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DESY-06-218ZMP-HH/06-17hep-th/yymmnnnMulti-Trae Deformations in AdS/CFT:Exploring the Vauum Struture of the Deformed CFTIoannis Papadimitriou�DESY Theory Group,Notkestrasse 85, D-22603 Hamburg, GermanyandCenter for Mathematial Physis,Bundesstrasse 55, D-20146 Hamburg, Germany.AbstratWe present a general and systemati treatment of multi-trae deformations in the AdS/CFT orre-spondene in the large N limit, pointing out and larifying subtleties relating to the formulation of theboundary value problem on a onformal boundary. We then apply this method to study multi-traedeformations in the presene of a salar VEV, whih requires the oupling to gravity to be taken intoaount. We show that supergravity solutions subjet to `mixed' boundary onditions are in one-to-oneorrespondene with ritial points of the holographi e�etive ation of the dual theory in the preseneof a multi-trae deformation, and we �nd a number of new exat analyti solutions involving a minimallyor onformally oupled salar �eld satisfying `mixed' boundary onditions. These inlude the generaliza-tion to any dimension of the instanton solution reently found in hep-th/0611315. Finally, we providea systemati method for omputing the holographi e�etive ation in the presene of a multi-traedeformation in a derivative expansion away from the onformal vauum using Hamilton-Jaobi theory.Requiring that this e�etive ation exists and is bounded from below reprodues reent results on thestability of the AdS vauum in the presene of `mixed' boundary onditions.
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Contents1 Introdution and summary of results 22 Multi-trae deformations in QFTs with a large N limit 33 The boundary value problem for the Klein-Gordon operator in AlAdS spaes 53.1 The variational problem in the presene of a onformal boundary . . . . . . . . . . . . . . . . 63.2 Boundary onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3 Solution of the boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.4 The on-shell ation and the AdS/CFT ditionary . . . . . . . . . . . . . . . . . . . . . . . . . 104 Toy model 124.1 General solution with linear boundary onditions . . . . . . . . . . . . . . . . . . . . . . . . . 124.2 Vaua with non-linear boundary onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 E�etive ation from Hamilton's harateristi funtion 156 Minimal oupling 186.1 Two-derivative e�etive ation for onformal boundary onditions . . . . . . . . . . . . . . . . 186.2 Minisuperspae approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236.3 The `2/3' potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Conformal oupling 277.1 Two-derivative e�etive ation for onformal boundary onditions . . . . . . . . . . . . . . . . 287.2 Minisuperspae approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297.3 Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33A The variational problem and Hamilton-Jaobi equations 361 Introdution and summary of resultsMulti-trae deformations have been studied extensively in the ontext of the AdS/CFT orrespondene inthe large N limit, both lassially [1, 2, 3, 4, 5, 6, 7℄ and at the one-loop level [8, 9, 10℄. Most of this work,however, has foused on the e�et of multi-trae deformations on the onformal vauum, in whih ase thebak-reation to the geometry an be ignored. If the deforming operator though is allowed to aquire anon-zero VEV, then the bak-reation an no longer be ignored and the oupling to gravity must be takeninto aount. Only reently have multi-trae deformations in the presene of a salar VEV been onsidered,mainly in the ontext of Designer Gravity [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21℄.In order for a CFT to admit multi-trae deformations it must ontain operators with low enough di-mension. For double- or higher-trae deformations built out of a single operator, for example, not to beirrelevant, the operator must have onformal dimension � � d=2 in d dimensions. For salar operators,for example, this means that the operator must have the `non-standard' �� dimension. This onstraint,together with unitarity, whih imposes a lower bound on the dimension �, severely restrits the CFTs admit-ting multi-trae deformations. The possibilities are further narrowed if one insists that the undeformed CFTbe supersymmetri. Sine the AdS/CFT ditionary relates multi-trae deformations in the large N limit toa hoie of boundary onditions for the dual bulk supergravity �elds [1℄, these restritions on the onformaldimension of the operator translate into a ondition on the mass of the dual supergravity �elds for them toadmit the neessary generalized boundary onditions. We are then interested in gauged supergravities thatadmit AdS vaua and have �elds with mass lose to the Breitenlohner-Freedman bound [22℄.Both the maximal gauged supergravities in four and �ve dimensions ontain salars with the right mass,and indeed blak hole solutions with salar hair that satisfy generalized boundary onditions were foundnumerially in [12℄, following earlier work in three dimensions [11℄. Smooth instantons and gravitationalsoliton solutions of N = 8 D = 4 gauged supergravity with generalized boundary onditions were also foundnumerially in [13℄, and shown to be related to a Big Crunh geometry. More reently, exat solutions of2



N = 8 D = 4 gauged supergravity obeying generalized boundary onditions were found analytially in [23℄and [24℄ and uplifted to eleven dimensions. The AdS/CFT identi�es these solutions with `vaua' or `states'in the dual deformed CFT. In partiular, the extrema of the large N quantum e�etive ation for the VEV ofthe deforming operator are in one-to-one orrespondene with bulk solutions satisfying the relevant boundaryonditions. These bulk solutions then provide a window into the vauum struture of the deformed theory.A very interesting question, in partiular, is whether the onformal vauum - whih generially remainsa vauum of the deformed theory - is stable or not under ertain boundary onditions. The instantonsfound in [12℄ and [24℄ show that it is not, under the partiular AdS-invariant boundary onditions that theseinstantons satisfy, sine these mediate the tunneling of the onformal vauum to an instability region. This,of ourse, does not ontradit any of the well known stability theorems [25, 26, 27℄, beause these apply onlyto ertain speial boundary onditions. The question of stability with more general boundary onditionsorresponding to multi-trae deformations has been addressed reently in the ontext of Designer Gravity[18, 19, 20, 21℄. The approah followed is a generalization of the spinorial argument of [28℄, but as in theearlier work [26, 27℄ no supersymmetry is required. The argument only relies on the existene `fake Killingspinors', whih themselves an be onstruted from a `fake superpotential'. Non-perturbative stability thenfollows from the existene of a suitable `fake superpotential'.However, the AdS/CFT orrespondene allows us to address the problem of non-perturbative stabilityfrom a ompletely di�erent point of view. Namely, if we knew the e�etive ation of the dual theory, then wewould be able to address the question of stability/instability diretly. We will show that the e�etive ationan be omputed holographially in a derivative expansion using Hamilton-Jaobi theory [29℄. Requiringthat this e�etive ation exists and it is stable reprodues all known stability results, inluding the reentresults in the ase of generalized boundary onditions. This agreement an be traed to the fat that botharguments require global existene of a suitable `fake superpotential'. In the latter ase, however, this isinterpreted as Hamilton's harateristi funtion, whih allows us to immediately generalize these results toother systems, suh as onformally oupled salars.The paper then is organized as follows. In Setion 2 we review a general desription of multi-traedeformations in the large N limit, whih relies on large N fatorization. This will make manifest theorrespondene between multi-trae deformations on the boundary and boundary onditions in the bulkin Setion 3, where we revisit the boundary value problem and the possible boundary onditions for theKlein-Gordon operator in asymptotially loally AdS spaes. In partiular, we present a general systematimethod to address multi-trae deformations and to properly aount for the fat that the boundary isa onformal boundary - as opposed to a hard boundary. As we show, this automatially removes thedivergenes assoiated with the in�nite volume of the spae. Although we present these results for salar�elds, they immediately generalize to any �eld admitting boundary onditions orresponding to multi-traedeformations. In Setion 4 then we demonstrate the general method in the ase of a free massive salar �eldin a �xed AdS bakground, reproduing in a onise way a number of known results. We then move on inSetion 5 to inlude gravity and we desribe in detail our method for omputing the holographi e�etiveation of the dual theory in a systemati way based on Hamilton-Jaobi theory. This method is then appliedto the ases of salars minimally and onformally oupled to gravity in Setions 6 and 7 respetively, whihontain our main results. In Setion 6 we generalize the non-supersymmetri Poinar�e domain wall solutionsfound in [23℄ to arbitrary dimension, while the same is done for the instanton solution found in [24℄ in Setion7. Moreover, we �nd all possible domain wall solutions - both at and urved - for the onformally oupledsalar in any dimension, and we show that this ompletely determines the two-derivative e�etive ation ofthe dual theory. Some tehnial results regarding the variational problem for minimally and onformallyoupled salars, as well as the Hamilton-Jaobi method for these systems, are olleted in the Appendix.2 Multi-trae deformations in QFTs with a large N limitIn a quantum �eld theory with a standard large N limit, large N fatorization allows for a universal de-sription of generi multi-trae deformations. As we now briey review, the e�et of suh a deformation anmost naturally be desribed in terms of the generating funtional of the deforming operator and its Legendretransform [7℄.Let O(x) be a loal, generially omposite, gauge-invariant and single-trae operator transforming in some3



representation of the relevant rank N group. For onreteness we take this to be the adjoint representationand we normalize the operator suh that hOi = O(N0) as N !1. The dynamis of O(x) is enoded in thegenerating funtional of onneted orrelators, W [J ℄, whih an be represented as a path integral over thefundamental degrees of freedom, f�g, of the theory, weighted by the ation S[�℄, ase�W [J℄ = Z [d�℄e�S[�℄�N2 R ddxJ(x)O(x): (2.1)Sine W [J ℄ is O(N2) as N !1, it is onvenient to work instead with w[J ℄ � N�2W [J ℄. In partiular, theone-point funtion of O(x) in the presene of a soure is given by�(x) � hOiJ = Æw[J ℄ÆJ : (2.2)Alternatively, the dynamis an be enoded in the Legendre transform of the generating funtional, �[�℄,given by e��[�℄ = Z [dJ ℄e�N2w[J℄+N2 R ddxJ(x)�(x): (2.3)�[�℄ is known as the e�etive ation of the loal operator O(x), or the generating funtional of 1PI diagrams.Again, it is useful to introdue the O(N0) quantity ��[�℄ = N�2�[�℄, suh thatJ(x) = �Æ��[�℄Æ� : (2.4)Suppose now that the ation is deformed by a funtion, f(O), of the loal operator O(x) as Sf [�℄ =S[�℄ +N2 R ddxf(O). In the following we will only onsider deformations for whih f(0) = 0. The questionwe want to address now is how this deformation modi�es the funtionals w[J ℄ and ��[�℄. As we now show,large N fatorization allows for a very simple and universal answer in the large-N limit, whih is summarizedin Table 1. Of ourse, beyond the large N approximation, the answer to this question is non-universal andmuh more involved, sine the operator O(x) will generially mix with other operators at 1=N order. Wewill only onsider the leading large N behavior here.Consider �rst the generating funtional in the deformed theory, whih is given bye�N2wf [Jf ℄ = Z [d�℄e�S[�℄�N2 R ddx(JfO+f(O))= Z [d�℄e�S[�℄�N2 R ddx(JO+f(O)�f 0(�)O)N!1� e�N2w[J℄e�N2 R ddx(f(�)��f 0(�)); (2.5)where we introdued J � Jf + f 0(�) in the seond line in order to remove the linear term from f(O) so thatlarge N fatorization an be used in the last step. This proves the result shown in the third row of Table 1.Similarly, the e�etive ation in the deformed theory is given bye�N2��f [�℄ = Z [dJf ℄e�N2wf [Jf ℄+N2 R ddxJf�N!1� Z [dJ ℄e�N2w[J℄e�N2 R ddx(f(�)��f 0(�))eN2 R ddx(J�f 0(�))�= e�N2��[�℄�N2 R ddxf(�); (2.6)where we have used [dJf ℄ = [dJ ℄. This justi�es the entry in the last row of Table 1. As we will review below,these universal results make manifest the fat that the AdS/CFT ditionary maps multi-trae deformationsof the boundary theory to a modi�ation of the boundary onditions imposed on the bulk �elds. Before,however, we need to understand the boundary value problem for suh bulk �elds in AdS.
4



Undeformed DeformedSoure J Jf = J � f 0(�)VEV � �f = �Generating funtional w[J ℄ wf [Jf ℄ = w[J ℄ + R ddx (f(�)� �f 0(�))j�=Æw=ÆJE�etive ation ��[�℄ ��f [�℄ = ��[�℄ + R ddxf(�)Table 1: The e�et of a generi multi-trae deformation on the generating funtional and on the e�etiveation in the large N limit.3 The boundary value problem for the Klein-Gordon operator inAlAdS spaesThe gauge/gravity duality generially relates a theory of gravity in an asymptotially loally anti de Sitter(AlAdS) spae M (see [30℄ for a de�nition of an AlAdS spae in the ontext of the gauge/gravity duality)to a non-gravitational theory residing on the onformal boundary �M of M. Multi-trae deformationsof the boundary theory are then related to the hoie of boundary onditions imposed on the bulk �elds[1, 2, 3, 4, 5, 8, 6, 7℄. The fat that the boundary of an AlAdS spae is a onformal boundary, however,demands some extra are when analyzing the boundary value problem. In partiular, any rigorous treatmentshould aount for the following fat [31℄:By the very de�nition of a `onformal boundary', any bulk �eld does not indue a �eld on theboundary, but rather a �eld up to Weyl resalings, i.e. a `onformal lass'. It follows that, in theabsene of a onformal anomaly, any boundary ondition must be imposed on the onformal lassand not on a onformal representative. In other words, any boundary ondition must be imposedon a `lass funtion'. Although, this annot be ahieved if a onformal anomaly is present, inthat ase one must ensure that the boundary ondition is imposed on a quantity that has a wellde�ned transformation under Weyl resalings.This requirement, whih we will make more preise and onrete below, has a number of important andinevitable onsequenes that are often overlooked:� The well known boundary ovariant ounterterms must be added to the ation before one an studythe variational problem and impose boundary onditions.� With the standard Dirihlet boundary onditions, the one-point funtion of an operator O(x) is in gen-eral not given by the normalizable mode of the orresponding bulk �eld. It is given by the renormalizedradial momentum [32℄. In general, the two di�er by a loal funtional of the non-normalizable mode,whih is neessary to ensure that the Ward identities are ful�lled [33, 30℄. In partiular, it is the relationbetween the non-normalizable mode and the renormalized radial momentum whih is fundamentallyrelated to the hoie of boundary onditions and not the relation between the non-normalizable andnormalizable modes. Only when the two happen to agree is one justi�ed to use the normalizable modeinstead of the renormalized momentum.In view of these subtleties, and for the sake of ompleteness, we �nd it worthwhile to devote this setion to aareful and systemati analysis of the boundary value problem and to review how the AdS/CFT ditionaryrelates the hoie of boundary onditions for the bulk �elds to multi-trae deformations of the boundarytheory. We also take this opportunity to spell out the formalism and notation whih will be used in thesubsequent setions. 5



The metri on an AlAdS manifold, M takes the form1ds2 = dr2 + ij(r; x)dxidxj ; (3.1)where ij(r; x) � e2r=lg(0)ij(x) as r !1 and hene, the onformal boundary, �M, is loated at r =1. Themetri g(0)ij(x) is a metri on the onformal boundary, or more preisely, a representative of the onformallass of boundary metris. AlAdS metris arise naturally as solutions of Einstein's equations with a negativeosmologial onstant, possibly inluding matter whose stress tensor falls fast enough asymptotially [30℄.To set up the formalism, we will study the simplest possible boundary value problem on the bakgroundof suh a manifold, namely that of the Klein-Gordon equation for a salar �eld,���g +m2�� = 0: (3.2)One an inlude interations in this equation, and we will do so later on, but these are irrelevant for theboundary value problem as long as they do not modify the asymptoti form of the metri. Any solution of(3.2) in the bakground (3.1) takes the asymptoti form� �8<:e���r=l(��(x) + � � � ) + e��+r=l(�+(x) + � � � ); m2l2 > �(d=2)2;e�dr=2l rl (��(x) + � � � ) + e�dr=2l(�+(x) + � � � ); m2l2 = �(d=2)2; (3.3)where ��, �+ � ��, are the roots of the equation m2l2 = �(�� d), and the funtions ��(x) and �+(x),known respetively as the non-normalizable and normalizable modes, are totally arbitrary funtions of thetransverse oordinates, xi. A boundary ondition amounts to a hoie of a funtion J(��; �+) of the twomodes that is kept onstant on the boundary, thus reduing by half the degrees of freedom. The best knownexample is that of Dirihlet boundary onditions, where one hooses J(��; �+) = ��, and so the only degreeof freedom remaining is the normalizable mode �+.We ould now try to study boundary onditions by onsidering di�erent hoies of the funtion J(��; �+),whih is in fat what has been done in the vast majority of the literature on the subjet. Although,this approah happens to work in ertain ases, generially it is fundamentally problemati for two loselyrelated reasons. Firstly, the quantity �+, ontrary to the non-normalizable mode ��, has no well de�nedtransformation under Weyl resalings and hene it is an ill de�ned quantity from the boundary point ofview. Seondly, preisely beause �+ is not well de�ned on the boundary, the funtion J(��; �+) one woulduse to de�ne the boundary ondition does not have a diret meaning (as a soure) on the boundary. As wementioned above and we will now explain in detail, both problems are resolved if one replaes �+ in thisanalysis with the renormalized radial momentum [32℄, whih does have a de�nite transformation under Weylresalings and hene it is a well de�ned boundary quantity, like ��. The renormalized radial momentum ingeneral di�ers from �+ by a loal funtional of ��, whih is essential to ensure that the Ward identities aresatis�ed [30℄. It is preisely these loal terms that make the renormalized momentum have a well de�nedtransformation rule under Weyl resalings. Unless these loal terms happen to vanish, and one needs todemonstrate that they do, we are fored to use the radial Hamiltonian formulation in order to disussgeneralized boundary onditions onsistently.3.1 The variational problem in the presene of a onformal boundarySine the onformal boundary, �M, is loated at in�nity, we need to introdue a regulating surfae, �r,di�eomorphi to the boundary, but at a �nite value of the radial oordinate r. One then formulates thevariational problem on �r and in the end the regulator is removed by sending r !1. It is ruial, however,to keep in mind that the onformal boundary �M and the hard boundary introdued by the regulatingsurfae �r are very di�erent in nature. In partiular, the regulating surfae breaks expliitly the invarianeunder Weyl resalings that the onformal boundary possesses. It follows that not any variational problemthat makes sense on �r will make sense as the regulator is removed. It will only make sense provided thevariational problem on �r is formulated in terms of onformal lass funtions. Before we disuss how thisan be ahieved, though, let us onsider the general variational problem on the regulating surfae �r.1We use Eulidean signature throughout this paper. 6



Given an ation S[�℄ on a spae Mr with a boundary �r = �Mr, one is naturally led to the radialHamiltonian formulation of the bulk dynamis by onsidering the variational problem for the ation S[�℄.Indeed, a generi variation of the bulk ation with respet to the salar �eld generates a boundary term ofthe form2 Æ�S = Z�r ddx��Æ�; (3.4)where �� is the anonial momentum onjugate to � and the Hamiltonian `time' is taken to be the radialoordinate r orthogonal to the boundary �r. For the bulk ation giving the Klein-Gordon equation as theequation of motion, the anonial momentum is simply �� = p _�, where the dot denotes a derivative withrespet to the radial oordinate, r. Were �r the true boundary, we ould impose any boundary onditionompatible with the variation (3.4). But we atually have to send r ! 1 in the end, and the integrand in(3.4) does not have a well de�ned transformation under shifts in r. Hene, if we impose a boundary onditionon (3.4), we will not be able to `push' this boundary ondition to the true boundary at r ! 1. What weneed to do �rst, is to �nd a ovariant way of modifying (3.4), without hanging the bulk dynamis of ourse,suh that the result has a well de�ned transformation - in fat, remains invariant - under radial shifts. Asystemati way of onstruting quantities whih are both ovariant with respet to �r di�eomorphisms andhave a well de�ned transformation under radial shifts in the viinity of the onformal boundary �M, is basedon the following observation [32℄: The asymptoti form � � e���r=l��(x) of the salar �eld allows us towrite the radial derivative in the from3 �r = Z�r ddx _� ÆÆ� � 1l ÆD; (3.5)where ÆD = ��� Z�r ddx� ÆÆ� ; (3.6)is the dilatation operator, and � means that only the leading asymptoti behavior as r ! 1 is shown. Itfollows that quantities that have a well de�ned transformation under radial shifts orrespond to eigenfun-tions of the dilatation operator. However, by trading the radial derivative for the dilatation operator we alsoautomatially ahieve ovariane with respet to �r di�eomorphisms. The dilatation operator (3.6), there-fore, provides us with a way to deompose the integrand in (3.4), whih does not transform in a ontrolledway under radial translations, into piees with a well de�ned transformation.This is ahieved by expanding the anonial momentum �� in eigenfuntions of the dilatation operatoras �� = p ��(��) + � � �+ �(�+) + � � � � ; (3.7)where ÆD�(n) = �n�(n) for all n.4 This is simply a formal expansion at this point, as is (3.3), but thefat that � and �� do admit the expansions (3.3) and (3.7) respetively, is a onsequene of the equation ofmotion. Sine �� = p _�, one an insert the expansion (3.7) in (3.5) to obtain a formal expansion of theradial derivative in ovariant funtional operators of de�nite dilatation weight. Substituting this expansionfor the radial derivative, together with the momentum expansion (3.7), into the equation of motion (3.2)and mathing terms of equal dilatation weight one an determine iteratively all terms �(n) for n < �+ asloal funtionals of �. The fat that these terms turn out to be loal funtionals of the indued �eld � is theruial ingredient whih allows us to formulate the boundary value problem on the onformal boundary. Inpartiular, we an write Z�r ddxp Xn<�+ �(n)Æ� = �ÆSt[�℄; (3.8)2The omplete expressions for the variation of the ation when the salar is minimally or onformally oupled to gravity arepresented in Appendix A.3In general, one must sum over all indued �elds on �r, inluding the indued metri, ij . In partiular, the dilatationoperator ontains the term R�r ddx2ij ÆÆij and so it ats on the volume element on �r as ÆDp = dp.4A logarithmi term should be inluded in general to aount for a possible onformal anomaly. In the presene of suh ananomaly, �(�+) transforms inhomogeneously under the dilatation operator [32℄.7



where St[�℄ is a loal funtional of �. From (3.4) then follows that if the loal funtional St on �r is addedto the bulk ation on Mr, then a generi variation of the total ation produes the boundary term5Æ(S + St) = Z�r ddxp�(�+)Æ�: (3.9)Even though this might seem little di�erent from the original expression (3.4), the di�erene is in fat funda-mental: ontrary to (3.4) the integrand in (3.9) is invariant under radial translations sine ÆD(p�(�+)Æ�) =(d ��+ ���)p�(�+)Æ� = 0, where we have used ÆDp = dp (see footnote 3). If follows that we annow send r ! 1 and any boundary ondition formulated in terms of � and the renormalized momentum�(�+) will remain unhanged and meaningful in this limit.Two omments are in order here. First, note that the ounterterms we have de�ned via (3.8), and whihwere introdued only on the basis that they are required to make the variational problem on the onformalboundary well posed, are idential with the standard boundary ounterterms that are traditionally addedto make the on-shell ation �nite. Indeed, the fat that (3.9) has a �nite limit as r ! 1 implies that therenormalized on-shell ation Sren � (S + St), remains �nite as the regulator is removed. The same loalounterterms are therefore required to make the variational problem well posed and to remove the infra reddivergenes of the on-shell ation. We would like to view the former, however, as the more fundamentalproperty. Indeed, the divergenes of the on-shell ation are merely a manifestation of the fat that thevariational problem is not formulated properly [31℄. Of ourse, there is as usual a freedom of adding extra�nite loal terms to the ounterterms St. In the ase of Dirihlet boundary onditions this is the well knownrenormalization sheme dependene. As we will see below, however, the interpretation of this freedom inthe dual �eld theory ruially depends on the boundary onditions. In partiular, for boundary onditionsother than Dirihlet, it does not orrespond to a renormalization sheme dependene.The seond omment onerns some notation. It is very useful to introdueb�(�+) �8<: limr!1 e�+r=l�(�+); �+ > d=2;limr!1 r2edr=2l�(�+); �+ = d=2; (3.10)whih allows us to expliitly evaluate the limit r !1 in (3.9) asÆ(S + St) = Z�M ddxpg(0)b�(�+)Æ��: (3.11)The boundary value problem on the onformal boundary is then naturally formulated in terms of the twomodes ��(x) and b�(�+). Comparing the expansions (3.3) and (3.7), e.g. for �� 6= �+, one �nds thatb�(�+) = �(�+ ���)�+(x)=l + C[��(x)℄, where C[��(x)℄ is a loal funtional of ��(x) depending on thespae dimension as well as on the bulk dynamis.6 Interestingly, as we will later show, for the boundaryonditions relevant to multi-trae deformations it turns out that C[��(x)℄ vanishes identially - thus aposteriori justifying the use of �+(x) instead of the renormalized momentum in the literature. However, ingeneral, it is b�(�+) and not the normalizable mode whih has a well de�ned transformation under boundaryWeyl transformations.3.2 Boundary onditionsThe expression (3.11) is our starting point for studying the possible boundary onditions on the onformalboundary. A boundary ondition is in general a hoie of a funtion, J(��; b�(�+)), of the two independentmodes, �� and b�(�+), that is kept �xed on the boundary. Note that we have now replaed �+ with b�(�+),whih as we disussed, is neessary in order for the boundary ondition to be well de�ned on the onformal5Terms of higher dilatation weight drop out in the limit r!1.6We will see below that in the ase of Dirihlet boundary onditions b�(�+) is identi�ed via the AdS/CFT ditionary withthe one-point funtion of the dual operator in the presene of an arbitrary soure ��(x). The fat that the one-point funtiongenerially ontains a non-linear but loal funtional, C[��(x)℄, of the soure was shown originally in [33℄.8



J(��; b�(�+)) SJ [��; b�(�+)℄Dirihlet J+ = �� S+ = 0Neumann J� = �b�(�+) S� = � R�M ddxpg(0)��b�(�+)Mixed Jf� = �b�(�+) � f 0(��) Sf� = S� + R�M ddxpg(0)(f(��)� ��f 0(��))Table 2: The three inequivalent boundary onditions for a salar �eld in an AlAdS bakground, along withthe orresponding boundary terms required to impose them. Notie that the Neumann boundary onditionis a speial ase of the Mixed boundary ondition, obtained by hoosing the funtion f(��) to be identiallyzero.boundary. In order to impose the boundary ondition ÆJ(��; b�(�+)) = 0, we need to add a suitable (�nite)boundary term, SJ [��; b�(�+)℄, to the ation suh that7Æ(S + St + SJ) = Z�M ddxpg(0)BJ(��; b�(�+))ÆJ(��; b�(�+)); (3.12)where BJ(��; b�(�+)) is some funtion that depends on the hoie of J(��; b�(�+)).A physial solution of the equations of motion, subjet to the boundary ondition de�ned by J(��; b�(�+)),satis�es J(��; b�(�+)) = 0. Note that this de�nition of `physial solutions' exludes solutions that desribesingle-trae deformations, whih require a non-zero soure. It follows that there are two qualitatively dif-ferent universality lasses of possible boundary onditions, depending on whether the mode ��(x) in theorresponding physial solutions is zero or not, whih lead to di�erent leading asymptotis for the physialsolutions. ��(x) is zero in the physial solutions provided the soure J(��; b�(�+)) is a funtion of �� only.When ��(x) is non-zero in the physial solutions, then the relation J(��; b�(�+)) = 0 determines b�(�+) asa funtion of ��(x). The three inequivalent hoies of boundary onditions, along with the orrespondingboundary term, SJ [��; b�(�+)℄, that should be added to the ation are listed in Table 2.8However, requiring that the (stati) solutions subjet to the boundary onditions in Table 2 are pertur-batively stable imposes restritions on the allowed values of the salar mass m2. In partiular, for Dirihletboundary onditions, stability requires that the salar mass satis�es the Breitenlohner-Freedman (BF) bound[22℄, m2l2 � �(d=2)2, while if ��(x) 6= 0 in the solution, i.e. for Neumann and Mixed boundary onditions,stability requires that the mass squared is in the range [22, 34, 35℄��d2�2 � m2l2 � ��d2�2 + 1: (3.13)We will later show that these stability onditions follow immediately from the requirement that there existsa stable holographi e�etive potential for the dual operator. Moreover, generially only one boundaryondition will be onsistent with supersymmetry one the salar is embedded in some gauged supergravity[22, 36℄.The mass onstraint (3.13) for the Neumann or Mixed boundary onditions to be admissible has a re-markable and somewhat surprising onsequene. Namely, it ensures that the loal funtional, C[��(x)℄,7The apparently alternative boundary ondition BJ (��; b�(�+)) = 0, is not aeptable in the ontext of the AdS/CFTorrespondene. The reason is that suh a boundary ondition really redues by half the degrees of freedom. In AdS/CFT,however, the boundary ondition does halve the bulk degrees of freedom, but the lost half reappears as a soure on the boundary.8These boundary onditions exhaust all possible relations between b�(�+) and ��(x) in the physial solutions, and so allpossible Hilbert spaes obtained by quantizing the salar �eld. Nevertheless, there is an apparent redundany in the hoie ofthe soure J(��; b�(�+)). For example, J = �� leads to the same Hilbert spae as J = �2�. In the ontext of the AdS/CFTorrespondene, this redundany is mapped to an analogous redundany in de�ning the generating funtional of a given operator,and in partiular in the hoie of its soure. Table 2 shows the standard minimal hoies.9



whih, as we pointed out above, distinguishes in general the renormalized momentum b�(�+) from the nor-malizable mode �+(x), vanishes identially. We will not give a general proof of this statement here, butone an understand it as follows. Generially, a non-zero C[��(x)℄ an only arise if there are intermediateterms between the two modes, ��(x) and �+(x), in the asymptoti expansion (3.3). This an happen onlyif �+ ��� > ��. However, (3.13) implies that for d > 2, �+ ��� � ��. Therefore, at least for d > 2and for a mass in the range (3.13), one has b�(�+) = �(�+ ���)�+(x)=l exatly, and hene, �+(x) is wellde�ned on the boundary in this ase.3.3 Solution of the boundary value problemThe general solution of the boundary value problem with the boundary ondition ÆJ(��; b�(�+)) = 0 onsistsin �nding the most general regular solution of the bulk equations of motion as a funtional of the arbitrarysoure J(��; b�(�+)) � J(x). This involves two steps:� Radial problemOne solves the radial equation of motion exatly, imposing regularity in the interior. The result ofthis alulation is that (i) b�(�+) is determined as a non-loal funtional of ��9 and (ii) the full bulksolution, �(r; ��(x)), is obtained as a non-loal funtional of ��(x).� Transverse problemTo omplete the solution of the boundary value problem, one needs to determine ��(x) as a funtionalof the arbitrary soure J(x). Having determined the funtional b�(�+)[��℄ by solving the radial problem,this is ahieved by solving the equationJ(��; b�(�+)[��℄) = J(x); (3.14)for ��[J ℄. For the boundary onditions in Table 2, (3.14) reads�� = J(x); Dirihlet;�b�(�+)[��℄ = J(x); Neumann;�b�(�+)[��℄� f 0(��) = J(x); Mixed: (3.15)Hene, the transverse problem is trivial for Dirihlet boundary onditions, but non-trivial for Neumannand Mixed boundary onditions. In all ases, inserting the resulting solution ��[J ℄ bak in the bulksolution of the radial problem we obtain the full solution �(r; ��[J(x)℄).Although the general presription for solving the boundary value problem involves only these two simplesteps, in pratie there are very few ases where one is able to arry out either of these two steps. Inpartiular, the bulk equations of motion are generially non-linear, whih makes the solution of the radialproblem very diÆult. On the other hand, if the funtion f 0(��) is non-linear, then the solution of thetransverse problem (3.14) beomes very diÆult too. In the next setion, however, we will disuss a toymodel for whih it is possible to arry out the above presription expliitly.3.4 The on-shell ation and the AdS/CFT ditionaryAssuming we have solved the boundary value problem with arbitrary soures to obtain the exat solution�(r; ��[J ℄), we an evaluate the on-shell ation, I [J ℄. This involves three piees: the bulk ation, S, theovariant boundary ounterterms, St, and the boundary term, SJ , de�ning the boundary ondition. Namely,I [J ℄ = (S + St + SJ)j� ; (3.16)where the limit r ! 1 is impliit. By onstrution, the value of the sum of these terms remains �nite inthis limit, and naturally, it is a funtional of the soure, J . The AdS/CFT ditionary, or more generally the9This should in no way be onfused with the boundary ondition, whih itself imposes another - algebrai - relation betweenthe modes. 10



Dirihlet Neumann MixedJ J+ � �� J� � �b�(�+) Jf� � �b�(�+) � f 0(��)� b�(�+) �� ��W [J ℄ I+[J+℄ I�[J�℄ If� [Jf� ℄�[�℄ I�[�b�(�+)℄ I+[��℄ I+[��℄ + R�M ddxpg(0)f(��)hT iji = �2pg(0) ÆWÆg(0)ij �2b�(d)ij �2b�(d)ij � ��J�g(0)ij �2b�(d)ij � �f(��) + ��Jf�� g(0)ijhT ii i �(d��+)J� �(d���)J� �(d���)J� � d�f(�)� ��d �f 0(�)�Table 3: The gravity/QFT ditionary.gravity/quantum �eld theory ditionary, identi�es the on-shell ation, I [J ℄, with the generating funtionalof onneted orrelation funtions of the operator dual to the salar �eld �. Namely,Z[J ℄ � e�W [J℄ = De� R JOE � e�I[J℄; (3.17)where the � sign in the last equality means that the identi�ation is understood in some ertain limit, e.g.in the large N limit, suh that supergravity is a good approximation to the �eld theory dual.10 Sine theon-shell ation, I [J ℄, is identi�ed with the generating funtional of onneted orrelation funtions, W [J ℄,its Legendre transform, �[�℄, given by�[�℄ =W [J ℄� Z�M ddxpg(0)J�; (3.18)is the e�etive ation of the dual operator, i.e. the generating funtional of 1PI diagrams. In partiular,the transverse problem (3.14) has a diret interpretation in the dual �eld theory as the `gap equation' (2.4).From Table 3 it is evident that, although the solution of the transverse problem is required in order toevaluate the generating funtional, W [J ℄, for Neumann and Mixed boundary onditions (we have seen thatthe transverse problem is always trivial for Dirihlet boundary onditions), only the solution of the radialproblem is neessary to evaluate the e�etive ation, �[�℄.In Table 3 we summarize the identi�ations between the bulk and boundary quantities, aording to thegravity/quantum �eld theory ditionary, for the three boundary onditions in Table 2. Note that, sine theon-shell ation for Neumann boundary onditions is the Legendre transform of the on-shell ation for Dirihletboundary onditions (see the boundary term S� in Table 2), the e�etive ation for Dirihlet boundaryonditions is given by the on-shell ation for Neumann boundary onditions and vie versa. Moreover,the e�etive ation for Mixed boundary onditions is given by the on-shell ation for Dirihlet boundaryonditions plus a term involving the funtion f(��). Comparing the e�etive ations for Neumann andMixed boundary onditions in Table 3 with the expressions for the undeformed and deformed e�etive ationsgiven in Table 1, we reah the onlusion that the Mixed boundary onditions orrespond to a multi-traedeformation of the QFT dual to the Neumann boundary onditions [1℄.10We will not be spei� about this limit sine it depends ruially on the partiular AdS/CFT duality. For example, in themost studied AdS5/CFT4 duality between N = 4 super Yang-Mills and Type II B string theory, the supergravity approximationinvolves not only the large N limit, but also the large 't Hooft oupling limit. However, in the duality between M-theory onAdS4 � S7 and the N = 8 SCFT in three dimensions, the supergravity approximation involves only the large N limit as thereis no other free parameter in this ase. 11



In the penultimate row of Table 3 we show the renormalized VEV of the stress tensor of the dual theoryin terms of the renormalized radial momentum, b�(d)ij , onjugate to the indued metri, ij , (see AppendixA) for the three di�erent boundary onditions. Note that the di�erene in these expressions for the VEVof the stress tensor is due to the boundary terms in Table 2, whih are required to impose eah boundaryondition. Using the fat that the bulk equations of motion determine that the trae of b�(d)ij is relatedto the renormalized salar momentum, b�(�+), by b�(d) = ��b�(�+)��=2 [32℄, these expressions allow us towrite down the Conformal Ward identity for eah boundary ondition. These Ward identities are shownin the last row of Table 3. We onlude that the Dirihlet and Neumann boundary onditions lead to aonformal �eld theory dual, sine hT ii i = 0 for vanishing soure, while the Mixed boundary ondition leadsto a onformal dual theory only if f(��) / �d=��� . In that ase, the Mixed boundary onditions desribe amarginal multi-trae deformation of the CFT dual to the Neumann boundary onditions. Moreover, in theases of a CFT dual, we see that the onformal dimension of the operator dual to the salar �eld is �+ forDirihlet boundary onditions and �� for Neumann and Mixed boundary onditions. This is as expeted,sine the leading asymptoti behavior of the physial solutions is determined by �+ for Dirihlet boundaryonditions (i.e. �� = 0), but by �� for Neumann and Mixed boundary onditions (�� 6= 0).4 Toy modelThe boundary value problem an be solved in omplete generality, following the presription outlined above,for a free salar �eld in a �xed AdS bakground with the ationS = Z dd+1xpg�12g��������+ 12m2�2� : (4.1)The metri here is (3.1) with ij = e2r=lÆij , whih is the metri of exat AdSd+1 (more preisely H d+1 )in the upper half plane oordinates. The equation of motion is of ourse the Klein-Gordon equation (3.2).Even though the fat that the bulk equation of motion is linear means that it is possible to solve the radialproblem exatly, the transverse problem remains in general intratable, exept for ertain linear boundaryonditions.4.1 General solution with linear boundary onditionsCountertermsIn order to ompute the renormalized momentum, as well as the on-shell ation, we need to know theovariant boundary ounterterms. This is done, as we disussed above, by inserting the ovariant expansion(3.7) of the anonial momentum, and of the radial derivative (3.5), into the equation of motion (3.2). Thisiteratively determines [37, 38℄�(��) = ���l �; �(��+2) = �l��(d� 2�� � 2) ; �(��+4) = � l3 (��)2 �(d� 2�� � 2)2(d� 2�� � 4) ; � � � (4.2)This proedure breaks down at order �+ leaving �(�+) undetermined. From (3.8) now we see that theounterterms are obtained by integrating these momenta with respet to the salar �eld. This gives [30, 37, 38℄St = 12 Z�r ddxp� ���l �+ �l��(d� 2�� � 2) � l3 (��)2 �(d� 2�� � 2)2(d� 2�� � 4) + � � �! : (4.3)If we restrit to the mass range (3.13), whih is neessary in order to onsider Neumann and Mixed boundaryonditions, then only the �rst term in (4.3) is relevant sine �+ � ��+2 in this ase. For Dirihlet boundaryonditions, however, more terms must be kept in general.Radial problem 12



The most general solution of the radial part of the equation of motion (3.2) that is regular in the interioran be written in two equivalent forms. The �rst is an exat expression for the anonial momentum as aovariant funtional of the indued �eld �, namely [37, 38℄��[�℄ = p _� = p 1l  �d2 � lp��K 0� �lp���K� �lp���!�; (4.4)where � = (�+ ���)=2 and K� is the modi�ed Bessel funtion that is regular for large argument. Fouriertransforming (4.4) and solving the resulting linear �rst order equation gives the seond form�(r; ��(x)) = l�2��1�(�)e�dr=2l Z ddp(2�)d ~��(p)p�K� �lpe�r=l� eip�x; (4.5)where ~��(p), whih appears as the integration onstant of the �rst order equation, is the Fourier trans-form of an arbitrary funtion ��(x). Using the asymptoti form of the Bessel funtion, K�(lpe�r=l) �2��1l���(�)e�r=lp�� , as r !1, we see that � � e���r=l��(x) asymptotially, in agreement with (3.3).The form (4.4) is partiularly useful beause, by expanding the Bessel funtion for small argument, oneautomatially obtains the ovariant expansion (3.7), but now inluding the renormalized momentum �(�+).For 0 < � < 1, whih orresponds to the mass range11 (3.13), this isb�(�+)[��℄ = � l2�2��1 �(1� �)�(�) (��)� ��: (4.6)This non-loal relation is the essential ingredient in order to address the transverse problem.Transverse problemSine the transverse problem (3.14) is trivial for Dirihlet boundary onditions, the solution of the radialproblem, (4.4) or (4.5), is suÆient to evaluate the on-shell ation. The result is shown in the seond olumnof Table 4. From Table 3 follows that this also allows us to evaluate the e�etive ation for Neumannand Mixed boundary onditions, sine it is diretly related to the on-shell ation for Dirihlet boundaryonditions. For the Mixed boundary onditions then, whih inlude the Neumann as a speial ase, thee�etive ation is �f� [��℄ = Z ddx 12 � l2�2��1 �(1� �)�(�) �� (��)� �� + f(��)! : (4.7)Funtionally di�erentiating this with respet to the VEV, we expliitly see that the transverse problem(3.14), whih, using (4.6), takes the form�� l2�2��1 �(1� �)�(�) (��)� �� � f 0(��) = J(x); (4.8)is nothing but the gap equation (2.4).Solving (4.8) for ��[J ℄ is in general not possible unless f(��) = ��2�, for some onstant �. As we haveseen, this orresponds to a double-trae deformation of the dual theory. With this speial hoie of Mixedboundary onditions, the transverse problem is easily solved and the on-shell ation an be evaluated. Theresults are shown in Table 4. Moreover, inserting the expressions for ��[J ℄ given in Table 4 in the solution(4.5), we obtain the full solution to the boundary value problem with the orresponding linear boundaryonditions. Note that the expression for the on-shell ation in the presene of a double-trae deformationshown in Table 4 is in omplete agreement with the orresponding expressions in e.g. [9℄, but ours aremanifestly ut-o� independent.11The endpoints, � = 0; 1, orrespond respetively to the ases where the BF bound and the unitarity bound are saturated.Whenever � is an integer the Bessel funtion involves logarithms. These ases an be treated similarly. See e.g. [30, 37, 38℄ forthe ase of Dirihlet boundary onditions, where logarithms also appear.13



Dirihlet Neumann MixedJ J+ � �� J� � �b�(�+) Jf� � �b�(�+) � 2�����[J ℄ J+ �22��1 l�(�)�(1��) (�l2�)��J� ��2� + � 12�2��1 �(1��)l�(�) (�l2�)���1 Jf�I [J ℄ �(1��)l22��(�) R J+(�l2�)�J+ � l22��(�)4�(1��) R J�(�l2�)��J� � 14 R Jf� �� + �(1��)l22��(�) (�l2�)���1 Jf�Table 4: The solutions of the transverse problem and the on-shell ation for all three linear boundaryonditions. � is an arbitrary onstant orresponding to the deformation parameter of the double-traedeformation.4.2 Vaua with non-linear boundary onditionsEven though one annot solve equation (4.8) in general for non-linear boundary onditions, we an still �ndexat solutions of the orresponding soureless equation. The lassi�ation of suh `vauum'12 solutions isessential before one an solve (4.8) perturbatively in the soure, J(x), around eah vauum. We will notattempt a lassi�ation of the vauum solutions for various hoies of f(��) here. Instead, we now givetwo examples of non-trivial vaua whih are losely related to the vaua we will onstrut later on for morerealisti interating theories.Constant VEVFor any hoie of the funtion f(��), a onstant, ���, that extremizes f(��), i.e. f 0(���) = 0, is a solutionof the soureless equation (4.8). Indeed, from (4.7) we know that f�(�) is the e�etive potential of the dualtheory. The Fourier transform of a onstant ��� is a delta funtion in momentum spae, ~��� = ���(2�)dÆ(d)(p).Inserting this into the general solution (4.5) we obtain an exat solution of the bulk equation of motionsatisfying Mixed boundary onditions. Namely,�(r; ���) = l�2��1�(�)e�dr=2l��� limp!0 p�K� �lpe�r=l� eip�x = e���r=l���: (4.9)InstantonsNon-onstant solutions an also be found, at least for ertain hoies of the potential f(��). To lookfor non-onstant solutions, however, we need an expliit representation of the operator (��)� . It is in fateasier to �nd a representation of the inverse of this operator, whih has the integral representation(��)���(x) = � �d2 � ��22��d=2�(�) Z ddy �(y)jx� yjd�2� ; � > 0: (4.10)The soureless equation (4.8) an then be written as the integral equation��(x) + � �d2 � ��2�d=2l2��1�(1� �) Z ddy f 0(��(y))jx� yjd�2� = 0: (4.11)We now look for solutions of the form ��(x) = bjxj ; (4.12)12By the term `vauum' we do not neessarily refer to a onstant or time independent solution ��. Any solution to thesoureless equation (3.14) will be alled a vauum. 14



for a potential of the form f(��) = ��!�, where b; ; �; ! are onstants. Inserting these into (4.11) and Fouriertransforming determines that suh a solution exists only if ! > 2, i.e. provided the boundary ondition isnon-linear, and also only if � < 0, i.e. when the e�etive potential is unbounded from below. Moreover, and b are given by  = 2�! � 2 ; b!�2 = 2l2��1�(1� �)��d2 � �!�2��� (!�1)�!�2 �!j�j�(�)�� �!�2���d2 � (!�1)�!�2 � : (4.13)Inserting (4.12) into (4.5) we obtain the exat bulk solution�(r; ��(x)) = bl� 2�!�2 ��d2 � �!�2��� (!�1)�!�2 �� �d2��(�) e�( d2� !�!�2 ) rl F � �! � 2 ; (! � 1)�! � 2 ; d2 ;� 1l2 e2r=lx2� : (4.14)The asymptoti form of this solution is�(r; ��(x)) � � bjxj� e���r=l + l2� !�� bjxj�!�1 e��+r=l; (4.15)i.e. �+ = l2�!��!�1� . Sine b�(�+) = �2��+(x)=l, it follows that (4.14) indeed satis�es Mixed boundaryonditions with f(��) = ��!�, for Jf� = �b�(�+) � f 0(��) = 0.This Eulidean solution is in fat analogous to the instanton solution found in [24℄ for a salar �eldonformally oupled to four-dimensional gravity, whih we will revisit and generalize below. As for theinstanton solution of [24℄, (4.14) exists only when the e�etive potential is unbounded from below, i.e � < 0,whih means that the deformation indues an instability in the boundary CFT. In partiular, (4.14) desribesthe deay proess of the trivial vauum at �� = 0 to an instability region at �� ! 1. The deay rate isgiven by [39℄ P / e��f jinst: ; (4.16)where the value of the e�etive ation (4.7) evaluated on the instanton solution is�f jinst: = d(! � 2)j�j2�d� 2�!!�2�b!Vol(Sd): (4.17)5 E�etive ation from Hamilton's harateristi funtionThe free salar �eld in a �xed AdS bakground is a useful example as a boundary value problem in AlAdSspaes, but, in the ontext of the AdS/CFT orrespondene, it an only give information on the dual CFT atthe onformal vauum. As soon as the salar �eld aquires a non-zero VEV onformal invariane is brokenand one must ouple the salar to dynamial gravity in order to study holographially the dual �eld theory.In partiular, although the onformal vauum generially remains a vauum of the dual theory when thelatter is deformed by a multi-trae deformation, the deformation may not only destabilize the onformalvauum, but also it will generially introdue new vaua. AdS/CFT relates the problem of stability of theonformal vauum under multi-trae deformations to the stability of AdS under the orresponding boundaryonditions on the dual bulk �elds.Both the non-perturbative stability of the onformal vauum and the possible appearane of new vauadue to a generi multi-trae deformation an be addressed if one knows the e�etive ation for the deformingoperator in the dual �eld theory. In the large N limit, the AdS/CFT ditionary relates the e�etive ation ofthe boundary theory to the on-shell supergravity ation. More spei�ally, the on-shell ation with Dirihletboundary onditions is related to the e�etive ation of the theory with Neumann or Mixed boundary on-ditions and vie versa (see Table 3). However, omputing the on-shell supergravity ation non-perturbativelyin the salar �eld - whih is required if non-perturbative stability is to be addressed - is of ourse not an easytask. Even though the boundary metri g(0)ij an be set to a �xed value for this omputation, sine we areonly interested in the bak-reation of the salar �eld on the bulk metri, the bulk equations remain highlynon-linear and generially too diÆult to solve. Nevertheless, there is a systemati way to approximate15



the e�etive ation away from the onformal vauum. Sine, for onformal boundary onditions, onformalinvariane is only broken spontaneously by the non-zero VEV of the salar �eld, in a vauum of non-zerosalar VEV the two-point funtion of the salar operator always ontains a massless pole, orresponding tothe Goldstone boson of spontaneously broken sale invariane, whih dominates the two-point funtion forsmall momenta. This massless pole gives, via the Legendre transform, a standard quadrati kineti termin the e�etive ation for the VEV of the salar operator. It follows that, at least for onformal boundaryonditions, the e�etive ation admits a derivative expansion away from the onformal vauum. But sinewe know that a generi multi-trae deformation simply modi�es the e�etive potential in the large N limit,the above argument implies that the e�etive ation always admits a derivative expansion away from theonformal vauum. As we will now see, this fat allows us to systematially onstrut the e�etive ation toany order in derivatives, although the omputation quikly beomes tedious.Aording to standard pratie, to evaluate the renormalized on-shell ation one needs to ompute tworelated - yet distint - quantities. Namely, the ovariant boundary ounterterms, St, and the regularizedation, Ir (see (A.6)). Let us take the opportunity here to emphasize that the split of the omputation intotwo separate omputations of St and Ir is only an arti�ial split reeting the di�erene in tehnial diÆultyin omputing these two quantities. While the ounterterms an always be omputed in full generality bysome version of holographi renormalization, the omputation of Ir is far more diÆult and usually requiressome approximation. However, if one were able to ompute Ir exatly, then the ounterterms, and hene therenormalized on-shell ation, an be immediately dedued by expanding Ir in eigenfuntions of the dilatationoperator. In fat, we saw suh an example in Setion 4, where the exat expression for the momentum (4.4)enabled us to simply read o� the renormalized momentum (4.6). But the advantage of the expansion ineigenfuntions of the dilatation operator is that it works equally well even when Ir is only known in someapproximation, be that a small soure expansion or a derivative expansion. In partiular, instead of thetraditional 3-step approah: 1. ompute St in full generality, 2. ompute Ir in some approximation 3.redue the ounterterms in the approximation used for evaluating Ir, we will use the more eÆient 2-stepapproah: 1. ompute Ir in whatever approximation is suitable 2. extrat the renormalized part of Ir byexpanding it in eigenfuntions of the dilatation operator and keeping terms of weight zero. This tehniquewas applied to ompute renormalized orrelation funtions in [40℄, whih involved evaluating Ir in a smallsoure approximation. It an equally well be applied in the ase of a derivative expansion of Ir , whih isthe relevant approximation here. Hene, we simply need to worry about the evaluation of the regularizedon-shell ation Ir, as the renormalized ation an e�etively be read o� Ir.The most diret way to ompute the regularized on-shell ation is via the radial Hamilton-Jaobi formal-ism [29℄.13 This amounts to solving the two funtional equations resulting from inserting the radial momenta,given as funtional derivatives of the regularized on-shell ation with respet to the indued �elds on �r asin (A.7), in the Hamiltonian and momentum onstraints (A.8). Although the resulting funtional di�erentialequations are generially too ompliated to solve, their virtue is that they diretly determine the regularizedon-shell ation. In pratie, this approah is useful if one is able to write down the most general ansatz forIr in a ertain approximation, or if one is interested in the `minisuperspae' of a ertain lass of solutions,sine then the Hamilton-Jaobi equation an be simpli�ed drastially. Although the loal part of Ir, whihwill be removed by the boundary ounterterms, always takes the form of a derivative expansion and so anbe determined by an obvious ansatz as in [29℄, here we are interested in the non-loal part of the regular-ized ation. Finding a suitable ansatz for this non-loal part is a muh more diÆult question. However,this ruially depends on the physial interpretation of the regularized ation. In partiular, while a loalderivative expansion of the non-loal part of Ir is useless if Ir is identi�ed with the generating funtionalof the dual operator, sine a derivative expansion only gives ontat terms in the orresponding orrelationfuntions, it does makes sense to expand the non-loal part of Ir in a derivative expansion if it is interpretedas the e�etive ation of the dual operator. Indeed, we have argued above that the e�etive ation admitssuh a loal approximation away from the onformal vauum.Our method for evaluating the regularized on-shell ation then onsists of two omplementary omputa-tions, involving di�erent but not mutually exlusive approximations. First, we start from the undeformedCFT on a (nearly) at boundary, in whih ase the regularized ation in the two-derivative approximation13It is worth pointing out that the interpretation of the Hamilton-Jaobi equation for the on-shell ation as the Callan-Symanzik equation for the generating funtional of the dual operator in [29℄ has an obvious analogue when the AdS/CFTditionary identi�es the on-shell ation with the e�etive ation of the dual operator.16



takes the form14 Ir = Z�r ddxp�W (�) + Z(�)R[℄ + 12M(�)ij�i��j�� ; (5.1)where W (�), Z(�) and M(�) are funtions of the salar �eld to be determined. Di�erentiating (5.1) withrespet to the indued metri and the salar �eld yields respetively the momenta (see (A.7))�ij = p��Z 00 � 12M��i��j�+ Z 0DiDj�� ZRij+12ij �W + ZR� 2Z 0��+�12M � 2Z 00� �k��k��� ;�� = p�W 0 + Z 0R� 12M 0�k��k��M��� : (5.2)These momenta automatially satisfy the momentum onstraint in (A.8), whih is simply a onsequeneof the invariane of (5.1) under �r di�eomorphisms. Inserting the momenta (5.2) into the Hamiltonianonstraint in (A.8) leads to a set of ordinary di�erential equations for the funtions W (�), Z(�) and M(�),whih of ourse depend on the form of the Hamiltonian. Having determined these funtions, the regularizedation is expanded in eigenfuntions of the dilatation operator (whih in this ase amounts to a simpleTaylor expansion of W (�), Z(�) and M(�)) and the term of zero dilatation weight, orresponding to therenormalized ation, is isolated. The struture of the resulting renormalized two-derivative e�etive ationis largely universal as it is determined by onformal invariane. However, there is a free parameter whih isleft undetermined both by the above proedure and by onformal invariane. This raises the question as towhat is the signi�ane of this parameter and how it an be �xed. Another question that is left unansweredby the above omputation is how one an evaluate the e�etive ation with general boundary onditions,i.e. the e�etive ation of the deformed CFT. The di�eomorphism invariane of the ansatz (5.1) impliitlyassumes that onformally invariant boundary onditions are imposed, whih is reeted in the fat that therenormalized ation one obtains from this ansatz is onformally invariant. However, a generi boundaryondition orresponding to a relevant deformation will break this invariane. So, how then are relevantdeformations aommodated in the Hamilton-Jaobi formalism? The answer to both questions is learlythat the ansatz (5.1) is too restritive.Instead of looking for a suitable generalization of the ansatz (5.1), however, we will try to solve theHamilton-Jaobi equation exatly - without any ansatz - but in a zero-derivative approximation. That is,assuming the metri and the salar are funtions of the radial oordinate only. Clearly, this determines themost general e�etive potential and hene it must aount for any multi-trae deformation. Moreover, thisalulation an in priniple be done for any boundary, not just a (nearly) at boundary as was assumed in(5.1). The result will be the exat e�etive potential on the given boundary. As we will see, this answersthe �rst question, sine if one is able to evaluate the e�etive potential on, say, the sphere, then expandingthis for small urvature and omparing with the result of the previous alulation based on the ansatz (5.1)�xes the undetermined parameter in the two derivative e�etive ation.Interestingly, upon a hoie of a boundary manifold, the zero-derivative approximation amounts to lookingat the `minisuperspae' of ertain domain-wall like solutions. In partiular, for a boundary that annot bewritten as the diret produt of two sub-manifolds, this approximation orresponds to looking for domainwalls of the form ds2 = dr2 + e2A(r)g(0)ij(x)dxidxj ; � = �(r); (5.3)where g(0)ij(x) is a metri independent of the radial oordinate r. The equations of motion require thatg(0)ij(x) is maximally symmetri, R[g(0)℄ij = 1dR[g(0)℄g(0)ij , and has loally onstant salar urvature,R[g(0)℄ = kd(d � 1)=l2, where k = 0;�1. The hypersurfae �r then an be Sd, Rd or H d , or a quotient ofthese by a disrete subgroup of their isometry group. Replaing the indued metri ij as a dynamial �eldby the warp fator, A(r), and the anonial momentum �ij by the momentum, �A, onjugate to A, whihis de�ned via �ijÆij = �AÆA, redues the Hamilton-Jaobi equation to a PDE for the e�etive potentialas a funtion of the two variables A and �. This an then be viewed as the Hamilton-Jaobi equation for14See [41℄ for a systemati approah to solving the Hamilton-Jaobi equation in a derivative (long wavelength) expansion ina similar ontext. 17



a standard lassial mehanis problem for the generalized oordinates A and �. As is well known fromHamilton-Jaobi theory [42℄, the general solution of the equations of motion, i.e. the most general solutionof the form (5.3) in this ase, an be obtained from any omplete integral of the Hamilton-Jaobi equation,whih in this ase ontains one arbitrary integration onstant.15 However, the Hamilton-Jaobi equationadmits more than one omplete integrals. In fat, the general solution of the Hamilton-Jaobi equation on-tains an arbitrary funtion - not just a onstant. As we will show below, this freedom in hoosing a ompleteintegral for the Hamilton-Jaobi equation in the zero-derivative approximation orresponds preisely to thehoie of boundary onditions.Put together then, the two-derivative e�etive ation with onformal boundary onditions based on theansatz (5.1), and the `minisuperspae' approximation of the Hamilton-Jaobi equation to solutions of theform (5.3), ompletely determine the two-derivative e�etive ation of the dual operator on Sd, Rd or H d(or any of their quotients) and for any boundary onditions. Moreover, this omputation an be generalizedto other boundaries too. For example, one an ompute the two-derivative e�etive ation on R � Sd�1 bysolving the Hamilton-Jaobi equation for metris of the formds2 = dr2 + e2A(r)d�2 + e2B(r)d
2d�1; (5.4)instead of the domain walls (5.3).6 Minimal ouplingIn this setion we apply the above method to the system of a single salar �eld minimally oupled to gravity,whih is desribed by the ationS = ZM dd+1pg�� 12�2R+ 12g��������+ V (�)� ; (6.1)where �2 = 8�Gd+1 is the gravitational onstant.16 An ation of this form generially arises as a onsistenttrunation of some gauged supergravity17, but we need not be spei� about the embedding of (6.1) intoa partiular gauged supergravity at this point. We will later give an example of a potential whih allowsthis ation to be embedded into N = 8 gauged supergravity in four dimensions and, hene, be uplifted to11-dimensional supergravity, but we would like to keep the disussion as general as possible here.The ation (6.1) possesses an AdS vauum of radius l provided the potential has a negative extremumat � = �o, suh that V 0(�o) = 0, V (�o) = �d(d� 1)=2�2l2. It follows that, in the viinity of this extremum,the potential takes the formV (�) = �d(d� 1)2�2l2 + 12m2(�� �o)2 + o((� � �o)2); (6.2)where m is the mass of the salar �eld. Note that, unless the potential is exatly onstant, the loation of theextremum is at some �xed value, �o, whih an be set to zero by a rede�nition of the salar �eld. Moreover,if the mass vanishes, then the potential must be onstant, or else the equations of motion eliminate the mode��(x) in the expansion (3.3). Below we will fous on masses in the range �(d=2)2 � m2l2 < 0, exludingthe ase of a onstant potential.6.1 Two-derivative e�etive ation for onformal boundary onditionsOur �rst task is to determine the renormalized on-shell ation orresponding to onformal boundary ondi-tions using the ansatz (5.1). Using the Hamiltonian (A.9), whih is relevant for the ation (6.1), the Hamil-15This is beause there is no expliit dependene on the radial `time'. The harateristi funtion for n variables ontainsn� 1 arbitrary onstants [42℄.16See Appendix A for a detailed disussion of the variational problem and a derivation of the appropriate boundary terms.17Of ourse, the `onsisteny' of the trunation must be heked at the level of the equations of motion.
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m2l2 W (�)�(d=2)2 < m2l2 < 0 W�(�) = � (d�1)�2l � 12l���2 + o ��2�m2l2 = �(d=2)2 W+(�) = � (d�1)�2l � 12l d2�2 + o ��2�W�(�) = � (d�1)�2l � 12l d2�2 �1 + 1log ��+ o� �2log��Table 5: The allowed behavior of the fake superpotential in the viinity of the AdS ritial point at � = 0.tonian onstraint leads to three independent equations for the funtions W (�), Z(�) and M(�). Namely,V (�) = 12 �W 02 � d�2d� 1W 2� ; (6.3)W 0Z 0 � �2 d� 2d� 1WZ + 12�2 = 0; (6.4)M = 2�2 WW 0Z 0: (6.5)The last equation gives expliitly the funtion M(�) in terms of W and Z. Moreover, the seond equationis a linear equation for Z, whose solution in terms of W isZ(�) = � 12�2Zo Z � d��W 0Zo ; Zo(�) � exp �2 d� 2d� 1 Z � d�� WW 0! : (6.6)The regularized two-derivative e�etive ation is therefore determined by the non-linear equation (6.3) for thefuntion W (�), whih we will all `fake superpotential' for reasons that will beome lear later on. Equation(6.3) an be transformed [32℄ into the standard form of Abel's equation of the �rst kind [43℄. Although itsgeneral solution is not known for an arbitrary salar potential V (�), for ertain hoies of the potential itfalls into some of the known integrability lasses of Abel's equation and it an be solved exatly. We willdisuss suh an example below, but in order to determine the renormalized ation we need not solve (6.3)exatly. Indeed, we will now show that some general features of the solutions of equation (6.3) are suÆientfor this purpose.Firstly, from equations (5.2) follows that the asymptoti form of the indued metri and of the salar�eld is determined by the form of W (�) in the viinity of � = 0. In partiular, requiring the metri to beAlAdS, �xes W (0) = �(d � 1)=�2l. This, in ombination with the form (6.2) of the salar potential near� = 0, determines, depending on the value of the salar mass, the allowed behaviors of W (�) around � = 0,whih are shown in Table 5. Note that there are two possible asymptoti behaviors in eah ase. The W+solutions imply that the non-normalizable mode, ��(x), vanishes in the orresponding solution of the bulkequations of motion, whih is obtained from W (�) via (5.2). On the other hand, the W� solutions allow fora non-zero ��(x). Sine �� are the two roots of the equation m2l2 = �(�� d), the requirement that W (�)and hene �� are real imposes the well known BF bound m2l2 � �(d=2)2 [22, 27℄. Further lassi�ation ofthe possible solutions of equation (6.3) is failitated by the following lemma.Lemma 6.1 Provided the BF bound holds and �� > 0, any W� solution of equation (6.3) lies on a on-tinuous family of W� solutions while any W+ solution is isolated, or orresponds to an end point of anone-parameter family of W� solutions, at an in�nite distane in parameter spae from any given W� solu-tion. 19



To prove this lemma, we will assume that the original solution W (�) lies on a one-parameter family ofsolutions. In the ase of W+ solutions we will show that this always leads to a ontradition, while for W�solutions we onstrut expliitly the one-parameter family of solutions in the neighborhood of W (�) when�� > 0. Suppose then that the solution W (�) lies on a ontinuous family of solutions parameterized by theintegration onstant �, hosen suh that � = 0 orresponds to W (�). The one-parameter family of solutionsaround W (�) then takes the form W (�; �) =W (�) + �W (1)(�) +O(�2); (6.7)where W (1)(�) = exp d�2d� 1 Z � d~� W (~�)W 0(~�)! : (6.8)Let us now assume that the original solutionW (�) is ofW+ type. Using the asymptoti form ofW+ solutionsfor the various masses given in Table 5, we an dedue the orresponding asymptoti behavior of W (1)(�).One �nds, W (1)(�) � ��d=�+ ; �(d=2)2 < m2l2 < 0;�2; m2l2 = �(d=2)2: (6.9)Sine 1 < d=�+ < 2 when �(d=2)2 < m2l2 < 0, we see that in all ases, if one starts with a W+ solution,the deformed solution W (�; �) has asymptotis whih are not ompatible with the asymptotis in Table 5,whih any solution must obey. We have therefore reahed a ontradition and we onlude that any W+type solution is isolated. On the other hand, if the original solution is of W� type, then the deformation(6.8) behaves asymptotially asW (1)(�) � (�d=�� ; �(d=2)2 < m2l2 < 0;�2(log �)2 ; m2l2 = �(d=2)2: (6.10)If �� > 0, the BF bound ensures that d=�� > 2 and so we see that in this ase the asymptoti form of thedeformation W (1)(�) is subleading relative to the asymptoti behavior of the original solution. Hene, thedeformed solution does exist, at least in the neighborhood of the original solution, and it is of W� type forany (�nite) value of the deformation parameter.18 This ompletes the proof of the above lemma. �The last laim in the the proof of the above lemma, namely that, when the deformation exists, the deformedsolution (6.7) remains ofW� type to all orders in the deformation parameter �, follows from the next lemma.Lemma 6.2 The deformation parameter � an be hosen suh that all higher-than-�rst order in � terms arealso asymptotially subleading relative to W (1)(�), i.e. suh that W (n)(�) = o �W (1)(�)� as � ! 0 for alln > 1.To prove this statement, we expand the deformed solution W (�; �) asW (�; �) = 1Xn=0 �nW (n)(�); (6.11)where W (0)(�) �W (�) denotes the undeformed solution. Inserting this in (6.3) we determine that W (1)(�)is given by (6.8) while for n > 1 W (n)(�) =W (1)(�) Z � d~� Q(n)W (0)0W (1) ; (6.12)where Q(n) � �12 n�1Xm=1�W (m)0W (n�m)0 � d�2d� 1W (m)W (n�m)� : (6.13)18Lemma 6.2 below guarantees that the asymptotis is not a�eted by the higher order in � terms either.20



Using the asymptotis for the W� type solutions given in Table 5, we an show that there exists a uniquevalue of the integration onstant impliit in (6.12), suh that W (2)(�) = o �W (1)(�)� as � ! 0. Sine theintegration onstant in (6.12) simply multiplies the homogeneous solution W (1), it follows that any othervalue of the integration onstant an be absorbed in the de�nition of the deformation parameter �. A simpleindutive argument an now be used to omplete the proof for any order n > 1. �Note that in order to determine whether a given W+ solution is the end point of an one-parameter family ofW� solutions we need to treat the deformation non-perturbatively, whih is to say, we must be able to solve(6.3) exatly. We will onsider a ase for whih this is possible in the next setion, where we will show thatindeed the W+ solution is the end point of an one-parameter family of W� solutions.The �nal ingredient we need to evaluate the renormalized on-shell ation for both W+ and W� typesolutions is the asymptoti form of the funtions Z(�) and M(�), given in Table 6, whih follows from thatof the fake superpotential in Table 5 via equations (6.4) and (6.5). With this last piee of information then wenow only need to insert the funtions W (�), Z(�) and M(�) in the regularized ation (5.1) and identify thepiee of zero dilatation weight. This is straightforward and results in the renormalized ations given in Table7, but a ouple of subtle, yet important, points are worth mentioning. Firstly, there is the freedom of addingextra �nite loal ounterterms to St, whih we mentioned in Setion 3. In this ase it is manifested by thearbitrariness of the parameter � in the e�etive ations obtained from W� solutions. Di�erent W� solutionslead to a di�erent value for this parameter and so a de�nite hoie of ounterterms amounts to setting thisparameter to zero for a partiular W� solution. One this hoie is made, however, all other W� solutionswill neessarily have a non-zero �. It is lear then that for Mixed boundary onditions the freedom of adding�nite loal ounterterms simply orresponds to the hoie of what one de�nes to be the `undeformed' theory -and not to a renormalization sheme dependene as is the ase for Dirihlet boundary onditions. In writingthe e�etive ations in Table 7 we have piked a randomW� solution and we have assigned it the value � = 0.We will see later that if the system (6.1) is embedded in some gauged supergravity, a natural hoie for thesolution that de�nes the zero of the parameter � is the true superpotential of the theory, provided, of ourse,it is aW� type solution of (6.3). A seond minor point to note is that for d = 2 the leading term of Z(�) givesboth a divergent term, whih is removed by the ounterterms, as well as the �nite piee that ontributesto the renormalized ation. This is lear if one splits the logarithm as log� � log e���r=l + log��(x).The �rst piee then gives the usual logarithmially divergent term assoiated with the onformal anomaly[44℄, while the seond piee gives the �nite ontribution to the renormalized ation. Note also that we haveadded an arbitrary funtion f(��) in the e�etive ations arising from W� solutions, whih orrespondsto a general multi-trae deformation. Although the above argument does not aount for these terms, wehave already seen that they arise from a hoie of boundary onditions and we will disuss how they an beaommodated in the the Hamilton-Jaobi setting below. Finally, exept from the parameter � that appearsonly in the W� e�etive ations, and whih as we just saw orresponds to a hoie of boundary onditions,the e�etive ations in Table 7 also depend on the undetermined parameters �. These parameters multiplya onformally invariant ombination of the two two-derivative terms (for d > 2), and an be determinedas we will see by omputing the e�etive potential on a urved boundary, whih �xes the oeÆient of theurvature term.The above analysis provides a omplete rederivation of the onstraints on the salar mass in orderfor Dirihlet, Neumann or Mixed boundary to be admissible [22, 34, 35℄. However, from a very di�erentperspetive. Here the onstraints arise as essential onditions for the existene of the orresponding e�etiveation for the dual operator. As we have seen, the existene of this e�etive ation requires �rst of allthe existene of a real funtion W (�), whih leads to the BF bound. As expeted then, the W+ solutions,orresponding to Dirihlet boundary onditions, lead to an e�etive ation for the VEV b�(�+) = � 1l (�+ ���)�+, for �+ > ��, or b�(�+) = � 1l �+, for �+ = �� = d=2, of an operator of dimension �+. W�solutions on the other hand, whih orrespond to Neumann or Mixed boundary onditions, lead to ane�etive ation for the VEV �� of an operator of dimension ��. It should now be lear why W+ solutionsare isolated while W� solutions lie on a one-parameter family of W� solutions. Namely, we have seen inSetion 3 that Dirihlet boundary onditions annot be ontinuously deformed, but Neumann and Mixedboundary onditions an. In partiular, the parameter � that de�nes this one-parameter family of W�solutions is identi�ed with the parameter of a marginal multi-trae deformation. Moreover, we have argued21



m2l2 Z(�) M(�)
d > 2 �(d=2)2 < m2l2 Z�(�) � � l2�2(d�2) + �� d�2�� M�(�) � � 2(d�1)(d�2)�2� � d�2�� �2�(d=2)2 Z+(�) � � l2�2(d�2) + +� 2(d�2)d M+(�) � + 8(d�1)(d�2)d2 �� 4dZ�(�) � � l2�2(d�2) + � � �log�� 2(d�2)d M�(�) � � 8(d�1)(d�2)d2 1�2 � �log �� 2(d�2)dd = 2 m2 < 0 Z�(�) � l2�2�� log�+ � M�(�) � l�2�2� 1�2Table 6: The asymptoti behavior of the funtions Z(�) and M(�) following from that of the fake super-potential, W (�), in Table 5 via equations (6.4) and (6.5). � are arbitrary onstants orresponding to theintegration onstant of equation (6.4).

d W �[�℄
> 2 + + R�M ddxpg(0)�� d�2�++ R[g(0)℄ + (d�1)(d�2)�2+ � d�2�+ �2+ g(0)ij�i�+�j�+�� R�M ddxpg(0)��� d��� + f(��) + �� d�2��� R[g(0)℄ + � (d�1)(d�2)�2� � d�2�� �2� g(0)ij�i���j���
2 + l2�2�+ R�M ddxpg(0) �log�+R[g(0)℄ + 2�+��2+ g(0)ij�i�+�j�+�+ +�� R�M d2xpg(0)��� 2��� + f(��) + l2�2�� �log ��R[g(0)℄ + 2����2� g(0)ij�i���j����+ ��Table 7: The renormalized e�etive ations orresponding to the W+ and W� solutions in the two-derivativeapproximation. � are undetermined onstants that depend on the dynamis, while � is the Euler numberof the two-dimensional boundary. Note that the d = 2 e�etive ations are related to the Liouville ationby the �eld rede�nition ' = log�1=��� . Interestingly, the parameter � orresponds to the 2D osmologialonstant.
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above that these ations should only be valid away from the vanishing VEV point. Indeed, if the kineti termin the ations in Table 7 ould be ontinued lose to zero VEV, this would mean that the two-point funtionof the salar operator is dominated by the Goldstone pole in the UV (as well as in the IR), but this of ourseviolates the onformal invariane of the theory whih should be restored in the UV. By looking at Table 7we see that the ondition for the e�etive ations to break down for vanishing VEV is preisely the unitaritybound �� > (d � 2)=2. Sine �+ � d=2 by de�nition, this is only a onstraint on ��, whih is equivalentto the ondition that the mass lies in the range (3.13). We onlude that Neumann and Mixed boundaryonditions, whih require the existene of a W� solution, are only possible for masses in this range.196.2 Minisuperspae approximationIn order to see how a general multi-trae deformation an be aommodated in the Hamilton-Jaobi language,and possibly to determine the parameters � in the two-derivative e�etive ations in Table 7 by omputingthe e�etive potential on a non-at boundary, we now proeed by onsidering the `minisuperspae' approxi-mation for solutions of the form (5.3). From Table 10 we see that with this ansatz the anonial momentaredue to �A = �d(d� 1)edA _A=�2, �� = edA _�, while the Hamiltonian (A.9) beomesH = 12 ���2� � �2d(d� 1)�2A� e�dA ���d(d� 1)k�2l2 e�2A + 2V (�)� edA� : (6.14)The Hamilton-Jaobi problem then redues to a standard lassial mehanis problem, where we look for aomplete integral, S(A; �), suh that �A = �S�A; �� = �S�� ; (6.15)and H = 0. For k = 0, i.e. for a at boundary, a solution to this Hamilton-Jaobi equation isS(A; �) = edAW (�); (6.16)where W (�) satis�es equation (6.3). The two equations (6.15) for the momenta then beome respetively_A = � �2d� 1W (�); _� =W 0(�): (6.17)In ombination with equation (6.3) for the funtion W (�), we reognize these equations as the ow or `BPS'equations for Poinar�e domain walls (see e.g. [45, 46℄). If the ation (6.1) is embedded into a partiulargauged supergravity, then generially there is a unique solution, Wo(�), of (6.3) that oinides with the truesuperpotential of the theory. In that ase the ow equations (6.17) do oinide with the true BPS equationsof the theory. However, any other solution W (�) gives a non-supersymmetri solution of the supergravityequations [47, 23℄. Following [48℄, we allW (�) the `fake superpotential', although `Hamilton's harateristifuntion' would be a more appropriate name in the present ontext. Indeed, none of the above depends onsupersymmetry in any way. The �rst order formalism, also known as `fake supergravity' [48℄, for Poinar�edomain walls is simply Hamilton-Jaobi theory for the bulk equations of motion [29℄. An analysis of urveddomain walls, k 6= 0, in the ontext of Hamilton-Jaobi theory has appeared reently in [49℄. Sine theHamilton-Jaobi equation arising from the Hamiltonian (6.14) for k 6= 0 is non-separable, it is not easy to�nd a omplete integral for an arbitrary potential in this ase. Here we will therefore fous on the k = 0ase, but we will later show that for a onformally oupled salar suh a omplete integral an be found evenfor k 6= 0, whih will allow us to �x the onstants �.Reall that a omplete integral of the Hamilton-Jaobi equation following from the Hamiltonian (6.14)involves an arbitrary onstant. In partiular, the solution (6.16) is a omplete integral provided W (�) is thegeneral solution of (6.3), depending on an arbitrary parameter. This parameter, of ourse, is the oupling,�, of the marginal multi-trae deformation. Sine any omplete integral leads to the most general solution19Note that this is in omplete agreement with the analysis of [21℄, whih shows that a W�(�) solution is neessary in orderfor stability with Mixed boundary onditions to be possible. But from our perspetive in terms of the dual �eld theory, thequantity W (�) (alled P (�) in [21℄) is physial and not merely `an auxiliary onstrut' - it determines the e�etive ation ofthe dual operator. 23



of the form (5.3), we an obtain the most general at domain wall solution provided we an solve equation(6.3) exatly for the one-parameter family of fake superpotentials. Indeed, we will show below that this ispossible, at least for ertain potentials. However, the omplete integral obtained form (6.16) via the one-parameter family of fake superpotentials is not the most general omplete integral. To see this, supposeWo(�) is a solution of (6.3) suh that (6.16) is a solution (not a omplete integral) of the Hamilton-Jaobiequation. We an now look at the most general in�nitesimal deformation, ÆS, of this solution by linearizingthe Hamilton-Jaobi equation around the solution S = edAWo(�). This givesW 0o(�)�ÆS�� � �2d� 1Wo(�)�ÆS�A = 0; (6.18)whose general solution is ÆS = f �eAe� �2d�1 R � d��WoW 0o �� ; (6.19)for an arbitrary funtion f . But note that asymptotially eAe� �2d�1 R � d��WoW 0o � � �1=��� , depending on whetherWo is a W+ orW� solution. It follows that ÆS ontributes to the renormalized ation and orresponds to anarbitrary multi-trae deformation. However, if this deformation were allowed for bothW+ andW� solutions,it would ontradit our previous onlusion that multi-trae deformations are allowed only for Neumann orMixed boundary onditions, and hene, only for W� solutions. Indeed, under the deformation ÆS,Æ _� � 1�� f 0 �eA�1=��� e�(d�1)A�(1���)=�� : (6.20)In order for the asymptoti form of the salar �eld, � � ��(x)e��� , not to be hanged by the deformation,we must then require that d � 1 + 1 � �� � ��, or equivalently �� � d=2. But this piks out only ��sine by de�nition �+ � d=2. We therefore onlude that the deformation (6.19) is allowed only if Wo is aW� solution.The above disussion demonstrates that in the Hamilton-Jaobi formalism, any multi-trae deformationorresponds to a hoie of a omplete integral of the Hamilton-Jaobi equation. In partiular, although aomplete integral of the form (6.16) aounts only for marginal multi-trae deformations, by allowing for amore general omplete integral as in (6.19) the Hamilton-Jaobi formalism an aommodate any multi-traedeformation. This freedom in hoosing a omplete integral then gives rise to the arbitrary funtion f(��)in the orresponding renormalized e�etive ation.6.3 The `2/3' potentialWe now onsider a speial salar potential for whih equation (6.3) for the fake superpotential an be solvedexatly. As we have seen, this gives a omplete integral of the Hamilton-Jaobi equation via (6.16), andhene the most general at domain wall solution. The potential we will onsider isV (�) = �d(d� 1)2�2l2 osh 23r d�2d� 1�! ; (6.21)whih we propose to all the `2=3' potential. This potential was introdued in [32℄, although the speialase d = 3 has appeared elsewhere in the literature as well. In partiular, for d = 3 this potential arisesfrom a one-salar onsistent trunation of the N = 8 gauged supergravity in D = d+1 = 4 dimensions [50℄.It was also onsidered in [51℄, where a four-dimensional asymptotially loally AdS topologial blak holewith salar hair was found, as well as in [23℄ and [24℄, where respetively four-dimensional domain walls andinstantons were found and uplifted to M-theory.The salar mass for the potential (6.21) is m2l2 = �2(d=3)2 and hene the two onformal dimensionsare �� = d=3, �+ = 2d=3. Requiring that the mass falls in the range (3.13), for whih Mixed boundaryonditions an be onsidered, restrits the boundary dimension to lie in the range 2 � d � 6. In [32℄ it was24



shown that equation (6.3) with the potential (6.21) an be solved exatly. The general solution is (see also[23℄) W (�; �) = �d� 1�2l 1(1� �2) 34 1� �2 +p1 + 2��+ �2q2(1 + ��+p1 + 2��+ �2) ; � � �1; (6.22)where � = tanh�23q d�2d�1�� and � � �1 is an arbitrary parameter. In the d = 3 ase, the value � = �1orresponds to the true superpotential of the trunated N = 8 gauged supergravity in four dimensions [23℄.Expanding (6.22) one obtainsW (�; �) = �d� 1�2l �1 + 16 2 + 127� 3 +O( 4)� ; (6.23)where  =q d�2d�1�. For any �nite � � �1 then (6.22) is a W� type solution and the parameter � is relatedto the deformation parameter � in (6.7). In partiular, hoosing � suh that � = 0 orresponds to thesupersymmetri solution with � = �1 gives � = � d�127�2l � d�2d�1� 32 (� + 1).The ow equations (6.17) an now be used to onstrut the orresponding Poinar�e domain wall solution,whih takes the formds2 = �3ld �2 �1 + ��+p1 + 2��+ �2�2�2p1� �2(1 + 2��+ �2) d�2 + 2 p1� �22�2 �1 + ��+p1 + 2��+ �2�!3=d dxidxi;� = 32rd� 1d�2 tanh�1 �; (6.24)where, for �nite �, the parameter  is related to the VEV, ��, via =  23r d�2d� 1��!3=d : (6.25)For the speial ase d = 3, where this domain wall is a solution of N = 8 gauged supergravity, the value� = �1 gives a supersymmetri domain wall sine for this value (6.22) oinides with the true superpotential.For � > �1 (6.24) is a non-supersymmetri solution of the equations of motion.We have seen that every solution of the bulk equations of motion is dual to an extremum, or `vauum',of the e�etive ation of the dual boundary theory. In partiular, Poinar�e domain walls orrespond tohomogeneous vaua, where the VEV �� is a onstant extremizing the e�etive potential Ve� (��). Fromour general presription for omputing the e�etive ation in Setion 3, we see that in order to evaluate thee�etive potential we should �rst evaluate the renormalized momentum as a funtional of the VEV by solvingthe radial problem. We have already done this in this ase and we have found b�(�+) = d���+=��� =�� =3��2�. However, this depends on the arbitrary parameter �, whih should in priniple be �xed by requiringregularity of the orresponding solution (6.24). But sine this solution is singular for any value of �,20 weexeptionally do not impose this ondition and we will take � � 0 to be arbitrary. The e�etive potentialthen takes the form Ve�(��) = ��3� + f(��); (6.26)where � is related to � by the relation we gave above. An extremum of this e�etive potential then orrespondsto imposing the relation 3��2� + f 0(��) = 0; (6.27)between the parameters � and ��. The domain wall (6.24) with this relation imposed is then dual to thevauum of the boundary theory orresponding to the VEV given by (6.27). We should emphasize herethat given a solution of (6.27), the orresponding domain wall (6.24) takes the same form for all hoies20Note, however that while for � = �1 (6.24) has a null singularity, for � > �1 the singularity is timelike [23℄. If this is takenas a riterion for `regularity', then the supersymmetri solution is the only `regular' solution.25



of boundary ondition f(��), although the relation between � and �� is di�erent for di�erent boundaryonditions.An interesting example is the ase where the domain walls (6.24) are solutions of N = 8 gauged super-gravity in four dimensions. In that ase, the � = �1 (� = 0) domain wall is supersymmetri and desribes theCoulomb branh of the dual theory. The orresponding e�etive potential is therefore at, i.e. f(��) � 0,sine the VEV is totally arbitrary. If the oupling � of the marginal multi-trae deformation is then turnedon, the e�etive potential, Ve� (��) = ��3�, destabilizes the theory sine � < 0.21 To have a non-trivialsolution when � > �1 then, we need to introdue another �-dependent deformation, on top of the marginalone. In partiular, we an hoose f(��) = ��h(��) suh that the e�etive potential isVe�(��) = �(�3� � h(��)); (6.28)for some funtion h(��) > 0. Even though for � = 0 the VEV is totally undetermined, when � is turnedon the VEV is �xed to some non-zero value determined by V 0e�(��) = 0. This is preisely the situationdisussed in [23℄, where the spei� hoie h(��) = J���, orresponding to a single-trae deformation, wasmade. While at the supersymmetri point desribing the Coulomb branh the VEV is arbitrary, away fromthe supersymmetri point the VEV is a funtion of the arbitrary bakground soure, J�, of the single-traedeformation.Finally, let us onsider the limit � !1, orresponding to the limit where the oupling, �, of the marginaldeformation of the original CFT is sent to (negative) in�nity. In this limit the fake superpotential (6.22)beomes W (�;1) = �d� 1�2l 1(1� �2) 34 : (6.29)Expanding this we get W (�;1) = �d� 1�2l �1 + 13 2 +O( 4)� ; (6.30)and so this is a W+ solution. The one-parameter family of fake superpotentials (6.22) then provides anexpliit example of the general piture we disussed in the previous setion. Namely, for all �nite valuesof �, (6.22) is a W� solution, while the W+ solution arises as an endpoint of this one-parameter family at� !1. Letting 2� 3d = �2, the domain wall solution orresponding to � !1 isds2 = �3ld �2 d�24�2p1� �2 + �2 p1� �22� !3=d dxidxi;� = 32rd� 1d�2 tanh�1 �; (6.31)where now � =  43r d�2d� 1�+!3=2d : (6.32)For an in�nite value of the marginal deformation parameter then the dimension of the operator dual to thesalar �eld hanges from �� to �+. The domain wall (6.31) desribes the arbitrary VEV of this dimension�+ operator.21If � were positive, the e�etive potential would fore the VEV to vanish. In that ase the domain wall (6.24) redues toexat AdS. A non-trivial solution for � > �1 then would require the addition of some other term proportional to � in thee�etive potential, muh like in the ase � < 0.
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7 Conformal ouplingAs a seond example of a system where the method outlined in Setion 5 an be applied, we onsider theminimally oupled salar �eld in (6.1) with the strange-looking potentialV (�) = �d(d� 1)2�2l2  osh r (d� 1)�24d �!! 2(d+1)(d�1) + �2 � 4d(d� 1)�2� (d+1)(d�1)  sinh r (d� 1)�24d �!! 2(d+1)(d�1) ;(7.1)where � is an arbitrary dimensionless oupling onstant, whih we will assume it is positive. Although thispotential looks rather ompliated and unintuitive, it is in fat a very speial potential. First, note that thesalar mass orresponding to the potential (7.1) is the onformal mass m2l2 = �(d=2)2+1=4, leading to thetwo onformal dimensions �� = (d � 1)=2. Salars with this mass in AdS are `massless' in the sense thattheir Lorentzian bulk-to-bulk propagator has support only on the light one d(x; x0) = 0, where d(x; x0) isthe geodesi distane between two points x and x0 in AdS [22℄. Moreover, the onformal mass falls withinthe mass range (3.13) whih allows for Mixed boundary onditions.However, the onformal mass is not the only speial property of the potential (7.1). Another speialproperty of the potential (7.1) is that for d = 3 and � = �2=6l2 it oinides with the potential (6.21), whih,as we pointed out, preisely for d = 3 an be embedded into N = 8 gauged supergravity in four dimensions.The most signi�ant property though of (7.1) is that the �eld rede�nitionp(d� 1)=d�~�=2 = tanh�p(d� 1)=d��=2� ; ~g�� = �osh�p(d� 1)=d��=2�� 4(d�1) g�� ; (7.2)transforms the ation (6.1) with the potential (7.1) into the form22S = ZM dd+1xpg�� 12�2 �R+ d(d� 1)l2 �+ 12g��������+ d� 18d R�2 + �2� 2(d+1)(d�1) � ; (7.3)whih is the ation for a self-interating salar onformally oupled to AdSd+1 gravity. This transformationwas given for the ases d = 2 and d = 3 in [11℄ and [51℄ respetively. This last property allows us toirumvent the problem of analyzing the ation (6.1) with the ompliated potential (7.1), by studyinginstead the equivalent but simpler ation (7.3). Note, however, that the transformation (7.2) implies thatthe onformally oupled salar an be transformed into a minimally oupled salar provided it is bounded.Sine the ation (7.3) does not neessarily imply that the salar �eld is bounded, only ertain boundedsolutions of (7.3) orrespond to solutions of (6.1).The equations of motion following from the ation (7.3) an be written in the formR�� + dl2 g�� = �2T�� ; �g�� d� 14d R�� d+ 1d� 1��(d+3)=(d�1) = 0; (7.4)where the modi�ed stress tensor T�� is given byT�� = (d� 1)24d �2d=(d�1)�1� (d�1)�24d �2� �r�r� � 1d+ 1g���g���2=(d�1): (7.5)These equations are in fat not independent. Sine T�� is manifestly traeless, the �rst equation in (7.4)implies that the Rii salar is onstant R = �d(d+ 1)l2 : (7.6)The ontrated Bianhi identity then implies that T�� is divergeneless. This fat imposes a di�erentialonstraint on the salar � whih is preisely the seond equation in (7.4), exept that the dimensionless22Note that we have dropped the tildes from the ation (7.3) to simplify the formulas that follow. It should be lear from theontext when � denotes the minimally oupled salar in (6.1) or the onformally oupled salar in (7.3).27



oupling appears as an integration onstant and so is not determined by the divergenelessness of T�� .Hene, the �rst equation in (7.4) implies the seond up to the value of the dimensionless oupling.The very speial form of these equations of motion makes it muh easier to study the ation (7.3)instead of the minimally oupled salar desribed by the ation (6.1) with the potential (6.21)- or any otherpotential, in fat. However, the onformal oupling in the ation (7.3) requires that we revisit not only thevariational problem, but also the derivation of the holographi e�etive ation. In Appendix A we onsiderthe variational problem for both the ations (6.1) and (7.3) in detail, and in eah ase we derive the orretform of the Gibbons-Hawking term, as well as the radial anonial momenta, both of whih are listed inTable 10. Using these results we an now turn to the omputation of the e�etive ation for the operatordual to the salar �eld desribed by the ation (7.3).7.1 Two-derivative e�etive ation for onformal boundary onditionsTo ompute the renormalized e�etive ation in the two-derivative approximation we proeed as in the aseof minimal oupling. Namely, one inserts the ansatz (5.1) for the regularized ation into the momentumand Hamiltonian onstraints (A.8). The momentum onstraint is independent of the partiular form of theanonial momenta and, as in the ase of minimal oupling, it is automatially satis�ed sine it simplyreets the invariane of (5.1) with respet to �r di�eomorphisms. Sine the Hamiltonian (A.10) is nowdi�erent, however, the Hamiltonian onstraint leads to the equationsW 02 � �2d(d � 1) �dW � d� 12 �W 0�2 = �d(d� 1)�2l2 + �� 2(d+1)d�1 ; (7.7)�W 0 + �22d��dW � d� 12 �W 0��Z 0 � �2d �d� 2d� 1��dW � d� 12 �W 0�Z+ 12�2 �1� (d� 1)�24d �2� = 0; (7.8)M = 2�2d �dW � d�12 �W 0�Z 0 + d�12d �W 0 + �22d�2 �dW � d�12 �W 0� ; (7.9)instead of equations (6.3), (6.4) and (6.5). The ation is therefore determined one we solve the non-linearequation (7.7), whih is the analogue of (6.3) for minimal oupling.The general solution of (7.7) in the viinity of the exat solution orresponding to � = 0 takes the formW (�; �) = �d� 1�2l +0��d� 12d p�+ � 1� 2lp�d� 1� 2d�1!�d1A� 2dd�1 +O(�2); (7.10)where � is an arbitrary parameter analogous to the deformation parameter in (6.8). Note that both signpossibilities here lead to solutions analogous to the W� solutions of equation (6.3) (i.e. �� 6= 0). Perhapsthe analogue of a W+ solution an be obtained in the limit � !1, whih ould be evaluated if the solution(7.10) were known exatly as a funtion of �, but we will not investigate this further. We will �x the sign in(7.10) below. Using (7.10) we �nd that the leading asymptoti behavior of the funtions Z(�) and M(�) isexatly as given in Table 6 for a W� solution with �� = (d� 1)=2. Evaluating then the renormalized ationwe obtain�[��℄ = 8>><>>:R�M ddxpg(0)�Ve�(��) + ��� 2(d�2)(d�1)� R[g(0)℄ + 4(d�2)(d�1) �� 2(d�1)� g(0)ij�i���j���� ; d > 2;R�M d2xpg(0) �Ve�(��) + l�2 �log��R[g(0)℄ + 4��2� g(0)ij�i���j����+ ��; d = 2;(7.11)whih, as expeted, are idential with the renormalized ations in Table 7, exept that the e�etive potentialis now given by Ve�(��) = ��d� 12d p�+ ��� 2dd�1� + f(��): (7.12)28



7.2 Minisuperspae approximationAs for the minimally oupled salar, the next step is to look at the `minisuperspae' of solutions of the form(5.3). The anonial momenta dual to the warp fator, A(r), and the salar �eld, whih an be deduedfrom the momenta given in Table 10, are respetively�A = edA��d(d� 1)�2 �1� (d� 1)�24d �2� _A+ d� 12 � _�� ;�� = edA� _�+ d� 12 _A�� : (7.13)Moreover, the Hamiltonian (A.10) beomesH = 12 (e�dA �2� � �2d(d� 1) ��A � d� 12 ����2!+edA�d(d� 1)�2l2 � �� 2(d+1)(d�1) + d(d� 1)k�2l2 e�2A�1� (d� 1)�24d �2��� : (7.14)Writing again �A = �S�A; �� = �S�� ; (7.15)and inserting these into the equation H = 0 for the Hamiltonian (7.14) we obtain the Hamilton-Jaobiequation for the onformally oupled salar.We ould now look for a solution of the form (6.16), in whih ase the Hamilton-Jaobi equation requiresthat the fake superpotential satis�es equation (7.7). Indeed, the exat solution obtained from (7.10) bysetting � = 0 does give a solution to the Hamilton-Jaobi equation. However, sine we do not know the fullone-parameter family of fake superpotentials that solve (7.7), the orresponding solution of the Hamilton-Jaobi equation is not a omplete integral, whih is neessary in order to obtain the most general domainwall solutions of the equations of motion. Nevertheless, in this ase we an �nd a omplete integral of theHamilton-Jaobi equation that is not of the form (6.16) and it is valid even for urved boundary, k = �1, aswell as for at boundary. It is easy to verify that writing�A = �d(d� 1)�2l edAp1 + ke�2A + �e�(d+1)A + d� 12 ���;�� = �edAsd(d� 1)�2l2 �e�(d+1)A + k�d� 12l �2 �2e�2A + �� 2(d+1)(d�1) ; (7.16)where � is an arbitrary parameter, in the Hamiltonian (7.14) automatially gives H = 0. Of ourse, thisdoes not mean that we have found a solution to the Hamilton-Jaobi equation unless��A�� = ����A : (7.17)Remarkably, this is indeed the ase and hene there exists a omplete integral S(A; �) suh that the momenta(7.16) are obtained from it via (7.15). The fat that the momenta (7.16) are integrable, i.e. that they anbe derived from a omplete integral S(A; �) via (7.15), is one of our main results. As we will now show,this omplete integral of the Hamilton-Jaobi equation will allow us not only to ompletely determine thetwo-derivative e�etive ation on any boundary of loally onstant salar urvature, but also to obtain allpossible solutions of the form (5.3).E�etive ation 29



Expanding the momenta (7.16) in eigenfuntions of the dilatation operator and keeping the term ofweight zero gives immediately the renormalized momentab�(d)ij = 12(1 + (�1)d) (�1) d2 k d2�(d+ 1)2d+1l�2 �� �d2 + 1��2 Æij + d� 14d ��b�(�+)Æij ;b�(�+) = �sd(d� 1)�2l2 �+ k�d� 12l �2 �2� + �� 2(d+1)(d�1)� ; (7.18)where we have traded again the momentum �A for the physial momentum onjugate to the indued metriij . Note that the �rst term in b�(d)ij , whih only appears for even boundary dimension, is nothing but theonformal anomaly [44℄, as an be seen from the relation between the VEV of the stress tensor and therenormalized momentum b�(d)ij given in Table 3.The �rst thing that these renormalized momenta an tell us is the value of the undetermined parameter� in the e�etive ation (7.11). Note that the parameter � is determined as a funtion of the VEV �� bythe requirement of regularity for the orresponding domain wall, whih we will disuss below. As we willshow, a possible value is � = 0 - in fat the only possible value for the physially relevant ase where (7.3)is embedded in N = 8 gauged supergravity in four dimensions. Choosing � = 0 then and expanding b�(�+)for small urvature (large l), we obtainb�(�+) = �p�� d+1d�1�  1 + k2� �d� 12l �2 �� 4d�1� + � � �! ; (7.19)where the dots stand for higher derivative terms. Comparing this with the derivative of the e�etive ation(7.11) with respet to the VEV, ��, and using R[g(0)℄ = d(d� 1)=l2, determines� = � (d� 1)216d(d� 2)p�; d > 2; p� = �2=16l; d = 2: (7.20)Note in partiular that for d = 2 the oupling � is itself �xed. In order to have a positive kineti term in thee�etive ation (7.11), we should hoose the positive sign in the renormalized momentum b�(�+) and henein the momentum (7.16).However, the renormalized momentum b�(�+) in (7.18) allows us to determine the exat e�etive potentialon any boundary of onstant salar urvature. Namely, integrating b�(�+) with respet to �� (for � = 0again) we obtain the exat e�etive potentialVk(��) = (d� 1)3k8d(d� 2)l2p�� 2(d�2)(d�1)� F  1� d2 ; 12; 2� d2 ;�k� �d� 12l �2 �� 4(d�1)� !+(d� 1)2d ��s�d� 12l �2 k�2� + �� 2(d+1)(d�1)� + Vo + f(��); (7.21)where the overall onstant Vo = �� �2� d2�� �d�12 �� � 12� (d� 1)d+1k d22d+1d(d� 2)ld� d�12 ; (7.22)is determined by the requirement that Vk(0) = 0. For k = 0 the e�etive potential (7.21) redues toVk=0(��) = (d� 1)2d p�� 2d(d�1)� + f(��): (7.23)For k = 1 and for d = 2; 3; 4 the potential (7.21) is expliitly shown in Table 8.30



d Vk=1(��)2 18l ��2�q1 + 4l2��4� + 12lp� log�2lp��2� +q1 + 4l2��4���+ f(��)3 13l3� ��1 + l2��2��3=2 � 1�+ f(��)4 38� � 32l�3��2=3� � 12 + 4l29 ��4=3� �q1 + 4l29 ��4=3� � 14lp� log� 2l3 �2=3� +q1 + 4l29 ��4=3� ��+ f(��)Table 8: The exat e�etive potential (7.21) for k = 1 and d = 2; 3; 4. Note that for d = 2 the oupling, �,is given by (7.20).Domain walls and (absene of) gravitational instantonsThe solution (7.16) also enables us to �nd all possible solutions of the form (5.3). Using the expressions(7.13) for the anonial momenta in terms of the radial derivatives of the warp fator and of the salar �eldwe �nd dr = ldAp1 + ke�2A + �e�(d+1)A ; (7.24)where � is an arbitrary integration onstant. De�ning u � e�A and ' � u�(d�1)=2� we an then write downthe most general domain wall (5.3) in the formds2 = l2du2u2 (1 + ku2 + �ud+1) + 1u2 ds2d:Z ''o d �'qd(d�1)�2l2 �+ k (d�1)24l2 �'2 + � �' 2(d+1)(d�1) = �l Z u0 d�up1 + k�u2 + ��ud+1 : (7.25)The slie metri ds2d is either one of the three onstant urvature metris given in Table 9 or the metri ona quotient of these by a disrete subgroup of their isometry group. Moreover, sine we piked the plus signin the renormalized momentum b�(�+) in (4.6) so that the kineti term in the e�etive ation has a positivesign, we must pik the minus sign in (7.25).Note that if either k or � are negative, then the range of the radial oordinate is bounded, 0 � u � u�,for some upper bound u�.23 For k and � non-negative, however, u is unbounded from above: 0 � u < 1.Sine � = u(d�1)=2', in this ase regularity of the solution (7.25) requires that ' ! 0 as u ! 1.24 Thisgives the onditionZ 1d�12lp�'�2=(d�1)o dvr1 + kv2 + d(d�1)�2l2� �2lp�d�1 �d+1 �vd+1 = Z 10 dvp1 + kv2 + �vd+1 : (7.26)For � = 0 this is trivially satis�ed sine both integrals diverge. It follows that � = 0 leads to regularsolutions, whih we will disuss shortly. For � > 0, however, this onstraint an only be satis�ed if� < � (d� 1)d�22d+1dld�1 �2=(d�1) : (7.27)23In fat, for k = �1 and � > 0 these solutions are very similar to the Janus solution [52℄.24Note, however, that regularity of the solutions for the onformally oupled salar (7.3) does not guarantee the regularity ofthe orresponding minimally oupled salar sine the transformation rules (7.2) may break down. This should be heked aseby ase. 31



k ds2d0 ds2(Rd ) = dxidxi z = u, zi = xi1 ds2(Sd) = d�2 + sin2 �ds2(Sd�1) z = up1+u2+os � , zi = sin �nip1+u2+os � , nini = 1-1 ds2(H d ) = d�2 + sinh2 �ds2(Sd�1) z = up1�u2+osh � , zi = sinh �nip1�u2+osh � , nini = 1Table 9: The three slie metris ds2d orresponding respetively to k = 0;�1, and the oordinate transfor-mations that bring the metri (7.25) with � = 0 into the upper half plane metri (7.28).Provided this holds, the above onstraint gives a relation between � and the VEV ��. Note, however, thatfor d = 2 and d = 3 the ondition on the oupling is respetively � < (�2=16l)2 and � < �2=6l2. But reallthat we have determined in (7.20) that for d = 2 we must neessarily have � = (�2=16l)2, while for d = 3,� = �2=6l2 is preisely the value of the oupling suh that the ation (7.3) an be embedded in M-theory.It follows that no regular solutions of the form (7.25) with both k and � non-negative exist in these twoases. This is partiularly signi�ant for the three-dimensional ase that an be embedded in M-theory. Notethat (7.25) with k = 1 and � > 0, were it a regular solution, it would be a gravitational instanton similarto the numerial solutions of [13℄. As in that ase, by analyti ontinuations (7.25) would then give statispherially symmetri gravitational solitons, as well as Big Bang/Crunh geometries, whih would have adual desription in the dual N = 8 strongly oupled SCFT in three dimensions. Our argument shows theabsene of suh solitons in this theory. Of ourse, this refers to the partiular trunation of N = 8 gaugedsupergravity that gives the ation (7.3), and whih is di�erent from the one used in [13℄. We will see in thenext setion, however, that (7.3) does admit regular instanton solutions, but of a di�erent type.An interesting property of the general domain wall solution (7.25) is that for � = 0 the metri is themetri of Eulidean AdSd+1 (i.e. of the hyperboli spae H d+1 ), for all possible values of k = 0;�1.25 Indeed,the oordinate transformations given in Table 9 for eah of the ases k = 0;�1, transform the metri in(7.25) with � = 0 to the upper half plane metri of H d+1ds2 = l2z2 (dz2 + dzidzi); i = 1; : : : ; d: (7.28)Moreover, for � = 0 the salar �eld in (7.25) takes the form� = 'ou d�12 0�p1 + ku2 � usk +�2lp�' 2d�1o =(d� 1)�21A�(d�1)=2 ; (7.29)where 'o is an arbitrary onstant orresponding to the VEV ��. For k � 0, 'o � 0 but for k = �1,'o > ((d � 1)l=p2�)(d�1)=2. Note also that with the sign hoie we made above, the plus sign should behosen in this expression. We will revisit this speial ase of the domain wall solutions (7.25) shortly.Another speial ase of the general solution (7.25) deserves a omment. Namely, for d = 3 and � = �2=6l2,in whih ase the two potentials (6.21) and (7.1) agree, the Poinar�e domain wall (6.24) that we found inthe previous setion mathes preisely with the domain wall (7.25) for k = 0. In order to ompare the twosolutions we use the �eld rede�nitions (7.2) to rewrite the domain wall (6.24) in the frame where the salar25Of ourse, this is true provided there are no global identi�ations in the slie metri ds2d.
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�eld is onformally oupled. The transformed solution takes the formds2 = 14�2 �1 + ��+p1 + 2��+ �2��1 +p1� �2�� l2d�2(1� �2)(1 + 2��+ �2) + �2odxidxi� ;� = p6� �1 +p1� �2 ; (7.30)where �o = 2�p6��. It is now straightforward to hek that identifyingu�2 = �2o4�2 �1 + ��+p1 + 2��+ �2��1 +p1� �2� ; (7.31)the solution (7.30) reprodues the domain wall (7.25), provided we also identify � = (�2�1)�4o=16. Aordingto the above disussion then, only the supersymmetri domain wall, orresponding to � = �1, is regular.However, even in this ase, the orresponding solution for the physially relevant minimally oupled salaris not regular. As was disussed in [23℄, the di�erene between the supersymmetri and non-supersymmetridomain walls is that the former has a null singularity, while the later has a timelike singularity. In bothases this singularity an be seen in the orresponding 11-dimensional solution as arising from a ollapsingS2 inside the asymptotially S7 transverse spae.7.3 InstantonsFinally, we onsider a very speial lass of solutions of the equations of motion (7.4), whih for the ase d = 3were found in [24℄. These are solutions that satisfyT�� = 0; R�� + dl2 g�� = 0: (7.32)In the ase of a vanishing osmologial onstant suh solutions have been disussed in [53℄. The vanishingof the modi�ed stress tensor gives a linear equation for the salar �eld, namely�r�r� � 1d+ 1g���g���2=(d�1) = 0; (7.33)whih admits non-trivial solutions provided the metri is exat AdSd+1. The general solution of this equation,subjet to the onstraint that it also satis�es the seond equation in (7.4), an be written in the upper halfplane oordinates (7.28) as�2=(d�1) = (d� 1)lpj�j � bz�sgn(�)b2 + (z + a)2 + (~z � ~z0)2� ; (7.34)where a; b; zi0, i = 1; : : : ; d, are arbitrary onstants. A speial ase of this solution (for � < 0) was foundin [54℄ as a solution of the salar equation (7.4) in four dimensions and ignoring the bak-reation on thegeometry. It was later pointed out in [24℄ that for any value of the oupling, �, there is in fat no bak-reation and, together with the AdS4 metri, this is an exat solution of the full gravity-salar system. Thesolution (7.34) is the generalization of the exat solution of [24℄ to any dimension.In order to understand the signi�ane of the parameters in this solution we onsider its asymptotiexpansion � � e� (d�1)r2l ��(~z)� l�e� (d+1)r2l � (d+1)(d�1)� (~z); (7.35)where � �pj�ja=b and the inhomogeneous VEV, ��(~z), is given by�2=(d�1)� = (d� 1)lpj�j � b�sgn(�)b2 + a2 + (~z � ~z0)2� : (7.36)33



The asymptoti form (7.35) tells us that the two modes, ��, of this soliton are related by �+ = �l�� (d+1)(d�1)� ,or equivalently b�(�+) = �1l (�+ ���)�+ = �� d+12� : (7.37)From Table 2 we then unambiguously onlude that the solution (7.34) satis�es Mixed boundary onditions:Jf� = �b�(�+) � f 0(��) = 0, with f(��) = �� (d� 1)2d � 2d(d�1)� ; (7.38)whih orresponds to a marginal multi-trae deformation with deformation parameter �. It follows that theparameter � = pj�ja=b is not a modulus of the solution (i.e. of the VEV), but rather a modulus of thetheory itself (of ourse this refers to the large N limit only). Di�erent values of � orrespond to di�erentpoints along the line of marginal deformations (7.38). Equivalently, two solutions of the form (7.34) withdi�erent values of � satisfy di�erent boundary onditions. Note that regularity of the general solution (7.34)requires that a > b � 0 and hene � > p� > 0. Using the exat e�etive potential (7.23) with the boundaryondition (7.38) we see that this is preisely the ondition for the e�etive potential to beome unboundedfrom below.26 This suggests that the Eulidean solutions (7.34) are instantons whih mediate the deay ofthe onformal vauum at �� = 0 due to the instability introdued by the marginal deformation (7.38) [24℄.A urious feature of the VEV (7.36) is that it is an extremum of a simple two-derivative boundary ation[24℄.27 This `phenomenologial' e�etive ation in at spae takes the formS = C Z ddz��� 2d�1� �i���i�� + (�� �2)� 2dd�1� � ; (7.39)where C is an arbitrary onstant. Note, however, that this e�etive ation does not - and indeed it doesnot have to - agree with the holographi two-derivative e�etive ation (7.11) we have derived above. If onehooses C suh that it mathes the orret oeÆient of the kineti term given in (7.11), then the oeÆientof the potential term in (7.39) should be hanged as � � �2 ! 2p�(p� � �), if (7.39) were to agree with(7.11). Note that in the viinity of the ritial point at � = p� these oeÆients do atually agree. However,we see this as merely a urious oinidene, sine the orret two-derivative e�etive ation as we showed is(7.11), and indeed the instanton VEV (7.36), whih is an exat extremum of the full all-derivative e�etiveation, need not be an extremum of the two-derivative e�etive ation.Moduli spaeThe moduli spae of the instantons (7.34) is the spae parameterized by all arbitrary parameters of thesolution, subjet to the ondition that the boundary onditions remain �xed, i.e. provided � remains �xed.The moduli spae beomes manifest if we rewrite the instanton solution (7.34) in terms of the oordinates(Y�1; Y0; Yi), i = 1; : : : ; d, of the overing spae, R1;d+1 , of H d+1 . Namely, we introdue oordinates onR1;d+1 as well as a set of auxiliary onstants parameterizing an eH d+1 asY�1 = l2z (1 + z2 + ~z2); ~Y�1 = ~l2~z (1 + ~z2 + ~~z2);Y0 = l2z (1� z2 � ~z2); ~Y0 = ~l2~z (1� ~z2 � ~~z2);Yi = lz zi; ~Yi = ~l~z ~zi: (7.40)The solution (7.34) then an be written as�2=(d�1) = 1� ~Y � Y + 2d�1 l� ; (7.41)26Putting the theory on Sd does not hange this onlusion, as an be dedued from the e�etive potential (7.21).27See [55℄ for a reent disussion of the d = 2 ase. 34



where ~Y � Y � � ~Y�1Y�1 + ~Y0Y0 +Pdi=1 ~YiYi, and we have identi�ed~z = (d� 1)2 b~lpj�j ; ~zi = zio; ~l = 2d� 1p�2 � �: (7.42)The moduli spae is therefore a hyperboli spae, ~H d+1 , of radius ~l, whih is well de�ned preisely for � > p�.Reall that this is exatly the ondition for the instantons to exist, as well as, for the e�etive potential tobe unbounded from below. Finally, note that the form (7.41) allows one to easily write the solution in anyother oordinate system parameterizing H d+1 .Speial limitsSine the metri (7.25) beomes exat AdSd+1 for � = 0 and (7.34) is the most general solution or-responding to an exat AdSd+1 metri, it follows that we must be able to obtain the � = 0 domain wallsolutions disussed above as a limit of the solution (7.34). This an indeed be easily seen, provided we realizethat in taking any limits of the general solution (7.34), we do not neessarily have to satisfy the the onditiona > b � 0 that was essential for the regularity of the general solution. This is espeially so sine the speiallimits an satisfy more general boundary onditions than the general solution (7.34).Setting �rst a = b in (7.34) and letting b ! 1 and ~z2o ! 1, while keeping b=~z2o = lp�d�1' 2d�1o onstant,reprodues the solution (7.29) with k = 0. Moreover, setting zio = 0 and b = 2lp�d�1 ' 2d�1o in (7.34), the twohoies a = �p�1 + b2 lead via the oordinate transformations given in Table 9 to the solution (7.29) withk = �1 respetively. It follows that, although all three solutions satisfy boundary onditions orrespondingto the marginal deformation (7.38), only the solution for k = 1 satis�es the ondition � > p�, whih isneessary in order for the solution to be identi�ed with an instanton. For k = 0 instead we have � = p�,while for k = �1, � < p�. This an be seen diretly by looking at the extrema of the e�etive potential(7.21). Namely, the equation V 0k(��) = 0 is nothing but the gap equation Jf� = �b�(�+)�f 0(��) = 0, wherenow b�(�+) is given by (4.4) and f(��) by (7.38). Rearranging this equation givesk + (�� �2)� 2ld� 1' 2d�1o �2 = 0: (7.43)Note that the VEV, �o, is undetermined for k = 0. In the speial ase where this solution is embedded intoN = 8 gauged supergravity in four dimensions, this is preisely the Coulomb branh solution orrespondingto � = �1 in (6.24). For k = 1 the VEV is �xed to ' 2d�1o = 1=l~l, whih is a loal maximum of the e�etivepotential (7.21), as an be seen from Figure 1 for the ase d = 3. This plot also shows that the e�etivepotential on S3 is stable, marginally stable and unstable aording to whether � < p�, � = p� and � > p�respetively.Vauum deay rateWe have seen above that the existene of these instanton solutions for � > p� oinides with the ritialpoint where the exat quantum e�etive potential (7.21) beomes unbounded from below. This suggests thatthe dual �eld theory beomes unstable and the onformal vauum at �� = 0 deays via quantum tunneling,mediated by these instantons, to something else [24℄. The endpoint of this deay is unlear, however, sinelassial supergravity breaks down before this endpoint is reahed. In the d = 3 ase, where the system(7.3) an be embedded in N = 8 gauged supergravity and the orresponding asymptotially AdS4 � S7solutions uplifted to 11-dimensional supergravity, this breakdown of the supergravity desription an betraed to an S2 inside the S7 ollapsing [24℄. 1=N orretions must therefore be taken into aount in orderto understand the endpoint of the deay. From the bulk point of view, the instantons signal an instabilityof the AdS vauum one the modi�ed boundary ondition (7.38), with � > p� is imposed.The instanton solutions allow us to ompute the deay probability of the onformal vauum, whih isgiven by [39℄ P / e���[�℄���instanton ; (7.44)35
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Figure 1: Plot of the e�etive potential (7.21), with f(��) given by (7.38), on S3 for � < p� (long dashes),� = p� (short dashes), and � > p�.where ��[�℄jinstanton is the e�etive ation of the boundary theory evaluated on the instanton VEV (7.36).Although we do not know the general form of the e�etive ation, this deay rate an be omputed exatlyin two di�erent ways. First, the e�etive ation on the VEV (7.36) an be evaluated by omputing the bulkon-shell ation on the instanton solution (7.34), taking into aount the boundary term (7.38). This gives��jinstanton = � d+12 ~l�d�(d+12 ) �d 241� d(d+ 1) �p� � �p� + 1�F  d+ 22 ; 1; d+ 2; 2�p� + 1!35 : (7.45)The seond way relies on boundary quantities only. The ruial observation is that sine the value of theon-shell ation does not depend on the moduli of the instanton - indeed (7.45) depends only on the oupling� and the deformation parameter � - we an go to any point in the instanton moduli spae to evaluate thee�etive ation. In partiular, we saw that there is a point in the moduli spae where the instanton VEV(7.36) is onstant, namely � 2d�1� = 1=l~l. This orresponds to the � = 0, k = 1 domain wall we disussedabove. But then the e�etive ation redues to the e�etive potential, whih we have omputed in (7.21).Evaluating the e�etive potential on this onstant VEV and multiplying by the volume of Sd gives, aftersome manipulation using the identityF ��d2 ; 12 ; 1� d2 ;�x� = p1 + x��d� 1d� 2�xF �1� d2 ; 12; 2� d2 ;�x� ; (7.46)preisely (7.45).AknowledgementsI would like to thank Jan de Boer, Sebastian de Haro, Anastasios C. Petkou, Kostas Skenderis and J�orgTeshner for very useful omments. I also thank Eole Polytehnique for hospitality during the ompletionof this work.A The variational problem and Hamilton-Jaobi equationsIn this appendix we onsider the variational problem for the ations (6.1) and (7.3) on the regulatinghypersurfae �r. Spei�ally, we determine the appropriate Gibbons-Hawking term and the radial anonial36



minimal �ij = � 12�2p(Kij �Kij)�� = p _�SGH = � 1�2 R�r ddxpK
onformal �ij = � 12�2p �1� (d�1)�24d �2� (Kij �Kij) + d�14d p� _�ij�� = p � _�+ d�12d K��SGH = � 1�2 R�r ddxp �1� (d�1)�24d �2�KTable 10: The anonial radial momenta and the Gibbons-Hawking terms for the ations (6.1) and (7.3).Note that Kij = 12 _ij is the extrinsi urvature of the hypersurfae �r.momenta for eah ase. Moreover, we give the radial Hamiltonian densities, whih, via the Hamiltonian andmomentum onstraints, determine the orresponding Hamilton-Jaobi equations.A generi variation of the bulk ation produes a bulk term proportional to the equations of motion aswell as a boundary term. Namely, ÆS = ZM dd+1xpg ((eoms) +r�v�) ; (A.1)for some vetor �eld v�. This vetor �eld is fundamental to the study of the variational problem and theradial Hamiltonian formalism. For the ations (6.1) and (7.3) it is given respetively byv�min = � 1�2 g�[�r�℄Æg�� + Æ�r��; (A.2)v�onf = � 1�2 �1� (d� 1)�24d �2� g�[�r�℄Æg�� � d� 12d �Æg��g�[�r�℄�+ Æ�r��: (A.3)We an evaluate expliitly the boundary term (A.1) on �r using the gauge-�xed metri (3.1). Generially ittakes the form Br � Z�r �v = �ÆSGH + Z�r ddx(Æij�ij + Æ���); (A.4)but the preise form of the Gibbons-Hawking term, SGH , and of the radial anonial momenta, �ij and��, ruially depends on the form of the bulk ation. In Table 10 we give expliitly the momenta and theGibbons-Hawking terms for minimally and onformally oupled salars. Note that although the Gibbons-Hawking term for minimally oupled salars is idential to the standard Gibbons-Hawking term for puregravity, this is no longer true for onformally oupled salars.The radial momenta given in Table 10 are, of ourse, the same quantities as those one would obtainfrom the funtional derivatives of the o�-shell bulk Lagrangian with respet to the radial derivative of theorresponding indued �eld, i.e. �ij = ÆLÆ _ij ; �� = ÆLÆ _� : (A.5)However, the boundary term (A.4) shows that they also orrespond to the funtional derivatives of the theregularized on-shell ation, Ir � (S + SGH)jon�shell; (A.6)37



with respet to the indued �elds on the hypersurfae �r. Namely,�ij = ÆIrÆij ; �� = ÆIrÆ� : (A.7)These relations, familiar from Hamilton-Jaobi theory, are the main reason why the radial Hamiltonianformalism is the most diret approah for studying the supergravity limit of the AdS/CFT orrespondene.Indeed, in the simplest ase of Dirihlet boundary onditions, the AdS/CFT ditionary identi�es the indued�elds, e.g. ij and �, with the soures of the dual operators and the regularized on-shell ation with thegenerating funtional of regularized onneted orrelation funtions. It follows that the anonial momentagiven by (A.7) orrespond to the regularized one-point funtions of the dual operators with arbitrary soures.This statement trivially arries over for renormalized orrelation funtions one the ovariant boundaryounterterms are added to Ir . Moreover, as it is extensively disussed in Setion 3, one the ovariantboundary ounterterms are added to Ir, one an add further appropriate �nite boundary terms in order tomodify the boundary onditions.The bulk equations of motion an be written in terms of the radial anonial momenta using a `radialADM formalism'. As is well known, the resulting equations are the standard �rst order Hamilton equationsomplemented with the Hamiltonian and momentum onstraints, whih reet the di�eomorphism invarianeof the theory. For the ations (6.1) and (7.3) the onstraints take the formH = 0; 2Di�ij = ���j�; (A.8)where the Hamiltonian density, H, is given respetively byHmin = 2�2p ��ij�ij � �2d� 1�+ 12p �2� �p�� 12�2R[℄ + 12�i��i�+ V (�)� ; (A.9)Honf = 2�2p �1� (d� 1)�24d �2��1��ij�ij � 1d�2�� 2�2d(d � 1)p �� � d� 14 ����2 + 12p �2��p�� 12�2R[℄ + (d� 1)22d(d� 2)� dd�1�� d�2d�1 � d(d� 1)2�2l2 + �2� 2(d+1)(d�1) � ; (A.10)and where � � �� + (d� 2)4(d� 1)R[℄; (A.11)is the salar onformal Laplaian in d dimensions. Note that although the form of the Hamiltonian and ofthe momenta is di�erent for minimally and onformally oupled salars, the form of the onstraints remainsthe same. Hamilton's equations an then be written in terms of the Hamiltonian H = R ddxH as_ij = 2Kij = ÆHÆ�ij ; _� = ÆHÆ�� ; (A.12)_�ij = � ÆHÆij ; _�� = �ÆHÆ� : (A.13)The two equations in the �rst line are just the inverse of the expressions in Table 10 for the momenta in termsof the radial derivatives of the indued �elds. The two equations in the seond line give the seond orderequations one would obtain from the omponents of Einstein's equation that are transverse to �r. However,we will not need the expliit form of these equations sine we only use the Hamilton-Jaobi formalism in thispaper. This onsists in inserting the anonial momenta as derivatives of the regularized on-shell ation (see(A.7)) in the Hamilton and momentum onstraints (A.8). The resulting equations are the Hamilton-Jaobiequations for the gravity-salar system. Hamilton's equations are then automatially satis�ed due to theidenti�ation (A.7).Referenes[1℄ E. Witten, \Multi-trae operators, boundary onditions, and AdS/CFT orrespondene," [arXiv:hep-th/0112258℄. 38
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