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Spin motion at and near orbital resonan
e in storage ringswith Siberian SnakesI: at orbital resonan
e�D P Barberympybar�mail.desy.de M Vogtvogtm�mail.desy.deDeuts
hes Elektronen{Syn
hrotron, DESY, 22607 Hamburg, GermanyAbstra
tHere, and in a sequel, we invoke the invariant spin �eld to provide an in{depth studyof spin motion at and near low order orbital resonan
es in a simple model for the e�e
tsof verti
al betatron motion in a storage ring with Siberian Snakes. This leads to a 
learunderstanding, within the model, of the behaviour of the beam polarisation at and nearso{
alled snake resonan
es in proton storage rings.1 Introdu
tionIn earlier papers we and 
ollaborators have emphasised the utility of the invariant spin �eld(ISF) and the amplitude dependent spin tune (ADST) for analysing spin motion in 
ir
ularparti
le a

elerators and storage rings [1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄. In parti
ular, under 
ertain
onditions, the ISF is unique up to a global sign and in that 
ase it allows estimates to bemade of the maximum equilibrium beam polarisation and the maximum time averaged beampolarisation in proton storage rings. Then, for example, for a given equilibrium distribution ofparti
les in phase spa
e, the maximum attainable polarisation at the 
hosen high energy 
an beestimated before embarking on extensive 
omputer simulations of the e�e
t on the polarisationof a

eleration from low energy. On
e a ma
hine 
on�guration has been found whi
h appearsto be a

eptable at the 
hosen high energy, one then studies the e�e
t of a

eleration to assesswhether the 
on�guration is still a

eptable. A

eleration 
an involve 
rossing many spin{orbitresonan
es and that 
an lead to a loss of polarisation. The latter problem 
an be partially solvedby the in
lusion in the ring of so{
alled Siberian Snakes [11, 12℄, magneti
 �eld 
on�gurationsthat 
ause the average spin pre
ession rate on the design orbit to be independent of the nominalbeam energy. Nevertheless, spin{orbit resonan
es 
an still o

ur but their identi�
ation thenoften requires a more 
areful de�nition of the spin pre
ession rate than has been 
ommonamong pra
titioners, involving the amplitude dependent spin tune. A full understanding also�DESY preprint DESY 06{220. Published in: New Journal of Physi
s 8 (2006) 296. Worldwide 
opyrightby: Institute of Physi
s and Deuts
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haft (2006)yAlso Visiting Sta� Member at the Co
k
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ien
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requires a 
areful de�nition of an adiabati
 invariant for spin motion. In most of the numeri
alinvestigations des
ribed in [1, 2, 3, 4, 5, 6, 7, 9, 10℄, orbital resonan
e is avoided. Moreover,it is shown that the spin{orbit systems tend to avoid exa
t spin{orbit resonan
e. These andother matters are explained and illustrated in great detail in the sour
es 
ited above. In orderto keep this paper to a reasonable length we will assume that the reader is familiar with thatmaterial.Of 
ourse, the ISF and the 
on
epts derived from it, may be of little help if the ISF is notunique. That 
an be the 
ase if the orbital motion is resonant or if the system is on spin{orbitresonan
e [5, 7℄. Nevertheless, as we show below, spe
ial 
hoi
es from sets of non{unique ISF's
an be useful for investigating spin motion near some kinds of orbital resonan
e. Moreover,the ISF is still useful at rational verti
al orbital tunes 
orresponding to the so{
alled odd ordersnake \resonan
es". At these tunes the Siberian Snakes apparently do not su

eed in preventingloss of polarisation during a

eleration [13, 14, 15, 16, 17, 18℄. However, with the ex
eptions of[19, 20, 5, 21℄, dis
ussions about spin motion at or near to these tunes have made no referen
eto the ISF. The treatment in [19, 20℄ involved a mathemati
al approximation to the model usedin this paper. Then in [5℄ it was pointed out for the �rst time that at these tunes the ISF is anirredu
ibly dis
ontinuous fun
tion of the verti
al orbital phase and that the dis
ontinuities 
anbe moved, thereby demonstrating non{uniqueness. In [21℄ the ne
essity of the dis
ontinuitieswas disputed (see Se
tion 3.4). In Se
tion 2 we explain that exa
tly at these spe
ial tunes,the term \snake resonan
e" does not �t with our preferred de�nition of spin{orbit resonan
e.Nevertheless, for simpli
ity, we adopt the now traditional nomen
lature. In [5℄ it was also made
lear how non{uniqueness 
an o

ur at other rational tunes.In this paper and in a sequel (
alled Part II) we extend the investigations in [5℄. In the initialand pioneering work on snake resonan
es in [13, 14, 15℄, emphasis was pla
ed on the signi�
an
eof the so{
alled \perturbed spin tune", a measure of the angles of spin rotation around the real,unit length, eigenve
tors of 1{turn SO(3) spin maps. See also [22℄. However, these eigenve
torsare usually not solutions of the Thomas{Bargmann{Mi
hel{Telegdi (T{BMT) equation alongthe traje
tories. Thus, while it is 
lear from 
al
ulations that the \perturbed spin tune" 
anshow strong variations, we do not 
onsider its behaviour to be relevant to the dis
ussion [8℄.In [13, 14, 15℄ spin motion was also analysed in terms of an essentially perturbative expansionof the p{turn SU(2) spin transfer matrix, T (p), and it was found that at snake{resonan
etunes, jT21(p)j 
ould in
rease without limit as the number of turns p in
reased. In so far asit relates to positions in tune spa
e, this behaviour, whi
h is an artifa
t of the perturbativeapproa
h, appears to be 
onsistent with the snake resonan
e phenomenon. However, althoughan unlimited in
rease of a matrix element in a perturbative expression for a rotation matrix doessuggest ex
eptional behaviour, it destroys the unitarity of the matrix, thereby demonstratingan invalid approximation and implying a 
onsequent limitation of the predi
tive power of the
al
ulation. For example, in the absen
e of other input, one might suppose that an unlimitedgrowth of jT21j 
ould infer that initially verti
al spins are simply 
ipped. Alternatively, thegrowth might be a hint that the verti
al 
omponent of the beam polarisation os
illates as spinsrotate around a horizontal axis. Lastly, simulations reported in [10, 23, 24℄ demonstrate thee�e
ts of varying the rate of a

eleration near snake{resonan
e tunes. The number of turnsneeded to traverse a given energy range depends on the energy gain per turn. Then, if weightis given to the perturbative treatment, the number of turns determines how large jT21j 
anbe
ome. The rate of a

eleration is 
ertainly important in the Froissart{Stora 
al
ulation [25℄of the loss of polarisation when 
rossing spin{orbit resonan
es in rings without snakes, andthe phenomenology is well understood. However, the simulations in [10, 23, 24℄ show that the2



dependen
e of the �nal polarisation on the a

eleration rate 
an be 
omplex and unexpe
tedand that no 
lear pi
ture emerges.To summarise, in our opinion, although snake resonan
es have presented problems [17, 18℄,the numeri
al and theoreti
al investigations made so far have provided no 
ompletely 
oherentpi
ture of spin motion at and near snake{resonan
e tunes, either with or without a

eleration.These papers provide a new 
ontribution towards su
h a pi
ture, at least within our adoptedsimple model. We 
arry out our study against the ba
kground of our standard philosophy,namely that to dete
t ex
eptional behaviour, one should start spin{orbit tra
king simulationswith an equilibrium distribution of parti
les in phase spa
e and with ea
h spin parallel to theISF ve
tor 
orresponding to the position of the parti
le in phase spa
e [7℄. Then any unexpe
tedbehaviour is signalled by long term or turn{to{turn variations of the polarisation of the beam.This gives a mu
h 
leaner view of the situation than if one just begins in the 
ommon waywith spins parallel to the dire
tion of the ISF on the 
losed orbit. A

ordingly, with the ISF atthe 
entre of our dis
ussion we show how, in the 
ases 
onsidered, the long term behaviour ofspins 
an be inferred, at least qualitatively, from some features of the ISF. On low order orbitalresonan
e, an ISF 
an be 
al
ulated almost trivially from the spin maps of a few turns.For our purposes, and in order to allow dire
t 
omparison, it suÆ
es just to 
onsider amodel used in earlier literature [13, 14, 15℄, namely a model with two Siberian Snakes. Sin
ethe ranges of the relevant parameters and the number of possible 
on�gurations is huge, thisstudy, whi
h is mainly numeri
al, is not exhaustive. We fully appre
iate that storage rings donot run on low order orbital resonan
e, that spin{orbit resonan
es need not be well separated,that parti
les have three modes of os
illation and that parti
le motion in real rings 
an benonintegrable. Nevertheless our study provides useful insights.The paper is stru
tured as follows. We 
ontinue in Se
tion 2 by re
alling the simple idealisedand traditional model of spin motion for protons 
onsidered in [5, 13, 14, 15℄ and spe
ify thenotation 
ommonly used to des
ribe it. Then in Se
tion 3 we use the model to study spinmotion exa
tly at orbital resonan
es in
luding an odd order snake resonan
e and show how the
hief features of spin motion 
an be guessed from the 
hara
teristi
s of the ISF. We summariseour studies in Se
tion 4. Part II of this study 
ompletes the pi
ture by addressing spin motion
lose to, but not at, an odd order snake{resonan
e tune. The numeri
al 
al
ulations were
arried out with purpose{built spin{orbit tra
king 
odes, with the spin{orbit tra
king fa
ilitiesin the 
ode SPRINT [3, 4℄ and with the SODOM{II algorithm [26℄ embedded in SPRINT.2 Re
apitulation { the single resonan
e model with twosnakesSpin motion in the ele
tri
 and magneti
 �elds at the point ~z in the 6{dimensional phasespa
e at beam energy E0 and at the position s around the ring, is des
ribed by the T{BMTpre
ession equation d~S=ds = ~
(~z; s; E0)� ~S [27, 28, 1℄ where ~S is the spin expe
tation value(\the spin") in the rest frame of the parti
le and ~
(~z; s; E0) 
ontains the ele
tri
 and magneti
�elds in the laboratory and depends on the beam energy E0. The ISF, whose value at (~z; s)is denoted by n̂(~z; s), is a 3{ve
tor �eld of unit length obeying the T{BMT equation alongparti
le traje
tories (~z(s); s) and ful�lling the periodi
ity 
ondition n̂(~z; s+C) = n̂(~z; s) whereC is the 
ir
umferen
e1. Thus n̂( ~M(~z; s); s + C) = n̂( ~M(~z; s); s) = R3�3(~z; s)n̂(~z; s) where1We emphasise that the non{trivial ISF ve
tor n̂(~z; s) should not be 
onfused with the trivial ve
tor ~n usedto denote ~
 in [15, equation 2.46℄ and in [29, equation 1℄ and having the same periodi
ity.3



~M(~z; s) is the new position in phase spa
e after one turn starting at ~z and s, and R3�3(~z; s) isthe 
orresponding spin transfer matrix. For 
onvenien
e we have suppressed the dependen
eof ~M;R and n̂ on E0. In addition to the kinemati
al 
onstraint jn̂j = 1, a 
omplete de�nitionof the ISF requires the spe
i�
ation of a 
onstraint on its regularity with respe
t to ~z. Forexample, one 
ould require that n̂(~z; s) is 
ontinuous in ~z. It is 
lear that su
h regularity
onditions are needed sin
e, for example, a pie
e{wise 
ontinuous ISF exists if a 
ontinuousone exists but not vi
e versa. See Se
tion 3.4 and [5℄. However, sin
e the emphasis of thepaper is on numeri
al results, we only o

asionally dwell on the matter of regularity. We usethe term \global uniqueness" if two ISF's 
an di�er only by a sign. Thus in the 
ase of globaluniqueness, either exa
tly two ISF's, �n̂, exist as in Se
tion 3.1 or none, as in Se
tion 3.4. Weuse the term \lo
al uniqueness" if any two ISF's, n̂ and n̂0 are parallel, i.e. n̂� n̂0 = 0, so that n̂and n̂0 
an di�er only by a sign fun
tion. Of 
ourse global uniqueness implies lo
al uniquenessbut not vi
e versa. Sin
e the issue of lo
al uniqueness is beyond the s
ope of this paper, it willbe addressed only brie
y. If an ISF exists and parameters su
h as E0 are 
onstant, the s
alarprodu
t Js = ~S � n̂=j~Sj is invariant along a traje
tory.For a turn{to{turn invariant parti
le distribution in phase spa
e, a distribution of spinsinitially aligned along the ISF remains invariant from turn{to{turn, i.e., in \equilibrium".Moreover, for integrable orbital motion and away from both orbital resonan
es and spin{orbitresonan
es (see below), the average jhn̂(~z; s)ij of n̂ over the phases on a torus is the maximumattainable time averaged beam polarisation Plim. Away from orbital resonan
es and spin{orbit resonan
es the a
tual time averaged polarisation 
an be written as PlimPdyn where thePdyn = jhJsij depends on the history of the beam [4℄. For a turn{to{turn invariant parti
ledistribution in phase spa
e Plim = jhn̂(~z; s)ij is also the maximum attainable equilibrium beampolarisation. This is rea
hed when Pdyn = 1.Under appropriate 
onditions Js is an adiabati
 invariant while system parameters su
h asthe beam energy E0 are slowly varied [3, 9℄. In fa
t n̂ then serves as a \template" for spinmotion. Several examples of this are given in Se
tion 3.The ADST �s( ~J) at the amplitudes (a
tions) ~J , is the number of spin pre
essions aroundthe n̂ per turn on a traje
tory, viewed in a so{
alled uniform pre
ession frame (UPF). See [7℄ forpre
ise de�nitions for smooth systems, i.e., systems with 
ontinuously di�erentiable fun
tions,and for an explanation of how a parti
ular ADST is, in fa
t, a member of an equivalen
e
lass. Note that although the systems in this paper are not smooth in s due to the presen
e ofpoint{like snakes (see below), their smoothness in ~z fa
ilitates a 
lose analogy with the smoothsystems of [7℄.In general, an ADST does not exist if the traje
tory is on orbital resonan
e but on the otherhand, one avoids running a ma
hine on orbital resonan
es, at least those of low order. If anADST exists, it depends only on ~J , hen
e the name ADST.The ADST provides a way to quantify the degree of 
oheren
e between the spin and or-bital motion and thereby predi
t how strongly the ele
tri
 and magneti
 �elds along parti
letraje
tories disturb spins. In parti
ular, the spin motion 
an be
ome very errati
 
lose to thespin{orbit resonan
e 
ondition �s( ~J) = k0 + k1Q1 + k2Q2 + k3Q3 where the Q's are orbitaltunes and the k's are integers. Near these resonan
es the ISF 
an spread out so that Plim is verysmall. The spin tune on the design orbit �0 � �s(~0) always exists and so does n̂0(s) � n̂(~0; s).In this paper we shall be 
on
erned mainly with those orbital resonan
es where the Q's arerational. We write the fra
tional parts, [Qi℄, of rational tunes Qi (i = 1; 2; 3) as ai=bi wherethe ai and bi are integers. Here and later the bra
kets [:::℄ are used to signal the fra
tionalpart of a number. For rational [Qi℄ a traje
tory is periodi
 over 
 turns where 
 is the lowest4




ommon multiple of the bi. This opens the possibility that in this 
ase the ISF at ea
h (~z; s)
an be obtained (up to a sign) as the unit length real eigenve
tor of the 3 � 3 orthogonalmatrix representing the 
{turn spin map (
.f. the 
al
ulation of n̂0 from the 1{turn spin mapon the 
losed orbit). However, the 
orresponding eigentune 
�
 extra
ted from the 
omplexeigenvalues �
 = e�2�i
�
, depends in general on the syn
hrobetatron phases at the starting~z. Thus in general �
 
annot be used to �nd a spin tune. Nevertheless if 
 is very large thedependen
e of �
 on the phases 
an be very weak so that it 
an approximate well the ADST ofnearby irrational tunes. For non{resonant orbital tunes, the spin tune 
an be obtained usingthe SODOM{II algorithm [26℄ or from averaging the pseudo spin tune [3, 4℄.In perfe
tly aligned 
at rings with no solenoids, n̂0 is verti
al and �0 
an be 
hosen to bea
0 where 
0 is the Lorentz fa
tor on the 
losed orbit and a is the gyromagneti
 anomaly of theparti
le. In the absen
e of skew quadrupoles, the primary disturban
e to spin is then from theradial magneti
 �elds along verti
al betatron traje
tories. The disturban
e 
an be very strongand the beam polarisation 
an be small near the 
ondition a
0 = � � k0 � Q2 where k0 is aninteger and mode 2 is verti
al motion. This 
an be understood in terms of the \single resonan
emodel" (SRM) whereby a rotating wave approximation is made in whi
h the 
ontribution to ~
from the radial �eld along a verti
al betatron traje
tory is dominated by the Fourier 
omponentat � with resonan
e strength �(J2). The SRM 
an be solved exa
tly and the ISF is given by[30℄ n̂(�2) = � (Æê2 + �(ê1 
os�2 + ê3 sin�2)) =� where Æ = a
0�� is the distan
e in tune spa
eto the parent resonan
e, � = pÆ2 + �2, �2 is the di�eren
e between the verti
al betatron phaseand the phase of the Fourier 
omponent and (ê1; ê2; ê3) are horizontal, verti
al and longitudinalunit ve
tors. The tilt of n̂ away from the verti
al n̂0 is j ar
sin(�=�)j so that it is 90Æ at Æ = 0 fornon{zero �. At large jÆj, the equilibrium polarisation dire
tions n̂(J2; �2; s), are almost parallelto n̂0(s) but as we see from the above formula, at Æ = 0, n̂ lies in the horizontal plane andPlim = 0. In this simple model �s exists and is well de�ned near spin{orbit resonan
es for allQ2. In our 
al
ulations we 
hoose the phase of the Fourier harmoni
 to be zero so that �2represents the phase of the verti
al betatron motion.It is found both in pra
ti
e and in simulation, that in the absen
e of spe
ial measures,a

eleration of the beam through Æ = 0 at pra
ti
al rates 
an lead to loss of beam polarisation.This loss 
an be as
ribed to a loss of invarian
e of Js and it 
an be quanti�ed in terms ofthe Froissart{Stora formula [25℄. Lu
kily, the loss of polarisation 
an be redu
ed by installingpairs of Siberian Snakes [11, 12℄, magnet systems whi
h rotate spins by �, independently of ~z,around a \snake axis" in the ma
hine plane. For example, one puts two snakes at diametri
allyopposite points on the ring. Then n̂0 � ê2 = +1 in one half ring and �1 in the other. With thesnake axes relatively at 90Æ, the fra
tional part of �0 be
omes 1=2 for all 
0. For 
al
ulationsone often represents the snakes as elements of zero length (\point{like snakes"). Then if, inaddition, the e�e
t of verti
al betatron motion is des
ribed by the SRM, and orbital resonan
esare avoided, at most J2, the fra
tional part of the ADST is 1=2 too, independently of 
0[10, 31, 5℄. This is a spe
ial feature of this model. Thus for [Q2℄ away from 1=2, the systemis not at the �rst order spin{orbit resonan
e �s(J2) = [Q2℄. Therefore su
h resonan
es arenot 
rossed during a

eleration through Æ = 0 and the polarisation 
an be preserved. This is
on�rmed by tra
king simulations. However, simulations have shown also that the polarisation
an still be lost if [Q2℄ = ~a2=2~b2 where here, and later, ~a2 and ~b2 are odd positive integerswith ~a2 < 2~b2 [13, 14, 15℄. This is the \snake resonan
e phenomenon" and it has also hadpra
ti
al 
onsequen
es [13, 14, 15, 17, 18℄, espe
ially for small ~b2. Su
h a [Q2℄ �ts the 
ondition1=2 = (1� ~a2)=2+~b2[Q2℄. Sin
e su
h tunes 
orrespond to orbital resonan
e an ADST does notexist at most amplitudes. Then, a

ording to our de�nition the system is not on a spin{orbit5



resonan
e �s(J2) = (1� ~a2)=2+~b2[Q2℄. However, for nearby irrational [Q2℄ an ADST 
an exist,namely with the value 1/2. Then one 
an say that the system is 
lose to spin{orbit resonan
e.This 
ase is studied in Part II. Be
ause the system is on orbital resonan
e and using the analogywith the smooth systems [7℄, even a smooth n̂ need not be globally unique. Even if it were,there would be no guarantee that the maximum time averaged polarisation on a torus wouldbe given by jhn̂(~z; s)ij. We investigate these matters in the next se
tion. Note that the ringsin the Relativisti
 Heavy Ion Collider, RHIC [17, 18℄ 
ontain two snakes and that the RHICteam has avoided running near snake{resonan
e verti
al tunes. Even away from the dangerousorbital tunes just mentioned, snake layouts should be 
hosen 
arefully. Methods for 
hoosinglayouts are dis
ussed in [3, 4℄.Although one 
an des
ribe spin motion in terms of orthogonal 3x3 matri
es, here, we preferto use SU(2) matri
es. Correspondingly, the orientation of a spin is en
oded in a two{
omponentspinor2. We write the SU(2) matri
es asI 
os( =2)� i~� � m̂ sin( =2) (1)where I is the 2� 2 unit matrix, m̂ is the unit ve
tor along the e�e
tive rotation axis,  is theangle of rotation around that axis and the three 
omponents of ~� are the Pauli matri
es. Therotation is right handed when  > 0. Equation (1) 
an be re{written asIr0 � i~� � ~r (2)where P3i=0 r2i = 1. We 
all the real ordered quadruple (r0; ~r) a unit quaternion [32, 4℄. Spinmaps are then 
on
atenated using the multipli
ation rule(a0; ~a) (b0; ~b) = (a0b0 � ~a �~b; a0~b + ~ab0 + ~a�~b) = (
0; ~
) (3)where (a0;~a), (b0;~b) and (
0;~
) are unit quaternions. The elements of the usual 3� 3 matri
esare given by Rij = (2r20�1)Æij+2rirj+2r0�ijkrk where Æij is the Krone
ker symbol and �ijk is theLevi{Civita symbol. Note that the Rij are homogeneous quadrati
 forms in the ri. This impliesthat Rij(r0; ~r) = Rij(�r0;�~r) whi
h simply re
e
ts the fa
t that SU(2) 
overs SO(3) twi
e. Inthis paper, as in [5℄, we 
onsider a system with two point{like snakes pla
ed at diametri
allyopposite points on the ring. The snake axes are respe
tively at 0Æ and 90Æ to the longitudinaldire
tion. The e�e
t of verti
al betatron motion is modelled by the SRM. The 
omponents ofthe unit quaternion for one turn starting with phase �02 just before the �rst (0Æ) snake are thenr0 = � ���2 sin2 ��2 sin(2�02 + 2��)r1 = �� �� sin�� sin ��� 2 �� Æ� sin2 ��2 
os ��� sin(�02 + ��)r2 = � 
os2 ��2 � � Æ��2 sin2 ��2 � � ���2 sin2 ��2 
os(2�02 + 2��)r3 = �� �� sin�� 
os �� + 2 �� Æ� sin2 ��2 sin��� sin(�02 + ��) : (4)As mentioned above, on orbital resonan
e, the ve
tor n̂ 
an be obtained (up to a sign) as theeigenve
tor of unit length of the appropriate 
{turn spin map. In terms of unit quaternions, n̂2 Of 
ourse, these spinors should not be interpreted as \spin wave fun
tions": here we are dealing with
lassi
al equations of motion for spin expe
tation values.6



is simply the unit ve
tor along the ve
tor ~r(
) for the 
{turn unit quaternion and we are free to
hoose the sign.It is 
lear from (4) that with small but non{zero �=�, the 1{turn spin map is 
lose to arotation by the angle � around an axis 
lose to the verti
al. This is expe
ted on physi
algrounds too: at large jÆj, i.e., far from the parent resonan
e, or at small �, the perturbationembodied in � is relatively unimportant and the spins pre
ess by an amount per turn similar tothat on the design orbit. Then, the map for an odd number of turns is also 
lose to a rotationby the angle � around the verti
al but the map for an even number of turns is 
lose to theidentity. If � is an even integer, the 1{turn spin map is always a rotation by the angle � aroundthe verti
al.It is straightforward to show that at most small values of �=� and with [Q2℄ = a2=b2, therotation ve
tor ~r(b2) for a b2{turn map is 
lose to verti
al for [Q2℄ = 1=3, 2=3, 1=5, 2=5, 3=5,4=5, 1=7, 2=7, 3=7, 4=7, 5=7, 6=7, : : : and for [Q2℄ = 1=4, 3=4, 1=8, 3=8, 5=8, 7=8, 1=12,5=12, 7=12, 11=12, : : :, and that unless � is an even integer, it is 
lose to the horizontal planefor [Q2℄ = 1=6, 5=6, 1=10, 3=10, 7=10, 9=10, 1=14, 3=14, 5=14, 9=14, 11=14, 13=14, � � �,
orresponding to snake resonan
es.3 Polarisation in the model ring at rational [Q2℄We now use our model to study and 
ontrast the equilibrium beam polarisation, the timeaveraged beam polarisation and the beam polarisation surviving after a

eleration, for the �rstmembers of the three 
lasses of rational tunes just listed, namely for [Q2℄ = 1=3, 1=4 and 1=6.We are primarily interested in [Q2℄ at and near 1=6 but the other 
ases serve to familiarise thereader with the \normal" 
ases.3.1 O� orbital resonan
eTo set the s
ene, and at varian
e with the title of this se
tion, we �rst 
onsider a 
ase where thesystem is o� orbital resonan
e and o� spin{orbit resonan
e so that the smooth ISF n̂ is globallyunique. Thus �gure 1 shows the 
omponents of n̂ for Æ = 0 in the range 0 < [�2=2�℄ � 1 obtainedby strobos
opi
 averaging [1, 2, 3, 4℄ at the irrational tune Q2 = 47+p5�2 = 47:236067977 : : :3.In this and in all other �gures in this paper, the spins are viewed just before the 0Æ snake.Furthermore, for all 
al
ulations in this paper, the resonan
e strength, �, is 0.4 and the integerk0 is 1800, 
orresponding to a proton energy of about 970 GeV. These are the values used in[5℄ and we use them again here to allow 
omparisons to be made.We remind the reader that n̂ is 2�{periodi
 in �2. In prin
iple, the strobos
opi
 averaging
ould have been 
arried out at ea
h value of [�2=2�℄ separately. However, away from orbitalresonan
es one 
an 
over a torus by simply �nding n̂ at some [�2=2�℄, setting a spin parallel tothis n̂ and then re
ording the spin 
omponents while transporting the spin for a large numberof turns. Sin
e Js is invariant along a traje
tory we then have the 
omponents of n̂ all along thetraje
tory. This is the approa
h adopted for �gure 1 and we see 
on�rmation that n̂ is a singlevalued 
ontinuous fun
tion of [�2=2�℄. The average hn̂i of n̂ over �2 is verti
al and Plim = 0:47.The ADST is 1=2.Figure 2 shows the beam polarisation, sampled every hundred turns for 106 turns, for anensemble of parti
les distributed uniformly in the range 0 < [�2=2�℄ � 1 at Æ = 0 when the3Of 
ourse, we are aware that in 
al
ulations in a digital 
omputer, all irrational numbers must be representedby rational numbers, but then of very high order. 7
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n3Figure 1: The three 
omponents of n̂(�2) for the SRM with 2 Siberian Snakes with axes at 0Æ and 90Æ andfor [Q2℄ = 0:236067977 : : :. Viewing point: just before the 0Æ snake. Æ = 0 and � = 0:4.
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Figure 2: For initially verti
al spins, the verti
al 
omponent of the beam polarisation, sampled every 100turns, at Æ = 0 for [Q2℄ = 0:236067977 : : :.
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spins are all initially verti
ally upward. The horizontal 
omponents remain at zero but theverti
al 
omponent os
illates, at least for millions of turns, between time independent maximaand minima with a time average of about 0.3. As expe
ted, this is less than Plim. A 
onstantpolarisation equal to the maximum 0.47 
ould have been attained by setting the spins initiallyparallel to their respe
tive n̂ ve
tors. See also �gure 9 in [1℄. Inspe
tion of the turn{by{turndata reveals that the os
illations have a period of about four turns, as expe
ted for a [Q2℄ 
loseto one quarter and an ADST of 1=2. In the simple SRM and at Æ = 0 the analogous simulationwould exhibit a beam polarisation os
illating between +1 and �1 as the spins pre
essed aroundthe horizontal n̂ at a rate � = �.
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n1
n2
n3Figure 3: The three 
omponents of n̂(�2) at Æ = 10:6 for [Q2℄ = 0:236067977 : : :.Figure 3 shows the 
omponents of n̂ for the parameters of �gure 1 ex
ept with Æ = 10:6,a value 
orresponding to a beam energy far from that of the parent resonan
e, with non{even� but otherwise arbitrary. The ve
tors n̂(�2) are almost verti
al so that Plim is high, namely0.998. Figure 4 shows the 
urve for Plim together with the beam polarisations, as ensemblesare a

elerated through Æ = 0 at the rates of 100 MeV, 500 MeV and 1 GeV per turn (p.t.).The a

eleration is simulated by in
rementing Æ by four equal amounts, namely just after ea
hsnake and at the mid{points of the two ar
s. At the start, Æ = �10:6 and the parti
les aredistributed uniformly in [�2=2�℄ with ea
h spin initially set parallel to its 
orresponding n̂(�2),whi
h is almost verti
al. For protons, a rate of 100 MeV per turn 
orresponds to � � 0:19 forthe 
hange of a
0 per turn. For this rate the beam polarisation follows the 
urve for Plim vs.Æ, dipping to the value 0.47 at Æ = 0. Moreover, detailed inspe
tion shows that at ea
h Æ thedistribution of spins mat
hes the ISF. This is a ni
e demonstration of the adiabati
 invarian
eof Js in this 
ase [9℄. The invarian
e of Js is lost at the higher rates. Slightly di�erent 
urvesare obtained if the spins are set verti
ally upward at the start.The rate of 100 MeV per turn 
orresponds to a value �2=� � 5:3 in the Froissart{Storaformula [25℄ where � = �=2�. The Froissart{Stora formula des
ribes the �nal polarisationwhen a spin{orbit resonan
e is 
rossed in the SRM and for these parameters it would predi
talmost full spin 
ip, 
orresponding to adiabati
ity. However, our model in
ludes the snakes andthere are therefore no �rst order spin{orbit resonan
es to 
ross. So the Froissart{Stora formuladoes not apply. Nevertheless for our model, the rate of 100 MeV per turn is adiabati
.9



-1

-0.5

0

0.5

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

P 2

δ

 

Plim
0.1 GeV p.t.
0.5 GeV p.t.
1.0 GeV p.t.Figure 4: With ea
h spin initially parallel to its n̂, the beam polarisation sampled turn{by{turn, for [Q2℄ =0:236067977 : : : during a

eleration from Æ = �10:6 to Æ = +10:6 at the rates of 100 MeV, 500 MeV and 1 GeVper turn.3.2 On orbital resonan
e: [Q2℄ = 1=3We now 
onsider our �rst 
ase of orbital resonan
e, namely with Q2 = 47+1=3, 
orrespondingto odd a2 and b2. Figure 5 shows the 
omponents of n̂ at Æ = 0 and � = 0:4. These 
omponentsare obtained by normalising to unity the ~r(3) 
orresponding to three turns in the range 0 <[�2=2�℄ � 1=3, namely 0Æ to 120Æ, and then transporting the n̂ for ea
h [�2=2�℄ in this rangefor two or more turns with the 1{turn spin map, thereby �lling up the full phase range. Notethat the 
urves are single valued fun
tions of [�2=2�℄ as required. The average jhn̂ij of n̂ over[�2=2�℄ in �gure 5 is 0.05 and hn̂i is verti
al. While the smooth ISF n̂ of �gure 5 is globally
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Figure 5: The three 
omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=3.unique, one looses global uniqueness if one allows dis
ontinuities, as demonstrated in �gure 6.There, we introdu
e 
hanges of sign in n̂ by hand at the arbitrarily 
hosen angles of 17:5Æ and90Æ, while 
onstru
ting n̂ in the range 0Æ to 120Æ using ~r(3). We then transport this n̂ for two ormore turns as before. Naturally, the sign{dis
ontinuities (often simply 
alled \dis
ontinuities"10



from now on) are transported too. In parti
ular, we see that the transported n̂ is still a singlevalued fun
tion of [�2=2�℄. The average jhn̂ij in �gure 6 is 0.164. It is 
lear that neither n̂nor jhn̂ij are unique. Of 
ourse, an unlimited number of dis
ontinuities 
ould be introdu
edin the same way. Then the 
urves would be smooth almost nowhere. Ea
h of the n̂ obtainedin this way would 
orrespond to a permissible equilibrium spin distribution. The n̂ obtained
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Figure 6: The three 
omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=3. Sign{dis
ontinuities have been introdu
edby hand.by strobos
opi
 averaging [1℄ over the whole range 0 < [�2=2�℄ � 1 
an have dis
ontinuitieswith positions that depend on the \seed" spin �eld used in the strobos
opi
 average but thesedis
ontinuities 
an be removed to give the 
urves in �gure 5. Sin
e these dis
ontinuities aresign dis
ontinuities, we do not ex
lude the possibility that the ISF is lo
ally unique. However,this issue is beyond the s
ope of this paper sin
e it would lead us into a dis
ussion of regularity
onditions.
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n3Figure 7: The three 
omponents of n̂(�2) at Æ = 10:6 for [Q2℄ = 1=3.If the long term tra
king simulation of �gure 2 is repeated but with [Q2℄ = 1=3, the verti
al
omponent of the beam polarisation os
illates qui
kly between about -0.3 and +0.8 for at least11



5 � 106 turns with a time average of about 0.25. This is higher than the jhn̂ij in �gure 5 but nosigni�
an
e 
an be attributed to this sin
e jhn̂ij is not unique.Figure 7 shows the 
omponents of the smooth ISF n̂ for the 
onditions of �gure 5 but withÆ = 10:6. jhn̂ij is high as expe
ted, namely 0.997 sin
e ~r(3) is 
lose to verti
al. The existen
eof the n̂ of �gure 7, means that an ensemble of exa
tly verti
al spins is 
lose to a permissibleequilibrium spin distribution.Figure 8 shows the beam polarisation for a

eleration through Æ = 0 from Æ = �10:6 toÆ = +10:6 at the rates of 50 MeV, 300 MeV and 1 GeV per turn for this Q2. At the start, theparti
les are distributed uniformly in [�2=2�℄ and the spins are set parallel to the almost verti
aln̂ ve
tors of the smooth ISF. Up to an a

eleration rate of 50 MeV per turn, Js is invariant, withthe beam polarisation dipping down to 0.05 around Æ = 0 and returning to a high value at theend. This is a demonstration that with the 
hosen smooth n̂, Js 
an be adiabati
ally invariant,although the proof in [9℄ does not guarantee this be
ause the system is on orbital resonan
e.At the higher a

eleration rates, the invarian
e is lost. By using strobos
opi
 averaging forirrational [Q2℄ near 1=3 one �nds ISFs similar to that in �gure 5.
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0.05 GeV p.t.
0.30 GeV p.t.
1.00 GeV p.t.Figure 8: With ea
h spin initially parallel to its n̂, the beam polarisation, sampled turn{by{turn, for [Q2℄ = 1=3during a

eleration from Æ = �10:6 to Æ = +10:6 at the rates of 50 MeV, 300 MeV and 1 GeV per turn.

3.3 On orbital resonan
e: [Q2℄ = 1=4For our se
ond 
ase of orbital resonan
e we 
hoose Q2 = 47 + 1=4, 
orresponding to an odd a2and a b2 whi
h is twi
e an even integer. Figure 9 shows the 
omponents of n̂ at Æ = 0 and � = 0:4obtained, in analogy with the previous 
ase, from ~r(4) in the range 0 < [�2=2�℄ � 1=4 and fromtransporting those n̂ for three or more turns. In this 
ase we see \stray" points at multiples of45Æ 
orresponding to the phases where the 4{turn map is the identity. For this �gure we haveimposed the 
onstraint that the 
omponents are 
ontinuous in the range 0Æ to 90Æ, apart fromthe stray points. If we had not imposed smoothness, the 
omponents would have 
hanged signat 45Æ and the resulting dis
ontinuities would have been transported to the remainder of thephase range. So, for these parameters and for [Q2℄ = 1=4, n̂ 
an have dis
ontinuities as in the
ase of any rational Q2. But in 
ontrast to a 
ase dis
ussed below, these dis
ontinuities 
an besuppressed. The n̂ obtained by strobos
opi
 averaging over the whole range 0 < [�2=2�℄ � 1is smooth as in �gure 9. Of 
ourse, as in the 
ase of [Q2℄ = 1=3, we 
an also introdu
e an12



unlimited number of sign{dis
ontinuities. The 
urves of �gure 9 give jhn̂ij = 0:43. Note the
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n3Figure 9: The three 
omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=4.similarity between �gure 9 and �gure 1. Su
h similarities are seen with other irrational [Q2℄near 1/4 and indi
ate a weak dependen
e of n̂ on su
h irrational [Q2℄. This is 
onsistent withthe predi
tion in [4, Se
tion 4.8℄ that in mid{plane symmetri
 rings the ISF is well behaved
lose to the 
ondition �0 = k0 + 2k2Q2, (k0; k2 2 Z).If the long term tra
king simulation of �gure 2 is repeated but with [Q2℄ = 1=4, the verti
al
omponent of the beam polarisation os
illates qui
kly, initially between about -0.1 and +0.7.But these limits gradually 
hange and be
ome 0.1 and 0.4 respe
tively after 5 � 106 turns. Thetime average of about 0.25. This is lower than the jhn̂ij in �gure 9 but no signi�
an
e 
an beattributed to this sin
e jhn̂ij is not unique.Figure 10 shows the 
omponents of n̂ for the 
onditions of �gure 9 but with Æ = 10:6. Theaverage jhn̂ij is 0.99. Note that in 
ontrast to the 3{turn map used for [Q2℄ = 1=3, at large jÆjthe 4{turn map is 
lose to the identity. Nevertheless, ~r(4) is 
lose to verti
al.
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n3Figure 10: The three 
omponents of n̂(�2) at Æ = 10:6 for [Q2℄ = 1=4.Figure 11 shows the beam polarisation as the simulation of �gure 4 is repeated for [Q2℄ = 1=4.13



At the start, the spins are set parallel to the almost verti
al n̂ ve
tors of the smooth ISF.Up to an a

eleration rate of 100 MeV per turn, Js is invariant, with the beam polarisationdipping down to 0.43 around Æ = 0 and returning to a high value at the end. This is again ademonstration that with the 
hosen n̂, Js 
an be adiabati
ally invariant although the system ison orbital resonan
e. At the higher a

eleration rates, the invarian
e is lost.
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0.10 GeV p.t.
0.50 GeV p.t.
1.00 GeV p.t.Figure 11: With ea
h spin initially parallel to its n̂, the beam polarisation, sampled turn{by{turn, for [Q2℄ =1=4 during a

eleration from Æ = �10:6 to Æ = +10:6 at the rates of 100 MeV, 500 MeV and 1 GeV per turn.3.4 On orbital resonan
e: [Q2℄ = 1=6We now 
ome to the �rst of the two 
ases of primary interest for this study, namely the 
asewhen [Q2℄ = 1=6, i.e., a 
ase of a snake resonan
e. Again, the integer part of Q2 is 47 and� = 0:4. Figure 12 shows the 
omponents of n̂ at Æ = 0 obtained by transporting for �ve ormore turns the n̂ obtained from ~r(6) in the range 0 < [�2=2�℄ � 1=6.
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Figure 12: The three 
omponents of n̂(�2) at Æ = 0 for [Q2℄ = 1=6.We see stray points at phases whi
h are multiples of 30Æ and 90Æ 
orresponding to the phaseswhere the 6{turn map is the identity. The ve
tor ~r(6) has sign{dis
ontinuities at these points14



but for this �gure we have imposed the 
onstraint that the 
omponents of n̂ are 
ontinuous inthe range 0Æ to 60Æ, apart from the stray points. One sees that n̂ still has dis
ontinuities, namelyat phases whi
h are multiples of 60Æ. Thus, in spite of smoothing n̂ in the initial range of 0Æto 60Æ, dis
ontinuities persist. They 
annot be removed without 
reating a ve
tor �eld whi
hbe
omes double valued when it is transported turn{by{turn. However, the dis
ontinuities 
anbe moved. These e�e
ts explain the failure of the MILES algorithm for n̂ at snake{resonan
etunes in [21℄ where the need for dis
ontinuities in this model is nevertheless disputed. It is 
learthat the 
urves in �gs. 7 and 8 in [21℄ do not represent n̂ [5℄.Strobos
opi
 averaging over the whole range 0 < [�2=2�℄ � 1 generates the 
urves of �gure12 dire
tly i.e., without extra smoothing. The dis
ontinuities of n̂ o

ur at phases wherethe raw strobos
opi
 average passes through zero. The passage through zero is smooth. Sodis
ontinuities in n̂ do not imply dis
ontinuities in the strobos
opi
 average.Our numeri
al 
al
ulations show that n̂ has su
h dis
ontinuities at snake{resonan
e tunesat most values of � and that the minimum number of dis
ontinuities is 2~b2.Of 
ourse, if n̂ is represented as the lo
us of points on the unit 2{sphere, one �nds disjointsegments. The average jhn̂ij over [�2=2�℄ in �gure 12 is 0.13. An arbitrary number of extradis
ontinuities 
an be introdu
ed by hand.If the long term tra
king simulation of �gure 2 is repeated but with [Q2℄ = 1=6, the polari-sation os
illates qui
kly, but with 
onstant upper and lower limits with a time average of about0.1, at least up to 5 � 106 turns. Thus the time averaged polarisation does not vanish. This isillustrated in �gure 13.
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Figure 13: For initially verti
al spins, the verti
al 
omponent of the beam polarisation, sampled every 1000turns, at Æ = 0 for [Q2℄ = 1=6.Figure 14 shows n̂ obtained as for �gure 12 but with Æ = 10:6. Ex
ept when � is an eveninteger this is typi
al of the n̂ at large jÆj (and also at small �). The value of ~r(6) is very smalland the 6{turn spin map is 
lose to a rotation of 2� around n̂. The dis
ontinuities persistbut in 
ontrast to the earlier examples, the verti
al 
omponent of n̂ is 
lose to zero and thehorizontal 
omponents are pie
e{wise almost independent of [�2=2�℄. The average jhn̂(�2)ij isessentially zero. It would remain 
lose to zero if sign{dis
ontinuities were introdu
ed by hand.Sin
e the horizontal 
omponents of n̂ are pie
e{wise almost independent of [�2=2�℄ but alsodi�erent, and sin
e the 1{turn spin map is a rotation of about � around an axis 
lose to theverti
al, it essentially 
hanges their signs from turn to turn, 
ausing the dis
ontinuities. Su
h15
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Figure 14: The three 
omponents of n̂(�2) at Æ = 10:6 for [Q2℄ = 1=6.dis
ontinuities do not o

ur at large jÆj for [Q2℄ = 1=3 or [Q2℄ = 1=4 in �gures 7 and 10 be
ausen̂ is 
lose to verti
al. The 
urves of �gure 14 deform 
ontinuously into those of �gure 12 asÆ is redu
ed to zero. The analogous 
urves for the other three tunes show the same kind ofbehaviour and, of 
ourse, that behaviour is a prerequisite for Js is to be invariant in �gures 4,8 and 11.For [Q2℄ = 1=6 with � = 0:4 and large non{even integer �, all equilibrium spin distributionshave spins 
lose to the horizontal plane. Thus a spin distribution in whi
h all spins are initiallyverti
ally upward 
annot be in equilibrium. This is 
on�rmed in �gure 15 where we repeatthe long term tra
king simulation of �gs. 2 and 13 but at Æ = �10:6 and [Q2℄ = 1=6. Wenow see that the polarisation falls, but slowly, over many tens of thousands of turns andsubsequently os
illates around zero. Then the time averaged polarisation is 
lose to jhn̂(�2)ij �0. Nevertheless, sin
e the system is on orbital resonan
e, the theorem [3, 4℄ on the maximumtime averaged polarisation does not enfor
e this. Although the initial spin distribution is not
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Figure 15: For initially verti
al spins, the verti
al 
omponent of the beam polarisation, sampled every 1000turns, at Æ = �10:6 for [Q2℄ = 1=6. 16
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 50 keV p.t.
 10 MeV p.t.

500 MeV p.t.Figure 16: The beam polarisation for [Q2℄ = 1=6 during a

eleration from Æ = �10:6 to Æ = +10:6 at therates of 50 KeV, 10 MeV and 500 MeV per turn with the spins initially parallel to n̂.
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 50 keV p.t.
 10 MeV p.t.

500 MeV p.t.Figure 17: With ea
h spin initially parallel to its n̂, hJsi during a

eleration from Æ = �10:6 to Æ = +10:6 atthe rates of 50 KeV, 10 MeV and 500 MeV per turn with [Q2℄ = 1=6.
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50 keV p.t.
10 MeV p.t.
50 MeV p.t.Figure 18: For initially verti
al spins, the beam polarisation for [Q2℄ = 1=6 during a

eleration from Æ = �10:6to Æ = +10:6 at the rates of 50 KeV, 10 MeV and 50 MeV per turn.
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50 keV p.t.
10 MeV p.t.
50 MeV p.t.

Figure 19: The beam polarisation for [Q2℄ = 1=6 when Æ is frozen at +10:6 after the a

eleration 
y
le of�gure 18, and the spins are tra
ked for a further 5 � 106 turns.
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in equilibrium, it is not surprising that it takes about 105 turns before the polarisation rea
heszero. This is due to the fa
t that at large jÆj the eigentune, 6�6, of the 6{turn spin map is almostindependent of [�2=2�℄ and very 
lose to an integer for this 
ase. Sin
e Js is invariant along atraje
tory, we 
an view the motion of a spin as a pre
ession at a �xed angle 
os�1(~S � n̂=j~Sj)around its n̂. In this 
ase the angles are about 90Æ. With eigentunes almost independent of[�2=2�℄ and 
lose to an integer, the proje
tions of spins on the planes perpendi
ular to theirrespe
tive n̂'s spread out (de
oher) only slowly. Then, at the viewing position, the spins returnalmost to their original dire
tions after six turns.For large jÆj, the 1{turn spin map 
orresponds to a rotation of about � around an axis 
loseto the verti
al. So, it is again no surprise that the polarisation in �gure 15 takes many turnsto rea
h zero. For even larger jÆj (e.g., over 100), n̂ 
an be taken to be horizontal but thepolarisation remains verti
al and it takes many millions of turns for it to show signs of falling.There is no fall if � is an even integer sin
e then, the 6-turn map is the identity.Figure 16 shows the beam polarisation for a

eleration through Æ = 0 at the rates of 50KeV, 10 MeV and 500 MeV per turn for [Q2℄ = 1=6. At the start, the parti
les are uniformlydistributed in [�=2�℄ and the spins are set parallel to the almost horizontal n̂ ve
tors of that ISFwhi
h deforms into the ISF's of �gures 12 and 14. The initial beam polarisation is essentiallyzero. During a

eleration at rates up to 50 KeV per turn, the beam polarisation rises to 0:13,
orresponding to the jhn̂ij of �gure 12, and then returns to around zero. A detailed inspe
tionof the data shows that for a rate of 10 MeV per turn, the spins deviate slightly from theirrespe
tive n̂ ve
tors at large jÆj. However, this e�e
t is not apparent in the average over[�2=2�℄ 
ontained in the beam polarisation. This is again a demonstration that with the 
hosenn̂ and the 
hosen layout of a

elerating 
avities, Js 
an be approximately invariant even forthese dis
ontinuous ISF's and that at the higher a

eleration rates, the invarian
e is lost. Theapproximate invarian
e is 
on�rmed in �gure 17 whi
h shows the 
orresponding behaviour of thephase average of Js, hJsi. In �gure 17 we have suppressed data at Æ's where n̂ is indeterminatebe
ause � is an even integer.Figure 18 shows the beam polarisation as the simulation of �gure 16 is repeated but with thespins initially verti
ally upward and for rates of 50 KeV and 10 MeV per turn and for 50 MeVper turn, where Js is still approximately invariant. For these rates of a

eleration the anglebetween a spin and its n̂ remains around 90Æ. Then the beam polarisation during a

elerationdepends just on the geometry of the ISF and on the history of the rate of de
oheren
e of theproje
tions of the spins on the planes perpendi
ular to the n̂'s. These rates depend, in turn,on the magnitude of 6�6 and its dependen
e on [�2=2�℄. We therefore expe
t that the �nalpolarisation 
ould depend sensitively on the magnitude of the rate of a

eleration and on itstime dependen
e. This is 
on�rmed in �gure 18 whi
h shows that at a rate of 50 KeV per turn,the polarisation is e�e
tively lost at positive Æ but that at the mu
h higher rate of 50 MeV perturn the �nal polarisation is around -0.4 at the end of the a

eleration 
y
le. By now, the readerwill have realised that the polarisation of -0.4 
annot represent an equilibrium state. This is
on�rmed in �gure 19 where, after a

eleration up to Æ = 10:6, Æ is frozen and the ensemblesare tra
ked for a further 5 � 106 turns. Figure 19 shows that after some large os
illations thepolarisation gradually de
ays to zero in a way and on a time s
ale familiar from �gure 15. Italso shows that although the polarisation 
an be small at the end of the a

eleration (as inthe 
ase of 10 MeV/turn), the spin distribution is by no means isotropi
 but is su
h that thepolarisation 
an return to a large value later. In fa
t after the 5 � 106 turns, the 
urves of spinve
tor versus [�2=2�℄ are smooth 
urves for all three a

eleration rates4. This suggests that4 This vindi
ates the advi
e in [7, Se
tion I℄ on the use of the term \depolarisation".19




ontrary to 
onventional expe
tation, a 
omplete loss of polarisation is not inevitable duringa

eleration exa
tly at a snake resonan
e with [Q2℄ = 1=6, at least not within the 
on�nes ofour model. This 
ompletes Part I of our investigation.4 Summary and 
on
lusionIn this paper we have presented and 
ontrasted four s
enarios for spin motion on and o� orbitalresonan
e within the 
on�nes of our simple model, and by this means we have developed a
lean, elegant a

ount of the spe
ial features of spin motion at a snake resonan
e. In allfour 
ases ~S � n̂ is an invariant at low enough rates of a

eleration. For the �rst three 
ases([Q2℄ = 0:236067977 : : : ; 1=3; 1=4) the ISF is 
lose to verti
al at large jÆj, i.e., far away fromthe energy for the parent resonan
e, and the spin motion is unex
eptional. For example, aftera

eleration from a large negative Æ to a high positive Æ, an initially verti
al spin is still 
loseto verti
al. These 
ases serve to emphasise the ex
eptional form of the ISF when [Q2℄ = 1=6.In this 
ase, far away from the parent resonan
e, the ISF lies 
lose to the horizontal plane.Then in 
ontrast to the other three 
ases, an ensemble of parti
les with a uniform distributionof [�2=2�℄ and with verti
ally upward spins, 
annot be at spin equilibrium. The subsequentevolution of the beam polarisation depends on the 
hosen initial Æ and is exempli�ed in �gures13 and 15. In parti
ular, the polarisation os
illates at a rate depending on the proximity ofthe eigentune of the 6{turn spin map to an integer and on the extent of the variation of thateigentune with [�2=2�℄. Then at the energy of the parent resonan
e (Æ = 0), the polarisationos
illates qui
kly and the time averaged polarisation is small but non{zero. At most large jÆj,the time averaged polarisation is zero but the polarisation os
illates slowly and it rea
hes zerofor the �rst time only after many thousands of turns.As soon as one sees that at most large jÆj the ISF for [Q2℄ = 1=6 lies 
lose to the horizontalplane, it is no surprise that in this 
ase the time averaged beam polarisation 
an be
ome smallin the long term. A

eleration adds little to the story, ex
ept that within our model, afterstarting with an ensemble of verti
al spins at Æ = �10:6, the �nal polarisation depends onthe rate at whi
h one passes from the spin motion underlying �gure 15 to the spin motionunderlying �gure 13 and then beyond to large positive Æ. The key features of spin motion at[Q2℄ = 1=6 are en
oded in the ISF. We see no ne
essity to invoke the perturbed spin tune[14, 15℄. Instead, we appeal to the eigentune of the 6{turn spin map, a quantity with physi
alsigni�
an
e.We emphasise that the main results presented here refer to a very spe
ial 
ase, namely forour model right at [Q2℄ = 1=6 and with � = 0:4. As pointed out in [5℄, the ISF is extremely
ompli
ated for values of [Q2℄ just below and just above 1=6. This is 
onsistent with thepredi
tion in [4, Se
tion 4.8℄ that in mid{plane symmetri
 rings the ISF need not be wellbehaved 
lose to the 
ondition �0 = k0 + (2k2 + 1)Q2, (k0; k2 2 Z). Thus in Part II of thisstudy we extend our 
al
ulations to 
over su
h values of [Q2℄ and to larger values of �. It willbe shown there that although the ISF for [Q2℄ = 1=6 has the spe
ial form des
ribed above, thisis an ex
eption and that the loss of polarisation during a

eleration near to [Q2℄ = 1=6 has adi�erent origin. We also 
omment on the �ndings in [10, 23, 24℄.The analysis should then be extended to real syn
hrobetatron motion with misalignmentsfor a typi
al opti
 of a real ring and with the �elds of real snakes. See, for example, [33℄.Other snake{resonan
e tunes should also be 
overed. We note with interest that a

ordingto simulations for RHIC, the loss of polarisation during a

eleration is less severe when thesimulations are 
arried out with the magneti
 �elds of real snakes rather than with point{like20



snakes [34℄.A
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