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Spin motion at and near orbital resonane in storage ringswith Siberian SnakesI: at orbital resonane�D P Barberympybar�mail.desy.de M Vogtvogtm�mail.desy.deDeutshes Elektronen{Synhrotron, DESY, 22607 Hamburg, GermanyAbstratHere, and in a sequel, we invoke the invariant spin �eld to provide an in{depth studyof spin motion at and near low order orbital resonanes in a simple model for the e�etsof vertial betatron motion in a storage ring with Siberian Snakes. This leads to a learunderstanding, within the model, of the behaviour of the beam polarisation at and nearso{alled snake resonanes in proton storage rings.1 IntrodutionIn earlier papers we and ollaborators have emphasised the utility of the invariant spin �eld(ISF) and the amplitude dependent spin tune (ADST) for analysing spin motion in irularpartile aelerators and storage rings [1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄. In partiular, under ertainonditions, the ISF is unique up to a global sign and in that ase it allows estimates to bemade of the maximum equilibrium beam polarisation and the maximum time averaged beampolarisation in proton storage rings. Then, for example, for a given equilibrium distribution ofpartiles in phase spae, the maximum attainable polarisation at the hosen high energy an beestimated before embarking on extensive omputer simulations of the e�et on the polarisationof aeleration from low energy. One a mahine on�guration has been found whih appearsto be aeptable at the hosen high energy, one then studies the e�et of aeleration to assesswhether the on�guration is still aeptable. Aeleration an involve rossing many spin{orbitresonanes and that an lead to a loss of polarisation. The latter problem an be partially solvedby the inlusion in the ring of so{alled Siberian Snakes [11, 12℄, magneti �eld on�gurationsthat ause the average spin preession rate on the design orbit to be independent of the nominalbeam energy. Nevertheless, spin{orbit resonanes an still our but their identi�ation thenoften requires a more areful de�nition of the spin preession rate than has been ommonamong pratitioners, involving the amplitude dependent spin tune. A full understanding also�DESY preprint DESY 06{220. Published in: New Journal of Physis 8 (2006) 296. Worldwide opyrightby: Institute of Physis and Deutshe Physikalishe Gesellshaft (2006)yAlso Visiting Sta� Member at the Cokroft Institute, Daresbury Siene and Innovation Campus, and atthe University of Liverpool, UK. 1
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requires a areful de�nition of an adiabati invariant for spin motion. In most of the numerialinvestigations desribed in [1, 2, 3, 4, 5, 6, 7, 9, 10℄, orbital resonane is avoided. Moreover,it is shown that the spin{orbit systems tend to avoid exat spin{orbit resonane. These andother matters are explained and illustrated in great detail in the soures ited above. In orderto keep this paper to a reasonable length we will assume that the reader is familiar with thatmaterial.Of ourse, the ISF and the onepts derived from it, may be of little help if the ISF is notunique. That an be the ase if the orbital motion is resonant or if the system is on spin{orbitresonane [5, 7℄. Nevertheless, as we show below, speial hoies from sets of non{unique ISF'san be useful for investigating spin motion near some kinds of orbital resonane. Moreover,the ISF is still useful at rational vertial orbital tunes orresponding to the so{alled odd ordersnake \resonanes". At these tunes the Siberian Snakes apparently do not sueed in preventingloss of polarisation during aeleration [13, 14, 15, 16, 17, 18℄. However, with the exeptions of[19, 20, 5, 21℄, disussions about spin motion at or near to these tunes have made no refereneto the ISF. The treatment in [19, 20℄ involved a mathematial approximation to the model usedin this paper. Then in [5℄ it was pointed out for the �rst time that at these tunes the ISF is anirreduibly disontinuous funtion of the vertial orbital phase and that the disontinuities anbe moved, thereby demonstrating non{uniqueness. In [21℄ the neessity of the disontinuitieswas disputed (see Setion 3.4). In Setion 2 we explain that exatly at these speial tunes,the term \snake resonane" does not �t with our preferred de�nition of spin{orbit resonane.Nevertheless, for simpliity, we adopt the now traditional nomenlature. In [5℄ it was also madelear how non{uniqueness an our at other rational tunes.In this paper and in a sequel (alled Part II) we extend the investigations in [5℄. In the initialand pioneering work on snake resonanes in [13, 14, 15℄, emphasis was plaed on the signi�aneof the so{alled \perturbed spin tune", a measure of the angles of spin rotation around the real,unit length, eigenvetors of 1{turn SO(3) spin maps. See also [22℄. However, these eigenvetorsare usually not solutions of the Thomas{Bargmann{Mihel{Telegdi (T{BMT) equation alongthe trajetories. Thus, while it is lear from alulations that the \perturbed spin tune" anshow strong variations, we do not onsider its behaviour to be relevant to the disussion [8℄.In [13, 14, 15℄ spin motion was also analysed in terms of an essentially perturbative expansionof the p{turn SU(2) spin transfer matrix, T (p), and it was found that at snake{resonanetunes, jT21(p)j ould inrease without limit as the number of turns p inreased. In so far asit relates to positions in tune spae, this behaviour, whih is an artifat of the perturbativeapproah, appears to be onsistent with the snake resonane phenomenon. However, althoughan unlimited inrease of a matrix element in a perturbative expression for a rotation matrix doessuggest exeptional behaviour, it destroys the unitarity of the matrix, thereby demonstratingan invalid approximation and implying a onsequent limitation of the preditive power of thealulation. For example, in the absene of other input, one might suppose that an unlimitedgrowth of jT21j ould infer that initially vertial spins are simply ipped. Alternatively, thegrowth might be a hint that the vertial omponent of the beam polarisation osillates as spinsrotate around a horizontal axis. Lastly, simulations reported in [10, 23, 24℄ demonstrate thee�ets of varying the rate of aeleration near snake{resonane tunes. The number of turnsneeded to traverse a given energy range depends on the energy gain per turn. Then, if weightis given to the perturbative treatment, the number of turns determines how large jT21j anbeome. The rate of aeleration is ertainly important in the Froissart{Stora alulation [25℄of the loss of polarisation when rossing spin{orbit resonanes in rings without snakes, andthe phenomenology is well understood. However, the simulations in [10, 23, 24℄ show that the2



dependene of the �nal polarisation on the aeleration rate an be omplex and unexpetedand that no lear piture emerges.To summarise, in our opinion, although snake resonanes have presented problems [17, 18℄,the numerial and theoretial investigations made so far have provided no ompletely oherentpiture of spin motion at and near snake{resonane tunes, either with or without aeleration.These papers provide a new ontribution towards suh a piture, at least within our adoptedsimple model. We arry out our study against the bakground of our standard philosophy,namely that to detet exeptional behaviour, one should start spin{orbit traking simulationswith an equilibrium distribution of partiles in phase spae and with eah spin parallel to theISF vetor orresponding to the position of the partile in phase spae [7℄. Then any unexpetedbehaviour is signalled by long term or turn{to{turn variations of the polarisation of the beam.This gives a muh leaner view of the situation than if one just begins in the ommon waywith spins parallel to the diretion of the ISF on the losed orbit. Aordingly, with the ISF atthe entre of our disussion we show how, in the ases onsidered, the long term behaviour ofspins an be inferred, at least qualitatively, from some features of the ISF. On low order orbitalresonane, an ISF an be alulated almost trivially from the spin maps of a few turns.For our purposes, and in order to allow diret omparison, it suÆes just to onsider amodel used in earlier literature [13, 14, 15℄, namely a model with two Siberian Snakes. Sinethe ranges of the relevant parameters and the number of possible on�gurations is huge, thisstudy, whih is mainly numerial, is not exhaustive. We fully appreiate that storage rings donot run on low order orbital resonane, that spin{orbit resonanes need not be well separated,that partiles have three modes of osillation and that partile motion in real rings an benonintegrable. Nevertheless our study provides useful insights.The paper is strutured as follows. We ontinue in Setion 2 by realling the simple idealisedand traditional model of spin motion for protons onsidered in [5, 13, 14, 15℄ and speify thenotation ommonly used to desribe it. Then in Setion 3 we use the model to study spinmotion exatly at orbital resonanes inluding an odd order snake resonane and show how thehief features of spin motion an be guessed from the harateristis of the ISF. We summariseour studies in Setion 4. Part II of this study ompletes the piture by addressing spin motionlose to, but not at, an odd order snake{resonane tune. The numerial alulations werearried out with purpose{built spin{orbit traking odes, with the spin{orbit traking failitiesin the ode SPRINT [3, 4℄ and with the SODOM{II algorithm [26℄ embedded in SPRINT.2 Reapitulation { the single resonane model with twosnakesSpin motion in the eletri and magneti �elds at the point ~z in the 6{dimensional phasespae at beam energy E0 and at the position s around the ring, is desribed by the T{BMTpreession equation d~S=ds = ~
(~z; s; E0)� ~S [27, 28, 1℄ where ~S is the spin expetation value(\the spin") in the rest frame of the partile and ~
(~z; s; E0) ontains the eletri and magneti�elds in the laboratory and depends on the beam energy E0. The ISF, whose value at (~z; s)is denoted by n̂(~z; s), is a 3{vetor �eld of unit length obeying the T{BMT equation alongpartile trajetories (~z(s); s) and ful�lling the periodiity ondition n̂(~z; s+C) = n̂(~z; s) whereC is the irumferene1. Thus n̂( ~M(~z; s); s + C) = n̂( ~M(~z; s); s) = R3�3(~z; s)n̂(~z; s) where1We emphasise that the non{trivial ISF vetor n̂(~z; s) should not be onfused with the trivial vetor ~n usedto denote ~
 in [15, equation 2.46℄ and in [29, equation 1℄ and having the same periodiity.3



~M(~z; s) is the new position in phase spae after one turn starting at ~z and s, and R3�3(~z; s) isthe orresponding spin transfer matrix. For onveniene we have suppressed the dependeneof ~M;R and n̂ on E0. In addition to the kinematial onstraint jn̂j = 1, a omplete de�nitionof the ISF requires the spei�ation of a onstraint on its regularity with respet to ~z. Forexample, one ould require that n̂(~z; s) is ontinuous in ~z. It is lear that suh regularityonditions are needed sine, for example, a piee{wise ontinuous ISF exists if a ontinuousone exists but not vie versa. See Setion 3.4 and [5℄. However, sine the emphasis of thepaper is on numerial results, we only oasionally dwell on the matter of regularity. We usethe term \global uniqueness" if two ISF's an di�er only by a sign. Thus in the ase of globaluniqueness, either exatly two ISF's, �n̂, exist as in Setion 3.1 or none, as in Setion 3.4. Weuse the term \loal uniqueness" if any two ISF's, n̂ and n̂0 are parallel, i.e. n̂� n̂0 = 0, so that n̂and n̂0 an di�er only by a sign funtion. Of ourse global uniqueness implies loal uniquenessbut not vie versa. Sine the issue of loal uniqueness is beyond the sope of this paper, it willbe addressed only briey. If an ISF exists and parameters suh as E0 are onstant, the salarprodut Js = ~S � n̂=j~Sj is invariant along a trajetory.For a turn{to{turn invariant partile distribution in phase spae, a distribution of spinsinitially aligned along the ISF remains invariant from turn{to{turn, i.e., in \equilibrium".Moreover, for integrable orbital motion and away from both orbital resonanes and spin{orbitresonanes (see below), the average jhn̂(~z; s)ij of n̂ over the phases on a torus is the maximumattainable time averaged beam polarisation Plim. Away from orbital resonanes and spin{orbit resonanes the atual time averaged polarisation an be written as PlimPdyn where thePdyn = jhJsij depends on the history of the beam [4℄. For a turn{to{turn invariant partiledistribution in phase spae Plim = jhn̂(~z; s)ij is also the maximum attainable equilibrium beampolarisation. This is reahed when Pdyn = 1.Under appropriate onditions Js is an adiabati invariant while system parameters suh asthe beam energy E0 are slowly varied [3, 9℄. In fat n̂ then serves as a \template" for spinmotion. Several examples of this are given in Setion 3.The ADST �s( ~J) at the amplitudes (ations) ~J , is the number of spin preessions aroundthe n̂ per turn on a trajetory, viewed in a so{alled uniform preession frame (UPF). See [7℄ forpreise de�nitions for smooth systems, i.e., systems with ontinuously di�erentiable funtions,and for an explanation of how a partiular ADST is, in fat, a member of an equivalenelass. Note that although the systems in this paper are not smooth in s due to the presene ofpoint{like snakes (see below), their smoothness in ~z failitates a lose analogy with the smoothsystems of [7℄.In general, an ADST does not exist if the trajetory is on orbital resonane but on the otherhand, one avoids running a mahine on orbital resonanes, at least those of low order. If anADST exists, it depends only on ~J , hene the name ADST.The ADST provides a way to quantify the degree of oherene between the spin and or-bital motion and thereby predit how strongly the eletri and magneti �elds along partiletrajetories disturb spins. In partiular, the spin motion an beome very errati lose to thespin{orbit resonane ondition �s( ~J) = k0 + k1Q1 + k2Q2 + k3Q3 where the Q's are orbitaltunes and the k's are integers. Near these resonanes the ISF an spread out so that Plim is verysmall. The spin tune on the design orbit �0 � �s(~0) always exists and so does n̂0(s) � n̂(~0; s).In this paper we shall be onerned mainly with those orbital resonanes where the Q's arerational. We write the frational parts, [Qi℄, of rational tunes Qi (i = 1; 2; 3) as ai=bi wherethe ai and bi are integers. Here and later the brakets [:::℄ are used to signal the frationalpart of a number. For rational [Qi℄ a trajetory is periodi over  turns where  is the lowest4



ommon multiple of the bi. This opens the possibility that in this ase the ISF at eah (~z; s)an be obtained (up to a sign) as the unit length real eigenvetor of the 3 � 3 orthogonalmatrix representing the {turn spin map (.f. the alulation of n̂0 from the 1{turn spin mapon the losed orbit). However, the orresponding eigentune � extrated from the omplexeigenvalues � = e�2�i�, depends in general on the synhrobetatron phases at the starting~z. Thus in general � annot be used to �nd a spin tune. Nevertheless if  is very large thedependene of � on the phases an be very weak so that it an approximate well the ADST ofnearby irrational tunes. For non{resonant orbital tunes, the spin tune an be obtained usingthe SODOM{II algorithm [26℄ or from averaging the pseudo spin tune [3, 4℄.In perfetly aligned at rings with no solenoids, n̂0 is vertial and �0 an be hosen to bea0 where 0 is the Lorentz fator on the losed orbit and a is the gyromagneti anomaly of thepartile. In the absene of skew quadrupoles, the primary disturbane to spin is then from theradial magneti �elds along vertial betatron trajetories. The disturbane an be very strongand the beam polarisation an be small near the ondition a0 = � � k0 � Q2 where k0 is aninteger and mode 2 is vertial motion. This an be understood in terms of the \single resonanemodel" (SRM) whereby a rotating wave approximation is made in whih the ontribution to ~
from the radial �eld along a vertial betatron trajetory is dominated by the Fourier omponentat � with resonane strength �(J2). The SRM an be solved exatly and the ISF is given by[30℄ n̂(�2) = � (Æê2 + �(ê1 os�2 + ê3 sin�2)) =� where Æ = a0�� is the distane in tune spaeto the parent resonane, � = pÆ2 + �2, �2 is the di�erene between the vertial betatron phaseand the phase of the Fourier omponent and (ê1; ê2; ê3) are horizontal, vertial and longitudinalunit vetors. The tilt of n̂ away from the vertial n̂0 is j arsin(�=�)j so that it is 90Æ at Æ = 0 fornon{zero �. At large jÆj, the equilibrium polarisation diretions n̂(J2; �2; s), are almost parallelto n̂0(s) but as we see from the above formula, at Æ = 0, n̂ lies in the horizontal plane andPlim = 0. In this simple model �s exists and is well de�ned near spin{orbit resonanes for allQ2. In our alulations we hoose the phase of the Fourier harmoni to be zero so that �2represents the phase of the vertial betatron motion.It is found both in pratie and in simulation, that in the absene of speial measures,aeleration of the beam through Æ = 0 at pratial rates an lead to loss of beam polarisation.This loss an be asribed to a loss of invariane of Js and it an be quanti�ed in terms ofthe Froissart{Stora formula [25℄. Lukily, the loss of polarisation an be redued by installingpairs of Siberian Snakes [11, 12℄, magnet systems whih rotate spins by �, independently of ~z,around a \snake axis" in the mahine plane. For example, one puts two snakes at diametriallyopposite points on the ring. Then n̂0 � ê2 = +1 in one half ring and �1 in the other. With thesnake axes relatively at 90Æ, the frational part of �0 beomes 1=2 for all 0. For alulationsone often represents the snakes as elements of zero length (\point{like snakes"). Then if, inaddition, the e�et of vertial betatron motion is desribed by the SRM, and orbital resonanesare avoided, at most J2, the frational part of the ADST is 1=2 too, independently of 0[10, 31, 5℄. This is a speial feature of this model. Thus for [Q2℄ away from 1=2, the systemis not at the �rst order spin{orbit resonane �s(J2) = [Q2℄. Therefore suh resonanes arenot rossed during aeleration through Æ = 0 and the polarisation an be preserved. This ison�rmed by traking simulations. However, simulations have shown also that the polarisationan still be lost if [Q2℄ = ~a2=2~b2 where here, and later, ~a2 and ~b2 are odd positive integerswith ~a2 < 2~b2 [13, 14, 15℄. This is the \snake resonane phenomenon" and it has also hadpratial onsequenes [13, 14, 15, 17, 18℄, espeially for small ~b2. Suh a [Q2℄ �ts the ondition1=2 = (1� ~a2)=2+~b2[Q2℄. Sine suh tunes orrespond to orbital resonane an ADST does notexist at most amplitudes. Then, aording to our de�nition the system is not on a spin{orbit5



resonane �s(J2) = (1� ~a2)=2+~b2[Q2℄. However, for nearby irrational [Q2℄ an ADST an exist,namely with the value 1/2. Then one an say that the system is lose to spin{orbit resonane.This ase is studied in Part II. Beause the system is on orbital resonane and using the analogywith the smooth systems [7℄, even a smooth n̂ need not be globally unique. Even if it were,there would be no guarantee that the maximum time averaged polarisation on a torus wouldbe given by jhn̂(~z; s)ij. We investigate these matters in the next setion. Note that the ringsin the Relativisti Heavy Ion Collider, RHIC [17, 18℄ ontain two snakes and that the RHICteam has avoided running near snake{resonane vertial tunes. Even away from the dangerousorbital tunes just mentioned, snake layouts should be hosen arefully. Methods for hoosinglayouts are disussed in [3, 4℄.Although one an desribe spin motion in terms of orthogonal 3x3 matries, here, we preferto use SU(2) matries. Correspondingly, the orientation of a spin is enoded in a two{omponentspinor2. We write the SU(2) matries asI os( =2)� i~� � m̂ sin( =2) (1)where I is the 2� 2 unit matrix, m̂ is the unit vetor along the e�etive rotation axis,  is theangle of rotation around that axis and the three omponents of ~� are the Pauli matries. Therotation is right handed when  > 0. Equation (1) an be re{written asIr0 � i~� � ~r (2)where P3i=0 r2i = 1. We all the real ordered quadruple (r0; ~r) a unit quaternion [32, 4℄. Spinmaps are then onatenated using the multipliation rule(a0; ~a) (b0; ~b) = (a0b0 � ~a �~b; a0~b + ~ab0 + ~a�~b) = (0; ~) (3)where (a0;~a), (b0;~b) and (0;~) are unit quaternions. The elements of the usual 3� 3 matriesare given by Rij = (2r20�1)Æij+2rirj+2r0�ijkrk where Æij is the Kroneker symbol and �ijk is theLevi{Civita symbol. Note that the Rij are homogeneous quadrati forms in the ri. This impliesthat Rij(r0; ~r) = Rij(�r0;�~r) whih simply reets the fat that SU(2) overs SO(3) twie. Inthis paper, as in [5℄, we onsider a system with two point{like snakes plaed at diametriallyopposite points on the ring. The snake axes are respetively at 0Æ and 90Æ to the longitudinaldiretion. The e�et of vertial betatron motion is modelled by the SRM. The omponents ofthe unit quaternion for one turn starting with phase �02 just before the �rst (0Æ) snake are thenr0 = � ���2 sin2 ��2 sin(2�02 + 2��)r1 = �� �� sin�� sin ��� 2 �� Æ� sin2 ��2 os ��� sin(�02 + ��)r2 = � os2 ��2 � � Æ��2 sin2 ��2 � � ���2 sin2 ��2 os(2�02 + 2��)r3 = �� �� sin�� os �� + 2 �� Æ� sin2 ��2 sin��� sin(�02 + ��) : (4)As mentioned above, on orbital resonane, the vetor n̂ an be obtained (up to a sign) as theeigenvetor of unit length of the appropriate {turn spin map. In terms of unit quaternions, n̂2 Of ourse, these spinors should not be interpreted as \spin wave funtions": here we are dealing withlassial equations of motion for spin expetation values.6



is simply the unit vetor along the vetor ~r() for the {turn unit quaternion and we are free tohoose the sign.It is lear from (4) that with small but non{zero �=�, the 1{turn spin map is lose to arotation by the angle � around an axis lose to the vertial. This is expeted on physialgrounds too: at large jÆj, i.e., far from the parent resonane, or at small �, the perturbationembodied in � is relatively unimportant and the spins preess by an amount per turn similar tothat on the design orbit. Then, the map for an odd number of turns is also lose to a rotationby the angle � around the vertial but the map for an even number of turns is lose to theidentity. If � is an even integer, the 1{turn spin map is always a rotation by the angle � aroundthe vertial.It is straightforward to show that at most small values of �=� and with [Q2℄ = a2=b2, therotation vetor ~r(b2) for a b2{turn map is lose to vertial for [Q2℄ = 1=3, 2=3, 1=5, 2=5, 3=5,4=5, 1=7, 2=7, 3=7, 4=7, 5=7, 6=7, : : : and for [Q2℄ = 1=4, 3=4, 1=8, 3=8, 5=8, 7=8, 1=12,5=12, 7=12, 11=12, : : :, and that unless � is an even integer, it is lose to the horizontal planefor [Q2℄ = 1=6, 5=6, 1=10, 3=10, 7=10, 9=10, 1=14, 3=14, 5=14, 9=14, 11=14, 13=14, � � �,orresponding to snake resonanes.3 Polarisation in the model ring at rational [Q2℄We now use our model to study and ontrast the equilibrium beam polarisation, the timeaveraged beam polarisation and the beam polarisation surviving after aeleration, for the �rstmembers of the three lasses of rational tunes just listed, namely for [Q2℄ = 1=3, 1=4 and 1=6.We are primarily interested in [Q2℄ at and near 1=6 but the other ases serve to familiarise thereader with the \normal" ases.3.1 O� orbital resonaneTo set the sene, and at variane with the title of this setion, we �rst onsider a ase where thesystem is o� orbital resonane and o� spin{orbit resonane so that the smooth ISF n̂ is globallyunique. Thus �gure 1 shows the omponents of n̂ for Æ = 0 in the range 0 < [�2=2�℄ � 1 obtainedby strobosopi averaging [1, 2, 3, 4℄ at the irrational tune Q2 = 47+p5�2 = 47:236067977 : : :3.In this and in all other �gures in this paper, the spins are viewed just before the 0Æ snake.Furthermore, for all alulations in this paper, the resonane strength, �, is 0.4 and the integerk0 is 1800, orresponding to a proton energy of about 970 GeV. These are the values used in[5℄ and we use them again here to allow omparisons to be made.We remind the reader that n̂ is 2�{periodi in �2. In priniple, the strobosopi averagingould have been arried out at eah value of [�2=2�℄ separately. However, away from orbitalresonanes one an over a torus by simply �nding n̂ at some [�2=2�℄, setting a spin parallel tothis n̂ and then reording the spin omponents while transporting the spin for a large numberof turns. Sine Js is invariant along a trajetory we then have the omponents of n̂ all along thetrajetory. This is the approah adopted for �gure 1 and we see on�rmation that n̂ is a singlevalued ontinuous funtion of [�2=2�℄. The average hn̂i of n̂ over �2 is vertial and Plim = 0:47.The ADST is 1=2.Figure 2 shows the beam polarisation, sampled every hundred turns for 106 turns, for anensemble of partiles distributed uniformly in the range 0 < [�2=2�℄ � 1 at Æ = 0 when the3Of ourse, we are aware that in alulations in a digital omputer, all irrational numbers must be representedby rational numbers, but then of very high order. 7
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Figure 2: For initially vertial spins, the vertial omponent of the beam polarisation, sampled every 100turns, at Æ = 0 for [Q2℄ = 0:236067977 : : :.
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spins are all initially vertially upward. The horizontal omponents remain at zero but thevertial omponent osillates, at least for millions of turns, between time independent maximaand minima with a time average of about 0.3. As expeted, this is less than Plim. A onstantpolarisation equal to the maximum 0.47 ould have been attained by setting the spins initiallyparallel to their respetive n̂ vetors. See also �gure 9 in [1℄. Inspetion of the turn{by{turndata reveals that the osillations have a period of about four turns, as expeted for a [Q2℄ loseto one quarter and an ADST of 1=2. In the simple SRM and at Æ = 0 the analogous simulationwould exhibit a beam polarisation osillating between +1 and �1 as the spins preessed aroundthe horizontal n̂ at a rate � = �.
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n3Figure 3: The three omponents of n̂(�2) at Æ = 10:6 for [Q2℄ = 0:236067977 : : :.Figure 3 shows the omponents of n̂ for the parameters of �gure 1 exept with Æ = 10:6,a value orresponding to a beam energy far from that of the parent resonane, with non{even� but otherwise arbitrary. The vetors n̂(�2) are almost vertial so that Plim is high, namely0.998. Figure 4 shows the urve for Plim together with the beam polarisations, as ensemblesare aelerated through Æ = 0 at the rates of 100 MeV, 500 MeV and 1 GeV per turn (p.t.).The aeleration is simulated by inrementing Æ by four equal amounts, namely just after eahsnake and at the mid{points of the two ars. At the start, Æ = �10:6 and the partiles aredistributed uniformly in [�2=2�℄ with eah spin initially set parallel to its orresponding n̂(�2),whih is almost vertial. For protons, a rate of 100 MeV per turn orresponds to � � 0:19 forthe hange of a0 per turn. For this rate the beam polarisation follows the urve for Plim vs.Æ, dipping to the value 0.47 at Æ = 0. Moreover, detailed inspetion shows that at eah Æ thedistribution of spins mathes the ISF. This is a nie demonstration of the adiabati invarianeof Js in this ase [9℄. The invariane of Js is lost at the higher rates. Slightly di�erent urvesare obtained if the spins are set vertially upward at the start.The rate of 100 MeV per turn orresponds to a value �2=� � 5:3 in the Froissart{Storaformula [25℄ where � = �=2�. The Froissart{Stora formula desribes the �nal polarisationwhen a spin{orbit resonane is rossed in the SRM and for these parameters it would preditalmost full spin ip, orresponding to adiabatiity. However, our model inludes the snakes andthere are therefore no �rst order spin{orbit resonanes to ross. So the Froissart{Stora formuladoes not apply. Nevertheless for our model, the rate of 100 MeV per turn is adiabati.9
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0.1 GeV p.t.
0.5 GeV p.t.
1.0 GeV p.t.Figure 4: With eah spin initially parallel to its n̂, the beam polarisation sampled turn{by{turn, for [Q2℄ =0:236067977 : : : during aeleration from Æ = �10:6 to Æ = +10:6 at the rates of 100 MeV, 500 MeV and 1 GeVper turn.3.2 On orbital resonane: [Q2℄ = 1=3We now onsider our �rst ase of orbital resonane, namely with Q2 = 47+1=3, orrespondingto odd a2 and b2. Figure 5 shows the omponents of n̂ at Æ = 0 and � = 0:4. These omponentsare obtained by normalising to unity the ~r(3) orresponding to three turns in the range 0 <[�2=2�℄ � 1=3, namely 0Æ to 120Æ, and then transporting the n̂ for eah [�2=2�℄ in this rangefor two or more turns with the 1{turn spin map, thereby �lling up the full phase range. Notethat the urves are single valued funtions of [�2=2�℄ as required. The average jhn̂ij of n̂ over[�2=2�℄ in �gure 5 is 0.05 and hn̂i is vertial. While the smooth ISF n̂ of �gure 5 is globally
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Figure 5: The three omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=3.unique, one looses global uniqueness if one allows disontinuities, as demonstrated in �gure 6.There, we introdue hanges of sign in n̂ by hand at the arbitrarily hosen angles of 17:5Æ and90Æ, while onstruting n̂ in the range 0Æ to 120Æ using ~r(3). We then transport this n̂ for two ormore turns as before. Naturally, the sign{disontinuities (often simply alled \disontinuities"10



from now on) are transported too. In partiular, we see that the transported n̂ is still a singlevalued funtion of [�2=2�℄. The average jhn̂ij in �gure 6 is 0.164. It is lear that neither n̂nor jhn̂ij are unique. Of ourse, an unlimited number of disontinuities ould be introduedin the same way. Then the urves would be smooth almost nowhere. Eah of the n̂ obtainedin this way would orrespond to a permissible equilibrium spin distribution. The n̂ obtained
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Figure 6: The three omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=3. Sign{disontinuities have been introduedby hand.by strobosopi averaging [1℄ over the whole range 0 < [�2=2�℄ � 1 an have disontinuitieswith positions that depend on the \seed" spin �eld used in the strobosopi average but thesedisontinuities an be removed to give the urves in �gure 5. Sine these disontinuities aresign disontinuities, we do not exlude the possibility that the ISF is loally unique. However,this issue is beyond the sope of this paper sine it would lead us into a disussion of regularityonditions.
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n3Figure 7: The three omponents of n̂(�2) at Æ = 10:6 for [Q2℄ = 1=3.If the long term traking simulation of �gure 2 is repeated but with [Q2℄ = 1=3, the vertialomponent of the beam polarisation osillates quikly between about -0.3 and +0.8 for at least11



5 � 106 turns with a time average of about 0.25. This is higher than the jhn̂ij in �gure 5 but nosigni�ane an be attributed to this sine jhn̂ij is not unique.Figure 7 shows the omponents of the smooth ISF n̂ for the onditions of �gure 5 but withÆ = 10:6. jhn̂ij is high as expeted, namely 0.997 sine ~r(3) is lose to vertial. The existeneof the n̂ of �gure 7, means that an ensemble of exatly vertial spins is lose to a permissibleequilibrium spin distribution.Figure 8 shows the beam polarisation for aeleration through Æ = 0 from Æ = �10:6 toÆ = +10:6 at the rates of 50 MeV, 300 MeV and 1 GeV per turn for this Q2. At the start, thepartiles are distributed uniformly in [�2=2�℄ and the spins are set parallel to the almost vertialn̂ vetors of the smooth ISF. Up to an aeleration rate of 50 MeV per turn, Js is invariant, withthe beam polarisation dipping down to 0.05 around Æ = 0 and returning to a high value at theend. This is a demonstration that with the hosen smooth n̂, Js an be adiabatially invariant,although the proof in [9℄ does not guarantee this beause the system is on orbital resonane.At the higher aeleration rates, the invariane is lost. By using strobosopi averaging forirrational [Q2℄ near 1=3 one �nds ISFs similar to that in �gure 5.
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0.05 GeV p.t.
0.30 GeV p.t.
1.00 GeV p.t.Figure 8: With eah spin initially parallel to its n̂, the beam polarisation, sampled turn{by{turn, for [Q2℄ = 1=3during aeleration from Æ = �10:6 to Æ = +10:6 at the rates of 50 MeV, 300 MeV and 1 GeV per turn.

3.3 On orbital resonane: [Q2℄ = 1=4For our seond ase of orbital resonane we hoose Q2 = 47 + 1=4, orresponding to an odd a2and a b2 whih is twie an even integer. Figure 9 shows the omponents of n̂ at Æ = 0 and � = 0:4obtained, in analogy with the previous ase, from ~r(4) in the range 0 < [�2=2�℄ � 1=4 and fromtransporting those n̂ for three or more turns. In this ase we see \stray" points at multiples of45Æ orresponding to the phases where the 4{turn map is the identity. For this �gure we haveimposed the onstraint that the omponents are ontinuous in the range 0Æ to 90Æ, apart fromthe stray points. If we had not imposed smoothness, the omponents would have hanged signat 45Æ and the resulting disontinuities would have been transported to the remainder of thephase range. So, for these parameters and for [Q2℄ = 1=4, n̂ an have disontinuities as in thease of any rational Q2. But in ontrast to a ase disussed below, these disontinuities an besuppressed. The n̂ obtained by strobosopi averaging over the whole range 0 < [�2=2�℄ � 1is smooth as in �gure 9. Of ourse, as in the ase of [Q2℄ = 1=3, we an also introdue an12



unlimited number of sign{disontinuities. The urves of �gure 9 give jhn̂ij = 0:43. Note the
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n3Figure 9: The three omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=4.similarity between �gure 9 and �gure 1. Suh similarities are seen with other irrational [Q2℄near 1/4 and indiate a weak dependene of n̂ on suh irrational [Q2℄. This is onsistent withthe predition in [4, Setion 4.8℄ that in mid{plane symmetri rings the ISF is well behavedlose to the ondition �0 = k0 + 2k2Q2, (k0; k2 2 Z).If the long term traking simulation of �gure 2 is repeated but with [Q2℄ = 1=4, the vertialomponent of the beam polarisation osillates quikly, initially between about -0.1 and +0.7.But these limits gradually hange and beome 0.1 and 0.4 respetively after 5 � 106 turns. Thetime average of about 0.25. This is lower than the jhn̂ij in �gure 9 but no signi�ane an beattributed to this sine jhn̂ij is not unique.Figure 10 shows the omponents of n̂ for the onditions of �gure 9 but with Æ = 10:6. Theaverage jhn̂ij is 0.99. Note that in ontrast to the 3{turn map used for [Q2℄ = 1=3, at large jÆjthe 4{turn map is lose to the identity. Nevertheless, ~r(4) is lose to vertial.
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At the start, the spins are set parallel to the almost vertial n̂ vetors of the smooth ISF.Up to an aeleration rate of 100 MeV per turn, Js is invariant, with the beam polarisationdipping down to 0.43 around Æ = 0 and returning to a high value at the end. This is again ademonstration that with the hosen n̂, Js an be adiabatially invariant although the system ison orbital resonane. At the higher aeleration rates, the invariane is lost.
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0.10 GeV p.t.
0.50 GeV p.t.
1.00 GeV p.t.Figure 11: With eah spin initially parallel to its n̂, the beam polarisation, sampled turn{by{turn, for [Q2℄ =1=4 during aeleration from Æ = �10:6 to Æ = +10:6 at the rates of 100 MeV, 500 MeV and 1 GeV per turn.3.4 On orbital resonane: [Q2℄ = 1=6We now ome to the �rst of the two ases of primary interest for this study, namely the asewhen [Q2℄ = 1=6, i.e., a ase of a snake resonane. Again, the integer part of Q2 is 47 and� = 0:4. Figure 12 shows the omponents of n̂ at Æ = 0 obtained by transporting for �ve ormore turns the n̂ obtained from ~r(6) in the range 0 < [�2=2�℄ � 1=6.
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Figure 12: The three omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=6.We see stray points at phases whih are multiples of 30Æ and 90Æ orresponding to the phaseswhere the 6{turn map is the identity. The vetor ~r(6) has sign{disontinuities at these points14



but for this �gure we have imposed the onstraint that the omponents of n̂ are ontinuous inthe range 0Æ to 60Æ, apart from the stray points. One sees that n̂ still has disontinuities, namelyat phases whih are multiples of 60Æ. Thus, in spite of smoothing n̂ in the initial range of 0Æto 60Æ, disontinuities persist. They annot be removed without reating a vetor �eld whihbeomes double valued when it is transported turn{by{turn. However, the disontinuities anbe moved. These e�ets explain the failure of the MILES algorithm for n̂ at snake{resonanetunes in [21℄ where the need for disontinuities in this model is nevertheless disputed. It is learthat the urves in �gs. 7 and 8 in [21℄ do not represent n̂ [5℄.Strobosopi averaging over the whole range 0 < [�2=2�℄ � 1 generates the urves of �gure12 diretly i.e., without extra smoothing. The disontinuities of n̂ our at phases wherethe raw strobosopi average passes through zero. The passage through zero is smooth. Sodisontinuities in n̂ do not imply disontinuities in the strobosopi average.Our numerial alulations show that n̂ has suh disontinuities at snake{resonane tunesat most values of � and that the minimum number of disontinuities is 2~b2.Of ourse, if n̂ is represented as the lous of points on the unit 2{sphere, one �nds disjointsegments. The average jhn̂ij over [�2=2�℄ in �gure 12 is 0.13. An arbitrary number of extradisontinuities an be introdued by hand.If the long term traking simulation of �gure 2 is repeated but with [Q2℄ = 1=6, the polari-sation osillates quikly, but with onstant upper and lower limits with a time average of about0.1, at least up to 5 � 106 turns. Thus the time averaged polarisation does not vanish. This isillustrated in �gure 13.
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Figure 13: For initially vertial spins, the vertial omponent of the beam polarisation, sampled every 1000turns, at Æ = 0 for [Q2℄ = 1=6.Figure 14 shows n̂ obtained as for �gure 12 but with Æ = 10:6. Exept when � is an eveninteger this is typial of the n̂ at large jÆj (and also at small �). The value of ~r(6) is very smalland the 6{turn spin map is lose to a rotation of 2� around n̂. The disontinuities persistbut in ontrast to the earlier examples, the vertial omponent of n̂ is lose to zero and thehorizontal omponents are piee{wise almost independent of [�2=2�℄. The average jhn̂(�2)ij isessentially zero. It would remain lose to zero if sign{disontinuities were introdued by hand.Sine the horizontal omponents of n̂ are piee{wise almost independent of [�2=2�℄ but alsodi�erent, and sine the 1{turn spin map is a rotation of about � around an axis lose to thevertial, it essentially hanges their signs from turn to turn, ausing the disontinuities. Suh15
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Figure 14: The three omponents of n̂(�2) at Æ = 10:6 for [Q2℄ = 1=6.disontinuities do not our at large jÆj for [Q2℄ = 1=3 or [Q2℄ = 1=4 in �gures 7 and 10 beausen̂ is lose to vertial. The urves of �gure 14 deform ontinuously into those of �gure 12 asÆ is redued to zero. The analogous urves for the other three tunes show the same kind ofbehaviour and, of ourse, that behaviour is a prerequisite for Js is to be invariant in �gures 4,8 and 11.For [Q2℄ = 1=6 with � = 0:4 and large non{even integer �, all equilibrium spin distributionshave spins lose to the horizontal plane. Thus a spin distribution in whih all spins are initiallyvertially upward annot be in equilibrium. This is on�rmed in �gure 15 where we repeatthe long term traking simulation of �gs. 2 and 13 but at Æ = �10:6 and [Q2℄ = 1=6. Wenow see that the polarisation falls, but slowly, over many tens of thousands of turns andsubsequently osillates around zero. Then the time averaged polarisation is lose to jhn̂(�2)ij �0. Nevertheless, sine the system is on orbital resonane, the theorem [3, 4℄ on the maximumtime averaged polarisation does not enfore this. Although the initial spin distribution is not
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Figure 15: For initially vertial spins, the vertial omponent of the beam polarisation, sampled every 1000turns, at Æ = �10:6 for [Q2℄ = 1=6. 16
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 50 keV p.t.
 10 MeV p.t.

500 MeV p.t.Figure 16: The beam polarisation for [Q2℄ = 1=6 during aeleration from Æ = �10:6 to Æ = +10:6 at therates of 50 KeV, 10 MeV and 500 MeV per turn with the spins initially parallel to n̂.
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 50 keV p.t.
 10 MeV p.t.

500 MeV p.t.Figure 17: With eah spin initially parallel to its n̂, hJsi during aeleration from Æ = �10:6 to Æ = +10:6 atthe rates of 50 KeV, 10 MeV and 500 MeV per turn with [Q2℄ = 1=6.
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50 keV p.t.
10 MeV p.t.
50 MeV p.t.Figure 18: For initially vertial spins, the beam polarisation for [Q2℄ = 1=6 during aeleration from Æ = �10:6to Æ = +10:6 at the rates of 50 KeV, 10 MeV and 50 MeV per turn.

-100
-80
-60
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5

P 2
 /%

turns /106

 

50 keV p.t.
10 MeV p.t.
50 MeV p.t.

Figure 19: The beam polarisation for [Q2℄ = 1=6 when Æ is frozen at +10:6 after the aeleration yle of�gure 18, and the spins are traked for a further 5 � 106 turns.
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in equilibrium, it is not surprising that it takes about 105 turns before the polarisation reaheszero. This is due to the fat that at large jÆj the eigentune, 6�6, of the 6{turn spin map is almostindependent of [�2=2�℄ and very lose to an integer for this ase. Sine Js is invariant along atrajetory, we an view the motion of a spin as a preession at a �xed angle os�1(~S � n̂=j~Sj)around its n̂. In this ase the angles are about 90Æ. With eigentunes almost independent of[�2=2�℄ and lose to an integer, the projetions of spins on the planes perpendiular to theirrespetive n̂'s spread out (deoher) only slowly. Then, at the viewing position, the spins returnalmost to their original diretions after six turns.For large jÆj, the 1{turn spin map orresponds to a rotation of about � around an axis loseto the vertial. So, it is again no surprise that the polarisation in �gure 15 takes many turnsto reah zero. For even larger jÆj (e.g., over 100), n̂ an be taken to be horizontal but thepolarisation remains vertial and it takes many millions of turns for it to show signs of falling.There is no fall if � is an even integer sine then, the 6-turn map is the identity.Figure 16 shows the beam polarisation for aeleration through Æ = 0 at the rates of 50KeV, 10 MeV and 500 MeV per turn for [Q2℄ = 1=6. At the start, the partiles are uniformlydistributed in [�=2�℄ and the spins are set parallel to the almost horizontal n̂ vetors of that ISFwhih deforms into the ISF's of �gures 12 and 14. The initial beam polarisation is essentiallyzero. During aeleration at rates up to 50 KeV per turn, the beam polarisation rises to 0:13,orresponding to the jhn̂ij of �gure 12, and then returns to around zero. A detailed inspetionof the data shows that for a rate of 10 MeV per turn, the spins deviate slightly from theirrespetive n̂ vetors at large jÆj. However, this e�et is not apparent in the average over[�2=2�℄ ontained in the beam polarisation. This is again a demonstration that with the hosenn̂ and the hosen layout of aelerating avities, Js an be approximately invariant even forthese disontinuous ISF's and that at the higher aeleration rates, the invariane is lost. Theapproximate invariane is on�rmed in �gure 17 whih shows the orresponding behaviour of thephase average of Js, hJsi. In �gure 17 we have suppressed data at Æ's where n̂ is indeterminatebeause � is an even integer.Figure 18 shows the beam polarisation as the simulation of �gure 16 is repeated but with thespins initially vertially upward and for rates of 50 KeV and 10 MeV per turn and for 50 MeVper turn, where Js is still approximately invariant. For these rates of aeleration the anglebetween a spin and its n̂ remains around 90Æ. Then the beam polarisation during aelerationdepends just on the geometry of the ISF and on the history of the rate of deoherene of theprojetions of the spins on the planes perpendiular to the n̂'s. These rates depend, in turn,on the magnitude of 6�6 and its dependene on [�2=2�℄. We therefore expet that the �nalpolarisation ould depend sensitively on the magnitude of the rate of aeleration and on itstime dependene. This is on�rmed in �gure 18 whih shows that at a rate of 50 KeV per turn,the polarisation is e�etively lost at positive Æ but that at the muh higher rate of 50 MeV perturn the �nal polarisation is around -0.4 at the end of the aeleration yle. By now, the readerwill have realised that the polarisation of -0.4 annot represent an equilibrium state. This ison�rmed in �gure 19 where, after aeleration up to Æ = 10:6, Æ is frozen and the ensemblesare traked for a further 5 � 106 turns. Figure 19 shows that after some large osillations thepolarisation gradually deays to zero in a way and on a time sale familiar from �gure 15. Italso shows that although the polarisation an be small at the end of the aeleration (as inthe ase of 10 MeV/turn), the spin distribution is by no means isotropi but is suh that thepolarisation an return to a large value later. In fat after the 5 � 106 turns, the urves of spinvetor versus [�2=2�℄ are smooth urves for all three aeleration rates4. This suggests that4 This vindiates the advie in [7, Setion I℄ on the use of the term \depolarisation".19



ontrary to onventional expetation, a omplete loss of polarisation is not inevitable duringaeleration exatly at a snake resonane with [Q2℄ = 1=6, at least not within the on�nes ofour model. This ompletes Part I of our investigation.4 Summary and onlusionIn this paper we have presented and ontrasted four senarios for spin motion on and o� orbitalresonane within the on�nes of our simple model, and by this means we have developed alean, elegant aount of the speial features of spin motion at a snake resonane. In allfour ases ~S � n̂ is an invariant at low enough rates of aeleration. For the �rst three ases([Q2℄ = 0:236067977 : : : ; 1=3; 1=4) the ISF is lose to vertial at large jÆj, i.e., far away fromthe energy for the parent resonane, and the spin motion is unexeptional. For example, afteraeleration from a large negative Æ to a high positive Æ, an initially vertial spin is still loseto vertial. These ases serve to emphasise the exeptional form of the ISF when [Q2℄ = 1=6.In this ase, far away from the parent resonane, the ISF lies lose to the horizontal plane.Then in ontrast to the other three ases, an ensemble of partiles with a uniform distributionof [�2=2�℄ and with vertially upward spins, annot be at spin equilibrium. The subsequentevolution of the beam polarisation depends on the hosen initial Æ and is exempli�ed in �gures13 and 15. In partiular, the polarisation osillates at a rate depending on the proximity ofthe eigentune of the 6{turn spin map to an integer and on the extent of the variation of thateigentune with [�2=2�℄. Then at the energy of the parent resonane (Æ = 0), the polarisationosillates quikly and the time averaged polarisation is small but non{zero. At most large jÆj,the time averaged polarisation is zero but the polarisation osillates slowly and it reahes zerofor the �rst time only after many thousands of turns.As soon as one sees that at most large jÆj the ISF for [Q2℄ = 1=6 lies lose to the horizontalplane, it is no surprise that in this ase the time averaged beam polarisation an beome smallin the long term. Aeleration adds little to the story, exept that within our model, afterstarting with an ensemble of vertial spins at Æ = �10:6, the �nal polarisation depends onthe rate at whih one passes from the spin motion underlying �gure 15 to the spin motionunderlying �gure 13 and then beyond to large positive Æ. The key features of spin motion at[Q2℄ = 1=6 are enoded in the ISF. We see no neessity to invoke the perturbed spin tune[14, 15℄. Instead, we appeal to the eigentune of the 6{turn spin map, a quantity with physialsigni�ane.We emphasise that the main results presented here refer to a very speial ase, namely forour model right at [Q2℄ = 1=6 and with � = 0:4. As pointed out in [5℄, the ISF is extremelyompliated for values of [Q2℄ just below and just above 1=6. This is onsistent with thepredition in [4, Setion 4.8℄ that in mid{plane symmetri rings the ISF need not be wellbehaved lose to the ondition �0 = k0 + (2k2 + 1)Q2, (k0; k2 2 Z). Thus in Part II of thisstudy we extend our alulations to over suh values of [Q2℄ and to larger values of �. It willbe shown there that although the ISF for [Q2℄ = 1=6 has the speial form desribed above, thisis an exeption and that the loss of polarisation during aeleration near to [Q2℄ = 1=6 has adi�erent origin. We also omment on the �ndings in [10, 23, 24℄.The analysis should then be extended to real synhrobetatron motion with misalignmentsfor a typial opti of a real ring and with the �elds of real snakes. See, for example, [33℄.Other snake{resonane tunes should also be overed. We note with interest that aordingto simulations for RHIC, the loss of polarisation during aeleration is less severe when thesimulations are arried out with the magneti �elds of real snakes rather than with point{like20
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