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A Momentum Spae Analysisof the Triple Pomeron Vertex in pQCDJ. Bartels(a) and K. Kutak(b)(a)II. Institut f�ur Theoretishe Physik, Universit�at HamburgLuruper Chaussee 149, Germany(b) DESY Notkestrasse 85, 22607 Hamburg, Germany(Deember 4, 2007)AbstratWe study properties of the momentum spae Triple Pomeron Vertex in perturbativeQCD. Partiular attention is given to the ollinear limit where transverse momentaon one side of the vertex are muh larger than on the other side. We also ommenton the kernels in nonlinear evolution equations.1 IntrodutionThe Triple Pomeron Vertex (TPV) in perturbative QCD [1, 2, 3℄ has attrated signi�antattention in reent years. It is derived from the 2! 4 transition vertex in QCD reggeon�eld theory whih represents the high energy desription of QCD. In reent years parti-ular interest has ome from studies of nonlinear evolution equations, e.g. the Balitsky-Kovhegov equation [3, 4, 5℄, where the nonlinearity is given by the TPV. More reently,also generalizations of the nonlinear evolution have been onsidered [6℄ whih ontainpomeron loops [7℄. Again, the TPV plays a entral role in these investigations. Whereasin many studies and appliations it is onvenient to use the oordinate representation, itis important to understand the struture also in momentum spae.In this paper we will investigate some aspets of the TPV, starting from the momentumspae representation of the 2! 4 gluon transition vertex, from whih the TPV vertex has
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originally been derived [1, 2℄. Many of the studies of the nonlinear evolution equationshave been done in the ontext of deep inelasti sattering where a virtual photon satterso� a single nuleon or o� a nuleus. In both ases the momentum sale of the photonis muh larger that the typial sale of the hadron or nuleus, i.e. one is dealing withasymmetri momentum on�gurations. As a �rst step of investigating the TPV, therefore,we will fous on investigating the limit where the transverse momenta are strongly ordered.We also review and disuss the nonlinear evolution equation that have been proposed inthe literature [8, 9℄, and we omment on the use of a twist-expansion in the low-x limit.The paper is organized as follows. In the following setion 2 we de�ne the setupof our alulation, and we onstrut the elasti amplitude for photon-photon satteringwith exhange of a four gluon BKP state. In the large-N limit, this redues to photon-photon sattering with the exhange of a pomeron loop. In the remaining part of setion2 we de�ne the Mellin transform of a pomeron loop and speify our use of 'ollinear'and 'antiollinear limits'. In setion 3 we study the ollinear limit of the Triple PomeronVertex in the large N limit. Setion 4 ontains results of the analysis of the antiollinearlimit in the large N limit. In setion 5 we extend the analysis to �nite N. In setion 6we derive a hierarhy of nonlinear evolution equations whih desribe the interation ofa photon with a hadroni target. We also show that, in the mean �eld approximation,we obtain a nonlinear evolution equation for the unintegrated gluon density. Setion 7ontains a few omments on the relation of this equation with other nonlinear evolutionequations desribed in the literature. We end the paper with a few onlusions.2 The 2! 4 gluon transition vertexThe LO momentum spae expression for the 2 ! 4 gluon transition vertex has been de-rived in onnetion with the di�rative dissoiation of the virtual photon in deep inelastieletron proton sattering [2℄. More preisely, the proess � + q ! (q�q + n gluons) + q
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(a) (b)Figure 1: Examples of diagrams that ontribute to the 2 ! 4 gluon transition vertex(wavy vertial lines represent reggeized gluons): (a) real emission, (b) a disonnetedontribution.has been investigated in the triple Regge limit. The resulting vertex onsists of three2



piees (we follow the notation of [11℄):Va01a02;a1a2a3a4(�1;�2;k1;k2;k3;k4) = p2�Æa01a02N2 � 1 "Æa1a2Æa3a4V (�1;�2;k1;k2;k3;k4)+Æa1a3Æa2a4V (�1;�2;k1;k3;k2;k4) + Æa1a4Æa2a3V (�1;�2;k1;k4;k2;k3)#; (1)where �1+�2 = k1+k2+k3+k4 = q, and the subsripts a0i, ai refer to the olor degreesof freedom of the reggeized gluons. It is onvenient to express the 'basi vertex funtion'V (�1;�2;k1;k2;k3;k4) in terms of another funtion G(�1;�2;k1;k2;k3):V (�1;�2;k1;k2;k3;k4) = 12g4�G(�1;�2;k1;k2 + k3;k4) +G(�1;�2;k2;k1 + k3;k4)+G(�1;�2;k1;k2 + k4;k3) +G(�1;�2;k2;k1 + k4;k3)�G(�1;�2;k1 + k2;k3;k4)�G(�1;�2;k1 + k2;k4;k3)�G(�1;�2;k1;k2;k3 + k4)�G(�1;�2;k2;k1;k3 + k4)+G(�1;�2;k1 + k2;�;k3 + k4)�: (2)This funtion G(�1;�2;k1;k2;k3) [13, 16℄ generalizes the G funtion introdued in [2℄ tothe non-forward diretion. This funtion an again be split into two piees:G(�1;�2;k1;k2;k3) = G1(�1;�2;k1;k2;k3) +G2(�1;�2;k1;k2;k3); (3)where the �rst part ontains the 'onneted ontributions' (also: 'real ontributions'):G1(�1;�2;k1;k2;k3) = (k2 + k3)2�21(�1 � k1)2 + (k1 + k2)2�22(�2 � k3)2 � k22�21�22(�1 � k1)2(�2 � k3)2�(k1 + k2 + k3)2; (4)and the seond one takes are of the disonneted ('virtual') piees:g2G2(�1;�2;k1;k2;k3) = ��21�22N �[!(k2)� !(k2 + k3)℄Æ(2)(�1 � k1)+[!(k2)� !(k1 + k2)℄Æ(2)(�1 � k1 � k2)�: (5)Here !(k) denotes the trajetory funtion.:!(k) = �Ng2 Z d2l(2�)3 k2l2 + (k� l)2 1(k� l)2 : (6)The vertex (1) is ompletely symmetri under the permutation of the four gluons. It isinfrared �nite, it has been shown to be invariant under M�obius transformations [12℄, andit vanishes when �i or ki goes to zero. 3
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(a) (b)Figure 2: Contributions to the elasti sattering of two virtual photons whih ontain the2 ! 4 gluon vertex (dark blobs represent Green's funtions of reggeized gluons): (a) thefour gluon BKP state; (b) a Pomeron loop.This vertex an be used to onstrut, in reggeon �eld theory, the selfenergy �, ofthe BFKL Green's funtion (Fig. 2). In the lowest order ontribution to �, we have aBKP state between two 2 ! 4 verties, whih ontains all pairwise interations of fourreggeized t-hannel gluons. Its Green's funtion satis�es the following evolution equation:(! � !(k1)� !(k2)� !(k3)� !(k4))G(4) faig;fa0ig! (fkig; fk0ig) =G(4)0 faig;fa0ig(fkig; fk0ig) + X(ij) 1k2ik2jKfag!fbg2!2 
 G(4) fbigfa0ig! (fkigfk0ig); (7)where we have used the shorthand notation fkig = (k1;k2;k3;k4) et. The sum extendsover all pairs (ij) of gluons, the kernel Kfag!fbg2!2 inludes the olor tensor faibifajbjKfaig!fbig2!2 = g2 fb1a1fa2b2 �r2 � k21(k� r)2(k1 � k)2 � k2(k1 � r)2(k1 � k)2 � ; (8)and the onvolution symbol 
 stands for R dk2(2�)3 . The inhomogeneous term has the form:Æ(2)(Xki �Xk0i)G(4)0 faigfa0ig(fkig; fk0ig) = (2�)9 4Y1 Æaia0iÆ(2)(ki � k0i)k2i : (9)4



(a) (b)Figure 3: Quark quark sattering in the high energy limit of QCD (olor singlet exhange):(a) two loop orretion in the ladder approximation, (b) diagrams with two Triple PomeronVerties (grey bloobs).

(a) (b) (c)Figure 4: Di�erent uts.Let us briey explain how we obtain the orret normalization fators. We onsider thesattering amplitude of quark quark sattering (Fig.3b) whih, in the enter, ontains theinsertion of four reggeized t-hannel gluons. We begin with the di�rative ut (Fig.4a):the one loop amplitude on the lhs of the utting line will be assumed to have an evensignature exhange and, hene, is equal (up to fator i) to its energy disoninuity. As a5



result, we start from Fig. 3b with three utting lines: all horizontal lines are on mass-shell. To distribute the olor and phase spae fators we proeed as follows: using theon-shell onditions, we an perform 8 out of the 10 longitudinal Sudakov integrations;the two remaining longitudinal variables denote the rapidity of the two produed gluonsin the entral region whih, for the moment, we keep �xed. For eah losed loop, weare left with an integral R d2k=(2�)3. For eah BFKL rung in Fig.3a we have the kernelfrom (8), for eah 2 ! 4 vertex in Fig.3b we have the 2 ! 4 vertex (1) (divided by theadditional fator 1=p2). Having in mind that our disussion should be appliable alsoto more general diagrams, we retain, for the moment, the general olor struture in (8)and in (1). When deriving, from Fig.3b, the di�rative ut in Fig.4a, we write, for eah 2gluon exhange on the lhs and on the rhs of the utting line a statisti fator 1=2!; fromthe ompensating fator 4 we absorb p2 into eah of the 2! 4 verties. As a result, wehave, in addition to all other olor and phase spae fators, the statisti fators 2=(2!)2.Invoking now the AGK rules [14, 15℄, applied to the exhange of four (odd signature)reggeized gluons, the other ontributions in Figs.4b and , the statisti fators beome:2� 12!2! � 23!� = � 44! : (10)Finally, we use our result for quark-quark sattering and return to the proess of ourinterest, photon-photon sattering. Replaing the quark impat fators by photon impatfators, inserting BFKL rungs above and below the 2! 4 verties, and inserting pairwiseinterations between the four gluon lines in the enter, we arrive at:A(s; t) = 2is� Z Y0 dY3 Z Y0 dY2 Z Y0 dY1Æ(Y � Y1 � Y2 � Y3)� Z d2�(2�)3 d2�1(2�)3�a01a02(�;q� �)G(2)a01a02 ;a001a002 (Y3;�;�1;q)��44! Z 4Yi=1 � d2ki(2�)3� (2�)3Æ(2)(Xki � q) Z 4Yi=1 � d2k0i(2�)3� (2�)3Æ(2)(Xk0i � q)�Va001a002 ;a1a2a3a4(�1;q� �1;k1;k2;k3;k4)G(4);faigfbig(Y2; fkigfk0ig)� Z d2�0(2�)3 d2�01(2�)3Vb1b2b3b4;b001 b002 (k01;k02;k03;k04;�01;q� �01)�G(2)b001 b002 ;b01b02(Y1;�01;�0;q)�b01b02(�0;q� �0); (11)where the minus sign in the third line indiates that the four gluon insertion into the twogluon Green's funtion represents a negative orretion to the simple ladder amplitude.Here s is the squared enter of mass energy, Y = ln(s=s0) is the total rapidity, Y1, Y2,Y3 are the rapidity intervals as depited in Fig. 2, �a01a02 denotes the impat fator ofthe virtual photon, G(2)a01a02;a001a002! is the BFKL Green's funtion whih satis�es the BFKL6



integral equation: (! � !(k1)� !(k2))G(2) a1a2b1b2! (fkig; fk0ig) =G(2)0 a1a2b1b2(fkig; fk0ig) + 1k21k22Kfag!fbg2!2 
 G(2) a1a2b1b2! (fkigfk0ig); (12)with an inhomogeneous term analogous to (9). The statistis fator 14! reets the symme-try of the expression under the interhange of the four gluons. In eq.(11), the selfenergy isde�ned by lines 3 - 5, i.e. the onvolution of the two 2! 4 verties with the BKP Green'sfuntion between them. As a onvenient simpli�ation, we approximate the four gluonstate by two noninterating olor singlet ladders (Fig. 2b): this on�guration representsa 'pomeron loop'. It is easy to �nd the ombinatorial fator of a system where two pairsof gluons form bound states. We have three possibilities of pairing two gluons to formbound states out of four gluons. This yields the fator 1=2!. In this on�guration we havea pomeron loop topology. The result reads:A(s; t) = 2is� Z Y0 dY3 Z Y0 dY2 Z Y0 dY1 Æ(Y � Y1 � Y2 � Y3)� Z d2�(2�)3 d2�1(2�)3�a01a02(�;q� �)G(2)a01a02;a001 a002 (Y3;�;�1;q)��12! Z d2r(2�)3 Z d2k1(2�)3 d2k3(2�)3Va001a002 ;a1a2a3a4(�1;q� �1;k1;�k1 � r;k3;�k3 + r+ q)� Z d2k01(2�)3 d2k03(2�)3 (PG)(2)a1a2b1b2(Y2;k1;k01; r)(PG)(2)a3a4b3b4(Y2;k3;k03; r+ q)� Z d2�01(2�)3 d2�0(2�)3Vb1b2b3b4;b001 b002 (k01;�k01 � r;k03;�k03 + r+ q;�01;q� �01)�G(2)b001 b002 ;b01b02(Y1;�01;�0;q)�b01b02(�0;q� �0); (13)where P a1a2b1b2 = Æa1a2Æb1b2N2 � 1 (14)is the olor singlet projetor. These projetors at on the olor tensors of the 2 ! 4verties, turning the pairs of olor labels (a1a2), (b1b2), (a3a4), (b3b4) into olor singlets.Comparison with (1) shows that this projetion operator, when ating on the �rst term,leads to a fator 1, whereas the remaining terms ome with the weight fator 1N2�1 : inomparison with the �rst term, they are olor suppressed. This large-N approximationturns the 2! 4 verties into the Triple Pomeron Verties (TVP).In the following we shall fous on the pomeron loop (13) and investigate, for zerototal momentum transfer, q = 0, the kinemati limit where the momentum sale of theupper photon is muh larger than the lower one. This implies that, at the upper TPV,the momentum from above, �1, is larger than the momenta from below, k1, k3, and theloop momentum r ('ollinear limit'). Conversely, for the lower TPV we have the opposite7



Im(γ)

Re(γ)0−1

Figure 5: Singularities in the  plane.situation: the momenta k01, k03, and r are larger than �01 ('antiollinear limit'). Let usbeome a bit more formal. We expand the amplitude of Fig. 2 in powers of Q20=Q21('twist expansion'). The objet of our interest is the self-energy of the Pomeron Green'sfuntion, �(�1;�01). In Eq.(13), �(�1;�01) is de�ned to represent the lines 3 - 5, i.e. theonvolution of the two TPV's with the two BFKL Green funtions between them. It hasthe dimension k2, and it is onvenient to de�ne the dimensionless objet ~�(�1�01 ) = �(�1;�01)p�21�021with the Mellin transform: ~�() = Z 10 dk2 ~�(k2)(k2)�1: (15)The inverse Mellin transform reads:~�(k2) = ZC d2�i(k2)� ~�(); (16)where k2 = �021�21 , and the ontour rosses the real axis between �1 and 0 (see Fig. 5). Ouranalysis will then redue to the study of the singularities of the funtion ~�(). The twistexpansion orresponds to the analysis of the poles loated to the left of the ontour in the plane: the pole at  = �1 is the leading twist pole, the pole at  = �2 belongs to twist4, and so on. As we have already said before, for the upper TPV in Fig. 2, the analysisof this twist expansion requires the 'ollinear limit', for the lower TVP the 'antiollinear'one.
8



3 The ollinear limitIn this setion we are going to study the ollinear limit of the TPV. The ordering of thetransverse momenta is the following: j�1j � jkj�jk1j; jk2j; jk3j; jk4j. We therefore expandin powers of jk1j=jkj, jk2j=jkj, jk3j=jkj, jk4j=jkj. In our investigations we will be interestedin attahing olor singlet objets to the vertex, and we projet (1) onto the olor singlets.In the limit N !1 we obtain:P a1a2b1b2P a3a4b3b4Va01a02;a1a2a3a4(k;�k;k1;k2;k3;k4) == Æa01;a02Æb1;b2Æb3;b4 p2�N2�1�V (1; 2; 3; 4) + 1N2�1 (V (1; 3; 2; 4) + V (1; 4; 2; 3))�; (17)where V (1; 2; 3; 4) � V (k;�k;k1;k2;k3;k4). The �rst term will be denoted byVfa0gfbgL0N (1; 2; 3; 4) = Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1V (1; 2; 3; 4); (18)the seond and third ones byVfa0gfbgsubN (1; 3; 2; 4) = Æa01;a02Æb1;b2Æb3;b4 p2�(N2 � 1)2V (1; 3; 2; 4) (19)et.3.1 The real partLet us begin the analysis by expanding the real part of the G funtion (3) in the ollinearlimit. As we are going to limit ourselves to the forward ase we use the simpli�ed notationsG(k;�k;k1;�k1 � k3;k3) � G(k1;k3) and V (k;�k;k1;k2;k3;k4) � V (k1;k2;k3;k4).With these de�nitions the G1 funtion (4) reads:G1(k1;k3) = k21k2(k� k1)2 + k23k2(k + k3)2 � (k1 + k3)2k4(k� k1)2(k+ k3)2 : (20)In the ollinear limit the momenta of the outgoing gluons satisfy the onditions jk1j<<jkj,jk3j<<jkj. Performing the expansion in jkij=jkj up to fourth order terms we obtain:G1(k1;k3) = 2k2"� k1 �k3k2 � k1 �kk4 �k23 + 2k1k3�+ k3 �kk4 �k21 + 2k1k3�++�k21k2 � (2k1 �kk2 )2��k23 + 2k1k3�+ �k23k2 � (2k3 �kk2 )2��k21 + 2k1k3�++(k1 + k3)22k�k1k2 2k�k3k2 + :::#: (21)
The �rst term is the twist-two ontribution:G1(k1;k3)�=2 = �2k2 k1 �k3k2 : (22)9



With analogous expressions for the other G1 funtions in eq.(2) we �nd that the sumof all twist-two piees vanishes. The next two terms on the rhs of eq.(21) vanish afteraveraging over the azimuthal angle of k. Finally we are left with the twist-four piee.After averaging over the diretion of k we �nd:G1(k1;k3)�=4 = 2k2 �2(k1 �k3)2 � k21k23k4 � : (23)From eq.(2) we obtain for the twist-4 piee of the real part of the TPV:Vrfa0gfbgLON (k1;k2;k3;k4)�=4=Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1 g42 2k24(�k1 �k2 k3 �k4 + k1 �k4 k2 �k3 + k1 �k3 k2 �k4)k4 ; (24)where the supersript r stands for the real emission. This expression is the master formulafor the twist-four ontribution.In the next step we are going to attah BFKL ladders to the pairs of gluons (k1;k2)and (k3;k4). Sine the presene of a momentum transfer aross the BFKL ladder wouldause loss of a logarithmi ontribution, we limit ourselves to the forward diretions:k1 = �k2; k3 = �k4: (25)Putting k1 = l, k2 = �l, k3 =m, k4 = �m we obtain:Vrfa0gfbgLON (l;�l;m;�m)�=4 = Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1 g42 2k24(2(l�m)2 � l2m2)k4 : (26)Now we multiply the vertex by propagators for the lower gluon lines and onvolute with2! 2 transition kernels (eq. (8)). Our goal is to �nd, from the onvolutions of the vertexwith propagators and kernels, the maximal number of logarithms. To do that we shouldat on the twist four ontribution of the vertex with the twist four evolution operator,whih, in our ase, is the produt of two BFKL kernels in the twist-two approximation.Let us ompute the ollinear approximation to the BFKL kernels whih, when onvolutedwith the TPV, will give a logarithmi integral. The expression for the emission part ofthe BFKL kernel is:K(q1;q2;k1;k2) = �Ng2�(k1 + k2)2 � q22k21(k2 � q2)2 � q21k22(k1 � q1)2�: (27)The fator �N replaes the olor tensors in eq.(8), sine we have projeted on the olorsinglet state. Assuming zero momentum transfer and q21>>k22 we get:K= g2N2k21; (28)where, in order to simplify the notation, we have skipped the arguments of the kernel K.Using this approximation in the formula for Fig.6a, we get the following expression for10
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Figure 6: (a) The TPV with two BFKL interations attahed to it. (b) The TPV withgluon ladders.the onvolution of the vertex with two BFKL kernels (one kernel for eah two-gluon pairbelow the vertex):(KK)
 Vrfa0gfbgLON �=4 = Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1N2 2k2g82 �Z k2k20 d2l(2�)3 Z k2k20 d2m(2�)3 2k20l4 2k20m4 4(2(l�m)2 � l2m2)k4= 0; (29)where k0 is the lowest momentum sale whih we do not speify at present. We notiethat the integrals of l and m are logarithmi, but - what is most striking - the angularintegral over the angle between l and m renders the Triple Pomeron Vertex to vanish.It is straightforward to iterate the onvolution with BFKL kernels (Fig. 6b), and, as aresult, we arrive at the onlusion that - after averaging over the azimuthal angles - thetwist-four part of the TPV vertex gives zero ontribution.3.2 The virtual partSo far we have investigated ontributions oming from the real part of the vertex. Whatremains are the disonneted parts. In order to investigate logarithmi ontributions ofthe virtual piees we have to onvolute them with an impat fator at the upper end ofFig.1b. To deal with infrared �nite quantities it is onvenient to work with the impatfator of the photon. The funtion G2(k1;k2 + k4;k3) = G2(k1;k3) (5) in the forwarddiretion reads:G2(k1;k3) = �k4 18�2 �ln jk1j2jk1 + k3j2 Æ(2)(k1 � k) + ln jk3j2jk1 + k3j2 Æ(2)(k3 + k)� : (30)The photon impat fator (for transversely polarized photons) has the form [20, 21℄�a01a02(k; Q) = Æa01a02�s�emXq e2q Z 10 d�d� [�2 � (1� �)2℄[� 2 � (1� �)2℄k2�(1� �)Q2 + �(1� �)k2 ; (31)11



where Q2 and k2 denote the (negative) photon and gluon virtualities, resp. In this expres-sion � denotes the longitudinal omponent of the quark loop momentum (in the Sudakovdeomposition), while the seond integration variable � is a Feynman parameter. For ourinvestigations we are interested in the twist expansion. To perform the twist expansion ofthe impat fator one has to perform the Mellin transform with respet to k2=Q2. Withthe Mellin transform (15) one �nds:�a01a02(k; Q) = Z d2�i � k2Q2�� �a01a02(); (32)and we obtain: �a01a02() = Æa01a02C�(3 + )52 +  �(1 + )1 +  �(�)� �(� + 2)�(� + 32) : (33)Turning to Fig.2b, we are interested in the following ordering of momenta: jQ1j� j�j�j�0j� jQ0j. To analyse the twist-4 term of this kinemati region we need, for the upperimpat fator, the twist-4 term. Closing, in eq.(32), the ontour of the  integration tothe left we obtain the following ollinear expansion of the photon impat fator:�a01a02(�; Q1) = Æa01a02�(�; Q1) = Æa01a02C(�149 � 43 ln��2Q21�� �2Q21 + 25 ��2Q21�2 + :::) ; (34)where C = Pf e2f�s�em. As it is well-known, the twist-four term has no logarithmienhanement.For later purposes we also list the results for the lower impat fator: we lose theontour to the right and �nd:�a01a02(�0; Q0) = Æa01a02�(�0; Q0) = Æa01a02C(�149 � 43 ln�Q20�02��+ 25 �Q20�02�: ::): (35)For our twist-4 analysis of Fig.2b we will need the seond term on the rhs.Returning to the upper impat fator and onentrating on the twist-4 piee, we noweasily see, by simply ounting powers of momenta, that the virtual ontributions of theTPV annot ontribute to the maximal power of logarithms. Namely, beginning withthe impat fator above the TVP, we have the power k4 whih anels the two gluonpropagators attahed to the impat fator. From the G2 funtions we �nd another power,k4, whih, through the Æ-funtions, turns into m4, l4, or (m � l)4. When dividing theregion of integration into the two parts m� l and l�m, the terms with (m� l)4 turninto l4 or m4. Below the TPV we have the pairs of propagators, 1=m4, and 1=l4, andthere is no m (or l)- dependent ontribution from the BFKL kernels. Combining thesemomentum fators, we therefore obtain only integrals of the formZ d2ll4 Z d2mm4 l412



or Z d2ll4 Z d2mm4 m4;i.e.none of the integrals is logarithmi (this argument remains una�eted if we inlude thelogarithms from the G2 funtions). Hene, within the leading-log approximation, also thevirtual part of the TPV is zero.Let us emphasize that our searh for the 'maximal power of transverse logs' is exatlywhat is required for a onsistent twist-four analysis. In order to obtain this maximalpower (i.e. one power for eah transverse momentum loop integral), we had to start,at the upper impat fator with the twist-four term. Inluding a BFKL-ladder betweenthe impat fator and the TPV fores us to take also the twist-four approximation of thekernel, i.e. instead of the leading twist approximation in (27), terms of the order O(k21 k21q21 ).Next, at the TPV we searhed for terms of the order m2l2k2 , and, �nally, for the two BFKLkernels below the TPV, again the twist-2 approximation (27). It is only this sequene ofapproximations whih provides one logarithm for eah loop, i.e. otherwise we loose one(or more) powers of logarithmi enhanements. Our result then says that one oeÆientin this sequene of terms, namely the TPV, vanishes and thus makes the twist-four termin the twist expansion (in the leading-log approximation) disappear.3.3 Generalization to all higher twistsThe main result of the previous subsetions - the absene of ollinear logarithms in thease of angular averaged BFKL ladders - an be generalized to all orders of powers of1=Q2. We return to the funtion V in (2) whih is expressed in terms of the funtions G1and G2, and we average over the angles of m and l. First G1:G1(l;m) = k2l2(k� l)2 + k2m2(k+m)2 � k4(l+m)2(k� l)2(k+m)2 : (36)Let us denote the �rst term in this formula by A, the seond one by B and the third oneby C, the angle between l and m by �, and the angle between m and k by � (the anglebetween l and k then equals 2� � ���). For the integrals over � and � we �nd:IA = 1(2�)2 Z 2�0 d� Z 2�0 d� A = k2l2jl2 � k2j (37)and: IB = 1(2�)2 Z 2�0 d� Z 2�0 d� B = k2m2jm2 � k2j : (38)To ompute the integral over C we split C = C1 + C2 + C3 into three piees. Theorresponding integrals are:IC1 = 1(2�)2 Z 2�0 d�d� k4l2(k2 � 2lk os(�+ �) + l2)(k2 + 2mk os � +m2) ; (39)13



IC2 = 1(2�)2 Z 2�0 d�d� 2k4jljjmj os�(k2 � 2lk os(�+ �) + l2)(k2 + 2mk os � +m2) ; (40)IC3 = 1(2�)2 Z 2�0 d�d� k4m2(k2 � 2lk os(� + �) + l2)(k2 + 2mk os � +m2) : (41)The results of the integration are:IC1 = l2k4jl2 � k2jjm2 � k2j ; (42)IC2 = �8l2m2k6jl2 � k2jjm2 � k2j(l2 + k2 + jl2 � k2j)(m2 + k2 + jm2 � k2j) ; (43)IC3 = m2k4jl2 � k2jjm2 � k2j : (44)The total ontribution is given by summing up IA, IB, IC1 , IC2 , IC3 The result an greatlybe simpli�ed if we onsider speial situations. For instane, if k2� l2;m2, we may dropthe absolute value signs. Adding all terms we obtain:XA;::;C3 I = 2l2m2k2 � 2l2k4 � 2b2k4 + 2k6(l2 � k2)(m2 � k2) = 2k2: (45)In all other ases: k2� l2;m2, m2�k2�l2, or l2� k2�m2 the sum of all terms giveszero. Therefore the �nal result an be simply written as:1(2�)2 Z 2�0 d�d�G1(l;m) = 2k2�(l2 � k2)�(m2 � k2); (46)where the fator 1=(2�)2 omes from averaging.Let us now perform the angular averaging of the disonneted piees of the G(l;m)funtion. We have:G2(l;m) = �k4 18�2 �ln l2(l+m)2 Æ(2)(l� k) + ln m2(l+m)2 Æ(2)(m� k)� : (47)To ompute the integral over angles we split the region of integration. In the ase whenjmj�jlj the �rst term givesID = 1(2�)2 Z 2�0 d�d� ln l2l2 +m2 + 2lm os� = ln l2m2 ; (48)whereas the seond one vanishes. In the ase when jlj�jmj we obtain zero from the �rstterm and ID = 1(2�)2 Z 2�0 d�d� ln m2l2 +m2 + 2lm os� = lnm2l2 (49)14



from the seond one. We ombine the two ases in the following way:G2(l;m) = �k4 18�2 �ln l2m2 �(m2 � l2)Æ(2)(l� k) + lnm2l2 �(l2 �m2)Æ(2)(m� k)� : (50)Putting all piees together and inluding the remaining G funtions we arrive at theangular-averaged form of V :1(2�)2 Z 2�0 d�d�V (k;�k; l;�l;m;�m) = 4g42 �2k2�(l2 � k2)�(m2 � k2)+ 18�2� ln� l2m2� Æ(2)(l� k)�(m2 � l2) + ln�m2l2 � Æ(2)(m� k)�(l2 �m2)��: (51)The presene of the �-funtions forbids all ollinear on�gurations, i.e. there is noexpansion in inverse powers of k2. The physial meaning of this result is the following: ifthe two pomerons entering the vertex from below have smaller momenta than the pomeronfrom above, they annot resolve it and annot merge beause they do not feel 'olor' andthe vertex vanishes1. In the language of a twist-expansion, our result states that, inthe leading-log approximation, not only twist-four, but all higher twist terms are zero,provided we restrit ourselves to the large-N limit, and we use only the BFKL ladderswith onformal spin zero below the TPV.4 The antiollinear limit4.1 Real partLet us now investigate the antiollinear limit of the 2 ! 4 vertex (Fig.7). In ontrast tothe ollinear limit where the BFKL ladders below the vertex had to be in the forwarddiretion, the antiollinear on�guration allows for a nonzero momentum transfer arossthe BFKL ladders above the vertex. The momentum transfer here, as we will see, doesnot lead to a loss of a logarithm. We are interested in the limit jwj<<jw1j; jw2j; jw3j; jw4j.To study the real emission part of the TPV it is onvenient to rewrite the G1 funtion inthe form:G1(w1;w2 +w3;w4) = w2 " 1(1� 2w�w1w21 + w2w21 ) + 1(1 + 2w�w4w24 + w2w24 )�w2 (w1 +w4)2w21w24 1(1� 2w�w1w21 + w2w21 )(1 + 2w�w4w24 + w2w24 )# : (52)1A similar result has �rst been notied in [25℄: however, the disonneted piees have been missed.The result (51) agrees with the form given in [2℄.
15



Here we have used the momentum onservation Piwi = 0. The expansion parametersare jwj=jw1j and jwj=jw3j. Performing the expansion we obtain up to seond order:G1(w1;w2 +w3;w4) = w2 �2 + 2w�w1w21 � 2w�w4w24�2w2w21 � 2w2w24 � 2w2w1 �w4w21w24 + �2w�w1w21 �2 + �2w�w4w24 �2 + :::# : (53)Using (4) we obtain for the leading term of the TPV:Vrfa0gLON(p;�p� r;q;�q + r)leading = Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1 g42 2w2: (54)One easily sees that this term does not provide logarithms in the momentum sale. Thesubsequent terms in (53) vanish after averaging over the angle of w. Therefore, in orderto get, after onvolution with BFKL kernels in the subsystems (12) and (34), the requiredlogarithmi ontribution we need to onsider, in (53), terms of higher order. After av-eraging over the angle of w, and after summing, in (4), over all the G1 funtions, theresulting ontribution is the following:Vrfa0gLON(w1;w2;w3;w4)�=�2 =Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1g4w4"� w1 �w3w21w23 � w2 �w3w22w23 � w1 �w4w21w24 � w2 �w4w22w24�w1 �(w1 +w2)w21(w1 +w2)2 � w2 �(w1 +w2)w22(w1 +w2)2 � w3 �(w3 +w4)w23(w3 +w4)2 � w4 �(w3 +w4)w24(w3 +w4)2� (w1 +w2)�(w3 +w4)(w1 +w2)2(w3 +w4)2#: (55)
To proeed further we need the antiollinear limit of the BFKL kernel. Using (27),setting k1 = w1, k2 = w2 and requiring that jq1j�jw1j; jw2j we obtain:K = � g2N2w1 �w2: (56)As already mentioned before we are interested in the maximal power of logarithms in themomentum sale; this leads to the partiular momentum on�guration, where the mo-mentum transfer aross the BFKL Pomerons in the subsystems (12) and (34) is nonzero.(note that below the vertex we are still in the forward diretion). We set: w1 = p,w2=�p�r,w3 = q, w4 =�q+r. In order to obtain, after onvoluting with BFKL ker-nels in the subsystems (12) and (34), logarithmi ontributions, we have to onsider thefollowing momentum-ordered on�gurations:� The on�guration where jrj� jpj� jqj. BFKL kernels and propagators are of theform: Ng22p�r; �Ng22q�r (57)16
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(b)(a)Figure 7: Momentum assignments at the lower TPV.and 1p2r2 ; 1q2r2 ; (58)resp. In order to render all transverse momemtum integrations (in p, q, and in r)logarithmi, we need, from the TVP, terms proportional to p�qp2q2 : they are obtainedfrom the �rst term in (55):Vrfa0g;fbg;�=�2LON (p;�p� r;q;�q + r) = �Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1g4w4 p�qp2q2 : (59)Combining these expressions and performing the integrals we obtain:(K1K2)
 Vrfa0g;fbg;�=�2LON = Æa01;a02Æb1;b2Æb3;b4 p2�N2 � 1N2 g88(2�)3w43!�ln w20w2�3 ; (60)where jw0j is the momentum at the upper end of the BFKL kernels, spei�ed by theondition that it should be smaller than the momentum sales jlj and jmj whihwere onsidered in the ollinear limit of the upper TPV. Convoluting this expressionwith the impat fator �fb0g(w) = Æb01b02 25C Q20w2 lnQ20=w2 below the vertex yields:(K1K2)
 Vrfa0g;fbg;�=�2LON 
 �fa0g = Æb1;b2Æb3;b4p2�N2 25C �4s2� Q204! �ln w20Q20�4 : (61)Here, in order to get the logarithmi ontribution, we took, in (35), the next-to-leading term in the antiollinear expansion of � . In the on�guration jrj � jqj�jpjthe same result is obtained.� Repeating a similar analysis in the ase when jqj� jpj�jrj, we �nd, from the lastterm on the rhs of (55):(K1K2)
 Vrfa0g;fbg;�=�2LON 
 �fa0g = Æb1;b2Æb3;b4p2�N2 25C 2�4s� Q204! �ln w20Q20�4 : (62)The same ontribution is obtained from the region jpj�jqj�jrj.17



� Finally, there are the regions jqj�jrj �jpj and jpj�jrj�jqj. For the �rst ase weuse the �rst term in the seond line of (55) and obtain:(K1K2)
 Vrfa0g;fbg;�=�2LON 
 �fa0g = Æb1;b2Æb3;b4p2�N2 25C�4s� Q204! �ln w20Q20�4 : (63)The seond region gives the same ontribution.4.2 Virtual partsLet us now analyze the ontribution oming from the virtual parts of the vertex in theantiollinear limit. Again, we are looking for the maximal power of logarithms. We beginwith the region jrj � jpj; jqj. Using (2),(30) for the virtual parts of the TPV, (57) for theBFKL kernel, (58) for the propagators above the vertex, and (35) for the lower impatfator we immediately see that none of the G2 funtions allows for three logarithmiintegrals. The same observation holds for the regions jqj�jrj �jpj and jpj�jrj � jqj.We are then left with the region jpj; jqj � jrj. From the BFKL kernels and from thepropagators we �nd the denominators 1=p2 � 1=q2, and we therefore need the fator 1=r2from the propagators below the TPV. They an ome only from the �rst term in thefuntion G2(1 + 2; 3; 4):g2G2(1 + 2; 3; 4) = �sw42� �ln w23(w3 +w4)2 Æ(w+w3 +w4) + ln w23w24 Æ(w+w4)� ; (64)and from analogous terms in G2(1 + 2; 3; 4), G2(1; 2; 3 + 4), G2(2; 1; 3 + 4). Convolutingthese G2 funtions with the BFKL kernels and with the impat fator, and setting thelowest momentum sale equal to Q20, we �nd:(K1K2)
 Vvlfa0g;fbgLON 
 �fa0g = �Æb1;b2Æb3;b4p2�N2 25C�4s� Q202 �ln w20Q20�4 : (65)Let us shortly summarize our results for the large-N limit, before we ontinue the�nite N analysis. Our goal was to �nd those terms of the twist expansion of the TPVwhih, after onvolution with the BFKL kernel, would generate the maximal possiblepower of transverse momentum logarithms. In the ollinear ase (upper TPV), we hadto restrit the BFKL ladders below the TPV to the forward diretion, and we thereforeexpeted to �nd, from the m and l integrations, two logarithms. After the onvolutionwith the upper impat fator, a third logarithm should appear. What we found is thatthe oeÆient of this maximal number of logarithms vanishes, both for the onnetedand for the disonneted parts of the TPV. In the antiollinear ase we had to inludethe integral over the momentum transfer aross the �rst BFKL kernel. After onvolutingthese integrals with the lower impat fator, we expet four logarithms. In fat, we foundthese logarithmi ontributions, both in the real and in the virtual part of the TPV, andthey ame from di�erent regions of ordered transverse momenta.18



This ompletes our twist-4 analysis of the one-loop Pomeron self-energy of the BFKLPomeron (Fig.2b). We have found that the upper TPV vanishes at the twist-4 point,whereas the lower one provides nonzero ontributions.5 Finite N5.1 The ollinear limitIn this setion we are going to investigate ontributions to the vertex in (17) that aresuppressed in the large N limit. Repeating our analysis of the previous setions weobtain for the �rst subleading piee:Vrfa0g;fbgsubN (1; 3; 2; 4)�=4 == Æa01a02Æb1;b2Æb3;b4 p2�(N2 � 1)2g4 k24(�k1 �k3k2 �k4 + k1 �k2k3 �k4 + k1 �k4k2 �k3)k4 : (66)Substituting k1 = l, k2 = �l, k3 =m, k4 = �m we obtain:Vrfa0g;fbgsubN (l;m;�l;�m)�=4 = Æa01a02Æb1;b2Æb3;b4 p2�(N2 � 1)2g4k24l2m2k4 : (67)The onvolution with the two BFKL kernels gives:Vrfa0g;fbg;�=4subN 
 (K1K2) = Æa01a02Æb1;b2Æb3;b4 p2�(N2 � 1)2N2 4g8(2�)4 k40k2 �ln k2k20�2 : (68)Convolution with the impat fator gives:�fa0g 
 Vrfa0g;fbg;�=4subN 
 (K1K2) = p2�N2 � 1N2 25C 8�4s�2 k40Q41 13 �ln Q21k20 �3 : (69)The same result holds for the seond subleading part.For the virtual orretions to the TVP the situation is the same as for the leading-Npart: by simply inspeting the powers of transverse momenta, we �nd that the integra-tions over m and l are not logarithmi, i.e. they annot generate the maximal power oflogarithms.5.2 The antiollinear limitHere our starting expression for the real part of the TPV an be taken diretly from therhs of eq.(55), by interhanging w2 and w3. For the �rst nonleading piee we have:Vrfa0g;fbgsubN (w1;w3;w2;w4)�=�2 =19



Æa01;a02Æb1;b2Æb3;b4 p2�(N2 � 1)2g4w4"� w1 �w2w21w22 � w2 �w3w22w23 � w1 �w4w21w24 � w3 �w4w23w24�w1 �(w1 +w3)w21(w1 +w3)2 � w3 �(w1 +w3)w23(w1 +w3)2 � w2 �(w2 +w4)w22(w2 +w4)2 � w4 �(w2 +w4)w24(w2 +w4)2� (w1 +w3)�(w2 +w4)(w1 +w3)2(w2 +w4)2#: (70)
The analysis is analogous to the leading-N ase. In detail we �nd:� For jrj�jpj�jqj the logarithmi ontribution omes, on the rhs of eq.(70), from theseond term of the seond line. We obtain:(K1K2)
 Vrfa0g;fbgsubN 
 �fa0g = Æb1;b2Æb3;b4 p2�N2 � 1N2 25C �4s2� Q204! �ln w20Q20�4 : (71)The same result holds for the region jrj�jqj�jpj, taking in eq.(70) the �rst termof the seond line. This result is same as in (61), exept for the suppression byN2 � 1.� jqj�jrj�jpj: here we use the �rst term on the rhs of eq.(70) and obtain(K1K2)
 Vrfa0g;fbgsubN 
 �fa0g = Æb1;b2Æb3;b4 p2�N2 � 1N2 25C�4s� Q204! �ln w20Q20�4 : (72)The region jpj� jrj � jqj gives the same result. It oinides with (63), but issuppressed by N2 � 1.The regions jqj�jpj�jrj and jpj�jqj�jrj do not ontribute to the maximal number oflogarithms.Finally we ome to the virtual parts of the N-suppressed parts of the TPV. Repeatingthe analysis, arried out for the virtual part of the leading-N piee, we �nd no ontributionto the maximal number of logarithms. The �nal result for the antiollinaer limit of theN-suppressed part of the TPV, therefore, is given by the real piee alone.6 Nonlinear evolution equations6.1 General evolution equationsLet us now make some use of the TPV in QCD reggeon �eld theory. To be de�nite letus onsider deep inelasti sattering on a hadroni target (a single proton or a nuleus).We de�ne olor singlet t-hannel states of n reggeized gluons (n even) in the Heisenbergpiture whih are labeled by olor and momentum degrees of freedom:jni = 1pn!aya1(k1):::ayan(kn)j0i= jk1; ::kn; a1; ::ani: (73)20



The normalization is: [aa(k); aya0(k0)℄ = (2�)3k2Æ(k� k0)Æaa0 (74)and hnjn0i = Æn0n 1n0!X�(n) n0Yi=1 �(2�)3Æ(ki � k0i)k2i Æaia0i� ; (75)where the sum extends over the permutations of outgoing gluons. The unity operator isgiven by: Xn jnihnj = 1Xn nYi=1 Z d2ki(2�3) 1k2i jk1; ::kn; a1; ::anihk1; ::kn; a1; ::anj; (76)where the summation on the left hand-side inludes also the integration over the ontin-uous degrees of freedom.We assume that the target state, at some initial rapidity, an be written as a super-position: jpi = 1Xn=1njni: (77)The rapidity evolution of this (olor singlet) state is given by:eyH jpi = jp(y)i; (78)The Hamiltonian onsists of several piees(Figs. 8-10):H = H2!2 +H2!4 +H4!2 +H2!6 +H6!2 + ::: : (79)The �rst term denotes the ase where, inside the n gluon state, only one pair of gluonsinterats, in the seond term one pair splits into four gluons et. The matrix elements ofH2!2 are expressed in terms of the BFKL Hamiltonian:hn0jH2!2jni = Ænn0 n0Xi>j=1 �faia0ifa0jaj�K2!2(ki;kj;k0i;k0j)(2�)3Æ(ki + kj � k0i � k0j)+ (!(ki) + !(kj))k2ik2jÆ(ki � k0i)Æ(kj � k0j)�+ (k0i $ k0j; a0i $ a0j)�1(n0 � 2)! X�(n0�2) n0Yl 6=i;j(2�)3Æ(kl � k0l)Æala0l (80)where the seond term in the square braket stands for the symmetrization of the outgoingtwo-gluon state. This kernel orresponds to the BKP interation in the olor singletstate. All the other terms are presently known only for the speial ase where not onlythe total n gluon system but also the interating subsystem belongs to the olor singletrepresentation. 21
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In partiular, the seond term ontains the 2! 4 transition vertex:hn0jH2!4jni = Ænn0+2 n0Xs>t=1 nXi>j>l>r=1 �Va0ia0ja0la0r;as;at(k0i;k0j;k0l;k0r;ks;kt) + (ks $ kt; as $ at)�(2�)3Æ(ki + kj + kl + kr � ki � kj) 1(n� 4)! X�(n�4) nYp6=i;j;l;r(2�)3Æ(kp � k0p)Æapa0p ;(81)whereas the third term allows for four gluon to fuse into two gluons:hn0jH4!2jni = Ænn0�2 nXs>t n0Xi>j>l>r=1�Vasat;a0ia0ja0la0r(k0s;k0t;ki;kj;kl;kr) + (k0s $ k0t; a0s $ a0t)�(2�)3Æ(ki + kj + kl + kr � k0s � k0t) 1(n0 � 4)! X�(n0�4) n0Yp6=i;j;l;r(2�)3Æ(kp � k0p)Æapa0p :(82)The next two terms on the rhs of (79) belong to the Pomeron ! two Odderon vertex[22℄ (restrited to the olor singlet hannel) and to its inverse, resp. They will not bedisussed further. Higher order kernels (indiated by the dots) have not been omputedyet. Let us de�ne the n reggeon wave funtion omponent of the target at rapidity y inthe following way:  faign (y;k1;k2:::kn) = hnjeyH jpi: (83)Upon di�erentiation with respet to y we obtain:� faign�y = hnjHeyH jpi =Xn0 hnjHjn0ihn0jeyHjpi=Xn0 hnjHjn0i fa0ign0 : (84)This de�nes an in�nite set of oupled equations. It annot be losed beause, for instane,the equation for the two gluon wave funtion reeives ontributions oming from the fourgluon wave funtion: � a1a22�y = h2jH2!2j2i a1a22 � h2jH4!2j4i a1a24 (85)(the term proportional to (81) vanishes sine it requires zero gluons in the initial state).6.2 The nonlinear equation for the unintegrated gluon densityIn order to reah further simpli�ation, we take the large-N limit. In pratie this impliesthat we group the n gluons into n=2 olor singlet pairs (Pomerons) and assoiate with eah23



pair a olor singlet projetor: this projetor ats on the olor tensors of the interationHamiltonians and leads to olor weight fators of the interation kernels. In partiular,in the 2! 2 Hamiltonian the olor tensor faia0ifa0jaj is replaed by the olor fator �N,and in the 2 ! 4 Hamiltonian, H2!4, the 2 ! 4 vertex Vasat;a0ia0ja0ma0n redues to thefuntion V (k0i;k0j;k0m;k0n) (f. eq.(1)). The evolution equations have to be reformulatedin terms of N states of gluon pairs: eah pair arries two momentum variables, q and k:q denotes the total tranverse momentum of the two gluon state, and k, q � k are themomenta of the two onstituent gluons. The state onsisting of N = n=2 suh pairs isde�ned as: jNi = 1pN !Ay(q1;k1):::Ay(qN ;kN)j0i= j(q1;k1); ::(qN ;kN )i (86)(we use apital letters to distinguish the pair-basis from the reggeon basis). The normal-ization follows from[A(q;k); Ay(q0;k0)℄ = (2�)6k2(q� k)2Æ(q� q0)Æ(k� k0); (87)in analogy with the reggeon states. We write the Hamiltonian asH = H1!1 +H1!2 +H2!1; (88)where h1jH1!1j1i = N�K2!2(ki;kj;k0i;k0j)(2�)3Æ(ki + kj � k0i � k0j)+ (!(ki) + !(kj))k2ik2jÆ(ki � k0i)Æ(kj � k0j)�+ (k0i $ k0j) (89)and h1jH1!2j2i = �V (k0i;k0j;k0l;k0r;ks;kt) + (ks $ kt; as $ at)� (90)(2�)3Æ(ki + kj + kl + kr � ki � kj): (91)The amplitudes 	N in this basis of gluon pairs are de�ned in analogy with (83).Next we invoke the mean �eld approximation and make the following fatorizingansatz: 	2(y;k1;q1 � k1;k2;q2 � k2) = 	1(y;k1;q1 � k1)	1(y;k2;q2 � k2): (92)This ansatz an be justi�ed for a large nulear target. It allows to obtain a losed equationfor 	1: �	1�y = h1jH1!1j1i	1 � 1p2h1jH2!1j2i	1	1: (93)24



To obtain the BK equation for the unintegrated gluon density let us de�ne the o�-diagonalunintegrated gluon density via:F(y;k1;k2) = 	1(y;k1;k2) = h1je�yH jpi: (94)Using (80), (81), (89), (93), (94) we obtain the nonlinear evolution equation:�F(x;q;k)� ln 1=x =Z d2l(2�)3K(l;q� l;k;q� k)F(x;q; l)l2(q� l)2�� Z d2r d2l(2�)3 d2m(2�)3V (k;�k+ q; l;�l� q2 + r;m;�m� q2 � r)� F(x; q2 + r; l)l2(�l+ q2 + r)2 F(x; q2 � r;m)m2(�m+ q2 � r)2 : (95)The momenta entering the vertex from below are labeled by k01=l, k02=�l�q=2+r, k03=m,k04=�m � q=2 � r. The variable r stands for the loop momentum. In [11℄ it has beenshown that this equation oinides with the Balitsky-Kovhegov equation, provided thesolutions F belong to the M�obius lass of funtions (i.e. the Fourier transform vanisheswhen the two oordinates beome idential). We make the assumption that the ouplingto the proton goes via the form fator (with momentum transfer r)F (r; R) = e�r2R242� ; (96)(where R has the meaning of the proton radius), and for F(x; r;k) we make the ansatz:F(x; r;k) = F(x;k)F (r; R): (97)Then the integration over r on the rhs of (95) will be restrited to small values r2 � 1=R2.Now we restrit ourselves to zero momentum transfer, q = 0, whih orresponds to theintegration over the impat parameter, and, as further approximation, we put r = 0 atthe TPV: in the dipole language, this means that the typial dipole size is assumed to bemuh smaller than the impat parameter b. This allows to arry out the r integral, andone easily sees that the funtion F(x;k) satis�es the somewhat simpler equation:�F(x;k)� ln 1=x = Z d2l(2�)3K(l;�l;k;�k)F(x; l)l4�� 12�R2 Z d2l(2�)3 d2m(2�)3V (k;�k; l;�l;m;�m)F(x; l)l4 F(x;m)m4 : (98)In the next step we perform the integrations over the azimuthal angles of l, m, and k.Denoting the integrated funtion F(x;k) by f(x;k2):f(x;k2) = 12� Z d�F(x;k) (99)25



with xg(x;k2) = Z k2 dk02k02 f(x;k02); (100)and using our result (51) for the angular averaged TPV, the nonlinear equation reads[8, 9℄:�f(x;k2)� ln 1=x = N�s� k2 Z 10 dl2l2 �f(x; l2)� f(x;k2)jk2 � l2j + f(x;k2)q(4l4 + k4)�� �2s2R2(2k2�Z 1k2 dl2l4 f(x; l2)�2 + 2 f(x;k2) Z 1k2 dl2l4 ln� l2k2� f(x; l2)): (101)When applying this equation to the sattering of a virtual photon on a nuleus wereturn to the question raised at the end of the introdution, the question of the mostdominant gluon on�gurations. In the DGLAP approah one has strong ordering inmomentum, i.e virtualities of gluons loser to photon are larger than those loser to thetarget. In the nonlinear evolution equation one then would expet that, at the kernel ofthe nonlinear term, the upper momenta, k, should be larger than the lower ones, l2 andm2. However, making use of our results for the ollinear limit of the TVP and of thestruture of the angular averaged vertex, we arrive at the somewhat surprising onlusionthat the momenta are ordered in the opposite diretion. In more physial terms, thereombination of two smaller gluons ends up in a larger gluon. This suppression of softergluons below the nonlinear term may explain why, in numerial solutions of the angularaveraged BK equation for the unintegrated gluon [9℄, the BFKL di�usion into the infraredregion is absent.7 Comparison with other equationsAs we have mentioned before, the nonlinear equation (95) oinides with the Balitsky-Kovhegov equation. In [11℄, the Fourier transform of (95) has been omputed, and ithas been shown that, in the lass of M�obius funtions, it agrees with the BK equation.Alternatively, one an start [8, 9, 10℄ from the Balitsky-Kovhegov equation forthe dipole sattering amplitude in oordinate spae, and ompute the Fourier transformto momentum spae. The onnetion between the momentum spae gluon distributionF(x;q;k) and the dipole sattering amplitude is:F(x;q;k) = N4�s�2k2(k� q)2r2k Z d2x02� Z d2x12� eik�x0ei(q�k)�x1N(x01;b; x)x201 ; (102)where x01=x0 � x1, and b=(x1 + x2)=2 is the impat parameter. Our steps of approxi-mation desribed after (95) are equivalent to the fatorization ansatzN(x01;b; x) = N(x01; x)S(b) (103)26



and to the assumption that, in the Balitsky-Kovhegov equation, all dipole sizes aremuh smaller than the impat parameter b. With these approximations one arrives, afterangular averaging and integration over impat parameter b, at the nonlinear equation(101).Returning, one more, to the issue of the twist expansion, we have to onlude that thenonlinear BK equation, when restriting to solutions with onformal spin n = 0, reeivesall its ontributions from 'antiollinear' terms. This, in onnetion with orretions to thesingle-ladder approximation at small x, makes the usefulness of a twist expansion somewhat doubtful.Let us �nally omment on other versions of nonlinear evolution equations. The �rstnonlinear evolution equation whih was a milestone in physis of saturation is the Gribov-Levin-Ryskin, Mueller-Qiu (GLR-MQ) equation [25℄, [26℄ (eqn(2.41) in [25℄, and eqn.(30)in [26℄), obtained in the double-logarithmi approximation:�2xg(x;k2)� ln(1=x)� lnk2 = �sN� xg(x;k2)� C �2sk2R2 [xg(x;k2)℄2: (104)(the onstant C is not the same in the two papers; however, for our disussion this isnot essential). This equation an be rewritten in terms of the unintegrated gluon densityf(x;k2): �f(x;k2)� ln 1=x = N�s� Z k2k20 dl2l2 f(x; l2)� C �2sk2R2�Z k2k20 dl2l2 f(x; l2)�2 (105)The linear term oinides with the BFKL kernel in the ollinear approximation. Thenonlinear term should be interpreted as the TPV at the ollinear limit. Its physialinterpretation would support the strong ordering (ollinear) piture disussed at the endof the previous setion: momenta above (k2) are larger than below (k02) the nonlinearinteration. Our analysis, however, does not agree with this form of the nonlinear term.The struture of integrals is totally di�erent. In partiular, we have ome to the onlusionthat, after angular averaging, the TPV does not ontribute to the ollinear limit.The GLR paper [25℄ also presents another nonlinear equation (eq.(2.108)), derivedfrom summing up, at small x, single logs of the fan diagrams. It is written diretly forthe unintegrated gluon density whih, in the GLR notation, di�ers from our de�nition(eq.(100): xg(x;k2) = Z k2dk02�(x;k02): (106)This equation is an attempt to generalize the BFKL equation to the physis of densesystems, and its form is quite lose to our equation (101):��(x;k2)� ln 1=x = N�s� Z 10 dl2l2 "�(x; l2)� �(x;k2)jl2 � k2j � �(x;k2)p4l4 + k4#�gTPV 14�R2 ��s4��2�2(x;k2);(107)27



where gTPV is the loal approximation of the following TPV vertex:V 
 ��(x; l2)�(x;m2)� = Z dm2l2 dl2l2 �s(m2)�s(l2)�(x;m2)�(x; l2)�(l2 � k2)�(m2 � k2):(108)This vertex ontains the same �-funtions as in (51), and it thus supports the physialpiture desribes at the end of the previous setion. On the other hand, the detailedanalyti form of the vertex is di�erent from (101); in partiular, it does not ontain thedisonneted piees whih, in the original derivation of the 2 ! 4 vertex, an be traedbak to the reggeization of the gluon (there are also di�erenes in the prefators).Despite these di�erenes in the detailed form of the nonlinear equations it may verywell be that, as far as the gross features of saturation are onerned, the qualitativebehavior of solutions will be similar. It would be interesting to study this in more detail.8 ConlusionsIn this paper we have investigated the momentum spae triple Pomeron vertex. In parti-ular, we have studied its ollinear and antiollinear limits. This question arises naturally ifone studies nonlinear orretions to the linear BFKL evolution in deep inelasti satteringat small x: one expets that, at least on the average, transverse momenta derease whenmoving from the photon to the proton. In a �rst step one is then led to onsider the limitof strong ordering. Restriting ouselves to solutions with onformal spin zero, we haveshown, for the simplest example of a fan diagram with one triple Pomeron vertex in thelarge-N limit, that there is no ontribution from the on�guration of strongly orderedgluons. Beyond the large-N limit suh ontributions exist.We have also onstruted a set of evolution equations for the interation of a photonwith a nulear target, whih, in the mean �eld approximation, redues to a nonlinearevolution equation for the skewed unintegrated gluon density whih, in the forward region,agrees with equation obtained in [8, 9℄. We have also ompared our momentum spaeexpression for the nonlinear evolution kernel with di�erent other versions disussed in theliterature. We agree with the BK equation, but we �nd disagreement with other earlierversions of nonlinear evolution equations.Interpretating our results in terms of twist, we have shown that the BK-equation,when restrited to solutions with onformal spin zero, reeives all its ontributions from'antiollinear' on�gurations, quite in ontrast to the expeted ordering of transversemomenta.We also hope that our analysis will help to analyse further the ontributions of pomeronloops.
28
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