown that at small x and �this ondition is tantamount to the GPD being givenby (3) with b = � + 1, for both gluon and quark dis-tributions. Indeed, one an easily hek thatRiSh(�) = Ri�+1(�): (11)for i = g; q. Using a di�erent line of arguments, theauthors of [10℄ also expet that (10) should beomevalid after LO evolution to high sales, provided thatone takes a partiular joint limit of large � and 1=�.The relations (10) are often used to alulate high-energy sattering amplitudes, so that it is importantto test under whih onditions they may be assumedto hold.We have taken the double distribution model (3)with the CTEQ6L distributions [16℄ at �0 = 1:3GeVas input. After LO evolution to a sale �, we have �t-ted e�etive power laws for g(x) and Hg(�; �), and wehave evaluated the skewness ratio Rg(�; �) from (6).In analogy we have determined power laws and ratiosRS and Ru�d for the ombinations HS and Hu�d in-trodued in Set. 1.Let us �rst disuss the power-law behavior (7) ofthe PDFs, whih is not exat and only valid in aertain range of x. We �tted power-laws to theCTEQ6L parameterization for g(x), S(x) and u(x) �d(x) in the three intervals [10�5; 10�4℄, [10�4; 10�3℄and [10�3; 10�2℄. The resulting powers for the gluonand quark singlet distributions are shown in Fig. 1.We see a lear x dependene of the e�etive power �,espeially at larger x. In Fig. 2 we show the powersobtained in the interval 10�4 < x < 10�3 for a largerrange of �. We note that under evolution the powersfor the gluon and the quark singlet beome similar butremain di�erent up to very high �. This e�et has al-ready been pointed out in [23℄. For the non-singlet dis-tribution u� d the e�etive power � is between �0:41and �0:42 in all three x intervals. It hanges by lessthan 1% under evolution in the � range orrespondingto Figs. 1 and 2.Aording to (5) there is no simple relation betweenthe ranges of x and � in whih the same power-lawbehavior should approximately hold for a PDF andthe orresponding GPD. For simpliity we have �ttedHg(�; �), HS(�; �) and Hu�d(�; �) to power laws (8) inthe same � intervals that we took for the PDFs. Anexample of suh a �t is shown in Fig. 3, where we seethatHg(�; �) indeed follows an approximate power-lawover about one order of magnitude in � but not overthe full range of the plot. We �nd that orrespondingpowers � for PDFs and GPDs di�er by at most 3% in

the respetive x and � ranges of Figs. 1 and 2. Anexeption is the quark singlet distribution in the inter-val 10�3 < x < 10�2, where the power for the GPDis higher than that for the PDF by 5% to 10%. Thisis not surprising, given that already in Fig. 1 we seea more rapid hange of the e�etive power at higherx. For de�niteness we will evaluate Rb(�) and RSh(�)with the powers �tted to the PDFs. We have hekedthat our onlusions do not hange when taking thepowers for the GPDs instead.We note that in a spei� joint limit of large �and 1=�, the solutions of the LO evolution equationsfor PDFs exhibit so-alled double logarithmi sal-ing [24℄. In this ase one obtains � ln(xg)=�` � `�1=2and � ln(xS)=�` � � ln(xg)=�` � �(2`)�1, where ` =ln(x0=x) with some onstant x0. The e�etive pow-ers in (7) are then larger for the gluon than for thequark singlet distribution and depend logarithmiallyon x. Double logarithmi saling for GPDs in the re-gion x � � has been disussed in [10℄.We have evaluated the skewness ratios R(�; �) fromthe evolved GPDs and PDFs for � = 3:2 � 10�5,3:2�10�4 and 3:2�10�3. This is ompared with Rb(�)and RSh(�) alulated with � from our �ts of the PDFsat the orresponding sale � and in the orrespondingx interval [10�5; 10�4℄, [10�4; 10�3℄ and [10�3; 10�2℄.The result for gluons is shown in Figs. 4 and 5, wherein the initial ondition we have taken b = 2. At thestarting sale �0 = 1:3GeV the urves for Rg(�; �)and Rg2(�) oinide as they should, whereas for inreas-ing � they beome di�erent. This means that one ob-tains di�erent results for Hg(�; �;�) when making theansatz (3) at sale � or when making it at sale �0and then evolving the GPD. The di�erene is howeverfairly small.The urves for Rg(�; �) and those for RgSh(�) =Rg�+1(�) in Figs. 4 and 5 are rather lose to eah other.At the starting sale they hardly di�er at all, whih re-ets a partiularity of the model ansatz (3) for gluons.This is beause the ratio Rgb (�) in (9) has a very weakb dependene for small �: varying b from 1 to 1 oneobtains for instane Rgb (0:1) between 1:072 and 1:088.With inreasing � the b dependene grows only slowly,with Rgb (0:3) between 1:231 and 1:307 for b between 1and 1. This is also seen in the left panel of Fig. 5,where Rgb (�) is given for several b values. The solidurve in this �gure is for b = 2 in the initial ondition,but the orresponding results for b = 1 or b = 8 di�erby less than 0:5% in the � range of the �gure.Obviously it is hard to see whether Rg(�; �) tends toRgSh(�) under evolution if the two funtions are alreadylose at the starting sale. To investigate this further3
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we take a variant of (3), namelyHg(x; �; t) = x Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)� hb(�; �)��1Hg(�; 0; t) (12)with hb(�; �) as in (4). This orresponds to a doubledistribution representation for x�1Hg(x; �; t) insteadof Hg(x; �; t), and one readily veri�es that it givesMellin moments of Hg(x; �; t) with a polynomial de-pendene on � as required by Lorentz invariane. Ananalogous representation was �rst disussed for thequark GPD of the pion [25℄ and was reently foundto be relevant for polarized gluon GPDs [26℄. In thease of Hg the ansatz (12) has the peuliar property ofgiving a zero at x = 0 that is not required by symme-try and quikly disappears under evolution. One maytherefore not take this model too seriously, but it servesthe purpose of giving a skewness ratio suÆiently dif-ferent from the one obtained with the more onven-tional ansatz (3). This is shown in the right panel ofFig. 5, where the dot-dashed urve orresponds to ini-tial onditions (12) for Hg and (3) for HS , with b = 2in both ases. We see that the ratio Rg in the twomodels indeed tends to a ommon value after evolu-tion. This value it not exatly equal to RgSh(�) butdi�ers from it by less than 2%. Suh a small di�ereneshould not be regarded as signi�ant: the form (10) ofRgSh(�) is obtained in [4, 22℄ from an integral of g(x)over x from �=2 to 1, assuming the power behavior (7)in the entire interval. This is learly an approximation.We now turn to the skewness ratio for the quark sin-glet distribution, whih is shown in Fig. 6. In ontrastto the gluon ase, di�erent values of b in the ansatz(3) lead to signi�antly di�erent skewness ratios atthe starting sale. Evolution to higher � brings theurves of RS(�; �) for di�erent initial onditions loser4
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4 Ansatz for the t dependeneTo investigate the hange of the t dependene withevolution, we will use the model (3) with b = 2 forquarks and gluons. We thus need an ansatz for theGPDs at zero skewness � but �nite t, whih is desribedin this setion. In all ases we assume an exponential tdependene that is orrelated with x. For the valene-type ombination of GPDs we take the form proposedin Ref. [27℄:Hqv (x; 0; t) = Hq(x; 0; t) +Hq(�x; 0; t)= qv(x) exp�tfq(x)� (13)with x > 0, qv(x) = q(x) � �q(x) andfq(x) = �0v(1� x)3 ln 1x+Bq(1� x)3 +Aqx(1� x)2 : (14)The values �0v = 0:9GeV�2, Bu = Bd = 0:59GeV�2,Au = 1:22GeV�2 and Ad = 2:59GeV�2 together withthe CTEQ6M parameterization for qv(x) at � = 2GeVlead to a good desription of the data for the Diraform fators F1(t) of proton and neutron, whih are ob-tained by ombining R dxHqv (x; 0; t) for u and d quarkswith the appropriate harge fators.For small x we an approximate (14) as fq(x) ��0v ln(1=x) +Bq and thus haveHqv (x; 0; t) � qv(x)x�t�0v etBq� ax�(1+�+t�0v) etBq ; (15)where in the seond step we have assumed a small-xbehavior of the valene quark distributions as in (7).Sine the x dependene of (15) is a power-law, theintegral in (5) an be performed as in Set. 3, andwe an use (9) for the skewness ratio at small � afterreplaing � with �+ t�0v . For b = 2 this givesHqv (�; �; t) � qv(2�) exp�tfq(2�)�� 60(2� �� t�0v)(3� �� t�0v)(4� �� t�0v) : (16)For small t we an write1n� �� t�0 = 1n� � exp�� ln�1� t�0n� ���� 1n� � exp�t �0n� � � (17)and thus approximate (16) byHqv (�; �; t) � Hqv (�; �; 0) exp�t �fq(�)� (18)

with �fq(�) = �0v ln 1� + �Bq ; (19)where �Bq = Bq + �0v � 4Xn=2 1n� � � ln 2� : (20)Turning to the gluon distribution, we takeHg(x; 0; t) = xg(x) exp�tfg(x)� (21)with the funtionfg(x) = �0g(1� x)2 ln 1x +Bg(1� x)2 ; (22)whih has one parameter less than its ounterpart (14).Sine most phenomenologial information about glu-ons presently omes from small-x data, it would bediÆult to onstrain a third parameter. The analog of(16) readsHg(�; �; t) � 2�g(2�) exp�tfg(2�)�� 60(3� �� t�0g)(4� �� t�0g)(5� �� t�0g) (23)for b = 2 and was already used in [28℄. With theapproximation in (17) we �ndHg(�; �; t) � Hg(�; �; 0) exp�t �fg(�)� ; (24)where �fg(�) = �0g ln 1� + �Bg (25)and �Bg = Bg + �0g  5Xn=3 1n� � � ln 2! (26)in analogy to the quark ase. For our numerial studywe take the parameters �0g = 0:164GeV�2 and Bg =1:2GeV�2 in order to math reent H1 data on J=	photoprodution, whose t dependene is well �tted byd�dt / exp��b0 + 4�0g ln WpW0 � t � (27)with values b0 = 4:63GeV�2 and �0g = 0:164GeV�2for W0 = 90GeV [29℄. To onnet (27) with (24)we have used the approximate relation d�=dt /jHg(�; �; t)j2, whih is obtained at tree level whenone keeps only the imaginary part of the satter-ing amplitude. The skewness variable is given by2� = (MJ=	=Wp)2 in terms of the p .m. energy. Forsimpliity, we have omitted the terms with 1=(n � �)in (26) when �xing Bg . For typial values of � theyare quite small.7



For antiquarks we setHq(�x; 0; t) = ��q(x) exp�tf�q(x)� (28)with x > 0. Little is known to date about the t de-pendene in the sea quark setor. Constraints an beprovided by deeply virtual Compton sattering [30,31℄,whih at small x is sensitive to both sea quark andgluon distributions. A omprehensive analysis of thisdata, as has reently been performed in [20℄, is be-yond the sope of this work. We will instead explorethe pattern of evolution for two extreme hoies. Inmodel 1 we set the t slope f�q equal to the one for va-lene quarks:f�u = fu ; f �d = fd ; f�s = fd ; (29)where the hoie f�s = fd has no strong motivation, butdoes not strongly inuene the results we will obtain.In model 2 we set insteadf�q = fg (30)for all quark avors. The initial onditions for evo-lution of the singlet and non-singlet ombinations arethen obtained fromHS(x; 0; t) = Xq=u;d;s�Hqv (x; 0; t)� 2Hq(�x; 0; t)� ;Hu�d(x; 0; t) = Huv (x; 0; t)�Hu(�x; 0; t)�Hdv (x; 0; t) +Hd(�x; 0; t) : (31)For the evolution study in the next setion, we makethe ansatz (3) with the CTEQ6M parton distributionsat �0 = 2GeV, so that we an use the �t of [27℄ forthe t dependene of Hqv (x; 0; t) as spei�ed at the be-ginning of this setion. In (31) we have negleted thetiny harm quark distribution at �0. To explore theregion of lower sales, we will also onsider bakwardevolution.5 Evolution of the t dependeneIn aordane with the analytial onsiderations in theprevious setion, we �nd that at the initial sale thet dependene of Hg(�; �; t) is well desribed by an ex-ponential form at small t and �. Evolving to highersales we still �nd an approximately exponential be-havior in both model 1 and 2, as shown in Fig. 9 for� = 3:2 � 10�4. A slight departure from an exatexponential in the full region 0 � �t � 1GeV2 ishowever visible at �2 = 50GeV2. Evolving to lowersales, we still �nd an approximate exponential t de-pendene at �2 = 3GeV2, but for yet lower sales thesituation hanges. At �2 = 2GeV2 the distribution

Hg(�; �; t) turns negative for �t around 0:5GeV2 inmodel 1 and around 0:3GeV2 in model 2, whereas at�2 = 1:69GeV2 we have Hg(�; �; t) < 0 already fort = 0. This is due to the behavior of the CTEQ6Mgluon density at low sales. Sine the gluon distribu-tion in this region varies onsiderably between di�erentglobal parton �ts, we shall not elaborate on this issuefurther here.The singlet distribution HS(�; �; t) is again well ap-proximated by an exponential in t at the starting sale,and it stays exponential to high auray in model 2up to �2 = 50GeV2 and even down to �2 = 2GeV2.As shown in Fig. 9, this is however not the ase inmodel 1. Here we �nd a lear departure from an expo-nential behavior even when evolving from the startingsale to �2 = 6GeV2, whereas under bakward evolu-tion HS(�; �; t) rapidly turns negative for some valueof t. We notie that in model 1 the x dependene ofHS(x; 0; t) at the starting sale rapidly hanges witht due to the large value of �0v . This indues a orre-sponding hange in the x dependene of HS(x; �; t),whih enters in the evolution equations.To quantify the hange of the t dependene underevolution, we �t the GPDs at given � and � toH i(�; �; t;�) = H i(�; �; 0;�) exp�t �fi(�;�)� (32)for �t between 0 and 0:5GeV2, where i = g; S. Giventhe behavior of the distributions under bakward evo-lution, we restrit these �ts to �2 � 4GeV2. Whereasfor HS in model 2 and for Hg in both models theform (32) gives an exellent desription in the kine-matial region of the �t, the orresponding �t for HSin model 1 an only be approximate, as is seen in Fig. 9.This must be kept in mind when interpreting the sub-sequent results, but despite this aveat the orrespond-ing t slope �fS gives a fair aount of how HS(�; �; t)hanges with �. The results of the �t are shown inFig. 10 for the starting sale and for �2 = 50GeV2. Wesee that over a wide region of small � the dependeneof �fi(�;�) on � remains logarithmi after evolution tohigher sales. For given � we an hene perform a �t�fi(�;�) = �0i(�) ln 1� + �Bi(�) : (33)The results of suh a �t in the range 3:2 � 10�5 <� < 3:2 � 10�4 are shown in Fig. 11, where we plot�fi(�;�) at the midpoint � = 10�4 of the �t range,as well as the e�etive shrinkage parameter �0i(�). Inmodel 2, �fi(�;�) and �0i(�) are equal for the gluon andthe quark singlet to a good preision at the startingsale by onstrution. They hange rather mildly un-der evolution to higher sales, but a visible di�erenebetween gluon and singlet appears, espeially for �0i.8
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sity H(�; 0; 0) approximately obey power-laws with thesame power. Under evolution to higher sales thispower hanges but remains the same for a GPD andthe assoiated PDF. As a onsequene, the skewnessratio R(�; �) is only weakly � dependent, to the extentthat the e�etive power hanges with �. The valuesof R(�; �) for di�erent initial onditions approah eahother with inreasing �, and at high sales they arewell approximated by the Shuvaev formula (10). Thisonvergene is however not very fast: with rather dif-ferent values of R(�; �) at �2 = m2 it only beomesvisible at �2 of a few 10GeV2 for the gluon and quarksinglet distributions, and at yet larger values in thenon-singlet setor. We have not attempted to studyhow the situation would hange for initial onditionsat muh lower sale, onsidering that in this ase theleading-order approximation of the evolution equationswould no longer be suitable for drawing quantitativeonlusions. We on�rm the �nding of [10℄ that evo-lution to higher sales generates a singular derivative(�=�x)H(x; �; t) at x = � for quarks, but not for glu-ons.
To study the hange of t dependene under evo-lution, we have hosen initial onditions at �0 =2GeV suh that H(�; �; t) � exp[t �f(�)℄ and �f(�) =�0 ln(1=�) + �B at small � and t. For distributionswith a small shrinkage parameter �0, we �nd that toa good approximation the t dependene remains expo-nential under evolution to higher (and to some extentalso to lower) sales. In ontrast, a deviation froman exponential t behavior beomes visible after evolu-tion rather quikly for distributions with large �0 atthe starting sale, so that a �t to an exponential formis only approximate in these ases. The �tted slopes�f(�) of the evolved GPDs retain a logarithmi � de-pendene, so that one an also determine a shrinkageparameter �0 at di�erent sales �. We �nd that thevalues of �0 for the gluon and quark singlet distribu-tions remain lose (but not equal) to eah other underevolution in a model where they oinide at �0. Inan alternative model, where �0 for the quark singletis muh larger than for gluons at �0, evolution bringstheir values loser to eah other, but lear di�erenesremain even at �2 = 50GeV2. An analogous behavioris found for �f(�) at given � in both models. We there-fore onlude that one may not take it for granted thatthe t dependene of gluon and sea quark distributionsis the same at moderate sales. In the avor non-singlet setor, we �nd that �f(�) and �0 remain quitestable under evolution of the sale.10
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