N
o
@)
(Q\
=,
™
N
AN
>
AN
™
o
(Q\
—
(o]
o
S~
L
o
5
-]
9
=
x
@

Revised Version DESY 06-209

DESY 06-209
Archive: quant-ph/0612032

A New Look at the

Quantum Mechanics of the Harmonic Oscillator

H.A. Kastru

DESY, Theory Group
Notkestr. 85, D-22603 Hamburg
Germany

PACS 03.65.Fd, 03.65.Ge, 42.50.Xa
Abstract

In classical mechanics the harmonic oscillator (HO) provides the generic example for the
use of angle and action variables ¢ € R mod 27 and I > 0 which played a prominent role in
the “old” Bohr-Sommerfeld quantum theory. However, already classically there is a problem
which has essential implications for the quantum mechanics of the (¢, I)-model for the HO:
the transformation ¢ = v/2Icosp, p = —V/2Isin ¢ is only locally symplectic and singular
for (¢,p) = (0,0). Globally the phase space {(q,p)} has the topological structure of the
plane R?, whereas the phase space {(¢, )} corresponds globally to the punctured plane
R? — (0,0) or to a simple cone with the tip deleted. From the properties of the symplectic
transformations on that phase space one can derive the functions hg = I, hy = I cosyp and
hy = —Isin ¢ as the basic coordinates on {(p, I)}, where their Poisson brackets obey the Lie
algebra of the symplectic group of the plane. This implies a qualitative difference as to the
quantum theory of the phase space {(¢, )} compared to the usual one for {(¢,p)}: In the
quantum mechanics for the (¢, I)-model of the HO the three h; correspond to the self-adjoint
generators Kj;, j = 0,1,2, of certain irreducible unitary representations of the symplectic
group or one of its infinitely many covering groups, the representations being parametrized
by a (Bargmann) index £ > 0. This index &k determines the ground state energy Ej ,—o = hw k
of the (p, I)-Hamiltonian H(K) = hw Ky. For an m-fold covering the lowest possible value
for k is k = 1/m, which can be made arbitrarily small by choosing m accordingly! This
is not in contradiction to the usual approach in terms of the operators () and P which are
now expressed as functions of the K, but keep their usual properties. The richer structure
of the K; quantum model of the HO is “erased” when passing to the simpler (@), P)-model!
This more refined approach to the quantum theory of the HO implies many experimental
tests: Mulliken-type experiments for isotopic diatomic molecules, experiments with harmonic
traps for atoms, ions and BE-condensates, with charged HOs in external electric fields and
the (Landau) levels of charged particles in external magnetic fields, with the propagation of
light in vacuum, passing through strong external electric or magnetic fields. Finally it may
lead to a new theoretical estimate for the quantum vacuum energy of fields and its relation
to the cosmological constant.
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1 Introduction and overview

1.1 The issue: Quantum mechanics of the harmonic oscillator in
terms of angle and action variables

At first sight it probably appears provocative and presumptuous to present a new research
paper on the harmonic oscillator (HO), that venerable and pedagogically thoroughly squeezed
simple model, encountered in many physics publications of all types. Despite its simplicity
it has played an important role at many instances in the history of physics, classically and
quantum theoretically:

It probably started with Hooke’s law

p:_bQ7p:MQJb>07 (1)

in mechanics for the force exerted on a particle in the neighbourhood of its stable equilibrium
position. Then came the HO in the plane with its two qualitatively different types of motion,
periodical orbits (Lissajous figures) and quasi-periodical ones which densely fill a submanifold
of the phase space, initiating the idea of ergodic systems. Two or more linearly coupled HO
with their characteristic (eigen-) frequencies are important for the stability analysis of many
systems and play a significant role in crucial areas of physics. By adding a friction term the
model serves also as an examplary introduction to dissipative systems.

Conceptionally important was - and still is - the locally canonical (symplectic) description
of the position and momentum coordinates for the HO in terms of angle and action variables:

21

a(p. D) =\ g5 cose, plp])=—V2Mwlsing, w=b/M, (2)



so that . .
_ 2, * 2 2 _ _
H(q,p)—2Mp oMty H(p,I)=wl. (3)

This is the generic example for the essential concept of integrable systems, their (non-
integrable) perturbations and the associated KAM-theory [1-3].

Then there is the possible interpretation of classical free electromagnetic standing waves
in a cavity as a set of uncoupled harmonic oscillators. This property was essential in Planck’s
derivation of his radiation law. So the HO played an important part in the birth of quantum
theory, too!

In the “old” quantum mechanics with its Bohr-Sommerfeld framework the HO had the en-
ergy levels E,, = hwn, n=0,1,.... (For a comprehensive summary of the Bohr-Sommerfeld
theory, where the angle and especially the action variables played a central role, just before
the dawn of modern quantum mechanics see the impressive textbook by Born (and Hund) [4].)

Even before Heisenberg deduced the modified energy levels

1
En:hw(n+§), n=0,1,... (4)

in his famous first paper on matrix mechanics [5], Mulliken had concluded from his spetro-
scopic analysis of the differences in the vibrational spectra of the diatomic isotopes B!? O'6
and B O [6,7] that the lowest energy state of the HO should be

1
E():ihw. (5)

This has been the canonical undisputed ground state energy value of the HO ever since (for
a comprehensive historical overview see Ref. [8]) and a standard example for the role of
Heisenberg’s position - momentum uncertainty relations. For a recent partial survey of the
HO in modern physics see Ref. [9].

Whereas angle and action variables were central “observables” in the old quantum me-
chanics, they disappeared almost entirely in the new quantum mechanics from 1925/26 on and
the usage of the operators () and P took over nearly completely. Dirac’s early attempts [10]
to use angle and action operators also for the new framework turned out to be contradictory,
as pointed out by London [11] and Jordan [12] and the subject has remained controversial
even up to now [13]. Before taking up that issue again, a few remarks as to the central role
the ground state energy (Bl) started to play:

Around 1930 F. London deduced the van der Waals forces from the ground state energies
of two 3-dimensional HOs [14].

The value (B]) became a nuisance (and still is!), however, when free fields were quantized,
because their interpretations as a set of an infinite number of HOs implied an (unobserved)
infinite ground state energy. The problem has been “swept under the rug” by ignoring the
ground state energies, formally by introducing “normal-ordering” for the associated annihila-
tion and creation operators a and a' (see below).

Nevertheless the ground state energy (B) plays a very stimulating part in the discussions
of the Casimir effect [8,15,16] and also in the present attempts to understand the dark energy
in the universe and the extremely obnoxious cosmological constant problem [17-24].

So the energy (B is discarded or advocated depending on the physical concepts which are
being discussed. Not a very convincing situation!



In view of the general acceptance of the value () it is amazing that there appear to be no
systematic modern experimental tests - similar to those of Mulliken - of such a conceptually
important physical quantity! More on the experimental situation in subsec. 1.3 below.

It is one aim of the present paper to point out that the canonized ground state energy
value (Bl) may not be the only possible one for the HO, but that there is a canonical structure
for the HO in terms of angle and action variables ¢ and I the quantum mechanics of which
allows for ground state values

Fyp—o=hwk, k>0, (6)

where k£ may be any positive number, especially an arbitrary small one > 0!
I ask for a moment of patience for the justification of this seemingly outrageous claim!
The main reason for the possibility (6]) is the difference as to the global structures of the
locally canonically (symplectically) equivalent phase spaces S,, and S, ; of the respective
canonical pairs (¢g,p) and (¢, 1):

Sq,p:{(fbp) ER2} ) (7)

S@’[:{(QO,[),(,OERmOdQTF,I>0}, (8)

which shows that S, has the global topological structure of the plane R? | whereas S, ; has
that of a simple cone with the tip deleted or that of a punctured plane R? — {0} & S! x R*,
where S! denotes the unit circle and R* the positive real numbers without the 0.

This implies that S,; cannot be quantized in the conventional manner in terms of the
(Born-Heisenberg-Jordan-Dirac-) Weyl group generated by the 3-dimensional Lie algebra ba-
sis {q,p, 1}, but one has to pass to the 3-dimensional (proper orthochronous homogeneous
Lorentz) group SOT(1,2) (in one “time” and two “space” dimensions) or to one of its (in-
finitely) many covering groups [13], among which the symplectic group Sp(2,R) in the (g, p)-
plane is a double covering (like the group SU(2) is a double covering of the rotation group
SO(3)). That symplectic group provides the key to an appropriate quantization of the phase
space (8) and plays an essential role in what follows.

The crucial point is that both the phase space S, r and and its “canonical group” SO'(1,2)
contain the topological “factor” S' which is multiply connected (with homotopy group 7 (S') =
Z). This multi-connectedness has implications for the infinite-dimensional irreducible unitary
representations of the non-compact group SO'(1,2) and its infinitely many covering groups
because now the self-adjoint generator of the rotations SO(2) can have more complicated
spectra with a ground state like (B). And this generator is proportional to the Hamilton
operator of the HO in the (¢, I)-framework! (For the similar case of a simple rotator see
Ref. [25].)

The transformation (2)) from the space () onto the space () with its origin deleted is not
special for the HO. It can be used for any (1 + 1)-dimnsional system with periodic motions in
(@) describable by angle and action variables in (). So their quantum mechanics is affected,
too! Examples are discussed in subsec. 2.3.

Quantizing the phase space S,; makes use of the positive discrete series D,(:r), k >0,
of those unitary representations mentioned above [13,26]. In these representations the self-
adjoint generator K, of the compact rotation subgroup SO(2) = S constitutes the quantized
counterpart of the classical action variable I and the “boost” generators K; and K5 correspond
to the classical quantities I cos¢ and —1I sin ¢, the knowledge of which allows to determine
the angle ¢ € (—m, 7] uniquely. The choice of these basic “observables” on the phase space



(®) can be justified systematically from the action of the symplectic group Sp(2,R) on the
phase space (). That action leaves the origin of the space (7)) invariant!
Those basic classical observables

ho(p, 1) =1, hi(p,I)=1cosy, hy(p,1)=—1singp, (9)

on S, ; obey the Lie algebra so(1,2) of the group SO'(1,2) and its (infinitely many) covering
groups in terms of Poisson brackets:

{h07 hl}(p,] — _h2 ) {h()) hQ}Lp,I — hl ) {hla h2}<p,] - hO ) (]‘0)

where

(A, 1Y, ;= 0, (0, 1) 018 (¢, T) — 0rh ™D (0, T) 9,02 (0, 1) . (11)

The corresponding quantum mechanical counterparts, the dimensionless self-adjoint op-
erators

K; = K;/h (12)

obey o . o . o .
[K(), Kl] = iKQ, [K(]; Kz] - —Z Kl; [Kla Kz] = —Z KU . (13)

For the positive discrete series the operator K in general has the spectrum (eigenvalues)
o(Ko)={n+k,n=0,1,...; keR"}. (14)

For the mth covering group SO[Tm}(l, 2),m=1,2,..., of SO'(1,2) the allowed values of
k are
k=L neN={1,2,..7}, (15)
m

so that the smallest attainable value of £ for a corresponding irreducible unitary representation
is

k=—. (16)

As m can be an arbitrarily large natural number, k£ can be made arbitrarily small > 0!
The quantum mechanical (¢, p)-Hamiltonian

1 1 nod> 1
Hlap) = H@Q.P) = gy PP g MG Q = mgy g+ Med (D)

has the unambiguous spectrum (@). However, in view of Eq. (I4) the quantum mechanical
(p, I)-Hamiltonian

H(p, 1) = H(K) =wKo, K =h(Ko,Ky, Ky), (18)
can have the spectrum
Epunlp,l)=hw(n+k),n=0,1,...; keR". (19)

A crucial point now is the following: the spectrum (@) is not just a special case of (I9),
but the situation is more subtle: 3
Let |k,n), n=0,1,... be an eigenvector of K, with eigenvalue (I4):

Kolk,n)=(n+k)|k,n),n=0,1,...; k>0, (20)

6



then nevertheless
H(Q, P)lk,n) =hw(n+1/2)k,n), (21)

where now the operators Q and P are expressed as functions of the K j

Ao i h

=Q(K)=2L(AT+4), P=PK)= At —A), A=/ —, 22
QQ()ﬁ( ) ()\/iAo( )+ Ao T (22)
with . . o . . .
A= (Ko+ k) VPR, A=K (Ko+k) Y, Ki=K +iK,, (23)
and
(A, AT =1. (24)

The non-linear relations (Z3) are an inversion of the known Holstein-Primakoff representation
of the K; in terms of A and AT [27] as discussed in detail in Ref. [13].
(+)

The k-independent relation (24]) holds in any irreducible unitary representation D, and
is a consequence of the commutation relations (I3) which imply

Kilk,n) =[2k +n)(n+ D" |k, n+1), K_|k, n)=[2k+n—1)n]"?|k, n—1), (25)
so that for any &
Ak, ny =vn+1lk,n+1), Alk, n)=+vnlk, n—1). (26)
The Eqs. (22) and (23] are just the operator versions of the classical relations

2 hl(SO, [) _ h2(907 I)
Mw \/ho(ep, I) plo 1) = vaMu holep, 1)

For more details see below, here especially sec. 5!

The gist of the argument for allowing a possible discrepancy between the spectra (20) and
(21, to be discussed in detail later on, is that - due to the multi-valuedness of the angle ¢ -
the quantum version (I8)) of the HO Hamilton function H(p,I) can have a richer spectrum
than H(Q, P) which always has the spectrum (4)), even if it acts in a Hilbert space with a
representation D,(:r) , k #1/2, for which K, has the spectrum (I4))!

Phrased differently: The quantities ¢ and p generate global translations on the phase
space S, i.e. no point is preferred, especially not the origin. This is different for the global
action of the generators h; which leave the origin of S,, and the corresponding point I = 0
in S, ; invariant. Thus, the operators ) and P, generators of translations in momentum
and position space, respectively, “erase” the topological substructure induced by the critical
point (¢,p) = (0,0) (or I =0). That point is, however “taken care of” by the operators f(j,
generators of symplectic transformations in (g, p)-space, which leave the point (¢ = 0,p = 0)
fixed!

So it makes a difference as to the choice of the primary degrees of freedom, whether one
starts with ¢ and p and their topologically trivial phase space (), or whether one starts with
¢ and I and their topologically non-trivial phase space (8). The latter leads to a “richer”
quantum mechanics than that of the former which is unable to do justice to the non-trivial
topology of () and therefore has to “ignore” the additional structure! Whether this additional
topological fine structure has indeed been “implemented by nature” and can be observed in
the laboratory - or is merely a coordinate singularity (see subsec. 2.1) - has, of course, to be
found out by experiments.

q(p, I) = (27)



1.2 Contents overview

The paper is organized as follows:

Sec. 2 collects some properties of the classical HO, with emphasis on the singular character
of the transformation (2) at (¢ = 0,p = 0) and on the dynamical role of the “new” basic
coordinates ¢ and I, including the celebrated adiabatic properties of the action variable I
and its role for certain 1-dimensional integrable systems with bounded orbits.

Sec. 3 discusses properties of the symplectic transformation group Sp(2,R) acting on
the phase space (7): As already mentioned above, that group transforms any two points
of that space into each other, except for the point (0,0) which is left fixed. The orbits of
three independent 1-dimensional subgroups generate three vector fields which are globally
Hamiltonian. The generating Hamiltonian functions of these vector fields are essentially the
functions (@) (expressed in terms of the variables ¢ and p). The Poisson brackets of these
Hamiltonian functions generate the Lie algebra so(1,2) = sp(2,R) of the groups SO'(1,2)
and Sp(2,R) . The quantized version of that Lie algebra belongs to irreducible unitary
representations D,(;r), k = 1/4 and k = 3/4 of the so-called “metaplectic” group. These
representations are implemented in the even and odd parity subspaces of the usual Hilbert
space L?(R,dq) of the HO.

Sec. 4 describes the action of the group SO'(1,2) = Sp(2,R)/Zs on the (p,I)- phase
space () the points of which are “coordinized” by the functions (@). The action of the
group is symplectic, transitive (i.e. any two points may be transformed into each other),
effective (i.e. the only group element which leaves all points invariant is the unit element) and
globally Hamiltonian, i.e. the functions (@) are the generating functions of the vector fields
associated with three independent 1-dimensional transformation subgroups of SO'(1,2). So
we have a completely satisfactory “canonical” structure on the phase space (@) based on the
group SO'(1,2) and its infinitely many covering groups. This section prepares the ground
for a group theoretical quantization [28-30] of the phase space (8)) in terms of appropriate
irreducible unitary representations of those groups which provide the associated quantum
theories.

The central sec. 5 discusses the quantization of the phase space () in terms of the ir-
reducible unitary representations of the positive discrete series D,(f) of the group SO(1,2)
and its infinitely many covering groups. The generator /i K of the rotation subgroup is the
quantized version of the action variable I and the Hamilton function H = w . Its most
general spectrum is given by Eq. (I4]). In physics the corresponding Hamilton operator (IS])
generates time translations:

Uty =eH"  H=hwkK,. (28)

This means that the (dimensionless) time variable f = w ¢ mathematically represents the angle
¢. As t in general does not stop at ¢ = 27, it “runs” through several or very many coverings.
As Ky = N + k1 we have

Ut =2r) = e 2™ 1. (29)

This shows explicitly that for an m-fold covering with k£ as in Eq. (I3]) we get
U(t=2mm)=1. (30)

[ already stressed above that in passing from the quantum theory of the Lie algebra so(1,2)
to that of the Born-Dirac-Heisenberg-Jordan-Weyl Lie algebra one loses the “fine structure”



associated with the Bargmann index k. This is a result the importance of which reaches
probably far beyond the simple HO! It allows to avoid the celebrated Stone-von Neumann
uniqueness theorem without violating it! The usual Heisenberg uncertainty relations for () and
P remain untouched, but there are new uncertainty relations as to the operators f(j, j=0,1,2
[13].

Sec. 6 discusses properties and possible applications of the three types of coherent states as-
sociated with the Lie algebra so(1,2) (Schrédinger-Glauber, Perelomov and Barut-Girardello)
to the HO. The last two of these coherent states are very probably of similar importance for
experiments in quantum optics as is already well-known for the Schrodinger-Glauber coher-
ent states. A number of interesting physical expectation values and their dependence on the
index k£ are discussed as well as the possible experimental production of such states: The
Perelomov ones have been generated in the laboratories in the form of squeezed states, the
Barut-Girardello ones to the best of my knowledge not yet.

Sec. 7 describes several explicit examples of Hilbert spaces with irreducible unitary repre-
sentations of the series D,(;r). It starts with the conventional HO for which & = 1/2 represented
in the Hardy space H?(S',¥) on the unit circle S*. That space has the scalar product

(f2,f1)+ = % /51 d19f2*(19)f1(19), (31)

the basis _
en(ﬁ):e““j, n=20,1,2---, (32)

and the HO Hamilton operator
~ ~ 1
H:h(xJKg, KOZ—819+1/2 (33)
i

All the well-known physical properties of the usual quantized HO can be derived in this
framework, and even some more, because now we have three different kinds of coherent states!
The second part of that sec. deals with concrete Hilbert spaces where the index k of the
irreducible unitary representations can have any real value > 0. One of these is the space
L*(R,, du) with its orthonormal basis of Laguerre’s functions.

Sec. 8 briefly recalls the description of a quantized free electromagnetic field in a cavity as
an infinite set of HOs and the disturbing quantitative problems one encounters for the total
ground state energy when using the value (B]) of a single oscillator. In the (¢, I')-framework
one has instead Fj ,—0 = hwk, where £ > 0, in principal, can be arbitrarily small. This may
shed new light on the notorious cosmological constant problem and the origin of the related
dark energy [17-24].

If different electromagnetic modes have different £ by exposing them to external electric
or magnetic fields, the electromagnetic “vacuum” can even acquire some sort of anomalous
refractive strucure. This may lead (perhaps) to an understanding of the recently observed
“dichroism” of the vacuum in a strong static magnetic field [31].

The sec. closes with a very speculative remark on the possibility of “dark” normal matter.

Sec. 9 recalls the effective HOs one has if a HO particle is charged and an additional
external electric field is applied or if a free charged particle is in an external magnetic field.
Here, too, one may introduce angle and action variables, the quantized versions of which may
lead to a shift of the usual ground state levels.

Sec. 10 briefly discusses the (canonical) quantum statistics of a system with the energy
levels (), in order to see which thermodynamical quantities depend on k£ and which not.

9



Appendix A gives the technical details for the calculation of the action variables associated
with the potentials discussed in subsec. 2.3. Appendix B summarizes some essential properties
of the universal covering group of SO'(1,2), its irreducible unitary representations of the
positive discrete series and those of the m-fold covering groups as special cases.

1.3 Possible experiments

The crucial question is, of course, whether there exist HOs in nature or may be prepared in
the laboratory which have a spectrum of the type (I9). It appears unnessary here to point
out in detail the important implications this would have for the physics of many systems, not
only for the HO!

For possible experimental setups one has to observe that the “primary observables” now
are the operators K, j = 0,1, 2, with their algebraic structure (I3]), not as usual the position
and momentum operators (22). Note also that K, is not the Hamiltonian, but w Ky, so
that Ey,—o(p,I) from (I9) can be the same for different w and k if their product is the
same, i.e. the energy stays the same! One problem for the experiments is to find dynamical
mechanisms which do not bring the usual (g, p)-dynamics into play, e.g. the dominant atomic
dipole-transitions.

Following the original procedure of Mulliken and others [7] the value of k in the spectrum
(I9) may, at least in principle, be determined as follows: According to Eqs. (Il) and (2] the
frequency w of the oscillator can be changed either by changing its mass M or by modifying
the strength b of the driving force. Let w; and wy be two known frequencies of the same system
and let £, and Fj two known fixed external energy levels different from the two ground state
energies Ey(j), 7 = 1,2, of the two slightly different versions of the same HO. If transitions

Ea%Eg(l) :hwlk, Eb—>E0(2) :hCng, (34)

with frequencies
Wa, = [Ea — Eo(D)]/T,  wip = [Ey — Eo(2)]/N, (35)

are possible and measurable, then one can determine the value of k£ from the difference
Wq,1 — Wh2 = (Ea - E(,)/h —k (w1 - w2) . (36)

In the case of the vibrating diatomic molecules Mulliken investigated the levels E, and
E}, where the vibrational ground states of a higher electronic level and the levels Ey(j) were
the vibrational ground states of a lower electronic level of the two respective isotopes for
which the two frequencies w; differ because the corresponding reduced masses p in w = \/17/7
differ [7].

Note also that for k # 1/2 all energy levels of the spectrum (9] are shifted compared to
the usual ones (4)) .

More refined versions of Mulliken’s experiments with diatomic molecules using modern
experimental techniques should be possible and appear highly desirable! In order to “freeze”
the (¢, p)-degrees of freedom when looking for (¢, I')-properties one should probably go to
extremely low temperatures, even below the ground state energies (0. Experiments with
ultracold molecules have reached an impressive stage of refinement [32] and the use of Feshbach
resonances [33] has led to fascinating experimental results for low lying vibrational bound state
levels of bosonic pairs of atoms in ultra-cold BE-condensates [34].
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Furthermore, modern experimental techniques have provided sophisticated 1-dimensional
harmonic traps [35], for ions [36], atoms [37] and BE-condensates [38], for which the fre-
quency w from (2) can be tuned from outside, by changing the force strength b electronically.
Approximate 1-dimensional harmonic traps with ultra-cold BE-condensates mainly in the
ground state (Bl have been built [39], the ground state energy being determined by laser light
Bragg reflections off the “untrapped” expanding cloud of BEC atoms. Thus, these impressive
experiments appear to be associated with the (¢, p)-model of the HO! Nevertheless, similar
such setups may provide new possibilities for a search after the energy levels (I9), again most
likely at extremely low temperatures.

In sec. 6 it will be pointed out in detail that expectation values and transition probabilities
involving Perelomov coherent states are proportional to the index k. As these states have
already been generated experimentally for k¥ = 1/2, they may perhaps also be produced for
other (lower) values of k.

Then there are possible vacuum birefringence and (or) dichroism effects of photons by
strong external electric or magnetic fields as mentioned in sec. 8.

Sec. 9 discusses shifts in the HO ground states of charged particles in external electric or
magnetic fields.

Sec. 10 finally mentions the plans for determining the ground state energy of the HO by
means of the Josephson effect [40]!

1.4 Generalizations

Finally it should be remembered that the harmonic oscillator is, of course, not the only
important integrable physical system which classically can be described by angle and action
variables (e.g. the const./r potential, see Refs. [4] and [1-3] for more examples). Quantizing
those systems group theoretically one has to distinguish between the cases I € Rt and
I € R. The latter has to be quantized in terms of the irreducible unitary representations of
the Euclidean group of the plane E(2) and its covering groups. For details see Ref. [25].

One has, however, to observe the following: If the group SO(2) = S' c SO'(1,2) becomes
a non-trivial subgroup of a larger compact group (i.e. not just a direct abelian factor) its
topological properties can change drastically: E.g., if one passes from SO'(1,2) to SO(3) the
universal covering group is now the double covering SU(2). Going from SO'(1,2) to SO'(1, 3)
one has the universal double covering SL(2, C).

If, on the other hand, one goes from SO'(1,2) to SO'(2,3) = Sp(4, R)/Z,, where Sp(4,R)
is the symplectic group in 4 dimensions, one again encounters the subgroup SO(2) = S' as
a factor in the maximal compact subgroup SO(2) x SO(3) and and also a positive discrete
series of irreducible unitary representations of the group Sp(4,R) and its infinitely many
covering groups [41]. This is just another special case of symplectic groups Sp(2n,R) in 2n
dimensions: They have dimension 2n? +n , rank n (i.e. a maximal abelian set of n commuting
Lie algebra generators), the maximal compact subgroup U(n) = SU(n) x U(1) (which has
rank n , too) and (positive) discrete series of irreducible unitary representations [42], including
those of their universal covering groups associated with the factor U(1) (the group SU(n)
on the other hand is simply connected [43]). This should be of interest for the discussion of
quantum mechanical properties of higher-dimensional symplectic systems [1-3,29,44, 45].
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1.5 Range of the paper

As the topics of the present paper reach from experimental to mathematical physics I shall
have missed many papers relevant to the subjects mentioned. I apologize to the experts and
hope to do more justice to their work in the future. Many more related Refs. are contained
in my paper [13] to which I shall refer frequently in the present one. An essential difference
between this paper and Ref. [13] is the almost complete focus on the possible consequences
of a consistent quantum mechanics for the angle-action variable description of the harmonic
oscillator in different branches of physics, which is lacking in the previous paper.

2 Some properties of the classical harmonic oscillator

2.1 The globally singular relationship between the canonical pairs
(g,p) and (o, 1)

The transformation (2)) is locally symplectic (“canonical”):

d(q,p)
(e, I)

As the angle ¢ is dimensionless and for other reasons it is convenient to introduce dimension-
less quantities by means of the unit of length \¢ from Eqgs. (22)) and Planck’s constant i and
restore the physical dimensions when necessary:

dg Ndp =dop NdI, or =1. (37)

h

i = q/h, Ao=1/—o
q a/Ao, Ao o’ (38)

~ 1 _ ~
H = H/(hw)=3(@"+7"), (40)
I = I/h=H, (41)
hi = hi/h, j=0,1,2, (42)
t = wt, (43)
dgndp = hdiAdp=hdpAdl, (44)

Now _ }
G=V2Ilcosp, p=—V2I[singp. (45)
As

pdi=1Idp—d(I cosy siny), (46)
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we have locally the four equivalent generating functions
= Idp—pdj, 9,F =1, 9;F =—p, (47)

(%)

Fi(d,¢) = %thansO;
(1)
(4, 1)

dFy(g,1) = pdi+edl, (48)
B . - 1 -
Fy(q, 1) = Iarccos[d/(v2l)]:I:in\/ﬂ—c]?;
dF3(q,p) = —V2Isingpdi+ V21 cospdp, (49)
Fy(gp) = qp;
- 1 . qp -
dF. = (@ -p)dp— =—=dI 50
4(p, 1) 5 (@ —07)de Z 20 (50)
Fy(p,I) = T cospsing.
On S, ; we have the (trivial) equations of motion
0H oI : 0l
oI oI 0y
with the solutions (orbits)
o(t) =1+¢,, I= const.>0. (52)

Inserted into the Eqgs. ([d5) we get the usual orbits on S; 5, except for the trivial one

(@(®),p®) = (0,08
That (¢,p) = (0,0) or I = 0 is a singular point of the otherwise symplectic transformation
(@3) can be seen in different ways:

e The action variable appears as \/f, i.e. one has a branch point at [ = 0.
e [f one introduces p = \[f then the functional determinant

0(q,p)
o) " (53)

s

becomes singular for p = 0.
e The differential dH(§,p) = G dq + pdp has a critical point at (¢, p) = (0,0).

e The differentials (47) — (B0) of the generating functions F; become singular for (¢,p) =
(0,0) or I = 0.

So one has to delete the origin of the phase space S;; in order to map it in a one-to-
one manner onto S, ; and vice versal But the punctured (g, p)- plane is no longer simply
connected and topologically non-trivial (its first homotopy group m; is Z). This non-trivial
topology also manifests itself in the multi-valuedness of the angle ¢ which is mathematically
represented by the unit circle S = R mod 27. This unit circle constitutes the multiply-
connected “configuration space” of the phase space S, ;. One of its here essential properties
can be read off Eq. (52):
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In the course of time the periodical motion in both phase spaces (7)) and (8) passes the
position g a few or many times. In this way the configuration space S* C S, gets unwrapped
onto the real axis R or at least a part of it, here represented by the variable £. R constitutes
the universal covering space of S'. A very similar situation in which the same SO(2) & S!
plays a corresponding role is discussed in Ref. [25]. The local character of the transformation
(@3) and its singularity at (¢ = 0,p = 0) is emphasized in Thirring’s textbook [3].

Note that physically the point (¢ = 0,p = 0) is the ground state (equilibrium point) of
the classical (§,p)-description of the oscillator motion. In the case of the (i, I)-description
the notion of an angle does not make sense any more for I = 0. But I may be arbitrarily
small as long as it stays positive. As H = w I one can have H — 0 for I > 0 by (formally)
taking the limit w — 0.

2.2 A symplectic scale transformation

The replacement

o = ps=9/B, I = Ig=B1, £>0, (54)
is symplectic (dps A dlz = dp AdI). The transformation implies (cf. Eq. (52))
t—ts=1/83. (55)
From
65:\/2f5 Cos @g, ﬁﬁZ—\/Qfﬁ sincpg, (56)
we get
- 1 . - - .
fly= L@ +#) =Ty =BT =B, 7
and

ngg . aﬁg . afg .

dts oIz 9l
Inserting this s(f5) into Eqs. (B6) yields the fs-dependence for the variables s , g, analo-
gously to the #-dependence of the coordinates (45]).

As t = wt (cf. Eq. [@3)) the transformation of the original dimensionful quantities is
ambiguous:

1, = os(ts) =1+ ©s(0). (58)

1. One can choose

t—tg=1/0, w—w. (59)
This implies (cf. Eq. (2))
¢—aqs=+Baq, p—ops=+Bp, H>Hy=pH=wly. (60)
2. A second possibility is
t—=t, w—ows=w/f, (61)
with
q—q=0q, pops=p, Ho>Hy=H=uwsls. (62)

Both possibilities are not symplectic as to ¢ and p.
Without further restrictions on the values of 5 the transformation (54]) presupposes the
existence of covering spaces for S', because ¢/ may be outside a given interval, e.g. (—7, 7].
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2.3 Going beyond the harmonic oscillator
2.3.1 Time-dependent perturbations
If we perturb Hy = Iy by a time-dependent term

H o =¢l, f(i) < I, (63)

where f(f) is independent of ¢ and I, then
@:8i0(ﬁ0+ﬁl):1+6f(£), j:—a@(ﬁo—Fﬁl):O, (64)

so that

cp(f):f+e/0td7'f(7)+g00, I = const. . (65)

Thus, only the time-dependence of ¢ gets modified, but not that of I = I, !

The latter property is a special case of the famous adiabatic theorem of mechanics which
says that “small and slow” perturbations of integrable systems leave the values of action
variables unchanged [1-4]. This does, of course, not mean that the energy remains conserved!
As to the important perturbation theory of integrable systems described by angle and action
variables see the Refs. [1-4].

2.3.2 Interactions proportional to h; or hs

On the phase space () the Hamilton functions H(§, p) depend on the basic variables ¢ and
P, well beyond that of the HO. Similarly the Hamilton functions on (&) have to be expressed
by the basic variables ([@). Simple examples for interaction terms added to H = I are the
following ones:

H=hy+vhi=IT+~Icosg, |y<1. (66)

The egs. of motion
¢ = ;H=1+~vcosp, (67)
I = —0,H=~Isingp, (68)

have the solutions [46]

tan((p(®) — ¢0)/2] = \/i—;tanwl—%(f—fo)/?]- (69)

I(1) = Io[t+7 cos((®) = wo)) 7" (70)
If we replace hy in Eq. ([B8) by hy = —I sin ¢, we get the solutions [47]

tan[(o(f) — 0)/2] = 1 —~2{tan[/1—2(t —19)/2] — 7} (71)
— o)) "

I(f) = Io[1 - sin(p(?)

According to the definitions of Refs. [1,2] the angle ¢(t) is the “fast” variable here and
the action variable I(t) the “slow” one. This language means to say that the perturbation
v I cosg (or —vI sin ) for small |y| merely leads to small oscillations of the action variable
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around its unperturbed value I,. This can be read off the above solutions immediately for
|| < 1. Closely related to this type of behaviour is the concept of averaging the ¢-dependent
part of the perturbation over a period 27, an often powerful tool for estimating the influence
of perturbations on integrable systems [1-4]. Such averaging is especially discussed in Ref. [2].

On the other hand, for |y| — 1 the action variables I(f) in Eqs. (Z0) and (72) fluctuate
enormously (“resonances”)!

2.3.3 Morse and other “integrable” potentials

[ briefly discuss three well-known integrable systems [48] with potentials for which the Hamil-
ton functions H (¢, I) are not just proportional to I like in the case of the HO, but are
quadratic in the action variable. This is so for the potentials

Viro(@) = Vo(e™®?—1)?, geR; a, Vj : const. >0, (73)
Varo(q) > Varo(g = 0) = 0,

Vinolq) = Vo[l — 1/ cosh®(aq)] = Vo tanh®(aq) , Vimo(q) > Vimo(g =0) =0, (74)
geR, V>0,

Ver(q) = Vo tan®(aq), ag € (—n/2,7/2), Vo >0, Vpr(g=0)=0. (75)

The first one was introduced by Morse [49] in order to describe radial vibrations of diatomic
molecules (¢ = r > 0) somewhat better than the HO does, the second one is a sort of
symmetrized Morse potential [50] and the third one a slightly modified version of a potential
discussed by Poschl and Teller [51] in order to improve upon certain properties of the Morse
potential. The potentials Vs, and Vs, have bound states (periodic motions) for 0 < E < Vj,
the potential Vpr has only bound states, for all £ > 0.

For small a ¢ < 1 the potentials reduce to the HO one:

1
Vito(a) & Vanro(a) & Ver(a) & 5 Mwiq®, wo =ay/2Vy/M. (76)
The “integrable” potential [52]

Vi(q) = Volag — 1/(aq)]*, ¢ >0, Vi(g) > Vi(¢=1/a) =0, (77)

provides an example for which the energy is a linear function of the action variable I, like for
the HO. For a ¢ < 1 we here have the HO approximation

1
Vc(q)zing(q—l/a)Q, wo = 2a+/2Vy/M . (78)
For any potential V' (¢) with periodic orbits on the phase space (7)) the action variable is
defined by the closed path integral

21 (E) = ]4 Q@ F), pla, ) = VM [F Vi), (79)

where the integration is to be taken clockwise along the closed path C'(E) determined by the

energy equation
L,
+V(q) =FE. 80
on P (9) (80)
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The factor 27 in the definition (79) is due to the convention which uses the circular
frequency wy = 27/T and not v = 1/T.

The integral ([9) describes the area of the region the boundary of which is given by the
closed curve C(E).

If we now insert the relations (2)) into the integral ((79) we get the identity 27 I(E) = 27 1.
This shows explicitly that the mapping (2)) is independent of the potential chosen.

If ¢ < g, are the inner and outer turning points of the motion we can replace the closed
path integral in Eq. (79) by

0+
21 I(F) = 2\/2M/ dq[E —V(g)])V?. (81)
q—
(Notice that pdg = pgdt > 0 on the path C'(F) in both, the upper and the lower (g, p)-half-
planes.)

As we have three free parameters now, M, a and V,, we do not have to use Planck’s
constant in order to introduce dimensionless quantities

p
MVy

i=aq, p= L E=E/Vo, IT=1Iw/V. (82)

Morse potential
For the potential V};(¢q) the epression (&I]) now takes the form

T I(E) =2 /q+ dj[E — (e77 —1)%)V/2. (83)

The integral can be solved explicitly (cf. Appendix A) and the result is
I=201-V1-E), = E(i):i<1—1f>. (84)

The inequality 0 < E < 1 implies for T

0<I<2. (85)

Restoring the physical dimensions we get the Hamilton function

(,L)()I
Hyo(I) =wol (1 ——) . 86
D) =T (1-57) )
It yields the eqs. of motion
Fo0, p—wp— 2L (87)
=V, ¢p=1UWwo 2%7

which can be integrated immediately.
In order to quantize the system as to its sector of bound states, we merely have to replace
the action variable I by the operator i Ky (cf. Eq. (I8))). This leads to the Hamilton operator

(th)2 ~

Hyo(K) = hwy Ko — K2 88
M() Wo Lo AV, 0> ()
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which, according to Eq. (20), yields the spectrum

Epon = hiuso(n+ )1 — 0 (n 4 1), (89)
4V
which for £ = 1/2 is well-known [53]. Concrete Hilbert spaces and eigenfunctions are provided
by irreducible unitary representations as discussed in sec. 7. The eigenfunctions of H MO(K' )
do not, of course, have to be solutions of the Schrodinger eq. in ¢-space, as is the case in
Refs. [53]. But, because of the unitary equivalences, all physical predictions are the same!
As the square bracket in Eq. (89) should be positive one has to cut off the spectrum at a
maximal n = n,,4,., like it is done usually.

The other potentials
For the potential (7)) one gets (cf. Appendix A) the same form for the Hamilton function

as in Eq. (86), namely
Wo I

Horo(I) = wo I (1 - 4—V0> . (90)

For the potential ([73]) one obtains (cf. Appendix A)

IT=2(VE+1-1), = Hpp(I)=wyI <1+%{>, (91)

which may be quantized accordingly. Again the result is well-known for k = 1/2 [54].
Finally one obtains for the potential ({77

H.(I) =wo I, wy=2a+/2Vy/M. (92)

Comparison of Hgyr,(I) with Hy,(I) and of H.(I) with Hgo(I) shows that the possible orbits
of motion may not depend on the details of the potentials V' (¢), but only on some generic
properties represented by the associated H(I). There is still, however, the possibility that
the quantized systems have different indices k. This is indeed the case for the solutions of
the Schrodinger eqs. with the Hamiltonians Hy,(Q, P) and Hgpo(Q, P) [55].

2.3.4 Free non-relativistic particle
According to the second of the Egs. (27)) we can rewrite the Hamilton function

Lo

Hoy(q,p) = P (93)

of a free particle as . .
Hg(h) :(,Uhg/hg, h = (hg,hl,hQ). (94)

What is remarkable is that one needs an additional time scale - here provided by w - in
order to express Hy in terms of the functions (Q))!
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3 Action of the symplectic group on the phase space
Sip

The transformation group SOT(1,2) and its double covering, the symplectic group in 2 di-
mensions Sp(2,R), play a significant role in the following discussions. Some of their main
properties have been summarized in Appendices A and B of Ref. [13]. In order to keep the
present, paper at least partially self-contained, some of those properties needed here are again
sketched below (secs. 3 — 5) and in Appendix B of this article.

The present Section provides a systematic justification for the choice of the basic coordi-

nates (@) on the phase space (®)) in terms of the symplectic transformation group Sp(2,R) on
the phase space (@), without assuming this to be the phase space of the HO.

3.1 Global and infinitesimal transformations, “observables”

The elements of the symplectic group G; = Sp(2,R) (= SL(2,R)) are given by the matrices

. ai1 A12 . .
g1 = ( Uo1 (9o ) ) a]kERa detgl_la (95)

which have the (defining) property
0 1 0 1
91T'<—1 o>'91:<—1 0)' (96)

xr = (g) S Sq,ﬁ =~ R? , (97)

then the elements g; of Sp(2,R) act on z as

If we introduce

=1 =g v, g1€G =Sp2R), (98)
with the property
dq' Ndp' = dg A dp, (99)

i.e. the transformations (O8)) leave the symplectic form
Wip = d(j A\ d]} (100)

invariant.

The group action (O8) has some other remarkable properties:

The whole group transforms the point x = 0 into itself and acts transitively on the com-
plement

Sgp0=Sgp — {r =0} 2R — {(0,0)}, (101)

i.e., if 1 and zy are any two points of S; 5,0, then they can be transformed into each other
by an element of (G;. This can easily be seen by considering the first two of the following
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1-parameter subgroups of G:

o o) ) > 0 € (2m o)

=
(_T/2 T°/2> 7 €R, (103)
=

cosh(s/2) sinh(s/2) _
1) ) , sE€R; (104)

N - n1:<(1)§>,§ER. (105)

sinh(s/2) cosh(s

Each element ¢g; has a (Cartan) decomposition g; = ky-a; - ky or gy = ko - by - k1 and a unique
(Iwasawa) decomposition g; = ki - a1 - ny, where ky, ko € Ry .

Now, let x; and x9 be any two points of S;;.0. First rotate z; by an element of R;
into xl, where p; = 0 and ¢{ has the same sign as ¢,. Then use an element of A; so that

e 712Gl = ¢! = \/@ + p3. Finally rotate the point (g/",0) into .
The group G acts also effectively on S, .0, that is to say, if

r=g¢g v Vr, (106)

e=Fp= (é ?) . (107)

3.2 Vector fields and their associated Hamiltonian functions

then g, is the identity element

The 1-parameter subgroups (102) - (I05]) generate vectorfields on S, .o in the following sense:
Let I' = {y(s)} be a l-parameter group such that y(s = 0) = 1 and let f(z) be a smooth
function. Then the I'-associated vectorfield Ar is defined by

A f](2) = lim  [f(v(=s) - 2) — f(2)]. (108)

s—0 8

From the first three subgroups above we get the following 3-dimensional basis of vector-
fields associated with the group Gj:

1, . .
AR1 = 5(61 5;3 —Paq)a (109)
_ 1 )
Ay = 5(@ 0; — P 03) , (110)
_ 1 )
Ap, = —§(paq+q3ﬁ)a (111)

They obey the Lie algebra sp(2,R) = so(1,2):
[AR17 AAI] = 12131 ’ [AR17ABI] = _AAI ) [AA17 ABI] = _ARI . (112)

Notice that the vector fields (I09) — (1)) vanish for z = 0, a point to be excluded!
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These vector fields are global Hamiltonian ones, that is to say there exist global functions
G(z) on S, ;.0 such that the vector fields may be written as

—[059(x) 95 — 939(x) O] - (113)

The three Hamiltonian functions here are

Rio golr) = {@+7), (114)
At olr) = —%q;a, (115)
B : gi(z) = i(—cfﬁﬂﬁ?). (116)

(The numbering of the functions is mere convention.)
Their Poisson brackets obey the Lie algebra sp(2,R) = so(1,2), too:

{90, 01}ap = =02, {00,02}a5 =01, {91,92}35 = 200" (117)
The squares of the g;(x) fulfill the relation
Jo—9i—3=0. (118)

On the other hand, the vector fields induced by the following translations, but now on the
phase space S; 5,

g—q+a,p—p; ¢—q,p—p—>b; abekR, (119)
are . .
Ag=—05; Ay =05, (120)
with the Hamiltonian functions
gi(x) =p, g(x) =17, (121)
the Poisson brackets of which generate the usual Born-Dirac-Heisenberg-Jordan-Weyl (Lie)

algebra
(called BDHJW-algebra in the follovvinﬂ) with its basis {¢q, p, 1}!

The bilinear functions (I14]) — (I16]) are the generators of the infinitesimal transformations
associated with the transformations (O8] of the subgroups (I02) — (I04):

.. I S 1.
{gOJq} = _5 p, {gﬂap} = 5 q, (122)
.- L. S 1.
{glaq} = _5 p, {glap} - _5 q, (123)
.- L. S 1
92,0} =5 a, 92,0} = —5 7 (124)

Integrated they give the transformations (O8] of the subgroups ([I02) — (I04), except for an
unessential overall minus-sign of the group parameters, a consequence of the definition (I13).

!The usual terminology is “Heisenberg-" or “Weyl-" algebra, but I think this to be unjust towards the
contributions of the other authors.
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It is evident that the phase spaces (@7) and (I0I) have not only quite different topological
but, as a consequence, also essentially different canonical structures as to the transformation
groups which act transitively on them: The phase space (@7)) has the translations (I19) with
their associated central extension (characterized by {G,p} = 1) as its “canonical” group,
but the phase space (I0I]) the symplectic group Sp(2,R). This difference has important
consequences for the quantum theory as we shall see!

The Hamiltonian functions (I2I)) play a double role on the phase space S;;: They are the
generators of the (canonical) translations and at the same time they are the basic classical
“observables” on that phase space. Similarly one may consider the Hamiltonian functions
(I14) - (II6) as basic observables on Sj;.0. However, there is the following ambiguity: Given
a triple (go > 0,§1, g2) with the property (II8]), then the 2 pairs (¢,p) and (—¢, —p) are
compatible with a given triple. For further discussions of this important point see below.

The group Sp(2,R) is not only a transformation (automorphism) group of the BDHJW-
algebra but the relations (II7), (I22) — (124 and {q, p} = 1 show that the direct sum of the
vector spaces of the Lie algebra sp(2,R) and the BDHJW-algebra forms a 6-dimensional Lie
algebra of its own. This feature plays a major role in the harmonic (Fourier) analysis of the
BDHJW-group [56].

Whereas the coordinates of the points x transform as vectors with respect to the group
Sp(2,R), (cf. Eq. ([@8)), the Hamiltonian functions (II4)) — (II€]) transform as tensors of
second degree: Applying the groups (I02]) - (I04) to ¢ and p and inserting the results into the
r.h. sides of the expressions (I14) — (I16]) yields the following transformations

Ry: go(z) — golz') = o(x), (125)

ai(x) — gi(z") = coshgi(x) +sinb gy(x),
Go(r) — Go(2") = —sinf g, (z) + cos O go(x) ;

Ay golz) —  go(z') = cosh7 go(x) + sinh 7 g (z), (126)
g1(zr) — gi(2") = sinh 7 go(x) + cosh 7 g1 (),
G2(z) = Go(2') = go(2);

Bi: go(x) — go(z") = coshs go(z) — sinh s go(z) , (127)
a(z) = gi(2") =),

Go(r) — Go(2") = —sinh s go(x) + cosh s ga(x) .
These formulae show that the 3 functions §; transform as a 3-vector with respect to the
“Lorentz” group SO'(1,2): The transformations (I25) — (I27) leave the quadratic form g2 —
g3 — g2 invariant. This is related to the fact that the group Sp(2, R) is a double covering of the
group SO'(1,2) with the center Z; = {e, —e} of Sp(2,R) as the kernel of the homomorphism
Sp(2,R) — SO'(1,2) (see Appendix B of Ref. [13]). Notice that the kernel (center) Z, leaves

the bilinear expressions (I14]) — (I16)) invariant.

3.3 Space reflections and time reversal

The center Z, implements the parity operation
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which obviously is symplectic (it leaves the 2-form dg A dp invariant).
More subtle is the implementation of the time reversal

T: i’_)_fa (j_>(jT:q’ ﬁ%ﬁT:_ﬁa (129)

which is not symplectic (we have d§g A dp — —dG A dp). However, this can be taken care of in
analogy to quantum mechanics where time reversal - according to Wigner - is implemented
by an anti-unitary transformation in Hilbert space:

Ur: 1 = Upr, o — Urihy, (UT%, UT%) = (wlﬂ/&) = (7?2;1?1)*; (130)

where (19, 1;) denotes the complex-valued scalar product. As (12, 11) defines a symplectic
form [57] which changes sign under the complex conjugation (I30), this suggests to change
the order in dq A dp in the case of the time reversal (129):

(dg N\ dp)r = dpr Ndjgr = —dp ANd§g =dGg A dp. (131)

This has corresponding consequences for the associated Poisson brackets: Let fU)(g,p), j =
1,2, be two smooth functions on the phase space S; ;. With

12(@p) = f(d,—p), 5= 1,2, (132)
we define the time-reversed Poisson bracket by
{1 = (12, 077 (133)

The definition is appropriate in the following sense: The time evolution of a function f[G(¢), p(t)]
(which does not depend explicitly on time) is given by

f=A{fH}, (134)

where H is the Hamilton function of the system. If Hp(q,p) = H(q, ), we have for the time-
reversed Eq. (I34)

dfr . 7 5 - .
d(_tN)_{faH}T_{HafT}, = fr={fr, H}; (135)

which is what one wants!

3.4 The space S; ;0 as a “homogeneous” one

The phase space S; ;.0 can be interpreted as a homogeneous one as follows:

The subgroup (I05]) leaves the points of the line {(¢,p = 0)} invariant, i.e. it is the
“isotropy” or “little” group of these points. We have already seen that the group Sp(2,R)
acts transitively on S 5.0. Both properties imply that we can represent S; 5.9 as a homogeneous
space, namely

S‘i,ﬁ;o = Sp(QaR)/Nla (136)

i.e. the points z € &; 5. ¢ are in one-to-one correspondence with the rest classes g;- Ny, where g; €
Sp(2,R). This is immediately plausible: The group G; = Sp(2,R) has the unique (Iwasawa)
subgroup decomposition R; - A; - Ny, with the topological product structure S* x RT x R.
“Dividing out the subgroup N;” means dividing out the topological factor R. The re-
maining product S' x R* corresponds to the polar coordinates of the punctured plane
R* —{(0,0)} & Sg 50 -
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3.5 Some quantum aspects

The present subsec. is intended to illustrate the role the symplectic group Sp(2, R) from above
plays in the conventional quantum mechanics of the HO, a role which remains unmentioned
in the usual QM textbook discussions.

Let us apply the conventional quantization procedure to the functions (I14) — (II6) by
replacing ¢ and p by the operators Q and P and (Weyl) symmetrizing where necessary. We
then get

1 - - .
do(z) — Z(P2+Q2) = K, (137)
1 - . .
ai(z) — Z(P2 - @) =-K,. (138)
1~~~ ~ .
go(z) — —Z(QP+PQ):K2. (139)
With .
O=—(a'+a), P=—(al-0), [aal] =1, (140)
V2 V2
we have )
~ ]_ .l. ~ ]_ .i.2 2 ~ 7 .i-2 2
K()Zz(QCLCL—Fl), Klzz(a +Cl), K2:_Z(a —Cl), (141)
and ] ]
f(+:f(1+z'f(2:§af2,K,:I%l—il%2:§a2. (142)
The associated Lie algebra is
[Ko, K1) =i Ky, [Ko, K] =—iKy, [K),Ky]=—iKy, (143)
or o . o .
(Ko, Ki| =+Ky, [Ki, K |=-2K,. (144)

The relations (I41]) and (I42]) constitute a well-known realization of the Lie algebra sp(2,R) =
s0(1,2) which yields two irreducible positive discrete series unitary representations of a twofold
covering group of Sp(2,R) [58]:

Let |nysc) be a number eigenstate of the harmonic oscillator Fock space:

aT |nosc> = VNpse + 1 |nosc + 1>7 a |nosc> = V/Nosc |nosc - 1>7 (145)

aTa|nosc> = Nose |nosc>a Nose = 07 17 27 e
As K_ annihilates the states [Nose = 0) and |nyse = 1),
K_|Nose =0) =0, K_|ngs.=1)=0, (146)

we get two different irreducible unitary representations associated with the Lie algebra sp(2, R)
= 50(1,2), one which is given by states with even numbers of Fock space quanta and one with
odd numbers, both generated by the creation operator K : Because

- 1
K0|nosc> = 5 (nosc + 1/2)|nosc> y Nose = 07 17 27 sy (147)
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we see that K, has the eigenvalues
1 3
(2nosc+1/2)/2:n+1 and (2nosc+1+1/2)/2:n+1, n=0,1,..., (148)

in the cases of even and odd numbers of quanta, respectively. That is to say, we get one
irreducible unitary representation with £ = 1/4 and one with k = 3/4.

As to the related groups these are true representations of a 2-fold covering Mp(2,R) of
Sp(2,R) = SL(2,R) = SU(1,1) and a 4-fold covering of SO'(1,2). These 2-fold covering
groups of the symplectic groups Sp(2n,R) in 2n dimensions are called “metaplectic” [59,60]
ones (for more details see below).

As the operators (I37) — (I39) commute with the parity transformation

nm: Q—»-Q, P—»—-pP, MI*=1, (149)

the two irreducible representations may be associated with the eigenvalues +1 of II, respec-
tively.

The two representations with & = 1/4 and k = 3/4 may, of course, be realized in the 2
subspaces H and H_ of the conventional Hilbert space L?(R, dgG) of the harmonic oscillator
with the orthonormal basis

i al H, (@), Ha.(—q e H, (4 150
) = e Ho (@) Ho (D) = (1™ Hu @), (150)

where H,(§G) is the nth Hermite polynomial.
The subspace H for the unitary representation with & = 1/4 is spanned by the Hermite
functions with even Hermite polynomials H,_ . and the subspace H_ for the representation

with k£ = 3/4 is spanned by the Hermite functions with odd Hermite polynomials.
In the “even” subspace H, the Hamiltonian

I:Iosc = 2IE’O (151)
has the eigenvalues
(nosc+1/2); nosc:2na n2071727"' ) (152)

and in the “odd” subspace H_ its eigenvalues are
(Nose +1/2), Nose =2n+1, n=0,1,2,.... (153)

Notice that the operators (I40) map H onto H_ and vice versa!
The operators (23) for the two irreducible representations are

(Ng + 1)71/2 a? At

1 2 _
o= A Wa+ )12, Ne=dla, (134

1
Aqyay = NG
and

1
A(3/4) = — (N(I) + 2)*1/2 a/2, AT aT2(N(I~, + 2)71/2 . (155)

V2
(The index ® stands for “Fock”.)
It follows from the properties of a and a' that

A9 nose = 2n) = /n|2n — 2), AII/4)|nosc =2n) =vn+1|2n+2), (156)
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and .
_N<I> ) [A(1/4)7AT

Noyay = Al Aa s =5 (1/)]

i ~1. (157)

Analogously we get

A/ay|nese =2n+ 1) = v/n|2n — 1), 3/4 |nosc—2n+1> vVn+12n+3),  (158)

and .
Njay = A (3/4) A (3/4) = 9 (No — 1), [A(3/4 3/4 ] =1. (159)
This means
Nijg [Mose = 2n) = 1 Ngse = 2n), Nijy [Nose =20+ 1) = n|ngee = 2n + 1) (160)

According to Eqgs. (22), (I57) and (I59) we may define in %, and H_ the position and

momentum operators

- | . i -
Q) = 7 (Awy + AL, Poy = 7 (Al —Aw) s [Quy Pl =i1, k=1/4,3/4. (161)

The operators Q(1/4) and ]5(1/4) or Q(3/4) and ]5(3/4) have on the subspace H, or H_, respec-
tively, the same matrix elements the operators (I40) have on H = H, @& H_! This is possible
because in an infinite dimensional linear (Hilbert) space a genuine subspace may be isomorphic
to the space itself. Here such a correspondence can be implemented by H > |n) <> [2n) € H
or Ho|n) <+ |2n+ 1) € H_, respectively.

There is a crucial difference, however, between the “elementary” operators (I40) and the
“composite” ones (I61]): Using the general operator formula

CBe=C = B+IC,B]+5[C.[C.B] + % €, 1CLIC B + -, (162)

we get from Eqs. ([40) and (I41)

~ , - ~ 1
U@)aU(—0) =e%a, U®B)a'U(-0) =e*?al, U@B) =50 K,= 1 (2a'a +1),
(163)
so that

U0) QU(—6) = cos(8/2) Q — sin(0/2) P, U(#) PU(—0) =sin(A/2) Q + cos(h/2) P. (164)
Especially for # = 27 we get the reflection
U =2r)QU[-(0 =2m)]=-Q, UO=2r)PU[—(0=2r)]=-P. (165)

This shows that the operators (I40) transform according to the subgroup (I02) of Sp(2, R).
For § = 47 the transformations (I64) act as the identity on the pair @), P, but we have

U(f = drr) = e7HmCNoset D/t — o=imy — 1 N, =ala. (166)

This shows again that U(f), # € [0,47), is not a true representation of the group Sp(2,R),
but that it is one of its 2-fold covering Mp(2, R) for which U(§ = 8n) =1.
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The reflections (I65]) may also be implemented by the simplified operator IT:
QM ' = —Q, TP '=—-P, T =¢™Noe, (167)
where the phase has been choosen such that

M[ngse) = (—1)"

Nosc) - (168)
Contrary to the relations (I63) we have on the other hand
U(0) Agy U(=0) = € Ay, U(0) Afyy U(=0) = e Al U(9) = 7507, (169)

where K is now given by AT A ) + k1.

Thus, the operators (I6T]) transform according to the group Sp(2,R)/Z; = SO'(1,2). This
reflects the fact that the operators Ko, K+ and K_ transform according to the adjoint repre-
sentation of Sp(2,R) [61].

The transformation properties of the operators (I6I]) under the subgroups generated by
the operators K, and K, are more complicated than those of Eqgs. (I40). For the latter we
have, e.g. i i i i

efiTKQQeiTKz — GT/ZQ, efiTKQINDeiTKQ — 677‘/2?, (170)
where K, is given by Eq. (IZI). The transformation (I70) is the usual “squeezing” transfor-
mation of quantum optics [62]. The corresponding transformation properties of the Q(k) and
Py are more complicated (see sec. 4.4 below).

It is evident that by replacing the operators a and a! in Eqs. (I41) and (T42) by the
operators A, and Azk) of Egs. (I54]) and (I55) one may repeat the whole procedure indicated
above, thereby splitting the subspaces H, and H_ again into two subspaces and so on.

What is important for us at the present state of the discussion is that the quantized version
of the “(¢, p)-model” of the HO carries two different irreducible unitary representations of a
2-fold covering of the symplectic group Sp(2, R).

There is much more to come with the quantized version of the (g, I)-model of the HO:

4 Action of the proper orthochronous homogeneous Lorentz
group in 142 dimensions on the phase space 8(10 Fi
4.1 The basic canonical “observables” on S%f

=V2Icosp, p=—V2Isinyp, (171)

into the expressions (IT4) — (IIB) we get another set of functions h;(¢, ), j = 0,1,2, which
again obey the Lie algebra sp(2, R) = so0(1,2) with respect to the Poisson brackets (III):

If we insert the relations

ho(p, I) = 51 (172)
Pl 1) = —%fcos(&p), (173)
fo(p, T) = %fsin(&p), (174)



with o ) o ] o ]

{hg, hl}np,f == —hg ; {hg, hg}%f - h1 y {hl, hg}%f - ho . (175)
This is not yet quite the form (@) we would like to have. But implementing the scaling (54)
with 8 = 2 yields the functions (@), except for the signs of h; and hy which may be reversed
without affecting their properties and the Lie algebra structure (I0]).
Thus, we obtain on the phase space

S =

,i={o=(p,1);¢ € Rmod 2,1 > 0} (176)

the basic dimensionless functions
ho(p, 1) =1>0, hy(p,I) =1Tcosp, hy(p,I)=—Isingp, (177)
which obey the Lie algebra
{ho, i}, ;= —ha, {ho,ha},;=hi, {hi,ha},;=ho. (178)

The two obvious main reasons to pass from the functions (I72]) — (I'74) to the functions (I’77)
are the following ones:

First, one would like ho to be equal to the Hamiltonian H=1 and, secondly, the basic
periodic functions on S! are cos ¢ and sin ¢ from which all the higher ones, cos ny, sinnp, n =
2,3,..., can be constructed. The functions cos 2y and sin 2¢ cannot serve that purpose! For
related discussions of this point see Ref. [63].

A given triple (hg, h1, hs) with the property

h2—h?—h:=0, hy>0, (179)

determines a point o € S, 7 uniquely. Eq. (I79) shows that the phase space S, i 1s diffeomor-
phic to a (light) cone with the tip deleted, i.e. it is topologically equivalent to S* x R*. Thus,
S, i has the same topological structure as S0 from above! It is, therefore, not surprising
that the canonical group Sp(2, R) is intimately related to the coresponding one of S, i » namely
the “proper orthochronous homogeneous Lorentz” group SO'(1,2) = Sp(2, R)/Z, which has
the symplectic group Sp(2,R) as a double covering. SO'(1,2) is that connected subgroup of
the four “pieces” of the group O(1,2) which contains the unit element and is time-direction
preserving [64]. More on this in subsec. 4.5 below.

The transformations of SO'(1,2) on S, i are conveniently implemented by passing to the
group Gy = SU(1,1) which is isomorphic to the group Sp(2,R): The elements gy € G are
given by

w= (0 0. ). detgn=laP -1 1. (150

They act on a 2-dimensional complex vector space C? as

z 2 .
we(2)= () with 4P - 14 = P~ et (181)

2

The isomorphism between the two groups Gy and GGy can be realized by the unitary matrix

IR A R P A B N
CO_E(-Z 1>,det00—1,00 _ﬁ<l 1)—00, (182)
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which yields

00'91'00_1:90- (183)
The hermitian matrices
il():j l~L1+ii~12:I~6_iW 79 79 79
= . . - ~ ~ detc =h;—hi —h5=0 184
g (hl—ihgzleup hOZI >’ erg 0 1 2 ) ( )

are in 1-1 correspondence to the points o € S, ;. The transformations ¢ — ¢’ under SO'(1,2)
are implemented by
oo =go-o-gh, detg =deto, (185)

where gg denotes the hermitian conjugate of the matrix gj.

The last equality in Eq. (I83) follows from the property detgy = detgg = 1. Because
deto = hZ — h? — b2, the transformations (I87) are indeed Lorentz transformations!

One sees immediately that gy and —gy lead to the same transformations of the 3-vectors
(ho, hi, hy) and therefore of I and ¢. Thus, the group SU(1,1) acts on the space S,.; only
almost effectively with the kernel Z5 representing the center of the twofold coverlng groups
SU(1,1) or Sp(2,R) of SO'(1,2). Tt is well-known that the latter group acts effectively and
transitively on the forward light cone [65] and thus on S, ;

Applying a general gy to the matrix (I84]) yields the mapping;:,

=(p, 1) = o' =(g,1):
CY*GZSO—FB*

a+el?p
I' = |la+e¥p°1, (187)
AS !
¥ =+ (199
we have the equality ~ B
dg' NdI' = dp A dI (189)

that is, the transformations (I86]) and (I87) are symplectic.

It is, however, more instructive to look at the actions of 1-parameter subgroups of SU(1,1):
The unitary transformation (I82) maps the subgroups (I02)-(I05) of G onto the following
subgroups of Gy:

Ry: ro= ( GZZ/Q _?9/2 > , 0 € (—2m,+2n] (190)
Ao : ( —CzosslllihTf/Q icségr?((://;)) ) , TER, (191)
I e o o
Ny : _ < 142/15/2 1 _5/;/2 ) L EER . (193)

29



(I here, too, list four - not independent - subgroups of Gy because we shall need Ny for the

representation of S,

7 as a homogeneous space below.) Their actions (I83]) on the 3-vector

(ilg, hy, l~12) are given by

Ro: ho — B=ho, (194)
hy — ht =cosOhy —sinbhs,
hy —s ﬁ§:s1n9h1+cosﬂh2,

Ay: hy — % = cosh 7 hg + sinh 7 Ay, (195)
hy — ht=hy,
hy — Rl =sinh7hy + cosht hy,

By: hy — hly=coshshg+sinhshy, (196)
hy — fz'l = sinh s hg + cosh s hy
hy — hb=hy,

No: hy — hy=(1+E/2) ho+Eh —(€/2) ha, (197)
hy — hh=Ehy+hy —Ehsy,

ho — b= (22 ho+Ehy+ (1 —€2/2) hy

So we have rotations in the hl ﬁg plane and two Lorentz “boosts”, one in ghe l~1~0 - l~12 plane
and the other in the iy — /; plane! All transformations leave the form h2 — h? — h3 invariant.
For the variables ¢ and I these transformations mean

RUI

AUI

Ng!

I'=1I, (198)
et — gile—0) ,
I'=po(1,0) I, pa(r,¢) =coshr —sinh7 singp, (199)
cos ¢ = cos/pa(T, 0),
s1n<,0 = (cosh 7sin ¢ — sinh 7)/p, (7, ¢) ,

pu(5,0) I, py(s, ) = coshT +sinh7 cos g, (200)
cos ¢’ = (cosh s cos p + sinh s)/py(s, ) ,
sin ' = sinp/py(s, ¢)
I'=p(§0) T, pu(&,0) =1+ Ecosp+ & (1 +sinp)/2, (201)
cos ¢’ = [cos o +£(1 +sinp)]/pa(§, ¥),
sin g’ = [sin ¢ — £ cos o — E3(1 + sin 9) /2] /pa (€, ) -

As the center Zy of SU(1,1) acts as the identity in the transformations (I94) — (201) the
above transformation subgroups are actually those of SO'(1,2) = SU(1, 1)/Zy which we shall
denote by R = Ry/Zs, A = Ay/Zs etc. in the following.

Transitivity of the SOT(1,2) group action on S, i can be seen as follows: Any point oy =

(gpl,fl) may be transformed into any other point oy = ((,02,]2) first transform ((,01,]1) into
(0, Il) by 79(0 = ¢1), then map this point into (py = — arctan(sinh 7 ), {2) by ag(7o; cosh g =
2/11) and finally transform (¢, [2) by 70(0 = w0 — p2) into gy = (9, I5).
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For infinitesimal values of the parameters #, 7 and s the transformations (I98) — (201
take the form

R: dp=-0 101, 6[=0, (202)
A Sp=—(cosp)T, 6] =—I(sing)r, |7] <1, (203)
B : dp=—(sing)s, 6l =1I(cosp)s, |s|<1 . (204)

According to Eq. (I08)) they induce on S, ; the vector fields

Ap = 0,, (205)
Ay = cospd,+ 1 sinpd;, (206)
Ap = sinpd, — I cospd;. (207)

It is easy to check that the Lie algebra of these vector fields is isomorphic to the Lie algebra
of SO'(1,2), and all its covering groups, of course.

The vector fields (205]) — (207) are (global) Hamiltonian ones in the sense of Eq. (I13).
The corresponding Hamiltonian functions f(y,I) are:

Ar: faled) = —I, (208)
Ay fale, ) = —Icosgp, (209)
Ag: fg(p,I) = —Ising. (210)

The Hamiltonian functions fg, fa and fp obey the Lie algebra so(1,2) with respect to the
Poisson brackets (II)):

{fRafA}:_fBa {fRafB}:an {anfB}:fR- (2]-]-)

Reversing the minus signs on the right-hand side of Eqs. (208) and (209) we finally arrive
again at our three basic classical observables introduced before:

holo, I) = —fr=1, hi(p,])=—fa=1Icosp, hy(p,I)=fs=—Isinp. (212)

Thus, the canonical group SOT(1,2) of the symplectic space S, ;i determines the basic “ob-
servables” ([I77)) of that classical space.

4.2 S%f as a homogeneous space

The transformation formulae ([20I) show that the subgroup Ny leaves the half-line ¢ =
—m/2, I > 0, pointwise invariant, that is, Ny is the stability group of those points. This
implies that the symplectic space S, ; is diffeomorphic to the coset space SO™(1,2)/Ny:

S, ;= S0(1,2)/N,. (213)

®

Notice that the subgroups Ny and Ay do not contain the second center element —e of SU(1,1).
The center Zs is a subgroup of Rj.

In the language of the h; the transformations (I97) leave the points (I,h; = 0,hy = I)
invariant.
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4.3 On the relationship between the phase spaces S;;( and S%f

The two phase spaces S; 30 and S(pj have the same topological structure S' x R*, but their
correspondence is nevertheless not one-to-one. The term “topological” is somewhat imprecise
here: the positive real numbers R* can be mapped in a one-to-one fashion onto the full real
line R by I=¢, a=1Inl, I eR", acR,. This mapping is, however, not symplectic because
de AdI = e*dp A da. But as we are interested in preserving the symplectic structures, we
consider only (usually local) “symplectomorphisms” [44].

In order to see the essential difference between the spaces S50 and S, ; let us look at the
orbits of the transformation group R; (cf. Eq. (I02))) on the former (cf. Eq. (O8])) and those
of Ry (cf. Eq. (I90)) on the latter (cf. Eqs. (I94):

If we start with # = 0 and increase 6 to m then - according to Eq. (I02]) - the positive g-axis
is rotated by 90° onto the positive p-axis and the latter is rotated onto the negative p-axis.
On the other hand - according to Eq. (I94) - the hi- and hy-axis are both rotated by 180°,
i.e. they change sign. For # = 27 the transformation (I94) becomes the identity, whereas
now the transformation (I02) changes the sign of x = (¢,p)? (“T” here means “transpose”):
xr — —x. Finally, for 6 = 47 both groups act as the identity.

All this is, of course, a consequence of the fact that the effective transformation group
on S; 5.0 is Sp(2,R), whereas the corresponding transformation group on S, ; is SO(1,2) =
Sp(2,R)/Zs! The situation is completely similar to the well-known transformations of the
group SU(2) on a 2-dimensional (complex spinor) vector space which induces a corresponding
transformation of the group SO(3) = SU(2)/Zs on a 3-dimensional vector space. Here, too, a
given element of SO(3) corresponds to two elements +u € SU(2)! In our case the x € S;;.¢
are the “spinors” and the o € S ; are the “vectors”.

The remarks show in which way the two spaces S; ;0 and S, 5 differ globally despite the

local equality dp A dI = d§ A dp which is obviously invariant under the center Z, (it sends x
to —z and o to o).

One may characterize the situation also in the following way [66]: If we identify the points
r and —z on S; ;. then the group Sp(2,R) acts on this quotient space in the same way as
the group SO'(1,2) on S, 7 and we have the correspondence

Slﬂj = 811715;0/22 y (214)
which follows also from comparing the homogeneous spaces (I36]) and (2I3]).

A quotient space like ([2I4]) is called an “orbifold”. An orbifold may be generated from a
manifold M by identifying points which are connected by a finite discontinuous group D,, of n
elements so that the orbifold is given by the quotient space M/D,,. An orbifold generally has
additional singularities as compared to the manifold from which it is constructed, as we shall
see now:

In our case the orbifold S;;.0/Zs is a cone: Take the lower half of the (g, p)-plane and
rotate it around the ¢-axis till it coincides with the upper half of the plane such that the
negative p-axis lies on the positive one. Then rotate the left half of the upper half plane
around the positive p-axis till the negative g-axis coincides with the positive one. Finally glue
the two g-half-axis together. The resulting space is a cone with its “tip” (vertex) at x = 0.
The tip constitutes a singularity to be deleted. It is a fixed point of the action of Zy. We thus
arrive at the cone structure of the symplectic space ([2I4]) by a different route.
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4.4 Relationships between the coordinates g, p and hg, hi, ho

Further below we shall encounter several important relations between the quantum operator
versions Q, P, Ky, K; and K> of the corresponding classical basic quantities ¢, p, ho, by and
h2 So it is useful to list a number of relations between the latter:

. - [9 . . _. .
(o, I) = V2I[cosp = B—hl; ho =1, h;y=1Icosp, (215)
0
ﬁ(%f) = —V2[singp = ”h hy; hy=—Isingp, (216)

a = %(mzﬁ):ff@_wzm/\/i, (217)
o =l +ihy =Te ™, ho=hy —ihy =1e%. (218)
Also of interest are a number of Poisson brackets:
{ho,@},; = —b, (219)
{ho,P}o; = 4, (220)
{ho,a},; = ia. (221)

These are just the canonical eqgs. of motion for the HO.
More complicated are the following Poisson brackets

1

{h, @}, = —5 sinpd—cospp, (222)
{h,p},; = —% singp+ cos 0 q, (223)
(o) = — cospd +singp, (224)
{h2,p},; = —% cos P —singpq, (225)

(226)

where the right-hand sides may be expressed in different ways by using the quantities defined

in Eqgs. (215) — (2I8). Examples are

~ 1 1
- —Zat = 22
{hi,a}, ; N ( 50+ i) \[ [3/2 , (227)
- 11, i\f 1 -
{ho,a},; = NG (—5 a+ia)a = 3 I 7o ——(h_)2%. (228)

The brackets {h,a* },. and {h_,a* },.; follow from complex conjugation of the relations

[228) and (@221).

4.5 Space reflections and time reversal

The space reflections (I28) may be implemented on S, ; by

M: p—oe+r, I-1. (229)
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The reflection II leaves the symplectic form dy A dI invariant (locally) and implies
IT : ilo — ilo, ill — —iLl , iLQ — _iLQ . (230)

The time reversal (I29) can be implemented by

T:t——t, p—=—p, I-1. (231)

In order to make this transformation into a symplectic one, we also have to change the order
of the factors in dp A dI as discussed after Eq. (I29) above. We now have

T : iLg — ilo , iLl — ill , iLQ — _iLQ . (232)

Notice that the space reflection properties (230) of the l~1]- are different from those of the ﬁj
of Eqs. (IT2) — (I74). The T-reversal properties are the same.

The relationship of the above II- and T-transformations to the different “pieces” of the
homogeneous Lorentz group O(1,2) is as follows: It follows from

hj — bl = ZAkhk, (hh)? — (BY)? — (hy)? = (ho)? — (h)? — (ho)?, (233)

that
det(Af) ==+1, sgnAg =+£1. (234)

The group SO'(1,2) which contains the identity transformation is characterized by det(Af) =
1, sgnA¢ = 1. The above transformations IT and T have both sgnA§ = 1, but det(Af) = 1
and det(Af) = —1, respectively.

5 Quantizing the angle - action variables phase space

SW-I- of the harmonic oscillator

5.1 Lie algebra of the self-adjoint observables K ; and the structure
of their irreducible representations

The quantum theory of the HO described on the phase space S;; is a settled affair, due to
the Stone-von Neumann uniqueness theorem for the irreducible unitary representations of the
BDHJW-group [67]!

The situation is different, however, for the quantum theory of the HO described by the
phase space S, 7 of its angle and action variables. We have seen that the “canonical” group of
that phase space is the group SO'(1,2) which has an infinite number of covering groups, due to
its maximal compact rotation subgroup SO(2). The group SO'(1,2) - and its covering groups -
has 3 classes of irreducible unitary representations [68]: the “principal”, the “supplementary”
or “complementary” series and two “discrete” series. In the principal and supplementary
series the spectra of the generator K, are unbounded from below and above. One of the
discrete series has a strictly positive spectrum of K, and the other a strictly negative one.
In our case Ky corresponds to the positive action variable I and, therefore, ought to be
a positive definite operator. This leaves only the positive discrete series of the irreducible
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unitary representations. These may be - formally - constructed as follows:
As the group SO'(1,2) is noncompact, its irreducible unitary representations are infinite-
dimensional. Different concrete representation Hilbert spaces will be discussed later in sec.
7.

In an irreducible unitary representation of the group the classical functions ho, hi, ho
with their Lie algebra (I0) correspond to self-adjoint operators Ko, K1, K5 which obey the
commutation relations

(Ko, K] =Ko, [Ko, Ko) = —iK, , [K;, Ko] = —iKy, (235)
or, with the definitions } . . } } .
K+:K1+iK2, K, :Kl—iKg, (236)
we have o . o . o .
[K07K+] = K+ ) [KOJK ] =—-K_ ) [K+JK ] = 2K, . (237)

The relations (235)) are invariant under the replacement K1 — KI,KQ — KQ and K| —
—K,, Ky — K. The relations ([237) are invariant under K, — uK,, K_— pK_, |ul =1,
and under the transformations K, <> K_, KO — —Kj. In irreducible unitary representatlons
with a scalar product (fi, f2) the operator K_ is the adjoint operator of K+ s (fa K+f2) =
([N(,fl, f2), and vice versa.

The (Casimir) operator

¢ =K+ K- K; (238)

commutes with all three K ; and therefore is a multiple of the identity operator in an irreducible
representation. It obeys the relations

K,K =C+Ky(Ky—1), KK, =¢+ Ky(Ky+1). (239)

Most unitary representations make use of the fact that K, is the generator of a compact
group and that its eigenfunctions g,, are normalizable elements of the associated Hilbert
space H [69].

The relations (237) show that the K. act es creation and annihilation operators and they
imply

Kogm = Mgm, MER, (gm,gm) =1, (240)
KoKigm = (m+1)K gn, (241)
KoK gn = (m—1)K g, (242)

which, combined with (239), lead to

(G K+ K _gm) = (K_gm, K_gm) =c+m(m—1) >0, (243)
(gm K—K-i-gm) = ¢+ m(m + 1) >0, c= (gma ng) (244)

It follows that . 3 . 3
(K+gma K+gm) =2m + (ngma ngm) Z 0. (245)

As we assume that we have an irreducible representation the functions g,, are eigenfunctions
of the Casimir operator €:
Cgm = CGm . (246)
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The relations (240) — ([245) show that the eigenvalues m of K in principle can be any real
number, where, however, different eigenvalues differ by an integer.

As already said above: For the “principle” and the “complementary” series the spectrum
of Ky is unbounded from below and above [68], but as K, corresponds to the classical positive
definite quantity I , these unitary representations are of no interest here.

Here the positive discrete series Dk+) of irreducible unitary representations are important.
These are characterized by the property that there exists a lowest eigenvalue m = k such that

Kogk:kgk, K_gk:() (247)
Now the relations (243) and (245) imply
c=k(l—%k), k>0, m=k+n, n=0,1,2,.... (248)

That k£ > 0 follows from Eq. (245) with m = k, K g, =0, but (I~(+gk,f(+gk) > 0, because
the scalar product is positive definite! Exploiting the relations (240))-(242]) yields

Kﬂgk,n - (k+n) gk,n; k > 0; nzoala"'a ) (gk,n;gk,n) — 17 (249)

K—l-gk,n = Hn [(2k + ’I’l) (’I’L + 1)]1/2 Jk,n+1, |/‘Ln| =1 ) (250)

~ 1

Kogen = ——Ik+n- )] g1 - (251)
n—1

The phases 11, guarantee that (fi, K4 fo) = (K_fi, f>). In most cases of interest s, is inde-
pendent of n. Then one can absorb it into the definition of Ky and forget about the phases
P!

Up to now k may be any positive real number. A detailed analysis (see Appendix B)
shows [68] that k¥ = 1,2,..., for the group SO'(1,2) itself, k¥ = 1/2,1,3/2,..., for the
isomorphic groups Sp(2,R) = SL(2,R) = SU(1,1) and k£ = 1/4,1/2,3/4,1,..., for the
metaplectic group Mp(2,R) we encountered above.

For the universal covering group G = S O[Too](l, 2) the “Bargmann index” k may have any

positive value > 0. Further below we shall see that for an m-fold covering S’O[Tm](l, 2) the
index k can take the rational values

k=2 u=12.. .. (252)

m
Here the natural number m may be arbitrary large, i.e. the lowest value k¥ = 1/m can be
made arbitrary small > 0!

As long as I do not specify the concrete Hilbert space used I shall employ Dirac’s bracket
notation and write g, = |k, n) . It follows from Eq. (250) that

1

k,on) = ———(K.)"|k,0), 253
o) = e (K10 (253)
B ~ T(2k+n)
2k
(2k)p—o=1, (1)p,=n!, (-2k),=(-1)"n! (n) . (255)
The Casimir operator relation
K+ K=K+ k(1—-k)1 (256)
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modifies the corresponding classical Pythagorean relation
h? + h2 = h?, (257)

unless k = 1! So for a HO with k = 1/2 “Pythagoras” is “violated” by quantum effects!

5.2 The operators Q) and P as functions of the operators Kj

The relations ([2)), [27), (215) and (2I6) as well show the dependence of the canonical coor-
dinates ¢ and p on the canonical coordinates ¢ and I. Tt is important that a corresponding
operator relation expresses the position operator Q and the momentum operator P in terms
of the operators f(j,j = 0,1,2. That this is indeed possible was already stated in the
introduction. The relationship can be read off the Eqs. (249) — (251)) as follows:

If we have annihilation and creation operators a and af in a (Fock) Hilbert space with a
number state basis |n) such that

aln)=vnln—1), a'n)=vn+in+1), [aa]=1, (258)
we can define i ) i ; o
Q:ﬁ(aﬂﬁ), P:ﬁ(cﬁ—a), [@Q,P]=il. (259)

_ The operators (258) have been used to construct non-linear realizations of the generators
K; [27]:
j

Ko=N+Fkl, Ky =a'V/N+2k1, K_=+vVN+2kla, N=cdla. (260)

However, as I pointed out in Ref. [13], it is much more interesting to invert these relations:

5.2.1 Operator version of the polar coordinates in the plane

Now, as k > 0 and the operator K is positive definite in any irreducible unitary representation
of the positive discrete series D,(:r), the operator

By = (Ko + k) /2 (261)
is well-defined and self-adjoint. As
Byilk,n) = (2k +n) Y|k, n), (262)

then according to the relations (249) — ([251)) (with u,, = 1) the operators

- —

Aw(K) =By K_, Al (K) = K, By (263)

have the properties
Ay |k,n) =vnlk,n—1), AJ(rk) k,ny =vVn+1]k,n+1), (264)
Al Awlk.ny =nlkn),  [Aw, Alyl =1. (265)

The actions of the operators (263]) are independent of the (Bargmann) index &k which charac-
terizes the irreducible representation of the group SOT(1,2) or one of its covering groups. So
we may drop their index (k).
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This k-independence is another manifestation of the Stone-von Neumann uniqueness the-
orem which says that - provided certain regularity conditions are fulfilled - all the irreducible
representations of Q and P with the property (259) are unitarily equivalent, i.e. have the
same matrix element whatever Hilbert space is employed!

Before drawing consequences let me derive the relation

N = AN K) A(K) = Ko — k1 (266)

in a different way: If f(K,) is a “suitable” function of the operator Ky, then a repeated
application of the relations (237) yields

K_f(Ko) = f(Ko+1)K_, f(Ko)Ky =K f(Ko+1), (267)

where “suitable” means that f(K;) and f(Kj + 1) are both well-defined operators; We then
have

AMA = K (Ko+k) K- = (Ko+k—1) 'K, K_ = (Ko+k—1) " k(1—k)+ Ko (Ko—k)], (268)

where the first of the relations (239) has been used.
As k(1 — k) + Ko(Ko — k) = (Ko + k — 1)(Ko — k) the Eq. (266) follows immediately.
Explicitly written in terms of the operators Ky, K and Ky we have

—

~ 1 1 -~ ~ 1~ -
QIK) = 7 (A+ AN = 7 (K,By, + BLK,) + 7 (KyBy, — BrK,), (269)
S i T~ ~ 1 - ~
P(K) = 7 (AT — A) = 7 (K\By — ByK,) — 7 (K2By + BpKs) . (270)

These relations show that - contrary to the classical case (cf. Eqs. (2I5) and (2I6])) - the
operators Q and P are not just proportional to K, and K5, but contain mixtures of both!
5.2.2 Two kinds of energy spectra for the quantum mechanical HO

We now come to the crucial point of the whole paper:
Obviously the (dimensionless) (g, p)-Hamiltonian

HIQUR), P(R)) = 5 Q% + 5 P = A+ 27)
obeys the eigenvalue equation
H(Q,P)|k,n) = (n+1/2) |k, n). (272)
On the other hand we have for the (p, I)-Hamiltonian
HK)=EK,, K=n(KyK,K,), HE)=hwkK,, (273)
that o
H(K)|k,n)=(n+k)|k,n), k£>0. (274)

The last equation shows that the ground state energies of the Hamiltonian (273)) in principle
may take any real positive value!
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In sec. 3 we encountered the values k = 1 (for SO'(1,2)), k = 1/2 (for Sp(2,R)) and
k = 1/4, 3/4 (for the 4-fold covering group Mp(2,R) of SO'(1,2)). One can show (see below
and Appendix B) that for an m-fold covering (m € N) the lowest possible value for k is
k = 1/m. Thus, we can make k£ > 0 as small as we like by going to higher and higher
coverings.

These surprising new possibilities come, of course, from the non-trivial topological struc-
ture R* — {(0,0)} = S* x R* of the phase space S, a structure which is being “erased”
when going over to the phase space S;; with its trivial topology R* !

Actually, the more general eigenvalues of Eq. (274]) are a consequence of the “richer” quantum
theory of symplectic group Sp(2,R) of the plane which constitutes the “canonical” group of
the phase space S, ;.

It 1s, of course, of crucial importance, to look for this additional structure experimentally
(see subsec. 1.3 of the Introduction)!!

If k # 1/2 then the two energy spectra

B9 = hw(n+1/2), ESD =hw(n+k), (275)

are different and transitions between different levels should (in principle) be possible if the
E,(CZOT;I) - levels do appear at all in nature or can be produced in the laboratory! Of special
interest here is the case where 0 < k < 1/2 because then transitions from the (g, p)-ground
state to a lower lying (¢, I')-level are in principle possible provided an appropriate dynamical
mechanism is available. An obvious challenge is that for k& # 1/2 the same states |k, n) belong
to different energy eigenvalues of the operators H(Q, P) and H(K’)' Notice, however, that
for ﬁ([?) the “observables” K, K; and K, are the primary ones, whereas Q and P are
“derived” or “composite” quantities, at least in the present context!

It may also happen, perhaps, that transitions between levels of the two different spectra
are more or less strongly impeded and that, therefore, certain levels remain “in the dark”!

(See also sec. 8).

5.2.3 Time evolution and the ground states for different covering groups

Let us look at the provoking situation from a slightly different point of view:
The unitary time evolution operator for the (¢, I)-model of the HO is

Ulf)=e 1l H=K,, i=90. (276)
This equation shows that the rotation angle # can be identified with the time variable ¢
which - in principle - represents the universal covering space of the circle S*.

From the commutation relations (233]) and the formula (I62) we get the (Heisenberg) eqgs.
of motion

U(-t) K, U(f) = cosiK; —sint Ky, (277)
U(-t) Ky U(f) = sint Ky + cost Ky, (278)
U-HK, UG = 'Ky, (279)
U)K U@l = e"K_. (280)

As the operator ([261) commutes with U(f) the creation and annihilation operators A" and
A from Eq. (263) transform as K, and K_ in Egs. (279) and (280). This means that the
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position and momentum operators (269) and (270) have the usual time evolution:

U(-)QU({) = costQ +sint P, (281)
U(-t)PU({) = —sintQ +costP. (282)

Here, all the explicit k-dependence has dropped out!
However, because of the relation (266]) we have

Ut = 2r) = e 21, (283)

If k£ is a positive rational number, & = n/m, n,m € N, then the unitary operator (283)
belongs to the center of a unitary representation of a m-fold covering of SO'(1, 2), the “lowest”
representation of which is given by k = 1/m. Only for k = 1,2,..., the operator (283)) is the
identity operator, representing the identity of SO'(1,2). If k = n/m then U(t = m 27) is the
corresponding identity operator.

Here we see, why the values of k in the interval (0, 1] may be generically the most important
ones in the context of the HO (see also the related discussions in Ref. [63]). The center

Loy = (¥ 0™ =1, m} (284)
of the m-fold covering may be generated by the single element
e2rim (285)

For 4 = m + 1 we obviously get the same element. Corresponding arguments apply to the
unitary operator (283).

The relation (283]) may also be interpreted in the following way: Applying the operator
(276) to the ground state yields

U(#) |k, 0) = e **F |k, 0) . (286)

As t = wt can be used as an angle parametrizing one of the covering groups of the subgroup
SO(2), the interval

T27r,k = —, W= kw (287)

Wi
is the time the system needs in order to “run” through that group. So in a heuristic sense
the index k£ and the “angle” wT5, , are complementary! The larger the latter the smaller the
former! I repeat: The index k can principally be extremely small as long as it stays positive!

5.2.4 The index k in number states matrix elements

The index k plays a significant role in matrix elements of the operators f(j, 7 =0,1,2, with
respect to the number states |k, n):

It follows from ) .
Klzi([?++[~{_), Ky = (K, —K), (288)

that .
(k,n|Kjlk,n)y =0, j=1,2, (289)
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and

~ _ _ 1
so that
- . 1 - ~ k
(AKl)k,n (AKQ)k’n = 5(712 + 2kn + k) 5 (AKl)k’nzg (AKQ)kyn:() = 5 s (291)

Thus, K; and K, have the same standard deviations (“uncertainties”) and the product of
these uncertainties in the ground state is given by k/2, i.e. the smaller k£ the smaller the
minimal standard deviations!

For the operators Q(K) and P(K) we have
(k,n|Qlk,n)y =0, (k,n|Plk,n)=0, (292)
and
(AQ):, = (k,n|Q*k,n) =n+1/2, (AP)?, = (k,n|P*|k,n) =n+1/2, (293)
which are the usual k-independent relations, implying

(AQ)k,n (Ap)k,n =n+ 1/2- (294)

5.2.5 Space reflection and time reversal

From Eqgs. ([277) and Eqs. (278), or Eqgs. (281) and (282) we can infer the space reflection
operator B B B B _
II: QUi =-Q, NPI =—-P, I=U(l = —n) =em"+H (295)

Now _ _
M2 =™ | Mlk,n) = (—=1)" ™ |k, n), (296)
which shows the k-dependence of the phases associated with the so defined operator II.

The antiunitary time reversal transformation T' (cf. Eq. (232)) may be implemented by
the substitutions

T: Ky— Ky, Ki>K,, Ky——Ky, i——i, (297)

which imply
T: Ki— Ky (298)

and leave the commutation relations (235]) and (237) invariant. The transformations (297)
imply the correct ones for the operators (269) and (270).

Contrary to what happens in the case of the canonical pair angle and orbital angular mo-
mentum where reflection and time reversal invariance are generally in conflict with fractional
orbital angular momenta [25] this is not so for fractional ground state energies o k of the HO!

Like in the case of the corresponding Poisson brackets (227) and (228) the commutators
[K 4, A] etc. are rather complicated and will not be listed here. One can nevertheless define
the following “squeezing” operator [70] “by hand”:

S=e V7, V= %(AZ — (AT?), y€eR, (299)

which has the property ~ ~ _ -
SQSJr:e’YQ, SPST:efAVP, (300)
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5.3 Restoring the physical dimensions

Up to now I have used dimensionless quantities, classical and quantum ones, as introduced
in subsec. 2.1. Here I briefly summarize the main physical quantities with their dimensions
restored. For the classical quantities the procedure is obvious from subsec. 2.1. So I confine
myself to the operators and their eigenvalues:

The primary operators with the dimension of an action are

K;=hK;, j=0,1,2, Ki="hKy; (301)
they have the commutation relations (cf. Eqs. (238]) and (231))

[Ko, K1] - ihK% [Ko, K2] - _ihKla [Kh K2] = —ihKoa (302)
and
(Ko, K\]=hK,, [Ky, K]=-hK , [K,, K ]=-2hK,. (303)
We have, e.g.
Kolk,n) = h(n+k) |k,n). (304)

The Hamilton operator is given by
H(K)=wKy, Hlkn)="hwn+k)lkn). (305)
The number operator remains dimensionless:
N=K,—kl. (306)

The conventional annihilation and creation operators (263]) should also remain dimensionless:

AR)=Bo K, AK)=K,By, By=(Ko+k) "> = (N+2k) "2, (307)
so that
[A, AT =1. (308)

The physical position and momentum operators are then given by (cf. Egs. (38) and (39))

B h
j%(A*—A), Q Pl=ifi, do=y/=—. (309

Q:E(AHLA), pP=

6 Three types of coherent states

6.1 Definition and physical interpretation

It is well-known [71] that one can associate three different types of coherent states (CS) with

the Lie algebra of the f(j, j =0,1,2, in a representation D,(:r): Barut-Girardello, Perelomov

and the conventional Schrodinger-Glauber coherent states. The three kinds of CS may be
defined by the relations

K_|k,z) = z|k,2), z=|z]e™ eC,

Ev |k, )) = Mk, A=[Ne?eD,
E,. = (Ko+k)7'K_, D={)\eC, |M\<1},
Alk,o) = alka), A=B,K_, a=la|le P eC.
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The minus-sign for the phases of the complex numbers is mere convenienc.
Expanding with respect to a number basis |k, n) yields [71]

he) = —3y 2 Ik m). (314)

HEREDS (2|Z)|inn! = T(2k)|2]" % L 1(2]2]) ; (315)

00 1/2
kA = (=P <(2:!)"> N k,n), A< 1; (316)
ko) = elaPr f: ) (317)

The function I, (z) in Eq. (313)) is the usual modified Bessel function of the first kind:

1o = (5) S (3 @1

n=0

The series (BI4]) - (BI7) are formal ones the convergence properties of which can be specified
once the number states and their Hilbert space are given explicitly.

The physical interpretation of the complex numbers z, A and a can be deduced from the
following expectation values:

6.1.1 Barut-Girardello coherent states

(Bobre = (b 2l Rolk, 2) = k+ |2l pi(]2]) (319)
pk(|z|):%<l, k> 1/4, (320)

(AR, = |21t = g(l=D] + (1 = 2k) |2l pull2]) . (321)

(N, = g, = |2l pe(|2]), N=K,— k1, (322)

(Ve = |2 + (1= 2k)2] pe(l2]) (323)

(Ris = 5" +2)=R(:) = || cos, (324)

(Fobie = (=" = 2) = ~() = o] sing, (325)
(AR = (AR, = 5 (Ko, (326)
tand = (Ko)p./(K1)k.; (327)

The behaviour of the ratio py from Eq. (820) for all £ > 0 is discussed in Appendix C.

Ref. [13] has the opposite sign convention.
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6.1.2 Perelomov coherent states

1+ A2
1= [\2

<I~(0>k,>\ = (k,\|Kolk,\) =k =k cosh |w],

' ~ 1
w=|wle™ € C, A= tanh(jw|/2) e, |w|:1n< +|A|> |

1=\

(N)ka = figy = k(cosh|w|—1),
= NP = e ksinh ] = \/r (e + 20
g + 2k e ’
~ k 1
(AKo)gn = 5 sinh®w] = g (g + 2k)
’ 2 2k
~ A
(Kiyer = 2k : _| ||)\|2 cos = k sinh |w| cos @,
- k14 2cos20 |A]? + |Al*
AK))E, = =
( l)k,/\ 2 (1 _ |)\|2)2 )

- A
(Ko)kx = 2k1_|7||)\|2 sin @ = k sinh |w| sin @,

. k1—2cos20 |\?+ [\*
(AK )2 = 3 )
T2 (=P
(KoYpn = (Ki)pa+ (Ko)in+ K
tanf = < 2> /<K1>k,)\

6.1.3 Schrodinger-Glauber coherent states

(Qra = \/5%(04)2 Zflalcosﬁ,
~ (Pha = V23(0) =p=—V2/a|sinj,
<H(Q7P)>k,oc = |Oé|2—|—1/2,

<K0>k,a = <N>k:,a +k= |Oé|2 + k, N = KO — k1
(K\)ko = |afcospB(k,a|VN +2klk, a),
(Ko)pa = |ofsing(k alVN + 2k|k, o),
o 2n
(k, |V N + 2k|k, o) = eI Z V2k +n Jof™ =h
n.

n=0

’—‘K‘

(leef)
tanf = <k2>k,a/<k1>k,a

6.1.4 Physical interpretation of the complex variables

Barut-Girardello states

(328)

(329)

(330)
(331)

(332)

(333)
(334)
(335)

(336)

(337)
(338)

(339)
(340)
(341)

(342)
(343)
(344)

(345)

(346)

Eqs. ([324) and ([323)) show that we can interpret $(z) as the classical variable hy and (z)

as ho, i.e. we have

z=hi+ihy=hi=|zle ", [2[=1>0, p=¢.
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Deviations from the classical value |z| etc. in the relations (BI9) and ([B2I) — (323) are
controlled by the ratio pg. It has the limiting values [71]

2| |2I*

or(lz]) — 2% (1 — m) for |z| — 0, (348)

and for very large |z|, the correspondence limit, we get

k-1 16(F—k)+3
4|z| 32|z]?
4k —1 8Kk>—6k+1

2 - -3
pillz)) < 1-— o7 + 122 +O(]z|°) for |z| = o0 . (350)

1 +0(]2]?), (349)

X

pi((2])

The last two relations imply that for large |z|

(Ko = |l +5+0(1), (351)
(MK}, = glel +0(2 ), (352)

s =< |24~k O(H™), (333)
(ANR, = 5l + 002 ™) < s (354)

Perelomov states

Here the situation is different from the previous one: The expectation values (333]) and
[335) are proportional to the index k, a completely non-classical quantity. This suggests to
divide out the factor £ and make the “classical” interpretations

hy =1 cosf, hy=—Isinf, I=sinh|w|, |w/>0, 0=¢. (355)

It means that

. = 1
|M:m@+vp+g,|M:mmmwm:—————, (356)
1+VIZ+1
so that _ _
hi+ih
Aot (357)
1+VIZ+1
It follows that the expectation value (328]) of K, approaches the value k I in the classical limit
for which |w| — oo or |A] = 1.
It is remarkable that the above expectation values with respect to the states |k, \) are
all proportional to k, i.e. they have a sensitive k-dependence. This may be of interest for
experimental tests.

Schrodinger-Glauber states
The first three of the expectation values (339) - (844]) are well-known. They show that

o> =1, B=¢. (358)
The others have been discussed in subsec. 3.3 of Ref. [13].
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Measuring the phases . .
The three relations ([B27), (338]) and (346]) show that the operators K; and K5 can be used
in order to “measure” phases of complex amplitudes.

6.2 Generation from the ground state

The coherent states (B14) - (BI7) may be generated from the ground state |k,0) by unitary
or similar operators. The unitary operators are also useful for the experimental generation of
those states (see subsec. 6.5). Another problem is the appropriate experimental preparation
of the ground state |k, 0) on which the unitary operators act.

6.2.1 Schrodinger-Glauber states

The coherent states (B17) can be generated from the groundstate |k, 0) by the unitary operator
Ugg = e*A' =07 A = gmlal’/2 ga AT g=a” A 7 1k 0) = |k, ) (359)

which is well-known for the case &k = 1/2. The operator (859) has the “displacement” (trans-
lation) properties

U;[GA USG =A+ ., []vaz4Jr USG = AT +a* 5 (360)
so that
Ul ATAUsq = ATA+ a AT+ a* A + |of?, (361)
with
(k,0|UL AT AUsq|k, 0) = |a)?. (362)

If v becomes time-dependent, the transformed number operator (B61]) corresponds to a driven
harmonic oscillator, i.e. an oscillator coupled to an external source [72]. Such external sources
are actually used in order to generate these coherent states experimentally [73]. In textbooks
and articles laser light is frequently mentioned as being in a coherent state. The characteristic
Poisson distribution of the associated photons is, however, only reached for lasers well above
threshhold [74].

6.2.2 Perelomov states

The states (316) can be generated from |k, 0) by the unitary operator [75]
Up = 6(w/2)f(+—(w*/2)f(, — e>\f(+ eln(l—\/\|2)f(o e—/\* K_ . Up |k,0> — |k, )\> , (363)

where the complex number w is the same as in Eq. (329).
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Instead of the displacements (B60) we here have the Lorentz transformations [76]

UL KyUp = cosh|w|Ky+ (364)
+% sinh |w|(e ' K, + € K_),

UL R, Up = %(cosh|w|+1)f(++ (365)
+%e%9(cosh lw| — 1) K_ + ¢'? sinh |w| Ky,

ULK_Up = %(Cosh lw| +1) K_ + (366)

1 . ~ B ~
+§e_2w(cosh lw| —1) Ky 4 ™% sinh |w| Ky,

The relation corresponding to Eq. (862) here is
(k, O|ULK Up|k,0) = k cosh |w]. (367)
In terms of the vectors
K, = (K, K,), @=(cosb, sinf), (368)
these relations may be written as
UL KyUp = cosh |w| Ky + sinh |w| (7 - K.) , (369)
ULK Up = K, + (cosh|w|—1)(7- K.) 7+ sinh |w| i K. (370)

The operator ([B63]) now generates interaction terms for the original K, which are propor-
tional to K, and K_, or to K; and (or) Ky. (Their classical counterparts for # = 0 and
0 = m/2 were briefly discussed in subsec. 2.3.) The use of the induced interaction term in Eq.
(B69) in theoretical descriptions of experiments will be discussed in subsec. 6.5.

6.2.3 Barut-Girardello states

Here the situation appears to be more complicated, because no corresponding unitary operator
has been derived by now. The present situation is as follows [77]:
Because of the relation (284) we can write

V4 > Ve ~
k)= K, )"k, 0) . 371
n; Tk)nn!' ) nz:% (2k)nn!( +)"|k, 0) (371)
As !
B8 0) = (Be)",0), By = Ko(Ro+ 1) = (B ), (372)
where Ej _ as in Eq. (B12]), we have
N e Jkn) = Fi(2) [k, 0), Fi(z) = & Pt (373)
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The non-unitary operators Fi(z) and F}l(z) = exp(z* E;_) have the following properties:
(k. OEL (=) Fi(2) [k, 0) = gi(|2*) > 0, F{(2) [k, 0) = [k, 0), Fl(2) [k, A) =€ [k, \), (374)

where gi.(]2]?) is defined in Eq. (315) and |k, A) in Eq. (311).
Thus, we have
i.e. Fj(z) generates the unnormalized Barut-Girardello states. It corresponds to the similar

generating parts
e Al AR (376)

of the unitary operators (359) and (B63) for the unnormalized Schrodinger-Glauber and
Perelomov states. But, contrary to A" and K, the operators Ey, and Ej_ are not ele-
ments of a Lie algebra. They have - among others more complicated ones - the commutators

2k —1

B, , Ep.]=— . :
B ] (Ko + k) (Ko + k — 1)

[vaa Ek,+] =1, [Ek,*a kJr] =1. (377)

It follows from the completeness relation (B96]) and the last of the relations (374) that one
has for F (z)F}(z) the “spectral representation”

FUORG) = [ i) e k) . (378)

6.2.4 Transitions between Perelomov and Barut-Girardello coherent states

Notice that, according to Eqs. (3I4]) and (B16]),

L—[AP)* -
(k,)\|k,z> = ¢6A z
gk (|2]?)
(L= AP o w
Ao 2) = [k Mk, 2)|? = 2 ?Allzf cos(e=0) 379
As [71] Fek)
g(]z*) = BN 2272 2 1+ O(1/]2])] for large |2, (380)

we get for the transition probability in the (classical) limit of large |z|:

2 Q —4|z — Cos(Q—
(A & 2) < W\/_M [ 2](1 — | A2k e 2L eos@=01 for Jarge |2]. (381)

According to Egs. (347) and (B47) we have

k
A =<1-— B for large |z|. (382)

Inserting this approximation for |A| into the relation (B8I]) yields in leading order for large |z|

2 2k 2k
Z)VM672\Z\[17(:0S(¢70)] for |z| — c0. (383)

T T(2k) VI

pk()\ e
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Expanding cos(¢ — #) around (¢ — ) = 0 gives an approximate Gaussian distribution for

PE(A & 2):
27T (26)* 66

CONVEN

This shows that for a given large |z| the transition probability is maximal for ¢ = 6.
On the other hand, it follows from

(A & 2) < for |z| — co. (384)

1
lim (2k)* =1, TI(2k) — 5 for k= 0", (385)

k—0t+

that p, becomes very small for very small £.
Properties of the matrix elements (k,«lk,z) and (k, |k, \) are discussed in chap. 3 of
Ref. [13]. In the special case k = 1/2 they are described in subsec. 7.1 below.

6.3 Time evolution

It follows from

U@)|k,n) = e "Rk n) | U®F) = e Kol (386)
that

UMDk, z) = e *k, (D), 2()=ze ', (387)

UMD A) = e kD), AE)=re ', (388)

UD)k,a) = e *k a@)), al)=ae. (389)

These equations show that the time evolution does not change the form of the coherent states.
It essentially shifts only the phases of the complex numbers z, A and « linearly in time:

d—>op+t, 0 50+1t, B—pB+1. (390)

6.4 Some general properties

I finally list some general properties of the above coherent states which are very useful for
applications:

6.4.1 Scalar products

Using the orthonormality of the number states |k, n) two different states within one of the
types listed in Eqs. (814) — (8I7) have the scalar product

k, 2|k, z1) = N (k, zo|k,n){k,nlk, z; 9 (25 21) ; 391
zall ) nz | o) = Vr(122?) ge([21]?) 390
(ks Xalk, M) = (1= MR (1= Ao )R (1= A5 0) 72, (392)

(alay) = e —(la2[*+|a1]?)/2 a5 a1 (393)

Different states are not orthogonal, but they are “complete” in the sense that they provide a
resolution of the identity as follows [71]:
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6.4.2 Completeness

/Cduk(z)|k,z>(k,z| -1, (394)
2

() = o o™ Kaua (212) (=P dlds, k> 0: (395)

/Dd,%(x) NN = 1 (396)
dun() = 2k7r_1(1—|)\|2)‘2|)\|d|)\|d9, k> 1/2: (397)
%/(Cd2a|a>(a| _ (398)

Pa = dR(a)dS(a). (399)

The modified Bessel function of the third kind K, (2|z]) (cf. Ref. [79]) in the measure (395) has
the property K_,(2|z|) = K,(2|z|) which makes the measure well-defined for £ > 0, because
in the limit |2| — 0 one has

L(=v) |2

Ko(2|z]) — In(1/]2]), K,(2|2]) — F(l/)2|z|u )

for0 < | <1, (400)
and .
Ki(2]z]) = 1/(2|2]) + |2| In|z], K,(2|z|) — T(|v]) |z|7‘”| for |v| > 1. (401)

The extension of Hilbert spaces with the measure ([B97) for states |k, \) with 0 < k& < 1/2 will
be discussed below.
The relation (398)) holds for all £ > 0.

6.4.3 Hilbert spaces of holomorphic functions associated with the three types of
coherent states

It is well-known that the three types of coherent states (B14) — (BI7) can be associated with
Hilbert spaces of holomorphic functions [80], the (normalized!) basis elements of which are
given by the coefficients under the sums of the expensions with respect to the states |k, n) [71]:

Barut-Girardello holomorphic functions
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(f27 fl)k,z
diu(2)

fk,n(z)

~

Ag(z3,21) = i n(22) fon(21)

M]3

I
=)

n

/@ djig(22) Au(25 2) fion(22)
/C djig(22) Au(25 ) (22)

/ dig(2) A (25, 2) A (27, 21)
C

(fo, f1)k, = Z(Qk)n nlay ,an1,

n=0

[ i) BAE).

wr?%) 1212 Ko (2]2]) d|2]dé, k>0,
ﬁ * eones Fom)bor = Oz -
k(23 21)

frn(21),

f(z1)s f(z) = ian ar

Ag(z3,21)

f](Z) = Zan,jz”, ] = 1,2
n=0

(402)

(403)
(404)
(405)
(406)
(407)

(408)

Because of the properties ([{05) — (@07) the function Ag(z5,2) is called the “reproducing
kernel” of the Hilbert space. It has a number of properties usually associated with the (more
singular) “delta-function” §(zy — x;) for other spaces of functions!

In the Hilbert space ([@02]) a representation of the Lie algebra (237]) is given by

d d?

. d . .
Kozzd—+k, K. =2z, K_.=2k—+2—
z

Perelomov holomorphic functions

dz dz?’

The corresponding relations for the states |k, \) are

(f2, [k

dfik ()

(€kmas €homy ) kA

= 5n2 ni s ék,n()\)

- / diin(N) £V AN,

2k — 1
= Bl AR AdA o,
T

n!

b
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Ap(A3, A Zekn %) Ern(z1) = (1= A5\) 2, (412)

/Ddﬂk()\Q)Ak()\;,)\l)ék’n()\Q) = érn(A1), (413)
[ 00 240520 700 = 700, fm:nio%w, (414
/D () A VAL A = A% A1), (415)
(s i = i i et B = fjb V=12 )
As [81
. [ g < FEEZ D (417
; 2k +n)

the factor 2k — 1 in the measure (I0) is multiplied by I'(2k — 1), yielding I'(2k), which means
that the integral and sums ([10) — (I5) are well-defined for £ > 0. The right-hand side of
Eq. (A16) may be used in oder to define the scalar product for all £ > 0. The properties (413)
— (@I3) can be interpreted as the completeness relation for the functions (411 where k& > 0.

In the Hilbert space (410) one has the following representation of the Lie algebra (237)) by
self-adjoint operators

- d d -
K — K, =2 2 K =—. 41
0= )\d)\-i-k n k)\+)\d)\ - (418)

Bargmann-Segal holomorphic functions

The Hilbert space of holomorphic functions associated with the Schrodinger-Glauber co-
herent states (B17) was thoroughly discussed by Bargmann [82]. About the same time such
Hilbert spaces were also introduced by Segal into quantum field theory [83] Such a Hilbert
space has the following essential properties:

oo = [ ditte) (@) fi(0). (419)

dii(er) = d270‘e o
(@) = S oo = B (420)
A(a;,m):iﬁ:(am(al) _ e, (421)
[ daten) Moz, 0n) (o) = Bu(on), (422)
[ datos) Mg, flan) = s, f(a)zgcna”, (42
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/C dii(0) Aok, ) A", 1) = Aok o), (424)

(f2, f1)a Zn’ Cp1 Cn2 s fila) :ch,ja", j=12. (425)

n=0

Recall that df*(«)/da = df (a*)/da = 0 for a holomorphic function f(a).
The mutual adjoint annihilation and creation operators in the Hilbert space (I9) are
(82, 84]

d
a=-, a' =a, [a,a]=1. (426)
Inverting the relations (263)) yields the following generators for the Lie algebra (237)
. - . d d
Ry=N+k, Ki=aVN+2%, K =VN+2%—, N=a——. (427
a a

6.4.4 Probabilities for transitions to number states

Barut-Girardello states
From the expansions (BI4]) — (B17) one immediately can read off the following transition
probabilities

. pr(n = Z) = s
(2k)n 0! gi(|2]?) gk (l2]?)
In applications one would like to express |z| in terms of the average number 7y , , here given

by Eq. (322). As the ratio pi(|z|) depends on |z|, too, the inversion |z| = |z|(7g ) is not
immediate. But for large |z| one has in leading order [71]

T'(2k) e?

pr(n <> 2) = (428)

p(|2]) = 1, ge(|2]?) — 2 /1 |22 12 for [z] = o0, (429)
so that asymptotically
pr(n < 2) < _ 2T (Ag,,) 2RI =270 (430)

n!T(2k + n)

As the Barut-Girardello states have not yet been produced in a laboratory the distribution
(@30) has not been tested experimentally (to the best of my knowledge)!

Perelomov states
Here we get

2k)

pr(n > X) = (1 — A7) == ( AP, pr(n =0 0) = (1 [AP)*. (431)

Using the first of the relations (B31I]) we can also write

2k (2k), T\ "
A) = : . 432

As the Perelomov states for £ = 1/2 can be produced in the laboratory (see the next subsec.),
the distribution (432)) has been verified experimentally by counting photon numbers emanating
from a Perelomov (squeezed) state [85].
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Schrodinger-Glauber states
Here we have the usual Poisson distribution

a2n 2
lof™ e

pr(n < a) = |cv|2 = Nl . (433)

As to its experimental verification see subsec. 6.2.1 above.

6.5 Physical dynamics described by the basic operators Kj, K, and
K_

The conventional annihilation and creation operators a and a' are a convenient and popular

tool in order to build Hamiltonians which describe interactions between elementary exci-

tations, particles and modes, be it scattering, annihilation or creation of them. Completely

similar one can construct physically useful model Hamiltonians from the three basic operators

Ko, K+ and K_ (OI' K1 and KQ)

Actually there are already quite a number of such models in use, especially in the field of
quantum optics. They usually come in a form in which the K ; are expressed in terms of one
or several pairs of a and a'. I shall list several typical examples, without any claim of even
partial completeness. I shall merely mention explicitly some quite early and some very recent
original papers, but otherwise refer to the corresponding chapters in textbooks [86] and their
associated References.

An early review on the dynamics of models expressed in terms of the generators K j is
Ref. [87]. Early papers using that Lie algebra explicitly for the generation of squeezed states
are Refs. [88]. Usually all those applications are discussed in the language of the group
SU(1,1). T have stressed in the Introduction and in sec. 3 why the language of the isomorphic
symplectic group Sp(2,R) is more appropriate because of its potential for generalizations to
higher dimensions.

An essential model to start with is the one which we encountered in the context of the
unitary transformation (363) which generates the self-adjoint interaction

(sinh [w|) W (0, K) = (1/2)(sinh |w])(e ™ K, + ¢ K_) = (sinh |w|)(7F - K) (434)

of Egs. (364) and (B69). The angle 6 here plays the role of a mixing angle as to the operators
K, and Ks: For = 0 the term (@34) is pure K, and for § = /2 pure K,. (As to properties
of the classical mechanics counterpart of these interactions see subsec. 2.3)

6.5.1 Generation of Perelomov coherent states

As the operator Up from Eq. (363) generates the Perelomov coherent states |k, \) from the
ground state, the interaction ([@34]) can be used to generate such states experimentally!

In applications the operator W from Eq. ([@34) is generally multiplied by a “classical”
function
G[g(t),C(t,a)], containing coupling constants g(f) (possibly time-dependent) and (possibly)
time-dependent external “classical” fields C (£, a) which themselves may depend on additional
parameters a, e.g. second-order or third-order non-linear susceptibilities (x? or x®) [89],
spatial coordinates etc.

The potential

=

V =Gly(t),C(t,a)] W(0, K) (435)

54



is then being dealt with in the interaction picture, where V' determines the time evolution of
the states and the free Hamiltonian hw Ky that of the operators.

The interaction Hamiltonian (434) is linear in the operators K;. Another possibility is to
have interactions which are bilinear in the operators K, e.g. proportional to K K_ in the
description of scattering processes (see below). These can be diagonalized with the help of
the Casimir relations (239).

6.5.2 One-mode generated Lie algebra so(1,2)
Already in section 3.5 we encountered the one-mode representations

. 1 ~ 1 1 ~ 1 ~ 1
KOZZ(QaTa—l—l); K+:§GT2, K,:§a2, K1:—(GT2+G2)a Kzz—(aTZ_GQ)- (436)

4 43

Inserted into Eq. ([434) the term W describes the creation or annihilation of two identical
modes (photons).

Degenerate parametric down-conversions and amplifications

Such processes occur experimenally in so-called “degenerate parametric down-conversions”
where a classical electromagnetic (“pump”) wave of frequency 2w generates two identical pho-
tons each with frequency w in a x® nonlinear medium and amplifying one of the “quadra-
tures” (a +a') and i (a' — a) and reducing the other. Thus, in applications one often chooses
0 = m/2 in Eq. (435) in order to generate squeezed light (cf. Eq. (I70)).

Squared hermitian amplitudes
The square of the hermitian field mode

E=Xae ™" +a' ™), NeR, (437)
may be written in terms of the operators ([d30]) as
E? = 4)? [Ky + K, cos(2wt) — Ky sin(2wt)). (438)

This expression has also been used for the generation of squeezed light [90].

6.5.3 Interactions bilinear in the K;

Optical Kerr effect

In some materials a light beam has an additional term in its refractive index which is
proportional to the intensity of the light [91], i.e. that extra part of the index is proportional
to the square of the electric field. Phenomenologically this means that the polarization of the
material is proportional to the 3rd power of the electric field, with a nonlinear coefficient ).
A very simple quantum mechanical model for the associated elementary process is given by

the interaction term o
gxPaNa=gxy®da'ataaxx \OK. K_, (439)

where, according to Eqs. (239) and (I4R), the product K, K_ can be replaced by Ko(K, —
1)+ (3/16)1. Thus, the total Hamiltonian can be diagonalized in terms of the number states
|k,n), where k = 1/4 and = 3/4.
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Degenerate four-wave mixing

The simple model interaction Hamiltonian (439) may also be used in order to describe
another optical process in a non-linear medium with 3rd order susceptibility: Two high in-
tensity classical optical light beams of the same frequency w interact with a weak (quantum)
beam with frequency w, creating a fourth photon beam, again with the same frequency w
and special properties of interest, e.g. squeezed light. The process, and the corresponding
“nondegenerate one” mentioned below, is called “four-wave mixing” and played a prominent
role in the first stages of light squeezing [92]. The annihilation and creation of two photons
are represented by the operators a and a'.

6.5.4 Two-mode generated Lie algebra so(1,2)

A much larger variety of unitary irreducible representations can be generated with two “canon-
ical” annihilation and creation operators [93]:

N N .1
Ky =dlal, K_.=aja,, Ky = 5 Tay +alas + 1), (440)

obey the commutation relations (237).

The tensor product H{™ ® H5 of the two harmonic oscillator Hilbert spaces contains
all the irreducible unitary representations of the group SU(1,1) =2 SL(2,R) = Sp(2,R) (for
which £ =1/2,1,3/2,...) in the following way:

Let |n;);, n; =0,1,..., 7 = 1,2, be the eigenstates of the number operators N; = a;r-aj,
generated by a;r- from the oscillator ground states.

Then each of those two subspaces of H{** @ H5* = {|n1)1 ® |ng)2} with fixed [n; —ng| # 0
contains an irreducible representation with Bargmann index

k=1/2+|ni —no|/2=1,3/2,2,..., (441)

i.e. the operator N; — Ny commutes with all 3 operators in Eqs. (440)
The number n in the eigenvalue n + k of K is given by

n =min{ny,ne} (=0,1,2,...). (442)

For the “diagonal” case ny = n; one gets the unitary representation with £ = 1/2.
Inserting the operators (440]) into the interaction (435) yields other examples of associated
physical processes:

Nondegenerate parametric down conversion and amplification

In analogy to the degenerate case mentioned above here a classical light beam of frequency
2w generates two photons of now different frequencies w; and w, with 2w = w; + ws in a
nonlinear medium.

Nondegenerate four-wave mixing
Here the frequencies of the two pump beams and those of the photons are no longer equal.
Now the operators K, and K_ in the effective Hamiltonian (439) are replaced by those of

Eq. (440).
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Mach-Zehnder interferometer
The group SU(1.1) = Sp(2,R) has played a prominent role in the quantum optical de-
scriptions of the venerable Mach-Zehnder interferometer [94].

6.5.5 Generation of Barut-Girardello coherent states

Contrary to the Perelomov coherent states the Barut-Girardello coherent states have not yet
produced in the laboratory (to the best of my knowledge!). There exist, however, a number
of proposals how to generate them [95]. One problem is the the lack of a unitary operator
analogously to Eq. (363) as already discussed in subsecs. 6.2.3 and 6.2.4.

6.5.6 Holstein-Primakoff type generators

The one-mode and the 2-mode versions of the generators Ky, K, and K_ from above can
only produce representations with £ = 1/4, 3/4 and k = 1/2, 1, 3/2, .... As we are especially
interested in representations with small &£ < 1/4 we have to use corresponding representations.
Some of them will be discussed in the next Section. If one wants to construct those with the
help of the usual annihilation and creation operators one can try the nonlinear Holstein-
Primakoff-type operators [27]

Ko=N+k, K,=dVN+2k K =+vVN+2ka, N=dla. (443)

Inserted into the interaction term (434)) and (E35]) one has to find experimental ways in order
to generate a ground state with & # 1/2 (see also subsec. 9.1) and to implement the nonlinear
factor V' N + 2k [96].

6.5.7 Additional proposals for using symplectic groups in quantum optics

There have been a number of papers with proposals to use symplectic groups Sp(2n,R), n >
1, in quantum optics which are merely quoted here [97].

7 Examples of explicit Hilbert spaces for the (¢, I)-model
of the harmonic oscillator

7.1 The case k =1/2

As a first step let us discuss the well-known quantum mechanics of the HO in the framework
of concrete irreducible unitary representations of the group Sp(2,R) with Bargmann index
k = 1/2 [98], before passing to the more general case with k& # 1/2:

7.1.1 The Hardy space H? on the circle as the Hilbert space for the HO

The simplest example is the “Hardy (sub)space” H?Z(S', dv) of the usual Hilbert space
L*(S', dV) on the unit circle S' with the scalar product

o) = 5= [ 9 BOAO), (444
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and the orthonormal basis .
e’ ner. (445)

The associated Hardy space H_%(Sl, d?) is spanned by the basis consisting of the elements
with non-negative n, namely

en(9) =€ n=0,1,2,---. (446)

If we have two Fourier series € H? (S', d9),

f1(09) :ianem, fo(V9) :ibnem, (447)
n=0 n=0
they have the scalar product
(for fi) e = — / dv) f3(0) f1 (0 Zb* n - (448)
The reproducing kernel here has the form
A2, ¢1) i en(02)" enlpr) = (1 — e/ P1=e) =1, (449)
n=0
with the usual property
1 r2r
5 | A2 802, 01) enl2) = enlpn). (450)
The kernel has a singularity (pole) for ¢3 = ¢;. In calculations one has to replace

exp(i (w1 — ¢2)) by (1 —€) exp(i (o1 — p2)) and then take the limit ¢ — 0 at the end.
The Sp(2,R) Lie algebra generators for £ = 1/2 are

. 1 1

Ky = —0g+= 451
0 Z (v + 2 ) ( )

8 1 |

K, = ¢ (;&9 +1) =" (Ko + 5) : (452)

. 1 | 1 :

K = e -9y=e"(Ky— 5) = (0 + e 7. (453)

7 7

The right-hand side of the scalar product (448) coincides with the right-hand side of the
scalar product ({16) for k¥ = 1/2. Actually the functions (446) of the present Hilbert space
H?(S', d9) may be considered as limits of those from Eq. [dI1]) with k£ = 1/2 for |A\| — 1: For
A = |A| exp(i) the operators (4I8]) become the operators ([@21l) — ([@53) in the limit |\| — 1.

For the operators (451)) — (@53)) the relations (249) — (251)) take the form

Ryeald) = (n43)eald), (454)
Kien() = (n+1)en(9), (455)
K_e,(9) = ne,_1(9). (456)
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The (dimensionless) Hamilton operator for the (¢, I)-model of the HO now has the ex-

tremely simple explicit form

_ _1 1

and the corresponding simple eigenfunctions (446)!

[ would like to stress again (like I did in Refs. [13] and [25]) that the mathematical variable
¥ used here is not the canonically conjugate “observable” of the operator (@57): the angle o is
not a self-adjoint multiplication operator nor is exp(i ) a unitary operator! The self-adjoint
observables “conjugate” to K, are the operators K; and Ko !

The composite ladder operators

A = (Ko+1/2)VP’K_ =K (Ky—1/2) 2 =e (K, —1/2)"/2, (458)
Al = K (Ky+1/2)” 2 = (Ko +1/2)'/2, (459)
have the desired properties

Ae,(9) = vVne,_1(9), Ale,(¥) =vn+1le,yi(9), (460)

and, therefore, have the usual matrix elements [99]. The same applies, of course, to those of
the composite operators Q and P:

Q=

1 - i
— (AT+4), P=—(A"-A4). 461
\/5( ) \/5( ) (461)
Obviously we can reproduce all the quantum physical properties of the HO which - over
decades - have been derived by means of the operators ) and P and the (g, p)-Hamiltonian

7).

The (composite) number operator N = ATA is as expected:
N=A"A=K, (K¢+1/2)7'K_ =" (Ky+1/2)(Ko+1/2) " e™" (Ky—1/2) = %aﬂ. (462)
Remarks:
e The eigenfunctions (d40]) are periodic:
en (U +27m) = e,(0), (463)
Further below we shall encounter unitarily equivalent quasi-periodic eigenfunctions.

e The ground state of the Hamiltonian (457)) is given by the number 1:

en_o(9) = 1. (464)

e The probability densities p, () associated with the “number states” (446]) are completely
flat:
pn(¥) =1, n=0,1,---. (465)

e The number state relations (289) — (294)) for general & do, of course, hold in the present
special case k = 1/2, too!
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The time-dependent Schrédinger equation for a general state (¢, 1) is given by
i 0;0(F,9) = Ko (1, 9), (466)
which means that the eigenfunctions (44€]) have the time dependence
en(f, V) = e Bnle (9) = ¢ 20D B —ny1/2, (467)

and ¢ (t,9) may be expanded as
D) = ey e e e = (en, (E = 0)y (468)
n=0

The last two equations show again that the angle ¥ plays the role of a time variable (up to
a sign) and that the circle S' parametrized by ¥ € R mod 27 becomes “unwrapped” onto the
time-axis, finitely or infinitely many times, thus realizing an m-fold or a universal covering of
the circle or of the group U(1)!

Introducing the usual quantities with physical dimensions, we get from Eqs. (40) — (43])

H = hwKy, He,(9) = E, e,(V),
E, = hwE,=hw(n+1/2),
ihop(t,9) = Hy(t,0),

en(t,9) = e iE/DEind _ omiwt/2 jin(0-wt)

_— s
~N =~ O
= o O

(
(
(
(

=~
=~
[\

7.1.2 Space reflections and time reversal

According to Subsects. 4.5 and 5.1 we can implement the space reflections I and the time
reversal T as follows:

m: J9—-9+mr, (473)
which implies
dy — 0y, (474)
K, — K, (475)
K, — —-K., (476)
Q — —-Q, (477)
P o b, (478)
en(¥) — e (VEm) = (=1)"e,(V). (479)

The last relation shows that the functions e, () have the same symmetry properties under
reflections as the usual Hermite functions (I50).
Furthermore

T: 99— -9, i— —i, (480)

60



yielding

%aﬁ e %aﬁ, (481)
Ky — K, (482)
K, — K., (483)
A, AV - A, AT, (484)
Q — Q, (485)
P — —-P, (486)
en(V) = len(=0)]" = en(V) (487)

7.1.3 Perturbations

Like in the classical case (Eqs. (63) — (G3])) external time-dependent perturbations of the
Hamilton operator (d57) can be integrated immediately: Take

H=FK,+ f(i), (488)

where f(#) is a given real function of time. Then the usual product separation of variables
gives the following solution of the time-dependent Schrédinger Eq.

2851/)(2?, 79) = [KU + f(f)] w(ﬂ 19) . (489)
The ansatz
Y(t,9) = v(t) u(¥) (490)
yields . .
{i[0pv@®]/v@®)} = F(]) = {5109 u(@)]/u(9)} + 5 = B = cons. , (491)
with the (normalized) solution
o(i) = e 1B i) (492)
For u(1)) we can take
u(9) = e, (¥), with E=n+1/2, (493)

or appropriate superpositions. .
Thus, the perturbation f(¢) causes a time-dependent modification of the phase FE't.
If

f(t) =a= const., (494)
then we have

v(f) = et EFOT (495)

i.e. we have introduced an effective (dynamical) k # 1/2! For an explicit example see subsec.
9.1.
For the periodic perturbation

f(t) = ecos(t), (496)
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we get for v(t) the time - dependent phase factor

v(f) et [Et+(e/5) sin(51)] _ (497)

Similarly we have for the slightly different perturbation

Ky — [1+ g()] K, (498)

a corresponding phase factor )
e—iEf — e—iE[i—l—fg drg(T)] ) (499)

If one inserts for g(f) the same expressions as for f(#) in Eqs. (@94) and ([#96)) one gets the
corresponding similar expressions for the phase factor (499).

7.1.4 A unitary transformation

The following unitary transformation is of interest, especially later for the more general case
k#1/2:

In the above description of the states (524)) and the operators (d51]) — (453) the dependence
on the index k = 1/2 is contained in the operators. We shall see below that in the general
case we have

. 1 ~ o1 ~ a1
Ky=-0y+k, K, =¢* (=09 +2k), K_= e’ —0y. (500)
i L L

The unitary transformation in question is defined by the replacement
en(V) =€ = €1y () = YD =01, (501)

It shifts the ground state energy characterized by k = 1/2 from the Hamiltonian (457) to the

eigenfunctions (446]).
The operators ([d51]) — (453) now take the form

Ky = %aﬁ, (502)
K, = em(%&g—l—l/Q), (503)
io= e—iﬂ(%aﬂ—uz). (504)

The eigenfunctions (50T]) are only quasi-periodic:
e1ja,n(0+2m) = e ey sy, (0) (505)
The relations (#54)) — (@61]) remain unchanged.

7.1.5 Coherent state wave functions and their probability densities

Passing to the (¢, I)-model of the HO and its associated Sp(2, R)-structure yields additional
information, even for k = 1/2:
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Wave functions on S’
We have two additional coherent states: Setting &k = 1/2 and |k = 1/2,n) = e,(¥) in Egs.
(BI4) — (3I6) the series can be summed immediately, yielding

26“9
k=1/2,2)(¥) = f.(¥) = —— (506)
In(2]2])
and
(- AP~
|k =1/2,\)(0) = fL(¥) = — (507)
1—Aet
These new coherent state functions have all the properties listed in sec. 6 for general k.
The series (BI7) cannot be summed in an elementary way but yields
k=1/2,0)(0) = fa(®) = fo(0), (508)

iz?)n _ i (|a| ei(ﬁ—ﬁ))n | (509)

fa(ﬁ) _ Z(ae —

e

n=0

S

The function f, in Eq. (509) is an entire function [100] of its complex argument
¢ =|ale®h, (510)

The growth of such functions for large || has been investigated for more than a century [100].
Application of standard saddle point methods [101] yields for functions like

FO ) = Z (n!C)nl/p (511)

the following asymptotic expansion [102]
FOC) = /B (2m) 11 U0 for (] 00, Jarg(Q)] < - — > 0. (512)
p

For that part of the complex plane where the function (5II)) decreases with increasing |(],
Ref. [103] gives the estimate

D(C) = [1 — s -
f (C) - [1 sm(7r/p)/7r] C (ln C)l/p
As the assumptions made in Ref. [103] include the exactly known case p = 1 the estimate
(BI3) does not appear to be a good one!

The limits (512)) for arg(() come from the requirement $(¢?) > 0. They also imply
p > 1/2. The result for the exponential growth in the sector |arg(¢)[ < 7> — € shows f@(¢)
to be of “order” p and of “type” 1/p there.

The function f, from Eq. (509) has p = 2 and therefore we get for the wave function (50S)

for |¢| — oo, 21+eg|arg(g)|g7r. (513)
P

Fald) =< (2m)/* \/2|a]e! O=P)/2 g~ lalPI=e""D1/2 o 10| 5 00, |9 — B| < % —e. (514)
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Probability densities
The probability density of the wave function (B06) is given by

62\,2\ cos(9—¢)

p:(9) = [f.(9)]* = BNACEIR (515)
For large |z| we have [79]
o21z]
Io(2]z]) = 2\/m[1 +O(1/]2))], (516)
so that
p=(9) < 2¢/m 2| e 2P eos0T 4 O(1/]2])]. (517)
For |9 — ¢| < 1 the density (5I7)) takes (locally) an approximate Gaussian form:
p.(0) = 2¢/7 |2 e FIO=97[1 + O(1/2])] for large |2|. (518)

The last relation shows that for large |z| (the classical limit) the density p,(J) has a sharp
peak at ¥ = ¢ = —arg(z), so that in the correspondence limit |2| — oo the variable ¥
approaches the “classical” angle ¢ .

As p, (¥ + 27) = p,(¥) and p,(Y¥) an even function of ¥ — ¢ it may be expanded into a
Fourier series with respect to cos(nv): Using the relation [104]

% " d9 21?19 cos(n ) = I,(2|2]), (519)
we get
p:(V) = m {Io(2]2]) + 2 L(2]z]) cos[n (9 — )]} (520)

n=1

For the probability density of the wave function (507) we have

L— AP
n(v) = 1—2[A\] cos(¥ —0) + |A]2° (521)
It has the properties
p(9) — 1for |A| =0, (522)
) ~ = _6008(19_9)] for [A|=1—¢, 0<e<1, cos(¥—0) #1, (523)
m(9) = 1+2icosn(19—9) |A]™. (524)

n=1

Eq. (523) shows that for |A| — 17 (the classical limit) p,(¥) is strongly peaked at ¥ = 6.
For calculating the coefficients of the Fourier series (524)) the relation [105]

2m cosn v 27 [\
dd = A 1 2
/0 T eosd D Topp Mt (525)

has been used.
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The function (52I)) is well-known in the mathematical literature as the “Poisson kernel”
P (¥ — ¢) for the representation of harmonic functions inside the unit disc [106] by functions
on the boundary oD = S'.
The exact probability density p, () for the wave function (B08) appears somewhat “un-
ruly”:
|a|n1+nz

pa(¥) = |fa() = 7" Z N

ni,n2=0

HO=B)(nin2) (526)

More instructive is the density for the asymptotic expansion (514):
Do (V) < 2V/21 || 1P 1=c0s20-0)] for Jarge |af (527)
which for |9 — 5| < 1, |a| |9 — S| finite, becomes a Gaussian distribution, too:
Pa(0) ~ 2V27 |a| e 2P0 for |9 — Bl < 1, |a| = oo, |a| [ — B finite . (528)

As pq(9) is a periodical and even function of J — § it may be Fourier expanded, but the result
does not appear to be very instructive.

7.1.6 Expectation values and transition probabilities

All the properties of the 3 types of coherent states listed in sec. 6 for general & do hold,
of course, for the special value k = 1/2, too. I, therefore, mention here just a few special
features:

We have (cf. Eqs. (B15) and (320))

Li(2[2])
%) = Io(2 == 2
Remarkable is that now (cf. Eq. (823)))
(N*)1j2, = |2, (530)

which provides a direct “measurement” of the modulus |z|. For the transition probabilities

([428) and (4371]) we get

|Z|2n 2\/—| |2n+1/2 _2‘ |
1/2,n+ 2) = “for |z] = 00 . 531
R T N NCTE R T)E o (531)
p(1/2,n ¢ N) = (1= AP A" = ! m o\ =g (532)
) iy 1\ 7y +1 y T =T01/2,X -

The last probability may (formally) be interpreted in the context of Bose-Einstein statistics
[107]: Assume that a system of free Bose-Einstein quanta has distinct energy levels E, , v =
0,1,... and is in a heat bath with inverse temperature 3 = 1/(kgT) and chemical potential
i. Then

(L= APY AP, AP = e P (533)

is the probability to find n quanta in a state with energy F,.
As already mentioned previously the distribution (532]) has been verified experimentally
[85].
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From Eq. (379) we get

_ (1= |)\|2)1/2 _ 1= |)\|2 o2 [2| cos(#—0) 534
Furthermore [71]
o2 =
(foan)-I- = \/I()TZ Z 3/2 ’ (535)
(uf)e = P2 ppye S (536)
n=0

In evaluating the series (535) and (B36) we encounter the same problems as for the series
(509). The asymptotic expansion (512) yields for the transition probabilities

(

2 67|a‘2 2/3
T 2 - 63\04 2| cos[2(B—¢)/3)] 537
|(f f)+| 3 /_27T|OéZ|1/3 I()(2|Z|) ( )

for large | z|, |8 — ¢| < 3m/4 — ¢,
(fas )12 = 2V27 N afe ol (1 — |A2) ehal cos2(6-0) (538)
for large ||, |3 — 0] < m/4 —€.

7.1.7 Eigenfunctions of f(l and f(z

Like the operators ) and P, which as generators of non-compact groups in general have a con-
tinuous spectrum, the self-adjoint operators K; and K, as generators of non-compact groups
have a real continuous spectrum. Their “eigenfunctions” may be determined as solutions of
differential eqs.:

It follows from Eqs. (452) and (453) that

- 1, - - 1 1., = 1 - - 1 1.

Ki=-(K;+K)=cos9-0g+ =e”, Ko=— (K; — K )=sin9-0y + —¢”. (539

1 2(+—|— ) cos 90y + 3¢, K 22,(+ ) sin -0y + o-¢ (539)

It is helpful to observe that K, is obtained from K, by the substituation ¥ — 9 + 7/2. The
eigenvalue equation

RthQ(ﬁ) :hZflw(ﬁ)ﬂ h2 ER’ (540)
leads to " )
(9.fny)/ frs = Z. = (ot D+ ). (541)

As sin® and tan(9/2) are positive in the (open) interval (0,7) and negative in (7, 27) one
has to treat the two intervals slightly differently. For the first interval we get

Fra(9) = Cre™/2(sin®)~V2 [tan (1) /2)]" "2 (542)
Cv _ipares iha—1/2 —ihy—1/2
= ﬁe /2 [sin(1/2)] 2 [cos(9/2)] 2,

C; = const., 9 € (0,7).
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For the second we get, with (sin1))~'/2 = ¢™/2(|sin?)|)~"/2 and Intan(¥/2) = In | tan(9/2)| +
i,

fr,(0) = Cy e im/2 g mha 671'79/2(|sin19|)’1/2 [|tan(19/2)|]ih2 (543)

— % 6—z'7r/2 e—whz 6—z'19/2 [Sin(ﬁ/Q)]ihz—l/Q H COS(19/2)|]_ih2_1/2 ,

Cy = const., ¥ € (m,27).

The three constant factors in the last expression may be combined to C; = Cye /2 e 7hz,
For 9 = 0,7 the functions (542) become singular, so do the functions (543)) for ¥ = 7, 27.
The constant C'; can be determined like in the case of plane waves: Substituting

w(d) = Inftan(d/2)], du = % Cu® = 0) o —00, u(@ > ) = 00,  (544)
n
into - P [T i
L . L Y i(ha—hY)
= [ @050 50) = S5 [ S fanoy2) (585
yields
1 " * |C|2 * iu (ha—hY) 2 !
o /. dv f (0) fn, (V) = o | due 2 =|C10(he — hy) . (546)

The interval (7,27) gives the same contribution, so that the “normalized” eigenfunctions of
K5 are

fr() = e 2(2]sind]) " [| tan(9/2)[]"" (547)
= e W2 [sin(19/2)]“12’1/2 [(:05(19/2)]’1.}‘2’1/2 ,
e (0,7),(m27r), hy € R.

N | —

Implementing the substitution ¢ + /2 we get - up to an irrelevant phase factor - the eigen-
fuctions of Kj:

fu(9) = e 22| cosI|) Y2 [|tan(9/2 4 w /4)|]'" (548)
Ve (—n/2,7/2),(n/2,37/2), hy € R,
tan(/2 + w/4) = (sinv + 1)/ cos V.

For the coefficients ¢,, in the expansion

fhs (19) = Z Cn e’ (549)
n=0
one gets [108]
o = 2 [T app e ino (550)
"o 2w 0 h

1 T : . :

— % / d(,O (COS S0)—”12—1/2 (sin S0)2}12—1/2 6—21(n+1/2)4p
0

Cimnti/a-ineyz)  L(1/2+iho)

- AT (1/2 — n + i hy)

F(1/2+ihy,—n;1/2 —n+ihgz=—1)
Cinid . T(1/2+ihy +m) (—n)
— —1)" im/4 ha/2 —1)™ m
(=1)re e Y (=) T(1/2+ihs—n+m)m!’

m=0
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where

F(a,b;c;2) = Z 7(?6);;(?; ™

m=0

(551)

is the standard series for the hypergeometric function.
The relation (550) holds for hy > 0. For hy < 0 one has to replace hy in Eq. (B50) by |hs.
Examples:

co=e T heTmh/2 o2 = eThe s o) = 25 ™M hyeT ™22 o2 = 4h2eT ™2 (552)

7.1.8 Relationship to the conventional description of the HO on L*(R, dx)

The relationship between the quantum mechanical description of the HO in the above Hilbert
space H2 (S, d9) and the usual one on L*(R, d€) has been discussed in some detail in chap.
4 of Ref. [13]. T here merely summarize the main steps:

1. The space H?(S', d) is mapped unitarily onto the Hardy space H? (R, d€) of the real
line, the elements of which are boundary values lim,_,o+ g(z = £+in) of functions which
are holomorphic in the upper half (n > 0) of the complex plane.

2. The space L*(R, d€) is projected on H3 (R, d€) by the following Fourier tranformations

i) = %27 / stg(s)e—ifp, 9(6) € I*(R, de). (553)
gHE = %Q_W / dpg(p)e®, g™ (€) € HL(R, dE). (554)

7.2 The general case k£ > 0

In case nature “allows” for quantized harmonic oscillators with ground state energies for
which k # 1/2, especially k € (0,1/2), then one needs corresponding Hilbert spaces for the
description of such systems. I shall briefly mention three examples which may be useful and
which are all unitarily equivalent: The Hilbert space of holomorphic functions on the unit
circle as described by the Egs. (4I0) — (4I8) in the subsection 6.4.3 above, Hilbert spaces
associated with the Hardy space on the circle given by Eqs. ([@406]) — (@48) and the Hilbert
space L%([0,00),du) on the positive real line with Laguerre’s functions as basis.

One can use the Hardy space ([{10) — (I8 itself by using a Holstein-Primakoff variant [27]
for the Lie algebra generators

K, = %8,9+k, (555)
Ky = &7[(N+2k)(N+1)]Y2, N= % Dy . (556)
K_ = [(N+2k)(N+1)]"/2e7, (557)

These operators have the properties (249) — (25I) when applied to the basis (524)) and one has
(f2, Ky f1)y = (K_f5, f1) for functions ([@47). For k = 1/2 the operators (553)-(557) reduce

to the ones in Eqs. ([@21l) — ([@53). For k& # 1/2 the roots in the expressions ((556]) and (557)
become cumbersome and unpleasent to deal with. They will not be discussed here further.

They might, however, be quite useful under certain circumstances.
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7.2.1 Hilbert space of holomorphic functions on the unit disc

In subsec. 6.4.3 above I have indicated in connection with Eqs. [@I7) and (4I8) that the
Hilbert space of holomorphic functions on the unit disc D = {A € C, |\| < 1} with the
scalar product (@I0) can provide irreducible unitary representations of the group SO'(1,2)
and all its covering groups with &£ > 0, the self-adjoint generators given by Eq. (450) (see also
Appendix B).

The complex numbers A € D were introduced in Eq. (311 as eigenvalues of the operator
(B12). Tt appears helpful to introduce a new complex variable w € D (not to be confused with
the circular frequency) in order to distinguish the Hilbert space variable in Eqs. (410) — (418)
from the eigenvalue A\. So we have

(oo = [ diale) ). (558)
D
y 2% — 1 _
dig(w) = - (1 = Jwl*)* =2 wld|w| 6,
. 2k)n ., . _
ek,n(w) - ( TL') W, (ek,nza ek,nl)k,w - 6n2 ni (559)
(far f1) Z Dhobut,  filw) =D byw", j=12, (560)
n:O n n=0
and
Ro=w vk, Ki= (2k + i) e (561)
0T Y BT Yo T T dw?
with the usual properties
Koépn = (n+E)épn, (562)
Kiérn = VCE+n)(n+1)ekns, (563)

K & = V2k+n—1né 1. (564)
The associated ladder operators
A= (Ko+k)VPK_, At =K, (Ky+k)~'/? (565)
have the conventional k-independent Fock space properties
Abpn = Vnékm 1, Aérn=Vn+ 1641 (566)

Inserting the number state basis functions (559) into the right-hand sides of the Eqs. (314),
(BI6) and (317) yields the coherent state functions of w:

ezw

5 AW) = fiolw) = s, (567)
ER
_ =Py

b V(@) = feal®) = Ty (568)

|k, o) (w) = fralw) = e~ lal?/2 Z 7~(3'k)n (aw)™. (569)

The general properties of the three types of coherent states as discussed in subsecs. 6.1 and
6.2 are, of course, here valid, too, and will not be repeated.
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7.2.2 Hilbert spaces related to the Hardy space on the circle

The scalar product (G60) as a series can be implemented on the Hardy space H? (S, d?) in
the following way:
Let us introduce [109] the following positive definite (self-adjoint) operator Ay by

Apen(9) = (2k)n en(¥), en(9)=¢e"" n=01,.... (570)

Then we can define an additional scalar product for functions

Fi0) =" cajenl?), j=1,2, (571)
n=0
by
© !
(Foo )kt = (s Ak f1)1 = Y (2’;) ¢y Ot - (572)

n=0

The series here is obviously of the same type as the one in Eq. (560). As

<1l for k>1/2,n>0
=< =1 for k=1/2, (573)
>1 for 0<k<1/2,n>0,

one might suspect that these coefficients affect the convergence properties of the series (572).
However, as

li ' =1 for k>0 574
i () =1 o
the radius of convergence of that series is the same with or without the factor (573)) (according
to the Cauchy criterium [110])!

Let us denote the (Hardy space associated) Hilbert space with the scalar product (572)
by Hi ,(S',dY). An orthonormal basis in this Hilbert space is given by

. 2k), . .
k() = 1/ P e (9) (Comes Enm s = e - (575)

n!

From the expressions (561 one can infer (taking the limit w — exp(i¥) that
% 1 2 io L % —iv 1
KOZ—_ag—f-k,K+:€ (—,&94—2]{7),}(_:6 —,819, (576)
i i i

with the right properties for the basis (575):

Koérn = (n+k)épn, (577)
Kiérn = VCE+n)(n+1)épmns, (578)
K épn = Vk+n—1)nég, . (579)

The operators (576) do not have these properties with respect to the basis e,(J)! Corre-
spondingly the operators K, and K _ are adjoint to each other only with respect to the scalar
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product (572)), not with respect to ([@48). Their adjointness as to (572) can be
taking two series
oo
- Z Qn,j ék,n(ﬁ) ) j = 17 27
n=0

and showing that (f(,fQ, ks = (f2r f(+f1)k,+'
Note that

(677.27 ék,nl)k,Jr — (ek ni 6n2 nz ni s

(67127 ek,n1)+ = 6k NR) 6n2 V nz )

(2K)n,

n1!

(ékan27 ékynl)+ 6”2 ni o (6n17 6”2)]6 + = (Qk)nl 6’!12 ni -

verified by

(580)

(581)

(582)

(583)

The Fock space ladder operators A and A’ associated with the Lie algebra generators

(576) are given in the same way as in Eq. (565).

Coherent state wave functions

Analogously to the relations (567) — (569) we obtain on Hj | the following coherent state

wave functions by using the basis (575):

i

b (0) = funl) = ———
(R
(L-AP)

[k, A (0) = fia(¥) = = hei)k

|m@wznam::fW”§}%¥hm

The reproducing kernel on H} | is given by

o0

Ap(W2 = 01) = 65, (092) (V) = [1 — & P 7720]7F = Ax(9; — 0y).

n=0

According to the relations (58T]) — (583)) it has the properties

(Ar(1,2), erm@)es = erm(h),
(2K)m

(Ar(12) @) = 20 ),

N m)!

1.2, @ = [ éun(00) = enl),
(Ae2), en)e = /B ) = B )

(584)
(585)

(586)

(587)

(588)
(589)

(590)

(591)

The numbers 1 and 2 mean the variables ©J; and ¥s, the latter being integration variable.
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A unitary transformation

In the above discussion the k-dependence of the representation is contained in the operators
(576), not in the basis e, () of H? we started from. Like in subsection 7.1.4 one can shift the
k-dependence partially from the operators to the basis by a unitary transformation:

en(9) = eV — e (9) = TR (592)
the generators (576) now taking the form
% 1 o io L o —iv 1
KOZ—_aﬂ,K+:€ (—_8,9+k),K_:e (—_8,9—147). (593)
i i i
The operators (593) act in a Hilbert space H, ,f +, now with the orthonormal basis

ern(V) = (2:!)” exn(V). (594)

The basis functions (B92]) are no longer periodic but quasi-periodic:
ern(V+2m) = *F T e (). (595)

These functions are special Bloch-type wave functions on the circle [25].

7.2.3 Hilbert space on the positive real line

There exists a unitary mapping [111] from the Hilbert space of holomorphic functions on the
unit disc as characterized by the Eqs. (558)) and (559) to the Hilbert space L?(R, , du), where
R, =[0,00), i.e. we have the scalar product

(o f1) = / " du f3(u) fulu) (596)

for functions f(u) on Ry. The standard orthonormal basis on this space are Laguerre’s
functions [112], slightly adapted for our purposes,

o n! k=1/2 —u/2 12k—1
€k n(u) T2k) (2h), u e SN u), k>0, (597)

where the functions L%(u) are Laguerre’s polynomials

L2 =Y (;‘j;) (_ni‘!)m, Lg(()):(o‘j;ill)". (598)

m=0
These have the generating function [112]

ZLikfl(u) W= (1 — w) e uw/=w) e D. (599)

n=0

This implies that

(1 o w)72k uk*l/? ef(u/Z) (1+w)/(17w) : (600)

Bi(w,u) = Epn(w) Epn(u)



where €, ,(w) denotes the basis (559). The function By(w,u) is by construction the kernel of
a unitary transformation from the basis €y, to the basis éj,, Bj(w,u) being the kernel for
the inverse transformation:

/000 du Bi(w, u) €xn = € n(w), /Dd/lk(w) Bi(w,u) éxpn(w) = éxn(u). (601)

One can show [113] that the operators Ky, K; and K, now have the form

~ £ d @k—1?2 u -
K — —_— _— — i K s — = 2
0 u T2 du ™ + 1 0k n(u) =(n+k)ékn(u), (602)
~ & d (2k-1)? u
K o= a2 _u
! du? du 4u 4’ (603)
- 1 d
Ko = —(u— +1/2). 604
2 z(u du +1/2) (604)
As ) ) "
Ky — K = 5 (605)

the integration variable u may be associated with the classical quantity
ho — hy = I(1 — cos @) = 21 sin?(¢/2) (606)
that is to say we have the correspondence
u < 41 sin®(¢/2) > 0. (607)

Inserting &, (u) for the general number state |k, n) into the series ([B14)), (3106]) and (BI7)
yields the following coherent state wave functions

k—1/2 —u/2 o .-
|k, 2)(u) = fo(u) = \/7 2 an (u) (608)

uk— 1/2 (z u/2)
= \/72 (u2) *H2 T 1 (20 2)
i (

k—1/2 (z—u/2) i
Vor(z)  =nlT (2k —i— n)
uk—l/? z—u/2) gk( UZ)

AERE

where the relations [112]

I2k-1 2 —k+1/2
ZF%M 2k () ¢ (u2) Joe—1 2V 2) (609)

n=0

&~

—

o~

N
|

v+n+1)

D e (610)

and (310 have been used.



The relation (599) implies
AP A=)
['(2k)

1, \) (1) = fi(u) = k112 o= (@/DI+N/(1-X) (611)

Finally
]_ (lal?4n _ > CY“ _
|y a(u) = folu) = —mm e UTFI2 2N " 1260y (612)

[(2k) = V@k)n "

Let us have a brief look at the behaviour of the probability densities
n!
'(2k) (2k)n

for small u as a function of k. Because of the second of the relations (598]) we have

Pin (1) = | n(u)* = u? e L ()| (613)

1
n 0+) ~ Zh=1 614
Thus pgn,(u) vanish in the limit v — 0 for & > 1/2, has the finite value 1 for k = 1/2
and diverges for 0 < k < 1/2 (but is still integrable). Notice that the behaviour (GI14) is
independent of n .
As T'(2k) behaves like 1/(2k) near k = 0 we have

Pra(u— 0Tk = 07) ~ 2k u? L. (615)
The ground state probability density is
1 2%—1  —
e = — v, 616
Pramo(u) = Fry e (616)

For k > 1/2 it has a maximum at u = ug = 2k — 1.
The eigenfunctions f,(u) of the operator Ky in Eq. (604]) can easily be found as

) = /0 " du foy (1) fia () = (s — ha) (617)

The last relation can be verified by the substitution u = e”, du = udv. The eigenfunctions,
which are independent of &, can be used for Mellin transformations [114]

g(s) = / dug(u)u®t, s=ihy+1/2, (618)
0

with the inversion
1 1/2+ic0

= “#q(s) . 1
g(u) 25 i dsu* g(s) (619)

The substitution u = e¢” shows the close relationship of the Mellin transform to the Fourier

transform. .
The eigenfunctions of K; are more complicated [115]:

fr (u) = Cub=Y2 =2 & (k — ihy; 2k;iu), C = const. (620)

where ®(a; ¢; z) is the confluent hypergeometric series

O(a;c;2) = Z (@)n 2" (621)

= (c)n n!
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8 On the ground state of the quantized free electro-
magnetic field in a cavity

8.1 The electromagnetic field in a cavity as a set of harmonic os-
cillators

The standing free electromagnetic waves in a cavity can be interpreted as a denumerable set
of harmonic oscillators each of them having the ground state energy (&), the sum of which is
infinite! This “nuisance” led to the concept of “normal-ordering”, which just means to ignore
the infinite ground state energies. On the other hand, subtracting two such infinities leads
to the Casimir effect [8,15,16], a quantum (“vacuum”) force between two ideally conducting
plates, now experimentally verified [116]. The effect can, however, also be derived with-
out refering to vacuum energies and their fluctuations, by subtracting appropriate Green’s
functions associated with certain boundary conditions [117].

The issue of quantum vacuum energies assumes “cosmic” dimensions in the context of the
cosmological constant in Einstein’s theory of gravity. The usual estimates for that constant
are essentially based on the value (). Those estimates turn out to be up to more than 100
orders of magnitudes larger than the experimentally determined value, the estimate depending
on the cutoff chosen. This discrepancy obviously constitutes the most urgent and provocative
challenge as to the quantitative powers of physical theories. The issue has become very acute
recently by the observation of an appreciable “dark energy” in the universe (about 75% of
all matter), very likely related to the gravitational cosmological constant and the associated
“vacuum energies” [17-24].

It is obvious that the much richer spectrum of possible ground states for the HO Hamil-
tonian (I8]) can shed new light on the subject. I here shall only point out the crucial part of
the issue without going into further details.

I first recall the main elements as to the formulation of standing waves in a cubic cavity
with side lengths L in terms of harmonic oscillators [118], with the slight generalization
(compared to most textbooks) to allow for relative dielectric constants € and relative magnetic
permeabilities p different from the vacuum values e =1, y = 1:

In the Coulomb gauge Maxwell’s equations without sources are given by

%afj—m?:o; divA=0, E= -84, B=culd, v=c/n, n=+/ei. (622)

Postulating periodic boundary conditions for the vector potential leads to the solution type

— ]_ — o — o
Alt, ) = = > Ap(t) T4 Ax(t) e (623)
€0 mezZ3
where 5
— s . 5 . o o
[ = 5 M, M= (mi,mg,mz), m; €Z, j=1,2,3; 1-Ap(t)=0. (624)

The time-dependent factors /Yf(t) obey the HO equations

= = —,

02 A1) +w (D) Ar(t) =0, () =212 = =12, w(l) >0, (625)
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with the solutions

2
Al*(t) = Z 5"/\(15) ED + 5;/\ (t) E'D\ , 5[*)\ (t) =y, e W ()t , (626)
A=1

where the €}, are two polarization vectors.
Inserting the associated electric and magnetic fields into the integral for the electromag-
netic field energy in the cavity,

1 = 1 =
Eem(cavity) = = / d*xleeg E*(t, %) + — B*(t,7)], €opo=1/c%, (627)
2 cavity 1 o
and observing that for plane wave solutions [119]
32 = _ 1
B =ecoup B = 5 E?, (628)

yields

Eep(cavity) =2 Y Y [w(l)]? |7, |*- (629)
m A
Notice that |¢(t)]* = |c,|? . Defining

1 i _
ey =5 lam+—=rpnl, Piyv=dins (630)
w(l)

V]

the expression (629)) finally becomes

. € =
Eem(cavity) = Hem(¢,0) = 5 SN E w0 g3, (631)

BRI
>

where the individual terms
1
Hiy(a:p) = 5 7, + @ (D) a7, (632)

are independent of time!

As can be seen from Maxwell’s eqs. (622)), the electric field provides the canonical momenta,
the magnetic field (via its vector potential) the canonical coordinates [120].

The standard quantization procedure is now obvious: The classical quantities ¢;;, and py,

are promoted to operators (), and Pj,, having the commutation relations

@7y Pyl =ihdpp oy (633)

A very minor point may be worth mentioning here: The right-hand side of the energy (G31)
does not contain a mass term. As the dimension of the energy is given, [L? T2 M], the
quantities ¢, and py, here have dimensions [M'/? L] and [M'Y2 LT, respectively. But
their product still has the dimension of an action, [M L?*T!]!

We now come to the point of departure: Assuming (for a moment) ¢ = 1, 4 = 1 and
introducing angle and action variable for each mode,

apy =\ 217, /w(l) cospry, pry=—\2w(l) Iy, sing;,, (634)
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yields

Hp(o. 1) =w(l) Iry, Hem(p, 1 ZZHM (635)

Quantization proceeds now as discussed above for the angle—actlon model of the HO: Each
of the Hy, is replaced by an operator

Hp\(K) =Tiw(l) Ko(I, ), Hen(K) =YY @Hp(K). (636)

Each R’O(f , A) acts irreducibly in a Hilbert space that carries a unitary representation with
Bargmann index k, together with the operators K, (I, A) and K(I, A) or the ladder operators
K.(I,)) and K_(I',\). Because of the required bosonic exchange symmetries I here assume
the same Bargmann index £ for all representations. I here do not enter the important subject
of constructing and analyzing the quant1zed free or even interacting electromagnetic fields
themselves in terms of the operators K (l A) etc. The usual k-independent annihilation and
creation operators associated with the ﬁelds themselves are given by

Apy =Ko\ + B 72K ([, N), AL =K (N [Ko(l, ) + k712 (637)

8.2 The cosmological constant problem

Presently I am merely interested in the ground state expectation value
(k, 0| Hom (K)|k, 0} = ZZ (k, 0| Hy, (K)|k,0) = 2khz (638)

The usual replacement
L3
§ = —— dw w? (639)

leads to a strongly divergent ground state energy density

kh

2.3
T2 Juso

dw w? . (640)

Cutting the infinite integral off at w = @ yields the “vacuum” energy density

uem,O(dja k) 47’(’263 (641)
Defining the effective length
0 2re (612)
W
finally gives
4% k 4% k _
tem,o(£, k) = 5= he @~ (2107 MeV em). (643)

We know from sec. 5 that the index k& may become arbitrarily small > 0, perhaps in the
course of time— So the k in the expression (643]) may become so small - for a given value of
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the interaction length ¢ - that the value of uen o(¢, k) comes near the order of magnitude of
the observed dark energy density [121]

?pr ~ 4keVem™ (644)

Such a welcome adjustment of k is, of course, here not proven at all, and one would like
to have more sophisticated arguments in the present framework for the desired appropriate
value of the index k in order to get a “reasonable” estimate for the cosmological constant.
Nevertheless, the mere existence of that index, originating from the non-trivial topology of
the (¢, I)-phase space of the HO and its related quantizing group SO'(1,2) (including its
infinitely many covering groups), may be an important key for the solution of the cosmological
constant problem!
I list a few of the many problems I leave open here:

e The role of the index k£ has to be examined for other matter fields, especially fermions
and non-abelian gauge fields and associated interactions, particularly for those with
spontaneous symmetry breaking!

e The compatibility with (local) Poincaré covariance and its concept of causality has to
be analyzed.

e Most of the prevailing discussions of the Casimir effect - with their by now quite sophis-
ticated subtractions of two infinities - (see the literature quoted above) and especially
their experimental confirmations appear to contradict the introduction of an index k
different from 1/2. There are different answers to such an objection:

First, it is evident from the discussions above, that the ground state of the HO Hamil-
tonian H(Q, P) is necessarily tight to & = 1/2. In order to have k # 1/2 the basic
quantum observables have to be the K ;. An analysis of the Casimir effect in terms of
these new variables has not yet been done.

Second, there have been alternative proposals for deriving the Casimir effect (force)
instead of subtracting infinite vacuum energies [117]!

e As the number k£ is a (dimensionless) measure for some energy, it may become time-
dependent, i.e. dynamical, on a cosmic scale and might lead to a time-dependent cosmo-
logical constant. The index k& may also become a function of the frequency w or (and)
of space coordinates, like the dielectic constant € from above.

8.3 Birefringence and dichroism of the vacuum

Comparing the expressions (631) and (638) suggests to preliminarily interpret the index k
here as a kind of “anomalous” dielectric constant (or the square of an “anomalous” index
of refraction, cf. Eq. (622)) of the vacuum. This interpretation leads (tentatively) to the
following possible quantum optical application:

Lets assume we have in vacuum initially just two photon modes of the same frequency
w, the same initial wave number f, but orthogonal linear polarizations. Both should initially
belong to the same index k. If one lets these photons pass through strong electric or (and)
static magnetic fields E, , gg, these “perturbations” add constant terms proportional to € Eg
or (and) B2/u to the free Hamiltonians Hf/\(lg'), A = 1,2, (see also the discussion around
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Eq. (@93))). The energy of the static fields may change the index k of at least one of the fields
by a small amount d £ which could lead to the following possible effects:

e Compared to the photon the vacuum energy of which is “lifted” by an amount d & > 0
the other photon with the orthogonal polarization “lost” energy, leading to an effective
“dichroism”!

e [f the energetically lifted photon returns to its original index k after passing the external
fields, then we have an effective “birefringence”!

As to the conventional optical phenomena of this type in materials (electro-optical “Kerr-
effect” or magneto-optical “Cotton-Mouton-” and “Voigt-" effects and related dichroisms
etc.) see Refs. [122].

The effects mentioned should be proportional to the square of the external electric or
(and) magnetic fields.

Possibly the recent PVLAS experiment [31,123] with its observation of vacuum dichroism
induced by an external magnetic field can be understood in this framework!

8.4 “Dark” normal matter?

Let me dare to add a very speculative remark: As the quantum spectra (20) and (2] of the
two HO classical models ([B]) can be different, the index k > 0 possibly being very small. So
(radiation) energy may get “stuck” in the interval 1/2 > k£ > 0 or even at higher excited
levels which perhaps can decay by higher order electromagnetic transitions only. In such a
speculation dark matter would be just “normal” matter prevented from radiating normally
(e.g., the abundance of diatomic molecular hydrogen [124] provides an abundance of effective
HOs). This could “explain” why visible and dark matter are of the same order of magnitude!
In such a speculative scenario dark matter could have been formed only after the formation
of atoms and molecules. All this has, of course, to be evaluated much more critically.

9 Charged particles in external electric and magnetic
fields

9.1 Charged harmonic oscillator in an external electric field

If one puts a harmonically vibrating particle of mass M and charge Zey, Z € Z, in an external
electric field Ej in ¢-direction then the potential term

— Z60 E() q (645)

has to be added to the Hamiltonian of the HO:

1 M 1 M Zey B, Z%e: B2
H:_2_22_ZE:_2_2_002_ 00 646
o P e~ Zabea= g Sela s ) T S (646)
Defining
Zey B
£=q— wZOMU (647)
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we again have an effective HO with coordinate ¢ and the ground state energy shifted by the
amount

Z%e2 B2
Vo=-="2"09 <. 648
’ 2w2M — (648)
Replacing ¢ in Eq. (2]) by £ yields
H(ép)zip2+ﬂw2g2+vzwl+v (649)
) IM 9 0 0-
The fine structure constant )
€o -3
= ~7.3-10 650
“ dmegch (650)
allows V; to be rewritten as
2 aZ? e B2 aZ? egE2 \? 2Tc ¢
Vo= hw ———— 00 = 70 A= —=—. 651
’ “ (w/c)® Mc? Yz Me w v (651)

Comparing with Eq. (19) suggest to introduce an effective Bargmann index

aZ? e B2 )3
ko kepp=k=0, 0=_— MOCQ :

(652)

In order to get an impression of the order of magnitude for § in experiments consider an
ion of rest energy M c? ~ 100GeV ~ 1078J and charge e, in a 1-dimensional harmonic
Paul trap [36]. With Ey =~ 10° V/m along the longitudinal direction, v ~ 10® Hz one gets
approximately the value § ~ 10, which makes k.;; negative! One further has to reduce the
energy epEf A\* compared to M¢? in order to have k.;; positive.

9.2 Charged particle in an external magnetic field

It is well-known that the 3-dimensional motion of a particle with charge ¢ in a homogeneous
magnetic field B = curlA can be associated with an effective harmonic oscillator for the
motion transversal to the magnetic field [125]: The Hamilton function is given by (here m
obviously means the mass, as opposed to previous Secs.)

1 . —
H:%ﬁZ, T=mi=p—qAT), (653)
with the basic Poisson brackets
{xjapk}: ik jak:17273' (654)
The Egs. of motion are
3
) 1 ) )
iy =A{xj, Hy = —(pj —a4y),, p;j=1{p; H} =4¢ ;fﬂkaﬁlk- (655)
It follows from the Poisson brackets (654) that
{mj,mi} = q(0;Ak — OcAj) = q By, (j,k,1) = cycl. (1,2,3). (656)
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For B = (0,0, B) we have

{771771-2} = qBa {77-1771-3} = 07 {77-2771-3} =0. (657)

The last relations imply
Fy = {my, H} = 0, (658)

i.e. m3 is a constant of motion.
Of special interest here is the remaining “transversal” Hamilton function

1
H = %(w% +73). (659)
Defining
w=¢qB/m, m =mwf, m=mg, (660)
and assuming ¢ B > 0 we get
H :in%lmw?g? (&, =1 (661)
) ) 1578 '

This is an effective HO Hamilton function for the transversal motion of a particle with charge
¢ in a magnetic field B = (0,0, B). As the “canonical coordinate” & actually is proportinal to
a time derivative of the original coordinates, one needs another integration. This is provided
by the quantities

1 1 2
blle‘i‘—ﬂ'g, b2:$2—£:l‘2——7ﬁ; ($1—b1)2+(l'2—bg)2: 2HJ_, (662)
m w m w m w
which obey
1
b; =0, 7,k=1,2; b, b1} = — 663
{jaﬂ-k} y I ) &y {27 1} mwa ( )
implying
{bj,HL}:O,jZI,Q, (664)

i.e. the b; are constants of motion. According to their definition they are the coordinates of
the center of the circle on which the particle moves in the tansversal (1,2)-plane.

If ¢ B < 0 one just has to interchange the roles of m; and 7y in the relations ([659) and
(©60) and defines w = |¢ B| .

For the HO Hamilton function (661]) one can introduce angle and action variables as usual:
With w > 0 and defining

21
E=1\/—cosp, me=—V2mwlsiny, (665)
mw

we get
HJ—(SOJI) =wl, (666)

which can be dealt with as previously:
The usual quantization procedure for the Hamilton functions (659) or (GGI) is the standard
one, yielding the (Landau) energy levels

Eipn=hv(n+1/2), n=0,1,.... (667)
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However, quantizing the Hamilton function (666) in the spirit of the present paper yields the
Hamilton operator .
HJ_ = hu)K[), (668)

with the possible energy levels
Epn=lwn+k), n=0,1,2,.... (669)

If £ # 1/2 the usual Landau energy levels are being shifted to lower or higher values. Whether
this really happens has, of course, to be found out experimentally!

10 Thermodynamics

Next I collect some thermodynamical properties of a system with energy levels F,, = hw (n+k)
in a heat bath of temperature kg T = 1/ in order to see which quantity depends on the
index £, and which not! That index & is here, of course, not to be confused with Boltzmann’s
constant kp.

The following simple formulae should be of interest for the interpretation of experiments in
preparation for measuring the ground state energy of the HO by means of the AC Josephson
effect [40].

From the partition function

- —Bhw(ntk) e Phok
Z(Bik)y =) ettt = (670)
n=0

we get the probability to find the system in the nth state as
pa(B) = e MR [ Z(Bi k) = e PN (1 — 00 (671)

which is independent of k.
Furthermore we have
Free energy:

BF(B:k)=—InZ(Bk)=Bhwk +1n(l — e Phv), (672)
Internal energy:
1
U(5:8) = (E)(5: k) = 0325 1) = hoo (b —g— ) (673
Energy mean square fluctuations:
eﬂhw
(AE)*(8) = B2 Z(B; k) = (hw)? (P — 1~ ksT2Cy . (674)
Entropy:
Bhw

S(B)/kp =InZ(B;k) + BU = —1In(1 — e PM¥) 4 (675)

efhw —1°

Here CY is the heat capacity of the system at constant volume.

We see that energy fluctuations (heat capacities) and entropy are independent of the index
k.
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Appendices
A Calculating the action variables for certain potentials

of 1-dimensional systems

The calculations of the action variable (8I) of subsec. 2.3.3 for the different potentials discussed
there can all be reduced to that of the integral

b (2 2)1/2
f(b):/ du%, 0<b<l, (676)
)
which may be transformed into [126]
+b U +b 1
flb) =— /b du (02 — u2)1/2 + /b du (b2 — u2)1/2 (677)

, +b 1
0= [

Here the first term vanishes (replace u by —u), the second gives 7 [127], and the last —(1 —
b?)'/2 1 [128], so that

f0)=[1—(1-6)"x. (678)
In the case of the Morse potential V};, one puts in Eq. (83)
W=F, u=e9-1. (679)
In the case of the potential Vs, the substitution
u = tanhgq, (680)

combined with the observation that

+b (b2 — u2)1/2 1 [+ 1 1 +b (b — u2)1/2
dy——7  —Z du (b2 = uH)V? [ —— :/ dy~—>"7 1
/b YT 2/b wb =) T T L, g, (68

works.
For the potential Vpr one substitutes u = sin ¢ and for V, one puts u = ¢ + const.
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B The covering groups of SO'(1.2) and the positive dis-
crete series of their irreducible unitary representa-
tions

I have stressed repeatedly in the Sections above that the irreducible unitary representations
of those covering groups of SO'(1,2) or Sp(2,R) with a very small Bargmann index k < 1/2
may be of special interest. In this Appendix, therefore, I collect some here relevant properties
of those groups and the associated unitary representations. A rather complete list of the
literature on the irreducible unitary representations of the group SO'(1,2) and its covering
groups is contained in the Refs. to Appendix B of Ref. [13]. That Appendix contains also a
summary of essential properties of those groups.

B.1 The universal covering group of SO'(1,2)

e~

According to Bargmann [129] the universal covering group G = SO (1, 2) can be parametrized
conveniently by starting from a modified parametrization of the group SU(1,1) as given by
the matrices (I80), namely by defining

v = Bla, <), (682)
w = arg(a), (683)
with the inverse relations
o = M- <, (684)
B = 1=y (685)

The inequality |y| < 1 in Eq. (682) follows from the relation |a|* — |]* = 1.
With
SO'(1,2), m-fold covering of SO(1,2), (686)

we have the following relations

SO'1,2) : {(rnw), hI<1l, we(-n/2,7/2]},  (687)
Sp2R) = SU(L1) = SOT(1L,2)y :  {(r,w), Wl <1, we (—m 7]}, (688)
SONL2m : {(1w), bl <1, we (~mm/2, mn/2]},(689)
G=S0"1,2)) : G={(1,w), |7/ <1, weR}. (690)

From the multiplication of the matrices (I80) one deduces the group composition law
(73, w3) = (V2,w2) © (71, w1) 4 (691)

where
o= (e T2 (L e (692)
1 —9i « 20w

Wy = W wp o In[(1 4+ e 2 (1 4y ypen) Y. (693)

21
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For the four subgroups (I90) - (I93) the new parametrization means

Ry: 1= (y=0,w=20/2) (694)
(0,ws) = (0, wo +w1);

Ay ay=(y=ritanh(r/2),w=0), 7 € R, (695)
(73,0) = (i tanh[(m2 +71)/2], 0) ;

By: by = (y= tanh(s/2), w=10), s € R, (696)
(73,0) = (tanh[(s2 + s1)/2], 0) ;

No: mo=(y=£6E+4)7?e™ w=arctan(£/2)), € € R. (697)

For the universal covering group G the transformations (I87) and (I8B) now take
the form

I' = pg.o)1, p(g,0)=1+eP Q- |y, (698)
b = W T (699)
1+ e'¥Py

As 0¢' /0o = 1/p(g, ¢), the equality (I89) holds again.
The transformations (699) act, however, not effectively on S, ; because the (infinite)
discrete center
Clo) = (0, weTZ)C G (700)

leaves all points o = (¢, I) invariant. Correspondingly the center
Clm) = (0,0 =0, £, ..., +m7) C SO/ ,(1,2) (701)

of an m-fold covering group leaves the points ¢ invariant, too.
With the elements of the group SU(1, 1) given by the restriction

—7 < w < 47, a = exp(iw)(1 — |y[>)""/2, B = ya , the homomorphisms
Bryp: G =50[,(1,2) — SU(1,1) = Sp(2,R), (702)
P : SU(L,1) 2 Sp(2,R) — SO'(1,2), (703)
have the kernels
ker(@[oo}/Q) = 27TZ, ker(q)[g]) = ZQ s (704)

respectively, and the composite homomorphism @[, = @9 - P|oc}/2 has the kernel
ker(@[oo} = (13[2} . (I)[OO]/Q) =7n. (705)

As the space SZ ; is homeomorphic to R? — {0} = C — {0}, its universal covering space is

given by ¢ € R, I € R*, which is the infinitely sheeted Riemann surface of the logarithm.
The transformations (698) and (699) may be reinterpreted as acting transitively and ef-
fectively on that universal covering space.
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B.2 Irreducible unitary representations of the positive discrete se-
ries for k£ > 0

I have already mentioned in subsec. 6.4.3 that in the Hilbert space of holomorphic functions
on the unit disc D = {z € C, |z| < 1} with the scalar product

2k

(f.g)e = 21 / 1 (2)9(2) (1 — |2[2)*2dudy . (706)

™

one can define irreducible unitary representations for any k£ > 0.

The unitary operators representing the universal covering group in that space are given
by

UaRAE = FRea-ppfasr s (220 o
i = G (5 0) = een@ esvan. s

Because |yz| < 1, the function (1 + v*2) 2 is, for k > 0, defined in terms of the series
expansion
(2k)n

(14 *2) 2 = oy

(=" 2)". (709)

]2

I
=)

The phase factor _
2k (710)
in Eq. ((07) determines the possible values of & for a given covering group:
For SO'(1,2) itself we have (see Eq. (687)) w € R mod 7. Requiring the phase factor
(10) to be unique implies k =1,2,---.
For SU(1,1) we have w € R mod 27. Uniqueness of the phase factor then requires k =
1/2,1,3/2,---.
Unigness of the same phase factor as to the covering group SO'(1, 2)im) for which w €
R mod mm requires
=2 n=12 ... (711)
m

For any irrational £ > 0 we get an irreducible representation of the universal covering
group SOT(1,2) ).

C Estimates for the ratios I (2|z|)/Isx_1(2|z]) of modi-
fied Bessel functions of the first kind for k > 0

In Appendix D.1 of Ref. [13] T deduced the inequality
pr([2]) = Lok (2]2]) /T2e-1(2]2]) <1 (712)

for the ratio (B20) which occurs frequently in expectation values with respect to Barut-
Girardello coherent states. The argments were:
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It follows from the relation [130]

v C;i” () = v I,(x) + 2 Tpir (713)
that p
@)/ 1(0) = (1, @) a"). an
As [131]
L) =5 ﬁF""EV 7 /0 40 ¢ 0 sin g (715)

we get for the ratio (714)

o d0 (cos ) e” 5% sin* @
Jo dfer s sin® 0

I (2)/1,(z) = <1. (716)

The argument is, however, only valid for v > —1/2, i.e. for k > 1/4, because otherwise the
integrals ([[I5]) become singular. Thus, the interval k£ € (0,1/4] has to be treated differently:
For k = 1/4 we have [132]

I15(2|2]) _ sinh 2|z|)
I_1/5(2]z])  cosh2|z]|)

pr=1/4(|2]) = =tanh2|z| < 1. (717)
For k € (0,1/4), however, the ratio p, may become larger than 1! This can already be seen
from the asymptotic expression ([349): If we put k = 1/4 -4, 6 € (0,1/4) it takes the form

5 5(1+26)
O PTIIL C L)
p(0<k<1/4)(|z|) + |Z| + 4|Z|2

+0(|z| ), §€(0,1/4), |z| = . (718)
Now the second and third non-leading terms in the expansion are positive, making the right-
hand side larger than 1. The same feature may also been seen in the following way: Because
of the relation [133]

2k
L1 (2]2]) = mfzk(QIZI) + o y1(2]2]) (719)
we have
2k + |2l pryr o) Y D(2]2])
which has the limit 1oz
. _ tol2|z

Here the right-hand side even diverges for |z| — 0! That the expression (720) can become
large for fixed small |z| and decreasing k may also be seen from the approximation (B34S
which yields

N 1— f 0. 29
pr1/2(]2]) 2k + 1 (2k +1)(2k + 2) or |z| =0 (722)

If |z is so small that we can neglect the term of order |z|? in the bracket compared to 1, we
get for the relation ([720])

pe(l2]) ~ d

Tk 4 |22/ (2k + 1) (723)
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For k < 1/2 and |z| > 2k + |z|? the right-hand side of the expression (723) becomes larger
than 1.

The possibility that py(|z]) > 1 for k € (0,1/4) can also be seen from the graphs in Figure
50-1 of Ref. [134].
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