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DESY-06-218ZMP-HH/06-17hep-th/yymmnnnMulti-Tra
e Deformations in AdS/CFT:Exploring the Va
uum Stru
ture of the Deformed CFTIoannis Papadimitriou�DESY Theory Group,Notkestrasse 85, D-22603 Hamburg, GermanyandCenter for Mathemati
al Physi
s,Bundesstrasse 55, D-20146 Hamburg, Germany.Abstra
tWe present a general and systemati
 treatment of multi-tra
e deformations in the AdS/CFT 
orre-sponden
e in the large N limit, pointing out and 
larifying subtleties relating to the formulation of theboundary value problem on a 
onformal boundary. We then apply this method to study multi-tra
edeformations in the presen
e of a s
alar VEV, whi
h requires the 
oupling to gravity to be taken intoa

ount. We show that supergravity solutions subje
t to `mixed' boundary 
onditions are in one-to-one
orresponden
e with 
riti
al points of the holographi
 e�e
tive a
tion of the dual theory in the presen
eof a multi-tra
e deformation, and we �nd a number of new exa
t analyti
 solutions involving a minimallyor 
onformally 
oupled s
alar �eld satisfying `mixed' boundary 
onditions. These in
lude the generaliza-tion to any dimension of the instanton solution re
ently found in hep-th/0611315. Finally, we providea systemati
 method for 
omputing the holographi
 e�e
tive a
tion in the presen
e of a multi-tra
edeformation in a derivative expansion away from the 
onformal va
uum using Hamilton-Ja
obi theory.Requiring that this e�e
tive a
tion exists and is bounded from below reprodu
es re
ent results on thestability of the AdS va
uum in the presen
e of `mixed' boundary 
onditions.
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tion and summary of resultsMulti-tra
e deformations have been studied extensively in the 
ontext of the AdS/CFT 
orresponden
e inthe large N limit, both 
lassi
ally [1, 2, 3, 4, 5, 6, 7℄ and at the one-loop level [8, 9, 10℄. Most of this work,however, has fo
used on the e�e
t of multi-tra
e deformations on the 
onformal va
uum, in whi
h 
ase theba
k-rea
tion to the geometry 
an be ignored. If the deforming operator though is allowed to a
quire anon-zero VEV, then the ba
k-rea
tion 
an no longer be ignored and the 
oupling to gravity must be takeninto a

ount. Only re
ently have multi-tra
e deformations in the presen
e of a s
alar VEV been 
onsidered,mainly in the 
ontext of Designer Gravity [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21℄.In order for a CFT to admit multi-tra
e deformations it must 
ontain operators with low enough di-mension. For double- or higher-tra
e deformations built out of a single operator, for example, not to beirrelevant, the operator must have 
onformal dimension � � d=2 in d dimensions. For s
alar operators,for example, this means that the operator must have the `non-standard' �� dimension. This 
onstraint,together with unitarity, whi
h imposes a lower bound on the dimension �, severely restri
ts the CFTs admit-ting multi-tra
e deformations. The possibilities are further narrowed if one insists that the undeformed CFTbe supersymmetri
. Sin
e the AdS/CFT di
tionary relates multi-tra
e deformations in the large N limit toa 
hoi
e of boundary 
onditions for the dual bulk supergravity �elds [1℄, these restri
tions on the 
onformaldimension of the operator translate into a 
ondition on the mass of the dual supergravity �elds for them toadmit the ne
essary generalized boundary 
onditions. We are then interested in gauged supergravities thatadmit AdS va
ua and have �elds with mass 
lose to the Breitenlohner-Freedman bound [22℄.Both the maximal gauged supergravities in four and �ve dimensions 
ontain s
alars with the right mass,and indeed bla
k hole solutions with s
alar hair that satisfy generalized boundary 
onditions were foundnumeri
ally in [12℄, following earlier work in three dimensions [11℄. Smooth instantons and gravitationalsoliton solutions of N = 8 D = 4 gauged supergravity with generalized boundary 
onditions were also foundnumeri
ally in [13℄, and shown to be related to a Big Crun
h geometry. More re
ently, exa
t solutions of2



N = 8 D = 4 gauged supergravity obeying generalized boundary 
onditions were found analyti
ally in [23℄and [24℄ and uplifted to eleven dimensions. The AdS/CFT identi�es these solutions with `va
ua' or `states'in the dual deformed CFT. In parti
ular, the extrema of the large N quantum e�e
tive a
tion for the VEV ofthe deforming operator are in one-to-one 
orresponden
e with bulk solutions satisfying the relevant boundary
onditions. These bulk solutions then provide a window into the va
uum stru
ture of the deformed theory.A very interesting question, in parti
ular, is whether the 
onformal va
uum - whi
h generi
ally remainsa va
uum of the deformed theory - is stable or not under 
ertain boundary 
onditions. The instantonsfound in [12℄ and [24℄ show that it is not, under the parti
ular AdS-invariant boundary 
onditions that theseinstantons satisfy, sin
e these mediate the tunneling of the 
onformal va
uum to an instability region. This,of 
ourse, does not 
ontradi
t any of the well known stability theorems [25, 26, 27℄, be
ause these apply onlyto 
ertain spe
ial boundary 
onditions. The question of stability with more general boundary 
onditions
orresponding to multi-tra
e deformations has been addressed re
ently in the 
ontext of Designer Gravity[18, 19, 20, 21℄. The approa
h followed is a generalization of the spinorial argument of [28℄, but as in theearlier work [26, 27℄ no supersymmetry is required. The argument only relies on the existen
e `fake Killingspinors', whi
h themselves 
an be 
onstru
ted from a `fake superpotential'. Non-perturbative stability thenfollows from the existen
e of a suitable `fake superpotential'.However, the AdS/CFT 
orresponden
e allows us to address the problem of non-perturbative stabilityfrom a 
ompletely di�erent point of view. Namely, if we knew the e�e
tive a
tion of the dual theory, then wewould be able to address the question of stability/instability dire
tly. We will show that the e�e
tive a
tion
an be 
omputed holographi
ally in a derivative expansion using Hamilton-Ja
obi theory [29℄. Requiringthat this e�e
tive a
tion exists and it is stable reprodu
es all known stability results, in
luding the re
entresults in the 
ase of generalized boundary 
onditions. This agreement 
an be tra
ed to the fa
t that botharguments require global existen
e of a suitable `fake superpotential'. In the latter 
ase, however, this isinterpreted as Hamilton's 
hara
teristi
 fun
tion, whi
h allows us to immediately generalize these results toother systems, su
h as 
onformally 
oupled s
alars.The paper then is organized as follows. In Se
tion 2 we review a general des
ription of multi-tra
edeformations in the large N limit, whi
h relies on large N fa
torization. This will make manifest the
orresponden
e between multi-tra
e deformations on the boundary and boundary 
onditions in the bulkin Se
tion 3, where we revisit the boundary value problem and the possible boundary 
onditions for theKlein-Gordon operator in asymptoti
ally lo
ally AdS spa
es. In parti
ular, we present a general systemati
method to address multi-tra
e deformations and to properly a

ount for the fa
t that the boundary isa 
onformal boundary - as opposed to a hard boundary. As we show, this automati
ally removes thedivergen
es asso
iated with the in�nite volume of the spa
e. Although we present these results for s
alar�elds, they immediately generalize to any �eld admitting boundary 
onditions 
orresponding to multi-tra
edeformations. In Se
tion 4 then we demonstrate the general method in the 
ase of a free massive s
alar �eldin a �xed AdS ba
kground, reprodu
ing in a 
on
ise way a number of known results. We then move on inSe
tion 5 to in
lude gravity and we des
ribe in detail our method for 
omputing the holographi
 e�e
tivea
tion of the dual theory in a systemati
 way based on Hamilton-Ja
obi theory. This method is then appliedto the 
ases of s
alars minimally and 
onformally 
oupled to gravity in Se
tions 6 and 7 respe
tively, whi
h
ontain our main results. In Se
tion 6 we generalize the non-supersymmetri
 Poin
ar�e domain wall solutionsfound in [23℄ to arbitrary dimension, while the same is done for the instanton solution found in [24℄ in Se
tion7. Moreover, we �nd all possible domain wall solutions - both 
at and 
urved - for the 
onformally 
oupleds
alar in any dimension, and we show that this 
ompletely determines the two-derivative e�e
tive a
tion ofthe dual theory. Some te
hni
al results regarding the variational problem for minimally and 
onformally
oupled s
alars, as well as the Hamilton-Ja
obi method for these systems, are 
olle
ted in the Appendix.2 Multi-tra
e deformations in QFTs with a large N limitIn a quantum �eld theory with a standard large N limit, large N fa
torization allows for a universal de-s
ription of generi
 multi-tra
e deformations. As we now brie
y review, the e�e
t of su
h a deformation 
anmost naturally be des
ribed in terms of the generating fun
tional of the deforming operator and its Legendretransform [7℄.Let O(x) be a lo
al, generi
ally 
omposite, gauge-invariant and single-tra
e operator transforming in some3



representation of the relevant rank N group. For 
on
reteness we take this to be the adjoint representationand we normalize the operator su
h that hOi = O(N0) as N !1. The dynami
s of O(x) is en
oded in thegenerating fun
tional of 
onne
ted 
orrelators, W [J ℄, whi
h 
an be represented as a path integral over thefundamental degrees of freedom, f�g, of the theory, weighted by the a
tion S[�℄, ase�W [J℄ = Z [d�℄e�S[�℄�N2 R ddxJ(x)O(x): (2.1)Sin
e W [J ℄ is O(N2) as N !1, it is 
onvenient to work instead with w[J ℄ � N�2W [J ℄. In parti
ular, theone-point fun
tion of O(x) in the presen
e of a sour
e is given by�(x) � hOiJ = Æw[J ℄ÆJ : (2.2)Alternatively, the dynami
s 
an be en
oded in the Legendre transform of the generating fun
tional, �[�℄,given by e��[�℄ = Z [dJ ℄e�N2w[J℄+N2 R ddxJ(x)�(x): (2.3)�[�℄ is known as the e�e
tive a
tion of the lo
al operator O(x), or the generating fun
tional of 1PI diagrams.Again, it is useful to introdu
e the O(N0) quantity ��[�℄ = N�2�[�℄, su
h thatJ(x) = �Æ��[�℄Æ� : (2.4)Suppose now that the a
tion is deformed by a fun
tion, f(O), of the lo
al operator O(x) as Sf [�℄ =S[�℄ +N2 R ddxf(O). In the following we will only 
onsider deformations for whi
h f(0) = 0. The questionwe want to address now is how this deformation modi�es the fun
tionals w[J ℄ and ��[�℄. As we now show,large N fa
torization allows for a very simple and universal answer in the large-N limit, whi
h is summarizedin Table 1. Of 
ourse, beyond the large N approximation, the answer to this question is non-universal andmu
h more involved, sin
e the operator O(x) will generi
ally mix with other operators at 1=N order. Wewill only 
onsider the leading large N behavior here.Consider �rst the generating fun
tional in the deformed theory, whi
h is given bye�N2wf [Jf ℄ = Z [d�℄e�S[�℄�N2 R ddx(JfO+f(O))= Z [d�℄e�S[�℄�N2 R ddx(JO+f(O)�f 0(�)O)N!1� e�N2w[J℄e�N2 R ddx(f(�)��f 0(�)); (2.5)where we introdu
ed J � Jf + f 0(�) in the se
ond line in order to remove the linear term from f(O) so thatlarge N fa
torization 
an be used in the last step. This proves the result shown in the third row of Table 1.Similarly, the e�e
tive a
tion in the deformed theory is given bye�N2��f [�℄ = Z [dJf ℄e�N2wf [Jf ℄+N2 R ddxJf�N!1� Z [dJ ℄e�N2w[J℄e�N2 R ddx(f(�)��f 0(�))eN2 R ddx(J�f 0(�))�= e�N2��[�℄�N2 R ddxf(�); (2.6)where we have used [dJf ℄ = [dJ ℄. This justi�es the entry in the last row of Table 1. As we will review below,these universal results make manifest the fa
t that the AdS/CFT di
tionary maps multi-tra
e deformationsof the boundary theory to a modi�
ation of the boundary 
onditions imposed on the bulk �elds. Before,however, we need to understand the boundary value problem for su
h bulk �elds in AdS.
4



Undeformed DeformedSour
e J Jf = J � f 0(�)VEV � �f = �Generating fun
tional w[J ℄ wf [Jf ℄ = w[J ℄ + R ddx (f(�)� �f 0(�))j�=Æw=ÆJE�e
tive a
tion ��[�℄ ��f [�℄ = ��[�℄ + R ddxf(�)Table 1: The e�e
t of a generi
 multi-tra
e deformation on the generating fun
tional and on the e�e
tivea
tion in the large N limit.3 The boundary value problem for the Klein-Gordon operator inAlAdS spa
esThe gauge/gravity duality generi
ally relates a theory of gravity in an asymptoti
ally lo
ally anti de Sitter(AlAdS) spa
e M (see [30℄ for a de�nition of an AlAdS spa
e in the 
ontext of the gauge/gravity duality)to a non-gravitational theory residing on the 
onformal boundary �M of M. Multi-tra
e deformationsof the boundary theory are then related to the 
hoi
e of boundary 
onditions imposed on the bulk �elds[1, 2, 3, 4, 5, 8, 6, 7℄. The fa
t that the boundary of an AlAdS spa
e is a 
onformal boundary, however,demands some extra 
are when analyzing the boundary value problem. In parti
ular, any rigorous treatmentshould a

ount for the following fa
t [31℄:By the very de�nition of a `
onformal boundary', any bulk �eld does not indu
e a �eld on theboundary, but rather a �eld up to Weyl res
alings, i.e. a `
onformal 
lass'. It follows that, in theabsen
e of a 
onformal anomaly, any boundary 
ondition must be imposed on the 
onformal 
lassand not on a 
onformal representative. In other words, any boundary 
ondition must be imposedon a `
lass fun
tion'. Although, this 
annot be a
hieved if a 
onformal anomaly is present, inthat 
ase one must ensure that the boundary 
ondition is imposed on a quantity that has a wellde�ned transformation under Weyl res
alings.This requirement, whi
h we will make more pre
ise and 
on
rete below, has a number of important andinevitable 
onsequen
es that are often overlooked:� The well known boundary 
ovariant 
ounterterms must be added to the a
tion before one 
an studythe variational problem and impose boundary 
onditions.� With the standard Diri
hlet boundary 
onditions, the one-point fun
tion of an operator O(x) is in gen-eral not given by the normalizable mode of the 
orresponding bulk �eld. It is given by the renormalizedradial momentum [32℄. In general, the two di�er by a lo
al fun
tional of the non-normalizable mode,whi
h is ne
essary to ensure that the Ward identities are ful�lled [33, 30℄. In parti
ular, it is the relationbetween the non-normalizable mode and the renormalized radial momentum whi
h is fundamentallyrelated to the 
hoi
e of boundary 
onditions and not the relation between the non-normalizable andnormalizable modes. Only when the two happen to agree is one justi�ed to use the normalizable modeinstead of the renormalized momentum.In view of these subtleties, and for the sake of 
ompleteness, we �nd it worthwhile to devote this se
tion to a
areful and systemati
 analysis of the boundary value problem and to review how the AdS/CFT di
tionaryrelates the 
hoi
e of boundary 
onditions for the bulk �elds to multi-tra
e deformations of the boundarytheory. We also take this opportunity to spell out the formalism and notation whi
h will be used in thesubsequent se
tions. 5



The metri
 on an AlAdS manifold, M takes the form1ds2 = dr2 + 
ij(r; x)dxidxj ; (3.1)where 
ij(r; x) � e2r=lg(0)ij(x) as r !1 and hen
e, the 
onformal boundary, �M, is lo
ated at r =1. Themetri
 g(0)ij(x) is a metri
 on the 
onformal boundary, or more pre
isely, a representative of the 
onformal
lass of boundary metri
s. AlAdS metri
s arise naturally as solutions of Einstein's equations with a negative
osmologi
al 
onstant, possibly in
luding matter whose stress tensor falls fast enough asymptoti
ally [30℄.To set up the formalism, we will study the simplest possible boundary value problem on the ba
kgroundof su
h a manifold, namely that of the Klein-Gordon equation for a s
alar �eld,���g +m2�� = 0: (3.2)One 
an in
lude intera
tions in this equation, and we will do so later on, but these are irrelevant for theboundary value problem as long as they do not modify the asymptoti
 form of the metri
. Any solution of(3.2) in the ba
kground (3.1) takes the asymptoti
 form� �8<:e���r=l(��(x) + � � � ) + e��+r=l(�+(x) + � � � ); m2l2 > �(d=2)2;e�dr=2l rl (��(x) + � � � ) + e�dr=2l(�+(x) + � � � ); m2l2 = �(d=2)2; (3.3)where ��, �+ � ��, are the roots of the equation m2l2 = �(�� d), and the fun
tions ��(x) and �+(x),known respe
tively as the non-normalizable and normalizable modes, are totally arbitrary fun
tions of thetransverse 
oordinates, xi. A boundary 
ondition amounts to a 
hoi
e of a fun
tion J(��; �+) of the twomodes that is kept 
onstant on the boundary, thus redu
ing by half the degrees of freedom. The best knownexample is that of Diri
hlet boundary 
onditions, where one 
hooses J(��; �+) = ��, and so the only degreeof freedom remaining is the normalizable mode �+.We 
ould now try to study boundary 
onditions by 
onsidering di�erent 
hoi
es of the fun
tion J(��; �+),whi
h is in fa
t what has been done in the vast majority of the literature on the subje
t. Although,this approa
h happens to work in 
ertain 
ases, generi
ally it is fundamentally problemati
 for two 
loselyrelated reasons. Firstly, the quantity �+, 
ontrary to the non-normalizable mode ��, has no well de�nedtransformation under Weyl res
alings and hen
e it is an ill de�ned quantity from the boundary point ofview. Se
ondly, pre
isely be
ause �+ is not well de�ned on the boundary, the fun
tion J(��; �+) one woulduse to de�ne the boundary 
ondition does not have a dire
t meaning (as a sour
e) on the boundary. As wementioned above and we will now explain in detail, both problems are resolved if one repla
es �+ in thisanalysis with the renormalized radial momentum [32℄, whi
h does have a de�nite transformation under Weylres
alings and hen
e it is a well de�ned boundary quantity, like ��. The renormalized radial momentum ingeneral di�ers from �+ by a lo
al fun
tional of ��, whi
h is essential to ensure that the Ward identities aresatis�ed [30℄. It is pre
isely these lo
al terms that make the renormalized momentum have a well de�nedtransformation rule under Weyl res
alings. Unless these lo
al terms happen to vanish, and one needs todemonstrate that they do, we are for
ed to use the radial Hamiltonian formulation in order to dis
ussgeneralized boundary 
onditions 
onsistently.3.1 The variational problem in the presen
e of a 
onformal boundarySin
e the 
onformal boundary, �M, is lo
ated at in�nity, we need to introdu
e a regulating surfa
e, �r,di�eomorphi
 to the boundary, but at a �nite value of the radial 
oordinate r. One then formulates thevariational problem on �r and in the end the regulator is removed by sending r !1. It is 
ru
ial, however,to keep in mind that the 
onformal boundary �M and the hard boundary introdu
ed by the regulatingsurfa
e �r are very di�erent in nature. In parti
ular, the regulating surfa
e breaks expli
itly the invarian
eunder Weyl res
alings that the 
onformal boundary possesses. It follows that not any variational problemthat makes sense on �r will make sense as the regulator is removed. It will only make sense provided thevariational problem on �r is formulated in terms of 
onformal 
lass fun
tions. Before we dis
uss how this
an be a
hieved, though, let us 
onsider the general variational problem on the regulating surfa
e �r.1We use Eu
lidean signature throughout this paper. 6



Given an a
tion S[�℄ on a spa
e Mr with a boundary �r = �Mr, one is naturally led to the radialHamiltonian formulation of the bulk dynami
s by 
onsidering the variational problem for the a
tion S[�℄.Indeed, a generi
 variation of the bulk a
tion with respe
t to the s
alar �eld generates a boundary term ofthe form2 Æ�S = Z�r ddx��Æ�; (3.4)where �� is the 
anoni
al momentum 
onjugate to � and the Hamiltonian `time' is taken to be the radial
oordinate r orthogonal to the boundary �r. For the bulk a
tion giving the Klein-Gordon equation as theequation of motion, the 
anoni
al momentum is simply �� = p
 _�, where the dot denotes a derivative withrespe
t to the radial 
oordinate, r. Were �r the true boundary, we 
ould impose any boundary 
ondition
ompatible with the variation (3.4). But we a
tually have to send r ! 1 in the end, and the integrand in(3.4) does not have a well de�ned transformation under shifts in r. Hen
e, if we impose a boundary 
onditionon (3.4), we will not be able to `push' this boundary 
ondition to the true boundary at r ! 1. What weneed to do �rst, is to �nd a 
ovariant way of modifying (3.4), without 
hanging the bulk dynami
s of 
ourse,su
h that the result has a well de�ned transformation - in fa
t, remains invariant - under radial shifts. Asystemati
 way of 
onstru
ting quantities whi
h are both 
ovariant with respe
t to �r di�eomorphisms andhave a well de�ned transformation under radial shifts in the vi
inity of the 
onformal boundary �M, is basedon the following observation [32℄: The asymptoti
 form � � e���r=l��(x) of the s
alar �eld allows us towrite the radial derivative in the from3 �r = Z�r ddx _� ÆÆ� � 1l ÆD; (3.5)where ÆD = ��� Z�r ddx� ÆÆ� ; (3.6)is the dilatation operator, and � means that only the leading asymptoti
 behavior as r ! 1 is shown. Itfollows that quantities that have a well de�ned transformation under radial shifts 
orrespond to eigenfun
-tions of the dilatation operator. However, by trading the radial derivative for the dilatation operator we alsoautomati
ally a
hieve 
ovarian
e with respe
t to �r di�eomorphisms. The dilatation operator (3.6), there-fore, provides us with a way to de
ompose the integrand in (3.4), whi
h does not transform in a 
ontrolledway under radial translations, into pie
es with a well de�ned transformation.This is a
hieved by expanding the 
anoni
al momentum �� in eigenfun
tions of the dilatation operatoras �� = p
 ��(��) + � � �+ �(�+) + � � � � ; (3.7)where ÆD�(n) = �n�(n) for all n.4 This is simply a formal expansion at this point, as is (3.3), but thefa
t that � and �� do admit the expansions (3.3) and (3.7) respe
tively, is a 
onsequen
e of the equation ofmotion. Sin
e �� = p
 _�, one 
an insert the expansion (3.7) in (3.5) to obtain a formal expansion of theradial derivative in 
ovariant fun
tional operators of de�nite dilatation weight. Substituting this expansionfor the radial derivative, together with the momentum expansion (3.7), into the equation of motion (3.2)and mat
hing terms of equal dilatation weight one 
an determine iteratively all terms �(n) for n < �+ aslo
al fun
tionals of �. The fa
t that these terms turn out to be lo
al fun
tionals of the indu
ed �eld � is the
ru
ial ingredient whi
h allows us to formulate the boundary value problem on the 
onformal boundary. Inparti
ular, we 
an write Z�r ddxp
 Xn<�+ �(n)Æ� = �ÆS
t[�℄; (3.8)2The 
omplete expressions for the variation of the a
tion when the s
alar is minimally or 
onformally 
oupled to gravity arepresented in Appendix A.3In general, one must sum over all indu
ed �elds on �r, in
luding the indu
ed metri
, 
ij . In parti
ular, the dilatationoperator 
ontains the term R�r ddx2
ij ÆÆ
ij and so it a
ts on the volume element on �r as ÆDp
 = dp
.4A logarithmi
 term should be in
luded in general to a

ount for a possible 
onformal anomaly. In the presen
e of su
h ananomaly, �(�+) transforms inhomogeneously under the dilatation operator [32℄.7



where S
t[�℄ is a lo
al fun
tional of �. From (3.4) then follows that if the lo
al fun
tional S
t on �r is addedto the bulk a
tion on Mr, then a generi
 variation of the total a
tion produ
es the boundary term5Æ(S + S
t) = Z�r ddxp
�(�+)Æ�: (3.9)Even though this might seem little di�erent from the original expression (3.4), the di�eren
e is in fa
t funda-mental: 
ontrary to (3.4) the integrand in (3.9) is invariant under radial translations sin
e ÆD(p
�(�+)Æ�) =(d ��+ ���)p
�(�+)Æ� = 0, where we have used ÆDp
 = dp
 (see footnote 3). If follows that we 
annow send r ! 1 and any boundary 
ondition formulated in terms of � and the renormalized momentum�(�+) will remain un
hanged and meaningful in this limit.Two 
omments are in order here. First, note that the 
ounterterms we have de�ned via (3.8), and whi
hwere introdu
ed only on the basis that they are required to make the variational problem on the 
onformalboundary well posed, are identi
al with the standard boundary 
ounterterms that are traditionally addedto make the on-shell a
tion �nite. Indeed, the fa
t that (3.9) has a �nite limit as r ! 1 implies that therenormalized on-shell a
tion Sren � (S + S
t), remains �nite as the regulator is removed. The same lo
al
ounterterms are therefore required to make the variational problem well posed and to remove the infra reddivergen
es of the on-shell a
tion. We would like to view the former, however, as the more fundamentalproperty. Indeed, the divergen
es of the on-shell a
tion are merely a manifestation of the fa
t that thevariational problem is not formulated properly [31℄. Of 
ourse, there is as usual a freedom of adding extra�nite lo
al terms to the 
ounterterms S
t. In the 
ase of Diri
hlet boundary 
onditions this is the well knownrenormalization s
heme dependen
e. As we will see below, however, the interpretation of this freedom inthe dual �eld theory 
ru
ially depends on the boundary 
onditions. In parti
ular, for boundary 
onditionsother than Diri
hlet, it does not 
orrespond to a renormalization s
heme dependen
e.The se
ond 
omment 
on
erns some notation. It is very useful to introdu
eb�(�+) �8<: limr!1 e�+r=l�(�+); �+ > d=2;limr!1 r2edr=2l�(�+); �+ = d=2; (3.10)whi
h allows us to expli
itly evaluate the limit r !1 in (3.9) asÆ(S + S
t) = Z�M ddxpg(0)b�(�+)Æ��: (3.11)The boundary value problem on the 
onformal boundary is then naturally formulated in terms of the twomodes ��(x) and b�(�+). Comparing the expansions (3.3) and (3.7), e.g. for �� 6= �+, one �nds thatb�(�+) = �(�+ ���)�+(x)=l + C[��(x)℄, where C[��(x)℄ is a lo
al fun
tional of ��(x) depending on thespa
e dimension as well as on the bulk dynami
s.6 Interestingly, as we will later show, for the boundary
onditions relevant to multi-tra
e deformations it turns out that C[��(x)℄ vanishes identi
ally - thus aposteriori justifying the use of �+(x) instead of the renormalized momentum in the literature. However, ingeneral, it is b�(�+) and not the normalizable mode whi
h has a well de�ned transformation under boundaryWeyl transformations.3.2 Boundary 
onditionsThe expression (3.11) is our starting point for studying the possible boundary 
onditions on the 
onformalboundary. A boundary 
ondition is in general a 
hoi
e of a fun
tion, J(��; b�(�+)), of the two independentmodes, �� and b�(�+), that is kept �xed on the boundary. Note that we have now repla
ed �+ with b�(�+),whi
h as we dis
ussed, is ne
essary in order for the boundary 
ondition to be well de�ned on the 
onformal5Terms of higher dilatation weight drop out in the limit r!1.6We will see below that in the 
ase of Diri
hlet boundary 
onditions b�(�+) is identi�ed via the AdS/CFT di
tionary withthe one-point fun
tion of the dual operator in the presen
e of an arbitrary sour
e ��(x). The fa
t that the one-point fun
tiongeneri
ally 
ontains a non-linear but lo
al fun
tional, C[��(x)℄, of the sour
e was shown originally in [33℄.8



J(��; b�(�+)) SJ [��; b�(�+)℄Diri
hlet J+ = �� S+ = 0Neumann J� = �b�(�+) S� = � R�M ddxpg(0)��b�(�+)Mixed Jf� = �b�(�+) � f 0(��) Sf� = S� + R�M ddxpg(0)(f(��)� ��f 0(��))Table 2: The three inequivalent boundary 
onditions for a s
alar �eld in an AlAdS ba
kground, along withthe 
orresponding boundary terms required to impose them. Noti
e that the Neumann boundary 
onditionis a spe
ial 
ase of the Mixed boundary 
ondition, obtained by 
hoosing the fun
tion f(��) to be identi
allyzero.boundary. In order to impose the boundary 
ondition ÆJ(��; b�(�+)) = 0, we need to add a suitable (�nite)boundary term, SJ [��; b�(�+)℄, to the a
tion su
h that7Æ(S + S
t + SJ) = Z�M ddxpg(0)BJ(��; b�(�+))ÆJ(��; b�(�+)); (3.12)where BJ(��; b�(�+)) is some fun
tion that depends on the 
hoi
e of J(��; b�(�+)).A physi
al solution of the equations of motion, subje
t to the boundary 
ondition de�ned by J(��; b�(�+)),satis�es J(��; b�(�+)) = 0. Note that this de�nition of `physi
al solutions' ex
ludes solutions that des
ribesingle-tra
e deformations, whi
h require a non-zero sour
e. It follows that there are two qualitatively dif-ferent universality 
lasses of possible boundary 
onditions, depending on whether the mode ��(x) in the
orresponding physi
al solutions is zero or not, whi
h lead to di�erent leading asymptoti
s for the physi
alsolutions. ��(x) is zero in the physi
al solutions provided the sour
e J(��; b�(�+)) is a fun
tion of �� only.When ��(x) is non-zero in the physi
al solutions, then the relation J(��; b�(�+)) = 0 determines b�(�+) asa fun
tion of ��(x). The three inequivalent 
hoi
es of boundary 
onditions, along with the 
orrespondingboundary term, SJ [��; b�(�+)℄, that should be added to the a
tion are listed in Table 2.8However, requiring that the (stati
) solutions subje
t to the boundary 
onditions in Table 2 are pertur-batively stable imposes restri
tions on the allowed values of the s
alar mass m2. In parti
ular, for Diri
hletboundary 
onditions, stability requires that the s
alar mass satis�es the Breitenlohner-Freedman (BF) bound[22℄, m2l2 � �(d=2)2, while if ��(x) 6= 0 in the solution, i.e. for Neumann and Mixed boundary 
onditions,stability requires that the mass squared is in the range [22, 34, 35℄��d2�2 � m2l2 � ��d2�2 + 1: (3.13)We will later show that these stability 
onditions follow immediately from the requirement that there existsa stable holographi
 e�e
tive potential for the dual operator. Moreover, generi
ally only one boundary
ondition will be 
onsistent with supersymmetry on
e the s
alar is embedded in some gauged supergravity[22, 36℄.The mass 
onstraint (3.13) for the Neumann or Mixed boundary 
onditions to be admissible has a re-markable and somewhat surprising 
onsequen
e. Namely, it ensures that the lo
al fun
tional, C[��(x)℄,7The apparently alternative boundary 
ondition BJ (��; b�(�+)) = 0, is not a

eptable in the 
ontext of the AdS/CFT
orresponden
e. The reason is that su
h a boundary 
ondition really redu
es by half the degrees of freedom. In AdS/CFT,however, the boundary 
ondition does halve the bulk degrees of freedom, but the lost half reappears as a sour
e on the boundary.8These boundary 
onditions exhaust all possible relations between b�(�+) and ��(x) in the physi
al solutions, and so allpossible Hilbert spa
es obtained by quantizing the s
alar �eld. Nevertheless, there is an apparent redundan
y in the 
hoi
e ofthe sour
e J(��; b�(�+)). For example, J = �� leads to the same Hilbert spa
e as J = �2�. In the 
ontext of the AdS/CFT
orresponden
e, this redundan
y is mapped to an analogous redundan
y in de�ning the generating fun
tional of a given operator,and in parti
ular in the 
hoi
e of its sour
e. Table 2 shows the standard minimal 
hoi
es.9



whi
h, as we pointed out above, distinguishes in general the renormalized momentum b�(�+) from the nor-malizable mode �+(x), vanishes identi
ally. We will not give a general proof of this statement here, butone 
an understand it as follows. Generi
ally, a non-zero C[��(x)℄ 
an only arise if there are intermediateterms between the two modes, ��(x) and �+(x), in the asymptoti
 expansion (3.3). This 
an happen onlyif �+ ��� > ��. However, (3.13) implies that for d > 2, �+ ��� � ��. Therefore, at least for d > 2and for a mass in the range (3.13), one has b�(�+) = �(�+ ���)�+(x)=l exa
tly, and hen
e, �+(x) is wellde�ned on the boundary in this 
ase.3.3 Solution of the boundary value problemThe general solution of the boundary value problem with the boundary 
ondition ÆJ(��; b�(�+)) = 0 
onsistsin �nding the most general regular solution of the bulk equations of motion as a fun
tional of the arbitrarysour
e J(��; b�(�+)) � J(x). This involves two steps:� Radial problemOne solves the radial equation of motion exa
tly, imposing regularity in the interior. The result ofthis 
al
ulation is that (i) b�(�+) is determined as a non-lo
al fun
tional of ��9 and (ii) the full bulksolution, �(r; ��(x)), is obtained as a non-lo
al fun
tional of ��(x).� Transverse problemTo 
omplete the solution of the boundary value problem, one needs to determine ��(x) as a fun
tionalof the arbitrary sour
e J(x). Having determined the fun
tional b�(�+)[��℄ by solving the radial problem,this is a
hieved by solving the equationJ(��; b�(�+)[��℄) = J(x); (3.14)for ��[J ℄. For the boundary 
onditions in Table 2, (3.14) reads�� = J(x); Diri
hlet;�b�(�+)[��℄ = J(x); Neumann;�b�(�+)[��℄� f 0(��) = J(x); Mixed: (3.15)Hen
e, the transverse problem is trivial for Diri
hlet boundary 
onditions, but non-trivial for Neumannand Mixed boundary 
onditions. In all 
ases, inserting the resulting solution ��[J ℄ ba
k in the bulksolution of the radial problem we obtain the full solution �(r; ��[J(x)℄).Although the general pres
ription for solving the boundary value problem involves only these two simplesteps, in pra
ti
e there are very few 
ases where one is able to 
arry out either of these two steps. Inparti
ular, the bulk equations of motion are generi
ally non-linear, whi
h makes the solution of the radialproblem very diÆ
ult. On the other hand, if the fun
tion f 0(��) is non-linear, then the solution of thetransverse problem (3.14) be
omes very diÆ
ult too. In the next se
tion, however, we will dis
uss a toymodel for whi
h it is possible to 
arry out the above pres
ription expli
itly.3.4 The on-shell a
tion and the AdS/CFT di
tionaryAssuming we have solved the boundary value problem with arbitrary sour
es to obtain the exa
t solution�(r; ��[J ℄), we 
an evaluate the on-shell a
tion, I [J ℄. This involves three pie
es: the bulk a
tion, S, the
ovariant boundary 
ounterterms, S
t, and the boundary term, SJ , de�ning the boundary 
ondition. Namely,I [J ℄ = (S + S
t + SJ)j� ; (3.16)where the limit r ! 1 is impli
it. By 
onstru
tion, the value of the sum of these terms remains �nite inthis limit, and naturally, it is a fun
tional of the sour
e, J . The AdS/CFT di
tionary, or more generally the9This should in no way be 
onfused with the boundary 
ondition, whi
h itself imposes another - algebrai
 - relation betweenthe modes. 10



Diri
hlet Neumann MixedJ J+ � �� J� � �b�(�+) Jf� � �b�(�+) � f 0(��)� b�(�+) �� ��W [J ℄ I+[J+℄ I�[J�℄ If� [Jf� ℄�[�℄ I�[�b�(�+)℄ I+[��℄ I+[��℄ + R�M ddxpg(0)f(��)hT iji = �2pg(0) ÆWÆg(0)ij �2b�(d)ij �2b�(d)ij � ��J�g(0)ij �2b�(d)ij � �f(��) + ��Jf�� g(0)ijhT ii i �(d��+)J� �(d���)J� �(d���)J� � d�f(�)� ��d �f 0(�)�Table 3: The gravity/QFT di
tionary.gravity/quantum �eld theory di
tionary, identi�es the on-shell a
tion, I [J ℄, with the generating fun
tionalof 
onne
ted 
orrelation fun
tions of the operator dual to the s
alar �eld �. Namely,Z[J ℄ � e�W [J℄ = De� R JOE � e�I[J℄; (3.17)where the � sign in the last equality means that the identi�
ation is understood in some 
ertain limit, e.g.in the large N limit, su
h that supergravity is a good approximation to the �eld theory dual.10 Sin
e theon-shell a
tion, I [J ℄, is identi�ed with the generating fun
tional of 
onne
ted 
orrelation fun
tions, W [J ℄,its Legendre transform, �[�℄, given by�[�℄ =W [J ℄� Z�M ddxpg(0)J�; (3.18)is the e�e
tive a
tion of the dual operator, i.e. the generating fun
tional of 1PI diagrams. In parti
ular,the transverse problem (3.14) has a dire
t interpretation in the dual �eld theory as the `gap equation' (2.4).From Table 3 it is evident that, although the solution of the transverse problem is required in order toevaluate the generating fun
tional, W [J ℄, for Neumann and Mixed boundary 
onditions (we have seen thatthe transverse problem is always trivial for Diri
hlet boundary 
onditions), only the solution of the radialproblem is ne
essary to evaluate the e�e
tive a
tion, �[�℄.In Table 3 we summarize the identi�
ations between the bulk and boundary quantities, a

ording to thegravity/quantum �eld theory di
tionary, for the three boundary 
onditions in Table 2. Note that, sin
e theon-shell a
tion for Neumann boundary 
onditions is the Legendre transform of the on-shell a
tion for Diri
hletboundary 
onditions (see the boundary term S� in Table 2), the e�e
tive a
tion for Diri
hlet boundary
onditions is given by the on-shell a
tion for Neumann boundary 
onditions and vi
e versa. Moreover,the e�e
tive a
tion for Mixed boundary 
onditions is given by the on-shell a
tion for Diri
hlet boundary
onditions plus a term involving the fun
tion f(��). Comparing the e�e
tive a
tions for Neumann andMixed boundary 
onditions in Table 3 with the expressions for the undeformed and deformed e�e
tive a
tionsgiven in Table 1, we rea
h the 
on
lusion that the Mixed boundary 
onditions 
orrespond to a multi-tra
edeformation of the QFT dual to the Neumann boundary 
onditions [1℄.10We will not be spe
i�
 about this limit sin
e it depends 
ru
ially on the parti
ular AdS/CFT duality. For example, in themost studied AdS5/CFT4 duality between N = 4 super Yang-Mills and Type II B string theory, the supergravity approximationinvolves not only the large N limit, but also the large 't Hooft 
oupling limit. However, in the duality between M-theory onAdS4 � S7 and the N = 8 SCFT in three dimensions, the supergravity approximation involves only the large N limit as thereis no other free parameter in this 
ase. 11



In the penultimate row of Table 3 we show the renormalized VEV of the stress tensor of the dual theoryin terms of the renormalized radial momentum, b�(d)ij , 
onjugate to the indu
ed metri
, 
ij , (see AppendixA) for the three di�erent boundary 
onditions. Note that the di�eren
e in these expressions for the VEVof the stress tensor is due to the boundary terms in Table 2, whi
h are required to impose ea
h boundary
ondition. Using the fa
t that the bulk equations of motion determine that the tra
e of b�(d)ij is relatedto the renormalized s
alar momentum, b�(�+), by b�(d) = ��b�(�+)��=2 [32℄, these expressions allow us towrite down the Conformal Ward identity for ea
h boundary 
ondition. These Ward identities are shownin the last row of Table 3. We 
on
lude that the Diri
hlet and Neumann boundary 
onditions lead to a
onformal �eld theory dual, sin
e hT ii i = 0 for vanishing sour
e, while the Mixed boundary 
ondition leadsto a 
onformal dual theory only if f(��) / �d=��� . In that 
ase, the Mixed boundary 
onditions des
ribe amarginal multi-tra
e deformation of the CFT dual to the Neumann boundary 
onditions. Moreover, in the
ases of a CFT dual, we see that the 
onformal dimension of the operator dual to the s
alar �eld is �+ forDiri
hlet boundary 
onditions and �� for Neumann and Mixed boundary 
onditions. This is as expe
ted,sin
e the leading asymptoti
 behavior of the physi
al solutions is determined by �+ for Diri
hlet boundary
onditions (i.e. �� = 0), but by �� for Neumann and Mixed boundary 
onditions (�� 6= 0).4 Toy modelThe boundary value problem 
an be solved in 
omplete generality, following the pres
ription outlined above,for a free s
alar �eld in a �xed AdS ba
kground with the a
tionS = Z dd+1xpg�12g��������+ 12m2�2� : (4.1)The metri
 here is (3.1) with 
ij = e2r=lÆij , whi
h is the metri
 of exa
t AdSd+1 (more pre
isely H d+1 )in the upper half plane 
oordinates. The equation of motion is of 
ourse the Klein-Gordon equation (3.2).Even though the fa
t that the bulk equation of motion is linear means that it is possible to solve the radialproblem exa
tly, the transverse problem remains in general intra
table, ex
ept for 
ertain linear boundary
onditions.4.1 General solution with linear boundary 
onditionsCountertermsIn order to 
ompute the renormalized momentum, as well as the on-shell a
tion, we need to know the
ovariant boundary 
ounterterms. This is done, as we dis
ussed above, by inserting the 
ovariant expansion(3.7) of the 
anoni
al momentum, and of the radial derivative (3.5), into the equation of motion (3.2). Thisiteratively determines [37, 38℄�(��) = ���l �; �(��+2) = �l�
�(d� 2�� � 2) ; �(��+4) = � l3 (��
)2 �(d� 2�� � 2)2(d� 2�� � 4) ; � � � (4.2)This pro
edure breaks down at order �+ leaving �(�+) undetermined. From (3.8) now we see that the
ounterterms are obtained by integrating these momenta with respe
t to the s
alar �eld. This gives [30, 37, 38℄S
t = 12 Z�r ddxp
� ���l �+ �l�
�(d� 2�� � 2) � l3 (��
)2 �(d� 2�� � 2)2(d� 2�� � 4) + � � �! : (4.3)If we restri
t to the mass range (3.13), whi
h is ne
essary in order to 
onsider Neumann and Mixed boundary
onditions, then only the �rst term in (4.3) is relevant sin
e �+ � ��+2 in this 
ase. For Diri
hlet boundary
onditions, however, more terms must be kept in general.Radial problem 12



The most general solution of the radial part of the equation of motion (3.2) that is regular in the interior
an be written in two equivalent forms. The �rst is an exa
t expression for the 
anoni
al momentum as a
ovariant fun
tional of the indu
ed �eld �, namely [37, 38℄��[�℄ = p
 _� = p
 1l  �d2 � lp��
K 0� �lp��
�K� �lp��
�!�; (4.4)where � = (�+ ���)=2 and K� is the modi�ed Bessel fun
tion that is regular for large argument. Fouriertransforming (4.4) and solving the resulting linear �rst order equation gives the se
ond form�(r; ��(x)) = l�2��1�(�)e�dr=2l Z ddp(2�)d ~��(p)p�K� �lpe�r=l� eip�x; (4.5)where ~��(p), whi
h appears as the integration 
onstant of the �rst order equation, is the Fourier trans-form of an arbitrary fun
tion ��(x). Using the asymptoti
 form of the Bessel fun
tion, K�(lpe�r=l) �2��1l���(�)e�r=lp�� , as r !1, we see that � � e���r=l��(x) asymptoti
ally, in agreement with (3.3).The form (4.4) is parti
ularly useful be
ause, by expanding the Bessel fun
tion for small argument, oneautomati
ally obtains the 
ovariant expansion (3.7), but now in
luding the renormalized momentum �(�+).For 0 < � < 1, whi
h 
orresponds to the mass range11 (3.13), this isb�(�+)[��℄ = � l2�2��1 �(1� �)�(�) (��)� ��: (4.6)This non-lo
al relation is the essential ingredient in order to address the transverse problem.Transverse problemSin
e the transverse problem (3.14) is trivial for Diri
hlet boundary 
onditions, the solution of the radialproblem, (4.4) or (4.5), is suÆ
ient to evaluate the on-shell a
tion. The result is shown in the se
ond 
olumnof Table 4. From Table 3 follows that this also allows us to evaluate the e�e
tive a
tion for Neumannand Mixed boundary 
onditions, sin
e it is dire
tly related to the on-shell a
tion for Diri
hlet boundary
onditions. For the Mixed boundary 
onditions then, whi
h in
lude the Neumann as a spe
ial 
ase, thee�e
tive a
tion is �f� [��℄ = Z ddx 12 � l2�2��1 �(1� �)�(�) �� (��)� �� + f(��)! : (4.7)Fun
tionally di�erentiating this with respe
t to the VEV, we expli
itly see that the transverse problem(3.14), whi
h, using (4.6), takes the form�� l2�2��1 �(1� �)�(�) (��)� �� � f 0(��) = J(x); (4.8)is nothing but the gap equation (2.4).Solving (4.8) for ��[J ℄ is in general not possible unless f(��) = ��2�, for some 
onstant �. As we haveseen, this 
orresponds to a double-tra
e deformation of the dual theory. With this spe
ial 
hoi
e of Mixedboundary 
onditions, the transverse problem is easily solved and the on-shell a
tion 
an be evaluated. Theresults are shown in Table 4. Moreover, inserting the expressions for ��[J ℄ given in Table 4 in the solution(4.5), we obtain the full solution to the boundary value problem with the 
orresponding linear boundary
onditions. Note that the expression for the on-shell a
tion in the presen
e of a double-tra
e deformationshown in Table 4 is in 
omplete agreement with the 
orresponding expressions in e.g. [9℄, but ours aremanifestly 
ut-o� independent.11The endpoints, � = 0; 1, 
orrespond respe
tively to the 
ases where the BF bound and the unitarity bound are saturated.Whenever � is an integer the Bessel fun
tion involves logarithms. These 
ases 
an be treated similarly. See e.g. [30, 37, 38℄ forthe 
ase of Diri
hlet boundary 
onditions, where logarithms also appear.13



Diri
hlet Neumann MixedJ J+ � �� J� � �b�(�+) Jf� � �b�(�+) � 2�����[J ℄ J+ �22��1 l�(�)�(1��) (�l2�)��J� ��2� + � 12�2��1 �(1��)l�(�) (�l2�)���1 Jf�I [J ℄ �(1��)l22��(�) R J+(�l2�)�J+ � l22��(�)4�(1��) R J�(�l2�)��J� � 14 R Jf� �� + �(1��)l22��(�) (�l2�)���1 Jf�Table 4: The solutions of the transverse problem and the on-shell a
tion for all three linear boundary
onditions. � is an arbitrary 
onstant 
orresponding to the deformation parameter of the double-tra
edeformation.4.2 Va
ua with non-linear boundary 
onditionsEven though one 
annot solve equation (4.8) in general for non-linear boundary 
onditions, we 
an still �ndexa
t solutions of the 
orresponding sour
eless equation. The 
lassi�
ation of su
h `va
uum'12 solutions isessential before one 
an solve (4.8) perturbatively in the sour
e, J(x), around ea
h va
uum. We will notattempt a 
lassi�
ation of the va
uum solutions for various 
hoi
es of f(��) here. Instead, we now givetwo examples of non-trivial va
ua whi
h are 
losely related to the va
ua we will 
onstru
t later on for morerealisti
 intera
ting theories.Constant VEVFor any 
hoi
e of the fun
tion f(��), a 
onstant, ���, that extremizes f(��), i.e. f 0(���) = 0, is a solutionof the sour
eless equation (4.8). Indeed, from (4.7) we know that f�(�) is the e�e
tive potential of the dualtheory. The Fourier transform of a 
onstant ��� is a delta fun
tion in momentum spa
e, ~��� = ���(2�)dÆ(d)(p).Inserting this into the general solution (4.5) we obtain an exa
t solution of the bulk equation of motionsatisfying Mixed boundary 
onditions. Namely,�(r; ���) = l�2��1�(�)e�dr=2l��� limp!0 p�K� �lpe�r=l� eip�x = e���r=l���: (4.9)InstantonsNon-
onstant solutions 
an also be found, at least for 
ertain 
hoi
es of the potential f(��). To lookfor non-
onstant solutions, however, we need an expli
it representation of the operator (��)� . It is in fa
teasier to �nd a representation of the inverse of this operator, whi
h has the integral representation(��)���(x) = � �d2 � ��22��d=2�(�) Z ddy �(y)jx� yjd�2� ; � > 0: (4.10)The sour
eless equation (4.8) 
an then be written as the integral equation��(x) + � �d2 � ��2�d=2l2��1�(1� �) Z ddy f 0(��(y))jx� yjd�2� = 0: (4.11)We now look for solutions of the form ��(x) = bjxj
 ; (4.12)12By the term `va
uum' we do not ne
essarily refer to a 
onstant or time independent solution ��. Any solution to thesour
eless equation (3.14) will be 
alled a va
uum. 14



for a potential of the form f(��) = ��!�, where b; 
; �; ! are 
onstants. Inserting these into (4.11) and Fouriertransforming determines that su
h a solution exists only if ! > 2, i.e. provided the boundary 
ondition isnon-linear, and also only if � < 0, i.e. when the e�e
tive potential is unbounded from below. Moreover, 
and b are given by 
 = 2�! � 2 ; b!�2 = 2l2��1�(1� �)��d2 � �!�2��� (!�1)�!�2 �!j�j�(�)�� �!�2���d2 � (!�1)�!�2 � : (4.13)Inserting (4.12) into (4.5) we obtain the exa
t bulk solution�(r; ��(x)) = bl� 2�!�2 ��d2 � �!�2��� (!�1)�!�2 �� �d2��(�) e�( d2� !�!�2 ) rl F � �! � 2 ; (! � 1)�! � 2 ; d2 ;� 1l2 e2r=lx2� : (4.14)The asymptoti
 form of this solution is�(r; ��(x)) � � bjxj
� e���r=l + l2� !�� bjxj
�!�1 e��+r=l; (4.15)i.e. �+ = l2�!��!�1� . Sin
e b�(�+) = �2��+(x)=l, it follows that (4.14) indeed satis�es Mixed boundary
onditions with f(��) = ��!�, for Jf� = �b�(�+) � f 0(��) = 0.This Eu
lidean solution is in fa
t analogous to the instanton solution found in [24℄ for a s
alar �eld
onformally 
oupled to four-dimensional gravity, whi
h we will revisit and generalize below. As for theinstanton solution of [24℄, (4.14) exists only when the e�e
tive potential is unbounded from below, i.e � < 0,whi
h means that the deformation indu
es an instability in the boundary CFT. In parti
ular, (4.14) des
ribesthe de
ay pro
ess of the trivial va
uum at �� = 0 to an instability region at �� ! 1. The de
ay rate isgiven by [39℄ P / e��f jinst: ; (4.16)where the value of the e�e
tive a
tion (4.7) evaluated on the instanton solution is�f jinst: = d(! � 2)j�j2�d� 2�!!�2�b!Vol(Sd): (4.17)5 E�e
tive a
tion from Hamilton's 
hara
teristi
 fun
tionThe free s
alar �eld in a �xed AdS ba
kground is a useful example as a boundary value problem in AlAdSspa
es, but, in the 
ontext of the AdS/CFT 
orresponden
e, it 
an only give information on the dual CFT atthe 
onformal va
uum. As soon as the s
alar �eld a
quires a non-zero VEV 
onformal invarian
e is brokenand one must 
ouple the s
alar to dynami
al gravity in order to study holographi
ally the dual �eld theory.In parti
ular, although the 
onformal va
uum generi
ally remains a va
uum of the dual theory when thelatter is deformed by a multi-tra
e deformation, the deformation may not only destabilize the 
onformalva
uum, but also it will generi
ally introdu
e new va
ua. AdS/CFT relates the problem of stability of the
onformal va
uum under multi-tra
e deformations to the stability of AdS under the 
orresponding boundary
onditions on the dual bulk �elds.Both the non-perturbative stability of the 
onformal va
uum and the possible appearan
e of new va
uadue to a generi
 multi-tra
e deformation 
an be addressed if one knows the e�e
tive a
tion for the deformingoperator in the dual �eld theory. In the large N limit, the AdS/CFT di
tionary relates the e�e
tive a
tion ofthe boundary theory to the on-shell supergravity a
tion. More spe
i�
ally, the on-shell a
tion with Diri
hletboundary 
onditions is related to the e�e
tive a
tion of the theory with Neumann or Mixed boundary 
on-ditions and vi
e versa (see Table 3). However, 
omputing the on-shell supergravity a
tion non-perturbativelyin the s
alar �eld - whi
h is required if non-perturbative stability is to be addressed - is of 
ourse not an easytask. Even though the boundary metri
 g(0)ij 
an be set to a �xed value for this 
omputation, sin
e we areonly interested in the ba
k-rea
tion of the s
alar �eld on the bulk metri
, the bulk equations remain highlynon-linear and generi
ally too diÆ
ult to solve. Nevertheless, there is a systemati
 way to approximate15



the e�e
tive a
tion away from the 
onformal va
uum. Sin
e, for 
onformal boundary 
onditions, 
onformalinvarian
e is only broken spontaneously by the non-zero VEV of the s
alar �eld, in a va
uum of non-zeros
alar VEV the two-point fun
tion of the s
alar operator always 
ontains a massless pole, 
orresponding tothe Goldstone boson of spontaneously broken s
ale invarian
e, whi
h dominates the two-point fun
tion forsmall momenta. This massless pole gives, via the Legendre transform, a standard quadrati
 kineti
 termin the e�e
tive a
tion for the VEV of the s
alar operator. It follows that, at least for 
onformal boundary
onditions, the e�e
tive a
tion admits a derivative expansion away from the 
onformal va
uum. But sin
ewe know that a generi
 multi-tra
e deformation simply modi�es the e�e
tive potential in the large N limit,the above argument implies that the e�e
tive a
tion always admits a derivative expansion away from the
onformal va
uum. As we will now see, this fa
t allows us to systemati
ally 
onstru
t the e�e
tive a
tion toany order in derivatives, although the 
omputation qui
kly be
omes tedious.A

ording to standard pra
ti
e, to evaluate the renormalized on-shell a
tion one needs to 
ompute tworelated - yet distin
t - quantities. Namely, the 
ovariant boundary 
ounterterms, S
t, and the regularizeda
tion, Ir (see (A.6)). Let us take the opportunity here to emphasize that the split of the 
omputation intotwo separate 
omputations of S
t and Ir is only an arti�
ial split re
e
ting the di�eren
e in te
hni
al diÆ
ultyin 
omputing these two quantities. While the 
ounterterms 
an always be 
omputed in full generality bysome version of holographi
 renormalization, the 
omputation of Ir is far more diÆ
ult and usually requiressome approximation. However, if one were able to 
ompute Ir exa
tly, then the 
ounterterms, and hen
e therenormalized on-shell a
tion, 
an be immediately dedu
ed by expanding Ir in eigenfun
tions of the dilatationoperator. In fa
t, we saw su
h an example in Se
tion 4, where the exa
t expression for the momentum (4.4)enabled us to simply read o� the renormalized momentum (4.6). But the advantage of the expansion ineigenfun
tions of the dilatation operator is that it works equally well even when Ir is only known in someapproximation, be that a small sour
e expansion or a derivative expansion. In parti
ular, instead of thetraditional 3-step approa
h: 1. 
ompute S
t in full generality, 2. 
ompute Ir in some approximation 3.redu
e the 
ounterterms in the approximation used for evaluating Ir, we will use the more eÆ
ient 2-stepapproa
h: 1. 
ompute Ir in whatever approximation is suitable 2. extra
t the renormalized part of Ir byexpanding it in eigenfun
tions of the dilatation operator and keeping terms of weight zero. This te
hniquewas applied to 
ompute renormalized 
orrelation fun
tions in [40℄, whi
h involved evaluating Ir in a smallsour
e approximation. It 
an equally well be applied in the 
ase of a derivative expansion of Ir , whi
h isthe relevant approximation here. Hen
e, we simply need to worry about the evaluation of the regularizedon-shell a
tion Ir, as the renormalized a
tion 
an e�e
tively be read o� Ir.The most dire
t way to 
ompute the regularized on-shell a
tion is via the radial Hamilton-Ja
obi formal-ism [29℄.13 This amounts to solving the two fun
tional equations resulting from inserting the radial momenta,given as fun
tional derivatives of the regularized on-shell a
tion with respe
t to the indu
ed �elds on �r asin (A.7), in the Hamiltonian and momentum 
onstraints (A.8). Although the resulting fun
tional di�erentialequations are generi
ally too 
ompli
ated to solve, their virtue is that they dire
tly determine the regularizedon-shell a
tion. In pra
ti
e, this approa
h is useful if one is able to write down the most general ansatz forIr in a 
ertain approximation, or if one is interested in the `minisuperspa
e' of a 
ertain 
lass of solutions,sin
e then the Hamilton-Ja
obi equation 
an be simpli�ed drasti
ally. Although the lo
al part of Ir, whi
hwill be removed by the boundary 
ounterterms, always takes the form of a derivative expansion and so 
anbe determined by an obvious ansatz as in [29℄, here we are interested in the non-lo
al part of the regular-ized a
tion. Finding a suitable ansatz for this non-lo
al part is a mu
h more diÆ
ult question. However,this 
ru
ially depends on the physi
al interpretation of the regularized a
tion. In parti
ular, while a lo
alderivative expansion of the non-lo
al part of Ir is useless if Ir is identi�ed with the generating fun
tionalof the dual operator, sin
e a derivative expansion only gives 
onta
t terms in the 
orresponding 
orrelationfun
tions, it does makes sense to expand the non-lo
al part of Ir in a derivative expansion if it is interpretedas the e�e
tive a
tion of the dual operator. Indeed, we have argued above that the e�e
tive a
tion admitssu
h a lo
al approximation away from the 
onformal va
uum.Our method for evaluating the regularized on-shell a
tion then 
onsists of two 
omplementary 
omputa-tions, involving di�erent but not mutually ex
lusive approximations. First, we start from the undeformedCFT on a (nearly) 
at boundary, in whi
h 
ase the regularized a
tion in the two-derivative approximation13It is worth pointing out that the interpretation of the Hamilton-Ja
obi equation for the on-shell a
tion as the Callan-Symanzik equation for the generating fun
tional of the dual operator in [29℄ has an obvious analogue when the AdS/CFTdi
tionary identi�es the on-shell a
tion with the e�e
tive a
tion of the dual operator.16



takes the form14 Ir = Z�r ddxp
�W (�) + Z(�)R[
℄ + 12M(�)
ij�i��j�� ; (5.1)where W (�), Z(�) and M(�) are fun
tions of the s
alar �eld to be determined. Di�erentiating (5.1) withrespe
t to the indu
ed metri
 and the s
alar �eld yields respe
tively the momenta (see (A.7))�ij = p
��Z 00 � 12M��i��j�+ Z 0DiDj�� ZRij+12
ij �W + ZR� 2Z 0�
�+�12M � 2Z 00� �k��k��� ;�� = p
�W 0 + Z 0R� 12M 0�k��k��M�
�� : (5.2)These momenta automati
ally satisfy the momentum 
onstraint in (A.8), whi
h is simply a 
onsequen
eof the invarian
e of (5.1) under �r di�eomorphisms. Inserting the momenta (5.2) into the Hamiltonian
onstraint in (A.8) leads to a set of ordinary di�erential equations for the fun
tions W (�), Z(�) and M(�),whi
h of 
ourse depend on the form of the Hamiltonian. Having determined these fun
tions, the regularizeda
tion is expanded in eigenfun
tions of the dilatation operator (whi
h in this 
ase amounts to a simpleTaylor expansion of W (�), Z(�) and M(�)) and the term of zero dilatation weight, 
orresponding to therenormalized a
tion, is isolated. The stru
ture of the resulting renormalized two-derivative e�e
tive a
tionis largely universal as it is determined by 
onformal invarian
e. However, there is a free parameter whi
h isleft undetermined both by the above pro
edure and by 
onformal invarian
e. This raises the question as towhat is the signi�
an
e of this parameter and how it 
an be �xed. Another question that is left unansweredby the above 
omputation is how one 
an evaluate the e�e
tive a
tion with general boundary 
onditions,i.e. the e�e
tive a
tion of the deformed CFT. The di�eomorphism invarian
e of the ansatz (5.1) impli
itlyassumes that 
onformally invariant boundary 
onditions are imposed, whi
h is re
e
ted in the fa
t that therenormalized a
tion one obtains from this ansatz is 
onformally invariant. However, a generi
 boundary
ondition 
orresponding to a relevant deformation will break this invarian
e. So, how then are relevantdeformations a

ommodated in the Hamilton-Ja
obi formalism? The answer to both questions is 
learlythat the ansatz (5.1) is too restri
tive.Instead of looking for a suitable generalization of the ansatz (5.1), however, we will try to solve theHamilton-Ja
obi equation exa
tly - without any ansatz - but in a zero-derivative approximation. That is,assuming the metri
 and the s
alar are fun
tions of the radial 
oordinate only. Clearly, this determines themost general e�e
tive potential and hen
e it must a

ount for any multi-tra
e deformation. Moreover, this
al
ulation 
an in prin
iple be done for any boundary, not just a (nearly) 
at boundary as was assumed in(5.1). The result will be the exa
t e�e
tive potential on the given boundary. As we will see, this answersthe �rst question, sin
e if one is able to evaluate the e�e
tive potential on, say, the sphere, then expandingthis for small 
urvature and 
omparing with the result of the previous 
al
ulation based on the ansatz (5.1)�xes the undetermined parameter in the two derivative e�e
tive a
tion.Interestingly, upon a 
hoi
e of a boundary manifold, the zero-derivative approximation amounts to lookingat the `minisuperspa
e' of 
ertain domain-wall like solutions. In parti
ular, for a boundary that 
annot bewritten as the dire
t produ
t of two sub-manifolds, this approximation 
orresponds to looking for domainwalls of the form ds2 = dr2 + e2A(r)g(0)ij(x)dxidxj ; � = �(r); (5.3)where g(0)ij(x) is a metri
 independent of the radial 
oordinate r. The equations of motion require thatg(0)ij(x) is maximally symmetri
, R[g(0)℄ij = 1dR[g(0)℄g(0)ij , and has lo
ally 
onstant s
alar 
urvature,R[g(0)℄ = kd(d � 1)=l2, where k = 0;�1. The hypersurfa
e �r then 
an be Sd, Rd or H d , or a quotient ofthese by a dis
rete subgroup of their isometry group. Repla
ing the indu
ed metri
 
ij as a dynami
al �eldby the warp fa
tor, A(r), and the 
anoni
al momentum �ij by the momentum, �A, 
onjugate to A, whi
his de�ned via �ijÆ
ij = �AÆA, redu
es the Hamilton-Ja
obi equation to a PDE for the e�e
tive potentialas a fun
tion of the two variables A and �. This 
an then be viewed as the Hamilton-Ja
obi equation for14See [41℄ for a systemati
 approa
h to solving the Hamilton-Ja
obi equation in a derivative (long wavelength) expansion ina similar 
ontext. 17



a standard 
lassi
al me
hani
s problem for the generalized 
oordinates A and �. As is well known fromHamilton-Ja
obi theory [42℄, the general solution of the equations of motion, i.e. the most general solutionof the form (5.3) in this 
ase, 
an be obtained from any 
omplete integral of the Hamilton-Ja
obi equation,whi
h in this 
ase 
ontains one arbitrary integration 
onstant.15 However, the Hamilton-Ja
obi equationadmits more than one 
omplete integrals. In fa
t, the general solution of the Hamilton-Ja
obi equation 
on-tains an arbitrary fun
tion - not just a 
onstant. As we will show below, this freedom in 
hoosing a 
ompleteintegral for the Hamilton-Ja
obi equation in the zero-derivative approximation 
orresponds pre
isely to the
hoi
e of boundary 
onditions.Put together then, the two-derivative e�e
tive a
tion with 
onformal boundary 
onditions based on theansatz (5.1), and the `minisuperspa
e' approximation of the Hamilton-Ja
obi equation to solutions of theform (5.3), 
ompletely determine the two-derivative e�e
tive a
tion of the dual operator on Sd, Rd or H d(or any of their quotients) and for any boundary 
onditions. Moreover, this 
omputation 
an be generalizedto other boundaries too. For example, one 
an 
ompute the two-derivative e�e
tive a
tion on R � Sd�1 bysolving the Hamilton-Ja
obi equation for metri
s of the formds2 = dr2 + e2A(r)d�2 + e2B(r)d
2d�1; (5.4)instead of the domain walls (5.3).6 Minimal 
ouplingIn this se
tion we apply the above method to the system of a single s
alar �eld minimally 
oupled to gravity,whi
h is des
ribed by the a
tionS = ZM dd+1pg�� 12�2R+ 12g��������+ V (�)� ; (6.1)where �2 = 8�Gd+1 is the gravitational 
onstant.16 An a
tion of this form generi
ally arises as a 
onsistenttrun
ation of some gauged supergravity17, but we need not be spe
i�
 about the embedding of (6.1) intoa parti
ular gauged supergravity at this point. We will later give an example of a potential whi
h allowsthis a
tion to be embedded into N = 8 gauged supergravity in four dimensions and, hen
e, be uplifted to11-dimensional supergravity, but we would like to keep the dis
ussion as general as possible here.The a
tion (6.1) possesses an AdS va
uum of radius l provided the potential has a negative extremumat � = �o, su
h that V 0(�o) = 0, V (�o) = �d(d� 1)=2�2l2. It follows that, in the vi
inity of this extremum,the potential takes the formV (�) = �d(d� 1)2�2l2 + 12m2(�� �o)2 + o((� � �o)2); (6.2)where m is the mass of the s
alar �eld. Note that, unless the potential is exa
tly 
onstant, the lo
ation of theextremum is at some �xed value, �o, whi
h 
an be set to zero by a rede�nition of the s
alar �eld. Moreover,if the mass vanishes, then the potential must be 
onstant, or else the equations of motion eliminate the mode��(x) in the expansion (3.3). Below we will fo
us on masses in the range �(d=2)2 � m2l2 < 0, ex
ludingthe 
ase of a 
onstant potential.6.1 Two-derivative e�e
tive a
tion for 
onformal boundary 
onditionsOur �rst task is to determine the renormalized on-shell a
tion 
orresponding to 
onformal boundary 
ondi-tions using the ansatz (5.1). Using the Hamiltonian (A.9), whi
h is relevant for the a
tion (6.1), the Hamil-15This is be
ause there is no expli
it dependen
e on the radial `time'. The 
hara
teristi
 fun
tion for n variables 
ontainsn� 1 arbitrary 
onstants [42℄.16See Appendix A for a detailed dis
ussion of the variational problem and a derivation of the appropriate boundary terms.17Of 
ourse, the `
onsisten
y' of the trun
ation must be 
he
ked at the level of the equations of motion.
18



m2l2 W (�)�(d=2)2 < m2l2 < 0 W�(�) = � (d�1)�2l � 12l���2 + o ��2�m2l2 = �(d=2)2 W+(�) = � (d�1)�2l � 12l d2�2 + o ��2�W�(�) = � (d�1)�2l � 12l d2�2 �1 + 1log ��+ o� �2log��Table 5: The allowed behavior of the fake superpotential in the vi
inity of the AdS 
riti
al point at � = 0.tonian 
onstraint leads to three independent equations for the fun
tions W (�), Z(�) and M(�). Namely,V (�) = 12 �W 02 � d�2d� 1W 2� ; (6.3)W 0Z 0 � �2 d� 2d� 1WZ + 12�2 = 0; (6.4)M = 2�2 WW 0Z 0: (6.5)The last equation gives expli
itly the fun
tion M(�) in terms of W and Z. Moreover, the se
ond equationis a linear equation for Z, whose solution in terms of W isZ(�) = � 12�2Zo Z � d��W 0Zo ; Zo(�) � exp �2 d� 2d� 1 Z � d�� WW 0! : (6.6)The regularized two-derivative e�e
tive a
tion is therefore determined by the non-linear equation (6.3) for thefun
tion W (�), whi
h we will 
all `fake superpotential' for reasons that will be
ome 
lear later on. Equation(6.3) 
an be transformed [32℄ into the standard form of Abel's equation of the �rst kind [43℄. Although itsgeneral solution is not known for an arbitrary s
alar potential V (�), for 
ertain 
hoi
es of the potential itfalls into some of the known integrability 
lasses of Abel's equation and it 
an be solved exa
tly. We willdis
uss su
h an example below, but in order to determine the renormalized a
tion we need not solve (6.3)exa
tly. Indeed, we will now show that some general features of the solutions of equation (6.3) are suÆ
ientfor this purpose.Firstly, from equations (5.2) follows that the asymptoti
 form of the indu
ed metri
 and of the s
alar�eld is determined by the form of W (�) in the vi
inity of � = 0. In parti
ular, requiring the metri
 to beAlAdS, �xes W (0) = �(d � 1)=�2l. This, in 
ombination with the form (6.2) of the s
alar potential near� = 0, determines, depending on the value of the s
alar mass, the allowed behaviors of W (�) around � = 0,whi
h are shown in Table 5. Note that there are two possible asymptoti
 behaviors in ea
h 
ase. The W+solutions imply that the non-normalizable mode, ��(x), vanishes in the 
orresponding solution of the bulkequations of motion, whi
h is obtained from W (�) via (5.2). On the other hand, the W� solutions allow fora non-zero ��(x). Sin
e �� are the two roots of the equation m2l2 = �(�� d), the requirement that W (�)and hen
e �� are real imposes the well known BF bound m2l2 � �(d=2)2 [22, 27℄. Further 
lassi�
ation ofthe possible solutions of equation (6.3) is fa
ilitated by the following lemma.Lemma 6.1 Provided the BF bound holds and �� > 0, any W� solution of equation (6.3) lies on a 
on-tinuous family of W� solutions while any W+ solution is isolated, or 
orresponds to an end point of anone-parameter family of W� solutions, at an in�nite distan
e in parameter spa
e from any given W� solu-tion. 19



To prove this lemma, we will assume that the original solution W (�) lies on a one-parameter family ofsolutions. In the 
ase of W+ solutions we will show that this always leads to a 
ontradi
tion, while for W�solutions we 
onstru
t expli
itly the one-parameter family of solutions in the neighborhood of W (�) when�� > 0. Suppose then that the solution W (�) lies on a 
ontinuous family of solutions parameterized by theintegration 
onstant �, 
hosen su
h that � = 0 
orresponds to W (�). The one-parameter family of solutionsaround W (�) then takes the form W (�; �) =W (�) + �W (1)(�) +O(�2); (6.7)where W (1)(�) = exp d�2d� 1 Z � d~� W (~�)W 0(~�)! : (6.8)Let us now assume that the original solutionW (�) is ofW+ type. Using the asymptoti
 form ofW+ solutionsfor the various masses given in Table 5, we 
an dedu
e the 
orresponding asymptoti
 behavior of W (1)(�).One �nds, W (1)(�) � ��d=�+ ; �(d=2)2 < m2l2 < 0;�2; m2l2 = �(d=2)2: (6.9)Sin
e 1 < d=�+ < 2 when �(d=2)2 < m2l2 < 0, we see that in all 
ases, if one starts with a W+ solution,the deformed solution W (�; �) has asymptoti
s whi
h are not 
ompatible with the asymptoti
s in Table 5,whi
h any solution must obey. We have therefore rea
hed a 
ontradi
tion and we 
on
lude that any W+type solution is isolated. On the other hand, if the original solution is of W� type, then the deformation(6.8) behaves asymptoti
ally asW (1)(�) � (�d=�� ; �(d=2)2 < m2l2 < 0;�2(log �)2 ; m2l2 = �(d=2)2: (6.10)If �� > 0, the BF bound ensures that d=�� > 2 and so we see that in this 
ase the asymptoti
 form of thedeformation W (1)(�) is subleading relative to the asymptoti
 behavior of the original solution. Hen
e, thedeformed solution does exist, at least in the neighborhood of the original solution, and it is of W� type forany (�nite) value of the deformation parameter.18 This 
ompletes the proof of the above lemma. �The last 
laim in the the proof of the above lemma, namely that, when the deformation exists, the deformedsolution (6.7) remains ofW� type to all orders in the deformation parameter �, follows from the next lemma.Lemma 6.2 The deformation parameter � 
an be 
hosen su
h that all higher-than-�rst order in � terms arealso asymptoti
ally subleading relative to W (1)(�), i.e. su
h that W (n)(�) = o �W (1)(�)� as � ! 0 for alln > 1.To prove this statement, we expand the deformed solution W (�; �) asW (�; �) = 1Xn=0 �nW (n)(�); (6.11)where W (0)(�) �W (�) denotes the undeformed solution. Inserting this in (6.3) we determine that W (1)(�)is given by (6.8) while for n > 1 W (n)(�) =W (1)(�) Z � d~� Q(n)W (0)0W (1) ; (6.12)where Q(n) � �12 n�1Xm=1�W (m)0W (n�m)0 � d�2d� 1W (m)W (n�m)� : (6.13)18Lemma 6.2 below guarantees that the asymptoti
s is not a�e
ted by the higher order in � terms either.20



Using the asymptoti
s for the W� type solutions given in Table 5, we 
an show that there exists a uniquevalue of the integration 
onstant impli
it in (6.12), su
h that W (2)(�) = o �W (1)(�)� as � ! 0. Sin
e theintegration 
onstant in (6.12) simply multiplies the homogeneous solution W (1), it follows that any othervalue of the integration 
onstant 
an be absorbed in the de�nition of the deformation parameter �. A simpleindu
tive argument 
an now be used to 
omplete the proof for any order n > 1. �Note that in order to determine whether a given W+ solution is the end point of an one-parameter family ofW� solutions we need to treat the deformation non-perturbatively, whi
h is to say, we must be able to solve(6.3) exa
tly. We will 
onsider a 
ase for whi
h this is possible in the next se
tion, where we will show thatindeed the W+ solution is the end point of an one-parameter family of W� solutions.The �nal ingredient we need to evaluate the renormalized on-shell a
tion for both W+ and W� typesolutions is the asymptoti
 form of the fun
tions Z(�) and M(�), given in Table 6, whi
h follows from thatof the fake superpotential in Table 5 via equations (6.4) and (6.5). With this last pie
e of information then wenow only need to insert the fun
tions W (�), Z(�) and M(�) in the regularized a
tion (5.1) and identify thepie
e of zero dilatation weight. This is straightforward and results in the renormalized a
tions given in Table7, but a 
ouple of subtle, yet important, points are worth mentioning. Firstly, there is the freedom of addingextra �nite lo
al 
ounterterms to S
t, whi
h we mentioned in Se
tion 3. In this 
ase it is manifested by thearbitrariness of the parameter � in the e�e
tive a
tions obtained from W� solutions. Di�erent W� solutionslead to a di�erent value for this parameter and so a de�nite 
hoi
e of 
ounterterms amounts to setting thisparameter to zero for a parti
ular W� solution. On
e this 
hoi
e is made, however, all other W� solutionswill ne
essarily have a non-zero �. It is 
lear then that for Mixed boundary 
onditions the freedom of adding�nite lo
al 
ounterterms simply 
orresponds to the 
hoi
e of what one de�nes to be the `undeformed' theory -and not to a renormalization s
heme dependen
e as is the 
ase for Diri
hlet boundary 
onditions. In writingthe e�e
tive a
tions in Table 7 we have pi
ked a randomW� solution and we have assigned it the value � = 0.We will see later that if the system (6.1) is embedded in some gauged supergravity, a natural 
hoi
e for thesolution that de�nes the zero of the parameter � is the true superpotential of the theory, provided, of 
ourse,it is aW� type solution of (6.3). A se
ond minor point to note is that for d = 2 the leading term of Z(�) givesboth a divergent term, whi
h is removed by the 
ounterterms, as well as the �nite pie
e that 
ontributesto the renormalized a
tion. This is 
lear if one splits the logarithm as log� � log e���r=l + log��(x).The �rst pie
e then gives the usual logarithmi
ally divergent term asso
iated with the 
onformal anomaly[44℄, while the se
ond pie
e gives the �nite 
ontribution to the renormalized a
tion. Note also that we haveadded an arbitrary fun
tion f(��) in the e�e
tive a
tions arising from W� solutions, whi
h 
orrespondsto a general multi-tra
e deformation. Although the above argument does not a

ount for these terms, wehave already seen that they arise from a 
hoi
e of boundary 
onditions and we will dis
uss how they 
an bea

ommodated in the the Hamilton-Ja
obi setting below. Finally, ex
ept from the parameter � that appearsonly in the W� e�e
tive a
tions, and whi
h as we just saw 
orresponds to a 
hoi
e of boundary 
onditions,the e�e
tive a
tions in Table 7 also depend on the undetermined parameters 
�. These parameters multiplya 
onformally invariant 
ombination of the two two-derivative terms (for d > 2), and 
an be determinedas we will see by 
omputing the e�e
tive potential on a 
urved boundary, whi
h �xes the 
oeÆ
ient of the
urvature term.The above analysis provides a 
omplete rederivation of the 
onstraints on the s
alar mass in orderfor Diri
hlet, Neumann or Mixed boundary to be admissible [22, 34, 35℄. However, from a very di�erentperspe
tive. Here the 
onstraints arise as essential 
onditions for the existen
e of the 
orresponding e�e
tivea
tion for the dual operator. As we have seen, the existen
e of this e�e
tive a
tion requires �rst of allthe existen
e of a real fun
tion W (�), whi
h leads to the BF bound. As expe
ted then, the W+ solutions,
orresponding to Diri
hlet boundary 
onditions, lead to an e�e
tive a
tion for the VEV b�(�+) = � 1l (�+ ���)�+, for �+ > ��, or b�(�+) = � 1l �+, for �+ = �� = d=2, of an operator of dimension �+. W�solutions on the other hand, whi
h 
orrespond to Neumann or Mixed boundary 
onditions, lead to ane�e
tive a
tion for the VEV �� of an operator of dimension ��. It should now be 
lear why W+ solutionsare isolated while W� solutions lie on a one-parameter family of W� solutions. Namely, we have seen inSe
tion 3 that Diri
hlet boundary 
onditions 
annot be 
ontinuously deformed, but Neumann and Mixedboundary 
onditions 
an. In parti
ular, the parameter � that de�nes this one-parameter family of W�solutions is identi�ed with the parameter of a marginal multi-tra
e deformation. Moreover, we have argued21



m2l2 Z(�) M(�)
d > 2 �(d=2)2 < m2l2 Z�(�) � � l2�2(d�2) + 
�� d�2�� M�(�) � 
� 2(d�1)(d�2)�2� � d�2�� �2�(d=2)2 Z+(�) � � l2�2(d�2) + 
+� 2(d�2)d M+(�) � 
+ 8(d�1)(d�2)d2 �� 4dZ�(�) � � l2�2(d�2) + 
� � �log�� 2(d�2)d M�(�) � 
� 8(d�1)(d�2)d2 1�2 � �log �� 2(d�2)dd = 2 m2 < 0 Z�(�) � l2�2�� log�+ 
� M�(�) � l�2�2� 1�2Table 6: The asymptoti
 behavior of the fun
tions Z(�) and M(�) following from that of the fake super-potential, W (�), in Table 5 via equations (6.4) and (6.5). 
� are arbitrary 
onstants 
orresponding to theintegration 
onstant of equation (6.4).

d W �[�℄
> 2 + 
+ R�M ddxpg(0)�� d�2�++ R[g(0)℄ + (d�1)(d�2)�2+ � d�2�+ �2+ g(0)ij�i�+�j�+�� R�M ddxpg(0)��� d��� + f(��) + 
�� d�2��� R[g(0)℄ + 
� (d�1)(d�2)�2� � d�2�� �2� g(0)ij�i���j���
2 + l2�2�+ R�M ddxpg(0) �log�+R[g(0)℄ + 2�+��2+ g(0)ij�i�+�j�+�+ 
+�� R�M d2xpg(0)��� 2��� + f(��) + l2�2�� �log ��R[g(0)℄ + 2����2� g(0)ij�i���j����+ 
��Table 7: The renormalized e�e
tive a
tions 
orresponding to the W+ and W� solutions in the two-derivativeapproximation. 
� are undetermined 
onstants that depend on the dynami
s, while � is the Euler numberof the two-dimensional boundary. Note that the d = 2 e�e
tive a
tions are related to the Liouville a
tionby the �eld rede�nition ' = log�1=��� . Interestingly, the parameter � 
orresponds to the 2D 
osmologi
al
onstant.
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above that these a
tions should only be valid away from the vanishing VEV point. Indeed, if the kineti
 termin the a
tions in Table 7 
ould be 
ontinued 
lose to zero VEV, this would mean that the two-point fun
tionof the s
alar operator is dominated by the Goldstone pole in the UV (as well as in the IR), but this of 
ourseviolates the 
onformal invarian
e of the theory whi
h should be restored in the UV. By looking at Table 7we see that the 
ondition for the e�e
tive a
tions to break down for vanishing VEV is pre
isely the unitaritybound �� > (d � 2)=2. Sin
e �+ � d=2 by de�nition, this is only a 
onstraint on ��, whi
h is equivalentto the 
ondition that the mass lies in the range (3.13). We 
on
lude that Neumann and Mixed boundary
onditions, whi
h require the existen
e of a W� solution, are only possible for masses in this range.196.2 Minisuperspa
e approximationIn order to see how a general multi-tra
e deformation 
an be a

ommodated in the Hamilton-Ja
obi language,and possibly to determine the parameters 
� in the two-derivative e�e
tive a
tions in Table 7 by 
omputingthe e�e
tive potential on a non-
at boundary, we now pro
eed by 
onsidering the `minisuperspa
e' approxi-mation for solutions of the form (5.3). From Table 10 we see that with this ansatz the 
anoni
al momentaredu
e to �A = �d(d� 1)edA _A=�2, �� = edA _�, while the Hamiltonian (A.9) be
omesH = 12 ���2� � �2d(d� 1)�2A� e�dA ���d(d� 1)k�2l2 e�2A + 2V (�)� edA� : (6.14)The Hamilton-Ja
obi problem then redu
es to a standard 
lassi
al me
hani
s problem, where we look for a
omplete integral, S(A; �), su
h that �A = �S�A; �� = �S�� ; (6.15)and H = 0. For k = 0, i.e. for a 
at boundary, a solution to this Hamilton-Ja
obi equation isS(A; �) = edAW (�); (6.16)where W (�) satis�es equation (6.3). The two equations (6.15) for the momenta then be
ome respe
tively_A = � �2d� 1W (�); _� =W 0(�): (6.17)In 
ombination with equation (6.3) for the fun
tion W (�), we re
ognize these equations as the 
ow or `BPS'equations for Poin
ar�e domain walls (see e.g. [45, 46℄). If the a
tion (6.1) is embedded into a parti
ulargauged supergravity, then generi
ally there is a unique solution, Wo(�), of (6.3) that 
oin
ides with the truesuperpotential of the theory. In that 
ase the 
ow equations (6.17) do 
oin
ide with the true BPS equationsof the theory. However, any other solution W (�) gives a non-supersymmetri
 solution of the supergravityequations [47, 23℄. Following [48℄, we 
allW (�) the `fake superpotential', although `Hamilton's 
hara
teristi
fun
tion' would be a more appropriate name in the present 
ontext. Indeed, none of the above depends onsupersymmetry in any way. The �rst order formalism, also known as `fake supergravity' [48℄, for Poin
ar�edomain walls is simply Hamilton-Ja
obi theory for the bulk equations of motion [29℄. An analysis of 
urveddomain walls, k 6= 0, in the 
ontext of Hamilton-Ja
obi theory has appeared re
ently in [49℄. Sin
e theHamilton-Ja
obi equation arising from the Hamiltonian (6.14) for k 6= 0 is non-separable, it is not easy to�nd a 
omplete integral for an arbitrary potential in this 
ase. Here we will therefore fo
us on the k = 0
ase, but we will later show that for a 
onformally 
oupled s
alar su
h a 
omplete integral 
an be found evenfor k 6= 0, whi
h will allow us to �x the 
onstants 
�.Re
all that a 
omplete integral of the Hamilton-Ja
obi equation following from the Hamiltonian (6.14)involves an arbitrary 
onstant. In parti
ular, the solution (6.16) is a 
omplete integral provided W (�) is thegeneral solution of (6.3), depending on an arbitrary parameter. This parameter, of 
ourse, is the 
oupling,�, of the marginal multi-tra
e deformation. Sin
e any 
omplete integral leads to the most general solution19Note that this is in 
omplete agreement with the analysis of [21℄, whi
h shows that a W�(�) solution is ne
essary in orderfor stability with Mixed boundary 
onditions to be possible. But from our perspe
tive in terms of the dual �eld theory, thequantity W (�) (
alled P (�) in [21℄) is physi
al and not merely `an auxiliary 
onstru
t' - it determines the e�e
tive a
tion ofthe dual operator. 23



of the form (5.3), we 
an obtain the most general 
at domain wall solution provided we 
an solve equation(6.3) exa
tly for the one-parameter family of fake superpotentials. Indeed, we will show below that this ispossible, at least for 
ertain potentials. However, the 
omplete integral obtained form (6.16) via the one-parameter family of fake superpotentials is not the most general 
omplete integral. To see this, supposeWo(�) is a solution of (6.3) su
h that (6.16) is a solution (not a 
omplete integral) of the Hamilton-Ja
obiequation. We 
an now look at the most general in�nitesimal deformation, ÆS, of this solution by linearizingthe Hamilton-Ja
obi equation around the solution S = edAWo(�). This givesW 0o(�)�ÆS�� � �2d� 1Wo(�)�ÆS�A = 0; (6.18)whose general solution is ÆS = f �eAe� �2d�1 R � d��WoW 0o �� ; (6.19)for an arbitrary fun
tion f . But note that asymptoti
ally eAe� �2d�1 R � d��WoW 0o � � �1=��� , depending on whetherWo is a W+ orW� solution. It follows that ÆS 
ontributes to the renormalized a
tion and 
orresponds to anarbitrary multi-tra
e deformation. However, if this deformation were allowed for bothW+ andW� solutions,it would 
ontradi
t our previous 
on
lusion that multi-tra
e deformations are allowed only for Neumann orMixed boundary 
onditions, and hen
e, only for W� solutions. Indeed, under the deformation ÆS,Æ _� � 1�� f 0 �eA�1=��� e�(d�1)A�(1���)=�� : (6.20)In order for the asymptoti
 form of the s
alar �eld, � � ��(x)e��� , not to be 
hanged by the deformation,we must then require that d � 1 + 1 � �� � ��, or equivalently �� � d=2. But this pi
ks out only ��sin
e by de�nition �+ � d=2. We therefore 
on
lude that the deformation (6.19) is allowed only if Wo is aW� solution.The above dis
ussion demonstrates that in the Hamilton-Ja
obi formalism, any multi-tra
e deformation
orresponds to a 
hoi
e of a 
omplete integral of the Hamilton-Ja
obi equation. In parti
ular, although a
omplete integral of the form (6.16) a

ounts only for marginal multi-tra
e deformations, by allowing for amore general 
omplete integral as in (6.19) the Hamilton-Ja
obi formalism 
an a

ommodate any multi-tra
edeformation. This freedom in 
hoosing a 
omplete integral then gives rise to the arbitrary fun
tion f(��)in the 
orresponding renormalized e�e
tive a
tion.6.3 The `2/3' potentialWe now 
onsider a spe
ial s
alar potential for whi
h equation (6.3) for the fake superpotential 
an be solvedexa
tly. As we have seen, this gives a 
omplete integral of the Hamilton-Ja
obi equation via (6.16), andhen
e the most general 
at domain wall solution. The potential we will 
onsider isV (�) = �d(d� 1)2�2l2 
osh 23r d�2d� 1�! ; (6.21)whi
h we propose to 
all the `2=3' potential. This potential was introdu
ed in [32℄, although the spe
ial
ase d = 3 has appeared elsewhere in the literature as well. In parti
ular, for d = 3 this potential arisesfrom a one-s
alar 
onsistent trun
ation of the N = 8 gauged supergravity in D = d+1 = 4 dimensions [50℄.It was also 
onsidered in [51℄, where a four-dimensional asymptoti
ally lo
ally AdS topologi
al bla
k holewith s
alar hair was found, as well as in [23℄ and [24℄, where respe
tively four-dimensional domain walls andinstantons were found and uplifted to M-theory.The s
alar mass for the potential (6.21) is m2l2 = �2(d=3)2 and hen
e the two 
onformal dimensionsare �� = d=3, �+ = 2d=3. Requiring that the mass falls in the range (3.13), for whi
h Mixed boundary
onditions 
an be 
onsidered, restri
ts the boundary dimension to lie in the range 2 � d � 6. In [32℄ it was24



shown that equation (6.3) with the potential (6.21) 
an be solved exa
tly. The general solution is (see also[23℄) W (�; �) = �d� 1�2l 1(1� �2) 34 1� �2 +p1 + 2��+ �2q2(1 + ��+p1 + 2��+ �2) ; � � �1; (6.22)where � = tanh�23q d�2d�1�� and � � �1 is an arbitrary parameter. In the d = 3 
ase, the value � = �1
orresponds to the true superpotential of the trun
ated N = 8 gauged supergravity in four dimensions [23℄.Expanding (6.22) one obtainsW (�; �) = �d� 1�2l �1 + 16 2 + 127� 3 +O( 4)� ; (6.23)where  =q d�2d�1�. For any �nite � � �1 then (6.22) is a W� type solution and the parameter � is relatedto the deformation parameter � in (6.7). In parti
ular, 
hoosing � su
h that � = 0 
orresponds to thesupersymmetri
 solution with � = �1 gives � = � d�127�2l � d�2d�1� 32 (� + 1).The 
ow equations (6.17) 
an now be used to 
onstru
t the 
orresponding Poin
ar�e domain wall solution,whi
h takes the formds2 = �3ld �2 �1 + ��+p1 + 2��+ �2�2�2p1� �2(1 + 2��+ �2) d�2 + 
2 p1� �22�2 �1 + ��+p1 + 2��+ �2�!3=d dxidxi;� = 32rd� 1d�2 tanh�1 �; (6.24)where, for �nite �, the parameter 
 is related to the VEV, ��, via
 =  23r d�2d� 1��!3=d : (6.25)For the spe
ial 
ase d = 3, where this domain wall is a solution of N = 8 gauged supergravity, the value� = �1 gives a supersymmetri
 domain wall sin
e for this value (6.22) 
oin
ides with the true superpotential.For � > �1 (6.24) is a non-supersymmetri
 solution of the equations of motion.We have seen that every solution of the bulk equations of motion is dual to an extremum, or `va
uum',of the e�e
tive a
tion of the dual boundary theory. In parti
ular, Poin
ar�e domain walls 
orrespond tohomogeneous va
ua, where the VEV �� is a 
onstant extremizing the e�e
tive potential Ve� (��). Fromour general pres
ription for 
omputing the e�e
tive a
tion in Se
tion 3, we see that in order to evaluate thee�e
tive potential we should �rst evaluate the renormalized momentum as a fun
tional of the VEV by solvingthe radial problem. We have already done this in this 
ase and we have found b�(�+) = d���+=��� =�� =3��2�. However, this depends on the arbitrary parameter �, whi
h should in prin
iple be �xed by requiringregularity of the 
orresponding solution (6.24). But sin
e this solution is singular for any value of �,20 weex
eptionally do not impose this 
ondition and we will take � � 0 to be arbitrary. The e�e
tive potentialthen takes the form Ve�(��) = ��3� + f(��); (6.26)where � is related to � by the relation we gave above. An extremum of this e�e
tive potential then 
orrespondsto imposing the relation 3��2� + f 0(��) = 0; (6.27)between the parameters � and ��. The domain wall (6.24) with this relation imposed is then dual to theva
uum of the boundary theory 
orresponding to the VEV given by (6.27). We should emphasize herethat given a solution of (6.27), the 
orresponding domain wall (6.24) takes the same form for all 
hoi
es20Note, however that while for � = �1 (6.24) has a null singularity, for � > �1 the singularity is timelike [23℄. If this is takenas a 
riterion for `regularity', then the supersymmetri
 solution is the only `regular' solution.25



of boundary 
ondition f(��), although the relation between � and �� is di�erent for di�erent boundary
onditions.An interesting example is the 
ase where the domain walls (6.24) are solutions of N = 8 gauged super-gravity in four dimensions. In that 
ase, the � = �1 (� = 0) domain wall is supersymmetri
 and des
ribes theCoulomb bran
h of the dual theory. The 
orresponding e�e
tive potential is therefore 
at, i.e. f(��) � 0,sin
e the VEV is totally arbitrary. If the 
oupling � of the marginal multi-tra
e deformation is then turnedon, the e�e
tive potential, Ve� (��) = ��3�, destabilizes the theory sin
e � < 0.21 To have a non-trivialsolution when � > �1 then, we need to introdu
e another �-dependent deformation, on top of the marginalone. In parti
ular, we 
an 
hoose f(��) = ��h(��) su
h that the e�e
tive potential isVe�(��) = �(�3� � h(��)); (6.28)for some fun
tion h(��) > 0. Even though for � = 0 the VEV is totally undetermined, when � is turnedon the VEV is �xed to some non-zero value determined by V 0e�(��) = 0. This is pre
isely the situationdis
ussed in [23℄, where the spe
i�
 
hoi
e h(��) = J���, 
orresponding to a single-tra
e deformation, wasmade. While at the supersymmetri
 point des
ribing the Coulomb bran
h the VEV is arbitrary, away fromthe supersymmetri
 point the VEV is a fun
tion of the arbitrary ba
kground sour
e, J�, of the single-tra
edeformation.Finally, let us 
onsider the limit � !1, 
orresponding to the limit where the 
oupling, �, of the marginaldeformation of the original CFT is sent to (negative) in�nity. In this limit the fake superpotential (6.22)be
omes W (�;1) = �d� 1�2l 1(1� �2) 34 : (6.29)Expanding this we get W (�;1) = �d� 1�2l �1 + 13 2 +O( 4)� ; (6.30)and so this is a W+ solution. The one-parameter family of fake superpotentials (6.22) then provides anexpli
it example of the general pi
ture we dis
ussed in the previous se
tion. Namely, for all �nite valuesof �, (6.22) is a W� solution, while the W+ solution arises as an endpoint of this one-parameter family at� !1. Letting 
2� 3d = �
2, the domain wall solution 
orresponding to � !1 isds2 = �3ld �2 d�24�2p1� �2 + �
2 p1� �22� !3=d dxidxi;� = 32rd� 1d�2 tanh�1 �; (6.31)where now �
 =  43r d�2d� 1�+!3=2d : (6.32)For an in�nite value of the marginal deformation parameter then the dimension of the operator dual to thes
alar �eld 
hanges from �� to �+. The domain wall (6.31) des
ribes the arbitrary VEV of this dimension�+ operator.21If � were positive, the e�e
tive potential would for
e the VEV to vanish. In that 
ase the domain wall (6.24) redu
es toexa
t AdS. A non-trivial solution for � > �1 then would require the addition of some other term proportional to � in thee�e
tive potential, mu
h like in the 
ase � < 0.
26



7 Conformal 
ouplingAs a se
ond example of a system where the method outlined in Se
tion 5 
an be applied, we 
onsider theminimally 
oupled s
alar �eld in (6.1) with the strange-looking potentialV (�) = �d(d� 1)2�2l2  
osh r (d� 1)�24d �!! 2(d+1)(d�1) + �2 � 4d(d� 1)�2� (d+1)(d�1)  sinh r (d� 1)�24d �!! 2(d+1)(d�1) ;(7.1)where � is an arbitrary dimensionless 
oupling 
onstant, whi
h we will assume it is positive. Although thispotential looks rather 
ompli
ated and unintuitive, it is in fa
t a very spe
ial potential. First, note that thes
alar mass 
orresponding to the potential (7.1) is the 
onformal mass m2l2 = �(d=2)2+1=4, leading to thetwo 
onformal dimensions �� = (d � 1)=2. S
alars with this mass in AdS are `massless' in the sense thattheir Lorentzian bulk-to-bulk propagator has support only on the light 
one d(x; x0) = 0, where d(x; x0) isthe geodesi
 distan
e between two points x and x0 in AdS [22℄. Moreover, the 
onformal mass falls withinthe mass range (3.13) whi
h allows for Mixed boundary 
onditions.However, the 
onformal mass is not the only spe
ial property of the potential (7.1). Another spe
ialproperty of the potential (7.1) is that for d = 3 and � = �2=6l2 it 
oin
ides with the potential (6.21), whi
h,as we pointed out, pre
isely for d = 3 
an be embedded into N = 8 gauged supergravity in four dimensions.The most signi�
ant property though of (7.1) is that the �eld rede�nitionp(d� 1)=d�~�=2 = tanh�p(d� 1)=d��=2� ; ~g�� = �
osh�p(d� 1)=d��=2�� 4(d�1) g�� ; (7.2)transforms the a
tion (6.1) with the potential (7.1) into the form22S = ZM dd+1xpg�� 12�2 �R+ d(d� 1)l2 �+ 12g��������+ d� 18d R�2 + �2� 2(d+1)(d�1) � ; (7.3)whi
h is the a
tion for a self-intera
ting s
alar 
onformally 
oupled to AdSd+1 gravity. This transformationwas given for the 
ases d = 2 and d = 3 in [11℄ and [51℄ respe
tively. This last property allows us to
ir
umvent the problem of analyzing the a
tion (6.1) with the 
ompli
ated potential (7.1), by studyinginstead the equivalent but simpler a
tion (7.3). Note, however, that the transformation (7.2) implies thatthe 
onformally 
oupled s
alar 
an be transformed into a minimally 
oupled s
alar provided it is bounded.Sin
e the a
tion (7.3) does not ne
essarily imply that the s
alar �eld is bounded, only 
ertain boundedsolutions of (7.3) 
orrespond to solutions of (6.1).The equations of motion following from the a
tion (7.3) 
an be written in the formR�� + dl2 g�� = �2T�� ; �g�� d� 14d R�� d+ 1d� 1��(d+3)=(d�1) = 0; (7.4)where the modi�ed stress tensor T�� is given byT�� = (d� 1)24d �2d=(d�1)�1� (d�1)�24d �2� �r�r� � 1d+ 1g���g���2=(d�1): (7.5)These equations are in fa
t not independent. Sin
e T�� is manifestly tra
eless, the �rst equation in (7.4)implies that the Ri

i s
alar is 
onstant R = �d(d+ 1)l2 : (7.6)The 
ontra
ted Bian
hi identity then implies that T�� is divergen
eless. This fa
t imposes a di�erential
onstraint on the s
alar � whi
h is pre
isely the se
ond equation in (7.4), ex
ept that the dimensionless22Note that we have dropped the tildes from the a
tion (7.3) to simplify the formulas that follow. It should be 
lear from the
ontext when � denotes the minimally 
oupled s
alar in (6.1) or the 
onformally 
oupled s
alar in (7.3).27




oupling appears as an integration 
onstant and so is not determined by the divergen
elessness of T�� .Hen
e, the �rst equation in (7.4) implies the se
ond up to the value of the dimensionless 
oupling.The very spe
ial form of these equations of motion makes it mu
h easier to study the a
tion (7.3)instead of the minimally 
oupled s
alar des
ribed by the a
tion (6.1) with the potential (6.21)- or any otherpotential, in fa
t. However, the 
onformal 
oupling in the a
tion (7.3) requires that we revisit not only thevariational problem, but also the derivation of the holographi
 e�e
tive a
tion. In Appendix A we 
onsiderthe variational problem for both the a
tions (6.1) and (7.3) in detail, and in ea
h 
ase we derive the 
orre
tform of the Gibbons-Hawking term, as well as the radial 
anoni
al momenta, both of whi
h are listed inTable 10. Using these results we 
an now turn to the 
omputation of the e�e
tive a
tion for the operatordual to the s
alar �eld des
ribed by the a
tion (7.3).7.1 Two-derivative e�e
tive a
tion for 
onformal boundary 
onditionsTo 
ompute the renormalized e�e
tive a
tion in the two-derivative approximation we pro
eed as in the 
aseof minimal 
oupling. Namely, one inserts the ansatz (5.1) for the regularized a
tion into the momentumand Hamiltonian 
onstraints (A.8). The momentum 
onstraint is independent of the parti
ular form of the
anoni
al momenta and, as in the 
ase of minimal 
oupling, it is automati
ally satis�ed sin
e it simplyre
e
ts the invarian
e of (5.1) with respe
t to �r di�eomorphisms. Sin
e the Hamiltonian (A.10) is nowdi�erent, however, the Hamiltonian 
onstraint leads to the equationsW 02 � �2d(d � 1) �dW � d� 12 �W 0�2 = �d(d� 1)�2l2 + �� 2(d+1)d�1 ; (7.7)�W 0 + �22d��dW � d� 12 �W 0��Z 0 � �2d �d� 2d� 1��dW � d� 12 �W 0�Z+ 12�2 �1� (d� 1)�24d �2� = 0; (7.8)M = 2�2d �dW � d�12 �W 0�Z 0 + d�12d �W 0 + �22d�2 �dW � d�12 �W 0� ; (7.9)instead of equations (6.3), (6.4) and (6.5). The a
tion is therefore determined on
e we solve the non-linearequation (7.7), whi
h is the analogue of (6.3) for minimal 
oupling.The general solution of (7.7) in the vi
inity of the exa
t solution 
orresponding to � = 0 takes the formW (�; �) = �d� 1�2l +0��d� 12d p�+ � 1� 2lp�d� 1� 2d�1!�d1A� 2dd�1 +O(�2); (7.10)where � is an arbitrary parameter analogous to the deformation parameter in (6.8). Note that both signpossibilities here lead to solutions analogous to the W� solutions of equation (6.3) (i.e. �� 6= 0). Perhapsthe analogue of a W+ solution 
an be obtained in the limit � !1, whi
h 
ould be evaluated if the solution(7.10) were known exa
tly as a fun
tion of �, but we will not investigate this further. We will �x the sign in(7.10) below. Using (7.10) we �nd that the leading asymptoti
 behavior of the fun
tions Z(�) and M(�) isexa
tly as given in Table 6 for a W� solution with �� = (d� 1)=2. Evaluating then the renormalized a
tionwe obtain�[��℄ = 8>><>>:R�M ddxpg(0)�Ve�(��) + 
��� 2(d�2)(d�1)� R[g(0)℄ + 4(d�2)(d�1) �� 2(d�1)� g(0)ij�i���j���� ; d > 2;R�M d2xpg(0) �Ve�(��) + l�2 �log��R[g(0)℄ + 4��2� g(0)ij�i���j����+ 
��; d = 2;(7.11)whi
h, as expe
ted, are identi
al with the renormalized a
tions in Table 7, ex
ept that the e�e
tive potentialis now given by Ve�(��) = ��d� 12d p�+ ��� 2dd�1� + f(��): (7.12)28



7.2 Minisuperspa
e approximationAs for the minimally 
oupled s
alar, the next step is to look at the `minisuperspa
e' of solutions of the form(5.3). The 
anoni
al momenta dual to the warp fa
tor, A(r), and the s
alar �eld, whi
h 
an be dedu
edfrom the momenta given in Table 10, are respe
tively�A = edA��d(d� 1)�2 �1� (d� 1)�24d �2� _A+ d� 12 � _�� ;�� = edA� _�+ d� 12 _A�� : (7.13)Moreover, the Hamiltonian (A.10) be
omesH = 12 (e�dA �2� � �2d(d� 1) ��A � d� 12 ����2!+edA�d(d� 1)�2l2 � �� 2(d+1)(d�1) + d(d� 1)k�2l2 e�2A�1� (d� 1)�24d �2��� : (7.14)Writing again �A = �S�A; �� = �S�� ; (7.15)and inserting these into the equation H = 0 for the Hamiltonian (7.14) we obtain the Hamilton-Ja
obiequation for the 
onformally 
oupled s
alar.We 
ould now look for a solution of the form (6.16), in whi
h 
ase the Hamilton-Ja
obi equation requiresthat the fake superpotential satis�es equation (7.7). Indeed, the exa
t solution obtained from (7.10) bysetting � = 0 does give a solution to the Hamilton-Ja
obi equation. However, sin
e we do not know the fullone-parameter family of fake superpotentials that solve (7.7), the 
orresponding solution of the Hamilton-Ja
obi equation is not a 
omplete integral, whi
h is ne
essary in order to obtain the most general domainwall solutions of the equations of motion. Nevertheless, in this 
ase we 
an �nd a 
omplete integral of theHamilton-Ja
obi equation that is not of the form (6.16) and it is valid even for 
urved boundary, k = �1, aswell as for 
at boundary. It is easy to verify that writing�A = �d(d� 1)�2l edAp1 + ke�2A + �e�(d+1)A + d� 12 ���;�� = �edAsd(d� 1)�2l2 �e�(d+1)A + k�d� 12l �2 �2e�2A + �� 2(d+1)(d�1) ; (7.16)where � is an arbitrary parameter, in the Hamiltonian (7.14) automati
ally gives H = 0. Of 
ourse, thisdoes not mean that we have found a solution to the Hamilton-Ja
obi equation unless��A�� = ����A : (7.17)Remarkably, this is indeed the 
ase and hen
e there exists a 
omplete integral S(A; �) su
h that the momenta(7.16) are obtained from it via (7.15). The fa
t that the momenta (7.16) are integrable, i.e. that they 
anbe derived from a 
omplete integral S(A; �) via (7.15), is one of our main results. As we will now show,this 
omplete integral of the Hamilton-Ja
obi equation will allow us not only to 
ompletely determine thetwo-derivative e�e
tive a
tion on any boundary of lo
ally 
onstant s
alar 
urvature, but also to obtain allpossible solutions of the form (5.3).E�e
tive a
tion 29



Expanding the momenta (7.16) in eigenfun
tions of the dilatation operator and keeping the term ofweight zero gives immediately the renormalized momentab�(d)ij = 12(1 + (�1)d) (�1) d2 k d2�(d+ 1)2d+1l�2 �� �d2 + 1��2 Æij + d� 14d ��b�(�+)Æij ;b�(�+) = �sd(d� 1)�2l2 �+ k�d� 12l �2 �2� + �� 2(d+1)(d�1)� ; (7.18)where we have traded again the momentum �A for the physi
al momentum 
onjugate to the indu
ed metri

ij . Note that the �rst term in b�(d)ij , whi
h only appears for even boundary dimension, is nothing but the
onformal anomaly [44℄, as 
an be seen from the relation between the VEV of the stress tensor and therenormalized momentum b�(d)ij given in Table 3.The �rst thing that these renormalized momenta 
an tell us is the value of the undetermined parameter
� in the e�e
tive a
tion (7.11). Note that the parameter � is determined as a fun
tion of the VEV �� bythe requirement of regularity for the 
orresponding domain wall, whi
h we will dis
uss below. As we willshow, a possible value is � = 0 - in fa
t the only possible value for the physi
ally relevant 
ase where (7.3)is embedded in N = 8 gauged supergravity in four dimensions. Choosing � = 0 then and expanding b�(�+)for small 
urvature (large l), we obtainb�(�+) = �p�� d+1d�1�  1 + k2� �d� 12l �2 �� 4d�1� + � � �! ; (7.19)where the dots stand for higher derivative terms. Comparing this with the derivative of the e�e
tive a
tion(7.11) with respe
t to the VEV, ��, and using R[g(0)℄ = d(d� 1)=l2, determines
� = � (d� 1)216d(d� 2)p�; d > 2; p� = �2=16l; d = 2: (7.20)Note in parti
ular that for d = 2 the 
oupling � is itself �xed. In order to have a positive kineti
 term in thee�e
tive a
tion (7.11), we should 
hoose the positive sign in the renormalized momentum b�(�+) and hen
ein the momentum (7.16).However, the renormalized momentum b�(�+) in (7.18) allows us to determine the exa
t e�e
tive potentialon any boundary of 
onstant s
alar 
urvature. Namely, integrating b�(�+) with respe
t to �� (for � = 0again) we obtain the exa
t e�e
tive potentialVk(��) = (d� 1)3k8d(d� 2)l2p�� 2(d�2)(d�1)� F  1� d2 ; 12; 2� d2 ;�k� �d� 12l �2 �� 4(d�1)� !+(d� 1)2d ��s�d� 12l �2 k�2� + �� 2(d+1)(d�1)� + Vo + f(��); (7.21)where the overall 
onstant Vo = �� �2� d2�� �d�12 �� � 12� (d� 1)d+1k d22d+1d(d� 2)ld� d�12 ; (7.22)is determined by the requirement that Vk(0) = 0. For k = 0 the e�e
tive potential (7.21) redu
es toVk=0(��) = (d� 1)2d p�� 2d(d�1)� + f(��): (7.23)For k = 1 and for d = 2; 3; 4 the potential (7.21) is expli
itly shown in Table 8.30



d Vk=1(��)2 18l ��2�q1 + 4l2��4� + 12lp� log�2lp��2� +q1 + 4l2��4���+ f(��)3 13l3� ��1 + l2��2��3=2 � 1�+ f(��)4 38� � 32l�3��2=3� � 12 + 4l29 ��4=3� �q1 + 4l29 ��4=3� � 14lp� log� 2l3 �2=3� +q1 + 4l29 ��4=3� ��+ f(��)Table 8: The exa
t e�e
tive potential (7.21) for k = 1 and d = 2; 3; 4. Note that for d = 2 the 
oupling, �,is given by (7.20).Domain walls and (absen
e of) gravitational instantonsThe solution (7.16) also enables us to �nd all possible solutions of the form (5.3). Using the expressions(7.13) for the 
anoni
al momenta in terms of the radial derivatives of the warp fa
tor and of the s
alar �eldwe �nd dr = ldAp1 + ke�2A + �e�(d+1)A ; (7.24)where � is an arbitrary integration 
onstant. De�ning u � e�A and ' � u�(d�1)=2� we 
an then write downthe most general domain wall (5.3) in the formds2 = l2du2u2 (1 + ku2 + �ud+1) + 1u2 ds2d:Z ''o d �'qd(d�1)�2l2 �+ k (d�1)24l2 �'2 + � �' 2(d+1)(d�1) = �l Z u0 d�up1 + k�u2 + ��ud+1 : (7.25)The sli
e metri
 ds2d is either one of the three 
onstant 
urvature metri
s given in Table 9 or the metri
 ona quotient of these by a dis
rete subgroup of their isometry group. Moreover, sin
e we pi
ked the plus signin the renormalized momentum b�(�+) in (4.6) so that the kineti
 term in the e�e
tive a
tion has a positivesign, we must pi
k the minus sign in (7.25).Note that if either k or � are negative, then the range of the radial 
oordinate is bounded, 0 � u � u�,for some upper bound u�.23 For k and � non-negative, however, u is unbounded from above: 0 � u < 1.Sin
e � = u(d�1)=2', in this 
ase regularity of the solution (7.25) requires that ' ! 0 as u ! 1.24 Thisgives the 
onditionZ 1d�12lp�'�2=(d�1)o dvr1 + kv2 + d(d�1)�2l2� �2lp�d�1 �d+1 �vd+1 = Z 10 dvp1 + kv2 + �vd+1 : (7.26)For � = 0 this is trivially satis�ed sin
e both integrals diverge. It follows that � = 0 leads to regularsolutions, whi
h we will dis
uss shortly. For � > 0, however, this 
onstraint 
an only be satis�ed if� < � (d� 1)d�22d+1dld�1 �2=(d�1) : (7.27)23In fa
t, for k = �1 and � > 0 these solutions are very similar to the Janus solution [52℄.24Note, however, that regularity of the solutions for the 
onformally 
oupled s
alar (7.3) does not guarantee the regularity ofthe 
orresponding minimally 
oupled s
alar sin
e the transformation rules (7.2) may break down. This should be 
he
ked 
aseby 
ase. 31



k ds2d0 ds2(Rd ) = dxidxi z = u, zi = xi1 ds2(Sd) = d�2 + sin2 �ds2(Sd�1) z = up1+u2+
os � , zi = sin �nip1+u2+
os � , nini = 1-1 ds2(H d ) = d�2 + sinh2 �ds2(Sd�1) z = up1�u2+
osh � , zi = sinh �nip1�u2+
osh � , nini = 1Table 9: The three sli
e metri
s ds2d 
orresponding respe
tively to k = 0;�1, and the 
oordinate transfor-mations that bring the metri
 (7.25) with � = 0 into the upper half plane metri
 (7.28).Provided this holds, the above 
onstraint gives a relation between � and the VEV ��. Note, however, thatfor d = 2 and d = 3 the 
ondition on the 
oupling is respe
tively � < (�2=16l)2 and � < �2=6l2. But re
allthat we have determined in (7.20) that for d = 2 we must ne
essarily have � = (�2=16l)2, while for d = 3,� = �2=6l2 is pre
isely the value of the 
oupling su
h that the a
tion (7.3) 
an be embedded in M-theory.It follows that no regular solutions of the form (7.25) with both k and � non-negative exist in these two
ases. This is parti
ularly signi�
ant for the three-dimensional 
ase that 
an be embedded in M-theory. Notethat (7.25) with k = 1 and � > 0, were it a regular solution, it would be a gravitational instanton similarto the numeri
al solutions of [13℄. As in that 
ase, by analyti
 
ontinuations (7.25) would then give stati
spheri
ally symmetri
 gravitational solitons, as well as Big Bang/Crun
h geometries, whi
h would have adual des
ription in the dual N = 8 strongly 
oupled SCFT in three dimensions. Our argument shows theabsen
e of su
h solitons in this theory. Of 
ourse, this refers to the parti
ular trun
ation of N = 8 gaugedsupergravity that gives the a
tion (7.3), and whi
h is di�erent from the one used in [13℄. We will see in thenext se
tion, however, that (7.3) does admit regular instanton solutions, but of a di�erent type.An interesting property of the general domain wall solution (7.25) is that for � = 0 the metri
 is themetri
 of Eu
lidean AdSd+1 (i.e. of the hyperboli
 spa
e H d+1 ), for all possible values of k = 0;�1.25 Indeed,the 
oordinate transformations given in Table 9 for ea
h of the 
ases k = 0;�1, transform the metri
 in(7.25) with � = 0 to the upper half plane metri
 of H d+1ds2 = l2z2 (dz2 + dzidzi); i = 1; : : : ; d: (7.28)Moreover, for � = 0 the s
alar �eld in (7.25) takes the form� = 'ou d�12 0�p1 + ku2 � usk +�2lp�' 2d�1o =(d� 1)�21A�(d�1)=2 ; (7.29)where 'o is an arbitrary 
onstant 
orresponding to the VEV ��. For k � 0, 'o � 0 but for k = �1,'o > ((d � 1)l=p2�)(d�1)=2. Note also that with the sign 
hoi
e we made above, the plus sign should be
hosen in this expression. We will revisit this spe
ial 
ase of the domain wall solutions (7.25) shortly.Another spe
ial 
ase of the general solution (7.25) deserves a 
omment. Namely, for d = 3 and � = �2=6l2,in whi
h 
ase the two potentials (6.21) and (7.1) agree, the Poin
ar�e domain wall (6.24) that we found inthe previous se
tion mat
hes pre
isely with the domain wall (7.25) for k = 0. In order to 
ompare the twosolutions we use the �eld rede�nitions (7.2) to rewrite the domain wall (6.24) in the frame where the s
alar25Of 
ourse, this is true provided there are no global identi�
ations in the sli
e metri
 ds2d.
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�eld is 
onformally 
oupled. The transformed solution takes the formds2 = 14�2 �1 + ��+p1 + 2��+ �2��1 +p1� �2�� l2d�2(1� �2)(1 + 2��+ �2) + �2odxidxi� ;� = p6� �1 +p1� �2 ; (7.30)where �o = 2�p6��. It is now straightforward to 
he
k that identifyingu�2 = �2o4�2 �1 + ��+p1 + 2��+ �2��1 +p1� �2� ; (7.31)the solution (7.30) reprodu
es the domain wall (7.25), provided we also identify � = (�2�1)�4o=16. A

ordingto the above dis
ussion then, only the supersymmetri
 domain wall, 
orresponding to � = �1, is regular.However, even in this 
ase, the 
orresponding solution for the physi
ally relevant minimally 
oupled s
alaris not regular. As was dis
ussed in [23℄, the di�eren
e between the supersymmetri
 and non-supersymmetri
domain walls is that the former has a null singularity, while the later has a timelike singularity. In both
ases this singularity 
an be seen in the 
orresponding 11-dimensional solution as arising from a 
ollapsingS2 inside the asymptoti
ally S7 transverse spa
e.7.3 InstantonsFinally, we 
onsider a very spe
ial 
lass of solutions of the equations of motion (7.4), whi
h for the 
ase d = 3were found in [24℄. These are solutions that satisfyT�� = 0; R�� + dl2 g�� = 0: (7.32)In the 
ase of a vanishing 
osmologi
al 
onstant su
h solutions have been dis
ussed in [53℄. The vanishingof the modi�ed stress tensor gives a linear equation for the s
alar �eld, namely�r�r� � 1d+ 1g���g���2=(d�1) = 0; (7.33)whi
h admits non-trivial solutions provided the metri
 is exa
t AdSd+1. The general solution of this equation,subje
t to the 
onstraint that it also satis�es the se
ond equation in (7.4), 
an be written in the upper halfplane 
oordinates (7.28) as�2=(d�1) = (d� 1)lpj�j � bz�sgn(�)b2 + (z + a)2 + (~z � ~z0)2� ; (7.34)where a; b; zi0, i = 1; : : : ; d, are arbitrary 
onstants. A spe
ial 
ase of this solution (for � < 0) was foundin [54℄ as a solution of the s
alar equation (7.4) in four dimensions and ignoring the ba
k-rea
tion on thegeometry. It was later pointed out in [24℄ that for any value of the 
oupling, �, there is in fa
t no ba
k-rea
tion and, together with the AdS4 metri
, this is an exa
t solution of the full gravity-s
alar system. Thesolution (7.34) is the generalization of the exa
t solution of [24℄ to any dimension.In order to understand the signi�
an
e of the parameters in this solution we 
onsider its asymptoti
expansion � � e� (d�1)r2l ��(~z)� l�e� (d+1)r2l � (d+1)(d�1)� (~z); (7.35)where � �pj�ja=b and the inhomogeneous VEV, ��(~z), is given by�2=(d�1)� = (d� 1)lpj�j � b�sgn(�)b2 + a2 + (~z � ~z0)2� : (7.36)33



The asymptoti
 form (7.35) tells us that the two modes, ��, of this soliton are related by �+ = �l�� (d+1)(d�1)� ,or equivalently b�(�+) = �1l (�+ ���)�+ = �� d+12� : (7.37)From Table 2 we then unambiguously 
on
lude that the solution (7.34) satis�es Mixed boundary 
onditions:Jf� = �b�(�+) � f 0(��) = 0, with f(��) = �� (d� 1)2d � 2d(d�1)� ; (7.38)whi
h 
orresponds to a marginal multi-tra
e deformation with deformation parameter �. It follows that theparameter � = pj�ja=b is not a modulus of the solution (i.e. of the VEV), but rather a modulus of thetheory itself (of 
ourse this refers to the large N limit only). Di�erent values of � 
orrespond to di�erentpoints along the line of marginal deformations (7.38). Equivalently, two solutions of the form (7.34) withdi�erent values of � satisfy di�erent boundary 
onditions. Note that regularity of the general solution (7.34)requires that a > b � 0 and hen
e � > p� > 0. Using the exa
t e�e
tive potential (7.23) with the boundary
ondition (7.38) we see that this is pre
isely the 
ondition for the e�e
tive potential to be
ome unboundedfrom below.26 This suggests that the Eu
lidean solutions (7.34) are instantons whi
h mediate the de
ay ofthe 
onformal va
uum at �� = 0 due to the instability introdu
ed by the marginal deformation (7.38) [24℄.A 
urious feature of the VEV (7.36) is that it is an extremum of a simple two-derivative boundary a
tion[24℄.27 This `phenomenologi
al' e�e
tive a
tion in 
at spa
e takes the formS = C Z ddz��� 2d�1� �i���i�� + (�� �2)� 2dd�1� � ; (7.39)where C is an arbitrary 
onstant. Note, however, that this e�e
tive a
tion does not - and indeed it doesnot have to - agree with the holographi
 two-derivative e�e
tive a
tion (7.11) we have derived above. If one
hooses C su
h that it mat
hes the 
orre
t 
oeÆ
ient of the kineti
 term given in (7.11), then the 
oeÆ
ientof the potential term in (7.39) should be 
hanged as � � �2 ! 2p�(p� � �), if (7.39) were to agree with(7.11). Note that in the vi
inity of the 
riti
al point at � = p� these 
oeÆ
ients do a
tually agree. However,we see this as merely a 
urious 
oin
iden
e, sin
e the 
orre
t two-derivative e�e
tive a
tion as we showed is(7.11), and indeed the instanton VEV (7.36), whi
h is an exa
t extremum of the full all-derivative e�e
tivea
tion, need not be an extremum of the two-derivative e�e
tive a
tion.Moduli spa
eThe moduli spa
e of the instantons (7.34) is the spa
e parameterized by all arbitrary parameters of thesolution, subje
t to the 
ondition that the boundary 
onditions remain �xed, i.e. provided � remains �xed.The moduli spa
e be
omes manifest if we rewrite the instanton solution (7.34) in terms of the 
oordinates(Y�1; Y0; Yi), i = 1; : : : ; d, of the 
overing spa
e, R1;d+1 , of H d+1 . Namely, we introdu
e 
oordinates onR1;d+1 as well as a set of auxiliary 
onstants parameterizing an eH d+1 asY�1 = l2z (1 + z2 + ~z2); ~Y�1 = ~l2~z (1 + ~z2 + ~~z2);Y0 = l2z (1� z2 � ~z2); ~Y0 = ~l2~z (1� ~z2 � ~~z2);Yi = lz zi; ~Yi = ~l~z ~zi: (7.40)The solution (7.34) then 
an be written as�2=(d�1) = 1� ~Y � Y + 2d�1 l� ; (7.41)26Putting the theory on Sd does not 
hange this 
on
lusion, as 
an be dedu
ed from the e�e
tive potential (7.21).27See [55℄ for a re
ent dis
ussion of the d = 2 
ase. 34



where ~Y � Y � � ~Y�1Y�1 + ~Y0Y0 +Pdi=1 ~YiYi, and we have identi�ed~z = (d� 1)2 b~lpj�j ; ~zi = zio; ~l = 2d� 1p�2 � �: (7.42)The moduli spa
e is therefore a hyperboli
 spa
e, ~H d+1 , of radius ~l, whi
h is well de�ned pre
isely for � > p�.Re
all that this is exa
tly the 
ondition for the instantons to exist, as well as, for the e�e
tive potential tobe unbounded from below. Finally, note that the form (7.41) allows one to easily write the solution in anyother 
oordinate system parameterizing H d+1 .Spe
ial limitsSin
e the metri
 (7.25) be
omes exa
t AdSd+1 for � = 0 and (7.34) is the most general solution 
or-responding to an exa
t AdSd+1 metri
, it follows that we must be able to obtain the � = 0 domain wallsolutions dis
ussed above as a limit of the solution (7.34). This 
an indeed be easily seen, provided we realizethat in taking any limits of the general solution (7.34), we do not ne
essarily have to satisfy the the 
onditiona > b � 0 that was essential for the regularity of the general solution. This is espe
ially so sin
e the spe
iallimits 
an satisfy more general boundary 
onditions than the general solution (7.34).Setting �rst a = b in (7.34) and letting b ! 1 and ~z2o ! 1, while keeping b=~z2o = lp�d�1' 2d�1o 
onstant,reprodu
es the solution (7.29) with k = 0. Moreover, setting zio = 0 and b = 2lp�d�1 ' 2d�1o in (7.34), the two
hoi
es a = �p�1 + b2 lead via the 
oordinate transformations given in Table 9 to the solution (7.29) withk = �1 respe
tively. It follows that, although all three solutions satisfy boundary 
onditions 
orrespondingto the marginal deformation (7.38), only the solution for k = 1 satis�es the 
ondition � > p�, whi
h isne
essary in order for the solution to be identi�ed with an instanton. For k = 0 instead we have � = p�,while for k = �1, � < p�. This 
an be seen dire
tly by looking at the extrema of the e�e
tive potential(7.21). Namely, the equation V 0k(��) = 0 is nothing but the gap equation Jf� = �b�(�+)�f 0(��) = 0, wherenow b�(�+) is given by (4.4) and f(��) by (7.38). Rearranging this equation givesk + (�� �2)� 2ld� 1' 2d�1o �2 = 0: (7.43)Note that the VEV, �o, is undetermined for k = 0. In the spe
ial 
ase where this solution is embedded intoN = 8 gauged supergravity in four dimensions, this is pre
isely the Coulomb bran
h solution 
orrespondingto � = �1 in (6.24). For k = 1 the VEV is �xed to ' 2d�1o = 1=l~l, whi
h is a lo
al maximum of the e�e
tivepotential (7.21), as 
an be seen from Figure 1 for the 
ase d = 3. This plot also shows that the e�e
tivepotential on S3 is stable, marginally stable and unstable a

ording to whether � < p�, � = p� and � > p�respe
tively.Va
uum de
ay rateWe have seen above that the existen
e of these instanton solutions for � > p� 
oin
ides with the 
riti
alpoint where the exa
t quantum e�e
tive potential (7.21) be
omes unbounded from below. This suggests thatthe dual �eld theory be
omes unstable and the 
onformal va
uum at �� = 0 de
ays via quantum tunneling,mediated by these instantons, to something else [24℄. The endpoint of this de
ay is un
lear, however, sin
e
lassi
al supergravity breaks down before this endpoint is rea
hed. In the d = 3 
ase, where the system(7.3) 
an be embedded in N = 8 gauged supergravity and the 
orresponding asymptoti
ally AdS4 � S7solutions uplifted to 11-dimensional supergravity, this breakdown of the supergravity des
ription 
an betra
ed to an S2 inside the S7 
ollapsing [24℄. 1=N 
orre
tions must therefore be taken into a

ount in orderto understand the endpoint of the de
ay. From the bulk point of view, the instantons signal an instabilityof the AdS va
uum on
e the modi�ed boundary 
ondition (7.38), with � > p� is imposed.The instanton solutions allow us to 
ompute the de
ay probability of the 
onformal va
uum, whi
h isgiven by [39℄ P / e���[�℄���instanton ; (7.44)35
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Figure 1: Plot of the e�e
tive potential (7.21), with f(��) given by (7.38), on S3 for � < p� (long dashes),� = p� (short dashes), and � > p�.where ��[�℄jinstanton is the e�e
tive a
tion of the boundary theory evaluated on the instanton VEV (7.36).Although we do not know the general form of the e�e
tive a
tion, this de
ay rate 
an be 
omputed exa
tlyin two di�erent ways. First, the e�e
tive a
tion on the VEV (7.36) 
an be evaluated by 
omputing the bulkon-shell a
tion on the instanton solution (7.34), taking into a

ount the boundary term (7.38). This gives��jinstanton = � d+12 ~l�d�(d+12 ) �d 241� d(d+ 1) �p� � �p� + 1�F  d+ 22 ; 1; d+ 2; 2�p� + 1!35 : (7.45)The se
ond way relies on boundary quantities only. The 
ru
ial observation is that sin
e the value of theon-shell a
tion does not depend on the moduli of the instanton - indeed (7.45) depends only on the 
oupling� and the deformation parameter � - we 
an go to any point in the instanton moduli spa
e to evaluate thee�e
tive a
tion. In parti
ular, we saw that there is a point in the moduli spa
e where the instanton VEV(7.36) is 
onstant, namely � 2d�1� = 1=l~l. This 
orresponds to the � = 0, k = 1 domain wall we dis
ussedabove. But then the e�e
tive a
tion redu
es to the e�e
tive potential, whi
h we have 
omputed in (7.21).Evaluating the e�e
tive potential on this 
onstant VEV and multiplying by the volume of Sd gives, aftersome manipulation using the identityF ��d2 ; 12 ; 1� d2 ;�x� = p1 + x��d� 1d� 2�xF �1� d2 ; 12; 2� d2 ;�x� ; (7.46)pre
isely (7.45).A
knowledgementsI would like to thank Jan de Boer, Sebastian de Haro, Anastasios C. Petkou, Kostas Skenderis and J�orgTes
hner for very useful 
omments. I also thank E
ole Polyte
hnique for hospitality during the 
ompletionof this work.A The variational problem and Hamilton-Ja
obi equationsIn this appendix we 
onsider the variational problem for the a
tions (6.1) and (7.3) on the regulatinghypersurfa
e �r. Spe
i�
ally, we determine the appropriate Gibbons-Hawking term and the radial 
anoni
al36



minimal �ij = � 12�2p
(K
ij �Kij)�� = p
 _�SGH = � 1�2 R�r ddxp
K

onformal �ij = � 12�2p
 �1� (d�1)�24d �2� (K
ij �Kij) + d�14d p
� _�
ij�� = p
 � _�+ d�12d K��SGH = � 1�2 R�r ddxp
 �1� (d�1)�24d �2�KTable 10: The 
anoni
al radial momenta and the Gibbons-Hawking terms for the a
tions (6.1) and (7.3).Note that Kij = 12 _
ij is the extrinsi
 
urvature of the hypersurfa
e �r.momenta for ea
h 
ase. Moreover, we give the radial Hamiltonian densities, whi
h, via the Hamiltonian andmomentum 
onstraints, determine the 
orresponding Hamilton-Ja
obi equations.A generi
 variation of the bulk a
tion produ
es a bulk term proportional to the equations of motion aswell as a boundary term. Namely, ÆS = ZM dd+1xpg ((eoms) +r�v�) ; (A.1)for some ve
tor �eld v�. This ve
tor �eld is fundamental to the study of the variational problem and theradial Hamiltonian formalism. For the a
tions (6.1) and (7.3) it is given respe
tively byv�min = � 1�2 g�[�r�℄Æg�� + Æ�r��; (A.2)v�
onf = � 1�2 �1� (d� 1)�24d �2� g�[�r�℄Æg�� � d� 12d �Æg��g�[�r�℄�+ Æ�r��: (A.3)We 
an evaluate expli
itly the boundary term (A.1) on �r using the gauge-�xed metri
 (3.1). Generi
ally ittakes the form Br � Z�r �v = �ÆSGH + Z�r ddx(Æ
ij�ij + Æ���); (A.4)but the pre
ise form of the Gibbons-Hawking term, SGH , and of the radial 
anoni
al momenta, �ij and��, 
ru
ially depends on the form of the bulk a
tion. In Table 10 we give expli
itly the momenta and theGibbons-Hawking terms for minimally and 
onformally 
oupled s
alars. Note that although the Gibbons-Hawking term for minimally 
oupled s
alars is identi
al to the standard Gibbons-Hawking term for puregravity, this is no longer true for 
onformally 
oupled s
alars.The radial momenta given in Table 10 are, of 
ourse, the same quantities as those one would obtainfrom the fun
tional derivatives of the o�-shell bulk Lagrangian with respe
t to the radial derivative of the
orresponding indu
ed �eld, i.e. �ij = ÆLÆ _
ij ; �� = ÆLÆ _� : (A.5)However, the boundary term (A.4) shows that they also 
orrespond to the fun
tional derivatives of the theregularized on-shell a
tion, Ir � (S + SGH)jon�shell; (A.6)37



with respe
t to the indu
ed �elds on the hypersurfa
e �r. Namely,�ij = ÆIrÆ
ij ; �� = ÆIrÆ� : (A.7)These relations, familiar from Hamilton-Ja
obi theory, are the main reason why the radial Hamiltonianformalism is the most dire
t approa
h for studying the supergravity limit of the AdS/CFT 
orresponden
e.Indeed, in the simplest 
ase of Diri
hlet boundary 
onditions, the AdS/CFT di
tionary identi�es the indu
ed�elds, e.g. 
ij and �, with the sour
es of the dual operators and the regularized on-shell a
tion with thegenerating fun
tional of regularized 
onne
ted 
orrelation fun
tions. It follows that the 
anoni
al momentagiven by (A.7) 
orrespond to the regularized one-point fun
tions of the dual operators with arbitrary sour
es.This statement trivially 
arries over for renormalized 
orrelation fun
tions on
e the 
ovariant boundary
ounterterms are added to Ir . Moreover, as it is extensively dis
ussed in Se
tion 3, on
e the 
ovariantboundary 
ounterterms are added to Ir, one 
an add further appropriate �nite boundary terms in order tomodify the boundary 
onditions.The bulk equations of motion 
an be written in terms of the radial 
anoni
al momenta using a `radialADM formalism'. As is well known, the resulting equations are the standard �rst order Hamilton equations
omplemented with the Hamiltonian and momentum 
onstraints, whi
h re
e
t the di�eomorphism invarian
eof the theory. For the a
tions (6.1) and (7.3) the 
onstraints take the formH = 0; 2Di�ij = ���j�; (A.8)where the Hamiltonian density, H, is given respe
tively byHmin = 2�2p
 ��ij�ij � �2d� 1�+ 12p
 �2� �p
�� 12�2R[
℄ + 12�i��i�+ V (�)� ; (A.9)H
onf = 2�2p
 �1� (d� 1)�24d �2��1��ij�ij � 1d�2�� 2�2d(d � 1)p
 �� � d� 14 ����2 + 12p
 �2��p
�� 12�2R[
℄ + (d� 1)22d(d� 2)� dd�1�
� d�2d�1 � d(d� 1)2�2l2 + �2� 2(d+1)(d�1) � ; (A.10)and where �
 � ��
 + (d� 2)4(d� 1)R[
℄; (A.11)is the s
alar 
onformal Lapla
ian in d dimensions. Note that although the form of the Hamiltonian and ofthe momenta is di�erent for minimally and 
onformally 
oupled s
alars, the form of the 
onstraints remainsthe same. Hamilton's equations 
an then be written in terms of the Hamiltonian H = R ddxH as_
ij = 2Kij = ÆHÆ�ij ; _� = ÆHÆ�� ; (A.12)_�ij = � ÆHÆ
ij ; _�� = �ÆHÆ� : (A.13)The two equations in the �rst line are just the inverse of the expressions in Table 10 for the momenta in termsof the radial derivatives of the indu
ed �elds. The two equations in the se
ond line give the se
ond orderequations one would obtain from the 
omponents of Einstein's equation that are transverse to �r. However,we will not need the expli
it form of these equations sin
e we only use the Hamilton-Ja
obi formalism in thispaper. This 
onsists in inserting the 
anoni
al momenta as derivatives of the regularized on-shell a
tion (see(A.7)) in the Hamilton and momentum 
onstraints (A.8). The resulting equations are the Hamilton-Ja
obiequations for the gravity-s
alar system. Hamilton's equations are then automati
ally satis�ed due to theidenti�
ation (A.7).Referen
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