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2ing the HERMES spetrometer with a hydrogen gas target and the longitudinally polarized 27.6 GeVpositron beam of HERA. The sinusoidal amplitude of the dependene of the asymmetry on the an-gle � of the hadron prodution plane around the virtual photon diretion relative to the leptonsattering plane was measured for �+; �� and �0 mesons. The dependene of this amplitude on theBjorken saling variable and on the pion frational energy and transverse momentum is presented.The results are ompared to theoretial model alulations.PACS numbers: 13.60.-r; 13.87.Fh; 13.88.+e; 14.20.Dh; 24.85.+pSingle-spin asymmetries (SSA) in semi-inlusive deep-inelasti sattering (SIDIS) are known as a powerful toolto probe the partoni struture of the nuleon. If the or-bital motion of the quarks is negleted, the struture ofnuleon an be desribed in the leading twist by 3 par-ton distribution funtions (PDF) de�ning the momen-tum f1, heliity g1, and transversity h1 distributions.The observation of di�erent azimuthal asymmetries and,in partiular SSAs were an indiation of a more om-plex inner struture of the nuleon. Those e�ets werereognized to be due to orrelations of spin and trans-verse momentum of quarks and/or hadrons and appearas moments of the azimuthal angle between satteringand prodution planes. The sin� azimuthal momentsontain ontributions from di�erent hiral-odd and/orna��ve time-reversal-odd (T-odd) distribution and frag-mentation funtions, arising from interferene of wavefuntions for di�erent orbital angular momentum statesand �nal state interations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄.Experimentally orrelations between spin and transversemomentum either in the initial target nuleon (e.g. theSivers mehanism [11℄) or in the fragmentation proess(e.g. the Collins mehanism [12℄) result in an asymmetryof the distribution of hadrons around the virtual pho-ton diretion. Asymmetries are attrative observablesas they are expeted to be less sensitive to a number ofhigher order orretions than ross setions measured inSIDIS [13℄. SSAs in prodution of pseudosalar mesonswere studied with both longitudinally [14, 15, 16℄ andtransversely [17, 18℄ polarized targets. Reently, SSAshave been observed also in SIDIS with longitudinal po-larized beams and unpolarized targets (in the followingrefered to as beam SSAs) [14, 19℄.Under the assumption of fatorization [20, 21℄, the gen-eral expression for the SIDIS ross setion � an be givenas onvolutions of distribution funtions fH!q (DF), el-ementary hard sattering ross setion �eq!eq , and frag-mentation funtions Dq!h (FF),�eH!ehX = fH!q 
 �eq!eq 
Dq!h: (1)In the partiular ase of a longitudinally polarized beam(L) and an unpolarized target (U), and in the limit ofmassless quarks, the di�erential polarized ross setion�Present address: Thomas Je�erson National Aelerator Faility,Newport News, Virginia 23606, USA
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FIG. 1: De�nition of kinemati planes for semi-inlusive deep-inelasti sattering.�LU an be written as a sum of onvolutions of twist-2and twist-3 funtions [22, 23℄d5�LUdxdydzd�dP 2h? / �e sin� yp1� yMQ �Z d2pT d2kT Æ(2)�pT � Ph?z � kT�� P̂h? � pTM �MhMz h?1 E + x g?D1��P̂h? � kTMh �MhMz f1G? + x eH?1 ��: (2)In Eq. 2, �e is the lepton heliity, M and Mh are thenuleon and hadron masses, �Q2 is the 4-momentumtransfer squared, Ph? is the transverse momentum of thedeteted hadron with P̂h? = Ph?=jPh?j, pT (kT ) is theintrinsi quark transverse momentum in the generi dis-tribution funtion f (fragmentation funtion D), E(E0)and Eh are the energies of the inoming(sattered) leptonand the hadron produed, � is the energy of the virtualphoton and the azimuthal angle � is de�ned as the an-gle between the lepton-sattering and hadron-produtionplanes aording to the Trento onvention [24℄. See Fig. 1for the de�nition of the kinemati planes, where k (k0)is the four-momentum of the inoming (sattered) leptonand q that of the virtual photon. In Eq. 2, a harge-weighted sum over quark and antiquark avours is im-pliit. The quantities f1 and D1 are the twist-2 DF andFF, whih appear in the unpolarized ross-setion whenintegrated over �d3�UUdxdydz / (1� y + y2=2)f1(x)D1(z): (3)



3In Eq. 2, e is a hiral-odd twist-3 unpolarized DF [25℄that an be related to the pion-nuleon �-term, whih inits turn is related to the strangeness ontent of the nu-leon [26℄. The T-odd DF e is onvolved with the twist-2Collins FF H?1 , whih also appears in longitudinal andtransverse target-spin asymmetries [17℄. Another ontri-bution is given by the twist-2 DF h?1 (Boer-Mulders DF[8℄), whih is interpreted as representing the orrelationbetween the transverse spin and intrinsi transverse mo-mentum of a quark in an unpolarized nuleon. Here itis onvolved with the twist-3 hiral-odd FF E [27, 28℄.The remaining terms ontain the twist-3 DF g? and FFG? onvolved with the unpolarized FF and DF, respe-tively. The DF g? an be diretly aessed through ameasurement of the beam-spin asymmetry in jet produ-tion [22, 29℄. Sine the beam SSA has no leading-twistontribution (f. Eq. 2) it is expeted to be aessibleonly at moderate values of Q2.In this paper we present a measurement of the beamSSA for harged and neutral pions produed in SIDIS atHERMES during the years 1996-2000. The results pre-sented superede a previous HERMES measurement ofthe beam SSA for �+ [14℄ by almost doubling the statis-tis, whih allowed the extration of the kinemati de-pendenes of the beam SSA on z, x and Ph? and the ad-dition of a measurement for �� and �0 mesons. The ex-periment used the polarized positron beam of the HERAaelerator and a hydrogen gas target. Positrons with anenergy of 27:6 GeV were sattered o� hydrogen nulei inan atomi gas target [30℄. The beam was polarized in thetransverse diretion due to the Sokolov-Ternov e�et [31℄.Longitudinal orientation of the beam spin was obtainedby using a pair of spin rotators loated before and behindthe interation region of HERMES. The beam heliitywas ipped every few months. The beam polarizationwas measured by two independent HERA polarimeters[32℄ and had an average value of 0:53 with a frationalsystemati unertainty of 2:9%. The target mode waseither unpolarized or longitudinally polarized with a fast(90 s) heliity ip. The resulting target polarization inthe analyzed sample was �1:3 � 10�4, whih is onsistentwith zero and was safely ignored in the analysis. Thesattered positrons and assoiated hadrons were detetedby the HERMES spetrometer [33℄. Positrons were dis-tinguished from hadrons by the use of a set of partileidenti�ation detetors: a transition-radiation detetor, apreshower radiator/hodosope, a threshold �Cerenkov de-tetor (upgraded to a RICH detetor [34℄ in 1998) and aneletromagneti alorimeter [35℄. The average positronidenti�ation eÆieny exeeded 98% with a hadron on-tamination in the positron sample below 1%. Severalkinemati requirements were imposed on the satteredpositron, namely 1 < Q2 < 15 GeV2, 0:023 < x < 0:4,W 2 > 4 GeV2, y < 0:85.For identi�ation of harged pions the �Cerenkov andRICH detetors were used during the orresponding datataking periods. To assure reliable identi�ation of pionsin both detetors the momentum range of 4:5 < P < 13:5
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4The amplitudes Asin �LU for all pions are shown in Fig. 3and Table I as a funtion of z, x, and Ph?. Three regionsin z are onsidered: the low-z (0:2 < z < 0:5), the mid-z(0:5 < z < 0:8), and the high-z region (0:8 < z < 1). Inthe latter region the ontributions of exlusive proessesbeome sizeable. The distributions of Asin �LU in x and Ph?are extrated for the low- and mid-z regions separatelyand presented as open and full irles, respetively.The soures of systemati unertainties are the beampolarization measurement with an average relative un-ertainty on the asymmetry of 5:5%, radiative pro-esses, aeptane e�ets, asymmetry amplitude extra-tion method and the hadron identi�ation eÆieny. Theombined systemati unertainty, exluding the ontribu-tion from the beam polarization measurement, was eval-uated by Monte Carlo studies and found to be less than0.005 in total.For the determination of the �0 asymmetries, theasymmetry of the ombinatorial bakground AbgLU wasmeasured outside the mass window of the �0 peak andfound to equal about 0:03 on average. Sine the ontri-bution from the ombinatorial bakground is negligiblein the mid- and high-z regions, a systemati unertaintydue to ombinatorial bakground subtration adds to thetotal systemati unertainty in the low-z region reahing0:007. The measured asymmetry AmeasLU was orreted ineah kinemati bin using the equationAorrLU = AmeasLU Nmeas �AbgLUNbgNmeas �Nbg ; (5)where Nmeas and Nbg are the number of photon pairs inthe region onsidered in the invariant mass distributionand unorrelated photon pairs, respetively.The amplitude Asin�LU for �+ mesons is found to be pos-itive on average. It is ompatible with zero in the low-zregion and exhibits a rise to values of about 0:02 for in-reasing z. The x and Ph? dependenes of the amplitudeare onsistent with zero in the low-z region whereas inthe mid-z region they derease at large x and Ph?.The amplitude Asin �LU for �� mesons is onsistent withzero in the whole z range, with utuations around zeroin the x and Ph? distributions.The asymmetry for �0 mesons is positive and of theorder of about 0:03 in the whole z range exept in thehighest and lowest bins where the asymmetry is ompat-ible with zero. The dependene of the asymmetry ampli-tude on x is weak while for Ph? the amplitude dereasesat higher Ph?.Semi-inlusive pion prodution (ep ! e0�X) with anunderlying mehanism of quark fragmentation is dilutedby exlusive vetor meson (VM) prodution whih anontribute signi�antly in ertain kinemati regions atHERMES. In Fig. 4 (lower panel) the relative ontribu-tion of exlusive VM prodution in the semi-inlusivepion sample is shown as obtained with the PythiaMonte-Carlo generator tuned for HERMES kinematis
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-0.02

0

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1

z

A
L

U

si
n

φ , A
~

L
U

si
n

φ

e
→

 p → e Xπ+
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7TABLE I: Beam SSA: z, x, and Ph? dependenes of Asin�LU and eAsin�LU for harged and neutral pions. The systemati unertaintyindued by VM subtration is given as e���vm. An additional 5:5% sale unertainty is due to the beam polarization measurement.Other systemati unertainties do not exeed 0:005.hzi hxi hPh?i hQ2i Asin�;�+LU ���+stat Asin�;��LU ����stat Asin�;�0LU ���0stat eAsin�;�+LU � e��+stat � e��+vm eAsin�;��LU � e���stat � e���vm0.26 0.065 0.40 2.29 -0.009 � 0.006 -0.001 � 0.007 0.002 � 0.006 0.003 � 0.006 � 0.005 0.012 � 0.007 � 0.0050.34 0.082 0.45 2.53 0.006 � 0.005 -0.007 � 0.006 0.028 � 0.006 0.013 � 0.005 � 0.005 0.001 � 0.006 � 0.0050.44 0.092 0.46 2.55 0.004 � 0.005 -0.007 � 0.006 0.035 � 0.008 0.005 � 0.005 � 0.005 -0.007 � 0.007 � 0.0050.54 0.098 0.47 2.51 0.016 � 0.006 0.009 � 0.008 0.025 � 0.009 0.011 � 0.006 � 0.005 0.000 � 0.008 � 0.0060.64 0.104 0.47 2.47 0.026 � 0.007 0.003 � 0.009 0.028 � 0.012 0.012 � 0.008 � 0.006 -0.018 � 0.010 � 0.0080.74 0.108 0.47 2.37 0.021 � 0.009 0.011 � 0.011 0.020 � 0.015 0.000 � 0.010 � 0.008 -0.023 � 0.013 � 0.0110.84 0.117 0.46 2.27 0.024 � 0.010 0.013 � 0.014 0.019 � 0.020 0.026 � 0.013 � 0.012 0.003 � 0.019 � 0.0230.95 0.128 0.45 2.20 0.011 � 0.013 0.007 � 0.020 -0.018� 0.030 0.065 � 0.019 � 0.032 0.099 � 0.033 � 0.0690.62 0.043 0.53 1.30 0.019 � 0.010 0.016 � 0.013 0.025 � 0.018 0.002� 0.012 � 0.022 -0.007 � 0.015 � 0.0240.63 0.075 0.44 1.84 0.024 � 0.006 0.017 � 0.008 0.016 � 0.010 0.012� 0.007 � 0.016 -0.001 � 0.009 � 0.0210.62 0.137 0.42 3.19 0.020 � 0.007 -0.016 � 0.009 0.030 � 0.012 0.012� 0.008 � 0.009 -0.030 � 0.010 � 0.0130.62 0.269 0.43 6.08 -0.005� 0.015 0.018 � 0.022 0.037 � 0.03 -0.012� 0.016 � 0.007 0.009 � 0.023 � 0.0080.62 0.108 0.17 2.44 0.019 � 0.009 0.004 � 0.01 0.000� 0.015 0.001� 0.009 � 0.021 -0.025 � 0.012 � 0.0310.62 0.105 0.35 2.45 0.028 � 0.007 0.028 � 0.009 0.035� 0.012 0.013� 0.008 � 0.020 0.006 � 0.010 � 0.0300.62 0.103 0.54 2.52 0.027 � 0.008 0.012 � 0.010 0.049� 0.013 0.024� 0.009 � 0.009 0.004 � 0.012 � 0.0110.61 0.095 0.74 2.49 0.015 � 0.011 -0.030 � 0.016 0.009 � 0.018 0.015� 0.012 � 0.006 -0.036 � 0.017 � 0.0060.61 0.084 1.02 2.39 -0.009� 0.014 -0.054 � 0.020 0.005 � 0.020 -0.010� 0.014 � 0.005 -0.058 � 0.020 � 0.005ing of the nuleon struture as well as the underlyingmehanisms of the quark fragmentation.AknowledgmentsWe gratefully aknowledge the DESY management forits support and the sta� at DESY and the ollaborat-ing institutions for their signi�ant e�ort. This work wassupported by the FWO-Flanders, Belgium; the NaturalSienes and Engineering Researh Counil of Canada;the National Natural Siene Foundation of China; theAlexander von Humboldt Stiftung; the German Bun-desministerium f�ur Bildung und Forshung (BMBF); theDeutshe Forshungsgemeinshaft (DFG); the Italian Is-
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