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illatorH.A. Kastrup1DESY, Theory GroupNotkestr. 85, D-22603 HamburgGermanyPACS 03.65.Fd, 03.65.Ge, 42.50.Xa Abstra
tIn 
lassi
al me
hani
s the harmoni
 os
illator (HO) provides the generi
 example for theuse of angle and a
tion variables ' 2 R mod 2� and I > 0 whi
h played a prominent role inthe \old" Bohr-Sommerfeld quantum theory. However, already 
lassi
ally there is a problemwhi
h has essential impli
ations for the quantum me
hani
s of the ('; I)-model for the HO:the transformation q = p2I 
os'; p = �p2I sin' is only lo
ally symple
ti
 and singularfor (q; p) = (0; 0). Globally the phase spa
e f(q; p)g has the topologi
al stru
ture of theplane R2 , whereas the phase spa
e f('; I)g 
orresponds globally to the pun
tured planeR2 � (0; 0) or to a simple 
one with the tip deleted. From the properties of the symple
ti
transformations on that phase spa
e one 
an derive the fun
tions h0 = I; h1 = I 
os' andh2 = �I sin' as the basi
 
oordinates on f('; I)g , where their Poisson bra
kets obey the Liealgebra of the symple
ti
 group of the plane. This implies a qualitative di�eren
e as to thequantum theory of the phase spa
e f('; I)g 
ompared to the usual one for f(q; p)g : In thequantum me
hani
s for the ('; I)-model of the HO the three hj 
orrespond to the self-adjointgenerators Kj; j = 0; 1; 2; of 
ertain irredu
ible unitary representations of the symple
ti
group or one of its in�nitely many 
overing groups, the representations being parametrizedby a (Bargmann) index k > 0. This index k determines the ground state energy Ek;n=0 = ~! kof the ('; I)-Hamiltonian H( ~K) = ~!K0. For an m-fold 
overing the lowest possible valuefor k is k = 1=m , whi
h 
an be made arbitrarily small by 
hoosing m a

ordingly! Thisis not in 
ontradi
tion to the usual approa
h in terms of the operators Q and P whi
h arenow expressed as fun
tions of the Kj, but keep their usual properties. The ri
her stru
tureof the Kj quantum model of the HO is \erased" when passing to the simpler (Q;P )-model!This more re�ned approa
h to the quantum theory of the HO implies many experimentaltests: Mulliken-type experiments for isotopi
 diatomi
 mole
ules, experiments with harmoni
traps for atoms, ions and BE-
ondensates, with 
harged HOs in external ele
tri
 �elds andthe (Landau) levels of 
harged parti
les in external magneti
 �elds, with the propagation oflight in va
uum, passing through strong external ele
tri
 or magneti
 �elds. Finally it maylead to a new theoreti
al estimate for the quantum va
uum energy of �elds and its relationto the 
osmologi
al 
onstant.1E-mail: Hans.Kastrup�desy.de
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tion and overview1.1 The issue: Quantum me
hani
s of the harmoni
 os
illator interms of angle and a
tion variablesAt �rst sight it probably appears provo
ative and presumptuous to present a new resear
hpaper on the harmoni
 os
illator (HO), that venerable and pedagogi
ally thoroughly squeezedsimple model, en
ountered in many physi
s publi
ations of all types. Despite its simpli
ityit has played an important role at many instan
es in the history of physi
s, 
lassi
ally andquantum theoreti
ally:It probably started with Hooke's law_p = �b q ; p = M _q ; b > 0 ; (1)in me
hani
s for the for
e exerted on a parti
le in the neighbourhood of its stable equilibriumposition. Then 
ame the HO in the plane with its two qualitatively di�erent types of motion,periodi
al orbits (Lissajous �gures) and quasi-periodi
al ones whi
h densely �ll a submanifoldof the phase spa
e, initiating the idea of ergodi
 systems. Two or more linearly 
oupled HOwith their 
hara
teristi
 (eigen-) frequen
ies are important for the stability analysis of manysystems and play a signi�
ant role in 
ru
ial areas of physi
s. By adding a fri
tion term themodel serves also as an examplary introdu
tion to dissipative systems.Con
eptionally important was - and still is - the lo
ally 
anoni
al (symple
ti
) des
riptionof the position and momentum 
oordinates for the HO in terms of angle and a
tion variables:q('; I) = r 2 IM ! 
os' ; p('; I) = �p2M ! I sin' ; ! = pb=M ; (2)3



so that H(q; p) = 12M p2 + 12 M !2 q2 = H('; I) = ! I : (3)This is the generi
 example for the essential 
on
ept of integrable systems, their (non-integrable) perturbations and the asso
iated KAM-theory [1{3℄.Then there is the possible interpretation of 
lassi
al free ele
tromagneti
 standing wavesin a 
avity as a set of un
oupled harmoni
 os
illators. This property was essential in Plan
k'sderivation of his radiation law. So the HO played an important part in the birth of quantumtheory, too!In the \old" quantum me
hani
s with its Bohr-Sommerfeld framework the HO had the en-ergy levels En = ~! n; n = 0; 1; : : :. (For a 
omprehensive summary of the Bohr-Sommerfeldtheory, where the angle and espe
ially the a
tion variables played a 
entral role, just beforethe dawn of modern quantum me
hani
s see the impressive textbook by Born (and Hund) [4℄.)Even before Heisenberg dedu
ed the modi�ed energy levelsEn = ~! (n+ 12) ; n = 0; 1; : : : (4)in his famous �rst paper on matrix me
hani
s [5℄, Mulliken had 
on
luded from his spetro-s
opi
 analysis of the di�eren
es in the vibrational spe
tra of the diatomi
 isotopes B10O16and B11O16 [6, 7℄ that the lowest energy state of the HO should beE0 = 12 ~! : (5)This has been the 
anoni
al undisputed ground state energy value of the HO ever sin
e (fora 
omprehensive histori
al overview see Ref. [8℄) and a standard example for the role ofHeisenberg's position - momentum un
ertainty relations. For a re
ent partial survey of theHO in modern physi
s see Ref. [9℄.Whereas angle and a
tion variables were 
entral \observables" in the old quantum me-
hani
s, they disappeared almost entirely in the new quantum me
hani
s from 1925/26 on andthe usage of the operators Q and P took over nearly 
ompletely. Dira
's early attempts [10℄to use angle and a
tion operators also for the new framework turned out to be 
ontradi
tory,as pointed out by London [11℄ and Jordan [12℄ and the subje
t has remained 
ontroversialeven up to now [13℄. Before taking up that issue again, a few remarks as to the 
entral rolethe ground state energy (5) started to play:Around 1930 F. London dedu
ed the van der Waals for
es from the ground state energiesof two 3-dimensional HOs [14℄.The value (5) be
ame a nuisan
e (and still is!), however, when free �elds were quantized,be
ause their interpretations as a set of an in�nite number of HOs implied an (unobserved)in�nite ground state energy. The problem has been \swept under the rug" by ignoring theground state energies, formally by introdu
ing \normal-ordering" for the asso
iated annihila-tion and 
reation operators a and ay (see below).Nevertheless the ground state energy (5) plays a very stimulating part in the dis
ussionsof the Casimir e�e
t [8,15,16℄ and also in the present attempts to understand the dark energyin the universe and the extremely obnoxious 
osmologi
al 
onstant problem [17{24℄.So the energy (5) is dis
arded or advo
ated depending on the physi
al 
on
epts whi
h arebeing dis
ussed. Not a very 
onvin
ing situation!4



In view of the general a

eptan
e of the value (5) it is amazing that there appear to be nosystemati
 modern experimental tests - similar to those of Mulliken - of su
h a 
on
eptuallyimportant physi
al quantity! More on the experimental situation in subse
. 1.3 below.It is one aim of the present paper to point out that the 
anonized ground state energyvalue (5) may not be the only possible one for the HO, but that there is a 
anoni
al stru
turefor the HO in terms of angle and a
tion variables ' and I the quantum me
hani
s of whi
hallows for ground state values Ek;n=0 = ~! k ; k > 0 ; (6)where k may be any positive number, espe
ially an arbitrary small one > 0 !I ask for a moment of patien
e for the justi�
ation of this seemingly outrageous 
laim!The main reason for the possibility (6) is the di�eren
e as to the global stru
tures of thelo
ally 
anoni
ally (symple
ti
ally) equivalent phase spa
es Sq;p and S';I of the respe
tive
anoni
al pairs (q; p) and ('; I) : Sq;p = f(q; p) 2 R2 g ; (7)S';I = f('; I); ' 2 R mod 2� ; I > 0 g ; (8)whi
h shows that Sq;p has the global topologi
al stru
ture of the plane R2 , whereas S';I hasthat of a simple 
one with the tip deleted or that of a pun
tured plane R2 � f0g �= S1 � R+ ,where S1 denotes the unit 
ir
le and R+ the positive real numbers without the 0 .This implies that S';I 
annot be quantized in the 
onventional manner in terms of the(Born-Heisenberg-Jordan-Dira
-) Weyl group generated by the 3-dimensional Lie algebra ba-sis fq; p; 1g, but one has to pass to the 3-dimensional (proper ortho
hronous homogeneousLorentz) group SO"(1; 2) (in one \time" and two \spa
e" dimensions) or to one of its (in-�nitely) many 
overing groups [13℄, among whi
h the symple
ti
 group Sp(2;R) in the (q; p)-plane is a double 
overing (like the group SU(2) is a double 
overing of the rotation groupSO(3)). That symple
ti
 group provides the key to an appropriate quantization of the phasespa
e (8) and plays an essential role in what follows.The 
ru
ial point is that both the phase spa
e S';I and and its \
anoni
al group" SO"(1; 2)
ontain the topologi
al \fa
tor" S1 whi
h is multiply 
onne
ted (with homotopy group �1(S1) =Z). This multi-
onne
tedness has impli
ations for the in�nite-dimensional irredu
ible unitaryrepresentations of the non-
ompa
t group SO"(1; 2) and its in�nitely many 
overing groupsbe
ause now the self-adjoint generator of the rotations SO(2) 
an have more 
ompli
atedspe
tra with a ground state like (6). And this generator is proportional to the Hamiltonoperator of the HO in the ('; I) -framework! (For the similar 
ase of a simple rotator seeRef. [25℄.)The transformation (2) from the spa
e (8) onto the spa
e (7) with its origin deleted is notspe
ial for the HO. It 
an be used for any (1 + 1)-dimnsional system with periodi
 motions in(7) des
ribable by angle and a
tion variables in (8). So their quantum me
hani
s is a�e
ted,too! Examples are dis
ussed in subse
. 2.3.Quantizing the phase spa
e S';I makes use of the positive dis
rete series D(+)k ; k > 0;of those unitary representations mentioned above [13, 26℄. In these representations the self-adjoint generator K0 of the 
ompa
t rotation subgroup SO(2) �= S1 
onstitutes the quantized
ounterpart of the 
lassi
al a
tion variable I and the \boost" generators K1 and K2 
orrespondto the 
lassi
al quantities I 
os' and �I sin', the knowledge of whi
h allows to determinethe angle ' 2 (��; �℄ uniquely. The 
hoi
e of these basi
 \observables" on the phase spa
e5



(8) 
an be justi�ed systemati
ally from the a
tion of the symple
ti
 group Sp(2;R) on thephase spa
e (7). That a
tion leaves the origin of the spa
e (7) invariant!Those basi
 
lassi
al observablesh0('; I) = I ; h1('; I) = I 
os' ; h2('; I) = �I sin' ; (9)on S';I obey the Lie algebra so(1; 2) of the group SO"(1; 2) and its (in�nitely many) 
overinggroups in terms of Poisson bra
kets:fh0; h1g';I = �h2 ; fh0; h2g';I = h1 ; fh1; h2g';I = h0 ; (10)where fh(1); h(2)g';I � �'h(1)('; I) �Ih(2)('; I)� �Ih(1)('; I) �'h(2)('; I) : (11)The 
orresponding quantum me
hani
al 
ounterparts, the dimensionless self-adjoint op-erators ~Kj = Kj=~ (12)obey [ ~K0; ~K1℄ = i ~K2 ; [ ~K0; ~K2℄ = �i ~K1 ; [ ~K1; ~K2℄ = �i ~K0 : (13)For the positive dis
rete series the operator ~K0 in general has the spe
trum (eigenvalues)�( ~K0) = fn+ k ; n = 0; 1; : : : ; k 2 R+ g : (14)For the mth 
overing group SO"[m℄(1; 2) ,m = 1; 2; : : : ; of SO"(1; 2) the allowed values ofk are k = �m ; � 2 N = f1; 2; : : :g ; (15)so that the smallest attainable value of k for a 
orresponding irredu
ible unitary representationis k = 1m : (16)As m 
an be an arbitrarily large natural number, k 
an be made arbitrarily small > 0 !The quantum me
hani
al (q; p)-HamiltonianH(q; p) ! H(Q;P ) = 12M P 2 + 12 M !2Q2 = � ~22M d2d q2 + 12 M !2 q2 (17)has the unambiguous spe
trum (4). However, in view of Eq. (14) the quantum me
hani
al('; I)-Hamiltonian H('; I) ! H( ~K) = !K0 ; ~K = ~ ( ~K0; ~K1; ~K2) ; (18)
an have the spe
trumEk; n('; I) = ~! (n+ k) ; n = 0; 1; : : : ; k 2 R+ : (19)A 
ru
ial point now is the following: the spe
trum (4) is not just a spe
ial 
ase of (19),but the situation is more subtle:Let jk; ni ; n = 0; 1; : : : be an eigenve
tor of ~K0 with eigenvalue (14):~K0 jk; ni = (n+ k) jk; ni ; n = 0; 1; : : : ; k > 0 ; (20)6



then nevertheless H(Q;P )jk; ni = ~! (n+ 1=2) jk; ni ; (21)where now the operators Q and P are expressed as fun
tions of the ~Kj:Q = Q( ~K) = �0p2 (Ay + A) ; P = P ( ~K) = i ~p2�0 (Ay � A) ; �0 = r ~M ! ; (22)with A = ( ~K0 + k)�1=2 ~K� ; Ay = ~K+( ~K0 + k)�1=2 ; ~K� = ~K1 � i ~K2 ; (23)and [A; Ay℄ = 1 : (24)The non-linear relations (23) are an inversion of the known Holstein-Primako� representationof the ~Kj in terms of A and Ay [27℄ as dis
ussed in detail in Ref. [13℄.The k-independent relation (24) holds in any irredu
ible unitary representation D(+)k andis a 
onsequen
e of the 
ommutation relations (13) whi
h imply~K+jk; ni = [(2k + n)(n + 1)℄1=2 jk; n + 1i ; ~K�jk; ni = [(2k + n� 1)n℄1=2 jk; n� 1i ; (25)so that for any k Ay jk; ni = pn + 1 jk; n+ 1i ; A jk; ni = pn jk; n� 1i : (26)The Eqs. (22) and (23) are just the operator versions of the 
lassi
al relationsq('; I) = r 2M ! h1('; I)ph0('; I) ; p('; I) = p2M ! h2('; I)ph0('; I) : (27)For more details see below, here espe
ially se
. 5!The gist of the argument for allowing a possible dis
repan
y between the spe
tra (20) and(21), to be dis
ussed in detail later on, is that - due to the multi-valuedness of the angle ' -the quantum version (18) of the HO Hamilton fun
tion H('; I) 
an have a ri
her spe
trumthan H(Q;P ) whi
h always has the spe
trum (4), even if it a
ts in a Hilbert spa
e with arepresentation D(+)k ; k 6= 1=2 , for whi
h ~K0 has the spe
trum (14)!Phrased di�erently: The quantities q and p generate global translations on the phasespa
e Sq;p, i.e. no point is preferred, espe
ially not the origin. This is di�erent for the globala
tion of the generators hj whi
h leave the origin of Sq;p and the 
orresponding point I = 0in S';I invariant. Thus, the operators Q and P , generators of translations in momentumand position spa
e, respe
tively, \erase" the topologi
al substru
ture indu
ed by the 
riti
alpoint (q; p) = (0; 0) (or I = 0) . That point is, however \taken 
are of" by the operators ~Kj,generators of symple
ti
 transformations in (q; p)-spa
e, whi
h leave the point (q = 0; p = 0)�xed!So it makes a di�eren
e as to the 
hoi
e of the primary degrees of freedom, whether onestarts with q and p and their topologi
ally trivial phase spa
e (7), or whether one starts with' and I and their topologi
ally non-trivial phase spa
e (8). The latter leads to a \ri
her"quantum me
hani
s than that of the former whi
h is unable to do justi
e to the non-trivialtopology of (8) and therefore has to \ignore" the additional stru
ture! Whether this additionaltopologi
al �ne stru
ture has indeed been \implemented by nature" and 
an be observed inthe laboratory - or is merely a 
oordinate singularity (see subse
. 2.1) - has, of 
ourse, to befound out by experiments. 7



1.2 Contents overviewThe paper is organized as follows:Se
. 2 
olle
ts some properties of the 
lassi
al HO, with emphasis on the singular 
hara
terof the transformation (2) at (q = 0; p = 0) and on the dynami
al role of the \new" basi

oordinates ' and I, in
luding the 
elebrated adiabati
 properties of the a
tion variable Iand its role for 
ertain 1-dimensional integrable systems with bounded orbits.Se
. 3 dis
usses properties of the symple
ti
 transformation group Sp(2;R) a
ting onthe phase spa
e (7): As already mentioned above, that group transforms any two pointsof that spa
e into ea
h other, ex
ept for the point (0; 0) whi
h is left �xed. The orbits ofthree independent 1-dimensional subgroups generate three ve
tor �elds whi
h are globallyHamiltonian. The generating Hamiltonian fun
tions of these ve
tor �elds are essentially thefun
tions (9) (expressed in terms of the variables q and p). The Poisson bra
kets of theseHamiltonian fun
tions generate the Lie algebra so(1; 2) = sp(2;R) of the groups SO"(1; 2)and Sp(2;R) . The quantized version of that Lie algebra belongs to irredu
ible unitaryrepresentations D(+)k ; k = 1=4 and k = 3=4 of the so-
alled \metaple
ti
" group. Theserepresentations are implemented in the even and odd parity subspa
es of the usual Hilbertspa
e L2(R; dq) of the HO.Se
. 4 des
ribes the a
tion of the group SO"(1; 2) = Sp(2;R)=Z2 on the ('; I) - phasespa
e (8) the points of whi
h are \
oordinized" by the fun
tions (9). The a
tion of thegroup is symple
ti
, transitive (i.e. any two points may be transformed into ea
h other),e�e
tive (i.e. the only group element whi
h leaves all points invariant is the unit element) andglobally Hamiltonian, i.e. the fun
tions (9) are the generating fun
tions of the ve
tor �eldsasso
iated with three independent 1-dimensional transformation subgroups of SO"(1; 2). Sowe have a 
ompletely satisfa
tory \
anoni
al" stru
ture on the phase spa
e (9) based on thegroup SO"(1; 2) and its in�nitely many 
overing groups. This se
tion prepares the groundfor a group theoreti
al quantization [28{30℄ of the phase spa
e (8) in terms of appropriateirredu
ible unitary representations of those groups whi
h provide the asso
iated quantumtheories.The 
entral se
. 5 dis
usses the quantization of the phase spa
e (8) in terms of the ir-redu
ible unitary representations of the positive dis
rete series D(+)k of the group SO"(1; 2)and its in�nitely many 
overing groups. The generator ~ ~K0 of the rotation subgroup is thequantized version of the a
tion variable I and the Hamilton fun
tion H = ! I. Its mostgeneral spe
trum is given by Eq. (14). In physi
s the 
orresponding Hamilton operator (18)generates time translations: U(t) = e�iH t=~ ; H = ~! ~K0 : (28)This means that the (dimensionless) time variable ~t = ! t mathemati
ally represents the angle'. As ~t in general does not stop at ~t = 2�, it \runs" through several or very many 
overings.As ~K0 = N + k1 we have U(~t = 2�) = e�2�ik1 : (29)This shows expli
itly that for an m-fold 
overing with k as in Eq. (15) we getU(~t = 2�m) = 1 : (30)I already stressed above that in passing from the quantum theory of the Lie algebra so(1; 2)to that of the Born-Dira
-Heisenberg-Jordan-Weyl Lie algebra one loses the \�ne stru
ture"8



asso
iated with the Bargmann index k . This is a result the importan
e of whi
h rea
hesprobably far beyond the simple HO ! It allows to avoid the 
elebrated Stone-von Neumannuniqueness theorem without violating it ! The usual Heisenberg un
ertainty relations for Q andP remain untou
hed, but there are new un
ertainty relations as to the operators ~Kj; j = 0; 1; 2[13℄.Se
. 6 dis
usses properties and possible appli
ations of the three types of 
oherent states as-so
iated with the Lie algebra so(1; 2) (S
hr�odinger-Glauber, Perelomov and Barut-Girardello)to the HO. The last two of these 
oherent states are very probably of similar importan
e forexperiments in quantum opti
s as is already well-known for the S
hr�odinger-Glauber 
oher-ent states. A number of interesting physi
al expe
tation values and their dependen
e on theindex k are dis
ussed as well as the possible experimental produ
tion of su
h states: ThePerelomov ones have been generated in the laboratories in the form of squeezed states, theBarut-Girardello ones to the best of my knowledge not yet.Se
. 7 des
ribes several expli
it examples of Hilbert spa
es with irredu
ible unitary repre-sentations of the series D(+)k . It starts with the 
onventional HO for whi
h k = 1=2 representedin the Hardy spa
e H2+(S1; #) on the unit 
ir
le S1. That spa
e has the s
alar produ
t(f2; f1)+ = 12� ZS1 d#f �2 (#)f1(#) ; (31)the basis en(#) = ei n# ; n = 0; 1; 2; � � � ; (32)and the HO Hamilton operatorH = ~! ~K0 ; ~K0 = 1i �# + 1=2 : (33)All the well-known physi
al properties of the usual quantized HO 
an be derived in thisframework, and even some more, be
ause now we have three di�erent kinds of 
oherent states!The se
ond part of that se
. deals with 
on
rete Hilbert spa
es where the index k of theirredu
ible unitary representations 
an have any real value > 0. One of these is the spa
eL2(R+ ; du) with its orthonormal basis of Laguerre's fun
tions.Se
. 8 brie
y re
alls the des
ription of a quantized free ele
tromagneti
 �eld in a 
avity asan in�nite set of HOs and the disturbing quantitative problems one en
ounters for the totalground state energy when using the value (5) of a single os
illator. In the ('; I)-frameworkone has instead Ek; n=0 = ~! k , where k > 0, in prin
ipal, 
an be arbitrarily small. This mayshed new light on the notorious 
osmologi
al 
onstant problem and the origin of the relateddark energy [17{24℄.If di�erent ele
tromagneti
 modes have di�erent k by exposing them to external ele
tri
or magneti
 �elds, the ele
tromagneti
 \va
uum" 
an even a
quire some sort of anomalousrefra
tive stru
ure. This may lead (perhaps) to an understanding of the re
ently observed\di
hroism" of the va
uum in a strong stati
 magneti
 �eld [31℄.The se
. 
loses with a very spe
ulative remark on the possibility of \dark" normal matter.Se
. 9 re
alls the e�e
tive HOs one has if a HO parti
le is 
harged and an additionalexternal ele
tri
 �eld is applied or if a free 
harged parti
le is in an external magneti
 �eld.Here, too, one may introdu
e angle and a
tion variables, the quantized versions of whi
h maylead to a shift of the usual ground state levels.Se
. 10 brie
y dis
usses the (
anoni
al) quantum statisti
s of a system with the energylevels (19), in order to see whi
h thermodynami
al quantities depend on k and whi
h not.9



Appendix A gives the te
hni
al details for the 
al
ulation of the a
tion variables asso
iatedwith the potentials dis
ussed in subse
. 2.3. Appendix B summarizes some essential propertiesof the universal 
overing group of SO"(1; 2), its irredu
ible unitary representations of thepositive dis
rete series and those of the m-fold 
overing groups as spe
ial 
ases.1.3 Possible experimentsThe 
ru
ial question is, of 
ourse, whether there exist HOs in nature or may be prepared inthe laboratory whi
h have a spe
trum of the type (19). It appears unnessary here to pointout in detail the important impli
ations this would have for the physi
s of many systems, notonly for the HO!For possible experimental setups one has to observe that the \primary observables" noware the operators Kj; j = 0; 1; 2; with their algebrai
 stru
ture (13), not as usual the positionand momentum operators (22). Note also that K0 is not the Hamiltonian, but !K0, sothat Ek n=0('; I) from (19) 
an be the same for di�erent ! and k if their produ
t is thesame, i.e. the energy stays the same! One problem for the experiments is to �nd dynami
alme
hanisms whi
h do not bring the usual (q; p)-dynami
s into play, e.g. the dominant atomi
dipole-transitions.Following the original pro
edure of Mulliken and others [7℄ the value of k in the spe
trum(19) may, at least in prin
iple, be determined as follows: A

ording to Eqs. (1) and (2) thefrequen
y ! of the os
illator 
an be 
hanged either by 
hanging its mass M or by modifyingthe strength b of the driving for
e. Let !1 and !2 be two known frequen
ies of the same systemand let Ea and Eb two known �xed external energy levels di�erent from the two ground stateenergies E0(j) ; j = 1; 2 ; of the two slightly di�erent versions of the same HO. If transitionsEa ! E0(1) = ~!1 k ; Eb ! E0(2) = ~!2 k ; (34)with frequen
ies !a;1 = [Ea � E0(1)℄=~ ; !b;2 = [Eb � E0(2)℄=~ ; (35)are possible and measurable, then one 
an determine the value of k from the di�eren
e!a;1 � !b;2 = (Ea � Eb)=~� k (!1 � !2) : (36)In the 
ase of the vibrating diatomi
 mole
ules Mulliken investigated the levels Ea andEb where the vibrational ground states of a higher ele
troni
 level and the levels E0(j) werethe vibrational ground states of a lower ele
troni
 level of the two respe
tive isotopes forwhi
h the two frequen
ies !j di�er be
ause the 
orresponding redu
ed masses � in ! = pb=�di�er [7℄.Note also that for k 6= 1=2 all energy levels of the spe
trum (19) are shifted 
ompared tothe usual ones (4) .More re�ned versions of Mulliken's experiments with diatomi
 mole
ules using modernexperimental te
hniques should be possible and appear highly desirable! In order to \freeze"the (q; p)-degrees of freedom when looking for ('; I)-properties one should probably go toextremely low temperatures, even below the ground state energies (5). Experiments withultra
old mole
ules have rea
hed an impressive stage of re�nement [32℄ and the use of Feshba
hresonan
es [33℄ has led to fas
inating experimental results for low lying vibrational bound statelevels of bosoni
 pairs of atoms in ultra-
old BE-
ondensates [34℄.10



Furthermore, modern experimental te
hniques have provided sophisti
ated 1-dimensionalharmoni
 traps [35℄, for ions [36℄, atoms [37℄ and BE-
ondensates [38℄, for whi
h the fre-quen
y ! from (2) 
an be tuned from outside, by 
hanging the for
e strength b ele
troni
ally.Approximate 1-dimensional harmoni
 traps with ultra-
old BE-
ondensates mainly in theground state (5) have been built [39℄, the ground state energy being determined by laser lightBragg re
e
tions o� the \untrapped" expanding 
loud of BEC atoms. Thus, these impressiveexperiments appear to be asso
iated with the (q; p)-model of the HO! Nevertheless, similarsu
h setups may provide new possibilities for a sear
h after the energy levels (19), again mostlikely at extremely low temperatures.In se
. 6 it will be pointed out in detail that expe
tation values and transition probabilitiesinvolving Perelomov 
oherent states are proportional to the index k. As these states havealready been generated experimentally for k = 1=2, they may perhaps also be produ
ed forother (lower) values of k.Then there are possible va
uum birefringen
e and (or) di
hroism e�e
ts of photons bystrong external ele
tri
 or magneti
 �elds as mentioned in se
. 8.Se
. 9 dis
usses shifts in the HO ground states of 
harged parti
les in external ele
tri
 ormagneti
 �elds.Se
. 10 �nally mentions the plans for determining the ground state energy of the HO bymeans of the Josephson e�e
t [40℄!1.4 GeneralizationsFinally it should be remembered that the harmoni
 os
illator is, of 
ourse, not the onlyimportant integrable physi
al system whi
h 
lassi
ally 
an be des
ribed by angle and a
tionvariables (e.g. the 
onst:=r potential, see Refs. [4℄ and [1{3℄ for more examples). Quantizingthose systems group theoreti
ally one has to distinguish between the 
ases I 2 R+ andI 2 R . The latter has to be quantized in terms of the irredu
ible unitary representations ofthe Eu
lidean group of the plane E(2) and its 
overing groups. For details see Ref. [25℄.One has, however, to observe the following: If the group SO(2) �= S1 � SO"(1; 2) be
omesa non-trivial subgroup of a larger 
ompa
t group (i.e. not just a dire
t abelian fa
tor) itstopologi
al properties 
an 
hange drasti
ally: E.g., if one passes from SO"(1; 2) to SO(3) theuniversal 
overing group is now the double 
overing SU(2). Going from SO"(1; 2) to SO"(1; 3)one has the universal double 
overing SL(2; C ).If, on the other hand, one goes from SO"(1; 2) to SO"(2; 3) = Sp(4;R)=Z2, where Sp(4;R)is the symple
ti
 group in 4 dimensions, one again en
ounters the subgroup SO(2) �= S1 asa fa
tor in the maximal 
ompa
t subgroup SO(2) � SO(3) and and also a positive dis
reteseries of irredu
ible unitary representations of the group Sp(4;R) and its in�nitely many
overing groups [41℄. This is just another spe
ial 
ase of symple
ti
 groups Sp(2n;R) in 2ndimensions: They have dimension 2n2 +n , rank n (i.e. a maximal abelian set of n 
ommutingLie algebra generators), the maximal 
ompa
t subgroup U(n) �= SU(n) � U(1) (whi
h hasrank n , too) and (positive) dis
rete series of irredu
ible unitary representations [42℄, in
ludingthose of their universal 
overing groups asso
iated with the fa
tor U(1) (the group SU(n)on the other hand is simply 
onne
ted [43℄). This should be of interest for the dis
ussion ofquantum me
hani
al properties of higher-dimensional symple
ti
 systems [1{3, 29, 44, 45℄.
11



1.5 Range of the paperAs the topi
s of the present paper rea
h from experimental to mathemati
al physi
s I shallhave missed many papers relevant to the subje
ts mentioned. I apologize to the experts andhope to do more justi
e to their work in the future. Many more related Refs. are 
ontainedin my paper [13℄ to whi
h I shall refer frequently in the present one. An essential di�eren
ebetween this paper and Ref. [13℄ is the almost 
omplete fo
us on the possible 
onsequen
esof a 
onsistent quantum me
hani
s for the angle-a
tion variable des
ription of the harmoni
os
illator in di�erent bran
hes of physi
s, whi
h is la
king in the previous paper.2 Some properties of the 
lassi
al harmoni
 os
illator2.1 The globally singular relationship between the 
anoni
al pairs(q; p) and ('; I)The transformation (2) is lo
ally symple
ti
 (\
anoni
al"):dq ^ dp = d' ^ dI ; or �(q; p)�('; I) = 1 : (37)As the angle ' is dimensionless and for other reasons it is 
onvenient to introdu
e dimension-less quantities by means of the unit of length �0 from Eqs. (22) and Plan
k's 
onstant ~ andrestore the physi
al dimensions when ne
essary:~q = q=�0 ; �0 = r ~M ! ; (38)~p = p �0=~ ; (39)~H = H=(~!) = 12(~q2 + ~p2) ; (40)~I = I=~ = ~H ; (41)~hj = hj=~ ; j = 0; 1; 2 ; (42)~t = ! t ; (43)dq ^ dp = ~ d~q ^ d~p = ~ d' ^ d~I ; (44)Now ~q = p2 ~I 
os' ; ~p = �p2 ~I sin' : (45)As ~p d~q = ~I d'� d(~I 
os' sin') ; (46)

12



we have lo
ally the four equivalent generating fun
tionsdF1(~q; ') = ~I d'� ~p d~q ; �'F1 = ~I ; �~qF1 = �~p ; (47)F1(~q; ') = 12 ~q2 tan' ;dF2(~q; ~I) = ~p d~q + 'd~I ; (48)F2(~q; ~I) = ~I ar

os[~q=(p2 ~I)℄� 12 ~qq2~I � ~q2 ;dF3(~q; ~p) = �p2~I sin'd~q +p2~I 
os'd~p ; (49)F3(~q ~p) = ~q ~p ;dF4('; ~I) = 12 (~q2 � ~p2) d'� ~q ~p~q2 + ~p2 d~I ; (50)F4('; ~I) = ~I 
os' sin' :On S';~I we have the (trivial) equations of motion_' = � ~H� ~I = � ~I� ~I = 1 ; _~I = � � ~I�' = 0 ; (51)with the solutions (orbits) '(~t) = ~t + '0 ; ~I = 
onst. > 0 : (52)Inserted into the Eqs. (45) we get the usual orbits on S~q;~p, ex
ept for the trivial one(~q(~t); ~p(~t)) � (0; 0) !That (~q; ~p) = (0; 0) or ~I = 0 is a singular point of the otherwise symple
ti
 transformation(45) 
an be seen in di�erent ways:� The a
tion variable appears as p~I, i.e. one has a bran
h point at ~I = 0 .� If one introdu
es � = p~I then the fun
tional determinant�(~q; ~p)�('; �) = � (53)be
omes singular for � = 0 .� The di�erential d ~H(~q; ~p) = ~q d~q + ~p d~p has a 
riti
al point at (~q; ~p) = (0; 0) .� The di�erentials (47) { (50) of the generating fun
tions Fj be
ome singular for (~q; ~p) =(0; 0) or ~I = 0 .So one has to delete the origin of the phase spa
e S~q;~p in order to map it in a one-to-one manner onto S';~I and vi
e versa! But the pun
tured (~q; ~p) - plane is no longer simply
onne
ted and topologi
ally non-trivial (its �rst homotopy group �1 is Z ). This non-trivialtopology also manifests itself in the multi-valuedness of the angle ' whi
h is mathemati
allyrepresented by the unit 
ir
le S1 �= R mod 2�. This unit 
ir
le 
onstitutes the multiply-
onne
ted \
on�guration spa
e" of the phase spa
e S';~I . One of its here essential properties
an be read o� Eq. (52): 13



In the 
ourse of time the periodi
al motion in both phase spa
es (7) and (8) passes theposition '0 a few or many times. In this way the 
on�guration spa
e S1 � S';~I gets unwrappedonto the real axis R or at least a part of it, here represented by the variable ~t. R 
onstitutesthe universal 
overing spa
e of S1. A very similar situation in whi
h the same SO(2) �= S1plays a 
orresponding role is dis
ussed in Ref. [25℄. The lo
al 
hara
ter of the transformation(45) and its singularity at (~q = 0; ~p = 0) is emphasized in Thirring's textbook [3℄.Note that physi
ally the point (~q = 0; ~p = 0) is the ground state (equilibrium point) ofthe 
lassi
al (~q; ~p)-des
ription of the os
illator motion. In the 
ase of the ('; ~I)-des
riptionthe notion of an angle does not make sense any more for ~I = 0. But ~I may be arbitrarilysmall as long as it stays positive. As H = ! I one 
an have H ! 0 for I > 0 by (formally)taking the limit ! ! 0 .2.2 A symple
ti
 s
ale transformationThe repla
ement ' ! '� = '=� ; ~I ! ~I� = � ~I ; � > 0 ; (54)is symple
ti
 (d'� ^ d~I� = d' ^ d~I ). The transformation implies (
f. Eq. (52))~t! ~t� = ~t=� : (55)From ~q� = q2 ~I� 
os'� ; ~p� = �q2 ~I� sin'� ; (56)we get ~H� = 12 (~p2� + ~q2� ) = ~I� = � ~I = � ~H ; (57)and d'�d~t� = � ~H�� ~I� = � ~I�� ~I� = 1 ; ) '�(~t�) = ~t� + '�(0) : (58)Inserting this '�(~t�) into Eqs. (56) yields the ~t�-dependen
e for the variables ~q� ; ~p� , analo-gously to the ~t-dependen
e of the 
oordinates (45).As ~t = ! t (
f. Eq. (43)) the transformation of the original dimensionful quantities isambiguous:1. One 
an 
hoose t! t� = t=� ; ! ! ! : (59)This implies (
f. Eq. (2))q ! q� = p� q ; p! p� = p� p ; H ! H� = � H = ! I� : (60)2. A se
ond possibility is t! t ; ! ! !� = !=� ; (61)with q ! q� = � q ; p! p� = p ; H ! H� = H = !� I� : (62)Both possibilities are not symple
ti
 as to q and p.Without further restri
tions on the values of � the transformation (54) presupposes theexisten
e of 
overing spa
es for S1, be
ause '=� may be outside a given interval, e.g. (��; �℄.14



2.3 Going beyond the harmoni
 os
illator2.3.1 Time-dependent perturbationsIf we perturb ~H0 = ~I0 by a time-dependent term~H1 = � ~I0 f(~t) � ~I0 ; (63)where f(~t) is independent of ' and ~I0 , then_' = �~I0( ~H0 + ~H1) = 1 + � f(~t) ; _~I = ��'( ~H0 + ~H1) = 0 ; (64)so that '(~t) = ~t + � Z ~t0 d� f(�) + '0 ; ~I = 
onst: : (65)Thus, only the time-dependen
e of ' gets modi�ed, but not that of ~I = ~I0 !The latter property is a spe
ial 
ase of the famous adiabati
 theorem of me
hani
s whi
hsays that \small and slow" perturbations of integrable systems leave the values of a
tionvariables un
hanged [1{4℄. This does, of 
ourse, not mean that the energy remains 
onserved!As to the important perturbation theory of integrable systems des
ribed by angle and a
tionvariables see the Refs. [1{4℄.2.3.2 Intera
tions proportional to ~h1 or ~h2On the phase spa
e (7) the Hamilton fun
tions H(~q; ~p) depend on the basi
 variables ~q and~p, well beyond that of the HO. Similarly the Hamilton fun
tions on (8) have to be expressedby the basi
 variables (9). Simple examples for intera
tion terms added to ~H = ~I are thefollowing ones: ~H = ~h0 + 
 ~h1 = ~I + 
 ~I 
os' ; j
j < 1 : (66)The eqs. of motion _' = �~I ~H = 1 + 
 
os' ; (67)_~I = ��' ~H = 
 ~I sin' ; (68)have the solutions [46℄tan[('(~t)� '0)=2℄ = r1 + 
1� 
 tan[p1� 
2(~t� ~t0)=2℄ : (69)~I(~t) = ~I0 [1 + 
 
os('(~t)� '0)℄�1 : (70)If we repla
e ~h1 in Eq. (66) by ~h2 = �~I sin', we get the solutions [47℄tan[('(~t)� '0)=2℄ = p1� 
2 ftan[p1� 
2(~t� ~t0)=2℄� 
g : (71)~I(~t) = ~I0 [1� 
 sin('(~t)� '0)℄�1 : (72)A

ording to the de�nitions of Refs. [1, 2℄ the angle '(~t) is the \fast" variable here andthe a
tion variable ~I(~t) the \slow" one. This language means to say that the perturbation
 ~I 
os' (or �
 ~I sin') for small j
j merely leads to small os
illations of the a
tion variable15



around its unperturbed value ~I0. This 
an be read o� the above solutions immediately forj
j � 1. Closely related to this type of behaviour is the 
on
ept of averaging the '-dependentpart of the perturbation over a period 2�, an often powerful tool for estimating the in
uen
eof perturbations on integrable systems [1{4℄. Su
h averaging is espe
ially dis
ussed in Ref. [2℄.On the other hand, for j
j ! 1 the a
tion variables ~I(~t) in Eqs. (70) and (72) 
u
tuateenormously (\resonan
es")!2.3.3 Morse and other \integrable" potentialsI brie
y dis
uss three well-known integrable systems [48℄ with potentials for whi
h the Hamil-ton fun
tions H('; ~I) are not just proportional to ~I like in the 
ase of the HO, but arequadrati
 in the a
tion variable. This is so for the potentialsVMo(q) = V0 (e�a q � 1)2 ; q 2 R ; a; V0 : 
onst: > 0 ; (73)VMo(q) � VMo(q = 0) = 0 ;VsMo(q) = V0[1� 1= 
osh2(aq)℄ = V0 tanh2(aq) ; VsMo(q) � VsMo(q = 0) = 0 ; (74)q 2 R ; V0 > 0 ;VPT (q) = V0 tan2(aq) ; aq 2 (��=2; �=2) ; V0 > 0 ; VPT (q = 0) = 0 : (75)The �rst one was introdu
ed by Morse [49℄ in order to des
ribe radial vibrations of diatomi
mole
ules (q = r � 0) somewhat better than the HO does, the se
ond one is a sort ofsymmetrized Morse potential [50℄ and the third one a slightly modi�ed version of a potentialdis
ussed by P�os
hl and Teller [51℄ in order to improve upon 
ertain properties of the Morsepotential. The potentials VMo and VsMo have bound states (periodi
 motions) for 0 < E < V0,the potential VPT has only bound states, for all E > 0.For small a q � 1 the potentials redu
e to the HO one:VMo(q) � VsMo(q) � VPT (q) � 12 M!20q2 ; !0 = ap2V0=M : (76)The \integrable" potential [52℄V
(q) = V0[aq � 1=(aq)℄2 ; q > 0 ; V
(q) � V
(q = 1=a) = 0 ; (77)provides an example for whi
h the energy is a linear fun
tion of the a
tion variable I, like forthe HO. For a q � 1 we here have the HO approximationV
(q) � 12 M !20(q � 1=a)2 ; !0 = 2ap2V0=M : (78)For any potential V (q) with periodi
 orbits on the phase spa
e (7) the a
tion variable isde�ned by the 
losed path integral2�I(E) = IC(E) dq p(q; E) ; p(q; E) = �p2M [E � V (q)℄1=2 ; (79)where the integration is to be taken 
lo
kwise along the 
losed path C(E) determined by theenergy equation 12M p2 + V (q) = E : (80)16



The fa
tor 2� in the de�nition (79) is due to the 
onvention whi
h uses the 
ir
ularfrequen
y !0 = 2�=T and not � = 1=T .The integral (79) des
ribes the area of the region the boundary of whi
h is given by the
losed 
urve C(E) .If we now insert the relations (2) into the integral (79) we get the identity 2� I(E) = 2� I.This shows expli
itly that the mapping (2) is independent of the potential 
hosen.If q� < q+ are the inner and outer turning points of the motion we 
an repla
e the 
losedpath integral in Eq. (79) by2� I(E) = 2p2M Z q+q� dq [E � V (q)℄1=2 : (81)(Noti
e that p dq = p _q dt > 0 on the path C(E) in both, the upper and the lower (q; p)-half-planes.)As we have three free parameters now, M; a and V0 , we do not have to use Plan
k's
onstant in order to introdu
e dimensionless quantities~q = a q ; ~p = ppM V0 ; ~E = E=V0 ; ~I = I !0 =V0 : (82)Morse potentialFor the potential VM(q) the epression (81) now takes the form� ~I( ~E) = 2 Z ~q+~q� d~q [ ~E � (e�~q � 1)2℄1=2 : (83)The integral 
an be solved expli
itly (
f. Appendix A) and the result is~I = 2(1�p1� ~E) ; ) ~E(~I) = ~I �1� 14 ~I� : (84)The inequality 0 < ~E < 1 implies for ~I 0 < ~I < 2 : (85)Restoring the physi
al dimensions we get the Hamilton fun
tionHMo(I) = !0 I �1� !0 I4V0� : (86)It yields the eqs. of motion _I = 0 ; _' = !0 � !20I2V0 ; (87)whi
h 
an be integrated immediately.In order to quantize the system as to its se
tor of bound states, we merely have to repla
ethe a
tion variable I by the operator ~ ~K0 (
f. Eq. (18)). This leads to the Hamilton operatorHMo( ~K) = ~!0 ~K0 � (~!0)24V0 ~K20 ; (88)17



whi
h, a

ording to Eq. (20), yields the spe
trumEk; n = ~!0(n+ k)[1� ~!04V0 (n+ k)℄ ; (89)whi
h for k = 1=2 is well-known [53℄. Con
rete Hilbert spa
es and eigenfun
tions are providedby irredu
ible unitary representations as dis
ussed in se
. 7. The eigenfun
tions of HMo( ~K)do not, of 
ourse, have to be solutions of the S
hr�odinger eq. in q-spa
e, as is the 
ase inRefs. [53℄. But, be
ause of the unitary equivalen
es, all physi
al predi
tions are the same!As the square bra
ket in Eq. (89) should be positive one has to 
ut o� the spe
trum at amaximal n = nmax, like it is done usually.The other potentialsFor the potential (74) one gets (
f. Appendix A) the same form for the Hamilton fun
tionas in Eq. (86), namely HsMo(I) = !0 I �1� !0 I4V0� : (90)For the potential (75) one obtains (
f. Appendix A)~I = 2(p ~E + 1� 1) ; ) HPT (I) = !0 I �1 + !0 I4V0� ; (91)whi
h may be quantized a

ordingly. Again the result is well-known for k = 1=2 [54℄.Finally one obtains for the potential (77)H
(I) = !0 I ; !0 = 2ap2V0=M : (92)Comparison of HsMo(I) with HMo(I) and of H
(I) with HHO(I) shows that the possible orbitsof motion may not depend on the details of the potentials V (q), but only on some generi
properties represented by the asso
iated H(I). There is still, however, the possibility thatthe quantized systems have di�erent indi
es k . This is indeed the 
ase for the solutions ofthe S
hr�odinger eqs. with the Hamiltonians HMo(Q;P ) and HsMo(Q;P ) [55℄ .2.3.4 Free non-relativisti
 parti
leA

ording to the se
ond of the Eqs. (27) we 
an rewrite the Hamilton fun
tionH0(q; p) = 12M p2 (93)of a free parti
le as H0(~h) = ! h22=h0 ; ~h = (h0; h1; h2) : (94)What is remarkable is that one needs an additional time s
ale - here provided by ! - inorder to express H0 in terms of the fun
tions (9)!
18



3 A
tion of the symple
ti
 group on the phase spa
eS~q;~pThe transformation group SO"(1; 2) and its double 
overing, the symple
ti
 group in 2 di-mensions Sp(2;R), play a signi�
ant role in the following dis
ussions. Some of their mainproperties have been summarized in Appendi
es A and B of Ref. [13℄. In order to keep thepresent paper at least partially self-
ontained, some of those properties needed here are againsket
hed below (se
s. 3 { 5) and in Appendix B of this arti
le.The present Se
tion provides a systemati
 justi�
ation for the 
hoi
e of the basi
 
oordi-nates (9) on the phase spa
e (8) in terms of the symple
ti
 transformation group Sp(2;R) onthe phase spa
e (7), without assuming this to be the phase spa
e of the HO.3.1 Global and in�nitesimal transformations, \observables"The elements of the symple
ti
 group G1 � Sp(2;R) ( = SL(2;R) ) are given by the matri
esg1 = � a11 a12a21 a22 � ; ajk 2 R ; det g1 = 1 ; (95)whi
h have the (de�ning) propertygT1 �� 0 1�1 0 � � g1 = � 0 1�1 0 � : (96)If we introdu
e x = �~q~p� 2 S~q;~p �= R2 ; (97)then the elements g1 of Sp(2;R) a
t on x asx! x0 = g1 � x ; g1 2 G1 � Sp(2;R) ; (98)with the property d~q 0 ^ d~p 0 = d~q ^ d~p ; (99)i.e. the transformations (98) leave the symple
ti
 form!~q;~p = d~q ^ d~p (100)invariant.The group a
tion (98) has some other remarkable properties:The whole group transforms the point x = 0 into itself and a
ts transitively on the 
om-plement S~q;~p; 0 � S~q;~p � fx = 0g �= R2 � f(0; 0)g ; (101)i.e., if x1 and x2 are any two points of S~q;~p; 0 , then they 
an be transformed into ea
h otherby an element of G1. This 
an easily be seen by 
onsidering the �rst two of the following
19



1-parameter subgroups of G1:R1 : r1 = � 
os(�=2) sin(�=2)� sin(�=2) 
os(�=2) � ; � 2 (�2�;+2�℄ ; (102)A1 : a1 =  e��=2 00 e�=2 ! ; � 2 R ; (103)B1 : b1 = � 
osh(s=2) sinh(s=2)sinh(s=2) 
osh(s=2) � ; s 2 R ; (104)N1 : n1 = � 1 �0 1 � ; � 2 R : (105)Ea
h element g1 has a (Cartan) de
omposition g1 = k2 � a1 � k1 or g1 = k2 � b1 � k1 and a unique(Iwasawa) de
omposition g1 = k1 � a1 � n1 , where k1; k2 2 R1 .Now, let x1 and x2 be any two points of S~q;~p; 0. First rotate x1 by an element of R1into x 01, where ~p 01 = 0 and ~q 01 has the same sign as ~q2. Then use an element of A1 so thate��=2 ~q 01 = ~q 001 = p~q22 + ~p22 . Finally rotate the point (~q 001 ; 0) into x2 .The group G1 a
ts also e�e
tively on Sq;p; 0, that is to say, ifx = g1 � x 8x ; (106)then g1 is the identity element e = E2 � �1 00 1� : (107)3.2 Ve
tor �elds and their asso
iated Hamiltonian fun
tionsThe 1-parameter subgroups (102) - (105) generate ve
tor�elds on Sq;p; 0 in the following sense:Let � = f
(s)g be a 1-parameter group su
h that 
(s = 0) = 1 and let f(x) be a smoothfun
tion. Then the �-asso
iated ve
tor�eld ~A� is de�ned by[ ~A�f ℄(x) = lims!0 1s [f(
(�s) � x)� f(x)℄ : (108)From the �rst three subgroups above we get the following 3-dimensional basis of ve
tor-�elds asso
iated with the group G1:~AR1 = 12(~q �~p � ~p �~q) ; (109)~AA1 = 12(~q �~q � ~p �~p) ; (110)~AB1 = �12(~p �~q + ~q �~p) ; (111)They obey the Lie algebra sp(2;R) = so(1; 2):[ ~AR1 ; ~AA1℄ = ~AB1 ; [ ~AR1 ; ~AB1 ℄ = � ~AA1 ; [ ~AA1 ; ~AB1℄ = � ~AR1 : (112)Noti
e that the ve
tor �elds (109) { (111) vanish for x = 0, a point to be ex
luded !20



These ve
tor �elds are global Hamiltonian ones, that is to say there exist global fun
tions�g(x) on Sq;p; 0 su
h that the ve
tor �elds may be written as� [�~p�g(x) �~q � �~q�g(x) �~p℄ : (113)The three Hamiltonian fun
tions here areR1 : �g0(x) = 14(~q2 + ~p2) ; (114)A1 : �g2(x) = �12 ~q ~p ; (115)B1 : �g1(x) = 14(�~q2 + ~p2) : (116)(The numbering of the fun
tions is mere 
onvention.)Their Poisson bra
kets obey the Lie algebra sp(2;R) = so(1; 2) , too:f�g0; �g1g~q;~p = ��g2 ; f�g0; �g2g~q;~p = �g1 ; f�g1; �g2g~q;~p = �g0 : (117)The squares of the �gj(x) ful�ll the relation�g20 � �g21 � �g22 = 0 : (118)On the other hand, the ve
tor �elds indu
ed by the following translations, but now on thephase spa
e S~q;~p, ~q ! ~q + a ; ~p! ~p ; ~q ! ~q ; ~p! ~p� b ; a; b 2 R ; (119)are ~A~q = ��~q ; ~A~p = �~p ; (120)with the Hamiltonian fun
tions �g~q(x) = ~p ; �g~p(x) = ~q ; (121)the Poisson bra
kets of whi
h generate the usual Born-Dira
-Heisenberg-Jordan-Weyl (Lie)algebra(
alled BDHJW-algebra in the following1) with its basis f~q; ~p; 1g !The bilinear fun
tions (114) { (116) are the generators of the in�nitesimal transformationsasso
iated with the transformations (98) of the subgroups (102) { (104):f�g0; ~qg = �12 ~p ; f�g0; ~pg = 12 ~q ; (122)f�g1; ~qg = �12 ~p ; f�g1; ~pg = �12 ~q ; (123)f�g2; ~qg = 12 ~q ; f�g2; ~pg = �12 ~p : (124)Integrated they give the transformations (98) of the subgroups (102) { (104), ex
ept for anunessential overall minus-sign of the group parameters, a 
onsequen
e of the de�nition (113).1The usual terminology is \Heisenberg-" or \Weyl-" algebra, but I think this to be unjust towards the
ontributions of the other authors. 21



It is evident that the phase spa
es (97) and (101) have not only quite di�erent topologi
albut, as a 
onsequen
e, also essentially di�erent 
anoni
al stru
tures as to the transformationgroups whi
h a
t transitively on them: The phase spa
e (97) has the translations (119) withtheir asso
iated 
entral extension (
hara
terized by f~q; ~pg = 1 ) as its \
anoni
al" group,but the phase spa
e (101) the symple
ti
 group Sp(2;R). This di�eren
e has important
onsequen
es for the quantum theory as we shall see!The Hamiltonian fun
tions (121) play a double role on the phase spa
e S~q;~p : They are thegenerators of the (
anoni
al) translations and at the same time they are the basi
 
lassi
al\observables" on that phase spa
e. Similarly one may 
onsider the Hamiltonian fun
tions(114) { (116) as basi
 observables on S~q;~p; 0. However, there is the following ambiguity: Givena triple (�g0 > 0; �g1; �g2) with the property (118), then the 2 pairs (~q; ~p) and (�~q;�~p) are
ompatible with a given triple. For further dis
ussions of this important point see below.The group Sp(2;R) is not only a transformation (automorphism) group of the BDHJW-algebra but the relations (117), (122) { (124) and f~q; ~pg = 1 show that the dire
t sum of theve
tor spa
es of the Lie algebra sp(2;R) and the BDHJW-algebra forms a 6-dimensional Liealgebra of its own. This feature plays a major role in the harmoni
 (Fourier) analysis of theBDHJW-group [56℄.Whereas the 
oordinates of the points x transform as ve
tors with respe
t to the groupSp(2;R) , (
f. Eq. (98)), the Hamiltonian fun
tions (114) { (116) transform as tensors ofse
ond degree: Applying the groups (102) - (104) to ~q and ~p and inserting the results into ther.h. sides of the expressions (114) { (116) yields the following transformationsR1 : �g0(x) ! �g0(x0) = �g0(x) ; (125)�g1(x) ! �g1(x0) = 
os � �g1(x) + sin � �g2(x) ;�g2(x) ! �g2(x0) = � sin � �g1(x) + 
os � �g2(x) ;A1 : �g0(x) ! �g0(x0) = 
osh � �g0(x) + sinh � �g1(x) ; (126)�g1(x) ! �g1(x0) = sinh � �g0(x) + 
osh � �g1(x) ;�g2(x) ! �g2(x0) = �g2(x) ;B1 : �g0(x) ! �g0(x0) = 
osh s �g0(x)� sinh s �g2(x) ; (127)�g1(x) ! �g1(x0) = �g1(x) ;�g2(x) ! �g2(x0) = � sinh s �g0(x) + 
osh s �g2(x) :These formulae show that the 3 fun
tions �gj transform as a 3-ve
tor with respe
t to the\Lorentz" group SO"(1; 2): The transformations (125) { (127) leave the quadrati
 form �g20 ��g21��g22 invariant. This is related to the fa
t that the group Sp(2;R) is a double 
overing of thegroup SO"(1; 2) with the 
enter Z2 = fe;�eg of Sp(2;R) as the kernel of the homomorphismSp(2;R) ! SO"(1; 2) (see Appendix B of Ref. [13℄). Noti
e that the kernel (
enter) Z2 leavesthe bilinear expressions (114) { (116) invariant.3.3 Spa
e re
e
tions and time reversalThe 
enter Z2 implements the parity operation� : ~q ! �~q ; ~p! �~p ; (128)22



whi
h obviously is symple
ti
 (it leaves the 2-form d~q ^ d~p invariant).More subtle is the implementation of the time reversalT : ~t! �~t ; ~q ! ~qT = ~q ; ~p! ~pT = �~p ; (129)whi
h is not symple
ti
 (we have d~q ^ d~p! �d~q ^ d~p). However, this 
an be taken 
are of inanalogy to quantum me
hani
s where time reversal - a

ording to Wigner - is implementedby an anti-unitary transformation in Hilbert spa
e:UT :  1 ! UT 1 ;  2 ! UT 2 ; (UT 2; UT 1) = ( 1;  2) = ( 2;  1)� ; (130)where ( 2;  1) denotes the 
omplex-valued s
alar produ
t. As =( 2;  1) de�nes a symple
ti
form [57℄ whi
h 
hanges sign under the 
omplex 
onjugation (130), this suggests to 
hangethe order in d~q ^ d~p in the 
ase of the time reversal (129):(d~q ^ d~p)T = d~pT ^ d~qT = �d~p ^ d~q = d~q ^ d~p : (131)This has 
orresponding 
onsequen
es for the asso
iated Poisson bra
kets: Let f (j)(~q; ~p); j =1; 2; be two smooth fun
tions on the phase spa
e S~q;~p. Withf (j)T (~q; ~p) = f (j)(~q;�~p); j = 1; 2; (132)we de�ne the time-reversed Poisson bra
ket byff (2); f (1)gT = ff (1)T ; f (2)T g : (133)The de�nition is appropriate in the following sense: The time evolution of a fun
tion f [~q(~t); ~p(~t)℄(whi
h does not depend expli
itly on time) is given by_f = ff; ~Hg ; (134)where ~H is the Hamilton fun
tion of the system. If HT (~q; ~p) = H(~q; ~p), we have for the time-reversed Eq. (134) d fTd(�~t) = ff; ~HgT = f ~H; fTg ; ) _fT = ffT ; ~Hg ; (135)whi
h is what one wants!3.4 The spa
e S~q;~p; 0 as a \homogeneous" oneThe phase spa
e S~q;~p; 0 
an be interpreted as a homogeneous one as follows:The subgroup (105) leaves the points of the line f(~q; ~p = 0)g invariant, i.e. it is the\isotropy" or \little" group of these points. We have already seen that the group Sp(2;R)a
ts transitively on S~q;~p; 0. Both properties imply that we 
an represent S~q;~p; 0 as a homogeneousspa
e, namely S~q;~p; 0 �= Sp(2;R)=N1 ; (136)i.e. the points x 2 S~q;~p; 0 are in one-to-one 
orresponden
e with the rest 
lasses g1�N1;where g1 2Sp(2;R). This is immediately plausible: The group G1 = Sp(2;R) has the unique (Iwasawa)subgroup de
omposition R1 � A1 � N1 , with the topologi
al produ
t stru
ture S1 � R+ � R .\Dividing out the subgroup N1" means dividing out the topologi
al fa
tor R. The re-maining produ
t S1 � R+ 
orresponds to the polar 
oordinates of the pun
tured planeR2 � f(0; 0)g �= S~q;~p; 0 . 23



3.5 Some quantum aspe
tsThe present subse
. is intended to illustrate the role the symple
ti
 group Sp(2;R) from aboveplays in the 
onventional quantum me
hani
s of the HO, a role whi
h remains unmentionedin the usual QM textbook dis
ussions.Let us apply the 
onventional quantization pro
edure to the fun
tions (114) { (116) byrepla
ing ~q and ~p by the operators ~Q and ~P and (Weyl) symmetrizing where ne
essary. Wethen get �g0(x) ! 14 ( ~P 2 + ~Q2) = ~K0 ; (137)�g1(x) ! 14( ~P 2 � ~Q2) = � ~K1 : (138)�g2(x) ! �14 ( ~Q ~P + ~P ~Q) = ~K2 : (139)With ~Q = 1p2 (ay + a) ; ~P = ip2 (ay � a) ; [a; ay℄ = 1 ; (140)we have ~K0 = 14 (2 aya + 1) ; ~K1 = 14 (ay2 + a2) ; ~K2 = � i4 (ay2 � a2) ; (141)and ~K+ = ~K1 + i ~K2 = 12 ay2 ; ~K� = ~K1 � i ~K2 = 12 a2 : (142)The asso
iated Lie algebra is[ ~K0; ~K1℄ = i ~K2 ; [ ~K0; ~K2℄ = �i ~K1 ; [ ~K1; ~K2℄ = �i ~K0 ; (143)or [ ~K0; ~K�℄ = � ~K� ; [ ~K+; ~K�℄ = �2 ~K0 : (144)The relations (141) and (142) 
onstitute a well-known realization of the Lie algebra sp(2;R) =so(1; 2) whi
h yields two irredu
ible positive dis
rete series unitary representations of a twofold
overing group of Sp(2;R) [58℄:Let jnos
i be a number eigenstate of the harmoni
 os
illator Fo
k spa
e:ay jnos
i = pnos
 + 1 jnos
 + 1i; a jnos
i = pnos
 jnos
 � 1i; (145)ayajnos
i = nos
 jnos
i; nos
 = 0; 1; 2; : : : :As ~K� annihilates the states jnos
 = 0i and jnos
 = 1i,~K�jnos
 = 0i = 0 ; ~K�jnos
 = 1i = 0 ; (146)we get two di�erent irredu
ible unitary representations asso
iated with the Lie algebra sp(2;R)= so(1; 2), one whi
h is given by states with even numbers of Fo
k spa
e quanta and one withodd numbers, both generated by the 
reation operator ~K+ : Be
ause~K0jnos
i = 12 (nos
 + 1=2)jnos
i ; nos
 = 0; 1; 2; : : : ; (147)24



we see that ~K0 has the eigenvalues(2nos
 + 1=2)=2 = n+ 14 and (2nos
 + 1 + 1=2)=2 = n + 34 ; n = 0; 1; : : : ; (148)in the 
ases of even and odd numbers of quanta, respe
tively. That is to say, we get oneirredu
ible unitary representation with k = 1=4 and one with k = 3=4.As to the related groups these are true representations of a 2-fold 
overing Mp(2;R) ofSp(2;R) = SL(2;R) �= SU(1; 1) and a 4-fold 
overing of SO"(1; 2). These 2-fold 
overinggroups of the symple
ti
 groups Sp(2n;R) in 2n dimensions are 
alled \metaple
ti
" [59, 60℄ones (for more details see below).As the operators (137) { (139) 
ommute with the parity transformation� : ~Q! � ~Q ; ~P ! � ~P ; �2 = 1 ; (149)the two irredu
ible representations may be asso
iated with the eigenvalues �1 of �, respe
-tively.The two representations with k = 1=4 and k = 3=4 may, of 
ourse, be realized in the 2subspa
es H+ and H� of the 
onventional Hilbert spa
e L2(R; d~q) of the harmoni
 os
illatorwith the orthonormal basisunos
(~q) = e�~q2p2nos
p� nos
! Hnos
(~q) ; Hnos
(�~q) = (�1)nos
Hnos
(~q) ; (150)where Hn(~q) is the nth Hermite polynomial.The subspa
e H+ for the unitary representation with k = 1=4 is spanned by the Hermitefun
tions with even Hermite polynomials Hnos
 and the subspa
e H� for the representationwith k = 3=4 is spanned by the Hermite fun
tions with odd Hermite polynomials.In the \even" subspa
e H+ the Hamiltonian~Hos
 = 2 ~K0 (151)has the eigenvalues (nos
 + 1=2) ; nos
 = 2n ; n = 0; 1; 2; : : : ; (152)and in the \odd" subspa
e H� its eigenvalues are(nos
 + 1=2) ; nos
 = 2n+ 1 ; n = 0; 1; 2; : : : : (153)Noti
e that the operators (140) map H+ onto H� and vi
e versa!The operators (23) for the two irredu
ible representations areA(1=4) = 1p2 (N� + 1)�1=2 a2 ; Ay(1=4) = 1p2 ay2(N� + 1)�1=2 ; N� = aya ; (154)and A(3=4) = 1p2 (N� + 2)�1=2 a2 ; Ay(3=4) = 1p2 ay2(N� + 2)�1=2 : (155)(The index � stands for \Fo
k".)It follows from the properties of a and ay thatA(1=4)jnos
 = 2ni = pn j2n� 2i ; Ay(1=4)jnos
 = 2ni = pn + 1 j2n+ 2i ; (156)25



and N(1=4) = Ay(1=4)A(1=4) = 12 N� ; [A(1=4); Ay(1=4)℄ = 1 : (157)Analogously we getA(3=4)jnos
 = 2n+ 1i = pn j2n� 1i ; Ay(3=4)jnos
 = 2n+ 1i = pn + 1 j2n+ 3i ; (158)and N(3=4) = Ay(3=4)A(3=4) = 12 (N� � 1) ; [A(3=4); Ay(3=4)℄ = 1 : (159)This meansN1=4 jnos
 = 2ni = n jnos
 = 2ni ; N3=4 jnos
 = 2n + 1i = n jnos
 = 2n+ 1i : (160)A

ording to Eqs. (22), (157) and (159) we may de�ne in H+ and H� the position andmomentum operators~Q(k) = 1p2 (A(k) +Ay(k)) ; ~P(k) = ip2 (Ay(k)�A(k)) ; [ ~Q(k); ~P(k)℄ = i 1 ; k = 1=4 ; 3=4 : (161)The operators ~Q(1=4) and ~P(1=4) or ~Q(3=4) and ~P(3=4) have on the subspa
e H+ or H�, respe
-tively, the same matrix elements the operators (140) have on H = H+�H� ! This is possiblebe
ause in an in�nite dimensional linear (Hilbert) spa
e a genuine subspa
e may be isomorphi
to the spa
e itself. Here su
h a 
orresponden
e 
an be implemented by H 3 jni $ j2ni 2 H+or H 3 jni $ j2n+ 1i 2 H� , respe
tively.There is a 
ru
ial di�eren
e, however, between the \elementary" operators (140) and the\
omposite" ones (161): Using the general operator formulaeCB e�C = B + [C;B℄ + 12! [C; [C;B℄℄ + 13! [C; [C; [C;B℄℄℄ + � � � ; (162)we get from Eqs. (140) and (141)U(�) aU(��) = ei�=2 a ; U(�) ay U(��) = e�i�=2 ay ; U(�) = e�i ~K0 � ; ~K0 = 14 (2 aya + 1) ;(163)so thatU(�) ~QU(��) = 
os(�=2) ~Q� sin(�=2) ~P ; U(�) ~P U(��) = sin(�=2) ~Q+ 
os(�=2) ~P : (164)Espe
ially for � = 2� we get the re
e
tionU(� = 2�) ~QU [�(� = 2�)℄ = � ~Q ; U(� = 2�) ~P U [�(� = 2�)℄ = � ~P : (165)This shows that the operators (140) transform a

ording to the subgroup (102) of Sp(2;R) .For � = 4� the transformations (164) a
t as the identity on the pair ~Q; ~P , but we haveU(� = 4�) = e�i 4�(2Nos
+1)=4 = e�i�1 = �1 ; Nos
 = aya : (166)This shows again that U(�); � 2 [0; 4�) ; is not a true representation of the group Sp(2;R),but that it is one of its 2-fold 
overing Mp(2;R) for whi
h U(� = 8�) = 1 .26



The re
e
tions (165) may also be implemented by the simpli�ed operator � :� ~Q��1 = � ~Q ; � ~P��1 = � ~P ; � = ei�Nos
 ; (167)where the phase has been 
hoosen su
h that�jnos
i = (�1)nos
jnos
i : (168)Contrary to the relations (163) we have on the other handU(�)A(k) U(��) = ei� A(k) ; U(�)Ay(k) U(��) = e�i� Ay(k) ; U(�) = e�i ~K0 � ; (169)where ~K0 is now given by Ay(k)A(k) + k1.Thus, the operators (161) transform a

ording to the group Sp(2;R)=Z2 �= SO"(1; 2). Thisre
e
ts the fa
t that the operators ~K0; ~K+ and ~K� transform a

ording to the adjoint repre-sentation of Sp(2;R) [61℄.The transformation properties of the operators (161) under the subgroups generated bythe operators ~K1 and ~K2 are more 
ompli
ated than those of Eqs. (140). For the latter wehave, e.g. e�i� ~K2 ~Qei� ~K2 = e�=2 ~Q ; e�i� ~K2 ~Pei� ~K2 = e��=2 ~P ; (170)where ~K2 is given by Eq. (141). The transformation (170) is the usual \squeezing" transfor-mation of quantum opti
s [62℄. The 
orresponding transformation properties of the ~Q(k) and~P(k) are more 
ompli
ated (see se
. 4.4 below).It is evident that by repla
ing the operators a and ay in Eqs. (141) and (142) by theoperators A(k) and Ay(k) of Eqs. (154) and (155) one may repeat the whole pro
edure indi
atedabove, thereby splitting the subspa
es H+ and H� again into two subspa
es and so on.What is important for us at the present state of the dis
ussion is that the quantized versionof the \(~q; ~p)-model" of the HO 
arries two di�erent irredu
ible unitary representations of a2-fold 
overing of the symple
ti
 group Sp(2;R).There is mu
h more to 
ome with the quantized version of the ('; ~I)-model of the HO:4 A
tion of the proper ortho
hronous homogeneous Lorentzgroup in 1+2 dimensions on the phase spa
e S';~I4.1 The basi
 
anoni
al \observables" on S';~IIf we insert the relations ~q = p2~I 
os' ; ~p = �p2~I sin' ; (171)into the expressions (114) { (116) we get another set of fun
tions �hj('; ~I) ; j = 0; 1; 2; whi
hagain obey the Lie algebra sp(2;R) = so(1; 2) with respe
t to the Poisson bra
kets (11):�h0('; ~I) = 12 ~I ; (172)�h1('; ~I) = �12 ~I 
os(2') ; (173)�h2('; ~I) = 12 ~I sin(2') ; (174)27



with f�h0; �h1g';~I = ��h2 ; f�h0; �h2g';~I = �h1 ; f�h1; �h2g';~I = �h0 : (175)This is not yet quite the form (9) we would like to have. But implementing the s
aling (54)with � = 2 yields the fun
tions (9), ex
ept for the signs of h1 and h2 whi
h may be reversedwithout a�e
ting their properties and the Lie algebra stru
ture (10).Thus, we obtain on the phase spa
eS';~I = f� = ('; ~I);' 2 R mod 2�; ~I > 0g (176)the basi
 dimensionless fun
tions~h0('; ~I) = ~I > 0 ; ~h1('; ~I) = ~I 
os' ; ~h2('; ~I) = �~I sin' ; (177)whi
h obey the Lie algebraf~h0; ~h1g';~I = �~h2 ; f~h0; ~h2g';~I = ~h1 ; f~h1; ~h2g';~I = ~h0 : (178)The two obvious main reasons to pass from the fun
tions (172) { (174) to the fun
tions (177)are the following ones:First, one would like ~h0 to be equal to the Hamiltonian ~H = ~I and, se
ondly, the basi
periodi
 fun
tions on S1 are 
os' and sin' from whi
h all the higher ones, 
osn'; sinn'; n =2; 3; : : : ; 
an be 
onstru
ted. The fun
tions 
os 2' and sin 2' 
annot serve that purpose! Forrelated dis
ussions of this point see Ref. [63℄.A given triple (~h0; ~h1; ~h2) with the property~h20 � ~h21 � ~h22 = 0 ; ~h0 > 0 ; (179)determines a point � 2 S';~I uniquely. Eq. (179) shows that the phase spa
e S';~I is di�eomor-phi
 to a (light) 
one with the tip deleted, i.e. it is topologi
ally equivalent to S1�R+ . Thus,S';~I has the same topologi
al stru
ture as S~q;~p; 0 from above! It is, therefore, not surprisingthat the 
anoni
al group Sp(2;R) is intimately related to the 
oresponding one of S';~I , namelythe \proper ortho
hronous homogeneous Lorentz" group SO"(1; 2) �= Sp(2;R)=Z2 whi
h hasthe symple
ti
 group Sp(2;R) as a double 
overing. SO"(1; 2) is that 
onne
ted subgroup ofthe four \pie
es" of the group O(1; 2) whi
h 
ontains the unit element and is time-dire
tionpreserving [64℄. More on this in subse
. 4.5 below.The transformations of SO"(1; 2) on S';~I are 
onveniently implemented by passing to thegroup G0 � SU(1; 1) whi
h is isomorphi
 to the group Sp(2;R): The elements g0 2 G0 aregiven by g0 = � � ��� �� � ; det g0 = j�j2 � j�j2 = 1 : (180)They a
t on a 2-dimensional 
omplex ve
tor spa
e C 2 asg0 � � z1z2 � = � z01z02 � ; with jz01j2 � jz02j2 = jz1j2 � jz2j2 : (181)The isomorphism between the two groups G0 and G1 
an be realized by the unitary matrixC0 = 1p2 � 1 �i�i 1 � ; detC0 = 1 ; C�10 = 1p2 � 1 ii 1 � = Cy0 ; (182)28



whi
h yields C0 � g1 � C�10 = g0 : (183)The hermitian matri
es� = � ~h0 = ~I ~h1 + i ~h2 = ~Ie�i'~h1 � i ~h2 = ~Iei' ~h0 = ~I � ; det� = ~h20 � ~h21 � ~h22 = 0 ; (184)are in 1-1 
orresponden
e to the points � 2 S';~I . The transformations � ! �0 under SO"(1; 2)are implemented by � ! �0 = g0 � � � gy0 ; det �0 = det � ; (185)where gy0 denotes the hermitian 
onjugate of the matrix g0.The last equality in Eq. (185) follows from the property detg0 = detgy0 = 1. Be
ausedet� = ~h20 � ~h21 � ~h22 ; the transformations (185) are indeed Lorentz transformations!One sees immediately that g0 and �g0 lead to the same transformations of the 3-ve
tors(~h0; ~h1; ~h2) and therefore of ~I and '. Thus, the group SU(1; 1) a
ts on the spa
e S';~I onlyalmost e�e
tively with the kernel Z2 representing the 
enter of the twofold 
overing groupsSU(1; 1) or Sp(2;R) of SO"(1; 2). It is well-known that the latter group a
ts e�e
tively andtransitively on the forward light 
one [65℄ and thus on S';~I .Applying a general g0 to the matrix (184) yields the mapping:,� = ('; ~I) ! �0 = ('0; ~I 0) :ei'0 = �� ei' + ���+ ei' � : (186)~I 0 = j� + ei' �j2 ~I ; (187)As �'0�' = j� + ei'�j�2 ; (188)we have the equality d'0 ^ d~I 0 = d' ^ d~I ; (189)that is, the transformations (186) and (187) are symple
ti
.It is, however, more instru
tive to look at the a
tions of 1-parameter subgroups of SU(1; 1):The unitary transformation (182) maps the subgroups (102)-(105) of G1 onto the followingsubgroups of G0: R0 : r0 =  ei�=2 00 e�i�=2 ! ; � 2 (�2�;+2�℄ ; (190)A0 : a0 = � 
osh(�=2) i sinh(�=2)�i sinh(�=2) 
osh(�=2) � ; � 2 R ; (191)B0 : b0 = � 
osh(s=2) sinh(s=2)sinh(s=2) 
osh(s=2) � ; s 2 R ; (192)N0 : n0 = � 1 + i�=2 �=2�=2 1� i�=2 � ; � 2 R : (193)
29



(I here, too, list four - not independent - subgroups of G0 be
ause we shall need N0 for therepresentation of S';~I as a homogeneous spa
e below.) Their a
tions (185) on the 3-ve
tor(~h0; ~h1; ~h2) are given byR0 : ~h0 ! ~h00 = ~h0 ; (194)~h1 ! ~h01 = 
os � ~h1 � sin � ~h2 ;~h2 ! ~h02 = sin � ~h1 + 
os � ~h2 ;A0 : ~h0 ! ~h00 = 
osh � ~h0 + sinh � ~h2 ; (195)~h1 ! ~h01 = ~h1 ;~h2 ! ~h02 = sinh � ~h0 + 
osh � ~h2 ;B0 : ~h0 ! ~h00 = 
osh s ~h0 + sinh s ~h1 ; (196)~h1 ! ~h01 = sinh s ~h0 + 
osh s ~h1 ;~h2 ! ~h02 = ~h2 ;N0 : ~h0 ! ~h00 = (1 + �2=2) ~h0 + � ~h1 � (�2=2) ~h2 ; (197)~h1 ! ~h01 = � ~h0 + ~h1 � � ~h2 ;~h2 ! ~h02 = (�2=2) ~h0 + � ~h1 + (1� �2=2) ~h2 :So we have rotations in the ~h1� ~h2 plane and two Lorentz \boosts", one in the ~h0� ~h2 planeand the other in the ~h0� ~h1 plane! All transformations leave the form ~h20� ~h21� ~h22 invariant.For the variables ' and ~I these transformations meanR0 : ~I 0 = ~I ; (198)ei' 0 = ei('��) ;A0 : ~I 0 = �a(�; ') ~I ; �a(�; ') = 
osh � � sinh � sin' ; (199)
os'0 = 
os'=�a(�; ') ;sin'0 = (
osh � sin'� sinh �)=�a(�; ') ;B0 : ~I 0 = �b(s; ') ~I ; �b(s; ') = 
osh � + sinh � 
os' ; (200)
os'0 = (
osh s 
os'+ sinh s)=�b(s; ') ;sin'0 = sin'=�b(s; ') ;N0 : ~I 0 = �n(�; ') ~I ; �n(�; ') = 1 + � 
os'+ �2(1 + sin')=2 ; (201)
os'0 = [
os'+ �(1 + sin')℄=�n(�; ') ;sin'0 = [sin'� � 
os'� �2(1 + sin')=2℄=�n(�; ') :As the 
enter Z2 of SU(1; 1) a
ts as the identity in the transformations (194) { (201) theabove transformation subgroups are a
tually those of SO"(1; 2) = SU(1; 1)=Z2 whi
h we shalldenote by R = R0=Z2, A = A0=Z2 et
. in the following.Transitivity of the SO"(1; 2) group a
tion on S';~I 
an be seen as follows: Any point �1 =('1; ~I1) may be transformed into any other point �2 = ('2; ~I2): �rst transform ('1; ~I1) into(0; ~I1) by r0(� = '1), then map this point into ('0 = � ar
tan(sinh �0 ); ~I2) by a0(�0; 
osh �0 =~I2=~I1) and �nally transform ('0; ~I2) by r0(� = '0 � '2) into �2 = ('2; ~I2).30



For in�nitesimal values of the parameters �; � and s the transformations (198) { (201)take the form R : Æ' = ��; j�j � 1; Æ ~I = 0 ; (202)A : Æ' = �(
os') �; Æ ~I = �~I (sin') �; j� j � 1 ; (203)B : Æ' = �(sin') s; Æ ~I = ~I (
os') s; jsj � 1 : (204)A

ording to Eq. (108) they indu
e on S';~I the ve
tor �elds~AR = �' ; (205)~AA = 
os'�' + ~I sin'�~I ; (206)~AB = sin'�' � ~I 
os'�~I : (207)It is easy to 
he
k that the Lie algebra of these ve
tor �elds is isomorphi
 to the Lie algebraof SO"(1; 2), and all its 
overing groups, of 
ourse.The ve
tor �elds (205) { (207) are (global) Hamiltonian ones in the sense of Eq. (113).The 
orresponding Hamiltonian fun
tions f('; ~I) are:~AR : fR('; ~I) = �~I ; (208)~AA : fA('; ~I) = �~I 
os' ; (209)~AB : fB('; ~I) = �~I sin' : (210)The Hamiltonian fun
tions fR; fA and fB obey the Lie algebra so(1; 2) with respe
t to thePoisson bra
kets (11):ffR; fAg = �fB ; ffR; fBg = fA ; ffA; fBg = fR : (211)Reversing the minus signs on the right-hand side of Eqs. (208) and (209) we �nally arriveagain at our three basi
 
lassi
al observables introdu
ed before:~h0('; ~I) � �fR = ~I ; ~h1('; ~I) � �fA = ~I 
os' ; ~h2('; ~I) � fB = �~I sin' : (212)Thus, the 
anoni
al group SO"(1; 2) of the symple
ti
 spa
e S';~I determines the basi
 \ob-servables" (177) of that 
lassi
al spa
e.4.2 S';~I as a homogeneous spa
eThe transformation formulae (201) show that the subgroup N0 leaves the half-line ' =��=2; ~I > 0; pointwise invariant, that is, N0 is the stability group of those points. Thisimplies that the symple
ti
 spa
e S';~I is di�eomorphi
 to the 
oset spa
e SO"(1; 2)=N0 :S';~I �= SO"(1; 2)=N0 : (213)Noti
e that the subgroups N0 and A0 do not 
ontain the se
ond 
enter element �e of SU(1; 1).The 
enter Z2 is a subgroup of R0.In the language of the ~hj the transformations (197) leave the points (~I; ~h1 = 0; ~h2 = ~I)invariant. 31



4.3 On the relationship between the phase spa
es S~q;~p; 0 and S';~IThe two phase spa
es S~q;~p; 0 and S';~I have the same topologi
al stru
ture S1 � R+ , but their
orresponden
e is nevertheless not one-to-one. The term \topologi
al" is somewhat impre
isehere: the positive real numbers R+ 
an be mapped in a one-to-one fashion onto the full realline R by ~I = ea; a = ln ~I; ~I 2 R+ ; a 2 R; . This mapping is, however, not symple
ti
 be
aused' ^ d~I = ead' ^ da . But as we are interested in preserving the symple
ti
 stru
tures, we
onsider only (usually lo
al) \symple
tomorphisms" [44℄.In order to see the essential di�eren
e between the spa
es S~q;~p; 0 and S';~I let us look at theorbits of the transformation group R1 (
f. Eq. (102)) on the former (
f. Eq. (98)) and thoseof R0 (
f. Eq. (190)) on the latter (
f. Eqs. (194)):If we start with � = 0 and in
rease � to � then - a

ording to Eq. (102) - the positive ~q-axisis rotated by 90Æ onto the positive ~p-axis and the latter is rotated onto the negative ~p-axis.On the other hand - a

ording to Eq. (194) - the ~h1- and ~h2-axis are both rotated by 180Æ,i.e. they 
hange sign. For � = 2� the transformation (194) be
omes the identity, whereasnow the transformation (102) 
hanges the sign of x = (~q; ~p)T (\T" here means \transpose"):x! �x. Finally, for � = 4� both groups a
t as the identity.All this is, of 
ourse, a 
onsequen
e of the fa
t that the e�e
tive transformation groupon S~q;~p; 0 is Sp(2;R) , whereas the 
orresponding transformation group on S';~I is SO"(1; 2) =Sp(2;R)=Z2! The situation is 
ompletely similar to the well-known transformations of thegroup SU(2) on a 2-dimensional (
omplex spinor) ve
tor spa
e whi
h indu
es a 
orrespondingtransformation of the group SO(3) = SU(2)=Z2 on a 3-dimensional ve
tor spa
e. Here, too, agiven element of SO(3) 
orresponds to two elements �u 2 SU(2) ! In our 
ase the x 2 S~q;~p; 0are the \spinors" and the � 2 S';~I are the \ve
tors".The remarks show in whi
h way the two spa
es S~q;~p; 0 and S';~I di�er globally despite thelo
al equality d' ^ d~I = d~q ^ d~p whi
h is obviously invariant under the 
enter Z2 (it sends xto �x and � to �).One may 
hara
terize the situation also in the following way [66℄: If we identify the pointsx and �x on S~q;~p; 0 then the group Sp(2;R) a
ts on this quotient spa
e in the same way asthe group SO"(1; 2) on S';~I and we have the 
orresponden
eS';~I �= S~q;~p;0=Z2 ; (214)whi
h follows also from 
omparing the homogeneous spa
es (136) and (213).A quotient spa
e like (214) is 
alled an \orbifold". An orbifold may be generated from amanifold M by identifying points whi
h are 
onne
ted by a �nite dis
ontinuous group Dn of nelements so that the orbifold is given by the quotient spa
e M=Dn. An orbifold generally hasadditional singularities as 
ompared to the manifold from whi
h it is 
onstru
ted, as we shallsee now:In our 
ase the orbifold S~q;~p; 0=Z2 is a 
one: Take the lower half of the (~q; ~p)-plane androtate it around the ~q-axis till it 
oin
ides with the upper half of the plane su
h that thenegative ~p-axis lies on the positive one. Then rotate the left half of the upper half planearound the positive ~p-axis till the negative ~q-axis 
oin
ides with the positive one. Finally gluethe two ~q-half-axis together. The resulting spa
e is a 
one with its \tip" (vertex) at x = 0.The tip 
onstitutes a singularity to be deleted. It is a �xed point of the a
tion of Z2. We thusarrive at the 
one stru
ture of the symple
ti
 spa
e (214) by a di�erent route.32



4.4 Relationships between the 
oordinates ~q; ~p and ~h0; ~h1; ~h2Further below we shall en
ounter several important relations between the quantum operatorversions ~Q; ~P; ~K0; ~K1 and ~K2 of the 
orresponding 
lassi
al basi
 quantities ~q; ~p; ~h0; ~h1 and~h2. So it is useful to list a number of relations between the latter:~q('; ~I) = p2~I 
os' = s 2~h0 ~h1 ; ~h0 = ~I; ~h1 = ~I 
os' ; (215)~p('; ~I) = �p2~I sin' = s 2~h0 ~h2 ; ~h2 = �~I sin' ; (216)� = 1p2(~q + i~p) = p~I e�i' = ~h+=q~h0 ; (217)~h+ = ~h1 + i~h2 = ~I e�i' ; ~h� = ~h1 � i~h2 = ~I ei' : (218)Also of interest are a number of Poisson bra
kets:f~h0; ~qg';~I = �~p ; (219)f~h0; ~pg';~I = ~q ; (220)f~h0; �g';~I = i � : (221)These are just the 
anoni
al eqs. of motion for the HO.More 
ompli
ated are the following Poisson bra
ketsf~h1; ~qg';~I = �12 sin' ~q � 
os' ~p ; (222)f~h1; ~pg';~I = �12 sin' ~p+ 
os' ~q ; (223)f~h2; ~qg';~I = �12 
os' ~q + sin' ~p ; (224)f~h2; ~pg';~I = �12 
os' ~p� sin' ~q ; (225)(226)where the right-hand sides may be expressed in di�erent ways by using the quantities de�nedin Eqs. (215) { (218). Examples aref~h+; �g';~I = 1p~I (�12 �� + i�)� = �12p~I + i~I3=2 (~h+)2 ; (227)f~h�; �g';~I = 1p~I (�12 � + i��)� = i2p~I � 12~I3=2 (~h�)2 : (228)The bra
kets f~h+; ��g';~I and f~h�; ��g';~I follow from 
omplex 
onjugation of the relations(228) and (227).4.5 Spa
e re
e
tions and time reversalThe spa
e re
e
tions (128) may be implemented on S';~I by� : '! '� � ; ~I ! ~I : (229)33



The re
e
tion � leaves the symple
ti
 form d' ^ d~I invariant (lo
ally) and implies� : ~h0 ! ~h0 ; ~h1 ! �~h1 ; ~h2 ! �~h2 : (230)The time reversal (129) 
an be implemented byT : ~t! �~t ; '! �' ; ~I ! ~I : (231)In order to make this transformation into a symple
ti
 one, we also have to 
hange the orderof the fa
tors in d' ^ d~I as dis
ussed after Eq. (129) above. We now haveT : ~h0 ! ~h0 ; ~h1 ! ~h1 ; ~h2 ! �~h2 : (232)Noti
e that the spa
e re
e
tion properties (230) of the ~hj are di�erent from those of the �hjof Eqs. (172) { (174). The T-reversal properties are the same.The relationship of the above �- and T -transformations to the di�erent \pie
es" of thehomogeneous Lorentz group O(1; 2) is as follows: It follows from~hj ! ~h0j = 2Xk=0 � kj ~hk ; (~h00)2 � (~h01)2 � (~h02)2 = (~h0)2 � (~h1)2 � (~h2)2 ; (233)that det(� kj ) = �1 ; sgn� 00 = �1 : (234)The group SO"(1; 2) whi
h 
ontains the identity transformation is 
hara
terized by det(� kj ) =1; sgn� 00 = 1 : The above transformations � and T have both sgn� 00 = 1 , but det(� kj ) = 1and det(� kj ) = �1 ; respe
tively.5 Quantizing the angle - a
tion variables phase spa
eS';~I of the harmoni
 os
illator5.1 Lie algebra of the self-adjoint observables ~Kj and the stru
tureof their irredu
ible representationsThe quantum theory of the HO des
ribed on the phase spa
e S~q;~p is a settled a�air, due tothe Stone-von Neumann uniqueness theorem for the irredu
ible unitary representations of theBDHJW-group [67℄!The situation is di�erent, however, for the quantum theory of the HO des
ribed by thephase spa
e S';~I of its angle and a
tion variables. We have seen that the \
anoni
al" group ofthat phase spa
e is the group SO"(1; 2) whi
h has an in�nite number of 
overing groups, due toits maximal 
ompa
t rotation subgroup SO(2). The group SO"(1; 2) - and its 
overing groups -has 3 
lasses of irredu
ible unitary representations [68℄: the \prin
ipal", the \supplementary"or \
omplementary" series and two \dis
rete" series. In the prin
ipal and supplementaryseries the spe
tra of the generator ~K0 are unbounded from below and above. One of thedis
rete series has a stri
tly positive spe
trum of ~K0 and the other a stri
tly negative one.In our 
ase ~K0 
orresponds to the positive a
tion variable ~I and, therefore, ought to bea positive de�nite operator. This leaves only the positive dis
rete series of the irredu
ible34



unitary representations. These may be - formally - 
onstru
ted as follows:As the group SO"(1; 2) is non
ompa
t, its irredu
ible unitary representations are in�nite-dimensional. Di�erent 
on
rete representation Hilbert spa
es will be dis
ussed later in se
.7. In an irredu
ible unitary representation of the group the 
lassi
al fun
tions ~h0; ~h1; ~h2with their Lie algebra (10) 
orrespond to self-adjoint operators ~K0; ~K1; ~K2 whi
h obey the
ommutation relations[ ~K0; ~K1℄ = i ~K2 ; [ ~K0; ~K2℄ = �i ~K1 ; [ ~K1; ~K2℄ = �i ~K0 ; (235)or, with the de�nitions ~K+ = ~K1 + i ~K2 ; ~K� = ~K1 � i ~K2 ; (236)we have [ ~K0; ~K+℄ = ~K+ ; [ ~K0; ~K�℄ = � ~K� ; [ ~K+; ~K�℄ = �2 ~K0 : (237)The relations (235) are invariant under the repla
ement ~K1 ! � ~K1; ~K2 ! � ~K2 and ~K1 !� ~K2; ~K2 ! ~K1. The relations (237) are invariant under ~K+ ! � ~K+; ~K� ! �� ~K�; j�j = 1 ,and under the transformations ~K+ $ ~K�; ~K0 ! � ~K0. In irredu
ible unitary representationswith a s
alar produ
t (f1; f2) the operator ~K� is the adjoint operator of ~K+ : (f1; ~K+f2) =( ~K�f1; f2), and vi
e versa.The (Casimir) operator C = ~K21 + ~K22 � ~K20 (238)
ommutes with all three ~Kj and therefore is a multiple of the identity operator in an irredu
iblerepresentation. It obeys the relations~K+ ~K� = C + ~K0( ~K0 � 1) ; ~K� ~K+ = C + ~K0( ~K0 + 1) : (239)Most unitary representations make use of the fa
t that ~K0 is the generator of a 
ompa
tgroup and that its eigenfun
tions gm are normalizable elements of the asso
iated Hilbertspa
e H [69℄.The relations (237) show that the K� a
t es 
reation and annihilation operators and theyimply ~K0 gm = mgm ; m 2 R ; (gm; gm) = 1 ; (240)~K0 ~K+gm = (m+ 1) ~K+gm ; (241)~K0 ~K�gm = (m� 1) ~K�gm ; (242)whi
h, 
ombined with (239), lead to(gm; ~K+ ~K�gm) = ( ~K�gm; ~K�gm) = 
 +m(m� 1) � 0 ; (243)(gm; ~K� ~K+gm) = 
 +m(m+ 1) � 0 ; 
 = (gm;Cgm): (244)It follows that ( ~K+gm; ~K+gm) = 2m + ( ~K�gm; ~K�gm) � 0: (245)As we assume that we have an irredu
ible representation the fun
tions gm are eigenfun
tionsof the Casimir operator C : C gm = 
 gm : (246)35



The relations (240) { (245) show that the eigenvalues m of ~K0 in prin
iple 
an be any realnumber, where, however, di�erent eigenvalues di�er by an integer.As already said above: For the \prin
iple" and the \
omplementary" series the spe
trumof ~K0 is unbounded from below and above [68℄, but as ~K0 
orresponds to the 
lassi
al positivede�nite quantity ~I, these unitary representations are of no interest here.Here the positive dis
rete series D(+)k of irredu
ible unitary representations are important.These are 
hara
terized by the property that there exists a lowest eigenvalue m = k su
h that~K0 gk = k gk ; ~K� gk = 0 : (247)Now the relations (243) and (245) imply
 = k(1� k) ; k > 0 ; m = k + n; n = 0; 1; 2; : : : : (248)That k > 0 follows from Eq. (245) with m = k; ~K�gk = 0 , but ( ~K+gk; ~K+gk) > 0 , be
ausethe s
alar produ
t is positive de�nite! Exploiting the relations (240)-(242) yields~K0gk;n = (k + n) gk;n ; k > 0 ; n = 0; 1; : : : ; ; (gk;n; gk;n) = 1 ; (249)~K+gk;n = �n [(2k + n)(n + 1)℄1=2 gk;n+1 ; j�nj = 1 ; (250)~K�gk;n = 1�n�1 [(2k + n� 1)n℄1=2 gk;n�1 : (251)The phases �n guarantee that (f1; ~K+f2) = ( ~K�f1; f2). In most 
ases of interest �n is inde-pendent of n. Then one 
an absorb it into the de�nition of K� and forget about the phases�n!Up to now k may be any positive real number. A detailed analysis (see Appendix B)shows [68℄ that k = 1; 2; : : : ; for the group SO"(1; 2) itself, k = 1=2; 1; 3=2; : : : ; for theisomorphi
 groups Sp(2;R) �= SL(2;R) �= SU(1; 1) and k = 1=4; 1=2; 3=4; 1; : : : ; for themetaple
ti
 group Mp(2;R) we en
ountered above.For the universal 
overing group ~G � SO"[1℄(1; 2) the \Bargmann index" k may have anypositive value > 0. Further below we shall see that for an m-fold 
overing SO"[m℄(1; 2) theindex k 
an take the rational valuesk = �m ; � = 1; 2; : : : : (252)Here the natural number m may be arbitrary large, i.e. the lowest value k = 1=m 
an bemade arbitrary small > 0 !As long as I do not spe
ify the 
on
rete Hilbert spa
e used I shall employ Dira
's bra
ketnotation and write gk;n = jk; ni : It follows from Eq. (250) thatjk; ni = 1p(2k)n n! ( ~K+)njk; 0i ; (253)(2k)n � 2k (2k + 1) � � � (2k + n� 1) = �(2k + n)�(2k) ; (254)(2k)n=0 = 1 ; (1)n = n! ; (�2k)n = (�1)n n!�2kn � : (255)The Casimir operator relation~K21 + ~K22 = ~K20 + k(1� k) 1 (256)36



modi�es the 
orresponding 
lassi
al Pythagorean relation~h21 + ~h22 = ~h20 ; (257)unless k = 1! So for a HO with k = 1=2 \Pythagoras" is \violated" by quantum e�e
ts!5.2 The operators ~Q and ~P as fun
tions of the operators ~KjThe relations (2) , (27) , (215) and (216) as well show the dependen
e of the 
anoni
al 
oor-dinates ~q and ~p on the 
anoni
al 
oordinates ' and ~I. It is important that a 
orrespondingoperator relation expresses the position operator ~Q and the momentum operator ~P in termsof the operators ~Kj; j = 0; 1; 2 . That this is indeed possible was already stated in theintrodu
tion. The relationship 
an be read o� the Eqs. (249) { (251) as follows:If we have annihilation and 
reation operators a and ay in a (Fo
k) Hilbert spa
e with anumber state basis jni su
h thata jni = pn jn� 1i ; ay jni = pn + 1 jn+ 1i ; [a; ay℄ = 1 ; (258)we 
an de�ne ~Q = 1p2 (a + ay) ; ~P = ip2 (ay � a) ; [ ~Q; ~P ℄ = i1 : (259)The operators (258) have been used to 
onstru
t non-linear realizations of the generators~Kj [27℄: ~K0 = N + k1 ; ~K+ = aypN + 2k1 ; ~K� = pN + 2k1 a ; N = aya : (260)However, as I pointed out in Ref. [13℄, it is mu
h more interesting to invert these relations:5.2.1 Operator version of the polar 
oordinates in the planeNow, as k > 0 and the operator ~K0 is positive de�nite in any irredu
ible unitary representationof the positive dis
rete series D(+)k , the operatorBk = ( ~K0 + k)�1=2 (261)is well-de�ned and self-adjoint. AsBkjk; ni = (2k + n)�1=2 jk; ni ; (262)then a

ording to the relations (249) { (251) (with �n = 1) the operatorsA(k)( ~~K) = Bk ~K� ; Ay(k)( ~~K) = ~K+Bk (263)have the propertiesA(k) jk; ni = pn jk; n� 1i ; Ay(k) jk; ni = pn+ 1 jk; n+ 1i ; (264)Ay(k)A(k)jk; ni = n jk; ni ; [A(k); Ay(k)℄ = 1 : (265)The a
tions of the operators (263) are independent of the (Bargmann) index k whi
h 
hara
-terizes the irredu
ible representation of the group SO"(1; 2) or one of its 
overing groups. Sowe may drop their index (k) . 37



This k-independen
e is another manifestation of the Stone-von Neumann uniqueness the-orem whi
h says that - provided 
ertain regularity 
onditions are ful�lled - all the irredu
iblerepresentations of ~Q and ~P with the property (259) are unitarily equivalent, i.e. have thesame matrix element whatever Hilbert spa
e is employed!Before drawing 
onsequen
es let me derive the relationN = Ay( ~~K)A( ~~K) = ~K0 � k1 (266)in a di�erent way: If f( ~K0) is a \suitable" fun
tion of the operator ~K0, then a repeatedappli
ation of the relations (237) yields~K� f( ~K0) = f( ~K0 + 1) ~K� ; f( ~K0) ~K+ = ~K+ f( ~K0 + 1) ; (267)where \suitable" means that f( ~K0) and f( ~K0 + 1) are both well-de�ned operators; We thenhaveAyA = ~K+( ~K0+k)�1 ~K� = ( ~K0+k�1)�1 ~K+ ~K� = ( ~K0+k�1)�1[k(1�k)+ ~K0( ~K0�k)℄ ; (268)where the �rst of the relations (239) has been used.As k(1� k) + ~K0( ~K0 � k) = ( ~K0 + k � 1)( ~K0 � k) the Eq. (266) follows immediately.Expli
itly written in terms of the operators ~K0, ~K1 and ~K2 we have~Q( ~~K) = 1p2 (A+ Ay) = 1p2 ( ~K1Bk +Bk ~K1) + ip2 ( ~K2Bk � Bk ~K2) ; (269)~P ( ~~K) = ip2 (Ay � A) = ip2 ( ~K1Bk � Bk ~K1)� 1p2 ( ~K2Bk +Bk ~K2) : (270)These relations show that - 
ontrary to the 
lassi
al 
ase (
f. Eqs. (215) and (216)) - theoperators ~Q and ~P are not just proportional to ~K1 and ~K2, but 
ontain mixtures of both!5.2.2 Two kinds of energy spe
tra for the quantum me
hani
al HOWe now 
ome to the 
ru
ial point of the whole paper:Obviously the (dimensionless) (~q; ~p)-Hamiltonian~H[ ~Q( ~~K); ~P ( ~~K)℄ = 12 ~Q2 + 12 ~P 2 = AyA+ 12 (271)obeys the eigenvalue equation ~H( ~Q; ~P ) jk; ni = (n+ 1=2) jk; ni : (272)On the other hand we have for the ('; ~I)-Hamiltonian~H( ~K) = ~K0 ; ~K = ~ ( ~K0; ~K1; ~K2) ; H( ~K) = ~! ~K0 ; (273)that ~H( ~K) jk; ni = (n+ k)jk; ni ; k > 0 : (274)The last equation shows that the ground state energies of the Hamiltonian (273) in prin
iplemay take any real positive value! 38



In se
. 3 we en
ountered the values k = 1 (for SO"(1; 2) ), k = 1=2 (for Sp(2;R) ) andk = 1=4; 3=4 (for the 4-fold 
overing group Mp(2;R) of SO"(1; 2) ). One 
an show (see belowand Appendix B) that for an m-fold 
overing (m 2 N) the lowest possible value for k isk = 1=m. Thus, we 
an make k > 0 as small as we like by going to higher and higher
overings.These surprising new possibilities 
ome, of 
ourse, from the non-trivial topologi
al stru
-ture R2 � f(0; 0)g �= S1 � R+ of the phase spa
e S';~I , a stru
ture whi
h is being \erased"when going over to the phase spa
e S~q;~p with its trivial topology R2 !A
tually, the more general eigenvalues of Eq. (274) are a 
onsequen
e of the \ri
her" quantumtheory of symple
ti
 group Sp(2;R) of the plane whi
h 
onstitutes the \
anoni
al" group ofthe phase spa
e S';~I .It is, of 
ourse, of 
ru
ial importan
e, to look for this additional stru
ture experimentally(see subse
. 1.3 of the Introdu
tion)!!If k 6= 1=2 then the two energy spe
traE(q;p)n = ~! (n+ 1=2) ; E(';I)k;n = ~! (n + k) ; (275)are di�erent and transitions between di�erent levels should (in prin
iple) be possible if theE(';I)k;n - levels do appear at all in nature or 
an be produ
ed in the laboratory! Of spe
ialinterest here is the 
ase where 0 < k < 1=2 be
ause then transitions from the (q; p)-groundstate to a lower lying ('; I)-level are in prin
iple possible provided an appropriate dynami
alme
hanism is available. An obvious 
hallenge is that for k 6= 1=2 the same states jk; ni belongto di�erent energy eigenvalues of the operators H(Q;P ) and H( ~K)! Noti
e, however, thatfor ~H( ~K) the \observables" ~K0, ~K1 and ~K2 are the primary ones, whereas ~Q and ~P are\derived" or \
omposite" quantities, at least in the present 
ontext!It may also happen, perhaps, that transitions between levels of the two di�erent spe
traare more or less strongly impeded and that, therefore, 
ertain levels remain \in the dark"!(See also se
. 8).5.2.3 Time evolution and the ground states for di�erent 
overing groupsLet us look at the provoking situation from a slightly di�erent point of view:The unitary time evolution operator for the ('; ~I)-model of the HO isU(~t) = e�i ~H ~t ; ~H = ~K0 ; ~t = � : (276)This equation shows that the rotation angle � 
an be identi�ed with the time variable ~twhi
h - in prin
iple - represents the universal 
overing spa
e of the 
ir
le S1.From the 
ommutation relations (235) and the formula (162) we get the (Heisenberg) eqs.of motion U(�~t) ~K1 U(~t) = 
os ~t ~K1 � sin ~t ~K2 ; (277)U(�~t) ~K2 U(~t) = sin ~t ~K1 + 
os ~t ~K2 ; (278)U(�~t) ~K+ U(~t) = ei ~t ~K+ ; (279)U(�~t) ~K� U(~t) = e�i ~t ~K� : (280)As the operator (261) 
ommutes with U(~t) the 
reation and annihilation operators Ay andA from Eq. (263) transform as ~K+ and ~K� in Eqs. (279) and (280). This means that the39



position and momentum operators (269) and (270) have the usual time evolution:U(�~t) ~QU(~t) = 
os ~t ~Q+ sin ~t ~P ; (281)U(�~t) ~P U(~t) = � sin ~t ~Q+ 
os ~t ~P : (282)Here, all the expli
it k-dependen
e has dropped out!However, be
ause of the relation (266) we haveU(~t = 2�) = e�2�ik1 : (283)If k is a positive rational number, k = n=m ; n;m 2 N , then the unitary operator (283)belongs to the 
enter of a unitary representation of a m-fold 
overing of SO"(1; 2), the \lowest"representation of whi
h is given by k = 1=m. Only for k = 1; 2; : : : ; the operator (283) is theidentity operator, representing the identity of SO"(1; 2). If k = n=m then U(~t = m 2�) is the
orresponding identity operator.Here we see, why the values of k in the interval (0; 1℄ may be generi
ally the most importantones in the 
ontext of the HO (see also the related dis
ussions in Ref. [63℄). The 
enterZm = fe2� i�=m ; � = 1; � � � ; mg (284)of the m-fold 
overing may be generated by the single elemente2� i=m : (285)For � = m + 1 we obviously get the same element. Corresponding arguments apply to theunitary operator (283).The relation (283) may also be interpreted in the following way: Applying the operator(276) to the ground state yields U(~t) jk; 0i = e�i k ~t jk; 0i : (286)As ~t = ! t 
an be used as an angle parametrizing one of the 
overing groups of the subgroupSO(2), the interval T2�; k = 2�!k ; !k � k ! (287)is the time the system needs in order to \run" through that group. So in a heuristi
 sensethe index k and the \angle" ! T2� ;k are 
omplementary! The larger the latter the smaller theformer! I repeat: The index k 
an prin
ipally be extremely small as long as it stays positive!5.2.4 The index k in number states matrix elementsThe index k plays a signi�
ant role in matrix elements of the operators ~Kj; j = 0; 1; 2; withrespe
t to the number states jk; ni:It follows from ~K1 = 12( ~K+ + ~K�) ; ~K2 = 12i( ~K+ � ~K�) ; (288)that hk; nj ~Kjjk; ni = 0 ; j = 1; 2; (289)40



and (� ~Kj)2k;n = hk; nj ~K2j jk; ni � hk; nj ~Kjjk; ni2 = 12(n2 + 2nk + k) ; j = 1; 2; (290)so that (� ~K1)k;n (� ~K2)k;n = 12(n2 + 2kn+ k) ; (� ~K1)k;n=0 (� ~K2)k;n=0 = k2 ; (291)Thus, ~K1 and ~K2 have the same standard deviations (\un
ertainties") and the produ
t ofthese un
ertainties in the ground state is given by k=2, i.e. the smaller k the smaller theminimal standard deviations!For the operators ~Q( ~K) and ~P ( ~K) we havehk; nj ~Qjk; ni = 0 ; hk; nj ~P jk; ni = 0 ; (292)and (� ~Q)2k;n = hk; nj ~Q2jk; ni = n+ 1=2 ; (� ~P )2k;n = hk; nj ~P 2jk; ni = n+ 1=2 ; (293)whi
h are the usual k-independent relations, implying(� ~Q)k;n (� ~P )k;n = n + 1=2 : (294)5.2.5 Spa
e re
e
tion and time reversalFrom Eqs. (277) and Eqs. (278), or Eqs. (281) and (282) we 
an infer the spa
e re
e
tionoperator � : � ~Q�y = � ~Q ; � ~P �y = � ~P ; � = U(~t = ��) = ei� (N+k) : (295)Now �2 = e2�ik ; � jk; ni = (�1)n ei�k jk; ni ; (296)whi
h shows the k-dependen
e of the phases asso
iated with the so de�ned operator �.The antiunitary time reversal transformation T (
f. Eq. (232)) may be implemented bythe substitutions T : ~K0 ! ~K0 ; ~K1 ! ~K1 ; ~K2 ! � ~K2 ; i! �i ; (297)whi
h imply T : K� ! K� (298)and leave the 
ommutation relations (235) and (237) invariant. The transformations (297)imply the 
orre
t ones for the operators (269) and (270).Contrary to what happens in the 
ase of the 
anoni
al pair angle and orbital angular mo-mentum where re
e
tion and time reversal invarian
e are generally in 
on
i
t with fra
tionalorbital angular momenta [25℄ this is not so for fra
tional ground state energies / k of the HO!Like in the 
ase of the 
orresponding Poisson bra
kets (227) and (228) the 
ommutators[K�; A℄ et
. are rather 
ompli
ated and will not be listed here. One 
an nevertheless de�nethe following \squeezing" operator [70℄ \by hand":S = e�iV 
 ; V = i2(A2 � (Ay)2) ; 
 2 R ; (299)whi
h has the property S ~QSy = e
 ~Q ; S ~P Sy = e�
 ~P ; (300)41



5.3 Restoring the physi
al dimensionsUp to now I have used dimensionless quantities, 
lassi
al and quantum ones, as introdu
edin subse
. 2.1. Here I brie
y summarize the main physi
al quantities with their dimensionsrestored. For the 
lassi
al quantities the pro
edure is obvious from subse
. 2.1. So I 
on�nemyself to the operators and their eigenvalues:The primary operators with the dimension of an a
tion areKj = ~ ~Kj ; j = 0; 1; 2 ; K� = ~ ~K� ; (301)they have the 
ommutation relations (
f. Eqs. (235) and (237))[K0; K1℄ = i ~K2 ; [K0; K2℄ = �i ~K1 ; [K1; K2℄ = �i ~K0 ; (302)and [K0; K+℄ = ~K+ ; [K0; K�℄ = �~K� ; [K+; K�℄ = �2~K0 : (303)We have, e.g. K0jk; ni = ~ (n+ k) jk; ni : (304)The Hamilton operator is given byH( ~K) = !K0 ; Hjk; ni = ~! (n+ k) jk; ni : (305)The number operator remains dimensionless:N = ~K0 � k1 : (306)The 
onventional annihilation and 
reation operators (263) should also remain dimensionless:A( ~~K) = Bk ~K� ; Ay( ~~K) = ~K+Bk ; Bk = ( ~K0 + k)�1=2 = (N + 2k)�1=2 ; (307)so that [A; Ay℄ = 1 : (308)The physi
al position and momentum operators are then given by (
f. Eqs. (38) and (39))Q = �0p2(Ay + A) ; P = i ~p2�0 (Ay � A) ; [Q; P ℄ = i ~ ; �0 = r ~m! : (309)6 Three types of 
oherent states6.1 De�nition and physi
al interpretationIt is well-known [71℄ that one 
an asso
iate three di�erent types of 
oherent states (CS) withthe Lie algebra of the ~Kj; j = 0; 1; 2; in a representation D(+)k : Barut-Girardello, Perelomovand the 
onventional S
hr�odinger-Glauber 
oherent states. The three kinds of CS may bede�ned by the relations~K�jk; zi = z jk; zi ; z = jzj e�i� 2 C ; (310)Ek;�jk; �i = � jk; �i ; � = j�j e�i � 2 D ; (311)Ek;� = ( ~K0 + k)�1 ~K� ; D = f� 2 C ; j�j < 1g ; (312)Ajk; �i = � jk; �i ; A = Bk ~K� ; � = j�j e�i � 2 C : (313)42



The minus-sign for the phases of the 
omplex numbers is mere 
onvenien
e2.Expanding with respe
t to a number basis jk; ni yields [71℄jk; zi = 1pgk(jzj2) 1Xn=0 znp(2k)n n! jk; ni ; (314)gk(jzj2) = 1Xn=0 jzj2n(2k)n n! = �(2k)jzj1�2k I2k�1(2jzj) ; (315)jk; �i = (1� j�j2)k 1Xn=0 �(2k)nn! �1=2 �n jk; ni ; j�j < 1 ; (316)jk; �i = e�j�j2=2 1Xn=0 �npn! jk; ni : (317)The fun
tion I�(x) in Eq. (315) is the usual modi�ed Bessel fun
tion of the �rst kind:I�(x) = �x2�� 1Xn=0 1n! �(� + n + 1) �x2�2n : (318)The series (314) - (317) are formal ones the 
onvergen
e properties of whi
h 
an be spe
i�edon
e the number states and their Hilbert spa
e are given expli
itly.The physi
al interpretation of the 
omplex numbers z ,� and � 
an be dedu
ed from thefollowing expe
tation values:6.1.1 Barut-Girardello 
oherent statesh ~K0ik;z � hk; zj ~K0jk; zi = k + jzj �k(jzj) ; (319)�k(jzj) = I2k(2jzj)I2k�1(2jzj) < 1 ; k � 1=4 ; (320)(� ~K0)2k;z = jzj2 [1� �2k(jzj)℄ + (1� 2k) jzj �k(jzj) ; (321)hNik;z � �nk;z = jzj �k(jzj) ; N = ~K0 � k1 ; (322)hN2ik;z = jzj2 + (1� 2k)jzj �k(jzj) ; (323)h ~K1ik;z = 12(z� + z) = <(z) = jzj 
os� ; (324)h ~K2ik;z = 12i(z� � z) = �=(z) = jzj sin� ; (325)(� ~K1)2k;z = (� ~K2)2k;z = 12 h ~K0ik;z ; (326)tan� = h ~K2ik;z=h ~K1ik;z ; (327)The behaviour of the ratio �k from Eq. (320) for all k > 0 is dis
ussed in Appendix C.2Ref. [13℄ has the opposite sign 
onvention.
43



6.1.2 Perelomov 
oherent statesh ~K0ik;� � hk; �j ~K0jk; �i = k 1 + j�j21� j�j2 = k 
osh jwj ; (328)w = jwj e�i� 2 C ; � = tanh(jwj=2) e�i� ; jwj = ln�1 + j�j1� j�j� ; (329)hNik;� � �nk;� = k (
osh jwj � 1) ; (330)) j�j2 = �nk;��nk;� + 2k ; k sinh jwj = q�nk;� (�nk;� + 2k) ; (331)(� ~K0)2k;� = k2 sinh2 jwj = 12k �nk;� (�nk;� + 2k) ; (332)h ~K1ik;� = 2 k j�j1� j�j2 
os � = k sinh jwj 
os � ; (333)(� ~K1)2k;� = k2 1 + 2 
os 2� j�j2 + j�j4(1� j�j2)2 ; (334)h ~K2ik;� = 2 k j�j1� j�j2 sin � = k sinh jwj sin � ; (335)(� ~K2)2k;� = k2 1� 2 
os 2� j�j2 + j�j4(1� j�j2)2 ; (336)h ~K0i2k;� = h ~K1i2k;� + h ~K2i2k;� + k2 ; (337)tan � = h ~K2ik;�=h ~K1ik;� : (338)6.1.3 S
hr�odinger-Glauber 
oherent statesh ~Qik;� = p2<(�) = ~q = p2j�j 
os� ; (339)h ~P ik;� = p2=(�) = ~p = �p2j�j sin� ; (340)h ~H( ~Q; ~P )ik;� = j�j2 + 1=2 ; (341)h ~K0ik;� = hNik;� + k = j�j2 + k ; N = ~K0 � k1 (342)h ~K1ik;� = j�j 
os � hk; �jpN + 2kjk; �i ; (343)h ~K2ik;� = j�j sin � hk; �jpN + 2kjk; �i ; (344)hk; �jpN + 2kjk; �i = e�j�j2 1Xn=0p2k + n j�j2nn! � hk1(j�j) ; (345)tan� = h ~K2ik;�=h ~K1ik;� : (346)6.1.4 Physi
al interpretation of the 
omplex variablesBarut-Girardello statesEqs. (324) and (325) show that we 
an interpret <(z) as the 
lassi
al variable ~h1 and =(z)as ~h2, i.e. we have z = ~h1 + i ~h2 = ~h+ = jzj e�i� ; jzj = ~I > 0 ; � = ' : (347)44



Deviations from the 
lassi
al value jzj et
. in the relations (319) and (321) { (323) are
ontrolled by the ratio �k. It has the limiting values [71℄�k(jzj) ! jzj2 k �1� jzj22 k (2k + 1)� for jzj ! 0 ; (348)and for very large jzj, the 
orresponden
e limit , we get�k(jzj) � 1� 4k � 14jzj + 16 (k2 � k) + 332jzj2 +O(jzj�3) ; (349)�2k(jzj) � 1� 4k � 12jzj + 8 k2 � 6 k + 14 jzj2 +O(jzj�3) for jzj ! 1 : (350)The last two relations imply that for large jzjhK0ik;z � jzj+ 14 +O(jzj�1) ; (351)(�K0)2k;z � 12 jzj+O(jzj�1) ; (352)�nk;z � jzj+ 14 � k +O(jzj�1) ; (353)(�N)2k;z � 12 jzj+O(jzj�1) � 12 �nk;z ; (354)Perelomov statesHere the situation is di�erent from the previous one: The expe
tation values (333) and(335) are proportional to the index k, a 
ompletely non-
lassi
al quantity. This suggests todivide out the fa
tor k and make the \
lassi
al" interpretations~h1 = ~I 
os � ; ~h2 = �~I sin � ; ~I = sinh jwj ; jwj > 0 ; � = ' : (355)It means that jwj = ln�~I +p~I2 + 1� ; j�j = tanh(jwj=2) = ~I1 +p~I2 + 1 ; (356)so that � = ~h1 + i ~h21 +p~I2 + 1 : (357)It follows that the expe
tation value (328) of ~K0 approa
hes the value k ~I in the 
lassi
al limitfor whi
h jwj ! 1 or j�j ! 1� .It is remarkable that the above expe
tation values with respe
t to the states jk; �i areall proportional to k, i.e. they have a sensitive k-dependen
e. This may be of interest forexperimental tests.S
hr�odinger-Glauber statesThe �rst three of the expe
tation values (339) - (344) are well-known. They show thatj�j2 = ~I ; � = ': (358)The others have been dis
ussed in subse
. 3.3 of Ref. [13℄.45



Measuring the phasesThe three relations (327), (338) and (346) show that the operators ~K1 and ~K2 
an be usedin order to \measure" phases of 
omplex amplitudes.6.2 Generation from the ground stateThe 
oherent states (314) - (317) may be generated from the ground state jk; 0i by unitaryor similar operators. The unitary operators are also useful for the experimental generation ofthose states (see subse
. 6.5). Another problem is the appropriate experimental preparationof the ground state jk; 0i on whi
h the unitary operators a
t.6.2.1 S
hr�odinger-Glauber statesThe 
oherent states (317) 
an be generated from the groundstate jk; 0i by the unitary operatorUSG = e�Ay��� A = e�j�j2=2 e�Ay e��� A ; USG jk; 0i = jk; �i ; (359)whi
h is well-known for the 
ase k = 1=2. The operator (359) has the \displa
ement" (trans-lation) properties U ySGAUSG = A + � ; U ySGAy USG = Ay + �� ; (360)so that U ySGAyAUSG = AyA+ �Ay + ��A + j�j2 ; (361)with hk; 0jU ySGAyAUSGjk; 0i = j�j2 : (362)If � be
omes time-dependent, the transformed number operator (361) 
orresponds to a drivenharmoni
 os
illator, i.e. an os
illator 
oupled to an external sour
e [72℄. Su
h external sour
esare a
tually used in order to generate these 
oherent states experimentally [73℄. In textbooksand arti
les laser light is frequently mentioned as being in a 
oherent state. The 
hara
teristi
Poisson distribution of the asso
iated photons is, however, only rea
hed for lasers well abovethreshhold [74℄.6.2.2 Perelomov statesThe states (316) 
an be generated from jk; 0i by the unitary operator [75℄UP = e(w=2) ~K+�(w�=2) ~K� = e� ~K+ eln(1�j�j2) ~K0 e��� ~K� ; UP jk; 0i = jk; �i ; (363)where the 
omplex number w is the same as in Eq. (329).
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Instead of the displa
ements (360) we here have the Lorentz transformations [76℄U yP ~K0 UP = 
osh jwj ~K0 + (364)+12 sinh jwj(e�i � ~K+ + ei � ~K�) ;U yP ~K+ UP = 12(
osh jwj+ 1) ~K+ + (365)+12e2 i �(
osh jwj � 1) ~K� + ei � sinh jwj ~K0 ;U yP ~K� UP = 12(
osh jwj+ 1) ~K� + (366)+12e�2 i �(
osh jwj � 1) ~K+ + e�i � sinh jwj ~K0 ;The relation 
orresponding to Eq. (362) here ishk; 0jU yP ~K0UP jk; 0i = k 
osh jwj : (367)In terms of the ve
tors ~K? = ( ~K1; ~K2) ; ~n = (
os �; sin �) ; (368)these relations may be written asU yP ~K0 UP = 
osh jwj ~K0 + sinh jwj (~n � ~K?) ; (369)U yP ~K?UP = ~K? + (
osh jwj � 1)(~n � ~K?)~n+ sinh jwj~n ~K0 : (370)The operator (363) now generates intera
tion terms for the original ~K0 whi
h are propor-tional to ~K+ and ~K� , or to ~K1 and (or) ~K2 . (Their 
lassi
al 
ounterparts for � = 0 and� = �=2 were brie
y dis
ussed in subse
. 2.3.) The use of the indu
ed intera
tion term in Eq.(369) in theoreti
al des
riptions of experiments will be dis
ussed in subse
. 6.5 .6.2.3 Barut-Girardello statesHere the situation appears to be more 
ompli
ated, be
ause no 
orresponding unitary operatorhas been derived by now. The present situation is as follows [77℄:Be
ause of the relation (284) we 
an write1Xn=0 znp(2k)n n! jk; ni = 1Xn=0 zn(2k)n n! ( ~K+)njk; 0i : (371)As 1(2k)n ( ~K+)njk; 0i = (Ek;+)njk; 0i ; Ek;+ = ~K+( ~K0 + k)�1 = (Ek;�)y ; (372)where Ek;� as in Eq. (312), we have1Xn=0 znp(2k)n n! jk; ni = Fk(z) jk; 0i ; Fk(z) = ez Ek;+ : (373)47



The non-unitary operators Fk(z) and F yk (z) = exp(z� Ek;�) have the following properties:hk; 0jF yk(z)Fk(z)jk; 0i = gk(jzj2) > 0 ; F yk (z) jk; 0i = jk; 0i ; F yk (z) jk; �i = ez� � jk; �i ; (374)where gk(jzj2) is de�ned in Eq. (315) and jk; �i in Eq. (311).Thus, we have Fk(z) jk; 0i = pgk(jzj2) jk; zi ; (375)i.e. Fk(z) generates the unnormalized Barut-Girardello states. It 
orresponds to the similargenerating parts e�Ay ; e� ~K+ (376)of the unitary operators (359) and (363) for the unnormalized S
hr�odinger-Glauber andPerelomov states. But, 
ontrary to Ay and ~K+ the operators Ek;+ and Ek;� are not ele-ments of a Lie algebra. They have - among others more 
ompli
ated ones - the 
ommutators[Ek;�; Ek;+℄ = 2k � 1( ~K0 + k)( ~K0 + k � 1) ; [ ~K�; Ek;+℄ = 1 ; [Ek;�; ~K+℄ = 1 : (377)It follows from the 
ompleteness relation (396) and the last of the relations (374) that onehas for F yk (z)Fk(z) the \spe
tral representation"F yk (z)Fk(z) = ZD d�k(�) ez� �+z �� jk; �ihk; �j : (378)6.2.4 Transitions between Perelomov and Barut-Girardello 
oherent statesNoti
e that, a

ording to Eqs. (314) and (316),hk; �jk; zi = (1� j�j2)kpgk(jzj2) e�� z ;pk(�$ z) = jhk; �jk; zij2 = (1� j�j2)2kgk(jzj2) e2j�j jzj 
os(���) : (379)As [71℄ g(jzj2) � �(2k)2p� jzj1=2�2k e2jzj [1 +O(1=jzj)℄ for large jzj ; (380)we get for the transition probability in the (
lassi
al) limit of large jzj :pk(�$ z) � 2p��(2k)pjzj [jzj(1� j�j2)℄2k e�2jzj[1�j�j 
os(���)℄ for large jzj : (381)A

ording to Eqs. (347) and (347) we havej�j � 1� kjzj for large jzj : (382)Inserting this approximation for j�j into the relation (381) yields in leading order for large jzjpk(�$ z) � 2p� (2k)2k�(2k)pjzj e�2jzj[1�
os(���)℄ for jzj ! 1 : (383)48



Expanding 
os(� � �) around (� � �) = 0 gives an approximate Gaussian distribution forpk(�$ z): pk(�$ z) � 2p� (2k)2k�(2k)pjzj e�jzj(���)2 for jzj ! 1 : (384)This shows that for a given large jzj the transition probability is maximal for � = �.On the other hand, it follows fromlimk!0+(2k)2k = 1 ; �(2k) ! 12k for k! 0+ ; (385)that pk be
omes very small for very small k.Properties of the matrix elements hk; �jk; zi and hk; �jk; �i are dis
ussed in 
hap. 3 ofRef. [13℄. In the spe
ial 
ase k = 1=2 they are des
ribed in subse
. 7.1 below.6.3 Time evolutionIt follows from U(~t)jk; ni = e�i(n+k) ~t jk; ni ; U(~t) = e�i ~K0 ~t ; (386)that U(~t)jk; zi = e�i k ~tjk; z(~t)i ; z(~t) = z e�i ~t ; (387)U(~t)jk; �i = e�i k ~tjk; �(~t)i ; �(~t) = � e�i ~t ; (388)U(~t)jk; �i = e�i k ~tjk; �(~t)i ; �(~t) = � e�i ~t : (389)These equations show that the time evolution does not 
hange the form of the 
oherent states.It essentially shifts only the phases of the 
omplex numbers z, � and � linearly in time:�! �+ ~t ; � ! � + ~t ; � ! � + ~t : (390)6.4 Some general propertiesI �nally list some general properties of the above 
oherent states whi
h are very useful forappli
ations:6.4.1 S
alar produ
tsUsing the orthonormality of the number states jk; ni two di�erent states within one of thetypes listed in Eqs. (314) { (317) have the s
alar produ
thk; z2jk; z1i = 1Xn=0hk; z2jk; nihk; njk; z1i = gk(z�2 z1)pgk(jz2j2) gk(jz1j2) ; (391)hk; �2jk; �1i = (1� j�1j2)k (1� j�2j2)k (1� ��2 �1)�2 k ; (392)h�2j�1i = e�(j�2j2+j�1j2)=2 e��2 �1 : (393)Di�erent states are not orthogonal, but they are \
omplete" in the sense that they provide aresolution of the identity as follows [71℄: 49



6.4.2 CompletenessZC d�k(z) jk; zihk; zj = 1 ; (394)d�k(z) = 2� �(2k) jzj2kK2k�1(2jzj) gk(jzj2) djzjd� ; k > 0 ; (395)ZD d �k(�) jk; �ihk; �j = 1 ; (396)d�k(�) = 2k � 1� (1� j�j2)�2j�j dj�j d� ; k > 1=2 ; (397)1� ZC d2�j�ih�j = 1 ; (398)d2� = d<(�) d=(�) : (399)The modi�ed Bessel fun
tion of the third kind K�(2jzj) (
f. Ref. [79℄) in the measure (395) hasthe property K��(2jzj) = K�(2jzj) whi
h makes the measure well-de�ned for k > 0, be
ausein the limit jzj ! 0 one has~K0(2jzj) ! ln(1=jzj) ; K�(2jzj) ! �(�) jzj��2 + �(��) jzj�2 for 0 < j�j < 1 ; (400)and ~K1(2jzj) ! 1=(2jzj) + jzj ln jzj ; K�(2jzj) ! �(j�j) jzj�j�j for j�j > 1 : (401)The extension of Hilbert spa
es with the measure (397) for states jk; �i with 0 < k � 1=2 willbe dis
ussed below.The relation (398) holds for all k > 0.6.4.3 Hilbert spa
es of holomorphi
 fun
tions asso
iated with the three types of
oherent statesIt is well-known that the three types of 
oherent states (314) { (317) 
an be asso
iated withHilbert spa
es of holomorphi
 fun
tions [80℄, the (normalized!) basis elements of whi
h aregiven by the 
oeÆ
ients under the sums of the expensions with respe
t to the states jk; ni [71℄:Barut-Girardello holomorphi
 fun
tions

50



(f2; f1)k;z � ZC d�̂k(z) f �2 (z)f1(z) ; (402)d�̂k(z) = 2� �(2k) jzj2kK2k�1(2jzj) djzjd� ; k > 0 ;f̂k;n(z) = znp(2k)n n! ; (f̂k;n2; f̂k;n1)k;z = Æn2 n1 ; (403)�k(z�2 ; z1) = 1Xn=0 f̂ �k;n(z2) f̂k;n(z1) = gk(z�2 z1) ; (404)ZC d�̂k(z2) �k(z�2 ; z1) f̂k;n(z2) = f̂k;n(z1) ; (405)ZC d�̂k(z2) �k(z�2 ; z1) f(z2) = f(z1) ; f(z) = 1Xn=0 an zn ; (406)ZC d�̂k(z) �k(z�2 ; z)�k(z�; z1) = �k(z�2 ; z1) ; (407)(f2; f1)k;z = 1Xn=0(2k)n n! a�n;2 an;1; fj(z) = 1Xn=0 an;j zn ; j = 1; 2 : (408)Be
ause of the properties (405) { (407) the fun
tion �k(z�2 ; z1) is 
alled the \reprodu
ingkernel" of the Hilbert spa
e. It has a number of properties usually asso
iated with the (moresingular) \delta-fun
tion" Æ(x2 � x1) for other spa
es of fun
tions!In the Hilbert spa
e (402) a representation of the Lie algebra (237) is given by~K0 = z ddz + k ; ~K+ = z ; ~K� = 2k ddz + z d2dz2 : (409)Perelomov holomorphi
 fun
tionsThe 
orresponding relations for the states jk; �i are(f2; f1)k;� � ZD d~�k(�) f �2 (�)f1(�) ; (410)d~�k(�) = 2k � 1� (1� j�j2)2k�2 j�jdj�j d� ;(~ek;n2; ~ek;n1)k;� = Æn2 n1 ; ~ek;n(�) = r(2k)nn! �n ; (411)
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�k(��2; �1) = 1Xn=0 ~e�k;n(z2) ~ek;n(z1) = (1� ��2 �1)�2k ; (412)ZD d~�k(�2) �k(��2; �1) ~ek;n(�2) = ~ek;n(�1) ; (413)ZD d~�k(�2) �k(��2; �1) f(�2) = f(�1) ; f(�) = 1Xn=0 bn �n ; (414)ZD d~�k(�) �k(��2; �)�k(��; �1) = �k(��2; �1) ; (415)(f2; f1)k;� = 1Xn=0 n!(2k)n b�n;2 bn;1 ; fj(�) = 1Xn=0 bn;j �n ; j = 1; 2 : (416)As [81℄ Z 10 dj�j2 (1� j�j2)2k�2j�j2n+1 = �(2k � 1)n!�(2k + n) ; (417)the fa
tor 2k�1 in the measure (410) is multiplied by �(2k�1), yielding �(2k), whi
h meansthat the integral and sums (410) { (415) are well-de�ned for k > 0. The right-hand side ofEq. (416) may be used in oder to de�ne the s
alar produ
t for all k > 0. The properties (413){ (415) 
an be interpreted as the 
ompleteness relation for the fun
tions (411) where k > 0.In the Hilbert spa
e (410) one has the following representation of the Lie algebra (237) byself-adjoint operators ~K0 = � dd� + k ; ~K+ = 2k �+ �2 dd� ; ~K� = dd� : (418)Bargmann-Segal holomorphi
 fun
tionsThe Hilbert spa
e of holomorphi
 fun
tions asso
iated with the S
hr�odinger-Glauber 
o-herent states (317) was thoroughly dis
ussed by Bargmann [82℄. About the same time su
hHilbert spa
es were also introdu
ed by Segal into quantum �eld theory [83℄ Su
h a Hilbertspa
e has the following essential properties:(f2; f1)� � ZC d~�(�) f �2 (�)f1(�) ; (419)d~�(�) = d2�� e�j�j2 ;~hn(�) = �npn! ; (~hn2 ; ~hn1)� = Æn2;n1 ; (420)�(��2; �1) = 1Xn=0 ~h�n(�2) ~hn(�1) = e��2 �1 ; (421)ZC d~�(�2) �(��2; �1) ~hn(�2) = ~hn(�1) ; (422)ZC d~�(�2) �(��2; �1) f(�2) = f(�1) ; f(�) = 1Xn=0 
n �n ; (423)
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ZC d~�(�) �(��2; �)�(��; �1) = �(��2; �1) ; (424)(f2; f1)� = 1Xn=0 n! 
�n;1 
n;2 ; fj(�) = 1Xn=0 
n;j �n ; j = 1; 2 : (425)Re
all that df �(�)=d� = df(��)=d� = 0 for a holomorphi
 fun
tion f(�).The mutual adjoint annihilation and 
reation operators in the Hilbert spa
e (419) are[82, 84℄ a = dd� ; ay = � ; [a; ay℄ = 1 : (426)Inverting the relations (263) yields the following generators for the Lie algebra (237)~K0 = N + k ; ~K+ = �pN + 2k ; ~K� = pN + 2k dd� ; N = � dd� : (427)6.4.4 Probabilities for transitions to number statesBarut-Girardello statesFrom the expansions (314) { (317) one immediately 
an read o� the following transitionprobabilities pk(n$ z) = jzj2n(2k)n n! gk(jzj2) ; pk(n = 0 $ z) = 1gk(jzj2) : (428)In appli
ations one would like to express jzj in terms of the average number �nk;z , here givenby Eq. (322). As the ratio �k(jzj) depends on jzj , too, the inversion jzj = jzj(�nk;z) is notimmediate. But for large jzj one has in leading order [71℄�k(jzj) ! 1 ; gk(jzj2) ! �(2k)2p� e2jzjjzj2k�1=2 for jzj ! 1 ; (429)so that asymptoti
allypk(n$ z) � 2p�n! �(2k + n) (�nk;z)2(n+k�1=4) e�2 �nk;z : (430)As the Barut-Girardello states have not yet been produ
ed in a laboratory the distribution(430) has not been tested experimentally (to the best of my knowledge)!Perelomov statesHere we getpk(n$ �) = (1� j�j2)2k (2k)nn! j�j2n ; pk(n = 0 $ �) = (1� j�j2)2k : (431)Using the �rst of the relations (331) we 
an also writepk(n$ �) = 2k (2k)n(�nk;� + 2k)n! � �nk;��nk;� + 2k�n : (432)As the Perelomov states for k = 1=2 
an be produ
ed in the laboratory (see the next subse
.),the distribution (432) has been veri�ed experimentally by 
ounting photon numbers emanatingfrom a Perelomov (squeezed) state [85℄. 53



S
hr�odinger-Glauber statesHere we have the usual Poisson distributionpk(n$ �) = j�j2nn! e�j�j2 ; j�j2 = �n� : (433)As to its experimental veri�
ation see subse
. 6.2.1 above.6.5 Physi
al dynami
s des
ribed by the basi
 operators ~K0; ~K+ and~K�The 
onventional annihilation and 
reation operators a and ay are a 
onvenient and populartool in order to build Hamiltonians whi
h des
ribe intera
tions between elementary ex
i-tations, parti
les and modes, be it s
attering, annihilation or 
reation of them. Completelysimilar one 
an 
onstru
t physi
ally useful model Hamiltonians from the three basi
 operators~K0; ~K+ and ~K� (or ~K1 and ~K2 ).A
tually there are already quite a number of su
h models in use, espe
ially in the �eld ofquantum opti
s. They usually 
ome in a form in whi
h the ~Kj are expressed in terms of oneor several pairs of a and ay. I shall list several typi
al examples, without any 
laim of evenpartial 
ompleteness. I shall merely mention expli
itly some quite early and some very re
entoriginal papers, but otherwise refer to the 
orresponding 
hapters in textbooks [86℄ and theirasso
iated Referen
es.An early review on the dynami
s of models expressed in terms of the generators ~Kj isRef. [87℄. Early papers using that Lie algebra expli
itly for the generation of squeezed statesare Refs. [88℄. Usually all those appli
ations are dis
ussed in the language of the groupSU(1; 1). I have stressed in the Introdu
tion and in se
. 3 why the language of the isomorphi
symple
ti
 group Sp(2;R) is more appropriate be
ause of its potential for generalizations tohigher dimensions.An essential model to start with is the one whi
h we en
ountered in the 
ontext of theunitary transformation (363) whi
h generates the self-adjoint intera
tion(sinh jwj)W (�; ~K) = (1=2)(sinh jwj)(e�i� ~K+ + ei� ~K�) = (sinh jwj)(~n � ~K?) (434)of Eqs. (364) and (369). The angle � here plays the role of a mixing angle as to the operators~K1 and ~K2: For � = 0 the term (434) is pure ~K1 and for � = �=2 pure ~K2. (As to propertiesof the 
lassi
al me
hani
s 
ounterpart of these intera
tions see subse
. 2.3)6.5.1 Generation of Perelomov 
oherent statesAs the operator UP from Eq. (363) generates the Perelomov 
oherent states jk; �i from theground state, the intera
tion (434) 
an be used to generate su
h states experimentally!In appli
ations the operator W from Eq. (434) is generally multiplied by a \
lassi
al"fun
tionG[g(~t); C(~t; a)℄, 
ontaining 
oupling 
onstants g(~t) (possibly time-dependent) and (possibly)time-dependent external \
lassi
al" �elds C(~t; a) whi
h themselves may depend on additionalparameters a, e.g. se
ond-order or third-order non-linear sus
eptibilities (�(2) or �(3)) [89℄,spatial 
oordinates et
.The potential V = G[g(t); C(t; a)℄W (�; ~~K) (435)54



is then being dealt with in the intera
tion pi
ture, where V determines the time evolution ofthe states and the free Hamiltonian ~! ~K0 that of the operators.The intera
tion Hamiltonian (434) is linear in the operators Kj. Another possibility is tohave intera
tions whi
h are bilinear in the operators Kj, e.g. proportional to K+K� in thedes
ription of s
attering pro
esses (see below). These 
an be diagonalized with the help ofthe Casimir relations (239).6.5.2 One-mode generated Lie algebra so(1; 2)Already in se
tion 3.5 we en
ountered the one-mode representations~K0 = 14(2aya+ 1) ; ~K+ = 12ay2 ; ~K� = 12a2 ; ~K1 = 14(ay2 +a2) ; ~K2 = 14i(ay2�a2) : (436)Inserted into Eq. (434) the term W des
ribes the 
reation or annihilation of two identi
almodes (photons).Degenerate parametri
 down-
onversions and ampli�
ationsSu
h pro
esses o

ur experimenally in so-
alled \degenerate parametri
 down-
onversions"where a 
lassi
al ele
tromagneti
 (\pump") wave of frequen
y 2! generates two identi
al pho-tons ea
h with frequen
y ! in a �(2) nonlinear medium and amplifying one of the \quadra-tures" (a+ ay) and i (ay� a) and redu
ing the other. Thus, in appli
ations one often 
hooses� = �=2 in Eq. (435) in order to generate squeezed light (
f. Eq. (170)).Squared hermitian amplitudesThe square of the hermitian �eld modeE = � (a e�i! t + ay ei! t) ; � 2 R ; (437)may be written in terms of the operators (436) asE2 = 4�2 [ ~K0 + ~K1 
os(2! t)� ~K2 sin(2! t)℄: (438)This expression has also been used for the generation of squeezed light [90℄.6.5.3 Intera
tions bilinear in the KjOpti
al Kerr e�e
tIn some materials a light beam has an additional term in its refra
tive index whi
h isproportional to the intensity of the light [91℄, i.e. that extra part of the index is proportionalto the square of the ele
tri
 �eld. Phenomenologi
ally this means that the polarization of thematerial is proportional to the 3rd power of the ele
tri
 �eld, with a nonlinear 
oeÆ
ient �(3).A very simple quantum me
hani
al model for the asso
iated elementary pro
ess is given bythe intera
tion term g �(3) ayN a = g �(3)ayaya a / �(3) ~K+ ~K� ; (439)where, a

ording to Eqs. (239) and (148), the produ
t ~K+ ~K� 
an be repla
ed by ~K0( ~K0 �1) + (3=16)1 . Thus, the total Hamiltonian 
an be diagonalized in terms of the number statesjk; ni , where k = 1=4 and = 3=4. 55



Degenerate four-wave mixingThe simple model intera
tion Hamiltonian (439) may also be used in order to des
ribeanother opti
al pro
ess in a non-linear medium with 3rd order sus
eptibility: Two high in-tensity 
lassi
al opti
al light beams of the same frequen
y ! intera
t with a weak (quantum)beam with frequen
y !, 
reating a fourth photon beam, again with the same frequen
y !and spe
ial properties of interest, e.g. squeezed light. The pro
ess, and the 
orresponding\nondegenerate one" mentioned below, is 
alled \four-wave mixing" and played a prominentrole in the �rst stages of light squeezing [92℄. The annihilation and 
reation of two photonsare represented by the operators a and ay.6.5.4 Two-mode generated Lie algebra so(1; 2)A mu
h larger variety of unitary irredu
ible representations 
an be generated with two \
anon-i
al" annihilation and 
reation operators [93℄:~K+ = ay1ay2 ; ~K� = a1a2 ; ~K0 = 12(ay1a1 + ay2a2 + 1) ; (440)obey the 
ommutation relations (237).The tensor produ
t Hos
1 
 Hos
2 of the two harmoni
 os
illator Hilbert spa
es 
ontainsall the irredu
ible unitary representations of the group SU(1; 1) �= SL(2;R) = Sp(2;R) (forwhi
h k = 1=2; 1; 3=2; : : :) in the following way:Let jnjij; nj = 0; 1; : : : ; j = 1; 2; be the eigenstates of the number operators Nj = ayjaj,generated by ayj from the os
illator ground states.Then ea
h of those two subspa
es of Hos
1 
Hos
2 = fjn1i1
jn2i2g with �xed jn1�n2j 6= 0
ontains an irredu
ible representation with Bargmann indexk = 1=2 + jn1 � n2j=2 = 1; 3=2; 2; : : : ; (441)i.e. the operator N1 �N2 
ommutes with all 3 operators in Eqs. (440)The number n in the eigenvalue n + k of ~K0 is given byn = minfn1; n2g (= 0; 1; 2; : : :) : (442)For the \diagonal" 
ase n2 = n1 one gets the unitary representation with k = 1=2.Inserting the operators (440) into the intera
tion (435) yields other examples of asso
iatedphysi
al pro
esses:Nondegenerate parametri
 down 
onversion and ampli�
ationIn analogy to the degenerate 
ase mentioned above here a 
lassi
al light beam of frequen
y2! generates two photons of now di�erent frequen
ies !1 and !2 with 2! = !1 + !2 in anonlinear medium.Nondegenerate four-wave mixingHere the frequen
ies of the two pump beams and those of the photons are no longer equal.Now the operators K+ and K� in the e�e
tive Hamiltonian (439) are repla
ed by those ofEq. (440). 56



Ma
h-Zehnder interferometerThe group SU(1:1) �= Sp(2;R) has played a prominent role in the quantum opti
al de-s
riptions of the venerable Ma
h-Zehnder interferometer [94℄.6.5.5 Generation of Barut-Girardello 
oherent statesContrary to the Perelomov 
oherent states the Barut-Girardello 
oherent states have not yetprodu
ed in the laboratory (to the best of my knowledge!). There exist, however, a numberof proposals how to generate them [95℄. One problem is the the la
k of a unitary operatoranalogously to Eq. (363) as already dis
ussed in subse
s. 6.2.3 and 6.2.4.6.5.6 Holstein-Primako� type generatorsThe one-mode and the 2-mode versions of the generators ~K0; ~K+ and ~K� from above 
anonly produ
e representations with k = 1=4; 3=4 and k = 1=2; 1; 3=2; : : :. As we are espe
iallyinterested in representations with small k < 1=4 we have to use 
orresponding representations.Some of them will be dis
ussed in the next Se
tion. If one wants to 
onstru
t those with thehelp of the usual annihilation and 
reation operators one 
an try the nonlinear Holstein-Primako�-type operators [27℄~K0 = N + k ; ~K+ = aypN + 2k ~K� = pN + 2k a ; N = aya : (443)Inserted into the intera
tion term (434) and (435) one has to �nd experimental ways in orderto generate a ground state with k 6= 1=2 (see also subse
. 9.1) and to implement the nonlinearfa
tor pN + 2k [96℄.6.5.7 Additional proposals for using symple
ti
 groups in quantum opti
sThere have been a number of papers with proposals to use symple
ti
 groups Sp(2n;R) ; n >1 ; in quantum opti
s whi
h are merely quoted here [97℄.7 Examples of expli
it Hilbert spa
es for the ('; I)-modelof the harmoni
 os
illator7.1 The 
ase k = 1=2As a �rst step let us dis
uss the well-known quantum me
hani
s of the HO in the frameworkof 
on
rete irredu
ible unitary representations of the group Sp(2;R) with Bargmann indexk = 1=2 [98℄, before passing to the more general 
ase with k 6= 1=2 :7.1.1 The Hardy spa
e H2+ on the 
ir
le as the Hilbert spa
e for the HOThe simplest example is the \Hardy (sub)spa
e" H2+(S1; d#) of the usual Hilbert spa
eL2(S1; d#) on the unit 
ir
le S1 with the s
alar produ
t(f2; f1) = 12� ZS1 d# f �2 (#)f1(#) ; (444)57



and the orthonormal basis ei n# ; n 2 Z : (445)The asso
iated Hardy spa
e H2+(S1; d#) is spanned by the basis 
onsisting of the elementswith non-negative n, namely en(#) = ei n # ; n = 0; 1; 2; � � � : (446)If we have two Fourier series 2 H2+(S1 ; d#),f1(#) = 1Xn=0 an ei n # ; f2(#) = 1Xn=0 bn ei n# ; (447)they have the s
alar produ
t(f2; f1)+ = 12� ZS1 d# f �2 (#)f1(#) = 1Xn=0 b�n an : (448)The reprodu
ing kernel here has the form�('2; '1) = 1Xn=0 en('2)� en('1) = (1� ei ('1�'2))�1 ; (449)with the usual property 12 � Z 2�0 d'2 �('2; '1) en('2) = en('1) : (450)The kernel has a singularity (pole) for '2 = '1. In 
al
ulations one has to repla
eexp(i ('1 � '2)) by (1� �) exp(i ('1 � '2)) and then take the limit �! 0 at the end.The Sp(2;R) Lie algebra generators for k = 1=2 are~K0 = 1i �# + 12 ; (451)~K+ = ei # (1i �# + 1) = ei #( ~K0 + 12) ; (452)~K� = e�i # 1i �# = e�i #( ~K0 � 12) = (1i �# + 1)e�i # : (453)The right-hand side of the s
alar produ
t (448) 
oin
ides with the right-hand side of thes
alar produ
t (416) for k = 1=2. A
tually the fun
tions (446) of the present Hilbert spa
eH2+(S1; d#) may be 
onsidered as limits of those from Eq. (411) with k = 1=2 for j�j ! 1: For� = j�j exp(i#) the operators (418) be
ome the operators (451) { (453) in the limit j�j ! 1.For the operators (451) { (453) the relations (249) { (251) take the form~K0 en(#) = (n+ 12) en(#) ; (454)~K+ en(#) = (n+ 1) en+1(#) ; (455)~K� en(#) = n en�1(#) : (456)58



The (dimensionless) Hamilton operator for the ('; I)-model of the HO now has the ex-tremely simple expli
it form ~H( ~K) = ~K0 = 1i �# + 12 ; (457)and the 
orresponding simple eigenfun
tions (446)!I would like to stress again (like I did in Refs. [13℄ and [25℄) that the mathemati
al variable# used here is not the 
anoni
ally 
onjugate \observable" of the operator (457): the angle # isnot a self-adjoint multipli
ation operator nor is exp(i #) a unitary operator! The self-adjointobservables \
onjugate" to ~K0 are the operators ~K1 and ~K2 !The 
omposite ladder operatorsA = ( ~K0 + 1=2)�1=2 ~K� = ~K� ( ~K0 � 1=2)�1=2 = e�i #( ~K0 � 1=2)1=2 ; (458)Ay = ~K+ ( ~K0 + 1=2)�1=2 = ei # ( ~K0 + 1=2)1=2 ; (459)have the desired propertiesAen(#) = pn en�1(#) ; Ay en(#) = pn+ 1 en+1(#) ; (460)and, therefore, have the usual matrix elements [99℄. The same applies, of 
ourse, to those ofthe 
omposite operators ~Q and ~P :~Q = 1p2 (Ay + A) ; ~P = ip2 (Ay � A) : (461)Obviously we 
an reprodu
e all the quantum physi
al properties of the HO whi
h - overde
ades - have been derived by means of the operators ~Q and ~P and the (~q; ~p)-Hamiltonian(271).The (
omposite) number operator N = AyA is as expe
ted:N = AyA = ~K+( ~K0 +1=2)�1 ~K� = ei #( ~K0 +1=2)( ~K0 +1=2)�1 e�i # ( ~K0�1=2) = 1i �# : (462)Remarks:� The eigenfun
tions (446) are periodi
:en(#+ 2�) = en(#) ; (463)Further below we shall en
ounter unitarily equivalent quasi-periodi
 eigenfun
tions.� The ground state of the Hamiltonian (457) is given by the number 1:en=0(#) = 1 : (464)� The probability densities pn(#) asso
iated with the \number states" (446) are 
ompletely
at: pn(#) = 1 ; n = 0; 1; � � � : (465)� The number state relations (289) { (294) for general k do, of 
ourse, hold in the presentspe
ial 
ase k = 1=2 , too! 59



The time-dependent S
hr�odinger equation for a general state  (~t; #) is given byi �~t  (~t; #) = ~K0  (~t; #) ; (466)whi
h means that the eigenfun
tions (446) have the time dependen
een(~t; #) = e�i ~En ~t en(#) = e�i~t=2 ei n (#�~t) ; ~En = n+ 1=2 ; (467)and  (~t; #) may be expanded as (~t; #) = e�i~t=2 1Xn=0 
n ei n (#�~t) ; 
n = (en;  (~t = 0))+ (468)The last two equations show again that the angle # plays the role of a time variable (up toa sign) and that the 
ir
le S1 parametrized by # 2 R mod 2� be
omes \unwrapped" onto thetime-axis, �nitely or in�nitely many times, thus realizing an m-fold or a universal 
overing ofthe 
ir
le or of the group U(1)!Introdu
ing the usual quantities with physi
al dimensions, we get from Eqs. (40) { (43)H = ~! ~K0 ; Hen(#) = En en(#) ; (469)En = ~! ~En = ~! (n+ 1=2) ; (470)i~ �t  (t; #) = H  (t; #) ; (471)en(t; #) = e�i(En=~) t ei n# = e�i ! t=2 ei n (#�! t) : (472)7.1.2 Spa
e re
e
tions and time reversalA

ording to Subse
ts. 4.5 and 5.1 we 
an implement the spa
e re
e
tions � and the timereversal T as follows: � : #! #� � ; (473)whi
h implies �# ! �# ; (474)~K0 ! ~K0 ; (475)K� ! �K� ; (476)~Q ! � ~Q ; (477)~P ! � ~P ; (478)en(#) ! en(#� �) = (�1)n en(#) : (479)The last relation shows that the fun
tions en(#) have the same symmetry properties underre
e
tions as the usual Hermite fun
tions (150).Furthermore T : #! �# ; i! �i ; (480)
60



yielding 1i �# ! 1i �# ; (481)~K0 ! ~K0 ; (482)K� ! K� ; (483)A ; Ay ! A ; Ay ; (484)~Q ! ~Q ; (485)~P ! � ~P ; (486)en(#) ! [en(�#)℄� = en(#) : (487)7.1.3 PerturbationsLike in the 
lassi
al 
ase (Eqs. (63) { (65)) external time-dependent perturbations of theHamilton operator (457) 
an be integrated immediately: Take~H = ~K0 + f(~t) ; (488)where f(~t) is a given real fun
tion of time. Then the usual produ
t separation of variablesgives the following solution of the time-dependent S
hr�odinger Eq.i�~t  (~t; #) = [ ~K0 + f(~t)℄ (~t; #) : (489)The ansatz  (~t; #) = v(~t) u(#) (490)yields fi [�~t v(~t)℄=v(~t)g � f(~t) = f1i [�# u(#)℄=u(#)g+ 12 = ~E = 
onst. ; (491)with the (normalized) solution v(~t) = e�i[ ~E ~t+R ~t0 d�f(�) ℄ : (492)For u(#) we 
an take u(#) = en(#) ; with ~E = n + 1=2 ; (493)or appropriate superpositions.Thus, the perturbation f(~t) 
auses a time-dependent modi�
ation of the phase ~E ~t.If f(~t) = a = 
onst. , (494)then we have v(~t) = e�i ( ~E+a) ~t ; (495)i.e. we have introdu
ed an e�e
tive (dynami
al) k 6= 1=2 ! For an expli
it example see subse
.9.1 .For the periodi
 perturbation f(~t) = � 
os(~� ~t) ; (496)61



we get for v(~t) the time - dependent phase fa
torv(~t) = e�i [ ~E ~t+(�=~�) sin(~� ~t)℄ : (497)Similarly we have for the slightly di�erent perturbation~K0 ! [1 + g(~t)℄ ~K0 (498)a 
orresponding phase fa
tor e�i ~E ~t ! e�i ~E[~t+R ~t0 d�g(�) ℄ : (499)If one inserts for g(~t) the same expressions as for f(~t) in Eqs. (494) and (496) one gets the
orresponding similar expressions for the phase fa
tor (499).7.1.4 A unitary transformationThe following unitary transformation is of interest, espe
ially later for the more general 
asek 6= 1=2:In the above des
ription of the states (524) and the operators (451) { (453) the dependen
eon the index k = 1=2 is 
ontained in the operators. We shall see below that in the general
ase we have ~K0 = 1i �# + k ; ~K+ = ei # (1i �# + 2k) ; ~K� = e�i # 1i �# : (500)The unitary transformation in question is de�ned by the repla
ementen(#) = ei n# ! e1=2; n(#) = ei(n+1=2)# ; n = 0; 1; � � � : (501)It shifts the ground state energy 
hara
terized by k = 1=2 from the Hamiltonian (457) to theeigenfun
tions (446).The operators (451) { (453) now take the form~K0 = 1i �# ; (502)~K+ = ei # (1i �# + 1=2) ; (503)~K� = e�i # (1i �# � 1=2) : (504)The eigenfun
tions (501) are only quasi-periodi
:e1=2; n(#+ 2�) = ei �=2 e1=2; n(#) (505)The relations (454) { (461) remain un
hanged.7.1.5 Coherent state wave fun
tions and their probability densitiesPassing to the ('; I)-model of the HO and its asso
iated Sp(2;R)-stru
ture yields additionalinformation, even for k = 1=2:
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Wave fun
tions on S1We have two additional 
oherent states: Setting k = 1=2 and jk = 1=2; ni = en(#) in Eqs.(314) { (316) the series 
an be summed immediately, yieldingjk = 1=2; zi(#) � fz(#) = ez ei #pI0(2jzj) (506)and jk = 1=2; �i(#) � f�(#) = (1� j�j2)1=21� � ei # : (507)These new 
oherent state fun
tions have all the properties listed in se
. 6 for general k .The series (317) 
annot be summed in an elementary way but yieldsjk = 1=2; �i(#) � f�(#) = e�j�j2=2 f̂�(#) ; (508)f̂�(#) = 1Xn=0 (� ei #)npn! = 1Xn=0 (j�j ei (#��))npn! : (509)The fun
tion f̂� in Eq. (509) is an entire fun
tion [100℄ of its 
omplex argument� = j�j ei (#��) : (510)The growth of su
h fun
tions for large j�j has been investigated for more than a 
entury [100℄.Appli
ation of standard saddle point methods [101℄ yields for fun
tions likef (�)(�) = 1Xn=0 �n(n!)1=� (511)the following asymptoti
 expansion [102℄f (�)(�) � p� (2�)(1�1=�)=2 �(��1)=2e��=� for j�j ! 1 ; j arg(�)j � �2� � �; � > 0 : (512)For that part of the 
omplex plane where the fun
tion (511) de
reases with in
reasing j�j,Ref. [103℄ gives the estimatef (�)(�) � [1� sin(�=�)=�℄ 1� (ln �)1=� for j�j ! 1 ; �2� + � � j arg(�)j � � : (513)As the assumptions made in Ref. [103℄ in
lude the exa
tly known 
ase � = 1 the estimate(513) does not appear to be a good one!The limits (512) for arg(�) 
ome from the requirement <(��) > 0 . They also imply� � 1=2. The result for the exponential growth in the se
tor j arg(�)j � �2� � � shows f (�)(�)to be of \order" � and of \type" 1=� there.The fun
tion f̂� from Eq. (509) has � = 2 and therefore we get for the wave fun
tion (508)f�(#) � (2�)1=4p2 j�jei (#��)=2 e�j�j2[1�e2i(#��)℄=2 ; for j�j ! 1 ; j#� �j � �4 � � : (514)
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Probability densitiesThe probability density of the wave fun
tion (506) is given bypz(#) = jfz(#)j2 = e2jzj 
os(#��)I0(2jzj) : (515)For large jzj we have [79℄ I0(2jzj) � e2jzj2p� jzj [1 +O(1=jzj)℄ ; (516)so that pz(#) � 2p� jzj e�2jzj[1�
os(#��)℄[1 +O(1=jzj)℄ : (517)For j#� �j � 1 the density (517) takes (lo
ally) an approximate Gaussian form:pz(#) � 2p� jzj e�jzj(#��)2[1 +O(1=jzj)℄ for large jzj : (518)The last relation shows that for large jzj (the 
lassi
al limit) the density pz(#) has a sharppeak at # = � = � arg(z) , so that in the 
orresponden
e limit jzj ! 1 the variable #approa
hes the \
lassi
al" angle � .As pz(# + 2�) = pz(#) and pz(#) an even fun
tion of # � � it may be expanded into aFourier series with respe
t to 
os(n#): Using the relation [104℄12� Z 2�0 d# e2jzj 
os # 
os(n#) = In(2jzj) ; (519)we get pz(#) = 1I0(2jzj) fI0(2jzj) + 2 1Xn=1 In(2jzj) 
os[n (#� �)℄g : (520)For the probability density of the wave fun
tion (507) we havep�(#) = 1� j�j21� 2j�j 
os(#� �) + j�j2 : (521)It has the propertiesp�(#) ! 1 for j�j ! 0 ; (522)p�(#) � �(1� �)[1� 
os(#� �)℄ for j�j = 1� � ; 0 < �� 1 ; 
os(#� �) 6= 1 ; (523)p�(#) = 1 + 2 1Xn=1 
osn(#� �) j�jn : (524)Eq. (523) shows that for j�j ! 1� (the 
lassi
al limit) p�(#) is strongly peaked at # = �.For 
al
ulating the 
oeÆ
ients of the Fourier series (524) the relation [105℄Z 2�0 d# 
os n#1� 2j�j 
os# + j�j2 = 2� j�jn1� j�j2 ; j�j < 1 ; (525)has been used. 64



The fun
tion (521) is well-known in the mathemati
al literature as the \Poisson kernel"Pj�j(#��) for the representation of harmoni
 fun
tions inside the unit dis
 [106℄ by fun
tionson the boundary �D = S1.The exa
t probability density p�(#) for the wave fun
tion (508) appears somewhat \un-ruly": p�(#) = jf�(#)j2 = e�j�j2 1Xn1;n2=0 j�jn1+n2pn1!n2! ei (#��)(n1�n2) : (526)More instru
tive is the density for the asymptoti
 expansion (514):p�(#) � 2p2� j�j e�j�j2[1�
os 2(#��)℄ for large j�j ; (527)whi
h for j#� �j � 1 ; j�j j#� �j �nite, be
omes a Gaussian distribution, too:p�(#) � 2p2� j�j e�2j�j2(#��)2 for j#� �j � 1 ; j�j ! 1 ; j�j j#� �j �nite : (528)As p�(#) is a periodi
al and even fun
tion of #�� it may be Fourier expanded, but the resultdoes not appear to be very instru
tive.7.1.6 Expe
tation values and transition probabilitiesAll the properties of the 3 types of 
oherent states listed in se
. 6 for general k do hold,of 
ourse, for the spe
ial value k = 1=2, too. I, therefore, mention here just a few spe
ialfeatures:We have (
f. Eqs. (315) and (320))g1=2(jzj2) = I0(2jzj) ; �1=2(jzj) = I1(2jzj)I0(2jzj) : (529)Remarkable is that now (
f. Eq. (323))hN2i1=2;z = jzj2 ; (530)whi
h provides a dire
t \measurement" of the modulus jzj. For the transition probabilities(428) and (431) we getp(1=2; n$ z) = jzj2n(n!)2 I0(2jzj) � 2p�jzj2n+1=2(n!)2 e�2jzj for jzj ! 1 : (531)p(1=2; n$ �) = (1� j�j2) j�j2n = 1�n� + 1 � �n��n� + 1�n ; �n� � �n1=2; � : (532)The last probability may (formally) be interpreted in the 
ontext of Bose-Einstein statisti
s[107℄: Assume that a system of free Bose-Einstein quanta has distin
t energy levels E� ; � =0; 1; : : : and is in a heat bath with inverse temperature � = 1=(kBT ) and 
hemi
al potential�. Then (1� j�j2) j�j2n ; j�j2 = e��(E���) (533)is the probability to �nd n quanta in a state with energy E�.As already mentioned previously the distribution (532) has been veri�ed experimentally[85℄. 65



From Eq. (379) we get(f�; fz)+ = (1� j�j2)1=2pI0(2jzj) e�� z ; j(f�; fz)+j2 = 1� j�j2I0(2jzj) e2j�j jzj 
os(���) : (534)Furthermore [71℄ (f�; fz)+ = e�j�j2=2pI0(2jzj) 1Xn=0 (�� z)n(n!)3=2 ; (535)(f�; f�)+ = e�j�j2=2 (1� j�j2)1=2 1Xn=0 (�� �)npn! : (536)In evaluating the series (535) and (536) we en
ounter the same problems as for the series(509). The asymptoti
 expansion (512) yields for the transition probabilitiesj(f�; fz)+j2 � 23p2� j� zj1=3 e�j�j2I0(2jzj) e3j� zj2=3 
os[2(���)=3)℄ (537)for large j� zj ; j� � �j � 3�=4� � ;j(f�; f�)+j2 � 2p2�j��j e�j�j2 (1� j�j2) ej��j2 
os 2(���) (538)for large j�j ; j� � �j � �=4� � :7.1.7 Eigenfun
tions of ~K1 and ~K2Like the operators ~Q and ~P , whi
h as generators of non-
ompa
t groups in general have a 
on-tinuous spe
trum, the self-adjoint operators ~K1 and ~K2 as generators of non-
ompa
t groupshave a real 
ontinuous spe
trum. Their \eigenfun
tions" may be determined as solutions ofdi�erential eqs.:It follows from Eqs. (452) and (453) that~K1 = 12 ( ~K+ + ~K�) = 
os#1i �# + 12ei# ; ~K2 = 12i ( ~K+ � ~K�) = sin#1i �# + 12iei# : (539)It is helpful to observe that ~K1 is obtained from ~K2 by the substituation #! # + �=2. Theeigenvalue equation ~K2 fh2(#) = h2 fh2(#) ; h2 2 R ; (540)leads to (�#fh2)=fh2 = i h2sin# � 12 (
ot# + i) : (541)As sin# and tan(#=2) are positive in the (open) interval (0; �) and negative in (�; 2�) onehas to treat the two intervals slightly di�erently. For the �rst interval we getfh2(#) = C1e�i#=2(sin#)�1=2 [tan(#=2)℄i h2 (542)= C1p2 e�i#=2 [sin(#=2)℄i h2�1=2 [
os(#=2)℄�i h2�1=2 ;C1 = 
onst. ; # 2 (0; �) :66



For the se
ond we get, with (sin#)�1=2 = ei�=2(j sin#j)�1=2 and ln tan(#=2) = ln j tan(#=2)j+i�, fh2(#) = C2 e�i�=2 e�� h2 e�i#=2(j sin#j)�1=2 [j tan(#=2)j℄i h2 (543)= C2p2 e�i�=2 e�� h2 e�i#=2 [sin(#=2)℄i h2�1=2 [j 
os(#=2)j℄�i h2�1=2 ;C2 = 
onst. ; # 2 (�; 2�) :The three 
onstant fa
tors in the last expression may be 
ombined to C1 = C2 e�i�=2 e�� h2 .For # = 0; � the fun
tions (542) be
ome singular, so do the fun
tions (543) for # = �; 2�.The 
onstant C1 
an be determined like in the 
ase of plane waves: Substitutingu(#) = ln[tan(#=2)℄ ; du = d#sin# ; u(#! 0+) ! �1 ; u(#! ��) ! +1 ; (544)into 12� Z �0 d# f �h02(#) fh2(#) = jCj22� Z �0 d#sin# [tan(#=2)℄i(h2�h02) (545)yields 12� Z �0 d# f �h02(#) fh2(#) = jCj22� Z 1�1 du eiu (h2�h02) = jC1j2Æ(h2 � h02) : (546)The interval (�; 2�) gives the same 
ontribution, so that the \normalized" eigenfun
tions of~K2 are fh2(#) = e�i#=2(2j sin#j)�1=2 [j tan(#=2)j℄i h2 (547)= 12 e�i#=2 [sin(#=2)℄i h2�1=2 [
os(#=2)℄�i h2�1=2 ;# 2 (0; �) ; (�; 2�) ; h2 2 R :Implementing the substitution # + �=2 we get - up to an irrelevant phase fa
tor - the eigen-fu
tions of ~K1: fh1(#) = e�i#=2(2j 
os#j)�1=2 [j tan(#=2 + �=4)j℄i h1 ; (548)# 2 (��=2; �=2) ; (�=2; 3�=2) ; h1 2 R ;tan(#=2 + �=4) = (sin#+ 1)= 
os# :For the 
oeÆ
ients 
n in the expansionfh2(#) = 1Xn=0 
n ei n# (549)one gets [108℄
n = 12� Z 2�0 d# fh2(#) e�i n # (550)= 12� Z �0 d' (
os')�i h2�1=2 (sin')i h2�1=2 e�2i(n+1=2) '= e�i �(n+1=4�i h2=2) �(1=2 + i h2)n! �(1=2� n+ i h2) F (1=2 + i h2;�n; 1=2� n + i h2; z = �1)= (�1)n e�i�=4 e�h2=2 nXm=0(�1)m �(1=2 + i h2 +m) (�n)m�(1=2 + i h2 � n +m)m! ;67



where F (a; b; 
; z) = 1Xm=0 (a)m (b)m(
)mm! zm (551)is the standard series for the hypergeometri
 fun
tion.The relation (550) holds for h2 > 0. For h2 < 0 one has to repla
e h2 in Eq. (550) by jh2j.Examples:
0 = e�i�=4 e�� h2=2 ; j
0j2 = e�� h2 ; 
1 = �2i e�i�=4 h2 e�� h2=2 ; j
1j2 = 4 h22 e�� h2 : (552)7.1.8 Relationship to the 
onventional des
ription of the HO on L2(R; dx)The relationship between the quantum me
hani
al des
ription of the HO in the above Hilbertspa
e H2+(S1; d#) and the usual one on L2(R; d�) has been dis
ussed in some detail in 
hap.4 of Ref. [13℄. I here merely summarize the main steps:1. The spa
e H2+(S1; d#) is mapped unitarily onto the Hardy spa
e H2+(R; d�) of the realline, the elements of whi
h are boundary values lim�!0+ g(z = �+i �) of fun
tions whi
hare holomorphi
 in the upper half (� > 0) of the 
omplex plane.2. The spa
e L2(R; d�) is proje
ted on H2+(R; d�) by the following Fourier tranformationsĝ(p) = 1p2� Z 1�1 d� g(�) e�i�p ; g(�) 2 L2(R; d�) ; (553)g(+)(�) = 1p2� Z 10 dp ĝ(p) eip� ; g(+)(�) 2 H2+(R; d�) : (554)7.2 The general 
ase k > 0In 
ase nature \allows" for quantized harmoni
 os
illators with ground state energies forwhi
h k 6= 1=2 , espe
ially k 2 (0; 1=2) , then one needs 
orresponding Hilbert spa
es for thedes
ription of su
h systems. I shall brie
y mention three examples whi
h may be useful andwhi
h are all unitarily equivalent: The Hilbert spa
e of holomorphi
 fun
tions on the unit
ir
le as des
ribed by the Eqs. (410) { (418) in the subse
tion 6.4.3 above, Hilbert spa
esasso
iated with the Hardy spa
e on the 
ir
le given by Eqs. (446) { (448) and the Hilbertspa
e L2([0;1); du) on the positive real line with Laguerre's fun
tions as basis.One 
an use the Hardy spa
e (410) { (418) itself by using a Holstein-Primako� variant [27℄for the Lie algebra generators~K0 = 1i �# + k ; (555)~K+ = ei # [(N + 2k)(N + 1)℄1=2 ; N = 1i �# : (556)~K� = [(N + 2k)(N + 1)℄1=2 e�i # : (557)These operators have the properties (249) { (251) when applied to the basis (524) and one has(f2; ~K+f1)+ = ( ~K�f2; f1) for fun
tions (447). For k = 1=2 the operators (555)-(557) redu
eto the ones in Eqs. (451) { (453). For k 6= 1=2 the roots in the expressions (556) and (557)be
ome 
umbersome and unpleasent to deal with. They will not be dis
ussed here further.They might, however, be quite useful under 
ertain 
ir
umstan
es.68



7.2.1 Hilbert spa
e of holomorphi
 fun
tions on the unit dis
In subse
. 6.4.3 above I have indi
ated in 
onne
tion with Eqs. (417) and (418) that theHilbert spa
e of holomorphi
 fun
tions on the unit dis
 D = f� 2 C ; j�j < 1g with thes
alar produ
t (410) 
an provide irredu
ible unitary representations of the group SO"(1; 2)and all its 
overing groups with k > 0, the self-adjoint generators given by Eq. (450) (see alsoAppendix B).The 
omplex numbers � 2 D were introdu
ed in Eq. (311) as eigenvalues of the operator(312). It appears helpful to introdu
e a new 
omplex variable ! 2 D (not to be 
onfused withthe 
ir
ular frequen
y) in order to distinguish the Hilbert spa
e variable in Eqs. (410) { (418)from the eigenvalue �. So we have(f2; f1)k;! � ZD d~�k(!) f �2 (!)f1(!) ; (558)d~�k(!) = 2k � 1� (1� j!j2)2k�2 j!jdj!j d� ;~ek;n(!) = r(2k)nn! !n ; (~ek;n2; ~ek;n1)k;! = Æn2 n1 ; (559)(f2; f1)k;! = 1Xn=0 n!(2k)n b�n;2 bn;1 ; fj(!) = 1Xn=0 bn;j !n ; j = 1; 2 ; (560)and ~K0 = ! dd! + k ; ~K+ = ! (2k + ! dd! ) ; ~K� = dd! ; (561)with the usual properties ~K0 ~ek;n = (n+ k)~ek;n ; (562)~K+ ~ek;n = p(2k + n)(n+ 1) ~ek;n+1 ; (563)~K� ~ek;n = p(2k + n� 1)n ~ek;n�1 : (564)The asso
iated ladder operatorsA = ( ~K0 + k)�1=2 ~K� ; Ay = ~K+ ( ~K0 + k)�1=2 (565)have the 
onventional k-independent Fo
k spa
e propertiesA ~ek;n = pn ~ek;n�1 ; Ay ~ek;n = pn+ 1 ~ek;n+1 : (566)Inserting the number state basis fun
tions (559) into the right-hand sides of the Eqs. (314),(316) and (317) yields the 
oherent state fun
tions of !:jk; zi(!) � fk;z(!) = ez !pgk(jzj2) ; (567)jk; �i(!) � fk;�(!) = (1� j�j2)k(1� �!)2k ; (568)jk; �i(!) � fk;�(!) = e�j�j2=2 1Xn=0 p(2k)nn! (�!)n : (569)The general properties of the three types of 
oherent states as dis
ussed in subse
s. 6.1 and6.2 are, of 
ourse, here valid, too, and will not be repeated.69



7.2.2 Hilbert spa
es related to the Hardy spa
e on the 
ir
leThe s
alar produ
t (560) as a series 
an be implemented on the Hardy spa
e H2+(S1; d#) inthe following way:Let us introdu
e [109℄ the following positive de�nite (self-adjoint) operator Ak byAk en(#) = n!(2k)n en(#) ; en(#) = ei n # ; n = 0; 1; : : : : (570)Then we 
an de�ne an additional s
alar produ
t for fun
tionsfj(#) = 1Xn=0 
n;jen(#) ; j = 1; 2; (571)by (f2; f1)k;+ � (f2; Ak f1)+ = 1Xn=0 n!(2k)n 
�n;2 
n;1 : (572)The series here is obviously of the same type as the one in Eq. (560). Asn!(2k)n = 8<: < 1 for k > 1=2 ; n > 0= 1 for k = 1=2 ;> 1 for 0 < k < 1=2 ; n > 0 ; (573)one might suspe
t that these 
oeÆ
ients a�e
t the 
onvergen
e properties of the series (572).However, as limn!1� n!(2k)n�1=n = 1 for k > 0; (574)the radius of 
onvergen
e of that series is the same with or without the fa
tor (573) (a

ordingto the Cau
hy 
riterium [110℄)!Let us denote the (Hardy spa
e asso
iated) Hilbert spa
e with the s
alar produ
t (572)by H2k;+(S1; d#). An orthonormal basis in this Hilbert spa
e is given byêk;n(#) = r(2k)nn! en(#) ; (êk;n2; êk;n1)k;+ = Æn2n1 : (575)From the expressions (561) one 
an infer (taking the limit ! ! exp(i #) that~K0 = 1i �# + k ; ~K+ = ei #(1i �# + 2k) ; ~K� = e�i # 1i �# ; (576)with the right properties for the basis (575):~K0 êk;n = (n+ k) êk;n ; (577)~K+ êk;n = p(2k + n)(n+ 1) êk;n+1 ; (578)~K� êk;n = p(2k + n� 1)n êk;n�1 : (579)The operators (576) do not have these properties with respe
t to the basis en(#)! Corre-spondingly the operators ~K+ and ~K� are adjoint to ea
h other only with respe
t to the s
alar70



produ
t (572), not with respe
t to (448). Their adjointness as to (572) 
an be veri�ed bytaking two series fj(#) = 1Xn=0 an;j êk;n(#) ; j = 1; 2; (580)and showing that ( ~K�f2; f1)k;+ = (f2; ~K+f1)k;+!Note that (en2 ; êk;n1)+ = (êk;n1; en2)+ = s(2k)n1n1! Æn2 n1 ; (581)(en2 ; êk;n1)k;+ = (êk;n1; en2)k;+ = s n1!(2k)n1 Æn2 n1 ; (582)(êk;n2; êk;n1)+ = (2k)n1n1! Æn2 n1 ; (en1 ; en2)k;+ = n1!(2k)n1 Æn2 n1 : (583)The Fo
k spa
e ladder operators A and Ay asso
iated with the Lie algebra generators(576) are given in the same way as in Eq. (565).Coherent state wave fun
tionsAnalogously to the relations (567) { (569) we obtain on H2k;+ the following 
oherent statewave fun
tions by using the basis (575):jk; zi(#) � fk;z(#) = ez ei #pgk(jzj2) ; (584)jk; �i(#) � fk;�(#) = (1� j�j2)(1� � ei #)2k ; (585)jk; �i(#) � fk;�(#) = e�j�j2=2 1Xn=0 p(2k)nn! (� ei #)n : (586)The reprodu
ing kernel on H2k;+ is given byÂk(#2 � #1) = 1Xn=0 ê�k;n(#2) êk;n(#1) = [1� ei (#1�#2)℄�2k = Â�k(#1 � #2) : (587)A

ording to the relations (581) { (583) it has the properties(Âk(1; 2); êk;m(2))k;+ = êk;m(#1) ; (588)(Âk(1; 2); êk;m(2))+ = (2k)mm! êk;m(#1) ; (589)(Âk(1; 2); em(2))k;+ = s m!(2k)m êk;m(#1) = em(#1) ; (590)(Âk(1; 2); em(2))+ = r(2k)mm! êk;m(#1) = (2k)mm! em(#1) : (591)The numbers 1 and 2 mean the variables #1 and #2, the latter being integration variable.71



A unitary transformationIn the above dis
ussion the k-dependen
e of the representation is 
ontained in the operators(576), not in the basis en(#) of H2+ we started from. Like in subse
tion 7.1.4 one 
an shift thek-dependen
e partially from the operators to the basis by a unitary transformation:en(#) = ei n # ! ek;n(#) = ei (n+k)# ; (592)the generators (576) now taking the form~K0 = 1i �# ; ~K+ = ei #(1i �# + k) ; ~K� = e�i # (1i �# � k) : (593)The operators (593) a
t in a Hilbert spa
e H2k;+, now with the orthonormal basisêk;n(#) = r(2k)nn! ek;n(#) : (594)The basis fun
tions (592) are no longer periodi
 but quasi-periodi
:ek;n(# + 2�) = e2i k � ek;n(#) : (595)These fun
tions are spe
ial Blo
h-type wave fun
tions on the 
ir
le [25℄ .7.2.3 Hilbert spa
e on the positive real lineThere exists a unitary mapping [111℄ from the Hilbert spa
e of holomorphi
 fun
tions on theunit dis
 as 
hara
terized by the Eqs. (558) and (559) to the Hilbert spa
e L2(R+ ; du), whereR+ = [0;1), i.e. we have the s
alar produ
t(f2; f1) = Z 10 du f �2 (u) f1(u) (596)for fun
tions f(u) on R+ . The standard orthonormal basis on this spa
e are Laguerre'sfun
tions [112℄, slightly adapted for our purposes,�ek ;n(u) = s n!�(2k) (2k)n uk�1=2 e�u=2 L2k�1n (u) ; k > 0 ; (597)where the fun
tions L�n(u) are Laguerre's polynomialsL�n(u) = m=nXm=0�n+ �n�m� (�u)mm! ; L�n(0) = (� + 1)nn! : (598)These have the generating fun
tion [112℄1Xn=0 L2k�1n (u)!n = (1� !)�2k e�u!=(1�!) ; ! 2 D : (599)This implies thatBk(!; u) = 1Xn=0 ~ek;n(!) �ek;n(u) = 1p�(2k) (1� !)�2k uk�1=2 e�(u=2) (1+!)=(1�!) ; (600)72



where ~ek;n(!) denotes the basis (559). The fun
tion Bk(!; u) is by 
onstru
tion the kernel ofa unitary transformation from the basis �ek;n to the basis ~ek;n, B�k(!; u) being the kernel forthe inverse transformation:Z 10 duBk(!; u) �ek;n = ~ek;n(!) ; ZD d~�k(!)B�k(!; u) ~ek;n(!) = �ek;n(u) : (601)One 
an show [113℄ that the operators ~K0, ~K1 and ~K2 now have the form~K0 = �u d2du2 � ddu + (2k � 1)24u + u4 ; ~K0 �ek ;n(u) = (n + k) �ek ;n(u) ; (602)~K1 = �u d2du2 � ddu + (2k � 1)24u � u4 ; (603)~K2 = 1i (u ddu + 1=2) : (604)As ~K0 � ~K1 = u2 ; (605)the integration variable u may be asso
iated with the 
lassi
al quantity~h0 � ~h1 = ~I(1� 
os') = 2~I sin2('=2) ; (606)that is to say we have the 
orresponden
eu$ 4~I sin2('=2) � 0 : (607)Inserting �ek;n(u) for the general number state jk; ni into the series (314), (316) and (317)yields the following 
oherent state wave fun
tionsjk; zi(u) � fz(u) = uk�1=2 e�u=2pgk(jzj2) 1Xn=0 zn�(2k + n) L2k�1n (u) (608)= uk�1=2 e(z�u=2)pgk(jzj2) (u z)�k+1=2 J2k�1(2pu z)= uk�1=2 e(z�u=2)pgk(jzj2) 1Xn=0 (�u z)nn! �(2k + n)= uk�1=2 e(z�u=2) gk(�u z)pgk(jzj2) ;where the relations [112℄1Xn=0 zn�(2k + n) L2k�1n (u) = ez (u z)�k+1=2 J2k�1(2pu z) ; (609)J�(�) = (�=2)� 1Xn=0 (�1)nn! �(� + n + 1)(�=2)2n ; (610)and (315) have been used. 73



The relation (599) impliesjk; �i(u) � f�(u) = (1� j�j2)k (1� �)�2kp�(2k) uk�1=2 e�(u=2)(1+�)=(1��) : (611)Finally jk; �i(u) � f�(u) = 1p�(2k) e�(j�j2+u)=2 uk�1=2 1Xn=0 �np(2k)n L2k�1n (u) : (612)Let us have a brief look at the behaviour of the probability densitiespk;n(u) = j�ek;n(u)j2 = n!�(2k) (2k)n u2k�1 e�ujL2k�1n (u)j2 (613)for small u as a fun
tion of k. Be
ause of the se
ond of the relations (598) we havepk;n(u! 0+) � 1�(2k) u2k�1 : (614)Thus pk;n(u) vanish in the limit u ! 0 for k > 1=2, has the �nite value 1 for k = 1=2and diverges for 0 < k < 1=2 (but is still integrable). Noti
e that the behaviour (614) isindependent of n :As �(2k) behaves like 1=(2k) near k = 0 we havepk;n(u! 0+; k ! 0+) � 2k u2k�1 : (615)The ground state probability density ispk;n=0(u) = 1�(2k) u2k�1 e�u : (616)For k > 1=2 it has a maximum at u = u0 = 2k � 1.The eigenfun
tions fh2(u) of the operator ~K2 in Eq. (604) 
an easily be found asfh2(u) = 1p2� ui h2�1=2 ; Z 10 du fh02(u) fh2(u) = Æ(h02 � h2) : (617)The last relation 
an be veri�ed by the substitution u = ev ; du = u dv. The eigenfun
tions,whi
h are independent of k, 
an be used for Mellin transformations [114℄ĝ(s) = Z 10 du g(u) us�1 ; s = ih2 + 1=2 ; (618)with the inversion g(u) = 12�i Z 1=2+i11=2�i1 ds u�s ĝ(s) : (619)The substitution u = ev shows the 
lose relationship of the Mellin transform to the Fouriertransform.The eigenfun
tions of ~K1 are more 
ompli
ated [115℄:fh1(u) = C uk�1=2 e�iu=2 �(k � ih1; 2k; iu) ; C = 
onst. ; (620)where �(a; 
; z) is the 
on
uent hypergeometri
 series�(a; 
; z) = 1Xn=0 (a)n(
)n n! zn : (621)74



8 On the ground state of the quantized free ele
tro-magneti
 �eld in a 
avity8.1 The ele
tromagneti
 �eld in a 
avity as a set of harmoni
 os-
illatorsThe standing free ele
tromagneti
 waves in a 
avity 
an be interpreted as a denumerable setof harmoni
 os
illators ea
h of them having the ground state energy (5), the sum of whi
h isin�nite! This \nuisan
e" led to the 
on
ept of \normal-ordering", whi
h just means to ignorethe in�nite ground state energies. On the other hand, subtra
ting two su
h in�nities leadsto the Casimir e�e
t [8, 15, 16℄, a quantum (\va
uum") for
e between two ideally 
ondu
tingplates, now experimentally veri�ed [116℄. The e�e
t 
an, however, also be derived with-out refering to va
uum energies and their 
u
tuations, by subtra
ting appropriate Green'sfun
tions asso
iated with 
ertain boundary 
onditions [117℄.The issue of quantum va
uum energies assumes \
osmi
" dimensions in the 
ontext of the
osmologi
al 
onstant in Einstein's theory of gravity. The usual estimates for that 
onstantare essentially based on the value (5). Those estimates turn out to be up to more than 100orders of magnitudes larger than the experimentally determined value, the estimate dependingon the 
uto� 
hosen. This dis
repan
y obviously 
onstitutes the most urgent and provo
ative
hallenge as to the quantitative powers of physi
al theories. The issue has be
ome very a
utere
ently by the observation of an appre
iable \dark energy" in the universe (about 75% ofall matter), very likely related to the gravitational 
osmologi
al 
onstant and the asso
iated\va
uum energies" [17{24℄.It is obvious that the mu
h ri
her spe
trum of possible ground states for the HO Hamil-tonian (18) 
an shed new light on the subje
t. I here shall only point out the 
ru
ial part ofthe issue without going into further details.I �rst re
all the main elements as to the formulation of standing waves in a 
ubi
 
avitywith side lengths L in terms of harmoni
 os
illators [118℄, with the slight generalization(
ompared to most textbooks) to allow for relative diele
tri
 
onstants � and relative magneti
permeabilities � di�erent from the va
uum values � = 1; � = 1:In the Coulomb gauge Maxwell's equations without sour
es are given by1v2 �2t ~A�� ~A = 0 ; div ~A = 0 ; ~E = ��t ~A ; ~B = 
url ~A ; v = 
=n ; n = +p� � : (622)Postulating periodi
 boundary 
onditions for the ve
tor potential leads to the solution type~A(t; ~x) = 1p�0 L3 X~m2Z3 ~A~l (t) ei~l�~x + ~A�~l (t) e�i~l�~x ; (623)where ~l = 2�L ~m ; ~m = (m1; m2; m3) ; mj 2 Z ; j = 1; 2; 3 ; ~l � ~A~l (t) = 0 : (624)The time-dependent fa
tors ~A~l (t) obey the HO equations�2t ~A~l (t) + !2(~l ) ~A~l (t) = 0 ; !2(~l ) = v2~l 2 = 
2n2 ~l 2 ; ! (~l ) � 0 ; (625)75



with the solutions ~A~l(t) = 2X�=1 ~
~l �(t)~�~l � + ~
�~l �(t)~�~l � ; ~
~l �(t) = 
~l � e�i! (~l ) t ; (626)where the ~�~l � are two polarization ve
tors.Inserting the asso
iated ele
tri
 and magneti
 �elds into the integral for the ele
tromag-neti
 �eld energy in the 
avity,Eem(
avity) = 12 Z
avity d3x [� �0 ~E 2(t; ~x) + 1��0 ~B 2(t; ~x)℄ ; �0 �0 = 1=
2 ; (627)and observing that for plane wave solutions [119℄~B2 = � �0 ��0 ~E2 = n2
2 ~E2 ; (628)yields Eem(
avity) = 2�X~m X� [!(~l )℄2 j~
~l �j2 : (629)Noti
e that j~
~l; �(t)j2 = j
~l �j2 . De�ning~
~l � = 12 [q~l � + i!(~l ) p~l �℄ ; p~l � = _q~l � ; (630)the expression (629) �nally be
omesEem(
avity) = Hem(q; p) = �2 X~m X� [p2~l � + !2(~l ) q2~l �℄ ; (631)where the individual terms H~l �(q; p) = 12 [p2~l � + !2(~l ) q2~l �℄ (632)are independent of time!As 
an be seen from Maxwell's eqs. (622), the ele
tri
 �eld provides the 
anoni
al momenta,the magneti
 �eld (via its ve
tor potential) the 
anoni
al 
oordinates [120℄.The standard quantization pro
edure is now obvious: The 
lassi
al quantities q~l � and p~l �are promoted to operators Q~l � and P~l �, having the 
ommutation relations[Q~l � ; P~l0 �0℄ = i ~ Æ~l ~l 0 Æ��0 : (633)A very minor point may be worth mentioning here: The right-hand side of the energy (631)does not 
ontain a mass term. As the dimension of the energy is given, [L2 T�2M ℄, thequantities q~l � and p~l � here have dimensions [M1=2 L℄ and [M1=2 LT�1℄, respe
tively. Buttheir produ
t still has the dimension of an a
tion, [M L2 T�1℄!We now 
ome to the point of departure: Assuming (for a moment) � = 1; � = 1 andintrodu
ing angle and a
tion variable for ea
h mode,q~l � = q2 I~l �=!(~l ) 
os'~l � ; p~l � = �q2!(~l ) I~l � sin'~l � ; (634)76



yields H~l �('; I) = !(~l ) I~l � ; Hem('; I) = X~m X� H~l � : (635)Quantization pro
eeds now as dis
ussed above for the angle-a
tion model of the HO: Ea
hof the H~l � is repla
ed by an operatorH~l �( ~K) = ~!(~l ) ~K0(~l ; �) ; Hem( ~K) = X~m X� �H~l �( ~K) : (636)Ea
h ~K0(~l ; �) a
ts irredu
ibly in a Hilbert spa
e that 
arries a unitary representation withBargmann index k, together with the operators ~K1(~l ; �) and ~K2(~l ; �) or the ladder operators~K+(~l ; �) and ~K�(~l ; �). Be
ause of the required bosoni
 ex
hange symmetries I here assumethe same Bargmann index k for all representations. I here do not enter the important subje
tof 
onstru
ting and analyzing the quantized free or even intera
ting ele
tromagneti
 �eldsthemselves in terms of the operators ~Kj(~l ; �) et
. The usual k-independent annihilation and
reation operators asso
iated with the �elds themselves are given byA~l; � = [ ~K0(~l ; �) + k℄�1=2 ~K�(~l ; �)) ; Ay~l; � = ~K+(~l ; �) [ ~K0(~l ; �) + k℄�1=2 : (637)8.2 The 
osmologi
al 
onstant problemPresently I am merely interested in the ground state expe
tation valuehk; 0
jHem( ~K)jk; 0
i = X~m X� hk; 0jH~l �( ~K)jk; 0i = 2 k ~X~m !(~l ) : (638)The usual repla
ement X~m;� ! L3�2
3 Z!�0 d! !2 (639)leads to a strongly divergent ground state energy densityk ~�2
3 Z!�0 d! !3 : (640)Cutting the in�nite integral o� at ! = !̂ yields the \va
uum" energy densityuem; 0(!̂; k) = k ~4�2
3 !̂4 : (641)De�ning the e�e
tive length ` = 2� 
!̂ (642)�nally gives uem; 0(`; k) = 4�2 k`4 ~ 
 � 4�2 k`4 � (2 � 10�11 MeV 
m): (643)We know from se
. 5 that the index k may be
ome arbitrarily small > 0, perhaps in the
ourse of time| So the k in the expression (643) may be
ome so small - for a given value of77



the intera
tion length ` - that the value of uem; 0(`; k) 
omes near the order of magnitude ofthe observed dark energy density [121℄
2�� � 4 keV 
m�3 : (644)Su
h a wel
ome adjustment of k is, of 
ourse, here not proven at all, and one would liketo have more sophisti
ated arguments in the present framework for the desired appropriatevalue of the index k in order to get a \reasonable" estimate for the 
osmologi
al 
onstant.Nevertheless, the mere existen
e of that index, originating from the non-trivial topology ofthe ('; I)-phase spa
e of the HO and its related quantizing group SO"(1; 2) (in
luding itsin�nitely many 
overing groups), may be an important key for the solution of the 
osmologi
al
onstant problem!I list a few of the many problems I leave open here:� The role of the index k has to be examined for other matter �elds, espe
ially fermionsand non-abelian gauge �elds and asso
iated intera
tions, parti
ularly for those withspontaneous symmetry breaking!� The 
ompatibility with (lo
al) Poin
ar�e 
ovarian
e and its 
on
ept of 
ausality has tobe analyzed.� Most of the prevailing dis
ussions of the Casimir e�e
t - with their by now quite sophis-ti
ated subtra
tions of two in�nities - (see the literature quoted above) and espe
iallytheir experimental 
on�rmations appear to 
ontradi
t the introdu
tion of an index kdi�erent from 1=2. There are di�erent answers to su
h an obje
tion:First, it is evident from the dis
ussions above, that the ground state of the HO Hamil-tonian H(Q;P ) is ne
essarily tight to k = 1=2. In order to have k 6= 1=2 the basi
quantum observables have to be the ~Kj. An analysis of the Casimir e�e
t in terms ofthese new variables has not yet been done.Se
ond, there have been alternative proposals for deriving the Casimir e�e
t (for
e)instead of subtra
ting in�nite va
uum energies [117℄!� As the number k is a (dimensionless) measure for some energy, it may be
ome time-dependent, i.e. dynami
al, on a 
osmi
 s
ale and might lead to a time-dependent 
osmo-logi
al 
onstant. The index k may also be
ome a fun
tion of the frequen
y ! or (and)of spa
e 
oordinates, like the diele
ti
 
onstant � from above.8.3 Birefringen
e and di
hroism of the va
uumComparing the expressions (631) and (638) suggests to preliminarily interpret the index khere as a kind of \anomalous" diele
tri
 
onstant (or the square of an \anomalous" indexof refra
tion, 
f. Eq. (622)) of the va
uum. This interpretation leads (tentatively) to thefollowing possible quantum opti
al appli
ation:Lets assume we have in va
uum initially just two photon modes of the same frequen
y!, the same initial wave number ~l, but orthogonal linear polarizations. Both should initiallybelong to the same index k. If one lets these photons pass through strong ele
tri
 or (and)stati
 magneti
 �elds ~E0 ; ~B0, these \perturbations" add 
onstant terms proportional to �0 ~E20or (and) ~B20=�0 to the free Hamiltonians H~l �( ~K) ; � = 1; 2 , (see also the dis
ussion around78



Eq. (495)). The energy of the stati
 �elds may 
hange the index k of at least one of the �eldsby a small amount Æ k whi
h 
ould lead to the following possible e�e
ts:� Compared to the photon the va
uum energy of whi
h is \lifted" by an amount Æ k > 0the other photon with the orthogonal polarization \lost" energy, leading to an e�e
tive\di
hroism"!� If the energeti
ally lifted photon returns to its original index k after passing the external�elds, then we have an e�e
tive \birefringen
e"!As to the 
onventional opti
al phenomena of this type in materials (ele
tro-opti
al \Kerr-e�e
t" or magneto-opti
al \Cotton-Mouton-" and \Voigt-" e�e
ts and related di
hroismset
.) see Refs. [122℄.The e�e
ts mentioned should be proportional to the square of the external ele
tri
 or(and) magneti
 �elds.Possibly the re
ent PVLAS experiment [31,123℄ with its observation of va
uum di
hroismindu
ed by an external magneti
 �eld 
an be understood in this framework!8.4 \Dark" normal matter?Let me dare to add a very spe
ulative remark: As the quantum spe
tra (20) and (21) of thetwo HO 
lassi
al models (3) 
an be di�erent, the index k > 0 possibly being very small. So(radiation) energy may get \stu
k" in the interval 1=2 > k > 0 or even at higher ex
itedlevels whi
h perhaps 
an de
ay by higher order ele
tromagneti
 transitions only. In su
h aspe
ulation dark matter would be just \normal" matter prevented from radiating normally(e.g., the abundan
e of diatomi
 mole
ular hydrogen [124℄ provides an abundan
e of e�e
tiveHOs). This 
ould \explain" why visible and dark matter are of the same order of magnitude!In su
h a spe
ulative s
enario dark matter 
ould have been formed only after the formationof atoms and mole
ules. All this has, of 
ourse, to be evaluated mu
h more 
riti
ally.9 Charged parti
les in external ele
tri
 and magneti
�elds9.1 Charged harmoni
 os
illator in an external ele
tri
 �eldIf one puts a harmoni
ally vibrating parti
le of mass M and 
harge Ze0 ; Z 2 Z ; in an externalele
tri
 �eld E0 in q-dire
tion then the potential term� Ze0E0 q (645)has to be added to the Hamiltonian of the HO:H = 12M p2 + M2 !2 q2 � Ze0E0 q = 12M p2 + M2 !2 (q � Ze0E0!2M )2 � Z2e20E202!2M : (646)De�ning � = q � Ze0E0!2M (647)79



we again have an e�e
tive HO with 
oordinate � and the ground state energy shifted by theamount V0 = �Z2e20 E202!2M � 0 : (648)Repla
ing q in Eq. (2) by � yieldsH(�; p) = 12M p2 + M2 !2 �2 + V0 = ! I + V0 : (649)The �ne stru
ture 
onstant � = e204� �0 
 ~ � 7:3 � 10�3 (650)allows V0 to be rewritten as� V0 = ~! 2� �Z2 �0E20(!=
)3M
2 = ~! �Z24�2 �0E20 �3M
2 ; � = 2� 
! = 
� : (651)Comparing with Eq. (19) suggest to introdu
e an e�e
tive Bargmann indexk ! keff = k � Æ ; Æ = �Z24�2 �0E20 �3M
2 : (652)In order to get an impression of the order of magnitude for Æ in experiments 
onsider anion of rest energy M 
2 � 100 GeV � 10�8 J and 
harge e0 in a 1-dimensional harmoni
Paul trap [36℄. With E0 � 103 V/m along the longitudinal dire
tion, � � 108 Hz one getsapproximately the value Æ � 10 , whi
h makes keff negative! One further has to redu
e theenergy �0E20 �3 
ompared to M
2 in order to have keff positive.9.2 Charged parti
le in an external magneti
 �eldIt is well-known that the 3-dimensional motion of a parti
le with 
harge q in a homogeneousmagneti
 �eld ~B = 
url ~A 
an be asso
iated with an e�e
tive harmoni
 os
illator for themotion transversal to the magneti
 �eld [125℄: The Hamilton fun
tion is given by (here mobviously means the mass, as opposed to previous Se
s.)H = 12m~�2 ; ~� = m _~x = ~p� q ~A(~x) ; (653)with the basi
 Poisson bra
kets fxj; pkg = Æj k ; j; k = 1; 2; 3 : (654)The Eqs. of motion are_xj = fxj; Hg = 1m(pj � q Aj); ; _pj = fpj; Hg = q 3Xk=1 _xk�jAk : (655)It follows from the Poisson bra
kets (654) thatf�j; �kg = q (�jAk � �kAj) = q Bl ; (j; k; l) = 
y
l. (1; 2; 3) : (656)80



For ~B = (0; 0; B) we havef�1; �2g = q B ; f�1; �3g = 0 ; f�2; �3g = 0 : (657)The last relations imply _�3 = f�3; Hg = 0 ; (658)i.e. �3 is a 
onstant of motion.Of spe
ial interest here is the remaining \transversal" Hamilton fun
tionH? = 12m(�21 + �22) : (659)De�ning ! = q B=m ; �1 = m! � ; �2 = �� ; (660)and assuming q B > 0 we getH? = 12m�2� + 12m!2 �2 ; f�; ��g = 1 : (661)This is an e�e
tive HO Hamilton fun
tion for the transversal motion of a parti
le with 
hargeq in a magneti
 �eld ~B = (0; 0; B). As the \
anoni
al 
oordinate" � a
tually is proportinal toa time derivative of the original 
oordinates, one needs another integration. This is providedby the quantitiesb1 = x1 + 1m!�� ; b2 = x2 � � = x2 � 1m! �1 ; (x1 � b1)2 + (x2 � b2)2 = 2m!2 H? ; (662)whi
h obey fbj; �kg = 0 ; j; k = 1; 2 ; fb2; b1g = 1m! ; (663)implying fbj; H?g = 0 ; j = 1; 2 ; (664)i.e. the bj are 
onstants of motion. A

ording to their de�nition they are the 
oordinates ofthe 
enter of the 
ir
le on whi
h the parti
le moves in the tansversal (1; 2)-plane.If q B < 0 one just has to inter
hange the roles of �1 and �2 in the relations (659) and(660) and de�nes ! = jq Bj .For the HO Hamilton fun
tion (661) one 
an introdu
e angle and a
tion variables as usual:With ! > 0 and de�ning � = r 2Im! 
os' ; �� = �p2m!I sin' ; (665)we get H?('; I) = ! I ; (666)whi
h 
an be dealt with as previously:The usual quantization pro
edure for the Hamilton fun
tions (659) or (661) is the standardone, yielding the (Landau) energy levelsE?;n = ~!(n+ 1=2) ; n = 0; 1; : : : : (667)81



However, quantizing the Hamilton fun
tion (666) in the spirit of the present paper yields theHamilton operator Ĥ? = ~! ~K0 ; (668)with the possible energy levelsEk;n = ~!(n+ k) ; n = 0; 1; 2; : : : : (669)If k 6= 1=2 the usual Landau energy levels are being shifted to lower or higher values. Whetherthis really happens has, of 
ourse, to be found out experimentally!10 Thermodynami
sNext I 
olle
t some thermodynami
al properties of a system with energy levels En = ~! (n+k)in a heat bath of temperature kB T � 1=� in order to see whi
h quantity depends on theindex k, and whi
h not! That index k is here, of 
ourse, not to be 
onfused with Boltzmann's
onstant kB.The following simple formulae should be of interest for the interpretation of experiments inpreparation for measuring the ground state energy of the HO by means of the AC Josephsone�e
t [40℄.From the partition fun
tionZ(�; k) = 1Xn=0 e�� ~! (n+k) = e�� ~! k1� e�� ~! (670)we get the probability to �nd the system in the nth state aspn(�) = e�� ~! (n+k)=Z(�; k) = e�� ~! n (1� e�� ~!) ; (671)whi
h is independent of k.Furthermore we haveFree energy: � F (�; k) = � lnZ(�; k) = � ~! k + ln(1� e�� ~!) : (672)Internal energy: U(�; k) = hEi(�; k) = ���Z(�; k) = ~! �k + 1e� ~! � 1� : (673)Energy mean square 
u
tuations:(�E)2(�) = �2� lnZ(�; k) = (~!)2 e� ~!(e� ~! � 1)2 = kBT 2CV : (674)Entropy: S(�)=kB = lnZ(�; k) + � U = � ln(1� e�� ~!) + � ~!e� ~! � 1 : (675)Here CV is the heat 
apa
ity of the system at 
onstant volume.We see that energy 
u
tuations (heat 
apa
ities) and entropy are independent of the indexk. 82
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esA Cal
ulating the a
tion variables for 
ertain potentialsof 1-dimensional systemsThe 
al
ulations of the a
tion variable (81) of subse
. 2.3.3 for the di�erent potentials dis
ussedthere 
an all be redu
ed to that of the integralf(b) = Z +b�b du (b2 � u2)1=21 + u ; 0 < b < 1 ; (676)whi
h may be transformed into [126℄f(b) =� Z +b�b du u(b2 � u2)1=2 + Z +b�b du 1(b2 � u2)1=2 (677)+ (b2 � 1) Z +b�b du 1(1 + u)(b2 � u2)1=2 :Here the �rst term vanishes (repla
e u by �u), the se
ond gives � [127℄, and the last �(1�b2)1=2 � [128℄, so that f(b) = [1� (1� b2)1=2℄ � : (678)In the 
ase of the Morse potential VMo one puts in Eq. (83)b2 = ~E ; u = e�~q � 1 : (679)In the 
ase of the potential VsMo the substitutionu = tanh ~q ; (680)
ombined with the observation thatZ +b�b du (b2 � u2)1=21� u2 = 12 Z +b�b du (b2 � u2)1=2 � 11 + u + 11� u� = Z +b�b du (b2 � u2)1=21 + u (681)works.For the potential VPT one substitutes u = sin ~q and for V
 one puts u = ~q2 + 
onst:83



B The 
overing groups of SO"(1:2) and the positive dis-
rete series of their irredu
ible unitary representa-tionsI have stressed repeatedly in the Se
tions above that the irredu
ible unitary representationsof those 
overing groups of SO"(1; 2) or Sp(2;R) with a very small Bargmann index k < 1=2may be of spe
ial interest. In this Appendix, therefore, I 
olle
t some here relevant propertiesof those groups and the asso
iated unitary representations. A rather 
omplete list of theliterature on the irredu
ible unitary representations of the group SO"(1; 2) and its 
overinggroups is 
ontained in the Refs. to Appendix B of Ref. [13℄. That Appendix 
ontains also asummary of essential properties of those groups.B.1 The universal 
overing group of SO"(1; 2)A

ording to Bargmann [129℄ the universal 
overing group ~G � ^SO"(1; 2) 
an be parametrized
onveniently by starting from a modi�ed parametrization of the group SU(1; 1) as given bythe matri
es (180), namely by de�ning
 = �=� ; j
j < 1) ; (682)! = arg(�) ; (683)with the inverse relations � = ei!(1� j
j2)�1=2 ; j
j < 1 ; (684)� = ei!
(1� j
j2)�1=2 : (685)The inequality j
j < 1 in Eq. (682) follows from the relation j�j2 � j�j2 = 1 :With SO"(1; 2)[m℄ ; m-fold 
overing of SO"(1; 2) ; (686)we have the following relationsSO"(1; 2) : f(
; !) ; j
j < 1 ; ! 2 (��=2; �=2℄ g ; (687)Sp(2;R) �= SU(1; 1) = SO"(1; 2)[2℄ : f(
; !) ; j
j < 1 ; ! 2 (��; �℄ g ; (688)SO"(1; 2)[m℄ : f(
; !) ; j
j < 1 ; ! 2 (�m�=2; m�=2℄ g ;(689)~G � SO"(1; 2)[1℄ : ~g � f(
; !) ; j
j < 1 ; ! 2 R g : (690)From the multipli
ation of the matri
es (180) one dedu
es the group 
omposition law(
3; !3) = (
2; !2) Æ (
1; !1) ; (691)where 
3 = (
1 + 
2e�2i!1)(1 + 
�1
2e�2i!1)�1 ; (692)!3 = !1 + !2 + 12i ln[(1 + 
�1
2e�2i!1)(1 + 
1
�2e2i!1)�1℄ : (693)84



For the four subgroups (190) - (193) the new parametrization meansR0 : r0 = (
 = 0; ! = �=2) (694)(0; !3) = (0; !2 + !1) ;A0 : a0 = (
 = i tanh(�=2); ! = 0) ; � 2 R ; (695)(
3; 0) = (i tanh[(�2 + �1)=2℄; 0) ;B0 : b0 = (
 = tanh(s=2); ! = 0) ; s 2 R ; (696)(
3; 0) = (tanh[(s2 + s1)=2℄; 0) ;N0 : n0 = (
 = �(�2 + 4)�1=2 e�i !; ! = ar
tan(�=2) ) ; � 2 R : (697)For the universal 
overing group ~G the transformations (187) and (186) now takethe form ~I 0 = �(~g; ') ~I ; �(~g; ') = j1 + ei' 
j2 (1� j
j2)�1 ; (698)ei'0 = e�2i! ei' + 
�1 + ei'
 : (699)As �'0=�' = 1=�(~g; '), the equality (189) holds again.The transformations (699) a
t, however, not e�e
tively on S';~I be
ause the (in�nite)dis
rete 
enter C[1℄ = (0; ! 2 � Z ) � ~G (700)leaves all points � = ('; ~I) invariant. Correspondingly the 
enterC[m℄ = (0; ! = 0; ��; : : : ; �m�) � SO"[m℄(1; 2) (701)of an m-fold 
overing group leaves the points � invariant, too.With the elements of the group SU(1; 1) given by the restri
tion�� < ! � +�; � = exp(i!)(1� j
j2)�1=2; � = 
 � ; the homomorphisms�[1℄=2 : ~G � SO"[1℄(1; 2) ! SU(1; 1) �= Sp(2;R) ; (702)�[2℄ : SU(1; 1) �= Sp(2;R) ! SO"(1; 2) ; (703)have the kernels ker(�[1℄=2) = 2�Z ; ker(�[2℄) = Z2 ; (704)respe
tively, and the 
omposite homomorphism �[1℄ = �[2℄ � �[1℄=2 has the kernelker(�[1℄ = �[2℄ � �[1℄=2) = �Z : (705)As the spa
e S2';~I is homeomorphi
 to R2 � f0g = C � f0g, its universal 
overing spa
e isgiven by ' 2 R; ~I 2 R+ , whi
h is the in�nitely sheeted Riemann surfa
e of the logarithm.The transformations (698) and (699) may be reinterpreted as a
ting transitively and ef-fe
tively on that universal 
overing spa
e.
85



B.2 Irredu
ible unitary representations of the positive dis
rete se-ries for k > 0I have already mentioned in subse
. 6.4.3 that in the Hilbert spa
e of holomorphi
 fun
tionson the unit dis
 D = fz 2 C ; jzj < 1g with the s
alar produ
t(f; g)k = 2k � 1� ZD f �(z)g(z)(1� jzj2)2k�2dxdy : (706)one 
an de�ne irredu
ible unitary representations for any k > 0 .The unitary operators representing the universal 
overing group in that spa
e are givenby [U(~g; k)f ℄(z) = e2ik!(1� j
j2)k(1 + 
� z)�2kf � �z + ��� z + ��� ; (707)~g = (
; !) ; � � ��� �� � = �[1℄=2(~g) 2 SU(1; 1) : (708)Be
ause j
 zj < 1, the fun
tion (1 + 
� z)�2k is, for k > 0, de�ned in terms of the seriesexpansion (1 + 
�z)�2k = 1Xn=0 (2k)nn! (�
� z)n : (709)The phase fa
tor e2ik! (710)in Eq. (707) determines the possible values of k for a given 
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ible representation of the universal 
overinggroup SO"(1; 2)[1℄.C Estimates for the ratios I2k(2jzj)=I2k�1(2jzj) of modi-�ed Bessel fun
tions of the �rst kind for k > 0In Appendix D.1 of Ref. [13℄ I dedu
ed the inequality�k(jzj) = I2k(2jzj)=I2k�1(2jzj) < 1 (712)for the ratio (320) whi
h o

urs frequently in expe
tation values with respe
t to Barut-Girardello 
oherent states. The argments were:86



It follows from the relation [130℄x dI�dx (x) = � I�(x) + x I�+1 (713)that I�+1(x)=I�(x) = ddx ln(I�(x)=x�) : (714)As [131℄ I�(x) = x�2� p� �(� + 1=2) Z �0 d� ex 
os � sin2� � ; (715)we get for the ratio (714)I�+1(x)=I�(x) = R �0 d� (
os �) ex 
os � sin2� �R �0 d� ex 
os � sin2� � < 1 : (716)The argument is, however, only valid for � > �1=2 , i.e. for k > 1=4 , be
ause otherwise theintegrals (715) be
ome singular. Thus, the interval k 2 (0; 1=4℄ has to be treated di�erently:For k = 1=4 we have [132℄�k=1=4(jzj) = I1=2(2jzj)I�1=2(2jzj) = sinh 2jzj)
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ome larger than 1! This 
an already be seenfrom the asymptoti
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auseof the relation [133℄ I2k�1(2jzj) = 2kjzj I2k(2jzj) + I2k+1(2jzj) (719)we have �k(jzj) = jzj2k + jzj �k+1=2(jzj) ; �k+1=2(jzj) = I2k+1(2jzj)I2k(2jzj) ; (720)whi
h has the limit limk!0 �k(jzj) = I0(2jzj)I1(2jzj) > 1 : (721)Here the right-hand side even diverges for jzj ! 0 ! That the expression (720) 
an be
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reasing k may also be seen from the approximation (348)whi
h yields �k+1=2(jzj) ! jzj2k + 1 �1� jzj2(2k + 1)(2k + 2)� for jzj ! 0 : (722)If jzj is so small that we 
an negle
t the term of order jzj2 in the bra
ket 
ompared to 1, weget for the relation (720) �k(jzj) � jzj2k + jzj2=(2k + 1) : (723)87
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