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Abstra
tString 
ompa
ti�
ations with T-duality twists are revisited and the gauge algebra ofthe dimensionally redu
ed theories 
al
ulated. These redu
tions 
an be viewed asstring theory on T-fold ba
kgrounds, and 
an be formulated in a `doubled spa
e' inwhi
h ea
h 
ir
le is supplemented by a T-dual 
ir
le to 
onstru
t a geometry whi
h isa doubled torus bundle over a 
ir
le. We dis
uss a 
onje
tured extension to in
ludeT-duality on the base 
ir
le, and propose the introdu
tion of a dual base 
oordinate,to give a doubled spa
e whi
h is lo
ally the group manifold of the gauge group. Spe
ial
ases in
lude those in whi
h the doubled group is a Drinfel'd double. This gives aframework to dis
uss ba
kgrounds that are not even lo
ally geometri
.
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1 Introdu
tionTwo kinds of dimensional redu
tion of supergravities were proposed in the seminal paper ofS
herk and S
hwarz [1℄, ea
h involving a twist by a group. Ea
h gives a lower dimensionalsupergravity, whi
h typi
ally is gauged, i.e. has a non-Abelian Yang-Mills group. Re
entlyit was understood how to lift these dimensional redu
tions to the full supergravity, stringtheory or M-theory [2, 3, 4, 5℄. The key is to show that ea
h 
an arise from a 
ompa
ti�
ation,so that the full massive spe
trum is de�ned, in
luding Kaluza-Klein modes, massive stringmodes, wrapped branes et
. Understanding the 
ompa
ti�
ation geometry is important inunderstanding the stru
ture of the theory, and it turns out that this is intimately relatedto the stru
ture of the gauge group. Some of the redu
tions, those with T-duality twists,do not lift to any 
ompa
ti�
ation of supergravity. However, they 
an lift to non-geometri
redu
tions of string theory on T-folds. Mu
h remains to be understood about su
h non-geometri
 ba
kgrounds, and the aim here is to use the gauge algebra of the dimensionallyredu
ed theory to gain some insight into su
h redu
tions. In [6, 7℄, it was shown that stringtheory on a T-fold that looks like a T d bundle lo
ally has a natural formulation on a bundlein whi
h the torus �bres are doubled to be
ome T 2d. Our 
onsiderations here lead to anatural geometry in whi
h all the dimensions are doubled, not just the �bres.The �rst 
lass of S
herk-S
hwarz redu
tions look super�
ially like redu
tions on an n-torus, but twisted with the a
tion of an n-dimensional group G. For this reason, they havebe
ome known, misleadingly, as twisted torus redu
tions. The redu
tion 
an be thought of as
hoosing an internal spa
e that is the group manifold for G, whi
h is typi
ally non-
ompa
t,and then 
onsistently trun
ating to �elds independent of the `internal' 
oordinates. In [3℄,it was shown that in most 
ases the same theory 
an be obtained from 
ompa
ti�
ation ona 
ompa
t manifold whi
h looks like the group manifold lo
ally. This requires the existen
eof a dis
rete subgroup � � G su
h that X = G=� is 
ompa
t (so that � is then a 
o
ompa
tsubgroup of G), in whi
h 
ase the theory is simply 
ompa
ti�ed on X = G=�. The S
herk-S
hwarz ansatz involves the expansion of the higher dimensional �elds in terms of a basis ofglobally de�ned one-forms f�g. In order for the one-forms � to be globally de�ned on X ,it is ne
essary that they are invariant under the a
tion of �, so that the redu
tion ansatz isinvariant under �. However, one of the 
onsequen
es of the redu
tion ansatz being invariantunder � is that the gauged supergravity 
ontains little information about the global stru
tureof X .If we in
lude a 
onstant 
ux for the H-�eld so that H � Kmnp�m ^ �n ^ �p + : : : , thesupergravity, resulting from su
h a S
herk-S
hwarz 
ompa
ti�
ation on X , has gauge algebra[Zm; Zn℄ = fmnpZp +KmnpXp [Xm; Zn℄ = fnpmXp [Xm; Xn℄ = 0 (1.1)where Zm generate isometries of X and Xm generate antisymmetri
 tensor transformationsfor the B-�eld (see [3, 8℄ for details). Here fmnp are the stru
ture 
onstants of the group G.1



The other type of S
herk-S
hwarz redu
tion starts with redu
tion on a torus T d, so thatthe dimensionally redu
ed and trun
ated theory has a 
ontinuous duality symmetry K. Thisis followed by a further redu
tion on a 
ir
le with a duality twist, so that on going round theextra 
ir
le, the theory 
omes ba
k to itself transformed by a duality transformation. In thefull string theory or M-theory, the duality symmetry is broken to a dis
rete subgroup K(Z)[9℄ and for the redu
tion to lift to string or M-theory, the monodromy must be in K(Z) [10℄.A subgroup GL(d;Z) of K(Z) a
ts geometri
ally as di�eomorphisms of the d-torus, and ifthe monodromy M is in GL(d;Z), the redu
tion 
an be thought of as 
ompa
ti�
ation on ad + 1 dimensional spa
e X whi
h is a T d bundle over a 
ir
le with monodromy M [3, 10℄.Moreover, as we shall review in se
tion 2, su
h a spa
e X is in fa
t a twisted torus in theprevious sense, i.e. it is lo
ally a group manifold, and is of the form X = G=� [3℄. In the
ase of redu
tion of pure gravity, the group G is pre
isely the gauge group of the redu
edtheory.Here we will fo
us on the T-duality subgroup O(d; d;Z) � K(Z). There is a geometri
subgroup of O(d; d;Z) a
ting through torus di�eomorphisms and integral shifts of the B-�eld.If the monodromy is not in this subgroup, it is not a 
ompa
ti�
ation, but 
an be thoughtof as string theory with a non-geometri
 internal spa
e, known as a T-fold [6℄. However, asO(d; d;Z) � GL(2d;Z), it has a natural a
tion as di�eomorphisms of a `doubled torus' T 2dand there is a T 2d bundle over a 
ir
le with su
h a monodromy. A formulation using a 
ir
le
oordinate and its dual arises naturally in the string �eld theory for toroidal ba
kgrounds[11℄. String theory redu
ed in this way with a duality twist 
an be formulated as a sigma-model on a bundle over a 
ir
le whose �bres are the doubled torus T 2d [6℄. The doubledformalism has the virtue that it provides a geometri
 interpretation to many nongeometri
ba
kgrounds. The doubled torus has 
oordinates 
onjugate to both the d momenta and thed winding numbers. Di�erent dual ba
kgrounds arise from 
hoosing di�erent polarisations or
hoi
es of T d � T 2d, spe
ifying the `real' spa
etime sli
e of the doubled spa
e. T-duality a
tsto 
hange the 
hoi
e of polarisation, and T-folds arise when there is no global polarisation.Su
h redu
tions with duality twists give theories with a gauge group of dimension 2(d+1),the same as it would be for redu
tion on an untwisted S1 � T d. In that 
ase, the group isU(1)2(d+1) with U(1)d+1 from the natural geometri
 a
tion on S1 � T d and another U(1)d+1from B-�eld gauge transformations. One might expe
t that redu
tions with a duality twistwould give a gauge group 
ontaining U(1)2d asso
iated with the T d �bres. As it happens,this is not the 
ase, and we give a 
areful derivation of the gauge algebra here. One of theaims of this paper is to explore the impli
ations of the stru
ture of the gauge algebra.In the doubled formalism, the T d �bre is doubled, and this raises the question of whetherthe base S1 might also be doubled. This would be relevant for the issue of whether one
an T-dualise over the base 
ir
le. As the geometry has non-trivial dependen
e on the S1
oordinate x, there is no isometry on the 
ir
le so the usual formulations of T-duality do2



not apply. However, in [12℄ a generalisation of T-duality to su
h situations was proposed, inwhi
h dependen
e on the 
ir
le 
oordinate x is transformed under T-duality to dependen
eon the 
oordinate of a dual 
ir
le, ~x. In this 
ontext it is natural to 
onsider more generalredu
tions involving independent duality twists over x and ~x. Su
h ba
kgrounds would notadmit a geometri
 des
ription even lo
ally.Conventional 
onsiderations are insuÆ
ient to dis
uss the situation with non-trivial de-penden
e on ~x. Here, we identify a 2(d + 1) dimensional doubled geometry that extendsthe doubled torus bundle to in
lude one other dimension, with 
oordinate ~x, and whi
his the group manifold of the gauge group, identi�ed under a dis
rete subgroup to give adoubled twisted torus. This is the natural spa
e to in
lude all possible dual ba
kgrounds,in
luding the ones involving the 
onje
tured generalised T-duality on the base S1. The fullgauge group 
ontains generators a
ting geometri
ally on the original spa
e and ones a
tingas B-�eld gauge transformations, while in this doubled pi
ture, all arise geometri
ally.The 
anoni
al example of the types of string ba
kground dis
ussed above is given by asequen
e of T-dualities starting from the three-dimensional nilmanifold. This nilmanifold isa T 2 bundle over S1 with monodromy given by a paraboli
 element of SL(2;Z). T-dualityinter
hanges various quantities referred to as generalised 
uxes in [13℄ and 
alled f -
ux,Q-
ux and R-
ux in [13℄. As will be reviewed in the next se
tion, the nilmanifold may bethought of as a twisted torus 
hara
terized by the stru
ture 
onstant (or `geometri
 
ux')fxzy = m 2 Z [10, 3℄. The Bus
her rules 
an be applied �brewise to dualise along the T 2 �bredire
tions. Dualising along the y dire
tion gives a T 3 with H-
ux Kxyz = m, whilst dualisingalong the z dire
tion gives a T-fold, 
hara
terized by the `
ux' Qxzy = m. It was 
onje
turedin [12℄ that a further T-duality along the x-dire
tion gives rise to a ba
kground 
onstru
ted asa T 2 �bration over the dual 
oordinate ~x with a T-duality twist. This 
onje
tured ba
kgroundis 
hara
terized by the nongeometri
 
ux Rxyz = m (or `R-
ux'). The duality sequen
e maybe summarized as [13℄ Kxyz ! fxzy ! Qxyz ! Rxyz (1.2)Whilst the doubled formalism has been su

essfully employed to give a geometri
 des
rip-tion of the T-fold, su
h an understanding of the ba
kgrounds with R-
ux has not beenforth
oming. It is the aim of this paper to shed some light on the group theoreti
 and geo-metri
 stru
tures whi
h underly the duality sequen
e above. In parti
ular we shall see that aknowledge of the gauge algebra of the 
ompa
ti�ed theory suggests a natural lo
al stru
turefor a doubled internal spa
e.A key obje
tive is to understand how to lift a general gauged supergravity to superstringtheory. The stru
ture 
onstants of the gauge algebra 
an be thought of as arising from thevarious types of 
ux, and so this is a question of understanding ba
kgrounds with f;H;Q orR 
uxes, and in parti
ular the non-geometri
 ones with Q or R 
ux.The plan of this paper is as follows: In the next se
tion we review the relationship3



between duality twist ba
kgrounds with geometri
 monodromy and twisted tori. Se
tion3 will 
onsider the general O(d; d)-twisted redu
tion. In se
tion 4 the Yang-Mills gaugesymmetries of this theory will be studied. Se
tion 5 des
ribes the doubled geometry of theba
kgrounds 
onsidered here.2 Redu
tions with a Geometri
 Duality TwistIn this se
tion we review the S
herk-S
hwarz redu
tion with a geometri
 twist [3℄ and itsrelation to a redu
tion on a twisted torus of the form G=�.Consider a D+ d+1 dimensional �eld theory. We redu
e the theory on a d-dimensionaltorus T d, with real 
oordinates za � za + 1 where a = 1; 2:::d. This produ
es a theory inD + 1 dimensions with s
alar �elds that in
lude those in the 
oset GL(d;R)=SO(d) arisingfrom the torus moduli. Trun
ating to the za independent zero mode se
tor gives a theorythat has a rigid GL(d;R) symmetry, while in the full Kaluza-Klein theory this is broken toGL(d;Z) { the mapping 
lass group of the T d. Letds2 = Ĝabdzadzb (2.1)be the metri
 on the d-torus. The symmetri
 matrix Ĝab parameterises the moduli spa
eGL(d;R)=SO(d). There is a natural a
tion of GL(d;R) on the metri
 and 
oordinates za inwhi
h Ĝab ! (U t)a
Ĝ
dUdb za ! (U�1)abzb (2.2)where U ba 2 GL(d;R). We now trun
ate to a massless D + 1 dimensional �eld theory and
onsider redu
tion on a further 
ir
le. In the twisted redu
tion, dependen
e on the 
ir
le 
oor-dinate x is introdu
ed through a GL(d;R) transformation U = 
(x) where 
(x) = exp (Nx)and Nab is some matrix in the Lie algebra of GL(d;R). This de�nes the x-dependen
e ofthe torus moduli through G(x)ab = (
(x)t)a
Ĝ
d
(x)da (2.3)for some arbitrary 
hoi
e Ĝab. The monodromy round the 
ir
le x � x+1 is eN 2 GL(d;R).The trun
ation of all Kaluza-Klein modes gives the S
herk-S
hwarz redu
tion [3℄. A ne
-essary 
ondition for this to lift to a 
ompa
ti�
ation of the original D + d + 1 dimensionaltheory, keeping all Kaluza-Klein modes, is that the monodromy is in GL(d;Z), whi
h putsstrong 
onstraints on the 
hoi
e of N [14℄. Assuming eN 2 GL(d;Z), the twisted redu
tionis equivalent to the redu
tion on a T d bundle over S1 with metri
ds2d+1 = dx2 +G(x)abdzadzb = (�x)2 + Ĝab�a�b (2.4)where �x = dx �(x)a = 
(x)abdzb (2.5)4



We now 
onsider the group stru
ture of this spa
e. The forms (2.5) are globally de�nedon the torus bundle, and satisfyd�x = 0 d�a �Nab�x ^ �b = 0 (2.6)This d + 1 dimensional spa
e is then parallelisable, and lo
ally looks like a group manifoldG with left-invariant Maurer-Cartan forms � asso
iated with the Lie algebra[tx; ta℄ = �Nabtb; [ta; tb℄ = 0 (2.7)This algebra 
an be represented by the (d+ 1)� (d+ 1) matri
estx =  �Nab 00 0 ! ta =  0 ea0 0 ! (2.8)where ea is the d-dimensional 
olumn ve
tor with a 1 in the a'th position and zeros everywhereelse. A representation of this Lie algebra is given byZx = �x �Nabza�b Za = �a (2.9)These ve
tor �elds are invariant under the left a
tion of the group and are dual to the oneforms �. Coordinates x; za 
an be introdu
ed lo
ally for the group manifold, with the groupelement g = g(x; za) 2 G given by g =  
�1(x) z0 1 ! (2.10)Then the left-invariant Maurer-Cartan forms are given byg�1dg =  �Nab�x �a0 0 ! = �mtm (2.11)in agreement with (2.5), where m = 1; 2; ::d + 1. The T d bundle over S1 with metri
 (2.4)has the same lo
al geometry as this group manifold.The torus bundle over a 
ir
le is obtained from the 
ompa
ti�
ation of this non-
ompa
tgroup manifold under the identi�
ation by a dis
rete subgroup �, a
ting from the left. Theleft a
tion of h(�; �a) =  
�1(�)ab �a0 1 ! (2.12)is g(x; za)! h(�; �a) � g(x; za) (2.13)and a
ts on the 
oordinates throughx! x+ � za ! (e�N�)abzb + �a (2.14)with �; �a 2 Z and form a dis
rete subgroup � = fh(�; �a) 2 G j �; �a 2 Zg and we 
anidentify the group manifold G under �. This gives a 
ompa
t spa
e G=�, and is identi
al tothe torus bundle over a 
ir
le with metri
 (2.4) [3℄.5



3 Redu
tion with an O(d; d) twistWe now turn to the duality-twisted redu
tion of theories with a metri
 and B-�eld, and wewill be parti
ularly interested in the 
ases that arise from string theory. Consider the theoryin D + d+ 1 dimensional spa
etime with LagrangianLD+d+1 = e�b��bR � 1� db� ^ �db�� 12 bG(3) ^ � bG(3)� (3.1)where bG(3) = d bB(2). The 
ompa
ti�
ation on T d, using the standard Kaluza-Klein ansatzgives [15℄ a massless �eld theory with gauge group U(1)2d � O(d; d) and a manifestly O(d; d)invariant LagrangianLD+1 = e���R � 1 + �d� ^ d�+ 12 �G(3) ^G(3) + 14 � dMAB ^ dMAB�12MAB � FA ^ FB� (3.2)The details of this redu
tion are given in [3, 8, 15℄ and the 
onventions of [3℄ have been used.The s
alar 
oset spa
e O(d; d)=O(d)�O(d) is parameterised by a symmetri
 metri
 on this
oset MAB, satisfying the 
onstraintMAB = LAC(M�1)CDLBD (3.3)where LAB is the 
onstant O(d; d) invariant metri
, whi
h is used to raise and lower theindi
es A;B = 1; :::; 2d.We then redu
e on a further 
ir
le, with 
oordinate x � x + 1, with an O(d; d) dualitytwist. The twist is spe
i�ed by NAB, a matrix representation of an element of the Lie algebraof O(d; d), and the x-dependen
e is given in terms of an O(d; d) transformation exp(Nx).The theory has a Yang-Mills se
tor with a gauge group with stru
ture 
onstants tMNP thatwill be dis
ussed in the next subse
tion. The redu
ed theory may be written in a manifestlyO(d+ 1; d+ 1) 
ovariant wayLD = e�'�R � 1 + �d' ^ d'+ 12 � H(3) ^ H(3) + 14 �DMMN ^DMMN�12MMN � FM ^ FN� + V � 1 (3.4)with O(d + 1; d + 1) indi
es M;N = 1; :::; 2(d + 1) that are raised and lowered using the
onstant O(d+1; d+1) invariant metri
 LMN . The two-form �eld strengths FM are writtenin terms of 
onne
tion one-forms AM and the three-form H(3) is written in terms of thetwo-form potential C(2)FM = dAM + 12tNPMAN ^AP H(3) = dC(2)+ 12LMNAM ^ dAN � 13tMNPAM ^AN ^AP(3.5)6



where tMNP = tMNQLPQ. The s
alars MMN take values in the 
oset spa
e O(d + 1; d +1)=O(d+ 1)� O(d+ 1) and satisfy a 
onstraint similar to (3.3). The s
alar potential isV = e�'�14MMQLNTLPStMNP tQTS � 112MMQMNTMPStMNP tQTS� (3.6)Details of the redu
tion and the expli
it forms of the potential and s
alars in terms of theD + 1 dimensional �elds are given in appendix A.Gauge SymmetryThe D + 1 dimensional theory (3.2) obtained from 
onventional redu
tion on T d hasU(1)2d � O(d; d) gauge symmetry. U(1)d 
omes from the isometry group of the internal T dand a further U(1)d 
omes from the antisymmetri
 tensor transformations of the B-�eld.The generators of this gauge group TA (A = 1; :::2d) satisfy [TA; TB℄ = 0. The dualitytwist redu
tion on a further 
ir
le with 
oordinate x to D dimensions gauges a non-Abeliansubgroup G � O(d+ 1; d+ 1) given by the algebra[Zx; TA℄ = �NBATB [TA; TB℄ = �NABXx (3.7)where Zx generates shifts in the 
ir
le 
oordinate x and Xx is the generator of antisymmetri
tensor transformations of the B-�eld 
omponent with one leg along the x-dire
tion and oneleg in the external spa
etime. All other 
ommutators vanish. HereNAB = L[AjCNC jB℄ = �NBA (3.8)The antisymmetry of NAB follows from the requirement that NAB be a generator of O(d; d).Note that the algebra satis�ed by the generators TA whi
h 
an be asso
iated with the a
tionon T d has been deformed and is no longer Abelian.The generators TM = 0B� ZxXxTA 1CA (3.9)satisfy a Lie algebra [TM ; TN ℄ = tMNPTP where tMNP are the stru
ture 
onstants given bytxBA = �NAB; tx[AB℄ = �NAB (3.10)The derivation of this algebra is given in appendix B.The gauging introdu
es a deformation of the ungauged theory involving the tMNP , whi
hbreaks the rigid O(d+1; d+1) symmetry of the ungauged theory to the subgroup preservingthe tMNP . However, the theory be
omes formally invariant under O(d + 1; d + 1) if thestru
ture 
onstants tMNP are taken to transform 
ovariantly under O(d+ 1; d+ 1) [3, 8℄.7



4 Lifting to String TheoryThe dis
ussion so far has used the framework of 
onventional �eld theory. In this se
tion wedis
uss the lift of these results to string theory.The TA generators 
onsist of the Za whi
h generate the U(1)d a
tion on the T d �bre andthe Xa whi
h generate antisymmetri
 tensor transformations for the B-�eld 
omponentswith one leg on the T d and the other in the external spa
etime, so thatTA =  ZaXa ! (4.1)The twist matrix then de
omposes as (using NAB = �NBA)NAB =  fxab QxabKxab �fxba ! (4.2)for some antisymmetri
 Qxab = �Qxba; Kxab = �Kxba. The gauge algebra is then[Zx; Za℄ = fxabZb +KxabXb [Zx; Xa℄ = �fxbaXb +QxabZb (4.3)[Za; Zb℄ = KxabXx [Xa; Zb℄ = �fxbaXx [Xa; Xb℄ = QxabXx (4.4)with all other 
ommutators vanishing.If Qxab = 0, then the twist is geometri
, 
onsisting of a GL(d;Z) twist with fxab = Naba
ting as a di�eormorphism of the T d �bres generated by Nab together with a B-shift a
tingon the �bre 
omponents of B, Bab ! Bab+�Kxab. This is equivalent to the 
ompa
ti�
ationwith 
ux K on a T d torus bundle over a 
ir
le and, as reviewed in se
tion 2, this is a twistedtorus G=� where G is the d+ 1 dimensional group of matri
es of the form (2.10). The Kxabgives a 
onstant 
ux Kxab�x ^ �a ^ �b on the twisted torus. These ba
kgrounds have beenstudied extensively in [3, 4, 5, 8℄.If Qxab 6= 0, the twist is non-geometri
 and involves T-dualities, so that the resultingba
kground is a T-fold. As was shown in [12, 13, 16℄ ba
kgrounds with just one of thesethree stru
ture 
onstants swit
hed on 
an be related to one another by T-duality so thatT-duality is expe
ted to be a symmetry of the full string theory whi
h identi�es 
ertainH-
ux, twisted torus and T-fold 
ompa
ti�
ations as equivalent des
riptions of the samephysi
s.The twist means that there is no isometry on the �nal 
ir
le a
ting to shift the 
oordinatex. Nonetheless, there is some eviden
e that there should still be a T-duality on this 
ir
le[12℄ that ex
hanges Zx with Xx and would a
t on the stru
ture 
onstants asKxab ! fabx fxab ! Qaxb Qxab ! Rxab (4.5)8



to give the algebra[Xx; Za℄ = QaxbZb + fabxXb [Xx; Xa℄ = �QxabXb +RxabZb (4.6)[Za; Zb℄ = fabxZx [Xa; Zb℄ = �QxabZx [Xa; Xb℄ = RxabZx (4.7)It was 
onje
tured in [12℄ that the stru
ture 
onstant Rxab (`R-
ux') 
orresponds to a ba
k-ground 
onstru
ted with a twist over a dual 
ir
le eS1 (with 
oordinate ~x 
onjugate to thewinding number). In the next se
tion we propose a geometri
 interpretation for all of theseba
kgrounds and show that it supports this interpretation of the R-
ux.5 Doubled GeometryIn se
tion 2 we 
onsidered the 
ase of a twisted redu
tion whi
h has a simple geometri
interpretation as a 
ompa
ti�
ation on a T d bundle over S1 in whi
h the torus moduli havemonodromy in GL(d;Z) round the base 
ir
le. The internal spa
e is a twisted torus, orgroup manifold identi�ed under a dis
rete subgroup. In
luding a monodromy that shifts theB-�eld 
orresponds to adding an H-
ux to the twisted torus. We now turn to the geometri
interpretation of the T-duality twisted redu
tions of se
tion 3.The Doubled TorusFor the general (nongeometri
) 
ase a geometri
 approa
h has been given by the doubledtorus formalism of [6℄. The O(d; d;Z) duality twist a
ts non-geometri
aly on the torus T d(mixing the metri
 and B-�eld, for example) but as O(d; d;Z)� GL(2d;Z), it has a naturala
tion as di�eormorphisms of a doubled torus T 2d. There is then a T 2d bundle over a
ir
le with twist generated by NAB 
onstru
ted as in se
tion 2. Su
h a doubled torus arisesnaturally in string theory, with the original d 
oordinates za on T d 
onjugate to the momentaand an additional d 
oordinates ~za 
onjugate to the winding numbers on the original T d. TheO(d; d;Z) duality group a
ts naturally on the periodi
 doubled 
oordinates XA = (za; ~za).It was shown in [6, 7℄ that string theory 
ompa
ti�ed in this way 
ould be formulated interms of a sigma model with target given by this doubled torus bundle. In this formalism,T-duality is a manifest symmetry, and the 
onventional formalism is re
overed on 
hoosinga polarisation, i.e. a T d � T 2d whi
h is to be regarded as the real spa
etime torus. T-duality
an be viewed as a
ting to 
hange the 
hoi
e of T d � T 2d, 
hanging the geometry to adual one. All dual geometries are en
oded in the doubled torus bundle. For a geometri
ba
kground, a global polarisation 
an be 
hosen, but for T-folds the best one 
an do is
hoose a polarisation lo
ally. The T-duality transition fun
tions then give the 
hanges inpolarisation from pat
h to pat
h.A doubled torus bundle over a 
ir
le is a twisted torus G0=�0, as in se
tion 2. Simplyapplying the 
onstru
tion of se
tion 2 to the doubled torus gives a ba
kground in whi
h the9



group G0 has generators TA; Zx satisfying the algebra[Zx; TA℄ = �NBATB [TA; TB℄ = 0 (5.1)a
ting on the 
oordinates (x;XA) asZx = �x +NABXB�A TA = �A (5.2)This algebra does not 
apture the full gauge algebra (3.7). It is not a subalgebra, but it isthe algebra a
ting on the se
tor in whi
h Xx a
ts trivially. In order to give a full geometri
interpretation to the gauge algebra (3.7) we need to extend the doubled torus 
onstru
tion.The Doubled GroupThe doubled torus formalism in whi
h the �bres are doubled is useful for dis
ussing T-duality on the �bres and the various T-dual spa
es arise as di�erent polarisations of thedoubled torus bundle. If, as suggested in [12℄, one 
an also T-dualise on the base 
ir
le with
oordinate x, it is natural to ask whether there is a doubled spa
e that would in
lude aT-dual 
ir
le to the base 
ir
le so that all T-dual spa
es are in
orporated as di�erent d+ 1dimensional polarisations of a 2(d+1) dimensional spa
e X . In ea
h polarisation, half of thegauge group generators (the ones we have denoted Z) might be expe
ted to a
t geometri
allyon the d+1 dimensional spa
e (in the simplest 
ases, these generate di�eomorphisms of thespa
e). For this to apply for any polarisation, it is natural to expe
t that the full gaugegroup (generated by the Z's and X's with Lie algebra (3.7)) should a
t on the doubledspa
e. Comparison with the twisted torus 
onstru
tion suggests then that the doubled spa
eshould be lo
ally a group manifold G, with Lie algebra (3.7), identi�ed under a dis
retesubgroup.As in the dis
ussion of the twisted torus geometry, one 
an represent the Lie algebra(3.7) in terms of the 2(d + 1) 
oordinates (x; ~x;XA) of G, where XA are the 
oordinates onthe doubled torus �bre T 2d, asZx = �x +NABXB�A Xx = �~x TA = �A � 12NABXB�~x (5.3)Then Xx a
ts as translation in the new 
oordinate ~x and so a
ts trivially on �elds that areindependent of ~x, so on su
h �elds the algebra (5.1) is realised and in this se
tor the doubledtorus bundle gives a full geometri
 representation of the stru
ture. However, the doubledgroup gives a non-trivial extension to the general 
ase with ~x dependen
e.The one forms dual to these ve
tor �elds satisfy the Maurer-Cartan equationsdPA �NABP x ^ PB = 0 dQx � 12NABPA ^ PB = 0 dP x = 0 (5.4)
10



whi
h are solved by1PA = �eNx�A BdXB Qx = d~x + 12NABXAdXB P x = dx (5.6)This is a doubling of the geometry given for the twisted torus in se
tion 2, and the one-forms(5.6) are the doubling of the one-forms (2.5). The PA and P x together des
ribe the doubledtorus �bred over S1, but a fully geometri
 interpretation of the gauge algebra requires a 2d+2dimensional spa
e G into whi
h the doubled torus �bration is non-trivially embedded. It isuseful to de�ne the 
oordinates XI = �x; ~x;XA� on the doubled group and PM = PMIdXIas the one forms on G satisfying the Maurer-Cartan equationsdPM + 12tNPMPN ^ PP = 0 (5.7)where txBA = �NAB and tx[AB℄ = �NAB .T-Duality and R-FluxIn the doubled torus pi
ture, 
hoosing a polarisation 
orresponded to 
hoosing a maxi-mally isotropi
 subspa
e (null with respe
t to the 
onstant O(d; d) metri
 LAB) T d � T 2das the geometri
 spa
e with 
oordinates za (and geometri
 generators Za) and the 
omple-ment eT d, with 
oordinates ~za (and generators Xa). As G � O(d+ 1; d+ 1), it preserves theO(d + 1; d + 1) invariant metri
 LMN , and an isotropi
 subspa
e of G is one whi
h is 
om-pletely null with respe
t to this metri
. In the doubled group 
ase, a 
hoi
e of polarisation
an be given by 
hoosing a maximally isotropi
 subgroup G � G (i.e. one whose generatorsare all null with respe
t to LMN). The geometry of the 
onventional sigma-model is givenlo
ally by G. In some 
ases, the 
omplement of G will also be a group eG, and this de�nesa dual polarisation. For example, if the gauge algebra is a Poisson-Lie algebra, it takes theform[Zm; Zn℄ = fmnpZp [Zm; Xn℄ = fmpnXp +QmnpZp [Xm; Xn℄ = QpmnXp (5.8)and has two maximally isotropi
 sub-algebras; one generated by Zm and the other by Xm,where m = (a; x) . These generate two subgroups G and eG and either 
an be used to de�nea physi
al subspa
e, giving two, lo
ally geometri
, string ba
kgrounds.For general groups G, however, it may be the 
ase that there is no suitable subgroup that
an be used to de�ne the desired polarisation, so that one has to use the doubled pi
tureand 
annot eliminate half of the 
oordinates even lo
ally. This is pre
isely the situation thatleads to the lo
ally nongeometri
 R-spa
e, whi
h we now dis
uss.1The one-forms (5.6) are dual to the ve
torsZx = �x Xx = �~x TA = �e�Nx�A B ��B � 12NBCXC�~x� (5.5)By a 
oordinate rede�nition XA ! �eNx�A BXB , these ve
tor �elds are brought to the simpler form (5.3).11



In the doubled group pi
ture, one might expe
t a generalisation of T-duality whi
h a
tson all the 
oordinates XI . This allows us to 
onsider the possibility of 
hoosing either xor its dual ~x as the geometri
 
oordinate in a polarisation. This is to be 
ontrasted withthe doubled torus pi
ture whi
h, a priori, �xes x to be the geometri
 
oordinate and onlydoubles the �bres.A
ting with the 
onje
tured T-duality on the algebra (3.7) whi
h ex
hanges x and ~xprodu
es the gauge algebra[Xx; TA℄ = �NBATB [TA; TB℄ = �NABZx (5.9)whi
h has 
orresponding one-formsPA = �eN ~x�A BdXB P x = dx+ 12NABXAdXB Qx = d~x (5.10)whi
h is an O(d; d) twist over the dual 
oordinate ~x as 
onje
tured in [12℄. This has non-trivial dependen
e on the dual 
oordinates ~x, so 
annot be interpreted as a 
onventionalba
kground even lo
ally. This spa
e is a 2d+ 2 dimensional twisted torus with 
oordinatesXI .Global IssuesAs in the twisted torus example of se
tion 2, the gauge algebra only �xes the lo
alstru
ture of the (in this 
ase, doubled) geometry. This 
an be seen by the fa
t that theone forms (5.6) are invariant under the rigid left a
tion of G, whi
h a
ts on the 
oordinatesin�nitesimally asÆx = � Æ~x = ~�� 12NAB�AXB ÆXA = NABXB� + �A (5.11)and so the global stru
ture of the doubled group is thus far only determined up to a rigidleft a
tion of G. In general, the doubled spa
e will be of the form X ' G=� for some dis
retesubgroup �. The gauge algebra �xes the lo
al stru
ture of the doubled group, but the globalstru
ture remains undetermined. In parti
ular, the 
hoi
e of dis
rete subgroup � is notdetermined by the gauge algebra. However, 
onsisten
y with the doubled torus pi
ture �xesthe identi�
ation of most of the 
oordinates, but not that of ~x. In the 
ase of a trivial bundle~x is the 
oordinate for a dual 
ir
le with radius inversely related to that of the x 
ir
le [17℄.It seems reasonable to expe
t that � should be 
hosen to be 
o
ompa
t, so that G=� is
ompa
t. We will return to the dis
ussion of the doubled geometry X ' G=� and its role inthe dis
ussion of T-duality elsewhere, and show how � is �xed in parti
ular examples.A
knowledgmentRR would like to thank the Institute of Mathemati
al S
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es at Imperial College London,where this work was initiated, for their hospitality.12



A O(d; d)-Twisted Redu
tionThe redu
tion ansatz is ds2D+1 = ds2D + ��x 
 �xAA(x; y) = �eNx�A B �AB(1)(y) +AB(0)�x�B(2)(x; y) = B(2)(y) +B(1)(y) ^ �xMAB(x; y) = �eNx�A CMCD(y) �e�Nx�D B� = '+ 12 ln(�) (A.1)where the vielbein �x is �x = dx� V x(1) (A.2)and we have introdu
ed the 
onne
tion V x(1) with �eld strength F x(2) = dV x(1). Using the �eldrede�nitions C(2) = B(2) � 12C(1) ^ V x(1)C(1) = B(1) � 12LABAA(0)AB(1)C(0) = 12LABAA(0)AB(0) (A.3)the redu
ed theory may be written in a manifestly O(d+ 1; d+ 1) 
ovariant wayLD = e�'�R � 1 + �d' ^ d'+ 12 � H(3) ^ H(3) + 14 �DMMN ^DMMN�12MMN � FM ^ FN� + V � 1 (A.4)The s
alar potential is now written in the O(d+ 1; d+ 1) 
ovariant formV = e�'�14MMQLNTLPStMNP tQTS � 112MMQMNTMPStMNP tQTS� (A.5)The s
alars parameterise the 
oset O(d+ 1; d+ 1)=O(d+ 1)� O(d+ 1)MMN = 0B� � +MABAA(0)AB(0) + ��1C(0)C(0) ��1C(0) ��1C(0)LACAC(0) +MACAC(0)��1C(0) ��1 ��1LACAC(0)��1C(0)LBCAC(0) +MBCAC(0) ��1LACAC(0) MAB + ��1LACLBDAC(0)AD(0) 1CAThe one, two and three-form �eld strengths areH(3) = dC(2) + 12 �LMNAM ^ FN � 23tMNPAM ^ AN ^ AP�DMMN = dMMN +MMP tPQNAQ +MNP tPQMAQFM = dAM + 12tNPMAN ^ AP (A.6)13



The one-forms form an O(d+ 1; d+ 1) ve
tor AM with �eld strength FMAM = 0B� V x(1)C(1)AA(1) 1CA FM = 0B� F x(2)G(2)xFA(2) 1CA (A.7)where we have de�ned G(2)x = dC(1) � 12NABAA(1) ^ AB(1) (A.8)De�ning tMNP = LMQtNPQ where LMN is the O(d+ 1; d+ 1) invariant matrix whi
h takesthe blo
k diagonal formLMN =  Lxx 00 LAB ! Lxx =  0 11 0 ! (A.9)the stru
ture 
onstants are txBA = �NAB and tx[AB℄ = �NAB. The presen
e of tMNPbreaks the rigid O(d+1; d+1) symmetry of the ungauged theory to the subgroup preservingtMNP . However, the theory be
omes formally invariant under O(d+1; d+1) if the stru
ture
onstants are taken to transform 
ovariantly under O(d+ 1; d+ 1).B Gauge SymmetryIn D + d+ 1 dimensions the theory has the antisymmetri
 tensor transformation symmetrybB(2) ! bB(2) + db�(1) (B.1)The redu
tion ansatz for the parameter b�(1) on T d is b�(1) = �(1) + �(0)a�a. The remainderof the U(1)2d gauge symmetry 
omes from the d isometries of the T d, xa ! xa � !a, underwhi
h ÆAa(1) = �d!a and all other �elds are invariant. In D+1 dimensions this U(1)2d gaugesymmetry a
ts on the �elds asÆTAA(1) = d�A(0)ÆTB(2) = d�(1) + 12LAB�A(0) bFB(2) (B.2)where we have de�ned �A(0) =  �!a�(0)a ! (B.3)Antisymmetri
 tensor transformations14



The duality twist redu
tion ansatz for the D + 1 dimensional gauge parameters �(1) and�A(0) is �A(0) = �eNx�A B�B �(1) = �(1) + �x�x (B.4)We denote the in�nitesimal variation of the �elds under this transformation by ÆT . It is easyto show, by 
al
ulating db�A(0), that the D-dimensional gauge potentials transform asÆTAA(1) = d�A +NAB�BV x(1)ÆTC(1) = d�x +NAB�AAB(1) (B.5)S1 Di�eomorphismsThe theory must be invariant under reparameterisations of the 
ir
le 
oordinatex! x� ! (B.6)The matrix eNx 
hanges as �eNx�A B ! �eNx�A C �e�N!�C B = �eNx�A C �ÆCB �NCB! + :::�.From this is it easy to see how the D-dimensional �elds must transform in order for the D+1dimensional ansatz to be invariant. The gauge �elds transform asÆZAA(1) = NABAB(1)!ÆZV x(1) = �d! (B.7)Symmetry AlgebraWe de�ne ÆZ = !Zx ÆT = �ATA ÆX = �xXx (B.8)where Zx, Xx and TA are generators of gauge transformations with parameters !, �x and�A respe
tively. The Lie algebra of the gauge group is[Zx; TA℄ = �NBATB [TA; TB℄ = �NABXx (B.9)with all other 
ommutators vanishing.Referen
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