
*0
7∣
∣.
03
38
*

Revised Version  DESY 07-190
ar

X
iv

:0
71

1.
03

38
v2

  [
he

p-
th

] 
 3

 F
eb

 2
00

8

Preprint typeset in JHEP style - HYPER VERSION arXiv:0711.0338DESY 07-190
Struture onstants of the OSP(1j2) WZNW model
Yasuaki Hikida and Volker ShomerusDESY Theory Group, DESY Hamburg, Notkestrasse 85, D-22603 Hamburg, GermanyE-mail: yasuaki.hikida�desy.de, volker.shomerus�desy.deAbstrat: We propose exat formulas for the 2- and 3-point funtions of the WZNWmodel on the non-ompat supergroup OSP(1j2). Using the path integral approah thatwas reently developed in arXiv:0706.1030 we show how loal orrelation funtions in theOSP(pj2) WZNW models an be obtained from those of N = p supersymmetri Liouville�eld theory for p = 1; 2. We then employ known results on orrelators in N = 1 Liouvilletheory to determine the struture onstants of the OSP(1j2) theory.Keywords: Conformal and W Symmetry, Conformal Field Models in String Theory.

http://arXiv.org/abs/0711.0338v2
mailto:yasuaki.hikida@desy.de
mailto:volker.schomerus@desy.de
http://jhep.sissa.it/stdsearch


Contents1. Introdution 12. Supergroup models and super Liouville �eld theory 52.1 OSP(1j2) WZNW model from N = 1 Liouville theory 52.2 OSP(2j2) WZNW model from N = 2 super Liouville theory 93. OSP(1j2) WZNW model - the partile limit 123.1 Partile wave funtions on OSP(1j2) 123.2 Wave funtions - another basis 143.3 The minisuperspae 3-point funtion 154. Solution of the OSP(1j2) WZNW model 174.1 The WZNW-Liouville orrespondene revisited 174.2 Computation of 2-point funtions 184.3 Computation of 3-point funtions 185. Conlusion 21A. The Lie superalgebras osp(1j2) and sl(1j2) 23A.1 The Lie superalgebra osp(1j2) 23A.2 The Lie superalgebra osp(2j2) 24B. Integral formulas 24C. N = 1 super Liouville theory 26
1. IntrodutionTwo dimensional onformal �eld theories with target spae supersymmetry have reentlybeen studied intensively beause of the important role they play for various problems rang-ing from disordered eletron systems to string theory. Through the AdS/CFT orrespon-dene, for instane, 4-dimensional theories with superonformal symmetry are related tolosed strings moving in a target spae with psl(2,2j4) symmetry (see e.g. [1℄ for a onreteworld-sheet model). In ondensed matter theory, on the other hand, methods have beendeveloped [2℄ whih permit the omputation of spetral densities, transport properties,et., in systems with random disorder. These involve auxiliary �eld theories with internalsupersymmetry, in partiular models with entral harge  = 0 whose ation is invariantunder global osp(2Nj2N) transformations (see e.g. [3℄ for a review and further referenes).{ 1 {



Conformal �eld theories on superspaes provide a rih lass of non-unitary and non-rational models. Moreover, their orrelators often possess logarithmi singularities, a prop-erty that was explained through harmoni analysis on supergroups in [4℄. Given all thesefeatures, models with target spae supersymmetry may appear rather diÆult to solve!Some progress was made reently for a large lass of basi Lie superalgebras. In fat, thesolution of WZNW models on type I supergroups has been redued to solving an assoiatedbosoni WZNW model. The type I ondition (see below for more details) is satis�ed formany interesting examples, in partiular for the supergroups PSL(NjN), but it exludesalmost all supergroups OSP(Mj2N), with the exeption of OSP(2j2N). Therefore, the so-lution of WZNW models on OSP(Mj2N) remains an important open problem. In this notewe shall develop a new approah to the issue and we shall employ it to solve the WZNWmodel on OSP(1j2).For a moment we shall put the topi of sigma models on superspaes aside and talkabout a somewhat unrelated development in the area of non-rational onformal �eld the-ory (CFT). The two most thoroughly studied examples of CFTs with non-ompat targetspae are Liouville theory and the WZNW model on the 3-dimensional hyperboloid H+3 , aEulidean version of AdS3. The struture onstants of Liouville �eld theory were �rst pro-posed by Dorn, Otto and the Zamolodhikovs [5, 6℄. The original proposal has meanwhilebeen established rigorously through a series of papers by Teshner, partly in ollaborationwith Ponsot [7, 8, 9℄. At the same time, Teshner also extended the suessful solution ofLiouville theory to the H+3 model [10, 11℄. It turned out that the struture onstants ofLiouville theory appear as building bloks for those of the WZNW model. This may notome entirely unexpeted sine it is often stated that Liouville theory provides a modelfor the radial diretion of AdS. In any ase, the lose relation between the two theorieshas furnished rather useful tools, e.g. to prove onsisteny of struture funtions in theH+3 model [12℄. A preise relation between loal orrelation funtions of the H+3 WZNWmodel and Liouville �eld theory on the omplex plane was later put together by Ribaultand Teshner [13℄, based on earlier related works [15, 14℄.In our reent paper [16℄ we revisited and extended the relation between the WZNWmodel on H+3 and Liouville �eld theory. Most importantly, we rederived the relationfound in [13℄ very naturally using a path integral formalism. As one appliation of ournew approah we then generalized the orrespondene to orrelation funtions on arbitrarylosed surfaes. The path integral treatment learly suggests that similar orrespondenesmay exist for other models with an sl2 urrent algebra symmetry. Furthermore, wheneverthis is the ase, the path integral approah provides onrete tools to determine the preiserelation between loal orrelation funtions of two models. We shall often refer to suha orrespondene as a `redution' simply beause it expresses orrelation funtions of amodel on a d-dimensional target spae through orrelators in another loal �eld theorywith target spae of dimension d � 2. Let us stress, however, that the orrespondenegoes far beyond the well known Hamiltonian redution (see [17℄ for a review and referenesto early ontributions). Most importantly, the new orrespondene imposes absolutely norestritions on the momenta of the tahyon vertex operators, in spite of the di�erene{ 2 {



between target spae dimensions. While target spae momenta in the original theory withsl2 symmetry possess d parameters, only d � 2 omponents are needed to parametrizemomenta in the redued model. The orrespondene stores all information about themissing two momentum omponents through a highly intriguing mehanism in the world-sheet loation of additional degenerate �eld insertions.Let us now onnet the orrespondene between the H+3 WZNW model and Liou-ville theory (or its generalizations) to the main goal of this work, namely the solution ofWZNW models on OSP supergroups. All lassial Lie superalgebras possess a so-alleddistinguished Z-gradation in whih fermioni generators possess degree Æ = �1. For typeI superalgebras, all bosoni generators are loated in degree zero. Beause there exist nobosoni elements with degree Æ = +2, anti-ommutators between fermioni elements ofdegree Æ = +1 vanish. This feature of type I superalgebras was exploited in [18℄ and leadsto a solution of the orresponding WZNW models. For type II superalgebras the situationis di�erent. By de�nition, these ontain bosoni generators of degree Æ = �2 with respetto the distinguished Z-gradation. Consequently, anti-ommutators between fermioni ele-ments of degree Æ = +1 need no longer vanish, a property that spoils a suessful solutionalong the lines of [18℄. Our idea here is to remove the problemati generators of degreeÆ = �2 through redution to a loal �eld theory with a lower dimensional target spae.Note that eah generator of degree Æ = +2 determines a unique sl2 subalgebra within theurrent superalgebra of a type II WZNW model. Moreover, the di�erent sl2 urrent alge-bras that are obtained in this way ommute with eah other. Therefore, we an apply the`redution' outlined in the previous paragraph to eah of the sl2 algebras, one after another.In this note we shall restrit ourselves to examples with a single bosoni generator of degreeÆ = +2. In fat, most of our analysis fouses even further to the example of osp(1j2).Let us now outline the main results of this paper and desribe the ontent of eah of thefollowing setions. We shall begin in setion 2 by spelling out the ation of the OSP(1j2)WZNWmodel in a �rst order formulation. The Lie superalgebra osp(1j2) ontains a bosonisl2 subalgebra along with two fermioni generators. After `redution' there remains a singlebosoni diretion and two fermioni ones. The latter are shown to provide the fermionipartner of the bosoni �eld in N = 1 Liouville �eld theory and an additional free fermion.Thereby, we shall relate orrelators in the OSP(1j2) WZNW model to those in a produt ofN = 1 Liouville theory with a free fermion model. We shall then briey demonstrate howour strategy extends to higher dimensional OSP supergroups. In partiular, we relate theOSP(2j2) WZNW model to N = 2 Liouville theory.1 The relation between osp(pj2) urrentalgebras and N = p superonformal symmetries is not new. In fat, it was known for along time how to obtain the latter from the former through Hamiltonian redution [19℄.But let us stress one more that our orrespondene goes muh beyond a mere redutionsine it establishes an equivalene between orrelators of the two theories.1As we remarked before, the supergroup OSP(2j2) �= SL(1j2) is of type I and therefore it an be dealtwith along the lines of [18℄. Our treatment here shall be based on a natural Z-gradation in whih OSP(2j2)possesses a single bosoni generator in degrees Æ = �2 (i.e. not the distinguished Z-gradation). This makesit an example for our new approah and thereby provides an alternative way of solving the model, di�erentfrom the one outlined in [18℄. { 3 {



The rest of the paper is then devoted to the omputation of 2- and 3-point funtions inthe OSP(1j2) WZNWmodel. In setion 3 we shall study the minisuperspae approximationto the struture onstants. This will also allow us to gain some experiene with the osp(1j2)invariant tensors whih appear as building bloks for the partile and �eld theory quantitiesalike. Setion 4 ontains formulas for the struture onstants of the OSP(1j2) WZNWmodel. The 2-point funtions of the theory an be determined easily from the known 2-point funtions of N = 1 Liouville �eld theory. The 3-point funtions of the WZNW modelare related to ertain 4-point funtions in the redued model. Lukily, the relevant 4-pointorrelators in N = 1 Liouville theory have been onstruted in [20℄. When ombined withthe appropriate orrelation funtions in free fermioni �eld theory, the resulting 3-pointfuntion of the WZNW model beomes manifestly osp(1j2) invariant and the strutureonstants an be read o�.Our �nal formula for the 3-point orrelator will involve tahyon vertex operatorsV j(x; �jz) = V j(x; �x; �; ��jz) whih are labeled by a spin j, a omplex oordinate x anda omplex Grassmann variable �. From time to time we shall also display the dependeneon the omplex onjugate variables �x and �� in order to show that the orresponding quan-tities are not hiral. The parameters j; x; � are hosen suh that the operator produtswith superurrents JX of the OSP(1j2) WZNW model take the formJX(z) V j(x; �jw) � rXV j(x; �jw) 1z � w + : : : :Here, the subsript X runs through a basis X = E�; F�;H in osp(1j2) (see appendix A.1for details on osp(1j2)). The symbols rX on the right hand side of the operator produtdenote ertain �rst order di�erential operators ating on x; �x and �; ��, see eqs. (3.15). The3-point funtion of tahyon vertex operators readshV j1(x1; �1jz1)V j2(x2; �2jz2)V j3(x3; �3jz3)i= Cb(j1; j2; j3) + ~Cb(j1; j2; j3)���jX12j�2j12�1jX23j�2j23�1jX31j�2j31�1 1Qi<j jzij j2�ij (1.1)where zij = zi� zj , j12 = j1+ j2� j3 et. and Xij = xi� xj � �i�j. The exponents �ij aredetermined by the onformal dimensions�j = �2b2(j + 1)(j + 12) where b�2 = 2k � 3through �12 = �j1 +�j2 ��j3 et. An expliit formula for the super-projetive 3-pointinvariants �; �� is given in eq. (3.20). The form of the 3-point funtions is determinedby world-sheet onformal symmetry and target spae osp(1j2) invariane up to the twofuntions Cb and ~Cb. Expressions for these are provided in eqs. (4.19) and (4.21) at the veryend of this note. Thereby, the non-rational OSP(1j2) WZNW model is solved. Strutureonstants for a ompat target spae may be obtained by analyti ontinuation of themomenta. Suh models have been argued to desribe the ontinuum limit of ertain super-spin hains, see [21℄ and [22℄ for the ases of osp(1j2) and osp(2j2), respetively. AnOSP(2j2) WZNW model also emerges in the study of 2 + 1 dimensional spin-full eletronswith random gauge potential, see [23, 24, 25℄ and further referenes therein.{ 4 {



2. Supergroup models and super Liouville �eld theoryThe aim of this setion is to derive a relation between the OSP(pj2), p = 1; 2;WZNWmodeland the produt of a supersymmetri Liouville theory with a theory of p free fermions. Letus note that the supergroup OSP(pj2) has superdimension sdim OSP(pj2) = (12 (p2 � p) +3)j2p. The manipulations to be arried out in the urrent setion work for all p. They relatethe WZNW model to a new interating �eld theory on a target spae of superdimension(12 (p2 � p)p + 1)jp and an additional model of p free massless fermions. Two bosonidiretions are integrated out expliitly while half of the fermions turn out to deouple.When p = 1; 2, the �eld ontent of the interating setor is that of N = 1; 2 Liouville �eldtheory and we shall see that the ations also agree. For larger values of p, the orrespondinglower dimensional model has not been studied before so that the relation is of limited use.For this reason, we shall mostly fous on the ase of p = 1 and then spell out the relationfor p = 2. Larger values of p may be treated in the same way.2.1 OSP(1j2) WZNW model from N = 1 Liouville theoryIn this subsetion, we fous on the simplest example and derive the relation betweenorrelators of OSP(1j2) WZNW model and N = 1 super Liouville �eld theory. After afew introdutory omments on the ation of the OSP(1j2) WZNW model, we shall pass toa �rst order formulation involving two additional bosoni auxiliary �elds along with twofermioni ones. Following the ideas of [16℄, we an then integrate out four bosoni �elds.The resulting theory ontains a single bosoni �eld and two pairs of hiral fermions. Theiration is �nally rewritten as a sum of an N = 1 Liouville model and a free fermion theory.For any (super-)group, the ation of WZNW model takes the following standard form,SWZNW(g) = k4� Z� d2zhg�1�g; g�1 ��gi+ k24� ZBhg�1dg; [g�1dg; g�1dg℄i (2.1)where the integrations are over a world-sheet � and a three dimensional manifold with�B = �, respetively. The Lie superalgebra osp(1j2) has superdimension 3j2 with bosoniand fermioni generators denoted by E�;H and by F�, respetively. Their (anti-)ommu-tation relations may be found in appendix A.1 along with expliit formulas for the metriwe use.We shall adopt a spei� parametrization of elements g 2 OSP(1j2) by splitting theminto a produt g = �G� of three 3� 3 supermatries whih are de�ned by� = e2�F+ ; � = e2��F� G =  gB 00 1! ; gB =  1 0 1! e� 00 e��! 1 0� 1! : (2.2)The ation of the WZNW model an now be spelled out expliitly in terms of three bosoni�elds �; ; � and two fermioni ones �; ��. To this end, we deompose the elements g = �G�into its three fators and then split the WZNW ation (2.1) into several terms with the{ 5 {



help of the Polyakov-Wiegmann identity,SWZNW(�G�) = SWZNW (G) + k2� Z d2zh��1 ���; �GG�1i+ k2� Z d2zhG�1 ��G; ����1i+ k2� Z d2zh��1 ���;G����1G�1i :Inserting our parametrization of the fators �; � and G, we obtain the following formulasfor the ation of the OSP(1j2) WZNW modelSWZNW(g) = k2� Z d2z h�����+ e�2�(�� � �����)( �� � � ���) + 2e�� ������i : (2.3)Note that the theory is interating with terms up to forth order in the fermioni �elds.For WZNW models on type I supergroups a speial parametrization ould be found [18℄in whih the interation terms are at most quadrati in the fermioni �elds. It is a basifeature of the type II ase that suh a simpli�ation annot be ahieved.In order to apply the method of [16℄, it is essential to hange the ation in the �rstorder formulation. Introduing new bosoni variables �; �� as well as the fermioni onesp; �p, all four of weight � = 1, the ation may be rewritten asSWZNW(g) = 12� Z d2z h 12�����+ b8pgR�+ �( �� � � ���) + ��(�� � �����)+ p��� + �p��� � 1k� ��e2b� � 12kp�peb� i (2.4)with b = 1=p2k � 3. Before we ontinue studying this theory let us briey onvineourselves that the original model agrees with the �rst order formulation we propose. Theequations of motion for new auxiliary �elds read� = ke�2b�(�� � �����) ; �� = ke�2b�(�� � � ���) ; (2.5)p = �2ke�b���� ; �p = 2ke�b� ��� : (2.6)Inserting these expressions into the ation (2.4) we reprodue the original ation (2.3) apartfrom the additional linear dilaton term that appears in eq. (2.4). The latter arises fromthe Jaobian in the hange of variables. Utilizing the formulasln det(A�B ��) = 148� Z d2z(j� lnAj2 + j� lnBj2 � 4� lnA�� lnB) (2.7)and pgR = �4� �� ln j�j2 for the world-sheet metri ds2 = j�j2dzd�z, we obtain the followingbosoni ontribution� ln det(j�j�2e2��e�2� ��) = � 1� Z d2�����+ 18� Z d2�pgR� ; (2.8)along with a fermioni ontribution of the same formlndet(j�j�2e��e�� ��) = 14� Z d2������ 116� Z d2�pgR� : (2.9)
{ 6 {



This onludes our derivation of the ation (2.4) from the generi formulation (2.1) of theWZNW model on the supergroup OSP(1j2).We are now prepared to begin analyzing orrelation funtions in the OSP(1j2) WZNWmodel. The N -point funtions of tahyon vertex operators are given byh NY�=1V �� ;���j� (�� jz�)i = Z D�D2�D2D2�D2p e�SWZNW(g) NY�=1 V �� ;���j� (�� jz�) : (2.10)The vertex operators V �;��j (�jz) we inserted in the points z = z� depend on the SL(2,C )quantum numbers j; �; �� and an additional hoie of �; �� = �1. They are de�ned byV �;��j (�jz) = e�p��e��p����j�j2j+2e�����e2b(j+1)� : (2.11)The bosoni fator is the same as in [16℄. As one may see by expanding exponentials,the fermioni fators are suÆient to generate 1; �; �� and ���. The basis we have hosen,inluding the fators p� and p�� in front of the fermioni �elds, turn out to be veryonvenient for what we are about to do.Having set up our problem, we proeed along the lines of [16℄ and integrate out ; ��rst and then �; �� using the following hange of variablesNX�=1 ��w � z� = uQN�2i=1 (w � yi)QN�=1(w � z�) =: uB(yi; z� ;w) (2.12)and a similar equation for the onjugate variables. This relation de�nes the parameter uand the world-sheet oordinates yi in terms of �� . After an appropriate rede�nition of thesalar �eld � (see [16℄ for many more details) we obtainh NY�=1V �� ;���j� (�� jz�)i = Æ2( NX�=1 ��) juj j~�N j2 Z D'D2�D2p e�S[';�;p℄ �� NY�=1 e��p���+���p��� ��e2(b(j�+1)+ 14b )'(z�)N�2Yj=1 e� 12b'(yj) ; (2.13)where the new ation is now given byS['; �; p℄ = 12� Z d2z h 12�'��'+ Q'8 pgR'� uB� ��� + �u �B�����+ p��� + �p��� + 1ke2b' + i2k 1juBjp�peb' i : (2.14)The bakground harge for the new salar �eld ' is shifted from Q� = b to Q' = b+ 1=band we also introdued the shorthand~�N = NY�<�(z� � z�) 14b2 N�2Yi<j (yi � yj) 14b2 NY�=1N�2Yi=1 (z� � yi)� 14b2 : (2.15)
{ 7 {



As it stands, the ation still inludes an expliit dependene on the world-sheet oordinatesz� and yi through the funtion B that we introdued in eq. (2.12).Our next step is to absorb the unwanted fators B through a rede�nition of thefermioni �elds. In an intermediate step, we introduep0 := p=puB ; �p0 := �p=p��u �B ; �0 := �puB ; ��0 := ��p��u �B : (2.16)When rewritten through the new fermioni variables, the kineti terms beome�uB� ��� + p��� = ��0 ���0 + p0 ���0 ��p0�0 + 12� lnpuB� �� lnpuB :Here, the non-trivial shift from p0�0 to p0�0+ 12� lnpuB is a result of regularization. At thesame time, the fermioni terms exp(�p��(z�)) get replaed by exp(��0(z�)).2 Note that thefuntion puB has weight � = 1=2 so that after the rede�nition, our new fermioni �elds�0; ��0; p0; �p0 all possess the same weight � = 1=2. We an make the kineti terms look moresymmetri if we adopt the following new basis for fermions,� := ip2(2�0 � p0) ;  := 1p2p0 ; �� := � ip2(2��0 � �p0) ; � := 1p2 �p0 : (2.17)After inserting these expressions, the hiral kineti terms read�uB� ��� + p��� = 12����+ 12 �� +�i �� 12� lnpuB� �� lnpuB : (2.18)The fermioni ontribution exp(��0(z�)) = 1 + ��0(z�) gets replaed by 1 + �( � i�)=p2.Note that both the vertex operators and the term involving  � in the ation mix the twofermions. In addition, the ation still ontains terms with z� -dependent oeÆients. Inorder to proeed, we now bosonize the two fermioni �elds  and �, � i� = p2 exp(�iY ) ; � � i�� = �ip2 exp(�i �Y ) : (2.19)The main advantage of this bosonization is that we an now express the produt  � as aderivative. Thereby, we may now rewrite the z�-dependent terms in the ation as follows,i (w)�(w) �� lnpuB = �i�Y (w) �� lnpuB (2.20)� iY (w)� �� lnpuB = ��iY (w)[ NX�=1 Æ2(w � z�)� N�2Xi=1 Æ2(w � yi)℄ :The symbol � means equality up to total derivatives. In the new form, we reognize thatthe orresponding terms only lead to ontributions whih are loalized at the points z�2We use a regularization sheme limw!z(w�z) = � ln �(z) for the world-sheet metri ds2 = j�(z)j2dzd�z.For more details, see [16℄. { 8 {



and yi of the world-sheet, i.e. they modify the vertex operators. Our �nal result for theorrelation funtion of tahyon vertex operators in the OSP(1j2) WZNW model now readsh NY�=1V �� ;���j� (�� jz�)i = Æ2( NX�=1 ��)j�(1)N j2 Z D'D2 D2� e�S['; ;�℄� (2.21)� NY�=1(e i2Y + �e� i2Y )(e� i2 �Y � ��e i2 �Y )e2(b(j�+1)+ 14b )'(z�)N�2Yj=1 e� i2 (Y� �Y )e� 12b'(yj) :The fator �(1)N ombines the funtion ~�N we had de�ned previously in eq. (2.15) with thenumerial ontributions from the seond term in eq. (2.18),�(1)N = u NY�<�(z� � z�) 14b2� 14 N�2Yi<j (yi � yj) 14b2� 14 NY�=1N�2Yi=1 (z� � yi)� 14b2+ 14 : (2.22)After all our manipulations, the funtional S = S('; ; �) is a sum of the ation for N = 1super Liouville theory ('; ; � ) and the ation for a non-interating real massless fermion(�; ��), i.e. S['; ; �℄ = 14� Z d2z h �'��'+ Q'4 pgR'+ 2ke2b'++  �� + � � � + ����+ ��� ��� 2k � eb' i : (2.23)The vertex operators we insert at z� and yi have been written in terms of hiral omponentsY and �Y of a bosoni �eld. Through the relations (2.19), we may think of Y and �Y asloal funtional on the spae of fermioni �elds  ; � and � ; ��. Later, we shall re-expressthe relevant exponentials through spin-�elds in the fermioni setor.2.2 OSP(2j2) WZNW model from N = 2 super Liouville theoryIn the previous subsetion, we have shown that the orrelators of OSP(1j2) model an beexpressed in terms of N = 1 super Liouville �eld theory with additional fermions. As wehave remarked in the introdution, the ideas work muh more generally. As an example ofsuh generalizations, we shall briey analyze the OSP(2j2) model. Even though OSP(2j2)�= SL(1j2) is of type I, we shall treat it in the same way as in the OSP(1j2) model inthe previous setion. This amounts to hoosing an unusual Z-grading in whih the fourfermions are assigned grades Æ = �1 suh that there exists one bosoni generator of gradeÆ = �2 eah. For the readers' onveniene we have listed the anti-ommutation relationsof the Lie superalgebra osp(2j2) in appendix A.2.In order to spell out the ation of the WZNW model we need to adopt spei� oor-dinates on supergroup OSP(2j2). Here we shall use the parametrization g = �G� with� = e�1F++�2 �F+ ; � = e��1F�+��2 �F� ; G =  gB 00 e2i'1! ; (2.24)
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where the bosoni part isgB = ei'1  1 0 1! e�2 00 e��2! 1 0� 1! : (2.25)All our notations and onventions regarding osp(2j2) may be found in appendix A.2. Inthis parametrization, the WZNW ation beomesSWZNW(g) = k2� Z d2z h �'1�'1 + ��2 ���2 + e�i'1��2 ���1���2 + ei'1��2 ���2���1 i (2.26)+ k2� Z d2z e�2�2 ��� + 12(��1���2 + ��2���1)���� � 12(�1 ���2 + �2 ���1)� :Introduing new variables as before, the ation is rewritten asSWZNW(g) = 12� Z d2z[�'1 ��'1 + ��2 ���2 (2.27)+ � ��� � 12(�1 ���2 + �2 ���1)�+ �� ��� + 12(��1���2 + ��2���1)�� 1k� ��e2b�+ p1 ���1 + �p1���1 + p2 ���2 + �p2���2 � 1kp1�p2eb(i'1+�2) � 1kp2�p1eb(�i'1+�2)℄with the parameter b being related to the level k of the WZNW model through b =1=pk � 1. Note that this relation di�ers from the one we found in the ase of osp(1j2).In the �rst order formulation the N -point funtion of tahyon vertex operators beomesh NY�=1 Vj� (�� jz�)i = Z D'1D�2D2�D2 2Ya=1D2�aD2pa e�SWZNW[g℄ NY�=1Vj� (�� jz�) : (2.28)In our disussion of the OSP(2j2) WZNW model we shall restrit ourselves to orrelationfuntions of purely bosoni vertex operators,Vj� (�� jz�) = j�� j2j�+2e������ �e2b(j�+1)� : (2.29)It is not too diÆult to work with the full vertex operators, inluding exponentials of thefermioni �elds. Sine we have seen above how suh terms are taken into aount, there isno need to repeat all this for osp(2j2) now. Following [16℄ we integrate out �;  to obtainh NY�=1 V�(z�)i = Æ2( NX�=1��)j~�N j4 2Ya=1 Z D'aD2�aD2pa�� e�S['a;�a;pa℄ NY�=1 e2(b(j�+1)+ 12b )'2(z�)N�2Yj=1 e� 1b'2(yj) ; (2.30)
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where the ation isS['a; �a; pa℄ = 12� Z d2z[�'1 ��'1 + �'2 ��'2 + Q24 pgR'2 (2.31)� 12uB(�1 ���2 + �2 ���1)� 12 �u �B(��1���2 + ��2���1) + 1ke2b'2+ p1 ���1 + �p1���1 + p2 ���2 + �p2���2 + ik 1juBj(p1�p2eb(i'1+'2) + p2�p1eb(�i'1+'2))℄with Q2 = 1=b. The fator ~�N has been introdued previously in eq. (2.15). Now we followthe same steps as in the ase of osp(1j2), i.e. we resale and rotate all the fermioni �elds,�1 := i(�1puB � p2=puB) ; �2 := i(�2puB � p1=puB) ;  a := pa=puB : (2.32)One more, it is not diÆult to rewrite the ation in terms of the new fermioni �elds interms of �a;  a. For the kineti terms this is done with the help of the identity,� 12uB(�1 ���2 + �2 ���1) +Xa pa ���a (2.33)= �1 ���2 +  1 �� 2 +Xa �i a�a � 12� lnpuB� �� lnpuB :In order to spell out the vertex operators, we bosonize all four fermioni �elds, a � i�a = 2 exp(�iYa) : (2.34)Putting all this together, we arrive at the following formula for orrelation funtions in theWZNW model,h NY�=1 Vj� (�� jz�)i = Æ2( NX�=1��) j�(2)N j2 2Ya=1 Z D'aD2 aD2�ae�S[�a; a;�a℄� (2.35)� NY�=1 e i2Pa(Ya+�Ya)+2(b(j�+1)+ 12b )'2(z�)N�2Yj=1 e� i2Pa(Ya+�Ya)� 1b'2(yj) ;where the ation S is built from an N = 2 supersymmetri Liouville theory for the �elds('a;  a; � a) and the theory of two free fermions (�a; ��a),S[�;  ; �℄ = 12� Z d2z[�'1 ��'1 + �'2 ��'2 + Q24 pgR'2 + 1ke2b'2 (2.36)+  1 �� 2 + � 1� � 2 + �1 ���2 + ��1� ��2 + ik ( 1 � 2eb(i'1+'2) +  2 � 1eb(�i'1+'2))℄ :The fator �(2)N is very similar to the orresponding funtion in the OSP(1j2) model,�(2)N = u NY�<�(z� � z�) 12b2� 12 N�2Yi<j (yi � yj) 12b2� 12 NY�=1N�2Yi=1 (z� � yi)� 12b2+ 12 : (2.37)
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In onlusion, we have shown that orrelators of tahyon vertex operators in the OSP(2j2)WZNW model may be obtained from orrelation funtions in N = 2 Liouville �eld theory.Sine we do not know muh about the latter when N � 3, we shall not exploit this relationany further. Instead, we shall now fous on the OSP(1j2) WZNW model.3. OSP(1j2) WZNW model - the partile limitOur main aim below is to exploit our relation (2.21) between the OSP(1j2) WZNW modeland N = 1 Liouville theory along with known results for the latter in order to solve theformer. Before going into the full and umbersome onformal �eld theory omputations,however, it is instrutive to examine the partile limit. We shall determine the minisuper-spae wave funtions in the �rst subsetion and then alulate partile analogues of the2-point and 3-point funtions.3.1 Partile wave funtions on OSP(1j2)Let us �rst onstrut the wave funtions for a partile that moves freely on the supergroupOSP(1j2). The mathematial problem that needs to be solved is to determine all eigenfun-tions of Laplae operator. In our parametrization (2.24), the generators of in�nitesimalright translations on OSP(1j2) are easily worked out,RE+ = � ; RH = �12�� � � � 12��� ;RE� = e2��� � 2� � �� � ��� + e��(��� � ����) ; (3.1)RF+ = 12(�� + ��) ; RF� = 12e�(��� � ����)� 12(�� + ��)� 12��� :We may now insert these expressions into the general formula for the quadrati Casimirelement and thereby derive the following Laplaian on OSP(1j2)� = HH + 12(E+E� +E�E+)� (F+F� � F�F+)= 14�2� � 14�� + e2���� � 12e�(�� � ��)(��� � ����) : (3.2)The onstrution of eigenfuntion proeeds in several steps. To begin with, we shall lookfor eigenfuntions �j of the following speial form�j(; �; �; ��; �) = e����� �j���(�; ��; �) : (3.3)Here, j parametrizes the eigenvalue � = (j + 1)(j + 12) of the Laplaian. With our ansatz,we have expliitly diagonalized the operators RE+ and LE� = �� . The funtions �j giverise to eigenfuntions of the Laplaian, provided that the fator �j��� is an eigenfuntion ofthe operator�� = 14�2� � 14�� � e2����� 12e� � where �� = (�� � ��)(��� + ����) : (3.4)
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Here and in the following we shall assume that j�j2 � ��� > 0. Our seond step now isto diagonalize the operator �� on the 4-dimensional Grassmann algebra that is generatedfrom � and ��. We an easily �nd two eigenfuntions S�� ; T�� for eah of the eigenvalues�� = �j�j,S+� (�; ��) = 1p2(1� j�j���) ; S�� (�; ��) = 1p2(1 + j�j���) ; (3.5)T+� (�; ��) = 1p2(p�� �p����) ; T�� (�; ��) = 1p2(p�� +p����) : (3.6)Having solved the eigenvalue problem for the operator ��, we an now split o� the depen-dene of the eigenfuntions �j��� on fermioni oordinates through the following ansatz�j;���� (�; ��; �) = S�� (�; ��)U�p (�) ;  j;���� (�; ��; �) = T�� (�; ��)U�p (�) : (3.7)Here we have introdued the letter  instead of � for odd eigenfuntions. Furthermore, thevariable � on the right hand side is de�ned by � = 2j�je�. A short omputation shows thatthe funtions U�p possess no expliit � dependene any more. There remains a dependeneon the parameter j = �3=4 + ip=2 whih we display expliitly through the subsript p. Inany ase, the funtions �j;���� and  j;���� give rise to eigenfuntions of our Laplaian providedthat U�p (�) satisfy the seond order di�erential equation(�2� � 1� 1� + 1=4 + p2�2 )U�p (�) = 0 : (3.8)Solutions to these equations areU�p (�) = Cip�(12 � ip) (�K 12+ip(�)� �K 12�ip(�)) : (3.9)In order to single out some unique solution we demanded regularity at j�j ! 1. Thenormalization onstant C remains undetermined for now.In summary we have obtained a basis of eigenfuntions of the Laplaian � in OSP(1j2).Grassmann even funtions with eigenvalue � = �p = (j + 1)(j + 12) = �14(14 + p2) take theform �j;���� (; �; �; ��; �) = e����� S�� (�; ��)U�p (2j�je�) (3.10)where �; �� run through the omplex plane. The funtions U�p and S�� have been de�nedin eqs. (3.9) and (3.5), respetively. A similar formula with T�� instead of S�� holds forGrassmann odd eigenfuntions 	j;���� .Let us onlude this subsetion by omputing the analogue of the minisuperspae2-point funtion for Grassmann even funtions in the OSP(1j2) model.3 This requires32-point funtions for Grassmann odd funtions 	j;��;�� an be omputed in the same way. We will notdisuss those here, neither in the partile model nor in the �eld theory.{ 13 {



integrating the produt of two funtions (3.10) over the supergroup OSP(1j2). Using theHaar measure [dg℄ = e��d�d�dd��d� on OSP(1j2) we obtainh�j1;�1�1;��1 �j2;�2�2;��2 i0 := Z [dg℄ �j1;�1�1 ;��1(; �; �; ��; �)�j2;�2�2 ��2(; �; �; ��; �)= �j�2j�2Æ�1;�2Æ2(�1 + �2)Z dxx2 U�p1(2j�1jx)U�p2(2j�2jx) (3.11)= �2�j�2j2�2Æ�1;�2Æ2(�1 + �2) (Æ(p1 + p2) +R�2(p2)Æ(p1 � p2)) :To get from the seond to the third line we have utilized a formula for integrals of Besselfuntions, see appendix B. The reetion amplitude R in the last line is given byR�(p) = �C2ip�(12 + ip)�(12 � ip) : (3.12)We shall later ompare this answer with the outome of a full edged onformal �eld theoryomputation of the 2-point funtion. We ould now start to analyze 3-point funtions butbefore we do so, we would like to talk about another basis in the spae of funtions onOSP(1j2).3.2 Wave funtions - another basisIn the last subsetion, we onstruted a basis for the spae of funtions on OSP(1j2). Thisbasis is very onvenient for desribing the duality between the OSP(1j2) WZNW modeland N = 1 Liouville �eld theory. When it omes to writing down expliit formulas fororrelation funtions, on the other hand, there exists another, preferable hoie. Reallthat all orrelators ontain an osp(1j2) invariant tensor that is determined by symmetriesalone, along with the struture onstants whih ontain all dynamial information. Whilethe latter are the same in every basis, the former depend very muh on our hoies. Weshall now present a new basis in whih the osp(1j2) invariant tensors take a partiularlysimple form.The transformation from the old basis (3.10) to the new an be thought of as aFourier/Bessel transform in �; �� and their fermioni ounterparts. Let us perform thefermioni transformation �rst. This amounts to de�ning new funtions �j� by�j�(�j; �; �) := 1j�jX�=� �S��(�)�j;�� (; �; �) + T ��(�)	j;�� (; �; �)� : (3.13)Here and throughout the rest of this setion we shall suppress spelling out the depen-dene on the bared quantities suh as ��; ��; �; ��. Following [13℄, we also transform from thevariables �; �� to new variables x; �x,�j(x; �j; �; �) := 14� j�j�2j�2 Z d2��j�(�j; �; �) e���x��x : (3.14)
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We shall often refer to �j(x; �j; �; �) as eigenfuntions in the (x; �)-basis. For given labelj, the generators (3.1) of right translations may be expressed through their ation on theauxiliary variables x; �x; �; �� as follows,rE+ = �x ; rH = �x�x � 12��� + j + 12 ;rE� = �x2�x � x��� + x(2j + 1) ; (3.15)rF+ = 12(�� + ��x) ; rF� = �12x(�� + ��x) + �(j + 12) :Given these expressions it is rather straightforward to verify that osp(1j2)-invariane �xesthe minisuperspae 2-point funtion to be of the formh�j1(x1; �1)�j2(x2; �2)i = �4 �Æ2(X12)Æ(j1 + j2 + 3=2) + B(j2)jX12j�4j2�2 Æ(j1 � j2)� ; (3.16)up to an overall normalization whih we have �xed suh that the oeÆient of Æ funtionsin the �rst term is �=4. In the �rst term we have also used the shorthandÆ2(X12) = Æ2(x12)(�1 � �2)(��1 � ��2) : (3.17)Furthermore, we employed the notation Xij = xi � xj � �i�j that will appear frequentlythroughout the rest of this note. The non-trivial struture onstant B(j) is not determinedby symmetry. It may be alulated by expliitly performing the integral over the groupmanifold. Here, we shall follow a slightly di�erent route. Our aim is to relate the twoformulas (3.11) and (3.16) for the 2-point funtions. We an then read o� B(j) from ourformula (3.12) for the reetion amplitude R�(p). With the help of some integral formulasthat are spelled out in appendix B, one may show thath�j1;�1�1 �j2;�2�2 i0 = ��j�2j2�2Æ�1;�2Æ2(�1 + �2)[Æ(j1 + j2 + 32)� �2B(j2)�(2j2 + 1)Æ(j1 � j2)℄where (x) = �(x)=�(1 � x). Indeed, this outome is fully onsistent with our previousformula (3.11). The omparison also allows us to determine the struture onstant B ,B(j) = � �R�(p)�(2j + 1) = � 1� C2ip ; (3.18)where j and p are related by j = �3=4+ ip=2, as usual. By omparing the two expressions(3.16) and (3.11) for the 2-point funtion we have on�rmed that the expression (3.11) isonsistent with osp(1j2) invariane and we have determined the struture onstant B(j)that was introdued in eq. (3.16).3.3 The minisuperspae 3-point funtionWe are now prepared to move on to the analogue of the 3-point funtion in the partilemodel. One more, the symmetry under osp(1j2) transformation �xed the 3-point funtionup to two struture onstants. In the (x; �)-basis, it readsh�j1(x1; �1)�j2(x2; �2)�j3(x3; �3)i0 = C (j1; j2; j3) + ~C (j1; j2; j3)���jX12j�2j12�1jX23j�2j23�1jX31j�2j31�1 ; (3.19)
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where j12 = j1+ j2� j3 et. and Xij = xi�xj� �i�j, as before. Furthermore, the so-alledsuper-projetive 3-point invariants �; �� are� = (x12x23x31)� 12 (x23�1 + x31�2 + x12�3 � 12�1�2�3) (3.20)and similarly for ��.4 The oeÆients C; ~C annot be determined from osp(1j2) invariane.Instead, they require to perform the full integral over the supergroup manifold. Sine wedo not need the results, we are not going to ompute the minisuperspae oeÆients Cand ~C expliitly. Determining their �eld theoreti analogue is one of the main issues inthe next setion.Before we onlude this setion, we would like to dedue from eq. (3.19) the 3-pointfuntion for the even part �B of our funtions (3.13) in the mixed basis,�B;j� (�j; �; �) := ��j�(�j; �; �)�even = 1j�jX�=�S��(�)�j;�� (; �; �) : (3.21)The �eld theoreti analogues of these funtions shall feature in the next setion when wedisuss orrelators of the OSP(1j2) WZNW model. A short and straightforward omputa-tion shows thath 3Yi=1�B;ji�i;��i(�i)i0 = C (j1; j2; j3)0�D0[ji; �i℄ + 12 3Xa;b;=1 �abDb[ji; �i℄�b ��b���1A+ ~C (j1; j2; j3) 3Xa=1Da[ji; �i℄�a ��a +D123[ji; �i℄�1 ��1�2��2�3 ��3! (3.22)where C and ~C are the same as before and �123 = 1 and so on. Various group theoretifators are given by D0[ji; �i℄ = [ 3Yi=1 j�ij�1℄D h j1+ 12 j2+ 12 j3+ 12�1 �2 �3 i ;D123[ji; �i℄ = �(j + 2)2D � j1 j2 j3�1 �2 �3 � ; (3.23)D1[ji; �i℄ = j�2j�1j�3j�1D h j1 j2+ 12 j3+ 12�1 �2 �3 i ;D12[ji�i℄ = �j�3j�1(j12 + 12 )2D h j1 j2 j3+ 12�1 �2 �3 i ;and those with index permutations. On the right hand side there appears the single newfuntion D that is de�ned in (B.7). As we antiipated, the �nal expression for the 3-pointfuntion in the �-basis turns out to be rather involved simply beause the group theoretiontributions to the struture onstants are rather ompliated.4Sine the osp(1j2) superalgebra has super dimension 3j2, we an �x three bosoni parameters x andtwo fermioni parameters �. Therefore, the three point funtion still depends on a fermioni invariant �.{ 16 {



4. Solution of the OSP(1j2) WZNW modelIn this setion we ompute the struture onstants of OSP(1j2) WZNW model. As wedisussed in the previous setion, the 2- and 3-point funtions are almost �xed by osp(1j2)symmetry, up to three oeÆients Bb, Cb, ~Cb that remain undetermined and turn out toaquire �eld theoreti modi�ations. In order to �x these oeÆients we utilize the resultsof setion 2, where we have derived the relation between orrelators of OSP(1j2) modeland N = 1 super Liouville theory.4.1 The WZNW-Liouville orrespondene revisitedWhen we disussed the orrespondene between the OSP(1j2) WZNW model and N = 1Liouville theory we worked with vertex operators V �;��j (�jz) ontaining both bosoni andfermioni omponents. In our omputations here we shall restrit ourselves to orrela-tors involving purely bosoni �elds sine they are enough to �x the unknown funtions.The bosoni omponent of V �;��j (�jz) is a �eld theoreti analogue of the funtion (3.10) onOSP(1j2), i.e.V �j (�jz) := 1p2 �V �0;��0j (�jz)�even = 1p2 �1� �j�j���� j�j2j+2e�����e2b(j+1)� (4.1)where � = ��0��0. Note that V �j (�jz) are indeed modeled after the funtions (3.10), i.e.V �j (�jz) = S�� (�; ��) e����� j�j2j+1e2(j+1)�where S�� is the same as in eq. (3.5). Only now the symbol � = �(z) denotes a fermioni�eld on the world-sheet and similarly for ��. Under the hange of variables desribed insetion 2, the �eld S�� beomesS�� = 1p2 �1� i�0��0� = 1p2 �1� i2( � i�)( � + i��)� = 1p2 �1� e�iY+i �Y � :With this preparation we an now ompute orrelation funtions of the �elds V �j (�jz) inthe OSP(1j2) WZNW model through our relation (2.21) with N = 1 Liouville �eld theory,h NY�=1 V ��j� (�� jz�)i = Æ2( NX�=1 ��)j�(1)N j2h NY�=1S��e��'(z�)N�2Yj=1 e� i2Ye� 12b'(yj)iL (4.2)with b = 1=p2k � 3 and �� = 2b(j� + 1) + 1=2b. The index L on the right hand sidereminds us that the orrelator is to be omputed in the produt of super Liouville theorywith a free fermion theory. Here we have de�nedS+ = p2 os Y2 ; S� = p2i sin Y2 ; Y = Y � �Y : (4.3)Sine the �elds S� inlude both the fermioni �eld � of the free fermion theory and thefermion  of N = 1 Liouville theory, it is not straightforward to apply the results of N = 1{ 17 {



super Liouville �eld theory. In order to do so we utilize the well-known onstrution of S�through spin �elds of the real fermions (see e.g. [26℄),h2mYi=1 S+(zi) 2nYj=2m+1S�(zj)i = (4.4)= (�1)n�mh2mYi=1�+� (zi) 2nYj=2m+1��� (zj) ih2mYi=1�+ (zi) 2nYj=2m+1�� (zj)i ;where ��� and �� are spin �elds for the real fermions � and  , respetively.4.2 Computation of 2-point funtionsIn order to pratie using our relation (4.2), we want to ompute the 2-point funtion ofOSP(1j2) WZNW model. This ase is rather simple sine no extra degenerate �elds are tobe inserted. With eq. (4.2) and eq. (4.4) we havehV �1j1 (�1jz1)V �2j2 (�2jz2)i == Æ2(�1 + �2)juj2jz12j 12b2� 12 hS�1e�1'(z1)S�2e�2'(z2)iL (4.5)= �ie�i4 (�1+�2) Æ2(�1 + �2) juj2jz12j 12b2� 12 h��1� (z1)��2� (z2)i h��1�1(z1)��2�2(z2)i ;where ��� are spin �elds in N = 1 Liouville theory, see eq. (C.9) for a de�nition. Insertingthe two point funtion of spin �elds in the free fermion theory,h��1� (z1)��2� (z2)i = Æ�1;�2 jz12j� 14 ; (4.6)along with the orresponding formula for the 2-point funtion of ��� in super Liouvilletheory, see eq. (C.10), the 2-point funtion of OSP(1j2) WZNW model an be evaluated ashV �1j1 (�1jz1)V �2j2 (�2jz2)i = Æ�1�2 Æ2(�1 + �2) �j�2j2�2bjz12j4�j2 [Æ(j1 + j2 + 32 )� �2Æ(j1 � j2)DLR(�2)℄with �j = �2b2(j + 1)(j + 12). An expliit formula for the struture funtions DLR ofLiouville theory may be found in eq. (C.11). By omparing our result with the generalform of the 2-point invariant (3.16) we read o� thatBb(j) = DLR(2b(j + 1) + 12b )�(2j + 1) = � 1�  2kb2i( b2+12 )!4j+3 �(12 + b2(2j + 32 ))�(12 � b2(2j + 32 )) : (4.7)In the limit b! 0 we reover the result (3.18) of the partile model.4.3 Computation of 3-point funtionsOur aim now is to determine the struture onstants of the 3-point funtion in the OSP(1j2)WZNW model from the orrespondene with N = 1 Liouville theory. To this end we{ 18 {



ompute the 3-point funtion of three bosoni vertex operators (4.1) using the formula(4.2).hV �1j1 (�1jz1)V �2j2 (�2jz2)V �3j3 (�3jz3)i = Æ2(�1 + �2 + �3)j�(1)3 j2 � (4.8)� h 1p2(S+ + S�)e� 12b'(y)S�1e�1'(z1)S�2e�2'(z2)S�3e�3'(z3)iL :Here, we use the same notations as in eq. (4.2) before. Note that the omputation ofa 3-point funtion on the OSP(1j2) WZNW model requires one additional insertion of adegenerate Liouville �eld in the orrelator on the right hand side. This �eld is inserted aty = �1u(�1z2z3 + �2z3z1 + �3z1z2) ; (4.9)where the parameter u is given by u =P3i=1 �izi. Furthermore, for N = 3 the twist fatorj�(1)3 j2 de�ned in eq. (2.22) simpli�es as followsj�(1)3 j2 = juj 32b2+ 12 Yi<j jzij j� 12b2+ 12 3Yi=1 j�ij� 12b2+ 12 : (4.10)As in the ase of the 2-point funtion we an express the �elds S� in terms of twist �eldsfor the two fermions using the formula (4.4). The orrelator of four twist �elds in a freefermion model is known from the work of Belavin, Polyakov and Zamolodhikov [27℄,h��0� (z0)��1� (z1)��2� (z2)��3� (z3)i = jz03j� 14 jz12j� 14I�0�1�2�3(z) : (4.11)Here z (� (z01z23)=(z03z21)) = 1 + �2=�3 is the onformally invariant ross ratio of thepoints z0 = y and zi; i = 1; 2; 3. The funtions I�0�1�2�3(z) are given byI����(z) = I0(z)I0(�z) + I 12 (z)I 12 (�z) ; I����(z) = I0(z)I0(�z)� I 12 (z)I 12 (�z) ;I����(z) = � hI0(z)I 12 (�z) + I 12 (z)I0(�z)i ; I����(z) = i hI0(z)I 12 (�z)� I 12 (z)I0(�z)i ;withI0(z) = (z(1� z))� 18F (14 ;�14 ; 12 ; z) ; I 12 (z) = 12 (z(1� z)) 38F (54 ; 34 ; 32 ; z) : (4.12)As for the ontribution from Liouville theory, all relevant formulas are listed in appendixC. The relevant 4-point funtion (C.20) was onstruted in [20℄. It involves a new funtionH�0�1�2�3 that we spell out expliitly in eq. (C.24). Putting all these piees together weobtainhV �1j1 (�1jz1)V �2j2 (�2jz2)V �3j3 (�3jz3)i = Æ2(�1 + �2 + �3) Yi<j jzij j�2�ij � (4.13)� j�1j� 12b2+ 12 j�2j� 12b2+ 12 j�3j 1b2+1 e�i(4���P ��)=4p2 I��1�2�3(1 + �2�3 )H��1�2�3(1 + �2�3 ) ;where � = �1�2�3. In priniple we have thereby ompleted our omputation of the 3-pointfuntion in the OSP(1j2) WZNW model. Of ourse, in its present form the answer is not{ 19 {



very illuminating, in partiular when ompared with the relatively simple form of the 3-point funtion we antiipated in eq. (1.1) of the introdution. The reason our formula (4.13)looks somewhat unfamiliar was disussed in detail in setion 3.3: It is the transformationfrom the x to the � basis that turns the rather simple looking formulas (3.19) or (1.1) intothe bulky expression of eqs. (3.22) or (4.13). Our �nal task is therefore to perform thetransformation from eq. (4.13) to (1.1). We shall not disuss this in full detail but simplylook at two of the terms in eq. (3.22) whih suÆe to read o� the struture funtions Cband ~Cb.Let us begin with the oeÆient ~Cb in eq. (1.1). Comparison with our minisuperspaeformula (3.22) shows that ~C appears in the oeÆient of the term with the maximal numberof Grassmann variables. In fat, the oeÆient of this term is a produt of ~C with the grouptheoreti fator D123. In order to ompare with our �eld theoreti outome, we swith fromthe (�; �) basis to the mixed basis involving � and �, i.e. we rewrite the orrelation funtion(4.13) in terms of the �eldsV Bj (�; �jz) := (Vj(�; �jz))even = 1j�jX�=� S��(�)V �j (�jz) : (4.14)The de�nition of V B is modeled after the onstrution (3.21) in the partile theory. Fromthe disussion above we infer that~Cb(j1; j2; j3)D123[ji; �i℄ == limz1!1Z 3Yi=1 d��id�i jz1j4�j1 hV Bj1 (�1; �1jz1)V Bj2 (�2; �2j1)V Bj3 (�3; �3j0)i= limz1!1 12p2 X�i=�(��1�2�3)jz1j4�j1 hV �1j1 (�1jz1)V �2j2 (�2j1)V �3j3 (�3j0)i : (4.15)Now we need to insert our result (4.13) along with formulas for I and H. After thatwe an ompute the sum on the right hand side of the previous equation. It is easy tosee that all terms involving the Liouville struture onstant ~CLR anel from the resultingexpression. The terms proportional to CLR are determined with the help of the followingauxiliary formula�G(bp1; bp2; bp3; z) +p1� z G(bp1;�bp2;�bp3; z)��� �G(bp1; bp2; bp3; �z) +p1� �z G(bp1;�bp2;�bp3; �z)� = (4.16)= jzj 12b2+ip1 j1� zj 12b2+ip22F1(�14 + i2p; 14 + i2p12; 12 + ip1; z) ;where p12 = p1 + p2 � p3 et. and p = p1 + p2 + p3. The parameter z takes the same valuez = 1 + �2=�3 as before. In the derivation of the formula we have used the well knownidentities12 sin� os �F (54 ; 34 ; 32 ; sin2 �) = sin 12� ; F (14 ;�14 ; 12 ; sin2 �) = os 12� ; (4.17)
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and(� b� 1)F (a; b; ; z) + b(1� z)F (a; b + 1; ; z) = (� 1)F (a� 1; b;  � 1; z) : (4.18)The resulting expression for the sum in eq. (4.15) is of the form ~CbD123 with D123 givenby formula (3.23) if the struture funtion ~C(j1; j2; j3) is introdued as~Cb(j1; j2; j3) = 12� CLR(�1 � 12b ; �2; �3) (14 � i2p)(12 + ip1)(14 + i2p31)(14 + i2p12)= 12�b  2kb2+b2i( b2+12 )!2j+5 �0NS(0)�NS(2b(j + 52 ) + 1b )� (4.19)� �R(4b(j1 + 1) + 1b )�R(4b(j2 + 1) + 1b )�R(4b(j3 + 1) + 1b )�R(2b(j12 + 1) + 1b )�R(2b(j23 + 1) + 1b )�R(2b(j31 + 1) + 1b ) :A very similar analysis furnishes an expression for the struture onstant Cb(j1; j2; j3).Another glane onto eq. (3.22) shows that Cb may be determined e.g. from the termsproportional to �1��1�2 ��2 in the orrelators of V Bj (�; �jz),Cb(j1; j2; j3)D12[ji; �i℄= limz1!1Z 3Yi=1 d��id�i �3 ��3jz1j4�j1 hV Bj1 (�1; �1jz1)V Bj2 (�2; �2j1)V Bj3 (�3; �3j0)i= limz1!1 12p2 X�i=� �1�2j�3j jz1j4�j1 hV �1j1 (�1jz1)V �2j2 (�2j1)V �3j3 (�3j0)i : (4.20)The sum on the right hand side an be omputed in the preisely the same way as before,and the result is given by replaing p3 with �p3 and CLR with ~CLR. Thus we onludeCb(j1; j2; j3) = 12� ~CLR(�1 � 12b ; �2; �3) (34 � i2p)(12 + ip1)(34 + i2p31)(34 + i2p12)= 12�  2kb2+b2i( b2+12 )!2j+5 �0NS(0)�R(2b(j + 52) + 1b )� (4.21)� �R(4b(j1 + 1) + 1b )�R(4b(j2 + 1) + 1b )�R(4b(j3 + 1) + 1b )�NS(2b(j12 + 1) + 1b )�NS(2b(j23 + 1) + 1b )�NS(2b(j31 + 1) + 1b ) :5. ConlusionIn this note we have solved the very simplest example of a WZNW model on a type IIsupergroup, namely on the supergroup OSP(1j2). Our disussion here was restrited tothe NSNS setor of the theory but the analysis an easily be extended to the RR setor.The assoiated struture onstants then involve the 2- and 3-point ouplings in the NSNSsetor of N = 1 Liouville theory. A more interesting problem would be to inlude bound-ary onditions into the analysis. Aording to [28℄ (see also [29℄ for a generalization to{ 21 {



supergroups), maximally symmetri branes in the OSP(1j2) WZNW model orrespond to(twisted) super-onjugay lasses. Under the OSP(1j2) WZNW super-Liouville orrespon-dene, branes in the OSP(1j2) model should map to branes in N = 1 Liouville theory. Thelatter have been studied by several authors, see in partiular [20, 30℄. In addition, it shouldalso be possible to �nd a preise relation between orrelation funtions on the half-plane.In the ase of the ordinary H+3 -Liouville orrespondene, suh relations were found in [31℄and rederived by means of the path integral approah in [32℄.To the best of our knowledge, the OSP(1j2) WZNW model had not been solved previ-ously, though it is ertainly possible to �nd its 2- and 3-point ouplings more diretly, i.e.without the relation to supersymmetri Liouville theory, through the evaluation of fator-ization onstraints. Suh an approah has been suessfully applied to the H+3 model in[10℄. It would be interesting to generalize the analysis of fatorization onstraints to theOSP(1j2) WZNW model.The proposal of Ribault and Teshner for the onrete relation between loal orrela-tors in H+3 model and Liouville �eld theory emerged partly from a areful omparison ofdi�erential equations on both sides of the orrespondene. The orrelators of any WZNWmodel obey the famous Knizhnik-Zamolodhikov equations. On the Liouville side, onehigher order di�erential equation arises from eah degenerate �eld insertion. These twotypes of di�erential equations are mapped onto eah other by the H+3 -Liouville orrespon-dene, see [13, 16℄. A similar analysis for the relation between the OSP(1j2) WZNW modeland N = 1 Liouville theory has not been performed yet.There are various other extensions of our path integral approah that merit furtherstudy. Our basi strategy above was to apply the redution ideas of [16℄ to the sl2 urrentalgebra that resides within the osp(1j2) urrent algebra of the WZNW model. As we haveexplained in the introdution and illustrated in setion 2.2, the same onepts apply tomore general type II supergroups. It might be interesting to work this out in more detail,in partiular for supergroups OSP(pjN) with parameters N � 3. Another obvious extensionwould be to solve the OSP(2j2) WZNW model through its relation with N = 2 Liouville�eld theory. While bulk 2-point funtions of the latter model have been studied [33℄ anda onjeture for bulk 3-point funtions was formulated in [34℄, higher orrelators are notyet available. In this ontext, it may also be worthwhile investigating the preise relationbetween the OSP(2j2) WZNW model disussed above and the SL(1j2) theory that has beensolved in [35, 18℄. The OSP(2j2) WZNW model was also investigated in the ondensedmatter literature, see e.g. [36, 37℄ and referenes therein.In the ase of WZNW models on type I supergroups it is possible to solve them interms of a purely bosoni model [18℄. It seems likely that for type II supergroups a furtherredution is possible in whih the remaining fermioni �elds are also removed. Indeed, forN = 1 Liouville �eld theory the struture onstants are very losely related to those ofthe purely bosoni Liouville model. It would be rewarding to �nd a formal path integralderivation of this relation and to generalize it to higher supergroups.Let us �nally mention a rather di�erent diretion to whih some of the above mightapply. We have disussed in the introdution that orrespondenes of the proposed type{ 22 {



elevate a usual Hamiltonian redution to an equivalene between loal �eld theories of dif-ferent target spae dimension. But Hamiltonian redution also links WZNW models forgroups of higher rank to ertain onformal Toda theories, see e.g. [38℄. It is indeed likelythat N -point funtions of tahyon vertex operators in WZNW models an be more gener-ally related to orrelators in Toda theory. Unfortunately, no expliit formulas have beenderived yet. The main tehnial obstale arises from the non-abelian nature of the maximalnilpotent subalgebra. In this sense, even the osp(1j2) ase we have studied here ould turnout to be a rather instrutive example. The maximal nil-potent subalgebra of osp(1j2),i.e. the algebra spanned by F+ and E+, is non-abelian. Hene an equivalene between theOSP(1j2) WZNW model and bosoni Liouville �eld theory (see previous paragraph) ouldbe the �rst instane of a muh more general lass of dualities involving WZNW models ongroups of rank r > 1 and onformal Toda theory. We plan to return to this subjet in thenear future.Aknowledgments: We are grateful to Thomas Creutzig, Vladimir Mitev, Ioannis Pa-padimitriou, Sylvain Ribault and J�org Teshner for useful disussions and omments. Thework of YH was supported by an JSPS Postdotoral Fellowship for Researh Abroad underontrat number H18-143.A. The Lie superalgebras osp(1j2) and sl(1j2)In this appendix we ollet a few relevant details onerning the two Lie superalgebras thatfeature in the main text, namely the superalgebras osp(1j2) and sl(1j2).A.1 The Lie superalgebra osp(1j2)The Lie superalgebra osp(1j2) possesses three bosoni generators and two fermioni ones.We shall denote the former by E�;H and use F� for fermioni generators. The relationsbetween these elements are given by[H;E�℄ = �E� ; [H;F�℄ = �12F� ; [E+; E�℄ = 2H ; (A.1)[E�; F�℄ = �F� ; fF+; F�g = 12H ; fF�; F�g = �12E� :Note that E� and H generate a sl2 subalgebra within osp(1j2). It is easy to verify thatthe following matries provide a 2j1-dimensional representation of osp(1j2) [39℄,H = 0B�12 0 00 �12 00 0 01CA ; E+ = 0B�0 1 00 0 00 0 01CA ; E� = 0B�0 0 01 0 00 0 01CA ; (A.2)F+ = 0B�0 0 120 0 00 12 01CA ; F� = 0B�0 0 00 0 �1212 0 0 1CA :
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The Lie superalgebra osp(1j2) possesses a non-degenerate invariant metri hX;Y i = str(XY )whih is de�ned for any pair of elements X;Y 2 osp(1j2) and using the supertrae in the2j1-dimensional matrix representation,hH;Hi = 12 ; hE+; E�i = hE�; E+i = 1 ; hF+; F�i = �hF�; F+i = 12 : (A.3)The metri is needed e.g. to write down the ation of a WZNWmodel on the Lie supergroupOSP(1j2).A.2 The Lie superalgebra osp(2j2)The Lie superalgebra possesses four bosoni generators E�;H and Z along with fourfermioni ones. The latter are denotes by F� and �F�. These eight generators obeythe following set of non-trivial (anti-)ommutation relations [39℄,[H;E�℄ = �E� ; [H;F�℄ = �12F� ; [H; �F�℄ = �12 �F� ;[Z;F�℄ = 12F� ; [Z; �F�℄ = �12 �F� ; [E+; E�℄ = 2H ; (A.4)[E�; F�℄ = �F� ; [E�; �F�℄ = �F� ; fF�; �F�g = Z �H ; fF�; �F�g = E� :As in the ase of osp(1j2) it is possible to �nd a matrix representation of osp(2j2) that isbuilt out of 2j1-dimensional supermatries,H = 0B�12 0 00 �12 00 0 01CA ; Z = 0B�12 0 00 12 00 0 11CA ; E+ = 0B�0 1 00 0 00 0 01CA ; E� = 0B�0 0 01 0 00 0 01CA ; (A.5)F+ = 0B�0 0 00 0 00 1 01CA ; �F+ = 0B�0 0 10 0 00 0 01CA ; F� = 0B�0 0 00 0 01 0 01CA ; �F� = 0B�0 0 00 0 10 0 01CA :Using the presription hX;Y i = str(XY ) it is easy to �nd the following non-trivial bilinearform on osp(2j2),hH;Hi = 12 ; hZ;Zi = �12 ; hE+; E�i = hE�; E+i = 1 ; (A.6)hF+; �F�i = h �F+; F�i = 1 ; h �F�; F+i = hF�; �F+i = �1 :The form h�; �i de�nes a non-degenerate invariant metri on the Lie superalgebra osp(2j2).B. Integral formulasIn this appendix we list a few simple integral formulas that are used in some of the deriva-tions we skethed in the main part of this note.{ 24 {



The �rst formula onerns the overlap of two Bessel funtions that is needed in setion3.1 on the minisuperspae theory. Utilizing the formulaZ 10 dxx��1K�(x)K�(x) == 2��3�(�)���+ �+ �2 ����+ �� �2 ����� �+ �2 ����� �� �2 � ; (B.1)and �(ix)�(1� ix) = �i sinh�x ; �(12 + ix)�(12 � ix) = �osh �x ; (B.2)we obtain Z 10 dx�K 1+�2 +ip(x)�K 1+�2 �ip(x)��K 1+�2 +ip0(x)�K 1+�2 �ip0(x)�= 14i" �sinh�(p+p02 � i�) � �sinh�(p+p02 + i�)! �osh�(p�p02 )� �sinh�(p�p02 � i�) � �sinh�(p�p02 + i�)! �osh�(p+p02 )# : (B.3)If we take �! 0, then the above quantity vanishes exept for p = �p0. Around these pointswe may use �sinh�(p+p02 � i�) � �sinh�(p+p02 + i�) � 2i�(p+p02 )2 + �2 ! 4�iÆ(p + p0) : (B.4)These results are exploited in our omputation (3.11) of the partile 2-point orrelator.In passing from the 2-point funtion (3.16) in the (x; �) basis to the (�; �) basis, wemake use of the following simple integrals,12�2 Z Yi=1;2 �j�ij2ji+2d2xid��id�i(1� �ij�ij�i��i)e�ixi���i�xi� Æ2(x1 � x2)(�1 � �2)(��1 � ��2) == �4j�2j2�2Æ�1;�2Æ2(�1 + �2) (B.5)with j1 + j2 + 3=2 = 0, and12�2 Z Yi=1;2 �j�ij2ji+2d2xid��id�i(1� �ij�ij�i ��i)e�ixi���i�xi� (1 + �1�2��1 ��2�x1��x1)jx1 � x2j4j1+2 == 4j�2j2Æ�1;�2Æ2(�1 + �2)�(2j2 + 2) (B.6)with j1�j2 = 0. Both formulas are straightforward to derive using only standard propertiesof Grassmann integrals. { 25 {



When omputing three point funtions, we use the funtion D that is de�ned by thefollowing integral formulaD � j1 j2 j3�1 �2 �3 � = 1�3 Z 3Yi=1 �j�ij2ji+2d2xie�ixi���i�xi� jx12j2j12 jx23j2j23 jx31j2j31 ; (B.7)where j12 = j1+ j2� j3 and so on. The integrations may be performed expliitly and theylead to a rather bulky expression in terms of hypergeometri funtions,D � j1 j2 j3�1 �2 �3 � = �Æ(2)(�1 + �2 + �3) j�3j�2j1�2j2�2j�1j2j1+2j�2j2j2+2� (B.8)� � (j31 + 1)(j12 + 1)(�j � 1)(2j1 + 2) 2F1(j + 2; j12 + 1; 2j1 + 2; 1 + �2�3 )+j1 + �2�3 j�2(2j1+1) (j23 + 1)(�2j1) 2F1(�j31; j23 + 1;�2j1; 1 + �2�3 )� :Here we have used j = j1 + j2 + j3 and2F1(a; b; ; z) = F (a; b; ; z)F (a; b; ; �z) : (B.9)C. N = 1 super Liouville theoryIn order to arry out the omputations of setion 4, we need rather extensive informationon orrelation funtions in N = 1 Liouville �eld theory. For the onveniene of the readerwe ollet all relevant formulas in this appendix. Most of the results are taken from [20℄.In our onventions, the ation of N = 1 super Liouville �eld theory takes the formSL = 14� Z d2z ��'��'+ Q4 pgR'+  �� + � � � �+ i�Lb2 Z d2z � eb' ; (C.1)where Q = b + 1=b. For the relation with the OSP(1j2) WZNW model at level k we setb = 1=p2k � 3 and �x the bulk osmologial onstant to be �L = i=(2�kb2).As all fermioni models, N = 1 Liouville theory possesses two setors. Depending onthe boundary onditions on fermions, these are denoted by NSNS (Neveu-Shwarz) and RR(Ramond) setors. Primary �elds in the NSNS setor an be thought of as exponentialsV� = e�' in the bosoni �eld '. Their onformal weight is given by �L� = �(Q � �)=2.The 2-point funtion of these NSNS primary �elds takes the formhV�1(z1)V�2(z2)i = jz12j�4�L�2 2� �Æ(�1 + �2 �Q) + Æ(�1 � �2)DLNS(�2)� ; (C.2)with DLNS(�) = ���L�( bQ2 )�Q�2�b �(b(�� Q2 ))�(1b (�� Q2 ))�(�b(�� Q2 ))�(�1b (�� Q2 )) : (C.3)Here and throughout the main text we use (x) = �(x)=�(1 � x). Whereas the �rst termin eq. (C.10) is �xed by normalization, the seond term involving DLNS ontains dynamialinformation on the phase shift of tahyoni modes upon reetion o� the Liouville wall.{ 26 {



The vertex operators that appear in our relation with the OSP(1j2) WZNW model,and in partiular in eq. (4.2), are all in the RR setor. Before we an spell our properties ofRR-�elds we want to reall a few basi fats on spin �elds whih apply to N = 1 Liouvilletheory and free fermions alike. Chiral spin �elds �� and ��� may be haraterized by theiroperator produt with the fermions, (z)��(0) � ��(0)p2z 12 ; ���(�z) � (0) � i���(0)p2�z 12 : (C.4)As usual, we ombine left- and right-moving spin �elds into the non-hiral produts ���� =������. Their operator produts are known to be given by���(z)���(0) � 1jzj 14 ; ���(z)���(0) � ijzj 14 ; (C.5)���(z)���(0) � � i2 � (0)jzj 34 ; ���(z)���(0) � �12 � (0)jzj 34 : (C.6)Only two speial linear ombinations of the spin �elds play an important role for the theory.These are introdued as follows�+ = 1p2(�++ � ���) ; �� = e��i=4p2 (��+ � �+�) : (C.7)In the ase of the Ising model (free fermions), �+(= �) is known as the order �eld while��(= �) is referred to as the disorder �eld. From the operator produts of spin �elds weonlude easily,�+(z)�+(0) � 1jzj 14 + i2 � jzj 34 ; ��(z)��(0) � 1jzj 14 � i2 � jzj 34 : (C.8)N = 1 Liouville �eld theory ontains a family of spin �elds whih is parametrized by their`momentum' � in the ' diretion. We an think of these primary �elds in the RR setoras produts of a spin �eld and an exponential,����� = ����e�' ; ��� = ��e�' : (C.9)The 2-point funtions of the vertex operators ��� possess the following formh���1(z1)���2(z2)i = jz12j�4�L�2� 14 2� �Æ(�1 + �2 �Q)� Æ(�1 � �2)DLR(�2)� (C.10)with a reetion oeÆient given byDLR(�) = ��L�( bQ2 )�Q�2�b �(12 + b(�� Q2 ))�(12 + 1b (�� Q2 ))�(12 � b(�� Q2 ))�(12 � 1b (�� Q2 )) : (C.11)In order to ompute 3-point funtions of OSP(1j2) model, we need 4-point funtions ofRR-�elds involving a single degenerate �eld ���1=2b in N = 1 super Liouville theory. The
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states j � 1=2bi� = j1; 2i� that orrespond to the degenerate �eld are haraterized by therelations,G0j1; 2i� = ip2 �1b + b2� j1; 2i� ; G�1j1; 2i� + ip2bL�1j1; 2i� = 0 : (C.12)It follows from standard arguments that operator produts involving at least one suhdegenerate �eld ontain two terms only,�2����1=2b(z1)���� (z2) � jz12j�b + 34 � V��1=2b(z2) + CLR;�(�)jz12j 1b (Q��)� 14V�+1=2b(z2) ;whereCLR;�(�) = 2iDLR(�)DLNS(Q� �� 12b) = 2ib�2 ��L�( bQ2 )� 1b2 (12 � �b )(�b � 12b2 ) :The other operator produt expansions we will need below an be obtained from the onewe have provided by super onformal transformation along with the relations��1;��1�1 (z1)��2;��2�2 (z2) � �i��1�2���1;��1�1 (z1)���2;��2�2 (z2) � �i��1�2��1;���1�1 (z1)��2;���2�2 (z2) :(C.13)Before we spell out a formula for the relevant 4-point funtions, let us provide expliitexpressions for the 3-point funtions involving two RR �elds. These were determined in[40, 41, 20℄ and we shall simply quote their results along with all the neessary notations,hV�1(z1)����2 (z2)����3 (z3)i = jz12j�2�L12 jz23j�2�L23� 14 jz31j�2�L31CLR(�1;�2; �3) ; (C.14)hV�1(z1)����2 (z2)����3 (z3)i = jz12j�2�L12 jz23j�2�L23� 14 jz31j�2�L31 ~CLR(�1;�2; �3) ; (C.15)where �L12 = �L�1 +�L�2 ��L�3 et. One more, other 3-point funtions may be obtainedwith the help of the relations (C.13). The struture onstants CLR and ~CLR are onstrutedfrom a speial funtions � as follows,CLR(�1;�2; �3) = ��L�( bQ2 )b1�b2�Q��b �0NS(0)�NS(2�1)�R(2�2)�R(2�3)�R(��Q)�R(�23)�NS(�12)�NS(�31) ;~CLR(�1;�2; �3) = ��L�( bQ2 )b1�b2�Q��b �0NS(0)�NS(2�1)�R(2�2)�R(2�3)�NS(��Q)�NS(�23)�R(�12)�R(�31) ;where �12 = �1 + �2 � �3 et., � = �1 + �2 + �3, and�NS(x) = �(x2 )�(x+Q2 ) ; �R(x) = �(x+b2 )�(x+b�12 ) : (C.16)The � funtion itself is losely related to Barnes double Gamma funtion. Instead ofdesribing the preise onnetion, we simply display an integral representationln�(x) = Z 10 dtt "e�2t�Q2 � x�2 � sinh2(Q2 � x)tsinh bt sinh tb # : (C.17)
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Note that the funtions �NS and �R possess the following behavior under shifts of theirargument,�NS(x+ b) = b�bx(12 + bx2 )�R(x) ; �R(x+ b) = b1�bx( bx2 )�NS(x) ; (C.18)�NS(x+ 1b ) = bxb (12 + x2b)�R(x) ; �R(x+ 1b ) = b�1+xb ( x2b )�NS(x) : (C.19)Let us �nally turn to a disussion of the 4-point funtions involving one degenerate�eld along with three primary �elds from the RR setor. This quantity was omputed in[20℄ and it takes the formh��0�1=2b(z0)��1�1(z1)��2�2(z2)��3�3(z3)i = jz03j�4�L�1=2b� 14�� jz12j�2�L12� 14�2�L�1=2b jz23j�2�L23+2�L�1=2b jz31j�2�L31+2�L�1=2bH�0�1�2�3(z) ; (C.20)where H�0�1�2�3(z) is a funtion of the ross ratio z = (z01z23)=(z03z21). We need somepreparation before we an speify the funtions H. They are built from yet another set ofauxiliary funtions whih depend on �i = Q=2 + ipi aording toG0(p1; p2; p3; z) = �12(z(1 � z)) 58F (54 ; 34 ; 32 ; z)(G(p1; p2; p3; z)�G(p1;�p2;�p3; z)) ;G1(p1; p2; p3; z) = (z(1 � z)) 18F (14 ;�14 ; 12 ; z)(G(p1; p2; p3; z) +G(p1;�p2;�p3; z)) ;whereG(p1; p2; p3; z) = z 14b2+ ip12b (1� z) 14b2+ ip22b  14 + i2bp3112 + ibp1 !F (34 + i2bp; 14 + i2bp12; 32 + ibp1; z)and p12 = p1+ p2� p3 et., p = p1+ p2+ p3. One may show that H and Ga obey the samelinear di�erential equations. Hene, we will be able to onstrut H from G0;G1 andG2(p1; p2; p3; z) = G0(�p1; p2;�p3; z) ; G3(p1; p2; p3; z) = G1(�p1; p2;�p3; z) : (C.21)Combinations of these four funtions Ga with trivial monodromies around z = 0 and z = 1are given by (see also [20℄)H�1 (p1; p2; p3; z) = (�G0 �G0 + G1 �G1) + (12 + ibp1)2(14 + i2bp23)� (C.22)� (14 � i2bp)(34 � i2bp31)(34 � i2bp12)(G2 �G2 � G3 �G3) ;H�2 (p1; p2; p3; z) = (G0 �G1 � G1 �G0) + (12 + ibp1)2(14 + i2bp23)� (C.23)� (14 � i2bp)(34 � i2bp13)(34 � i2bp12)(�G2 �G3 + G3 �G2) ;where �Gi(p1; p2; p3; z) = Gi(p1; p2; p3; �z). Both H+1 and H�2 have previously appeared in [20℄where they were also shown to be invariant under the rossing symmetry transformationz 7! 1 � z (note that H�2 ips its sign). Under the ation of the same rossing symmetrytransformation, our funtionsH�1 andH+2 are mapped onto eah other. We �nally ombine{ 29 {
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