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DESY-06-213, hep-th/yymmnnnConformally Coupled Salars, Instantons and Vauum Instability in AdS4Sebastian de Haro,� Ioannis Papadimitriou,y and Anastasios C. Petkouz(Dated: May 8, 2007)We show that a salar �eld onformally oupled to AdS gravity in four dimensions with a quartiself-interation an be embedded into M-theory. The holographi e�etive potential is exatlyalulated, allowing us to study non-perturbatively the stability of AdS4 in the presene of theonformally oupled salar. It is shown that there exists a one-parameter family of onformal salarboundary onditions for whih the boundary theory has an unstable vauum. In this ase, thebulk theory has instanton solutions that mediate the deay of the AdS4 spae. These results mathniely with the vauum struture and the existene of instantons in an e�etive three-dimensionalboundary model.Introdution: Quantum mehanial tunneling is animportant mehanism for vauum seletion in the hugelandsape of string theory vaua. It is also expeted thatit plays a role in the early universe, and in fat it an be-ome dominant in an eternally inating universe. In bothases tunneling needs to be understood in the preseneof a quantum gravity theory. This is a diÆult problem.However, if holography is at work one may hope to mapthis into a problem of vauum deay in a theory withoutgravity whih might be more aessible. In any ase, it isertainly of interest to study holography in the preseneof unstable vaua.As a step in this diretion we study here a simple modelthat arises as a onsistent trunation of M-theory to fourdimensions. The model onsists of a salar �eld onfor-mally oupled to gravity with a quarti self-interation.We alulate the exat holographi e�etive potential ofthe dual boundary theory on the sphere and we show thatthere exists a one-parameter family of boundary ondi-tions for the salar �eld suh that, in a ertain rangeof this parameter, the boundary theory has an unstablevauum. In the same parameter range we �nd instan-ton solutions whose Lorentzian signature form desribesa bubble of true vauum expanding at the speed of light[1℄. However, to understand the end-point of the deayit is neessary to go beyond the supergravity approxima-tion and onsider �nite-N orretions. Finally, we arguethat an O(N 0) �6 three-dimensional theory qualitativelyreprodues the bulk results.Conformally oupled salars and their embed-ding in string/M-theory: The ation of a salar �eldonformally oupled to Einstein gravity with a negative�Department of Mathematis, King's College, London WC2R 2LS,UK.yDESY Theory Group, Notkestrasse 85, D-22603 Hamburg, Ger-many.zDepartment of Physis, University of Crete, 71003 Heraklion,Greee.

osmologial onstant in four dimensions isS = 12 Z d4xpg��R+ 2��2 + (���)2 + 16R�2 + ��4�(1)where �2 = 8�G4, � is a dimensionless oupling and theosmologial onstant is � = �3=l2. An important prop-erty of (1) is that all its extrema have onstant Riisalar R = �12=l2 [2℄.It was pointed out in [3℄ that, for the speial value� = �2=6l2, (1) an be obtained via the �eld rede�nition��=p6 = tanh(�~�=p6); g�� = osh2(�~�=p6)~g�� ; (2)from an ation with a minimally oupled salar �eld andthe potential V (~�) = �(3=�2l2) osh(p2�~�=p3). Theresulting ation is a onsistent trunation of the N = 8gauged supergravity ation to the diagonal of the Cartansubgroup U(1)4 of the SO(8) gauge group [4℄. It followsthat any solution of (1) with � = �2=6l2, an be upliftedto a solution of eleven-dimensional supergravity. The ex-pliit uplift for this partiular one-salar trunation takesthe form [5℄:dŝ211 = 4(X +X�1)�2 ~�2=3ds24+4l2 ~��1=3 �X3 �(os2 � +X�4 sin2 �)d�2+sin2 �d�24�+X�1 os2 �d
25� ; (3)F̂ (4) = �16l�1 �X +X�1��4 ��2X2 os2 � +X�2(1 + 2 sin2 �)� �4 (4)+16l sin 2� �X +X�1��2X�1 �4 dX ^ d�;where we have de�ned ~� = X os2 � + X�3 sin2 � andX = (1+��=p6)1=2=(1���=p6)1=2. Note that the met-ri (3) preserves an S5 and ontains a squashed S2, whihbeomes totally squashed as � ! p6=�, or X ! 1.This signals a breakdown of the supergravity desriptionin this limit.Boundary onditions and the holographi e�e-tive ation: A salar �eld in (Eulidean) AdS4 withradius l and in the upper half plane oordinates has the
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2asymptoti behavior� � z�� (��(~z) + � � � ) + z�+ (�+(~z) + � � � ) ; (5)as z approahes the onformal boundary at z = 0. Theparameters ��, where �+ � ��, are related to the massof the salar by m2l2 = �(� � 3) and ��(~z) are arbi-trary funtions of the transverse oordinates. It is knownthat suh a salar an be onsistently quantized in AdS4either with Dirihlet, Æ��(~z) = 0, or with Neumann,Æ�+(~z) = 0, boundary onditions if the mass squared isin the range�9=4 < m2l2 < �5=4 [6℄. This is the ase forthe salar � in (1) sine the salar urvature R is onstantand ats as a mass term with m2l2 = �2. Quantizing �with Neumann boundary onditions one onludes thatthe dual boundary theory has an operator with dimen-sion �� = 1 [7℄. This is onsistent with the M-theoryembedding disussed above, where the salar ~� in (2),and more generally all the salars of the SL(8;R)=SO(8)submanifold of the salar manifold of N = 8 gauged su-pergravity, is dual to a dimension one operator whoseVEV parameterizes a ertain diretion of the Coulombbranh of the N = 8 SCFT on the worldvolume of oin-ident M2-branes.In AdS/CFT the (generially non-loal) relationshipbetween the funtions �� and �+ in the asymptoti ex-pansion (5), whih is imposed by the requirement of reg-ularity of the exat solution, determines the e�etive a-tion of the boundary theory. In partiular, the e�etiveation of the dual boundary theory is given by the on-shell value of the renormalized bulk ation S[��℄, takenas a funtional of ��, by the relation �e�[���℄ = S[��℄.This follows from the fat that S[��℄ is minus the gener-ating funtional for onneted orrelation funtions of theboundary operator with dimension �+ and its Legendretransform gives the orresponding generating funtionalfor the boundary operator with dimension ��. It followsthat the relationship Æ�e�[��℄=Æ�� = �ÆS[��℄=Æ�� = 0determines the vauum struture of the dual boundarytheory.Starting with solutions satisfying Neumann boundaryonditions with vanishing soure J(~z) for the dual oper-ator, i.e. �+(~z) � J(~z) = 0, one an modify the bound-ary onditions while preserving the (bosoni) asymptotisymmetry group of AdS4. There is a one-parameter fam-ily of suh deformations�+(~z) = �l��2�(~z) : (6)These mixed boundary onditions interpolate betweenNeumann (� = 0) and Dirihlet (� = 1). For generi�, the new boundary ondition will not be a stationarypoint of (1) but it an be enfored by adding a boundaryterm to the ation whih we will determine. Eventuallywe will be onsidering solutions with vanishing stress-energy tensor and for that we renormalize to zero theon-shell ontribution of the gravity part of the ation.The matter part of the ation inludes also a generalized

Gibbons-Hawking term (see [2℄ for details). The bound-ary term that enfores (6) isSbdy = � l3�3 Z d3z�3�(~z) : (7)In the ontext of the AdS/CFT orrespondene the addi-tion of the boundary term (7) orresponds to a marginaltriple-trae deformation of the dual CFT [8℄, ompletelybreaking supersymmetry. The boundary ondition (6)has been studied in the ontext of `designer gravity' [9℄,where various blak hole solutions [8℄ as well as gravi-tational solitons and osmologial big bang/runh ge-ometries [10℄ satisfying these boundary onditions werenumerially onstruted. An exat Poinar�e domain wallsolution satisfying the boundary ondition (6) was foundand uplifted to eleven dimensions in [5℄.The equations of motion following from (1) determinein priniple the non-loal relation between the twomodes,��(~z), and hene the holographi e�etive ation for theVEV of the dual dimension one operator in the CFTdeformed by the marginal deformation (7). This e�etiveation an be omputed in a derivative expansion awayfrom the vanishing VEV point. On a nearly at boundaryone �nds that up to two derivatives [2℄�e�[��℄ = 16p� Z d3xpg(0)���1� �i���i��+12R[g(0)℄�� + 2p�(p�� �)�3�� ; (8)where g(0)ij is the boundary metri. Moreover, the exatholographi e�etive potential for R � 0 is [2℄V�;�(��) = 13� "�R6 + ��2��3=2 � ���3� ��R6 �3=2# ;(9)where the additive onstant has been �xed by requiringthat the trivial vauum at �� = 0 has zero energy. Re-de�ning �� = '2 and taking �! p� the two-derivativeholographi e�etive ation (8) takes the form�e�['℄ = 43p� Z d3xpg(0)�12�i'�i'+ 116R[g(0)℄'2 + 18�'6�+O ��2� ; (10)where � � � � �2. This agrees with the lassially on-formally invariant toy-model ations used in [10, 11℄.Sine the system (1) an be embedded into eleven-dimensional supergravity, the holographially dual �eldtheory is (a setor of) the N = 8 interating SCFT inthe large-N limit [12℄. In the abelian ase, N = 1, thistheory an be obtained by ompatifying N = 4 superYang-Mills in four dimensions on a irle in the limitof zero radius, and it is also believed to be the infrared�xed point of N = 8 super Yang-Mills in three dimen-sions. However little is known about this theory, whih



3makes any test of the AdS/CFT orrespondene very dif-�ult. Nevertheless, we will argue below that the bulkresults (8), (9) and (10) an be qualitatively reproduedby a ertain three-dimensional O(N 0) model, where N 0is not related to the number of M2-branes. This notonly implies some onnetion between the N = 8 SCFTand the O(N 0) model, as a onsequene of the AdS/CFTorrespondene, but it is also a step towards �nding theholographi dual of O(N 0) models in three dimensions[13℄.Salar instantons: The equations of motion follow-ing from the ation (1) admit non-trivial solutions withvanishing stress tensor. The ondition that the stresstensor vanishes redues to a linear equation for the salar�eld, namely (r�r�� 14g���g)��1 = 0 [2℄, whih admitsnon-trivial solutions provided the metri is that of exatAdS4. In the upper half plane oordinates the most gen-eral solution of the equations of motion with vanishingbulk stress tensor takes the form� = 2lpj�j � bz�sgn(�)b2 + (z + a)2 + (~z � ~z0)2� ; (11)where a; b; zi0, i = 1; 2; 3, are arbitrary onstants. For� > 0, this Eulidean solution is non-singular provideda > b � 0: (12)For � < 0 this solution was studied in [11℄ ignoring itsbakreation on the geometry. We have now shown thatin fat there is no bakreation and (11) together with theAdS4 metri is an exat solution of the oupled equationsof motion. Expanding the solution (11) asymptotiallynear the onformal boundary we get preisely the expan-sion (5), where �� satisfy (6) with � �pj�ja=b and�� = 2lpj�j � b�sgn(�)b2 + a2 + (~z � ~z0)2� : (13)Notie that the parameter � is not a modulus of the so-lution but rather labels di�erent boundary onditions.Therefore, it orresponds to the deformation parameterof the dual theory and di�erent values of � orrespond tosaddle points of di�erent theories. The remaining param-eters in (11) do orrespond to moduli of the solution andthey parameterize a four-dimensional hyperboli spaeeH 4 of radius ~l = p�2 � �, whih is also the moduli spaeof instantons in R3 . This an be seen by parameterizingthe solution (11) in a manifestly O(5; 1) ovariant formas in [14℄, ��1 = hMyM , where h; y are vetors in a 6-dimensional embedding spae. It an then be shown [2℄that the solution is determined by the 5-dimensional partof h, whih satis�es h2 = � j�jb2 (a2� b2sgn(�)) and hene,given (12), it parametrizes an eH 4 also for � > 0. Notethat the ondition (12) for the solution to be non-singularis the neessary and suÆient ondition for the radiusof the moduli spae to be well de�ned and also for thepotential (9) to be unbounded from below. Remarkably,
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FIG. 1: Plot of the potential (9) on S3 for � < �=p6l (longdashes), � = �=p6l (short dashes), and � > �=p6l.the VEV (13) is an exat extremum of the two-derivativeholographi e�etive ation (10).Vauum deay: The unboundedness of the boundarye�etive potential for � > �=p6l is the holographi imageof an AdS4 instability towards its spontaneous `dressing'by a non-zero salar �eld when the boundary ondition(6) is imposed with � > �=p6l. This non-perturbativeinstability does not ontradit any positivity theorem.Although the positivity theorems [6, 15, 16, 17℄ do ap-ply when the supersymmetri (� = �=p6l [2℄) boundaryonditions are imposed on the salar �eld, they do notapply for a generi value of the deformation parameter �in (7). The question of stability of AdS with suh bound-ary onditions has been addressed in the ontext of `de-signer gravity' [9, 18℄, where it has been suggested thatAdS with boundary onditions on the salar de�ned bythe boundary term SW = � R d3zW(��), is stable pro-vided the funtionW(��) has a global minimum. This islearly not the ase for the deformation (7) and so thesepositivity theorems do not apply either.The physial meaning of the instanton solutions (11)beomes lear by taking the boundary to be S3. In thisase the potential (9) has a global minimum at �� = 0 for� � p� (note that �� � 0) whih turns into a loal min-imum for � > p� separated by a potential barrier fromthe instability region at �� ! 1 (Fig. 1). The salar�eld an tunnel from the loal minimum at �� = 0 tothe instability region. In terms of the bulk salar �eld theinstability region is reahed for �! p6=�, or ~� ! �1.We have seen that this is preisely the limit where an S2in the uplifted eleven-dimensional metri (3) gets totallysquashed giving rise to a singularity. To understand thetrue vauum of the theory for � > �=p6l, if there is one,one needs to go beyond supergravity to inlude �nite-Norretions. This would modify the holographi poten-tial (9) and at the same time would resolve the geometrisingularity from the squashed S2.The physial piture of the deay proess an be under-stood in terms of bubble nuleation �a la Coleman and DeLuia [1℄. Namely, the Lorentzian version of the instan-ton solution (11) desribes a `half-bubble' entered on the



4boundary whih is expanding or ollapsing at the speed oflight towards the bulk. The equatorial plane of the bub-ble desribes an expanding or ollapsing bubble in thedual �eld theory. Outside and far away from the bubblethe spae is AdS4 orresponding to the loal minimum at�� = 0 of the potential (9). Inside the bubble is the `truevauum' whih annot be understood in the supergrav-ity approximation. The tunneling probability is propor-tional to the exponential of the on-shell ation omputedwith the boundary onditions de�ned by (7) and evalu-ated on the instanton solution (11), P / exp (� �e�jinst).Evaluating this gives [2℄�e�jinst = 4�2l2�2  1p1� �2=6l2�2 � 1! : (14)Note that the deformation parameter � drives the the-ory from the regime of marginal stability at � = �=p6lto total instability at � ! 1. In the global oordinatesof H 4 where the boundary is S3, the instanton solution(11) depends only on the H 4 radius. In partiular, ��is onstant in these oordinates. This positive onstantsolution orresponds preisely to the loal maximum ofthe holographi potential (9) on S3, whih again onlyexists for � > �=p6l. Evaluating the potential at thismaximum and multiplying with the volume of S3 we getexatly (14). This on�rms that the tunneling probabil-ity is indeed proportional to the exponential of minus theheight of the potential barrier and justi�es our laim thatthe instantons mediate the tunneling of the loal mini-mum at �� = 0 to the instability region for � > �=p6l.An e�etive boundary theory:There is some indiation that the holographi results(9) and (14) ould be reprodued from an O(N 0) modelin three dimensions with a g(~�2)3=6 interation. Boththe form (10) of the holographi e�etive ation in thedouble saling limit and the existene of instantons in

ertain O(N 0) models in three dimensions are suggestiveof suh a onnetion.To illustrate this point we onsider the ationIg = C Z d3~x�12�i�a�i�a + g6N 02 (�a�a)3� ; (15)where a = 1; 2; : : : ; N 0 and C is an N 0-independent on-stant. For g < 0 this model has instanton on�gurationsgiven by�a(~x) = �3N 02=(�g)�1=4 (a=pb) �b2 + (~x� ~x0)2�� 12 ;(16)where aa = b2 and b is an arbitrary onstant. OnS3 the lassial potential for the O(N 0)-singlet opera-tor � � �a�a=N 0 beomes Vg(�) = C �R�=16 + g�3=6�.With the identi�ations C = 4=3p�, g = 3p�(p���)=2and � = ��, this potential oinides with the holographipotential (9) in the limit of small urvature. In parti-ular, the instability region of (9) for � > p� is mappedpreisely to the instability region of the O(N 0) modelfor g < 0. It would be very interesting if a full quan-tum treatment of this O(N 0) model reprodued the fullholographi potential (9) in the large-N 0 limit [19℄. Eval-uating the ation (15) on the instanton solution (16) weobtainN 0�1Iginst = (p2�2=3�)(�=p��1)�1=2, whih pre-isely agrees with the tunneling probability (14) in theapproximation �=p� � 1.AknowledgementsI.P. thanks the Aspen Center for Physis for hospi-tality during the workshop on `Reent Advanes in BlakHole Physis in String Theory', as well as the Albert Ein-stein Institute at Potsdam and the University of Crete,where part of this work was done. A.C.P. wishes to thankT. Tomaras for very useful disussions. A.C.P. is par-tially supported by the European RTN \Superstrings"and the Greek Researh Program \PYTHAGORAS II".[1℄ S. R. Coleman and F. De Luia, Phys. Rev. D 21 (1980)3305.[2℄ I. Papadimitriou, [arXiv:hep-th/0703152℄.[3℄ C. Martinez, R. Tronoso and J. Zanelli, Phys. Rev. D70 (2004) 084035 [arXiv:hep-th/0406111℄.[4℄ M. J. Du� and J. T. Liu, Nul. Phys. B 554 (1999) 237[arXiv:hep-th/9901149℄.[5℄ I. Papadimitriou, JHEP 0702 (2007) 008[arXiv:hep-th/0606038℄.[6℄ P. Breitenlohner and D. Z. Freedman, Annals Phys. 144(1982) 249.[7℄ I. R. Klebanov and E. Witten, Nul. Phys. B 556 (1999)89 [arXiv:hep-th/9905104℄.[8℄ T. Hertog and K. Maeda, JHEP 0407 (2004) 051[arXiv:hep-th/0404261℄.[9℄ T. Hertog and G. T. Horowitz, Phys. Rev. Lett. 94 (2005)221301 [arXiv:hep-th/0412169℄.[10℄ T. Hertog and G. T. Horowitz, JHEP 0407 (2004) 073
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