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AbstratString ompati�ations with T-duality twists are revisited and the gauge algebra ofthe dimensionally redued theories alulated. These redutions an be viewed asstring theory on T-fold bakgrounds, and an be formulated in a `doubled spae' inwhih eah irle is supplemented by a T-dual irle to onstrut a geometry whih isa doubled torus bundle over a irle. We disuss a onjetured extension to inludeT-duality on the base irle, and propose the introdution of a dual base oordinate,to give a doubled spae whih is loally the group manifold of the gauge group. Speialases inlude those in whih the doubled group is a Drinfel'd double. This gives aframework to disuss bakgrounds that are not even loally geometri..hull�imperial.a.ukronald.reid.edwards�desy.de
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1 IntrodutionTwo kinds of dimensional redution of supergravities were proposed in the seminal paper ofSherk and Shwarz [1℄, eah involving a twist by a group. Eah gives a lower dimensionalsupergravity, whih typially is gauged, i.e. has a non-Abelian Yang-Mills group. Reentlyit was understood how to lift these dimensional redutions to the full supergravity, stringtheory or M-theory [2, 3, 4, 5℄. The key is to show that eah an arise from a ompati�ation,so that the full massive spetrum is de�ned, inluding Kaluza-Klein modes, massive stringmodes, wrapped branes et. Understanding the ompati�ation geometry is important inunderstanding the struture of the theory, and it turns out that this is intimately relatedto the struture of the gauge group. Some of the redutions, those with T-duality twists,do not lift to any ompati�ation of supergravity. However, they an lift to non-geometriredutions of string theory on T-folds. Muh remains to be understood about suh non-geometri bakgrounds, and the aim here is to use the gauge algebra of the dimensionallyredued theory to gain some insight into suh redutions. In [6, 7℄, it was shown that stringtheory on a T-fold that looks like a T d bundle loally has a natural formulation on a bundlein whih the torus �bres are doubled to beome T 2d. Our onsiderations here lead to anatural geometry in whih all the dimensions are doubled, not just the �bres.The �rst lass of Sherk-Shwarz redutions look super�ially like redutions on an n-torus, but twisted with the ation of an n-dimensional group G. For this reason, they havebeome known, misleadingly, as twisted torus redutions. The redution an be thought of ashoosing an internal spae that is the group manifold for G, whih is typially non-ompat,and then onsistently trunating to �elds independent of the `internal' oordinates. In [3℄,it was shown that in most ases the same theory an be obtained from ompati�ation ona ompat manifold whih looks like the group manifold loally. This requires the existeneof a disrete subgroup � � G suh that X = G=� is ompat (so that � is then a oompatsubgroup of G), in whih ase the theory is simply ompati�ed on X = G=�. The Sherk-Shwarz ansatz involves the expansion of the higher dimensional �elds in terms of a basis ofglobally de�ned one-forms f�g. In order for the one-forms � to be globally de�ned on X ,it is neessary that they are invariant under the ation of �, so that the redution ansatz isinvariant under �. However, one of the onsequenes of the redution ansatz being invariantunder � is that the gauged supergravity ontains little information about the global strutureof X .If we inlude a onstant ux for the H-�eld so that H � Kmnp�m ^ �n ^ �p + : : : , thesupergravity, resulting from suh a Sherk-Shwarz ompati�ation on X , has gauge algebra[Zm; Zn℄ = fmnpZp +KmnpXp [Xm; Zn℄ = fnpmXp [Xm; Xn℄ = 0 (1.1)where Zm generate isometries of X and Xm generate antisymmetri tensor transformationsfor the B-�eld (see [3, 8℄ for details). Here fmnp are the struture onstants of the group G.1



The other type of Sherk-Shwarz redution starts with redution on a torus T d, so thatthe dimensionally redued and trunated theory has a ontinuous duality symmetry K. Thisis followed by a further redution on a irle with a duality twist, so that on going round theextra irle, the theory omes bak to itself transformed by a duality transformation. In thefull string theory or M-theory, the duality symmetry is broken to a disrete subgroup K(Z)[9℄ and for the redution to lift to string or M-theory, the monodromy must be in K(Z) [10℄.A subgroup GL(d;Z) of K(Z) ats geometrially as di�eomorphisms of the d-torus, and ifthe monodromy M is in GL(d;Z), the redution an be thought of as ompati�ation on ad + 1 dimensional spae X whih is a T d bundle over a irle with monodromy M [3, 10℄.Moreover, as we shall review in setion 2, suh a spae X is in fat a twisted torus in theprevious sense, i.e. it is loally a group manifold, and is of the form X = G=� [3℄. In thease of redution of pure gravity, the group G is preisely the gauge group of the reduedtheory.Here we will fous on the T-duality subgroup O(d; d;Z) � K(Z). There is a geometrisubgroup of O(d; d;Z) ating through torus di�eomorphisms and integral shifts of the B-�eld.If the monodromy is not in this subgroup, it is not a ompati�ation, but an be thoughtof as string theory with a non-geometri internal spae, known as a T-fold [6℄. However, asO(d; d;Z) � GL(2d;Z), it has a natural ation as di�eomorphisms of a `doubled torus' T 2dand there is a T 2d bundle over a irle with suh a monodromy. A formulation using a irleoordinate and its dual arises naturally in the string �eld theory for toroidal bakgrounds[11℄. String theory redued in this way with a duality twist an be formulated as a sigma-model on a bundle over a irle whose �bres are the doubled torus T 2d [6℄. The doubledformalism has the virtue that it provides a geometri interpretation to many nongeometribakgrounds. The doubled torus has oordinates onjugate to both the d momenta and thed winding numbers. Di�erent dual bakgrounds arise from hoosing di�erent polarisations orhoies of T d � T 2d, speifying the `real' spaetime slie of the doubled spae. T-duality atsto hange the hoie of polarisation, and T-folds arise when there is no global polarisation.Suh redutions with duality twists give theories with a gauge group of dimension 2(d+1),the same as it would be for redution on an untwisted S1 � T d. In that ase, the group isU(1)2(d+1) with U(1)d+1 from the natural geometri ation on S1 � T d and another U(1)d+1from B-�eld gauge transformations. One might expet that redutions with a duality twistwould give a gauge group ontaining U(1)2d assoiated with the T d �bres. As it happens,this is not the ase, and we give a areful derivation of the gauge algebra here. One of theaims of this paper is to explore the impliations of the struture of the gauge algebra.In the doubled formalism, the T d �bre is doubled, and this raises the question of whetherthe base S1 might also be doubled. This would be relevant for the issue of whether onean T-dualise over the base irle. As the geometry has non-trivial dependene on the S1oordinate x, there is no isometry on the irle so the usual formulations of T-duality do2



not apply. However, in [12℄ a generalisation of T-duality to suh situations was proposed, inwhih dependene on the irle oordinate x is transformed under T-duality to dependeneon the oordinate of a dual irle, ~x. In this ontext it is natural to onsider more generalredutions involving independent duality twists over x and ~x. Suh bakgrounds would notadmit a geometri desription even loally.Conventional onsiderations are insuÆient to disuss the situation with non-trivial de-pendene on ~x. Here, we identify a 2(d + 1) dimensional doubled geometry that extendsthe doubled torus bundle to inlude one other dimension, with oordinate ~x, and whihis the group manifold of the gauge group, identi�ed under a disrete subgroup to give adoubled twisted torus. This is the natural spae to inlude all possible dual bakgrounds,inluding the ones involving the onjetured generalised T-duality on the base S1. The fullgauge group ontains generators ating geometrially on the original spae and ones atingas B-�eld gauge transformations, while in this doubled piture, all arise geometrially.The anonial example of the types of string bakground disussed above is given by asequene of T-dualities starting from the three-dimensional nilmanifold. This nilmanifold isa T 2 bundle over S1 with monodromy given by a paraboli element of SL(2;Z). T-dualityinterhanges various quantities referred to as generalised uxes in [13℄ and alled f -ux,Q-ux and R-ux in [13℄. As will be reviewed in the next setion, the nilmanifold may bethought of as a twisted torus haraterized by the struture onstant (or `geometri ux')fxzy = m 2 Z [10, 3℄. The Busher rules an be applied �brewise to dualise along the T 2 �brediretions. Dualising along the y diretion gives a T 3 with H-ux Kxyz = m, whilst dualisingalong the z diretion gives a T-fold, haraterized by the `ux' Qxzy = m. It was onjeturedin [12℄ that a further T-duality along the x-diretion gives rise to a bakground onstruted asa T 2 �bration over the dual oordinate ~x with a T-duality twist. This onjetured bakgroundis haraterized by the nongeometri ux Rxyz = m (or `R-ux'). The duality sequene maybe summarized as [13℄ Kxyz ! fxzy ! Qxyz ! Rxyz (1.2)Whilst the doubled formalism has been suessfully employed to give a geometri desrip-tion of the T-fold, suh an understanding of the bakgrounds with R-ux has not beenforthoming. It is the aim of this paper to shed some light on the group theoreti and geo-metri strutures whih underly the duality sequene above. In partiular we shall see that aknowledge of the gauge algebra of the ompati�ed theory suggests a natural loal struturefor a doubled internal spae.A key objetive is to understand how to lift a general gauged supergravity to superstringtheory. The struture onstants of the gauge algebra an be thought of as arising from thevarious types of ux, and so this is a question of understanding bakgrounds with f;H;Q orR uxes, and in partiular the non-geometri ones with Q or R ux.The plan of this paper is as follows: In the next setion we review the relationship3



between duality twist bakgrounds with geometri monodromy and twisted tori. Setion3 will onsider the general O(d; d)-twisted redution. In setion 4 the Yang-Mills gaugesymmetries of this theory will be studied. Setion 5 desribes the doubled geometry of thebakgrounds onsidered here.2 Redutions with a Geometri Duality TwistIn this setion we review the Sherk-Shwarz redution with a geometri twist [3℄ and itsrelation to a redution on a twisted torus of the form G=�.Consider a D+ d+1 dimensional �eld theory. We redue the theory on a d-dimensionaltorus T d, with real oordinates za � za + 1 where a = 1; 2:::d. This produes a theory inD + 1 dimensions with salar �elds that inlude those in the oset GL(d;R)=SO(d) arisingfrom the torus moduli. Trunating to the za independent zero mode setor gives a theorythat has a rigid GL(d;R) symmetry, while in the full Kaluza-Klein theory this is broken toGL(d;Z) { the mapping lass group of the T d. Letds2 = Ĝabdzadzb (2.1)be the metri on the d-torus. The symmetri matrix Ĝab parameterises the moduli spaeGL(d;R)=SO(d). There is a natural ation of GL(d;R) on the metri and oordinates za inwhih Ĝab ! (U t)aĜdUdb za ! (U�1)abzb (2.2)where U ba 2 GL(d;R). We now trunate to a massless D + 1 dimensional �eld theory andonsider redution on a further irle. In the twisted redution, dependene on the irle oor-dinate x is introdued through a GL(d;R) transformation U = (x) where (x) = exp (Nx)and Nab is some matrix in the Lie algebra of GL(d;R). This de�nes the x-dependene ofthe torus moduli through G(x)ab = ((x)t)aĜd(x)da (2.3)for some arbitrary hoie Ĝab. The monodromy round the irle x � x+1 is eN 2 GL(d;R).The trunation of all Kaluza-Klein modes gives the Sherk-Shwarz redution [3℄. A ne-essary ondition for this to lift to a ompati�ation of the original D + d + 1 dimensionaltheory, keeping all Kaluza-Klein modes, is that the monodromy is in GL(d;Z), whih putsstrong onstraints on the hoie of N [14℄. Assuming eN 2 GL(d;Z), the twisted redutionis equivalent to the redution on a T d bundle over S1 with metrids2d+1 = dx2 +G(x)abdzadzb = (�x)2 + Ĝab�a�b (2.4)where �x = dx �(x)a = (x)abdzb (2.5)4



We now onsider the group struture of this spae. The forms (2.5) are globally de�nedon the torus bundle, and satisfyd�x = 0 d�a �Nab�x ^ �b = 0 (2.6)This d + 1 dimensional spae is then parallelisable, and loally looks like a group manifoldG with left-invariant Maurer-Cartan forms � assoiated with the Lie algebra[tx; ta℄ = �Nabtb; [ta; tb℄ = 0 (2.7)This algebra an be represented by the (d+ 1)� (d+ 1) matriestx =  �Nab 00 0 ! ta =  0 ea0 0 ! (2.8)where ea is the d-dimensional olumn vetor with a 1 in the a'th position and zeros everywhereelse. A representation of this Lie algebra is given byZx = �x �Nabza�b Za = �a (2.9)These vetor �elds are invariant under the left ation of the group and are dual to the oneforms �. Coordinates x; za an be introdued loally for the group manifold, with the groupelement g = g(x; za) 2 G given by g =  �1(x) z0 1 ! (2.10)Then the left-invariant Maurer-Cartan forms are given byg�1dg =  �Nab�x �a0 0 ! = �mtm (2.11)in agreement with (2.5), where m = 1; 2; ::d + 1. The T d bundle over S1 with metri (2.4)has the same loal geometry as this group manifold.The torus bundle over a irle is obtained from the ompati�ation of this non-ompatgroup manifold under the identi�ation by a disrete subgroup �, ating from the left. Theleft ation of h(�; �a) =  �1(�)ab �a0 1 ! (2.12)is g(x; za)! h(�; �a) � g(x; za) (2.13)and ats on the oordinates throughx! x+ � za ! (e�N�)abzb + �a (2.14)with �; �a 2 Z and form a disrete subgroup � = fh(�; �a) 2 G j �; �a 2 Zg and we anidentify the group manifold G under �. This gives a ompat spae G=�, and is idential tothe torus bundle over a irle with metri (2.4) [3℄.5



3 Redution with an O(d; d) twistWe now turn to the duality-twisted redution of theories with a metri and B-�eld, and wewill be partiularly interested in the ases that arise from string theory. Consider the theoryin D + d+ 1 dimensional spaetime with LagrangianLD+d+1 = e�b��bR � 1� db� ^ �db�� 12 bG(3) ^ � bG(3)� (3.1)where bG(3) = d bB(2). The ompati�ation on T d, using the standard Kaluza-Klein ansatzgives [15℄ a massless �eld theory with gauge group U(1)2d � O(d; d) and a manifestly O(d; d)invariant LagrangianLD+1 = e���R � 1 + �d� ^ d�+ 12 �G(3) ^G(3) + 14 � dMAB ^ dMAB�12MAB � FA ^ FB� (3.2)The details of this redution are given in [3, 8, 15℄ and the onventions of [3℄ have been used.The salar oset spae O(d; d)=O(d)�O(d) is parameterised by a symmetri metri on thisoset MAB, satisfying the onstraintMAB = LAC(M�1)CDLBD (3.3)where LAB is the onstant O(d; d) invariant metri, whih is used to raise and lower theindies A;B = 1; :::; 2d.We then redue on a further irle, with oordinate x � x + 1, with an O(d; d) dualitytwist. The twist is spei�ed by NAB, a matrix representation of an element of the Lie algebraof O(d; d), and the x-dependene is given in terms of an O(d; d) transformation exp(Nx).The theory has a Yang-Mills setor with a gauge group with struture onstants tMNP thatwill be disussed in the next subsetion. The redued theory may be written in a manifestlyO(d+ 1; d+ 1) ovariant wayLD = e�'�R � 1 + �d' ^ d'+ 12 � H(3) ^ H(3) + 14 �DMMN ^DMMN�12MMN � FM ^ FN� + V � 1 (3.4)with O(d + 1; d + 1) indies M;N = 1; :::; 2(d + 1) that are raised and lowered using theonstant O(d+1; d+1) invariant metri LMN . The two-form �eld strengths FM are writtenin terms of onnetion one-forms AM and the three-form H(3) is written in terms of thetwo-form potential C(2)FM = dAM + 12tNPMAN ^AP H(3) = dC(2)+ 12LMNAM ^ dAN � 13tMNPAM ^AN ^AP(3.5)6



where tMNP = tMNQLPQ. The salars MMN take values in the oset spae O(d + 1; d +1)=O(d+ 1)� O(d+ 1) and satisfy a onstraint similar to (3.3). The salar potential isV = e�'�14MMQLNTLPStMNP tQTS � 112MMQMNTMPStMNP tQTS� (3.6)Details of the redution and the expliit forms of the potential and salars in terms of theD + 1 dimensional �elds are given in appendix A.Gauge SymmetryThe D + 1 dimensional theory (3.2) obtained from onventional redution on T d hasU(1)2d � O(d; d) gauge symmetry. U(1)d omes from the isometry group of the internal T dand a further U(1)d omes from the antisymmetri tensor transformations of the B-�eld.The generators of this gauge group TA (A = 1; :::2d) satisfy [TA; TB℄ = 0. The dualitytwist redution on a further irle with oordinate x to D dimensions gauges a non-Abeliansubgroup G � O(d+ 1; d+ 1) given by the algebra[Zx; TA℄ = �NBATB [TA; TB℄ = �NABXx (3.7)where Zx generates shifts in the irle oordinate x and Xx is the generator of antisymmetritensor transformations of the B-�eld omponent with one leg along the x-diretion and oneleg in the external spaetime. All other ommutators vanish. HereNAB = L[AjCNC jB℄ = �NBA (3.8)The antisymmetry of NAB follows from the requirement that NAB be a generator of O(d; d).Note that the algebra satis�ed by the generators TA whih an be assoiated with the ationon T d has been deformed and is no longer Abelian.The generators TM = 0B� ZxXxTA 1CA (3.9)satisfy a Lie algebra [TM ; TN ℄ = tMNPTP where tMNP are the struture onstants given bytxBA = �NAB; tx[AB℄ = �NAB (3.10)The derivation of this algebra is given in appendix B.The gauging introdues a deformation of the ungauged theory involving the tMNP , whihbreaks the rigid O(d+1; d+1) symmetry of the ungauged theory to the subgroup preservingthe tMNP . However, the theory beomes formally invariant under O(d + 1; d + 1) if thestruture onstants tMNP are taken to transform ovariantly under O(d+ 1; d+ 1) [3, 8℄.7



4 Lifting to String TheoryThe disussion so far has used the framework of onventional �eld theory. In this setion wedisuss the lift of these results to string theory.The TA generators onsist of the Za whih generate the U(1)d ation on the T d �bre andthe Xa whih generate antisymmetri tensor transformations for the B-�eld omponentswith one leg on the T d and the other in the external spaetime, so thatTA =  ZaXa ! (4.1)The twist matrix then deomposes as (using NAB = �NBA)NAB =  fxab QxabKxab �fxba ! (4.2)for some antisymmetri Qxab = �Qxba; Kxab = �Kxba. The gauge algebra is then[Zx; Za℄ = fxabZb +KxabXb [Zx; Xa℄ = �fxbaXb +QxabZb (4.3)[Za; Zb℄ = KxabXx [Xa; Zb℄ = �fxbaXx [Xa; Xb℄ = QxabXx (4.4)with all other ommutators vanishing.If Qxab = 0, then the twist is geometri, onsisting of a GL(d;Z) twist with fxab = Nabating as a di�eormorphism of the T d �bres generated by Nab together with a B-shift atingon the �bre omponents of B, Bab ! Bab+�Kxab. This is equivalent to the ompati�ationwith ux K on a T d torus bundle over a irle and, as reviewed in setion 2, this is a twistedtorus G=� where G is the d+ 1 dimensional group of matries of the form (2.10). The Kxabgives a onstant ux Kxab�x ^ �a ^ �b on the twisted torus. These bakgrounds have beenstudied extensively in [3, 4, 5, 8℄.If Qxab 6= 0, the twist is non-geometri and involves T-dualities, so that the resultingbakground is a T-fold. As was shown in [12, 13, 16℄ bakgrounds with just one of thesethree struture onstants swithed on an be related to one another by T-duality so thatT-duality is expeted to be a symmetry of the full string theory whih identi�es ertainH-ux, twisted torus and T-fold ompati�ations as equivalent desriptions of the samephysis.The twist means that there is no isometry on the �nal irle ating to shift the oordinatex. Nonetheless, there is some evidene that there should still be a T-duality on this irle[12℄ that exhanges Zx with Xx and would at on the struture onstants asKxab ! fabx fxab ! Qaxb Qxab ! Rxab (4.5)8



to give the algebra[Xx; Za℄ = QaxbZb + fabxXb [Xx; Xa℄ = �QxabXb +RxabZb (4.6)[Za; Zb℄ = fabxZx [Xa; Zb℄ = �QxabZx [Xa; Xb℄ = RxabZx (4.7)It was onjetured in [12℄ that the struture onstant Rxab (`R-ux') orresponds to a bak-ground onstruted with a twist over a dual irle eS1 (with oordinate ~x onjugate to thewinding number). In the next setion we propose a geometri interpretation for all of thesebakgrounds and show that it supports this interpretation of the R-ux.5 Doubled GeometryIn setion 2 we onsidered the ase of a twisted redution whih has a simple geometriinterpretation as a ompati�ation on a T d bundle over S1 in whih the torus moduli havemonodromy in GL(d;Z) round the base irle. The internal spae is a twisted torus, orgroup manifold identi�ed under a disrete subgroup. Inluding a monodromy that shifts theB-�eld orresponds to adding an H-ux to the twisted torus. We now turn to the geometriinterpretation of the T-duality twisted redutions of setion 3.The Doubled TorusFor the general (nongeometri) ase a geometri approah has been given by the doubledtorus formalism of [6℄. The O(d; d;Z) duality twist ats non-geometrialy on the torus T d(mixing the metri and B-�eld, for example) but as O(d; d;Z)� GL(2d;Z), it has a naturalation as di�eormorphisms of a doubled torus T 2d. There is then a T 2d bundle over airle with twist generated by NAB onstruted as in setion 2. Suh a doubled torus arisesnaturally in string theory, with the original d oordinates za on T d onjugate to the momentaand an additional d oordinates ~za onjugate to the winding numbers on the original T d. TheO(d; d;Z) duality group ats naturally on the periodi doubled oordinates XA = (za; ~za).It was shown in [6, 7℄ that string theory ompati�ed in this way ould be formulated interms of a sigma model with target given by this doubled torus bundle. In this formalism,T-duality is a manifest symmetry, and the onventional formalism is reovered on hoosinga polarisation, i.e. a T d � T 2d whih is to be regarded as the real spaetime torus. T-dualityan be viewed as ating to hange the hoie of T d � T 2d, hanging the geometry to adual one. All dual geometries are enoded in the doubled torus bundle. For a geometribakground, a global polarisation an be hosen, but for T-folds the best one an do ishoose a polarisation loally. The T-duality transition funtions then give the hanges inpolarisation from path to path.A doubled torus bundle over a irle is a twisted torus G0=�0, as in setion 2. Simplyapplying the onstrution of setion 2 to the doubled torus gives a bakground in whih the9



group G0 has generators TA; Zx satisfying the algebra[Zx; TA℄ = �NBATB [TA; TB℄ = 0 (5.1)ating on the oordinates (x;XA) asZx = �x +NABXB�A TA = �A (5.2)This algebra does not apture the full gauge algebra (3.7). It is not a subalgebra, but it isthe algebra ating on the setor in whih Xx ats trivially. In order to give a full geometriinterpretation to the gauge algebra (3.7) we need to extend the doubled torus onstrution.The Doubled GroupThe doubled torus formalism in whih the �bres are doubled is useful for disussing T-duality on the �bres and the various T-dual spaes arise as di�erent polarisations of thedoubled torus bundle. If, as suggested in [12℄, one an also T-dualise on the base irle withoordinate x, it is natural to ask whether there is a doubled spae that would inlude aT-dual irle to the base irle so that all T-dual spaes are inorporated as di�erent d+ 1dimensional polarisations of a 2(d+1) dimensional spae X . In eah polarisation, half of thegauge group generators (the ones we have denoted Z) might be expeted to at geometriallyon the d+1 dimensional spae (in the simplest ases, these generate di�eomorphisms of thespae). For this to apply for any polarisation, it is natural to expet that the full gaugegroup (generated by the Z's and X's with Lie algebra (3.7)) should at on the doubledspae. Comparison with the twisted torus onstrution suggests then that the doubled spaeshould be loally a group manifold G, with Lie algebra (3.7), identi�ed under a disretesubgroup.As in the disussion of the twisted torus geometry, one an represent the Lie algebra(3.7) in terms of the 2(d + 1) oordinates (x; ~x;XA) of G, where XA are the oordinates onthe doubled torus �bre T 2d, asZx = �x +NABXB�A Xx = �~x TA = �A � 12NABXB�~x (5.3)Then Xx ats as translation in the new oordinate ~x and so ats trivially on �elds that areindependent of ~x, so on suh �elds the algebra (5.1) is realised and in this setor the doubledtorus bundle gives a full geometri representation of the struture. However, the doubledgroup gives a non-trivial extension to the general ase with ~x dependene.The one forms dual to these vetor �elds satisfy the Maurer-Cartan equationsdPA �NABP x ^ PB = 0 dQx � 12NABPA ^ PB = 0 dP x = 0 (5.4)
10



whih are solved by1PA = �eNx�A BdXB Qx = d~x + 12NABXAdXB P x = dx (5.6)This is a doubling of the geometry given for the twisted torus in setion 2, and the one-forms(5.6) are the doubling of the one-forms (2.5). The PA and P x together desribe the doubledtorus �bred over S1, but a fully geometri interpretation of the gauge algebra requires a 2d+2dimensional spae G into whih the doubled torus �bration is non-trivially embedded. It isuseful to de�ne the oordinates XI = �x; ~x;XA� on the doubled group and PM = PMIdXIas the one forms on G satisfying the Maurer-Cartan equationsdPM + 12tNPMPN ^ PP = 0 (5.7)where txBA = �NAB and tx[AB℄ = �NAB .T-Duality and R-FluxIn the doubled torus piture, hoosing a polarisation orresponded to hoosing a maxi-mally isotropi subspae (null with respet to the onstant O(d; d) metri LAB) T d � T 2das the geometri spae with oordinates za (and geometri generators Za) and the omple-ment eT d, with oordinates ~za (and generators Xa). As G � O(d+ 1; d+ 1), it preserves theO(d + 1; d + 1) invariant metri LMN , and an isotropi subspae of G is one whih is om-pletely null with respet to this metri. In the doubled group ase, a hoie of polarisationan be given by hoosing a maximally isotropi subgroup G � G (i.e. one whose generatorsare all null with respet to LMN). The geometry of the onventional sigma-model is givenloally by G. In some ases, the omplement of G will also be a group eG, and this de�nesa dual polarisation. For example, if the gauge algebra is a Poisson-Lie algebra, it takes theform[Zm; Zn℄ = fmnpZp [Zm; Xn℄ = fmpnXp +QmnpZp [Xm; Xn℄ = QpmnXp (5.8)and has two maximally isotropi sub-algebras; one generated by Zm and the other by Xm,where m = (a; x) . These generate two subgroups G and eG and either an be used to de�nea physial subspae, giving two, loally geometri, string bakgrounds.For general groups G, however, it may be the ase that there is no suitable subgroup thatan be used to de�ne the desired polarisation, so that one has to use the doubled pitureand annot eliminate half of the oordinates even loally. This is preisely the situation thatleads to the loally nongeometri R-spae, whih we now disuss.1The one-forms (5.6) are dual to the vetorsZx = �x Xx = �~x TA = �e�Nx�A B ��B � 12NBCXC�~x� (5.5)By a oordinate rede�nition XA ! �eNx�A BXB , these vetor �elds are brought to the simpler form (5.3).11



In the doubled group piture, one might expet a generalisation of T-duality whih atson all the oordinates XI . This allows us to onsider the possibility of hoosing either xor its dual ~x as the geometri oordinate in a polarisation. This is to be ontrasted withthe doubled torus piture whih, a priori, �xes x to be the geometri oordinate and onlydoubles the �bres.Ating with the onjetured T-duality on the algebra (3.7) whih exhanges x and ~xprodues the gauge algebra[Xx; TA℄ = �NBATB [TA; TB℄ = �NABZx (5.9)whih has orresponding one-formsPA = �eN ~x�A BdXB P x = dx+ 12NABXAdXB Qx = d~x (5.10)whih is an O(d; d) twist over the dual oordinate ~x as onjetured in [12℄. This has non-trivial dependene on the dual oordinates ~x, so annot be interpreted as a onventionalbakground even loally. This spae is a 2d+ 2 dimensional twisted torus with oordinatesXI .Global IssuesAs in the twisted torus example of setion 2, the gauge algebra only �xes the loalstruture of the (in this ase, doubled) geometry. This an be seen by the fat that theone forms (5.6) are invariant under the rigid left ation of G, whih ats on the oordinatesin�nitesimally asÆx = � Æ~x = ~�� 12NAB�AXB ÆXA = NABXB� + �A (5.11)and so the global struture of the doubled group is thus far only determined up to a rigidleft ation of G. In general, the doubled spae will be of the form X ' G=� for some disretesubgroup �. The gauge algebra �xes the loal struture of the doubled group, but the globalstruture remains undetermined. In partiular, the hoie of disrete subgroup � is notdetermined by the gauge algebra. However, onsisteny with the doubled torus piture �xesthe identi�ation of most of the oordinates, but not that of ~x. In the ase of a trivial bundle~x is the oordinate for a dual irle with radius inversely related to that of the x irle [17℄.It seems reasonable to expet that � should be hosen to be oompat, so that G=� isompat. We will return to the disussion of the doubled geometry X ' G=� and its role inthe disussion of T-duality elsewhere, and show how � is �xed in partiular examples.AknowledgmentRR would like to thank the Institute of Mathematial Sienes at Imperial College London,where this work was initiated, for their hospitality.12



A O(d; d)-Twisted RedutionThe redution ansatz is ds2D+1 = ds2D + ��x 
 �xAA(x; y) = �eNx�A B �AB(1)(y) +AB(0)�x�B(2)(x; y) = B(2)(y) +B(1)(y) ^ �xMAB(x; y) = �eNx�A CMCD(y) �e�Nx�D B� = '+ 12 ln(�) (A.1)where the vielbein �x is �x = dx� V x(1) (A.2)and we have introdued the onnetion V x(1) with �eld strength F x(2) = dV x(1). Using the �eldrede�nitions C(2) = B(2) � 12C(1) ^ V x(1)C(1) = B(1) � 12LABAA(0)AB(1)C(0) = 12LABAA(0)AB(0) (A.3)the redued theory may be written in a manifestly O(d+ 1; d+ 1) ovariant wayLD = e�'�R � 1 + �d' ^ d'+ 12 � H(3) ^ H(3) + 14 �DMMN ^DMMN�12MMN � FM ^ FN� + V � 1 (A.4)The salar potential is now written in the O(d+ 1; d+ 1) ovariant formV = e�'�14MMQLNTLPStMNP tQTS � 112MMQMNTMPStMNP tQTS� (A.5)The salars parameterise the oset O(d+ 1; d+ 1)=O(d+ 1)� O(d+ 1)MMN = 0B� � +MABAA(0)AB(0) + ��1C(0)C(0) ��1C(0) ��1C(0)LACAC(0) +MACAC(0)��1C(0) ��1 ��1LACAC(0)��1C(0)LBCAC(0) +MBCAC(0) ��1LACAC(0) MAB + ��1LACLBDAC(0)AD(0) 1CAThe one, two and three-form �eld strengths areH(3) = dC(2) + 12 �LMNAM ^ FN � 23tMNPAM ^ AN ^ AP�DMMN = dMMN +MMP tPQNAQ +MNP tPQMAQFM = dAM + 12tNPMAN ^ AP (A.6)13



The one-forms form an O(d+ 1; d+ 1) vetor AM with �eld strength FMAM = 0B� V x(1)C(1)AA(1) 1CA FM = 0B� F x(2)G(2)xFA(2) 1CA (A.7)where we have de�ned G(2)x = dC(1) � 12NABAA(1) ^ AB(1) (A.8)De�ning tMNP = LMQtNPQ where LMN is the O(d+ 1; d+ 1) invariant matrix whih takesthe blok diagonal formLMN =  Lxx 00 LAB ! Lxx =  0 11 0 ! (A.9)the struture onstants are txBA = �NAB and tx[AB℄ = �NAB. The presene of tMNPbreaks the rigid O(d+1; d+1) symmetry of the ungauged theory to the subgroup preservingtMNP . However, the theory beomes formally invariant under O(d+1; d+1) if the strutureonstants are taken to transform ovariantly under O(d+ 1; d+ 1).B Gauge SymmetryIn D + d+ 1 dimensions the theory has the antisymmetri tensor transformation symmetrybB(2) ! bB(2) + db�(1) (B.1)The redution ansatz for the parameter b�(1) on T d is b�(1) = �(1) + �(0)a�a. The remainderof the U(1)2d gauge symmetry omes from the d isometries of the T d, xa ! xa � !a, underwhih ÆAa(1) = �d!a and all other �elds are invariant. In D+1 dimensions this U(1)2d gaugesymmetry ats on the �elds asÆTAA(1) = d�A(0)ÆTB(2) = d�(1) + 12LAB�A(0) bFB(2) (B.2)where we have de�ned �A(0) =  �!a�(0)a ! (B.3)Antisymmetri tensor transformations14



The duality twist redution ansatz for the D + 1 dimensional gauge parameters �(1) and�A(0) is �A(0) = �eNx�A B�B �(1) = �(1) + �x�x (B.4)We denote the in�nitesimal variation of the �elds under this transformation by ÆT . It is easyto show, by alulating db�A(0), that the D-dimensional gauge potentials transform asÆTAA(1) = d�A +NAB�BV x(1)ÆTC(1) = d�x +NAB�AAB(1) (B.5)S1 Di�eomorphismsThe theory must be invariant under reparameterisations of the irle oordinatex! x� ! (B.6)The matrix eNx hanges as �eNx�A B ! �eNx�A C �e�N!�C B = �eNx�A C �ÆCB �NCB! + :::�.From this is it easy to see how the D-dimensional �elds must transform in order for the D+1dimensional ansatz to be invariant. The gauge �elds transform asÆZAA(1) = NABAB(1)!ÆZV x(1) = �d! (B.7)Symmetry AlgebraWe de�ne ÆZ = !Zx ÆT = �ATA ÆX = �xXx (B.8)where Zx, Xx and TA are generators of gauge transformations with parameters !, �x and�A respetively. The Lie algebra of the gauge group is[Zx; TA℄ = �NBATB [TA; TB℄ = �NABXx (B.9)with all other ommutators vanishing.Referenes[1℄ J. Sherk and J. H. Shwarz, \How To Get Masses From Extra Dimensions," Nul.Phys. B 153, 61 (1979).[2℄ A. Dabholkar and C. Hull, \Duality twists, orbifolds, and uxes," JHEP 0309, 054(2003) [arXiv:hep-th/0210209℄. 15
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[3℄ C. M. Hull and R. A. Reid-Edwards, \Flux ompati�ations of string theory on twistedtori," arXiv:hep-th/0503114.[4℄ C. M. Hull and R. A. Reid-Edwards, \Flux ompati�ations of M-theory on twistedtori," JHEP 0610 (2006) 086 [arXiv:hep-th/0603094℄.[5℄ R. A. Reid-Edwards, \Geometri and non-geometri ompati�ations of IIB supergrav-ity," arXiv:hep-th/0610263.[6℄ C. M. Hull, \A geometry for non-geometri string bakgrounds," JHEP 0510 (2005)065 [arXiv:hep-th/0406102℄.[7℄ C. M. Hull, \Doubled geometry and T-folds," JHEP 0707 (2007) 080[arXiv:hep-th/0605149℄.[8℄ N. Kaloper and R. C. Myers, \The O(dd) story of massive supergravity," JHEP 9905,010 (1999) [arXiv:hep-th/9901045℄.[9℄ C. M. Hull and P. K. Townsend, \Unity of superstring dualities," Nul. Phys. B 438(1995) 109 [arXiv:hep-th/9410167℄.[10℄ C. M. Hull, \Massive string theories from M-theory and F-theory," JHEP 9811 (1998)027 [arXiv:hep-th/9811021℄.[11℄ T. Kugo and B. Zwiebah, \Target spae duality as a symmetry of string �eld theory,"Prog. Theor. Phys. 87 (1992) 801 [arXiv:hep-th/9201040℄.[12℄ A. Dabholkar and C. Hull, \Generalised T-duality and non-geometri bakgrounds,"JHEP 0605, 009 (2006) [arXiv:hep-th/0512005℄.[13℄ J. Shelton, W. Taylor and B. Weht, \Nongeometri ux ompati�ations," JHEP0510, 085 (2005) [arXiv:hep-th/0508133℄.[14℄ C. M. Hull, \Gauged D = 9 supergravities and Sherk-Shwarz redution," Class. Quant.Grav. 21, 509 (2004) [arXiv:hep-th/0203146℄.[15℄ J. Maharana and J. H. Shwarz, \Nonompat symmetries in string theory," Nul. Phys.B 390, 3 (1993) [arXiv:hep-th/9207016℄.[16℄ C. M. Hull, \Global Aspets of T-Duality, Gauged Sigma Models and T-Folds,"arXiv:hep-th/0604178.[17℄ T. H. Busher, \A Symmetry of the String Bakground Field Equations," Phys. Lett.B 194, 59 (1987). 16

http://arxiv.org/abs/hep-th/0503114
http://arxiv.org/abs/hep-th/0603094
http://arxiv.org/abs/hep-th/0610263
http://arxiv.org/abs/hep-th/0406102
http://arxiv.org/abs/hep-th/0605149
http://arxiv.org/abs/hep-th/9901045
http://arxiv.org/abs/hep-th/9410167
http://arxiv.org/abs/hep-th/9811021
http://arxiv.org/abs/hep-th/9201040
http://arxiv.org/abs/hep-th/0512005
http://arxiv.org/abs/hep-th/0508133
http://arxiv.org/abs/hep-th/0203146
http://arxiv.org/abs/hep-th/9207016
http://arxiv.org/abs/hep-th/0604178

	Introduction
	Reductions with a Geometric Duality Twist
	Reduction with an O(d,d) twist
	Lifting to String Theory
	Doubled Geometry 
	O(d,d)-Twisted Reduction
	Gauge Symmetry

