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1. Introdu
tionTwo dimensional 
onformal �eld theories with target spa
e supersymmetry have re
entlybeen studied intensively be
ause of the important role they play for various problems rang-ing from disordered ele
tron systems to string theory. Through the AdS/CFT 
orrespon-den
e, for instan
e, 4-dimensional theories with super
onformal symmetry are related to
losed strings moving in a target spa
e with psl(2,2j4) symmetry (see e.g. [1℄ for a 
on
reteworld-sheet model). In 
ondensed matter theory, on the other hand, methods have beendeveloped [2℄ whi
h permit the 
omputation of spe
tral densities, transport properties,et
., in systems with random disorder. These involve auxiliary �eld theories with internalsupersymmetry, in parti
ular models with 
entral 
harge 
 = 0 whose a
tion is invariantunder global osp(2Nj2N) transformations (see e.g. [3℄ for a review and further referen
es).{ 1 {



Conformal �eld theories on superspa
es provide a ri
h 
lass of non-unitary and non-rational models. Moreover, their 
orrelators often possess logarithmi
 singularities, a prop-erty that was explained through harmoni
 analysis on supergroups in [4℄. Given all thesefeatures, models with target spa
e supersymmetry may appear rather diÆ
ult to solve!Some progress was made re
ently for a large 
lass of basi
 Lie superalgebras. In fa
t, thesolution of WZNW models on type I supergroups has been redu
ed to solving an asso
iatedbosoni
 WZNW model. The type I 
ondition (see below for more details) is satis�ed formany interesting examples, in parti
ular for the supergroups PSL(NjN), but it ex
ludesalmost all supergroups OSP(Mj2N), with the ex
eption of OSP(2j2N). Therefore, the so-lution of WZNW models on OSP(Mj2N) remains an important open problem. In this notewe shall develop a new approa
h to the issue and we shall employ it to solve the WZNWmodel on OSP(1j2).For a moment we shall put the topi
 of sigma models on superspa
es aside and talkabout a somewhat unrelated development in the area of non-rational 
onformal �eld the-ory (CFT). The two most thoroughly studied examples of CFTs with non-
ompa
t targetspa
e are Liouville theory and the WZNW model on the 3-dimensional hyperboloid H+3 , aEu
lidean version of AdS3. The stru
ture 
onstants of Liouville �eld theory were �rst pro-posed by Dorn, Otto and the Zamolod
hikovs [5, 6℄. The original proposal has meanwhilebeen established rigorously through a series of papers by Tes
hner, partly in 
ollaborationwith Ponsot [7, 8, 9℄. At the same time, Tes
hner also extended the su

essful solution ofLiouville theory to the H+3 model [10, 11℄. It turned out that the stru
ture 
onstants ofLiouville theory appear as building blo
ks for those of the WZNW model. This may not
ome entirely unexpe
ted sin
e it is often stated that Liouville theory provides a modelfor the radial dire
tion of AdS. In any 
ase, the 
lose relation between the two theorieshas furnished rather useful tools, e.g. to prove 
onsisten
y of stru
ture fun
tions in theH+3 model [12℄. A pre
ise relation between lo
al 
orrelation fun
tions of the H+3 WZNWmodel and Liouville �eld theory on the 
omplex plane was later put together by Ribaultand Tes
hner [13℄, based on earlier related works [15, 14℄.In our re
ent paper [16℄ we revisited and extended the relation between the WZNWmodel on H+3 and Liouville �eld theory. Most importantly, we rederived the relationfound in [13℄ very naturally using a path integral formalism. As one appli
ation of ournew approa
h we then generalized the 
orresponden
e to 
orrelation fun
tions on arbitrary
losed surfa
es. The path integral treatment 
learly suggests that similar 
orresponden
esmay exist for other models with an sl2 
urrent algebra symmetry. Furthermore, wheneverthis is the 
ase, the path integral approa
h provides 
on
rete tools to determine the pre
iserelation between lo
al 
orrelation fun
tions of two models. We shall often refer to su
ha 
orresponden
e as a `redu
tion' simply be
ause it expresses 
orrelation fun
tions of amodel on a d-dimensional target spa
e through 
orrelators in another lo
al �eld theorywith target spa
e of dimension d � 2. Let us stress, however, that the 
orresponden
egoes far beyond the well known Hamiltonian redu
tion (see [17℄ for a review and referen
esto early 
ontributions). Most importantly, the new 
orresponden
e imposes absolutely norestri
tions on the momenta of the ta
hyon vertex operators, in spite of the di�eren
e{ 2 {



between target spa
e dimensions. While target spa
e momenta in the original theory withsl2 symmetry possess d parameters, only d � 2 
omponents are needed to parametrizemomenta in the redu
ed model. The 
orresponden
e stores all information about themissing two momentum 
omponents through a highly intriguing me
hanism in the world-sheet lo
ation of additional degenerate �eld insertions.Let us now 
onne
t the 
orresponden
e between the H+3 WZNW model and Liou-ville theory (or its generalizations) to the main goal of this work, namely the solution ofWZNW models on OSP supergroups. All 
lassi
al Lie superalgebras possess a so-
alleddistinguished Z-gradation in whi
h fermioni
 generators possess degree Æ = �1. For typeI superalgebras, all bosoni
 generators are lo
ated in degree zero. Be
ause there exist nobosoni
 elements with degree Æ = +2, anti-
ommutators between fermioni
 elements ofdegree Æ = +1 vanish. This feature of type I superalgebras was exploited in [18℄ and leadsto a solution of the 
orresponding WZNW models. For type II superalgebras the situationis di�erent. By de�nition, these 
ontain bosoni
 generators of degree Æ = �2 with respe
tto the distinguished Z-gradation. Consequently, anti-
ommutators between fermioni
 ele-ments of degree Æ = +1 need no longer vanish, a property that spoils a su

essful solutionalong the lines of [18℄. Our idea here is to remove the problemati
 generators of degreeÆ = �2 through redu
tion to a lo
al �eld theory with a lower dimensional target spa
e.Note that ea
h generator of degree Æ = +2 determines a unique sl2 subalgebra within the
urrent superalgebra of a type II WZNW model. Moreover, the di�erent sl2 
urrent alge-bras that are obtained in this way 
ommute with ea
h other. Therefore, we 
an apply the`redu
tion' outlined in the previous paragraph to ea
h of the sl2 algebras, one after another.In this note we shall restri
t ourselves to examples with a single bosoni
 generator of degreeÆ = +2. In fa
t, most of our analysis fo
uses even further to the example of osp(1j2).Let us now outline the main results of this paper and des
ribe the 
ontent of ea
h of thefollowing se
tions. We shall begin in se
tion 2 by spelling out the a
tion of the OSP(1j2)WZNWmodel in a �rst order formulation. The Lie superalgebra osp(1j2) 
ontains a bosoni
sl2 subalgebra along with two fermioni
 generators. After `redu
tion' there remains a singlebosoni
 dire
tion and two fermioni
 ones. The latter are shown to provide the fermioni
partner of the bosoni
 �eld in N = 1 Liouville �eld theory and an additional free fermion.Thereby, we shall relate 
orrelators in the OSP(1j2) WZNW model to those in a produ
t ofN = 1 Liouville theory with a free fermion model. We shall then brie
y demonstrate howour strategy extends to higher dimensional OSP supergroups. In parti
ular, we relate theOSP(2j2) WZNW model to N = 2 Liouville theory.1 The relation between osp(pj2) 
urrentalgebras and N = p super
onformal symmetries is not new. In fa
t, it was known for along time how to obtain the latter from the former through Hamiltonian redu
tion [19℄.But let us stress on
e more that our 
orresponden
e goes mu
h beyond a mere redu
tionsin
e it establishes an equivalen
e between 
orrelators of the two theories.1As we remarked before, the supergroup OSP(2j2) �= SL(1j2) is of type I and therefore it 
an be dealtwith along the lines of [18℄. Our treatment here shall be based on a natural Z-gradation in whi
h OSP(2j2)possesses a single bosoni
 generator in degrees Æ = �2 (i.e. not the distinguished Z-gradation). This makesit an example for our new approa
h and thereby provides an alternative way of solving the model, di�erentfrom the one outlined in [18℄. { 3 {



The rest of the paper is then devoted to the 
omputation of 2- and 3-point fun
tions inthe OSP(1j2) WZNWmodel. In se
tion 3 we shall study the minisuperspa
e approximationto the stru
ture 
onstants. This will also allow us to gain some experien
e with the osp(1j2)invariant tensors whi
h appear as building blo
ks for the parti
le and �eld theory quantitiesalike. Se
tion 4 
ontains formulas for the stru
ture 
onstants of the OSP(1j2) WZNWmodel. The 2-point fun
tions of the theory 
an be determined easily from the known 2-point fun
tions of N = 1 Liouville �eld theory. The 3-point fun
tions of the WZNW modelare related to 
ertain 4-point fun
tions in the redu
ed model. Lu
kily, the relevant 4-point
orrelators in N = 1 Liouville theory have been 
onstru
ted in [20℄. When 
ombined withthe appropriate 
orrelation fun
tions in free fermioni
 �eld theory, the resulting 3-pointfun
tion of the WZNW model be
omes manifestly osp(1j2) invariant and the stru
ture
onstants 
an be read o�.Our �nal formula for the 3-point 
orrelator will involve ta
hyon vertex operatorsV j(x; �jz) = V j(x; �x; �; ��jz) whi
h are labeled by a spin j, a 
omplex 
oordinate x anda 
omplex Grassmann variable �. From time to time we shall also display the dependen
eon the 
omplex 
onjugate variables �x and �� in order to show that the 
orresponding quan-tities are not 
hiral. The parameters j; x; � are 
hosen su
h that the operator produ
tswith super
urrents JX of the OSP(1j2) WZNW model take the formJX(z) V j(x; �jw) � rXV j(x; �jw) 1z � w + : : : :Here, the subs
ript X runs through a basis X = E�; F�;H in osp(1j2) (see appendix A.1for details on osp(1j2)). The symbols rX on the right hand side of the operator produ
tdenote 
ertain �rst order di�erential operators a
ting on x; �x and �; ��, see eqs. (3.15). The3-point fun
tion of ta
hyon vertex operators readshV j1(x1; �1jz1)V j2(x2; �2jz2)V j3(x3; �3jz3)i= Cb(j1; j2; j3) + ~Cb(j1; j2; j3)���jX12j�2j12�1jX23j�2j23�1jX31j�2j31�1 1Qi<j jzij j2�ij (1.1)where zij = zi� zj , j12 = j1+ j2� j3 et
. and Xij = xi� xj � �i�j. The exponents �ij aredetermined by the 
onformal dimensions�j = �2b2(j + 1)(j + 12) where b�2 = 2k � 3through �12 = �j1 +�j2 ��j3 et
. An expli
it formula for the super-proje
tive 3-pointinvariants �; �� is given in eq. (3.20). The form of the 3-point fun
tions is determinedby world-sheet 
onformal symmetry and target spa
e osp(1j2) invarian
e up to the twofun
tions Cb and ~Cb. Expressions for these are provided in eqs. (4.19) and (4.21) at the veryend of this note. Thereby, the non-rational OSP(1j2) WZNW model is solved. Stru
ture
onstants for a 
ompa
t target spa
e may be obtained by analyti
 
ontinuation of themomenta. Su
h models have been argued to des
ribe the 
ontinuum limit of 
ertain super-spin 
hains, see [21℄ and [22℄ for the 
ases of osp(1j2) and osp(2j2), respe
tively. AnOSP(2j2) WZNW model also emerges in the study of 2 + 1 dimensional spin-full ele
tronswith random gauge potential, see [23, 24, 25℄ and further referen
es therein.{ 4 {



2. Supergroup models and super Liouville �eld theoryThe aim of this se
tion is to derive a relation between the OSP(pj2), p = 1; 2;WZNWmodeland the produ
t of a supersymmetri
 Liouville theory with a theory of p free fermions. Letus note that the supergroup OSP(pj2) has superdimension sdim OSP(pj2) = (12 (p2 � p) +3)j2p. The manipulations to be 
arried out in the 
urrent se
tion work for all p. They relatethe WZNW model to a new intera
ting �eld theory on a target spa
e of superdimension(12 (p2 � p)p + 1)jp and an additional model of p free massless fermions. Two bosoni
dire
tions are integrated out expli
itly while half of the fermions turn out to de
ouple.When p = 1; 2, the �eld 
ontent of the intera
ting se
tor is that of N = 1; 2 Liouville �eldtheory and we shall see that the a
tions also agree. For larger values of p, the 
orrespondinglower dimensional model has not been studied before so that the relation is of limited use.For this reason, we shall mostly fo
us on the 
ase of p = 1 and then spell out the relationfor p = 2. Larger values of p may be treated in the same way.2.1 OSP(1j2) WZNW model from N = 1 Liouville theoryIn this subse
tion, we fo
us on the simplest example and derive the relation between
orrelators of OSP(1j2) WZNW model and N = 1 super Liouville �eld theory. After afew introdu
tory 
omments on the a
tion of the OSP(1j2) WZNW model, we shall pass toa �rst order formulation involving two additional bosoni
 auxiliary �elds along with twofermioni
 ones. Following the ideas of [16℄, we 
an then integrate out four bosoni
 �elds.The resulting theory 
ontains a single bosoni
 �eld and two pairs of 
hiral fermions. Theira
tion is �nally rewritten as a sum of an N = 1 Liouville model and a free fermion theory.For any (super-)group, the a
tion of WZNW model takes the following standard form,SWZNW(g) = k4� Z� d2zhg�1�g; g�1 ��gi+ k24� ZBhg�1dg; [g�1dg; g�1dg℄i (2.1)where the integrations are over a world-sheet � and a three dimensional manifold with�B = �, respe
tively. The Lie superalgebra osp(1j2) has superdimension 3j2 with bosoni
and fermioni
 generators denoted by E�;H and by F�, respe
tively. Their (anti-)
ommu-tation relations may be found in appendix A.1 along with expli
it formulas for the metri
we use.We shall adopt a spe
i�
 parametrization of elements g 2 OSP(1j2) by splitting theminto a produ
t g = �G� of three 3� 3 supermatri
es whi
h are de�ned by� = e2�F+ ; � = e2��F� G =  gB 00 1! ; gB =  1 
0 1! e� 00 e��! 1 0�
 1! : (2.2)The a
tion of the WZNW model 
an now be spelled out expli
itly in terms of three bosoni
�elds �; 
; �
 and two fermioni
 ones �; ��. To this end, we de
ompose the elements g = �G�into its three fa
tors and then split the WZNW a
tion (2.1) into several terms with the{ 5 {



help of the Polyakov-Wiegmann identity,SWZNW(�G�) = SWZNW (G) + k2� Z d2zh��1 ���; �GG�1i+ k2� Z d2zhG�1 ��G; ����1i+ k2� Z d2zh��1 ���;G����1G�1i :Inserting our parametrization of the fa
tors �; � and G, we obtain the following formulasfor the a
tion of the OSP(1j2) WZNW modelSWZNW(g) = k2� Z d2z h�����+ e�2�(��
 � �����)( ��
 � � ���) + 2e�� ������i : (2.3)Note that the theory is intera
ting with terms up to forth order in the fermioni
 �elds.For WZNW models on type I supergroups a spe
ial parametrization 
ould be found [18℄in whi
h the intera
tion terms are at most quadrati
 in the fermioni
 �elds. It is a basi
feature of the type II 
ase that su
h a simpli�
ation 
annot be a
hieved.In order to apply the method of [16℄, it is essential to 
hange the a
tion in the �rstorder formulation. Introdu
ing new bosoni
 variables �; �� as well as the fermioni
 onesp; �p, all four of weight � = 1, the a
tion may be rewritten asSWZNW(g) = 12� Z d2z h 12�����+ b8pgR�+ �( ��
 � � ���) + ��(��
 � �����)+ p��� + �p��� � 1k� ��e2b� � 12kp�peb� i (2.4)with b = 1=p2k � 3. Before we 
ontinue studying this theory let us brie
y 
onvin
eourselves that the original model agrees with the �rst order formulation we propose. Theequations of motion for new auxiliary �elds read� = ke�2b�(��
 � �����) ; �� = ke�2b�(��
 � � ���) ; (2.5)p = �2ke�b���� ; �p = 2ke�b� ��� : (2.6)Inserting these expressions into the a
tion (2.4) we reprodu
e the original a
tion (2.3) apartfrom the additional linear dilaton term that appears in eq. (2.4). The latter arises fromthe Ja
obian in the 
hange of variables. Utilizing the formulasln det(A�B ��) = 148� Z d2z(j� lnAj2 + j� lnBj2 � 4� lnA�� lnB) (2.7)and pgR = �4� �� ln j�j2 for the world-sheet metri
 ds2 = j�j2dzd�z, we obtain the followingbosoni
 
ontribution� ln det(j�j�2e2��e�2� ��) = � 1� Z d2�����+ 18� Z d2�pgR� ; (2.8)along with a fermioni
 
ontribution of the same formlndet(j�j�2e��e�� ��) = 14� Z d2������ 116� Z d2�pgR� : (2.9)
{ 6 {



This 
on
ludes our derivation of the a
tion (2.4) from the generi
 formulation (2.1) of theWZNW model on the supergroup OSP(1j2).We are now prepared to begin analyzing 
orrelation fun
tions in the OSP(1j2) WZNWmodel. The N -point fun
tions of ta
hyon vertex operators are given byh NY�=1V �� ;���j� (�� jz�)i = Z D�D2�D2
D2�D2p e�SWZNW(g) NY�=1 V �� ;���j� (�� jz�) : (2.10)The vertex operators V �;��j (�jz) we inserted in the points z = z� depend on the SL(2,C )quantum numbers j; �; �� and an additional 
hoi
e of �; �� = �1. They are de�ned byV �;��j (�jz) = e�p��e��p����j�j2j+2e�
����
e2b(j+1)� : (2.11)The bosoni
 fa
tor is the same as in [16℄. As one may see by expanding exponentials,the fermioni
 fa
tors are suÆ
ient to generate 1; �; �� and ���. The basis we have 
hosen,in
luding the fa
tors p� and p�� in front of the fermioni
 �elds, turn out to be very
onvenient for what we are about to do.Having set up our problem, we pro
eed along the lines of [16℄ and integrate out 
; �
�rst and then �; �� using the following 
hange of variablesNX�=1 ��w � z� = uQN�2i=1 (w � yi)QN�=1(w � z�) =: uB(yi; z� ;w) (2.12)and a similar equation for the 
onjugate variables. This relation de�nes the parameter uand the world-sheet 
oordinates yi in terms of �� . After an appropriate rede�nition of thes
alar �eld � (see [16℄ for many more details) we obtainh NY�=1V �� ;���j� (�� jz�)i = Æ2( NX�=1 ��) juj j~�N j2 Z D'D2�D2p e�S[';�;p℄ �� NY�=1 e��p���+���p��� ��e2(b(j�+1)+ 14b )'(z�)N�2Yj=1 e� 12b'(yj) ; (2.13)where the new a
tion is now given byS['; �; p℄ = 12� Z d2z h 12�'��'+ Q'8 pgR'� uB� ��� + �u �B�����+ p��� + �p��� + 1ke2b' + i2k 1juBjp�peb' i : (2.14)The ba
kground 
harge for the new s
alar �eld ' is shifted from Q� = b to Q' = b+ 1=band we also introdu
ed the shorthand~�N = NY�<�(z� � z�) 14b2 N�2Yi<j (yi � yj) 14b2 NY�=1N�2Yi=1 (z� � yi)� 14b2 : (2.15)
{ 7 {



As it stands, the a
tion still in
ludes an expli
it dependen
e on the world-sheet 
oordinatesz� and yi through the fun
tion B that we introdu
ed in eq. (2.12).Our next step is to absorb the unwanted fa
tors B through a rede�nition of thefermioni
 �elds. In an intermediate step, we introdu
ep0 := p=puB ; �p0 := �p=p��u �B ; �0 := �puB ; ��0 := ��p��u �B : (2.16)When rewritten through the new fermioni
 variables, the kineti
 terms be
ome�uB� ��� + p��� = ��0 ���0 + p0 ���0 ��p0�0 + 12� lnpuB� �� lnpuB :Here, the non-trivial shift from p0�0 to p0�0+ 12� lnpuB is a result of regularization. At thesame time, the fermioni
 terms exp(�p��(z�)) get repla
ed by exp(��0(z�)).2 Note that thefun
tion puB has weight � = 1=2 so that after the rede�nition, our new fermioni
 �elds�0; ��0; p0; �p0 all possess the same weight � = 1=2. We 
an make the kineti
 terms look moresymmetri
 if we adopt the following new basis for fermions,� := ip2(2�0 � p0) ;  := 1p2p0 ; �� := � ip2(2��0 � �p0) ; � := 1p2 �p0 : (2.17)After inserting these expressions, the 
hiral kineti
 terms read�uB� ��� + p��� = 12����+ 12 �� +�i �� 12� lnpuB� �� lnpuB : (2.18)The fermioni
 
ontribution exp(��0(z�)) = 1 + ��0(z�) gets repla
ed by 1 + �( � i�)=p2.Note that both the vertex operators and the term involving  � in the a
tion mix the twofermions. In addition, the a
tion still 
ontains terms with z� -dependent 
oeÆ
ients. Inorder to pro
eed, we now bosonize the two fermioni
 �elds  and �, � i� = p2 exp(�iY ) ; � � i�� = �ip2 exp(�i �Y ) : (2.19)The main advantage of this bosonization is that we 
an now express the produ
t  � as aderivative. Thereby, we may now rewrite the z�-dependent terms in the a
tion as follows,i (w)�(w) �� lnpuB = �i�Y (w) �� lnpuB (2.20)� iY (w)� �� lnpuB = ��iY (w)[ NX�=1 Æ2(w � z�)� N�2Xi=1 Æ2(w � yi)℄ :The symbol � means equality up to total derivatives. In the new form, we re
ognize thatthe 
orresponding terms only lead to 
ontributions whi
h are lo
alized at the points z�2We use a regularization s
heme limw!z(w�z) = � ln �(z) for the world-sheet metri
 ds2 = j�(z)j2dzd�z.For more details, see [16℄. { 8 {



and yi of the world-sheet, i.e. they modify the vertex operators. Our �nal result for the
orrelation fun
tion of ta
hyon vertex operators in the OSP(1j2) WZNW model now readsh NY�=1V �� ;���j� (�� jz�)i = Æ2( NX�=1 ��)j�(1)N j2 Z D'D2 D2� e�S['; ;�℄� (2.21)� NY�=1(e i2Y + �e� i2Y )(e� i2 �Y � ��e i2 �Y )e2(b(j�+1)+ 14b )'(z�)N�2Yj=1 e� i2 (Y� �Y )e� 12b'(yj) :The fa
tor �(1)N 
ombines the fun
tion ~�N we had de�ned previously in eq. (2.15) with thenumeri
al 
ontributions from the se
ond term in eq. (2.18),�(1)N = u NY�<�(z� � z�) 14b2� 14 N�2Yi<j (yi � yj) 14b2� 14 NY�=1N�2Yi=1 (z� � yi)� 14b2+ 14 : (2.22)After all our manipulations, the fun
tional S = S('; ; �) is a sum of the a
tion for N = 1super Liouville theory ('; ; � ) and the a
tion for a non-intera
ting real massless fermion(�; ��), i.e. S['; ; �℄ = 14� Z d2z h �'��'+ Q'4 pgR'+ 2ke2b'++  �� + � � � + ����+ ��� ��� 2k � eb' i : (2.23)The vertex operators we insert at z� and yi have been written in terms of 
hiral 
omponentsY and �Y of a bosoni
 �eld. Through the relations (2.19), we may think of Y and �Y aslo
al fun
tional on the spa
e of fermioni
 �elds  ; � and � ; ��. Later, we shall re-expressthe relevant exponentials through spin-�elds in the fermioni
 se
tor.2.2 OSP(2j2) WZNW model from N = 2 super Liouville theoryIn the previous subse
tion, we have shown that the 
orrelators of OSP(1j2) model 
an beexpressed in terms of N = 1 super Liouville �eld theory with additional fermions. As wehave remarked in the introdu
tion, the ideas work mu
h more generally. As an example ofsu
h generalizations, we shall brie
y analyze the OSP(2j2) model. Even though OSP(2j2)�= SL(1j2) is of type I, we shall treat it in the same way as in the OSP(1j2) model inthe previous se
tion. This amounts to 
hoosing an unusual Z-grading in whi
h the fourfermions are assigned grades Æ = �1 su
h that there exists one bosoni
 generator of gradeÆ = �2 ea
h. For the readers' 
onvenien
e we have listed the anti-
ommutation relationsof the Lie superalgebra osp(2j2) in appendix A.2.In order to spell out the a
tion of the WZNW model we need to adopt spe
i�
 
oor-dinates on supergroup OSP(2j2). Here we shall use the parametrization g = �G� with� = e�1F++�2 �F+ ; � = e��1F�+��2 �F� ; G =  gB 00 e2i'1! ; (2.24)
{ 9 {



where the bosoni
 part isgB = ei'1  1 
0 1! e�2 00 e��2! 1 0�
 1! : (2.25)All our notations and 
onventions regarding osp(2j2) may be found in appendix A.2. Inthis parametrization, the WZNW a
tion be
omesSWZNW(g) = k2� Z d2z h �'1�'1 + ��2 ���2 + e�i'1��2 ���1���2 + ei'1��2 ���2���1 i (2.26)+ k2� Z d2z e�2�2 ���
 + 12(��1���2 + ��2���1)����
 � 12(�1 ���2 + �2 ���1)� :Introdu
ing new variables as before, the a
tion is rewritten asSWZNW(g) = 12� Z d2z[�'1 ��'1 + ��2 ���2 (2.27)+ � ���
 � 12(�1 ���2 + �2 ���1)�+ �� ���
 + 12(��1���2 + ��2���1)�� 1k� ��e2b�+ p1 ���1 + �p1���1 + p2 ���2 + �p2���2 � 1kp1�p2eb(i'1+�2) � 1kp2�p1eb(�i'1+�2)℄with the parameter b being related to the level k of the WZNW model through b =1=pk � 1. Note that this relation di�ers from the one we found in the 
ase of osp(1j2).In the �rst order formulation the N -point fun
tion of ta
hyon vertex operators be
omesh NY�=1 Vj� (�� jz�)i = Z D'1D�2D2�D2
 2Ya=1D2�aD2pa e�SWZNW[g℄ NY�=1Vj� (�� jz�) : (2.28)In our dis
ussion of the OSP(2j2) WZNW model we shall restri
t ourselves to 
orrelationfun
tions of purely bosoni
 vertex operators,Vj� (�� jz�) = j�� j2j�+2e��
���� �
e2b(j�+1)� : (2.29)It is not too diÆ
ult to work with the full vertex operators, in
luding exponentials of thefermioni
 �elds. Sin
e we have seen above how su
h terms are taken into a

ount, there isno need to repeat all this for osp(2j2) now. Following [16℄ we integrate out �; 
 to obtainh NY�=1 V�(z�)i = Æ2( NX�=1��)j~�N j4 2Ya=1 Z D'aD2�aD2pa�� e�S['a;�a;pa℄ NY�=1 e2(b(j�+1)+ 12b )'2(z�)N�2Yj=1 e� 1b'2(yj) ; (2.30)
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where the a
tion isS['a; �a; pa℄ = 12� Z d2z[�'1 ��'1 + �'2 ��'2 + Q24 pgR'2 (2.31)� 12uB(�1 ���2 + �2 ���1)� 12 �u �B(��1���2 + ��2���1) + 1ke2b'2+ p1 ���1 + �p1���1 + p2 ���2 + �p2���2 + ik 1juBj(p1�p2eb(i'1+'2) + p2�p1eb(�i'1+'2))℄with Q2 = 1=b. The fa
tor ~�N has been introdu
ed previously in eq. (2.15). Now we followthe same steps as in the 
ase of osp(1j2), i.e. we res
ale and rotate all the fermioni
 �elds,�1 := i(�1puB � p2=puB) ; �2 := i(�2puB � p1=puB) ;  a := pa=puB : (2.32)On
e more, it is not diÆ
ult to rewrite the a
tion in terms of the new fermioni
 �elds interms of �a;  a. For the kineti
 terms this is done with the help of the identity,� 12uB(�1 ���2 + �2 ���1) +Xa pa ���a (2.33)= �1 ���2 +  1 �� 2 +Xa �i a�a � 12� lnpuB� �� lnpuB :In order to spell out the vertex operators, we bosonize all four fermioni
 �elds, a � i�a = 2 exp(�iYa) : (2.34)Putting all this together, we arrive at the following formula for 
orrelation fun
tions in theWZNW model,h NY�=1 Vj� (�� jz�)i = Æ2( NX�=1��) j�(2)N j2 2Ya=1 Z D'aD2 aD2�ae�S[�a; a;�a℄� (2.35)� NY�=1 e i2Pa(Ya+�Ya)+2(b(j�+1)+ 12b )'2(z�)N�2Yj=1 e� i2Pa(Ya+�Ya)� 1b'2(yj) ;where the a
tion S is built from an N = 2 supersymmetri
 Liouville theory for the �elds('a;  a; � a) and the theory of two free fermions (�a; ��a),S[�;  ; �℄ = 12� Z d2z[�'1 ��'1 + �'2 ��'2 + Q24 pgR'2 + 1ke2b'2 (2.36)+  1 �� 2 + � 1� � 2 + �1 ���2 + ��1� ��2 + ik ( 1 � 2eb(i'1+'2) +  2 � 1eb(�i'1+'2))℄ :The fa
tor �(2)N is very similar to the 
orresponding fun
tion in the OSP(1j2) model,�(2)N = u NY�<�(z� � z�) 12b2� 12 N�2Yi<j (yi � yj) 12b2� 12 NY�=1N�2Yi=1 (z� � yi)� 12b2+ 12 : (2.37)
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In 
on
lusion, we have shown that 
orrelators of ta
hyon vertex operators in the OSP(2j2)WZNW model may be obtained from 
orrelation fun
tions in N = 2 Liouville �eld theory.Sin
e we do not know mu
h about the latter when N � 3, we shall not exploit this relationany further. Instead, we shall now fo
us on the OSP(1j2) WZNW model.3. OSP(1j2) WZNW model - the parti
le limitOur main aim below is to exploit our relation (2.21) between the OSP(1j2) WZNW modeland N = 1 Liouville theory along with known results for the latter in order to solve theformer. Before going into the full and 
umbersome 
onformal �eld theory 
omputations,however, it is instru
tive to examine the parti
le limit. We shall determine the minisuper-spa
e wave fun
tions in the �rst subse
tion and then 
al
ulate parti
le analogues of the2-point and 3-point fun
tions.3.1 Parti
le wave fun
tions on OSP(1j2)Let us �rst 
onstru
t the wave fun
tions for a parti
le that moves freely on the supergroupOSP(1j2). The mathemati
al problem that needs to be solved is to determine all eigenfun
-tions of Lapla
e operator. In our parametrization (2.24), the generators of in�nitesimalright translations on OSP(1j2) are easily worked out,RE+ = �
 ; RH = �12�� � 
�
 � 12��� ;RE� = e2���
 � 
2�
 � 
�� � 
��� + e��(��� � ����
) ; (3.1)RF+ = 12(�� + ��
) ; RF� = 12e�(��� � ����
)� 12
(�� + ��
)� 12��� :We may now insert these expressions into the general formula for the quadrati
 Casimirelement and thereby derive the following Lapla
ian on OSP(1j2)� = HH + 12(E+E� +E�E+)� (F+F� � F�F+)= 14�2� � 14�� + e2��
��
 � 12e�(�� � ��
)(��� � ����
) : (3.2)The 
onstru
tion of eigenfun
tion pro
eeds in several steps. To begin with, we shall lookfor eigenfun
tions �j of the following spe
ial form�j(
; �
; �; ��; �) = e�
����
 �j���(�; ��; �) : (3.3)Here, j parametrizes the eigenvalue � = (j + 1)(j + 12) of the Lapla
ian. With our ansatz,we have expli
itly diagonalized the operators RE+ and LE� = ��
 . The fun
tions �j giverise to eigenfun
tions of the Lapla
ian, provided that the fa
tor �j��� is an eigenfun
tion ofthe operator�� = 14�2� � 14�� � e2����� 12e� � where �� = (�� � ��)(��� + ����) : (3.4)
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Here and in the following we shall assume that j�j2 � ��� > 0. Our se
ond step now isto diagonalize the operator �� on the 4-dimensional Grassmann algebra that is generatedfrom � and ��. We 
an easily �nd two eigenfun
tions S�� ; T�� for ea
h of the eigenvalues�� = �j�j,S+� (�; ��) = 1p2(1� j�j���) ; S�� (�; ��) = 1p2(1 + j�j���) ; (3.5)T+� (�; ��) = 1p2(p�� �p����) ; T�� (�; ��) = 1p2(p�� +p����) : (3.6)Having solved the eigenvalue problem for the operator ��, we 
an now split o� the depen-den
e of the eigenfun
tions �j��� on fermioni
 
oordinates through the following ansatz�j;���� (�; ��; �) = S�� (�; ��)U�p (�) ;  j;���� (�; ��; �) = T�� (�; ��)U�p (�) : (3.7)Here we have introdu
ed the letter  instead of � for odd eigenfun
tions. Furthermore, thevariable � on the right hand side is de�ned by � = 2j�je�. A short 
omputation shows thatthe fun
tions U�p possess no expli
it � dependen
e any more. There remains a dependen
eon the parameter j = �3=4 + ip=2 whi
h we display expli
itly through the subs
ript p. Inany 
ase, the fun
tions �j;���� and  j;���� give rise to eigenfun
tions of our Lapla
ian providedthat U�p (�) satisfy the se
ond order di�erential equation(�2� � 1� 1� + 1=4 + p2�2 )U�p (�) = 0 : (3.8)Solutions to these equations areU�p (�) = Cip�(12 � ip) (�K 12+ip(�)� �K 12�ip(�)) : (3.9)In order to single out some unique solution we demanded regularity at j�j ! 1. Thenormalization 
onstant C remains undetermined for now.In summary we have obtained a basis of eigenfun
tions of the Lapla
ian � in OSP(1j2).Grassmann even fun
tions with eigenvalue � = �p = (j + 1)(j + 12) = �14(14 + p2) take theform �j;���� (
; �
; �; ��; �) = e�
����
 S�� (�; ��)U�p (2j�je�) (3.10)where �; �� run through the 
omplex plane. The fun
tions U�p and S�� have been de�nedin eqs. (3.9) and (3.5), respe
tively. A similar formula with T�� instead of S�� holds forGrassmann odd eigenfun
tions 	j;���� .Let us 
on
lude this subse
tion by 
omputing the analogue of the minisuperspa
e2-point fun
tion for Grassmann even fun
tions in the OSP(1j2) model.3 This requires32-point fun
tions for Grassmann odd fun
tions 	j;��;�� 
an be 
omputed in the same way. We will notdis
uss those here, neither in the parti
le model nor in the �eld theory.{ 13 {



integrating the produ
t of two fun
tions (3.10) over the supergroup OSP(1j2). Using theHaar measure [dg℄ = e��d�d�
d
d��d� on OSP(1j2) we obtainh�j1;�1�1;��1 �j2;�2�2;��2 i0 := Z [dg℄ �j1;�1�1 ;��1(
; �
; �; ��; �)�j2;�2�2 ��2(
; �
; �; ��; �)= �j�2j�2Æ�1;�2Æ2(�1 + �2)Z dxx2 U�p1(2j�1jx)U�p2(2j�2jx) (3.11)= �2�j�2j2�2Æ�1;�2Æ2(�1 + �2) (Æ(p1 + p2) +R�2(p2)Æ(p1 � p2)) :To get from the se
ond to the third line we have utilized a formula for integrals of Besselfun
tions, see appendix B. The re
e
tion amplitude R in the last line is given byR�(p) = �C2ip�(12 + ip)�(12 � ip) : (3.12)We shall later 
ompare this answer with the out
ome of a full 
edged 
onformal �eld theory
omputation of the 2-point fun
tion. We 
ould now start to analyze 3-point fun
tions butbefore we do so, we would like to talk about another basis in the spa
e of fun
tions onOSP(1j2).3.2 Wave fun
tions - another basisIn the last subse
tion, we 
onstru
ted a basis for the spa
e of fun
tions on OSP(1j2). Thisbasis is very 
onvenient for des
ribing the duality between the OSP(1j2) WZNW modeland N = 1 Liouville �eld theory. When it 
omes to writing down expli
it formulas for
orrelation fun
tions, on the other hand, there exists another, preferable 
hoi
e. Re
allthat all 
orrelators 
ontain an osp(1j2) invariant tensor that is determined by symmetriesalone, along with the stru
ture 
onstants whi
h 
ontain all dynami
al information. Whilethe latter are the same in every basis, the former depend very mu
h on our 
hoi
es. Weshall now present a new basis in whi
h the osp(1j2) invariant tensors take a parti
ularlysimple form.The transformation from the old basis (3.10) to the new 
an be thought of as aFourier/Bessel transform in �; �� and their fermioni
 
ounterparts. Let us perform thefermioni
 transformation �rst. This amounts to de�ning new fun
tions �j� by�j�(�j
; �; �) := 1j�jX�=� �S��(�)�j;�� (
; �; �) + T ��(�)	j;�� (
; �; �)� : (3.13)Here and throughout the rest of this se
tion we shall suppress spelling out the depen-den
e on the bared quantities su
h as ��; ��; �
; ��. Following [13℄, we also transform from thevariables �; �� to new variables x; �x,�j(x; �j
; �; �) := 14� j�j�2j�2 Z d2��j�(�j
; �; �) e���x��x : (3.14)
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We shall often refer to �j(x; �j
; �; �) as eigenfun
tions in the (x; �)-basis. For given labelj, the generators (3.1) of right translations may be expressed through their a
tion on theauxiliary variables x; �x; �; �� as follows,rE+ = �x ; rH = �x�x � 12��� + j + 12 ;rE� = �x2�x � x��� + x(2j + 1) ; (3.15)rF+ = 12(�� + ��x) ; rF� = �12x(�� + ��x) + �(j + 12) :Given these expressions it is rather straightforward to verify that osp(1j2)-invarian
e �xesthe minisuperspa
e 2-point fun
tion to be of the formh�j1(x1; �1)�j2(x2; �2)i = �4 �Æ2(X12)Æ(j1 + j2 + 3=2) + B(j2)jX12j�4j2�2 Æ(j1 � j2)� ; (3.16)up to an overall normalization whi
h we have �xed su
h that the 
oeÆ
ient of Æ fun
tionsin the �rst term is �=4. In the �rst term we have also used the shorthandÆ2(X12) = Æ2(x12)(�1 � �2)(��1 � ��2) : (3.17)Furthermore, we employed the notation Xij = xi � xj � �i�j that will appear frequentlythroughout the rest of this note. The non-trivial stru
ture 
onstant B(j) is not determinedby symmetry. It may be 
al
ulated by expli
itly performing the integral over the groupmanifold. Here, we shall follow a slightly di�erent route. Our aim is to relate the twoformulas (3.11) and (3.16) for the 2-point fun
tions. We 
an then read o� B(j) from ourformula (3.12) for the re
e
tion amplitude R�(p). With the help of some integral formulasthat are spelled out in appendix B, one may show thath�j1;�1�1 �j2;�2�2 i0 = ��j�2j2�2Æ�1;�2Æ2(�1 + �2)[Æ(j1 + j2 + 32)� �2B(j2)�
(2j2 + 1)Æ(j1 � j2)℄where 
(x) = �(x)=�(1 � x). Indeed, this out
ome is fully 
onsistent with our previousformula (3.11). The 
omparison also allows us to determine the stru
ture 
onstant B ,B(j) = � �R�(p)�
(2j + 1) = � 1� C2ip ; (3.18)where j and p are related by j = �3=4+ ip=2, as usual. By 
omparing the two expressions(3.16) and (3.11) for the 2-point fun
tion we have 
on�rmed that the expression (3.11) is
onsistent with osp(1j2) invarian
e and we have determined the stru
ture 
onstant B(j)that was introdu
ed in eq. (3.16).3.3 The minisuperspa
e 3-point fun
tionWe are now prepared to move on to the analogue of the 3-point fun
tion in the parti
lemodel. On
e more, the symmetry under osp(1j2) transformation �xed the 3-point fun
tionup to two stru
ture 
onstants. In the (x; �)-basis, it readsh�j1(x1; �1)�j2(x2; �2)�j3(x3; �3)i0 = C (j1; j2; j3) + ~C (j1; j2; j3)���jX12j�2j12�1jX23j�2j23�1jX31j�2j31�1 ; (3.19)
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where j12 = j1+ j2� j3 et
. and Xij = xi�xj� �i�j, as before. Furthermore, the so-
alledsuper-proje
tive 3-point invariants �; �� are� = (x12x23x31)� 12 (x23�1 + x31�2 + x12�3 � 12�1�2�3) (3.20)and similarly for ��.4 The 
oeÆ
ients C; ~C 
annot be determined from osp(1j2) invarian
e.Instead, they require to perform the full integral over the supergroup manifold. Sin
e wedo not need the results, we are not going to 
ompute the minisuperspa
e 
oeÆ
ients Cand ~C expli
itly. Determining their �eld theoreti
 analogue is one of the main issues inthe next se
tion.Before we 
on
lude this se
tion, we would like to dedu
e from eq. (3.19) the 3-pointfun
tion for the even part �B of our fun
tions (3.13) in the mixed basis,�B;j� (�j
; �; �) := ��j�(�j
; �; �)�even = 1j�jX�=�S��(�)�j;�� (
; �; �) : (3.21)The �eld theoreti
 analogues of these fun
tions shall feature in the next se
tion when wedis
uss 
orrelators of the OSP(1j2) WZNW model. A short and straightforward 
omputa-tion shows thath 3Yi=1�B;ji�i;��i(�i)i0 = C (j1; j2; j3)0�D0[ji; �i℄ + 12 3Xa;b;
=1 �ab
Db
[ji; �i℄�b ��b�
��
1A+ ~C (j1; j2; j3) 3Xa=1Da[ji; �i℄�a ��a +D123[ji; �i℄�1 ��1�2��2�3 ��3! (3.22)where C and ~C are the same as before and �123 = 1 and so on. Various group theoreti
fa
tors are given by D0[ji; �i℄ = [ 3Yi=1 j�ij�1℄D h j1+ 12 j2+ 12 j3+ 12�1 �2 �3 i ;D123[ji; �i℄ = �(j + 2)2D � j1 j2 j3�1 �2 �3 � ; (3.23)D1[ji; �i℄ = j�2j�1j�3j�1D h j1 j2+ 12 j3+ 12�1 �2 �3 i ;D12[ji�i℄ = �j�3j�1(j12 + 12 )2D h j1 j2 j3+ 12�1 �2 �3 i ;and those with index permutations. On the right hand side there appears the single newfun
tion D that is de�ned in (B.7). As we anti
ipated, the �nal expression for the 3-pointfun
tion in the �-basis turns out to be rather involved simply be
ause the group theoreti

ontributions to the stru
ture 
onstants are rather 
ompli
ated.4Sin
e the osp(1j2) superalgebra has super dimension 3j2, we 
an �x three bosoni
 parameters x andtwo fermioni
 parameters �. Therefore, the three point fun
tion still depends on a fermioni
 invariant �.{ 16 {



4. Solution of the OSP(1j2) WZNW modelIn this se
tion we 
ompute the stru
ture 
onstants of OSP(1j2) WZNW model. As wedis
ussed in the previous se
tion, the 2- and 3-point fun
tions are almost �xed by osp(1j2)symmetry, up to three 
oeÆ
ients Bb, Cb, ~Cb that remain undetermined and turn out toa
quire �eld theoreti
 modi�
ations. In order to �x these 
oeÆ
ients we utilize the resultsof se
tion 2, where we have derived the relation between 
orrelators of OSP(1j2) modeland N = 1 super Liouville theory.4.1 The WZNW-Liouville 
orresponden
e revisitedWhen we dis
ussed the 
orresponden
e between the OSP(1j2) WZNW model and N = 1Liouville theory we worked with vertex operators V �;��j (�jz) 
ontaining both bosoni
 andfermioni
 
omponents. In our 
omputations here we shall restri
t ourselves to 
orrela-tors involving purely bosoni
 �elds sin
e they are enough to �x the unknown fun
tions.The bosoni
 
omponent of V �;��j (�jz) is a �eld theoreti
 analogue of the fun
tion (3.10) onOSP(1j2), i.e.V �j (�jz) := 1p2 �V �0;��0j (�jz)�even = 1p2 �1� �j�j���� j�j2j+2e�
����
e2b(j+1)� (4.1)where � = ��0��0. Note that V �j (�jz) are indeed modeled after the fun
tions (3.10), i.e.V �j (�jz) = S�� (�; ��) e�
����
 j�j2j+1e2(j+1)�where S�� is the same as in eq. (3.5). Only now the symbol � = �(z) denotes a fermioni
�eld on the world-sheet and similarly for ��. Under the 
hange of variables des
ribed inse
tion 2, the �eld S�� be
omesS�� = 1p2 �1� i�0��0� = 1p2 �1� i2( � i�)( � + i��)� = 1p2 �1� e�iY+i �Y � :With this preparation we 
an now 
ompute 
orrelation fun
tions of the �elds V �j (�jz) inthe OSP(1j2) WZNW model through our relation (2.21) with N = 1 Liouville �eld theory,h NY�=1 V ��j� (�� jz�)i = Æ2( NX�=1 ��)j�(1)N j2h NY�=1S��e��'(z�)N�2Yj=1 e� i2Ye� 12b'(yj)iL (4.2)with b = 1=p2k � 3 and �� = 2b(j� + 1) + 1=2b. The index L on the right hand sidereminds us that the 
orrelator is to be 
omputed in the produ
t of super Liouville theorywith a free fermion theory. Here we have de�nedS+ = p2 
os Y2 ; S� = p2i sin Y2 ; Y = Y � �Y : (4.3)Sin
e the �elds S� in
lude both the fermioni
 �eld � of the free fermion theory and thefermion  of N = 1 Liouville theory, it is not straightforward to apply the results of N = 1{ 17 {



super Liouville �eld theory. In order to do so we utilize the well-known 
onstru
tion of S�through spin �elds of the real fermions (see e.g. [26℄),h2mYi=1 S+(zi) 2nYj=2m+1S�(zj)i = (4.4)= (�1)n�mh2mYi=1�+� (zi) 2nYj=2m+1��� (zj) ih2mYi=1�+ (zi) 2nYj=2m+1�� (zj)i ;where ��� and �� are spin �elds for the real fermions � and  , respe
tively.4.2 Computation of 2-point fun
tionsIn order to pra
ti
e using our relation (4.2), we want to 
ompute the 2-point fun
tion ofOSP(1j2) WZNW model. This 
ase is rather simple sin
e no extra degenerate �elds are tobe inserted. With eq. (4.2) and eq. (4.4) we havehV �1j1 (�1jz1)V �2j2 (�2jz2)i == Æ2(�1 + �2)juj2jz12j 12b2� 12 hS�1e�1'(z1)S�2e�2'(z2)iL (4.5)= �ie�i4 (�1+�2) Æ2(�1 + �2) juj2jz12j 12b2� 12 h��1� (z1)��2� (z2)i h��1�1(z1)��2�2(z2)i ;where ��� are spin �elds in N = 1 Liouville theory, see eq. (C.9) for a de�nition. Insertingthe two point fun
tion of spin �elds in the free fermion theory,h��1� (z1)��2� (z2)i = Æ�1;�2 jz12j� 14 ; (4.6)along with the 
orresponding formula for the 2-point fun
tion of ��� in super Liouvilletheory, see eq. (C.10), the 2-point fun
tion of OSP(1j2) WZNW model 
an be evaluated ashV �1j1 (�1jz1)V �2j2 (�2jz2)i = Æ�1�2 Æ2(�1 + �2) �j�2j2�2bjz12j4�j2 [Æ(j1 + j2 + 32 )� �2Æ(j1 � j2)DLR(�2)℄with �j = �2b2(j + 1)(j + 12). An expli
it formula for the stru
ture fun
tions DLR ofLiouville theory may be found in eq. (C.11). By 
omparing our result with the generalform of the 2-point invariant (3.16) we read o� thatBb(j) = DLR(2b(j + 1) + 12b )�
(2j + 1) = � 1�  2kb2i
( b2+12 )!4j+3 �(12 + b2(2j + 32 ))�(12 � b2(2j + 32 )) : (4.7)In the limit b! 0 we re
over the result (3.18) of the parti
le model.4.3 Computation of 3-point fun
tionsOur aim now is to determine the stru
ture 
onstants of the 3-point fun
tion in the OSP(1j2)WZNW model from the 
orresponden
e with N = 1 Liouville theory. To this end we{ 18 {




ompute the 3-point fun
tion of three bosoni
 vertex operators (4.1) using the formula(4.2).hV �1j1 (�1jz1)V �2j2 (�2jz2)V �3j3 (�3jz3)i = Æ2(�1 + �2 + �3)j�(1)3 j2 � (4.8)� h 1p2(S+ + S�)e� 12b'(y)S�1e�1'(z1)S�2e�2'(z2)S�3e�3'(z3)iL :Here, we use the same notations as in eq. (4.2) before. Note that the 
omputation ofa 3-point fun
tion on the OSP(1j2) WZNW model requires one additional insertion of adegenerate Liouville �eld in the 
orrelator on the right hand side. This �eld is inserted aty = �1u(�1z2z3 + �2z3z1 + �3z1z2) ; (4.9)where the parameter u is given by u =P3i=1 �izi. Furthermore, for N = 3 the twist fa
torj�(1)3 j2 de�ned in eq. (2.22) simpli�es as followsj�(1)3 j2 = juj 32b2+ 12 Yi<j jzij j� 12b2+ 12 3Yi=1 j�ij� 12b2+ 12 : (4.10)As in the 
ase of the 2-point fun
tion we 
an express the �elds S� in terms of twist �eldsfor the two fermions using the formula (4.4). The 
orrelator of four twist �elds in a freefermion model is known from the work of Belavin, Polyakov and Zamolod
hikov [27℄,h��0� (z0)��1� (z1)��2� (z2)��3� (z3)i = jz03j� 14 jz12j� 14I�0�1�2�3(z) : (4.11)Here z (� (z01z23)=(z03z21)) = 1 + �2=�3 is the 
onformally invariant 
ross ratio of thepoints z0 = y and zi; i = 1; 2; 3. The fun
tions I�0�1�2�3(z) are given byI����(z) = I0(z)I0(�z) + I 12 (z)I 12 (�z) ; I����(z) = I0(z)I0(�z)� I 12 (z)I 12 (�z) ;I����(z) = � hI0(z)I 12 (�z) + I 12 (z)I0(�z)i ; I����(z) = i hI0(z)I 12 (�z)� I 12 (z)I0(�z)i ;withI0(z) = (z(1� z))� 18F (14 ;�14 ; 12 ; z) ; I 12 (z) = 12 (z(1� z)) 38F (54 ; 34 ; 32 ; z) : (4.12)As for the 
ontribution from Liouville theory, all relevant formulas are listed in appendixC. The relevant 4-point fun
tion (C.20) was 
onstru
ted in [20℄. It involves a new fun
tionH�0�1�2�3 that we spell out expli
itly in eq. (C.24). Putting all these pie
es together weobtainhV �1j1 (�1jz1)V �2j2 (�2jz2)V �3j3 (�3jz3)i = Æ2(�1 + �2 + �3) Yi<j jzij j�2�ij � (4.13)� j�1j� 12b2+ 12 j�2j� 12b2+ 12 j�3j 1b2+1 e�i(4���P ��)=4p2 I��1�2�3(1 + �2�3 )H��1�2�3(1 + �2�3 ) ;where � = �1�2�3. In prin
iple we have thereby 
ompleted our 
omputation of the 3-pointfun
tion in the OSP(1j2) WZNW model. Of 
ourse, in its present form the answer is not{ 19 {



very illuminating, in parti
ular when 
ompared with the relatively simple form of the 3-point fun
tion we anti
ipated in eq. (1.1) of the introdu
tion. The reason our formula (4.13)looks somewhat unfamiliar was dis
ussed in detail in se
tion 3.3: It is the transformationfrom the x to the � basis that turns the rather simple looking formulas (3.19) or (1.1) intothe bulky expression of eqs. (3.22) or (4.13). Our �nal task is therefore to perform thetransformation from eq. (4.13) to (1.1). We shall not dis
uss this in full detail but simplylook at two of the terms in eq. (3.22) whi
h suÆ
e to read o� the stru
ture fun
tions Cband ~Cb.Let us begin with the 
oeÆ
ient ~Cb in eq. (1.1). Comparison with our minisuperspa
eformula (3.22) shows that ~C appears in the 
oeÆ
ient of the term with the maximal numberof Grassmann variables. In fa
t, the 
oeÆ
ient of this term is a produ
t of ~C with the grouptheoreti
 fa
tor D123. In order to 
ompare with our �eld theoreti
 out
ome, we swit
h fromthe (�; �) basis to the mixed basis involving � and �, i.e. we rewrite the 
orrelation fun
tion(4.13) in terms of the �eldsV Bj (�; �jz) := (Vj(�; �jz))even = 1j�jX�=� S��(�)V �j (�jz) : (4.14)The de�nition of V B is modeled after the 
onstru
tion (3.21) in the parti
le theory. Fromthe dis
ussion above we infer that~Cb(j1; j2; j3)D123[ji; �i℄ == limz1!1Z 3Yi=1 d��id�i jz1j4�j1 hV Bj1 (�1; �1jz1)V Bj2 (�2; �2j1)V Bj3 (�3; �3j0)i= limz1!1 12p2 X�i=�(��1�2�3)jz1j4�j1 hV �1j1 (�1jz1)V �2j2 (�2j1)V �3j3 (�3j0)i : (4.15)Now we need to insert our result (4.13) along with formulas for I and H. After thatwe 
an 
ompute the sum on the right hand side of the previous equation. It is easy tosee that all terms involving the Liouville stru
ture 
onstant ~CLR 
an
el from the resultingexpression. The terms proportional to CLR are determined with the help of the followingauxiliary formula�G(bp1; bp2; bp3; z) +p1� z G(bp1;�bp2;�bp3; z)��� �G(bp1; bp2; bp3; �z) +p1� �z G(bp1;�bp2;�bp3; �z)� = (4.16)= jzj 12b2+ip1 j1� zj 12b2+ip22F1(�14 + i2p; 14 + i2p12; 12 + ip1; z) ;where p12 = p1 + p2 � p3 et
. and p = p1 + p2 + p3. The parameter z takes the same valuez = 1 + �2=�3 as before. In the derivation of the formula we have used the well knownidentities12 sin� 
os �F (54 ; 34 ; 32 ; sin2 �) = sin 12� ; F (14 ;�14 ; 12 ; sin2 �) = 
os 12� ; (4.17)
{ 20 {



and(
� b� 1)F (a; b; 
; z) + b(1� z)F (a; b + 1; 
; z) = (
� 1)F (a� 1; b; 
 � 1; z) : (4.18)The resulting expression for the sum in eq. (4.15) is of the form ~CbD123 with D123 givenby formula (3.23) if the stru
ture fun
tion ~C(j1; j2; j3) is introdu
ed as~Cb(j1; j2; j3) = 12� CLR(�1 � 12b ; �2; �3) 
(14 � i2p)
(12 + ip1)
(14 + i2p31)
(14 + i2p12)= 12�b  2kb2+b2i
( b2+12 )!2j+5 �0NS(0)�NS(2b(j + 52 ) + 1b )� (4.19)� �R(4b(j1 + 1) + 1b )�R(4b(j2 + 1) + 1b )�R(4b(j3 + 1) + 1b )�R(2b(j12 + 1) + 1b )�R(2b(j23 + 1) + 1b )�R(2b(j31 + 1) + 1b ) :A very similar analysis furnishes an expression for the stru
ture 
onstant Cb(j1; j2; j3).Another glan
e onto eq. (3.22) shows that Cb may be determined e.g. from the termsproportional to �1��1�2 ��2 in the 
orrelators of V Bj (�; �jz),Cb(j1; j2; j3)D12[ji; �i℄= limz1!1Z 3Yi=1 d��id�i �3 ��3jz1j4�j1 hV Bj1 (�1; �1jz1)V Bj2 (�2; �2j1)V Bj3 (�3; �3j0)i= limz1!1 12p2 X�i=� �1�2j�3j jz1j4�j1 hV �1j1 (�1jz1)V �2j2 (�2j1)V �3j3 (�3j0)i : (4.20)The sum on the right hand side 
an be 
omputed in the pre
isely the same way as before,and the result is given by repla
ing p3 with �p3 and CLR with ~CLR. Thus we 
on
ludeCb(j1; j2; j3) = 12� ~CLR(�1 � 12b ; �2; �3) 
(34 � i2p)
(12 + ip1)
(34 + i2p31)
(34 + i2p12)= 12�  2kb2+b2i
( b2+12 )!2j+5 �0NS(0)�R(2b(j + 52) + 1b )� (4.21)� �R(4b(j1 + 1) + 1b )�R(4b(j2 + 1) + 1b )�R(4b(j3 + 1) + 1b )�NS(2b(j12 + 1) + 1b )�NS(2b(j23 + 1) + 1b )�NS(2b(j31 + 1) + 1b ) :5. Con
lusionIn this note we have solved the very simplest example of a WZNW model on a type IIsupergroup, namely on the supergroup OSP(1j2). Our dis
ussion here was restri
ted tothe NSNS se
tor of the theory but the analysis 
an easily be extended to the RR se
tor.The asso
iated stru
ture 
onstants then involve the 2- and 3-point 
ouplings in the NSNSse
tor of N = 1 Liouville theory. A more interesting problem would be to in
lude bound-ary 
onditions into the analysis. A

ording to [28℄ (see also [29℄ for a generalization to{ 21 {



supergroups), maximally symmetri
 branes in the OSP(1j2) WZNW model 
orrespond to(twisted) super-
onjuga
y 
lasses. Under the OSP(1j2) WZNW super-Liouville 
orrespon-den
e, branes in the OSP(1j2) model should map to branes in N = 1 Liouville theory. Thelatter have been studied by several authors, see in parti
ular [20, 30℄. In addition, it shouldalso be possible to �nd a pre
ise relation between 
orrelation fun
tions on the half-plane.In the 
ase of the ordinary H+3 -Liouville 
orresponden
e, su
h relations were found in [31℄and rederived by means of the path integral approa
h in [32℄.To the best of our knowledge, the OSP(1j2) WZNW model had not been solved previ-ously, though it is 
ertainly possible to �nd its 2- and 3-point 
ouplings more dire
tly, i.e.without the relation to supersymmetri
 Liouville theory, through the evaluation of fa
tor-ization 
onstraints. Su
h an approa
h has been su

essfully applied to the H+3 model in[10℄. It would be interesting to generalize the analysis of fa
torization 
onstraints to theOSP(1j2) WZNW model.The proposal of Ribault and Tes
hner for the 
on
rete relation between lo
al 
orrela-tors in H+3 model and Liouville �eld theory emerged partly from a 
areful 
omparison ofdi�erential equations on both sides of the 
orresponden
e. The 
orrelators of any WZNWmodel obey the famous Knizhnik-Zamolod
hikov equations. On the Liouville side, onehigher order di�erential equation arises from ea
h degenerate �eld insertion. These twotypes of di�erential equations are mapped onto ea
h other by the H+3 -Liouville 
orrespon-den
e, see [13, 16℄. A similar analysis for the relation between the OSP(1j2) WZNW modeland N = 1 Liouville theory has not been performed yet.There are various other extensions of our path integral approa
h that merit furtherstudy. Our basi
 strategy above was to apply the redu
tion ideas of [16℄ to the sl2 
urrentalgebra that resides within the osp(1j2) 
urrent algebra of the WZNW model. As we haveexplained in the introdu
tion and illustrated in se
tion 2.2, the same 
on
epts apply tomore general type II supergroups. It might be interesting to work this out in more detail,in parti
ular for supergroups OSP(pjN) with parameters N � 3. Another obvious extensionwould be to solve the OSP(2j2) WZNW model through its relation with N = 2 Liouville�eld theory. While bulk 2-point fun
tions of the latter model have been studied [33℄ anda 
onje
ture for bulk 3-point fun
tions was formulated in [34℄, higher 
orrelators are notyet available. In this 
ontext, it may also be worthwhile investigating the pre
ise relationbetween the OSP(2j2) WZNW model dis
ussed above and the SL(1j2) theory that has beensolved in [35, 18℄. The OSP(2j2) WZNW model was also investigated in the 
ondensedmatter literature, see e.g. [36, 37℄ and referen
es therein.In the 
ase of WZNW models on type I supergroups it is possible to solve them interms of a purely bosoni
 model [18℄. It seems likely that for type II supergroups a furtherredu
tion is possible in whi
h the remaining fermioni
 �elds are also removed. Indeed, forN = 1 Liouville �eld theory the stru
ture 
onstants are very 
losely related to those ofthe purely bosoni
 Liouville model. It would be rewarding to �nd a formal path integralderivation of this relation and to generalize it to higher supergroups.Let us �nally mention a rather di�erent dire
tion to whi
h some of the above mightapply. We have dis
ussed in the introdu
tion that 
orresponden
es of the proposed type{ 22 {



elevate a usual Hamiltonian redu
tion to an equivalen
e between lo
al �eld theories of dif-ferent target spa
e dimension. But Hamiltonian redu
tion also links WZNW models forgroups of higher rank to 
ertain 
onformal Toda theories, see e.g. [38℄. It is indeed likelythat N -point fun
tions of ta
hyon vertex operators in WZNW models 
an be more gener-ally related to 
orrelators in Toda theory. Unfortunately, no expli
it formulas have beenderived yet. The main te
hni
al obsta
le arises from the non-abelian nature of the maximalnilpotent subalgebra. In this sense, even the osp(1j2) 
ase we have studied here 
ould turnout to be a rather instru
tive example. The maximal nil-potent subalgebra of osp(1j2),i.e. the algebra spanned by F+ and E+, is non-abelian. Hen
e an equivalen
e between theOSP(1j2) WZNW model and bosoni
 Liouville �eld theory (see previous paragraph) 
ouldbe the �rst instan
e of a mu
h more general 
lass of dualities involving WZNW models ongroups of rank r > 1 and 
onformal Toda theory. We plan to return to this subje
t in thenear future.A
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t number H18-143.A. The Lie superalgebras osp(1j2) and sl(1j2)In this appendix we 
olle
t a few relevant details 
on
erning the two Lie superalgebras thatfeature in the main text, namely the superalgebras osp(1j2) and sl(1j2).A.1 The Lie superalgebra osp(1j2)The Lie superalgebra osp(1j2) possesses three bosoni
 generators and two fermioni
 ones.We shall denote the former by E�;H and use F� for fermioni
 generators. The relationsbetween these elements are given by[H;E�℄ = �E� ; [H;F�℄ = �12F� ; [E+; E�℄ = 2H ; (A.1)[E�; F�℄ = �F� ; fF+; F�g = 12H ; fF�; F�g = �12E� :Note that E� and H generate a sl2 subalgebra within osp(1j2). It is easy to verify thatthe following matri
es provide a 2j1-dimensional representation of osp(1j2) [39℄,H = 0B�12 0 00 �12 00 0 01CA ; E+ = 0B�0 1 00 0 00 0 01CA ; E� = 0B�0 0 01 0 00 0 01CA ; (A.2)F+ = 0B�0 0 120 0 00 12 01CA ; F� = 0B�0 0 00 0 �1212 0 0 1CA :
{ 23 {



The Lie superalgebra osp(1j2) possesses a non-degenerate invariant metri
 hX;Y i = str(XY )whi
h is de�ned for any pair of elements X;Y 2 osp(1j2) and using the supertra
e in the2j1-dimensional matrix representation,hH;Hi = 12 ; hE+; E�i = hE�; E+i = 1 ; hF+; F�i = �hF�; F+i = 12 : (A.3)The metri
 is needed e.g. to write down the a
tion of a WZNWmodel on the Lie supergroupOSP(1j2).A.2 The Lie superalgebra osp(2j2)The Lie superalgebra possesses four bosoni
 generators E�;H and Z along with fourfermioni
 ones. The latter are denotes by F� and �F�. These eight generators obeythe following set of non-trivial (anti-)
ommutation relations [39℄,[H;E�℄ = �E� ; [H;F�℄ = �12F� ; [H; �F�℄ = �12 �F� ;[Z;F�℄ = 12F� ; [Z; �F�℄ = �12 �F� ; [E+; E�℄ = 2H ; (A.4)[E�; F�℄ = �F� ; [E�; �F�℄ = �F� ; fF�; �F�g = Z �H ; fF�; �F�g = E� :As in the 
ase of osp(1j2) it is possible to �nd a matrix representation of osp(2j2) that isbuilt out of 2j1-dimensional supermatri
es,H = 0B�12 0 00 �12 00 0 01CA ; Z = 0B�12 0 00 12 00 0 11CA ; E+ = 0B�0 1 00 0 00 0 01CA ; E� = 0B�0 0 01 0 00 0 01CA ; (A.5)F+ = 0B�0 0 00 0 00 1 01CA ; �F+ = 0B�0 0 10 0 00 0 01CA ; F� = 0B�0 0 00 0 01 0 01CA ; �F� = 0B�0 0 00 0 10 0 01CA :Using the pres
ription hX;Y i = str(XY ) it is easy to �nd the following non-trivial bilinearform on osp(2j2),hH;Hi = 12 ; hZ;Zi = �12 ; hE+; E�i = hE�; E+i = 1 ; (A.6)hF+; �F�i = h �F+; F�i = 1 ; h �F�; F+i = hF�; �F+i = �1 :The form h�; �i de�nes a non-degenerate invariant metri
 on the Lie superalgebra osp(2j2).B. Integral formulasIn this appendix we list a few simple integral formulas that are used in some of the deriva-tions we sket
hed in the main part of this note.{ 24 {



The �rst formula 
on
erns the overlap of two Bessel fun
tions that is needed in se
tion3.1 on the minisuperspa
e theory. Utilizing the formulaZ 10 dxx��1K�(x)K�(x) == 2��3�(�)���+ �+ �2 ����+ �� �2 ����� �+ �2 ����� �� �2 � ; (B.1)and �(ix)�(1� ix) = �i sinh�x ; �(12 + ix)�(12 � ix) = �
osh �x ; (B.2)we obtain Z 10 dx�K 1+�2 +ip(x)�K 1+�2 �ip(x)��K 1+�2 +ip0(x)�K 1+�2 �ip0(x)�= 14i" �sinh�(p+p02 � i�) � �sinh�(p+p02 + i�)! �
osh�(p�p02 )� �sinh�(p�p02 � i�) � �sinh�(p�p02 + i�)! �
osh�(p+p02 )# : (B.3)If we take �! 0, then the above quantity vanishes ex
ept for p = �p0. Around these pointswe may use �sinh�(p+p02 � i�) � �sinh�(p+p02 + i�) � 2i�(p+p02 )2 + �2 ! 4�iÆ(p + p0) : (B.4)These results are exploited in our 
omputation (3.11) of the parti
le 2-point 
orrelator.In passing from the 2-point fun
tion (3.16) in the (x; �) basis to the (�; �) basis, wemake use of the following simple integrals,12�2 Z Yi=1;2 �j�ij2ji+2d2xid��id�i(1� �ij�ij�i��i)e�ixi���i�xi� Æ2(x1 � x2)(�1 � �2)(��1 � ��2) == �4j�2j2�2Æ�1;�2Æ2(�1 + �2) (B.5)with j1 + j2 + 3=2 = 0, and12�2 Z Yi=1;2 �j�ij2ji+2d2xid��id�i(1� �ij�ij�i ��i)e�ixi���i�xi� (1 + �1�2��1 ��2�x1��x1)jx1 � x2j4j1+2 == 4j�2j2Æ�1;�2Æ2(�1 + �2)�
(2j2 + 2) (B.6)with j1�j2 = 0. Both formulas are straightforward to derive using only standard propertiesof Grassmann integrals. { 25 {



When 
omputing three point fun
tions, we use the fun
tion D that is de�ned by thefollowing integral formulaD � j1 j2 j3�1 �2 �3 � = 1�3 Z 3Yi=1 �j�ij2ji+2d2xie�ixi���i�xi� jx12j2j12 jx23j2j23 jx31j2j31 ; (B.7)where j12 = j1+ j2� j3 and so on. The integrations may be performed expli
itly and theylead to a rather bulky expression in terms of hypergeometri
 fun
tions,D � j1 j2 j3�1 �2 �3 � = �Æ(2)(�1 + �2 + �3) j�3j�2j1�2j2�2j�1j2j1+2j�2j2j2+2� (B.8)� � 
(j31 + 1)
(j12 + 1)
(�j � 1)
(2j1 + 2) 2F1(j + 2; j12 + 1; 2j1 + 2; 1 + �2�3 )+j1 + �2�3 j�2(2j1+1) 
(j23 + 1)
(�2j1) 2F1(�j31; j23 + 1;�2j1; 1 + �2�3 )� :Here we have used j = j1 + j2 + j3 and2F1(a; b; 
; z) = F (a; b; 
; z)F (a; b; 
; �z) : (B.9)C. N = 1 super Liouville theoryIn order to 
arry out the 
omputations of se
tion 4, we need rather extensive informationon 
orrelation fun
tions in N = 1 Liouville �eld theory. For the 
onvenien
e of the readerwe 
olle
t all relevant formulas in this appendix. Most of the results are taken from [20℄.In our 
onventions, the a
tion of N = 1 super Liouville �eld theory takes the formSL = 14� Z d2z ��'��'+ Q4 pgR'+  �� + � � � �+ i�Lb2 Z d2z � eb' ; (C.1)where Q = b + 1=b. For the relation with the OSP(1j2) WZNW model at level k we setb = 1=p2k � 3 and �x the bulk 
osmologi
al 
onstant to be �L = i=(2�kb2).As all fermioni
 models, N = 1 Liouville theory possesses two se
tors. Depending onthe boundary 
onditions on fermions, these are denoted by NSNS (Neveu-S
hwarz) and RR(Ramond) se
tors. Primary �elds in the NSNS se
tor 
an be thought of as exponentialsV� = e�' in the bosoni
 �eld '. Their 
onformal weight is given by �L� = �(Q � �)=2.The 2-point fun
tion of these NSNS primary �elds takes the formhV�1(z1)V�2(z2)i = jz12j�4�L�2 2� �Æ(�1 + �2 �Q) + Æ(�1 � �2)DLNS(�2)� ; (C.2)with DLNS(�) = ���L�
( bQ2 )�Q�2�b �(b(�� Q2 ))�(1b (�� Q2 ))�(�b(�� Q2 ))�(�1b (�� Q2 )) : (C.3)Here and throughout the main text we use 
(x) = �(x)=�(1 � x). Whereas the �rst termin eq. (C.10) is �xed by normalization, the se
ond term involving DLNS 
ontains dynami
alinformation on the phase shift of ta
hyoni
 modes upon re
e
tion o� the Liouville wall.{ 26 {



The vertex operators that appear in our relation with the OSP(1j2) WZNW model,and in parti
ular in eq. (4.2), are all in the RR se
tor. Before we 
an spell our properties ofRR-�elds we want to re
all a few basi
 fa
ts on spin �elds whi
h apply to N = 1 Liouvilletheory and free fermions alike. Chiral spin �elds �� and ��� may be 
hara
terized by theiroperator produ
t with the fermions, (z)��(0) � ��(0)p2z 12 ; ���(�z) � (0) � i���(0)p2�z 12 : (C.4)As usual, we 
ombine left- and right-moving spin �elds into the non-
hiral produ
ts ���� =������. Their operator produ
ts are known to be given by���(z)���(0) � 1jzj 14 ; ���(z)���(0) � ijzj 14 ; (C.5)���(z)���(0) � � i2 � (0)jzj 34 ; ���(z)���(0) � �12 � (0)jzj 34 : (C.6)Only two spe
ial linear 
ombinations of the spin �elds play an important role for the theory.These are introdu
ed as follows�+ = 1p2(�++ � ���) ; �� = e��i=4p2 (��+ � �+�) : (C.7)In the 
ase of the Ising model (free fermions), �+(= �) is known as the order �eld while��(= �) is referred to as the disorder �eld. From the operator produ
ts of spin �elds we
on
lude easily,�+(z)�+(0) � 1jzj 14 + i2 � jzj 34 ; ��(z)��(0) � 1jzj 14 � i2 � jzj 34 : (C.8)N = 1 Liouville �eld theory 
ontains a family of spin �elds whi
h is parametrized by their`momentum' � in the ' dire
tion. We 
an think of these primary �elds in the RR se
toras produ
ts of a spin �eld and an exponential,����� = ����e�' ; ��� = ��e�' : (C.9)The 2-point fun
tions of the vertex operators ��� possess the following formh���1(z1)���2(z2)i = jz12j�4�L�2� 14 2� �Æ(�1 + �2 �Q)� Æ(�1 � �2)DLR(�2)� (C.10)with a re
e
tion 
oeÆ
ient given byDLR(�) = ��L�
( bQ2 )�Q�2�b �(12 + b(�� Q2 ))�(12 + 1b (�� Q2 ))�(12 � b(�� Q2 ))�(12 � 1b (�� Q2 )) : (C.11)In order to 
ompute 3-point fun
tions of OSP(1j2) model, we need 4-point fun
tions ofRR-�elds involving a single degenerate �eld ���1=2b in N = 1 super Liouville theory. The
{ 27 {



states j � 1=2bi� = j1; 2i� that 
orrespond to the degenerate �eld are 
hara
terized by therelations,G0j1; 2i� = ip2 �1b + b2� j1; 2i� ; G�1j1; 2i� + ip2bL�1j1; 2i� = 0 : (C.12)It follows from standard arguments that operator produ
ts involving at least one su
hdegenerate �eld 
ontain two terms only,�2����1=2b(z1)���� (z2) � jz12j�b + 34 � V��1=2b(z2) + CLR;�(�)jz12j 1b (Q��)� 14V�+1=2b(z2) ;whereCLR;�(�) = 2iDLR(�)DLNS(Q� �� 12b) = 2ib�2 ��L�
( bQ2 )� 1b2 
(12 � �b )
(�b � 12b2 ) :The other operator produ
t expansions we will need below 
an be obtained from the onewe have provided by super 
onformal transformation along with the relations��1;��1�1 (z1)��2;��2�2 (z2) � �i��1�2���1;��1�1 (z1)���2;��2�2 (z2) � �i��1�2��1;���1�1 (z1)��2;���2�2 (z2) :(C.13)Before we spell out a formula for the relevant 4-point fun
tions, let us provide expli
itexpressions for the 3-point fun
tions involving two RR �elds. These were determined in[40, 41, 20℄ and we shall simply quote their results along with all the ne
essary notations,hV�1(z1)����2 (z2)����3 (z3)i = jz12j�2�L12 jz23j�2�L23� 14 jz31j�2�L31CLR(�1;�2; �3) ; (C.14)hV�1(z1)����2 (z2)����3 (z3)i = jz12j�2�L12 jz23j�2�L23� 14 jz31j�2�L31 ~CLR(�1;�2; �3) ; (C.15)where �L12 = �L�1 +�L�2 ��L�3 et
. On
e more, other 3-point fun
tions may be obtainedwith the help of the relations (C.13). The stru
ture 
onstants CLR and ~CLR are 
onstru
tedfrom a spe
ial fun
tions � as follows,CLR(�1;�2; �3) = ��L�
( bQ2 )b1�b2�Q��b �0NS(0)�NS(2�1)�R(2�2)�R(2�3)�R(��Q)�R(�23)�NS(�12)�NS(�31) ;~CLR(�1;�2; �3) = ��L�
( bQ2 )b1�b2�Q��b �0NS(0)�NS(2�1)�R(2�2)�R(2�3)�NS(��Q)�NS(�23)�R(�12)�R(�31) ;where �12 = �1 + �2 � �3 et
., � = �1 + �2 + �3, and�NS(x) = �(x2 )�(x+Q2 ) ; �R(x) = �(x+b2 )�(x+b�12 ) : (C.16)The � fun
tion itself is 
losely related to Barnes double Gamma fun
tion. Instead ofdes
ribing the pre
ise 
onne
tion, we simply display an integral representationln�(x) = Z 10 dtt "e�2t�Q2 � x�2 � sinh2(Q2 � x)tsinh bt sinh tb # : (C.17)
{ 28 {



Note that the fun
tions �NS and �R possess the following behavior under shifts of theirargument,�NS(x+ b) = b�bx
(12 + bx2 )�R(x) ; �R(x+ b) = b1�bx
( bx2 )�NS(x) ; (C.18)�NS(x+ 1b ) = bxb 
(12 + x2b)�R(x) ; �R(x+ 1b ) = b�1+xb 
( x2b )�NS(x) : (C.19)Let us �nally turn to a dis
ussion of the 4-point fun
tions involving one degenerate�eld along with three primary �elds from the RR se
tor. This quantity was 
omputed in[20℄ and it takes the formh��0�1=2b(z0)��1�1(z1)��2�2(z2)��3�3(z3)i = jz03j�4�L�1=2b� 14�� jz12j�2�L12� 14�2�L�1=2b jz23j�2�L23+2�L�1=2b jz31j�2�L31+2�L�1=2bH�0�1�2�3(z) ; (C.20)where H�0�1�2�3(z) is a fun
tion of the 
ross ratio z = (z01z23)=(z03z21). We need somepreparation before we 
an spe
ify the fun
tions H. They are built from yet another set ofauxiliary fun
tions whi
h depend on �i = Q=2 + ipi a

ording toG0(p1; p2; p3; z) = �12(z(1 � z)) 58F (54 ; 34 ; 32 ; z)(G(p1; p2; p3; z)�G(p1;�p2;�p3; z)) ;G1(p1; p2; p3; z) = (z(1 � z)) 18F (14 ;�14 ; 12 ; z)(G(p1; p2; p3; z) +G(p1;�p2;�p3; z)) ;whereG(p1; p2; p3; z) = z 14b2+ ip12b (1� z) 14b2+ ip22b  14 + i2bp3112 + ibp1 !F (34 + i2bp; 14 + i2bp12; 32 + ibp1; z)and p12 = p1+ p2� p3 et
., p = p1+ p2+ p3. One may show that H and Ga obey the samelinear di�erential equations. Hen
e, we will be able to 
onstru
t H from G0;G1 andG2(p1; p2; p3; z) = G0(�p1; p2;�p3; z) ; G3(p1; p2; p3; z) = G1(�p1; p2;�p3; z) : (C.21)Combinations of these four fun
tions Ga with trivial monodromies around z = 0 and z = 1are given by (see also [20℄)H�1 (p1; p2; p3; z) = (�G0 �G0 + G1 �G1) + 
(12 + ibp1)2
(14 + i2bp23)� (C.22)� 
(14 � i2bp)
(34 � i2bp31)
(34 � i2bp12)(G2 �G2 � G3 �G3) ;H�2 (p1; p2; p3; z) = (G0 �G1 � G1 �G0) + 
(12 + ibp1)2
(14 + i2bp23)� (C.23)� 
(14 � i2bp)
(34 � i2bp13)
(34 � i2bp12)(�G2 �G3 + G3 �G2) ;where �Gi(p1; p2; p3; z) = Gi(p1; p2; p3; �z). Both H+1 and H�2 have previously appeared in [20℄where they were also shown to be invariant under the 
rossing symmetry transformationz 7! 1 � z (note that H�2 
ips its sign). Under the a
tion of the same 
rossing symmetrytransformation, our fun
tionsH�1 andH+2 are mapped onto ea
h other. We �nally 
ombine{ 29 {



the fun
tionsH1 andH2 intoH, in a way that is determined by the desired operator produ
texpansions,2H����(z) = �CLR(~�1; �2; �3)H+1 (p1; p2; p3; z) + ~CLR(~�1; �2; �3)H+1 (p1; p2;�p3; z) ;2H����(z) = �CLR(~�1; �2; �3)H�1 (p1; p2; p3; z) + ~CLR(~�1; �2; �3)H�1 (p1; p2;�p3; z) ;(C.24)2H����(z) = �CLR(~�1; �2; �3)H+2 (p1; p2; p3; z) � ~CLR(~�1; �2; �3)H+2 (p1; p2;�p3; z) ;2H����(z) = �iCLR(~�1; �2; �3)H�2 (p1; p2; p3; z) + i ~CLR(~�1; �2; �3)H�2 (p1; p2;�p3; z) ;where the �rst argument of CLR and ~CLR is shifted by 1=2b, i.e. we have set ~� = � � 1=2b.This 
on
ludes our des
ription of the 4-point fun
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