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DESY 06-209Arhive: quant-ph/0612032 A New Look at theQuantum Mehanis of the Harmoni OsillatorH.A. Kastrup1DESY, Theory GroupNotkestr. 85, D-22603 HamburgGermanyPACS 03.65.Fd, 03.65.Ge, 42.50.Xa AbstratIn lassial mehanis the harmoni osillator (HO) provides the generi example for theuse of angle and ation variables ' 2 R mod 2� and I > 0 whih played a prominent role inthe \old" Bohr-Sommerfeld quantum theory. However, already lassially there is a problemwhih has essential impliations for the quantum mehanis of the ('; I)-model for the HO:the transformation q = p2I os'; p = �p2I sin' is only loally sympleti and singularfor (q; p) = (0; 0). Globally the phase spae f(q; p)g has the topologial struture of theplane R2 , whereas the phase spae f('; I)g orresponds globally to the puntured planeR2 � (0; 0) or to a simple one with the tip deleted. From the properties of the sympletitransformations on that phase spae one an derive the funtions h0 = I; h1 = I os' andh2 = �I sin' as the basi oordinates on f('; I)g , where their Poisson brakets obey the Liealgebra of the sympleti group of the plane. This implies a qualitative di�erene as to thequantum theory of the phase spae f('; I)g ompared to the usual one for f(q; p)g : In thequantum mehanis for the ('; I)-model of the HO the three hj orrespond to the self-adjointgenerators Kj; j = 0; 1; 2; of ertain irreduible unitary representations of the sympletigroup or one of its in�nitely many overing groups, the representations being parametrizedby a (Bargmann) index k > 0. This index k determines the ground state energy Ek;n=0 = ~! kof the ('; I)-Hamiltonian H( ~K) = ~!K0. For an m-fold overing the lowest possible valuefor k is k = 1=m , whih an be made arbitrarily small by hoosing m aordingly! Thisis not in ontradition to the usual approah in terms of the operators Q and P whih arenow expressed as funtions of the Kj, but keep their usual properties. The riher strutureof the Kj quantum model of the HO is \erased" when passing to the simpler (Q;P )-model!This more re�ned approah to the quantum theory of the HO implies many experimentaltests: Mulliken-type experiments for isotopi diatomi moleules, experiments with harmonitraps for atoms, ions and BE-ondensates, with harged HOs in external eletri �elds andthe (Landau) levels of harged partiles in external magneti �elds, with the propagation oflight in vauum, passing through strong external eletri or magneti �elds. Finally it maylead to a new theoretial estimate for the quantum vauum energy of �elds and its relationto the osmologial onstant.1E-mail: Hans.Kastrup�desy.de
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8.4 \Dark" normal matter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799 Charged partiles in external eletri and magneti �elds 799.1 Charged harmoni osillator in an external eletri �eld . . . . . . . . . . . . . 799.2 Charged partile in an external magneti �eld . . . . . . . . . . . . . . . . . . 8010 Thermodynamis 82Aknowledgements 83Appendies 83A Calulating the ation variables for ertain potentials of 1-dimensional sys-tems 83B The overing groups of SO"(1:2) and the positive disrete series of theirirreduible unitary representations 84B.1 The universal overing group of SO"(1; 2) . . . . . . . . . . . . . . . . . . . . . 84B.2 Irreduible unitary representations of the positive disrete series for k > 0 . . . 86C Estimates for the ratios I2k(2jzj)=I2k�1(2jzj) of modi�ed Bessel funtions ofthe �rst kind for k > 0 861 Introdution and overview1.1 The issue: Quantum mehanis of the harmoni osillator interms of angle and ation variablesAt �rst sight it probably appears provoative and presumptuous to present a new researhpaper on the harmoni osillator (HO), that venerable and pedagogially thoroughly squeezedsimple model, enountered in many physis publiations of all types. Despite its simpliityit has played an important role at many instanes in the history of physis, lassially andquantum theoretially:It probably started with Hooke's law_p = �b q ; p = M _q ; b > 0 ; (1)in mehanis for the fore exerted on a partile in the neighbourhood of its stable equilibriumposition. Then ame the HO in the plane with its two qualitatively di�erent types of motion,periodial orbits (Lissajous �gures) and quasi-periodial ones whih densely �ll a submanifoldof the phase spae, initiating the idea of ergodi systems. Two or more linearly oupled HOwith their harateristi (eigen-) frequenies are important for the stability analysis of manysystems and play a signi�ant role in ruial areas of physis. By adding a frition term themodel serves also as an examplary introdution to dissipative systems.Coneptionally important was - and still is - the loally anonial (sympleti) desriptionof the position and momentum oordinates for the HO in terms of angle and ation variables:q('; I) = r 2 IM ! os' ; p('; I) = �p2M ! I sin' ; ! = pb=M ; (2)3



so that H(q; p) = 12M p2 + 12 M !2 q2 = H('; I) = ! I : (3)This is the generi example for the essential onept of integrable systems, their (non-integrable) perturbations and the assoiated KAM-theory [1{3℄.Then there is the possible interpretation of lassial free eletromagneti standing wavesin a avity as a set of unoupled harmoni osillators. This property was essential in Plank'sderivation of his radiation law. So the HO played an important part in the birth of quantumtheory, too!In the \old" quantum mehanis with its Bohr-Sommerfeld framework the HO had the en-ergy levels En = ~! n; n = 0; 1; : : :. (For a omprehensive summary of the Bohr-Sommerfeldtheory, where the angle and espeially the ation variables played a entral role, just beforethe dawn of modern quantum mehanis see the impressive textbook by Born (and Hund) [4℄.)Even before Heisenberg dedued the modi�ed energy levelsEn = ~! (n+ 12) ; n = 0; 1; : : : (4)in his famous �rst paper on matrix mehanis [5℄, Mulliken had onluded from his spetro-sopi analysis of the di�erenes in the vibrational spetra of the diatomi isotopes B10O16and B11O16 [6, 7℄ that the lowest energy state of the HO should beE0 = 12 ~! : (5)This has been the anonial undisputed ground state energy value of the HO ever sine (fora omprehensive historial overview see Ref. [8℄) and a standard example for the role ofHeisenberg's position - momentum unertainty relations. For a reent partial survey of theHO in modern physis see Ref. [9℄.Whereas angle and ation variables were entral \observables" in the old quantum me-hanis, they disappeared almost entirely in the new quantum mehanis from 1925/26 on andthe usage of the operators Q and P took over nearly ompletely. Dira's early attempts [10℄to use angle and ation operators also for the new framework turned out to be ontraditory,as pointed out by London [11℄ and Jordan [12℄ and the subjet has remained ontroversialeven up to now [13℄. Before taking up that issue again, a few remarks as to the entral rolethe ground state energy (5) started to play:Around 1930 F. London dedued the van der Waals fores from the ground state energiesof two 3-dimensional HOs [14℄.The value (5) beame a nuisane (and still is!), however, when free �elds were quantized,beause their interpretations as a set of an in�nite number of HOs implied an (unobserved)in�nite ground state energy. The problem has been \swept under the rug" by ignoring theground state energies, formally by introduing \normal-ordering" for the assoiated annihila-tion and reation operators a and ay (see below).Nevertheless the ground state energy (5) plays a very stimulating part in the disussionsof the Casimir e�et [8,15,16℄ and also in the present attempts to understand the dark energyin the universe and the extremely obnoxious osmologial onstant problem [17{24℄.So the energy (5) is disarded or advoated depending on the physial onepts whih arebeing disussed. Not a very onvining situation!4



In view of the general aeptane of the value (5) it is amazing that there appear to be nosystemati modern experimental tests - similar to those of Mulliken - of suh a oneptuallyimportant physial quantity! More on the experimental situation in subse. 1.3 below.It is one aim of the present paper to point out that the anonized ground state energyvalue (5) may not be the only possible one for the HO, but that there is a anonial struturefor the HO in terms of angle and ation variables ' and I the quantum mehanis of whihallows for ground state values Ek;n=0 = ~! k ; k > 0 ; (6)where k may be any positive number, espeially an arbitrary small one > 0 !I ask for a moment of patiene for the justi�ation of this seemingly outrageous laim!The main reason for the possibility (6) is the di�erene as to the global strutures of theloally anonially (sympletially) equivalent phase spaes Sq;p and S';I of the respetiveanonial pairs (q; p) and ('; I) : Sq;p = f(q; p) 2 R2 g ; (7)S';I = f('; I); ' 2 R mod 2� ; I > 0 g ; (8)whih shows that Sq;p has the global topologial struture of the plane R2 , whereas S';I hasthat of a simple one with the tip deleted or that of a puntured plane R2 � f0g �= S1 � R+ ,where S1 denotes the unit irle and R+ the positive real numbers without the 0 .This implies that S';I annot be quantized in the onventional manner in terms of the(Born-Heisenberg-Jordan-Dira-) Weyl group generated by the 3-dimensional Lie algebra ba-sis fq; p; 1g, but one has to pass to the 3-dimensional (proper orthohronous homogeneousLorentz) group SO"(1; 2) (in one \time" and two \spae" dimensions) or to one of its (in-�nitely) many overing groups [13℄, among whih the sympleti group Sp(2;R) in the (q; p)-plane is a double overing (like the group SU(2) is a double overing of the rotation groupSO(3)). That sympleti group provides the key to an appropriate quantization of the phasespae (8) and plays an essential role in what follows.The ruial point is that both the phase spae S';I and and its \anonial group" SO"(1; 2)ontain the topologial \fator" S1 whih is multiply onneted (with homotopy group �1(S1) =Z). This multi-onnetedness has impliations for the in�nite-dimensional irreduible unitaryrepresentations of the non-ompat group SO"(1; 2) and its in�nitely many overing groupsbeause now the self-adjoint generator of the rotations SO(2) an have more ompliatedspetra with a ground state like (6). And this generator is proportional to the Hamiltonoperator of the HO in the ('; I) -framework! (For the similar ase of a simple rotator seeRef. [25℄.)The transformation (2) from the spae (8) onto the spae (7) with its origin deleted is notspeial for the HO. It an be used for any (1 + 1)-dimnsional system with periodi motions in(7) desribable by angle and ation variables in (8). So their quantum mehanis is a�eted,too! Examples are disussed in subse. 2.3.Quantizing the phase spae S';I makes use of the positive disrete series D(+)k ; k > 0;of those unitary representations mentioned above [13, 26℄. In these representations the self-adjoint generator K0 of the ompat rotation subgroup SO(2) �= S1 onstitutes the quantizedounterpart of the lassial ation variable I and the \boost" generators K1 and K2 orrespondto the lassial quantities I os' and �I sin', the knowledge of whih allows to determinethe angle ' 2 (��; �℄ uniquely. The hoie of these basi \observables" on the phase spae5



(8) an be justi�ed systematially from the ation of the sympleti group Sp(2;R) on thephase spae (7). That ation leaves the origin of the spae (7) invariant!Those basi lassial observablesh0('; I) = I ; h1('; I) = I os' ; h2('; I) = �I sin' ; (9)on S';I obey the Lie algebra so(1; 2) of the group SO"(1; 2) and its (in�nitely many) overinggroups in terms of Poisson brakets:fh0; h1g';I = �h2 ; fh0; h2g';I = h1 ; fh1; h2g';I = h0 ; (10)where fh(1); h(2)g';I � �'h(1)('; I) �Ih(2)('; I)� �Ih(1)('; I) �'h(2)('; I) : (11)The orresponding quantum mehanial ounterparts, the dimensionless self-adjoint op-erators ~Kj = Kj=~ (12)obey [ ~K0; ~K1℄ = i ~K2 ; [ ~K0; ~K2℄ = �i ~K1 ; [ ~K1; ~K2℄ = �i ~K0 : (13)For the positive disrete series the operator ~K0 in general has the spetrum (eigenvalues)�( ~K0) = fn+ k ; n = 0; 1; : : : ; k 2 R+ g : (14)For the mth overing group SO"[m℄(1; 2) ,m = 1; 2; : : : ; of SO"(1; 2) the allowed values ofk are k = �m ; � 2 N = f1; 2; : : :g ; (15)so that the smallest attainable value of k for a orresponding irreduible unitary representationis k = 1m : (16)As m an be an arbitrarily large natural number, k an be made arbitrarily small > 0 !The quantum mehanial (q; p)-HamiltonianH(q; p) ! H(Q;P ) = 12M P 2 + 12 M !2Q2 = � ~22M d2d q2 + 12 M !2 q2 (17)has the unambiguous spetrum (4). However, in view of Eq. (14) the quantum mehanial('; I)-Hamiltonian H('; I) ! H( ~K) = !K0 ; ~K = ~ ( ~K0; ~K1; ~K2) ; (18)an have the spetrumEk; n('; I) = ~! (n+ k) ; n = 0; 1; : : : ; k 2 R+ : (19)A ruial point now is the following: the spetrum (4) is not just a speial ase of (19),but the situation is more subtle:Let jk; ni ; n = 0; 1; : : : be an eigenvetor of ~K0 with eigenvalue (14):~K0 jk; ni = (n+ k) jk; ni ; n = 0; 1; : : : ; k > 0 ; (20)6



then nevertheless H(Q;P )jk; ni = ~! (n+ 1=2) jk; ni ; (21)where now the operators Q and P are expressed as funtions of the ~Kj:Q = Q( ~K) = �0p2 (Ay + A) ; P = P ( ~K) = i ~p2�0 (Ay � A) ; �0 = r ~M ! ; (22)with A = ( ~K0 + k)�1=2 ~K� ; Ay = ~K+( ~K0 + k)�1=2 ; ~K� = ~K1 � i ~K2 ; (23)and [A; Ay℄ = 1 : (24)The non-linear relations (23) are an inversion of the known Holstein-Primako� representationof the ~Kj in terms of A and Ay [27℄ as disussed in detail in Ref. [13℄.The k-independent relation (24) holds in any irreduible unitary representation D(+)k andis a onsequene of the ommutation relations (13) whih imply~K+jk; ni = [(2k + n)(n + 1)℄1=2 jk; n + 1i ; ~K�jk; ni = [(2k + n� 1)n℄1=2 jk; n� 1i ; (25)so that for any k Ay jk; ni = pn + 1 jk; n+ 1i ; A jk; ni = pn jk; n� 1i : (26)The Eqs. (22) and (23) are just the operator versions of the lassial relationsq('; I) = r 2M ! h1('; I)ph0('; I) ; p('; I) = p2M ! h2('; I)ph0('; I) : (27)For more details see below, here espeially se. 5!The gist of the argument for allowing a possible disrepany between the spetra (20) and(21), to be disussed in detail later on, is that - due to the multi-valuedness of the angle ' -the quantum version (18) of the HO Hamilton funtion H('; I) an have a riher spetrumthan H(Q;P ) whih always has the spetrum (4), even if it ats in a Hilbert spae with arepresentation D(+)k ; k 6= 1=2 , for whih ~K0 has the spetrum (14)!Phrased di�erently: The quantities q and p generate global translations on the phasespae Sq;p, i.e. no point is preferred, espeially not the origin. This is di�erent for the globalation of the generators hj whih leave the origin of Sq;p and the orresponding point I = 0in S';I invariant. Thus, the operators Q and P , generators of translations in momentumand position spae, respetively, \erase" the topologial substruture indued by the ritialpoint (q; p) = (0; 0) (or I = 0) . That point is, however \taken are of" by the operators ~Kj,generators of sympleti transformations in (q; p)-spae, whih leave the point (q = 0; p = 0)�xed!So it makes a di�erene as to the hoie of the primary degrees of freedom, whether onestarts with q and p and their topologially trivial phase spae (7), or whether one starts with' and I and their topologially non-trivial phase spae (8). The latter leads to a \riher"quantum mehanis than that of the former whih is unable to do justie to the non-trivialtopology of (8) and therefore has to \ignore" the additional struture! Whether this additionaltopologial �ne struture has indeed been \implemented by nature" and an be observed inthe laboratory - or is merely a oordinate singularity (see subse. 2.1) - has, of ourse, to befound out by experiments. 7



1.2 Contents overviewThe paper is organized as follows:Se. 2 ollets some properties of the lassial HO, with emphasis on the singular haraterof the transformation (2) at (q = 0; p = 0) and on the dynamial role of the \new" basioordinates ' and I, inluding the elebrated adiabati properties of the ation variable Iand its role for ertain 1-dimensional integrable systems with bounded orbits.Se. 3 disusses properties of the sympleti transformation group Sp(2;R) ating onthe phase spae (7): As already mentioned above, that group transforms any two pointsof that spae into eah other, exept for the point (0; 0) whih is left �xed. The orbits ofthree independent 1-dimensional subgroups generate three vetor �elds whih are globallyHamiltonian. The generating Hamiltonian funtions of these vetor �elds are essentially thefuntions (9) (expressed in terms of the variables q and p). The Poisson brakets of theseHamiltonian funtions generate the Lie algebra so(1; 2) = sp(2;R) of the groups SO"(1; 2)and Sp(2;R) . The quantized version of that Lie algebra belongs to irreduible unitaryrepresentations D(+)k ; k = 1=4 and k = 3=4 of the so-alled \metapleti" group. Theserepresentations are implemented in the even and odd parity subspaes of the usual Hilbertspae L2(R; dq) of the HO.Se. 4 desribes the ation of the group SO"(1; 2) = Sp(2;R)=Z2 on the ('; I) - phasespae (8) the points of whih are \oordinized" by the funtions (9). The ation of thegroup is sympleti, transitive (i.e. any two points may be transformed into eah other),e�etive (i.e. the only group element whih leaves all points invariant is the unit element) andglobally Hamiltonian, i.e. the funtions (9) are the generating funtions of the vetor �eldsassoiated with three independent 1-dimensional transformation subgroups of SO"(1; 2). Sowe have a ompletely satisfatory \anonial" struture on the phase spae (9) based on thegroup SO"(1; 2) and its in�nitely many overing groups. This setion prepares the groundfor a group theoretial quantization [28{30℄ of the phase spae (8) in terms of appropriateirreduible unitary representations of those groups whih provide the assoiated quantumtheories.The entral se. 5 disusses the quantization of the phase spae (8) in terms of the ir-reduible unitary representations of the positive disrete series D(+)k of the group SO"(1; 2)and its in�nitely many overing groups. The generator ~ ~K0 of the rotation subgroup is thequantized version of the ation variable I and the Hamilton funtion H = ! I. Its mostgeneral spetrum is given by Eq. (14). In physis the orresponding Hamilton operator (18)generates time translations: U(t) = e�iH t=~ ; H = ~! ~K0 : (28)This means that the (dimensionless) time variable ~t = ! t mathematially represents the angle'. As ~t in general does not stop at ~t = 2�, it \runs" through several or very many overings.As ~K0 = N + k1 we have U(~t = 2�) = e�2�ik1 : (29)This shows expliitly that for an m-fold overing with k as in Eq. (15) we getU(~t = 2�m) = 1 : (30)I already stressed above that in passing from the quantum theory of the Lie algebra so(1; 2)to that of the Born-Dira-Heisenberg-Jordan-Weyl Lie algebra one loses the \�ne struture"8



assoiated with the Bargmann index k . This is a result the importane of whih reahesprobably far beyond the simple HO ! It allows to avoid the elebrated Stone-von Neumannuniqueness theorem without violating it ! The usual Heisenberg unertainty relations for Q andP remain untouhed, but there are new unertainty relations as to the operators ~Kj; j = 0; 1; 2[13℄.Se. 6 disusses properties and possible appliations of the three types of oherent states as-soiated with the Lie algebra so(1; 2) (Shr�odinger-Glauber, Perelomov and Barut-Girardello)to the HO. The last two of these oherent states are very probably of similar importane forexperiments in quantum optis as is already well-known for the Shr�odinger-Glauber oher-ent states. A number of interesting physial expetation values and their dependene on theindex k are disussed as well as the possible experimental prodution of suh states: ThePerelomov ones have been generated in the laboratories in the form of squeezed states, theBarut-Girardello ones to the best of my knowledge not yet.Se. 7 desribes several expliit examples of Hilbert spaes with irreduible unitary repre-sentations of the series D(+)k . It starts with the onventional HO for whih k = 1=2 representedin the Hardy spae H2+(S1; #) on the unit irle S1. That spae has the salar produt(f2; f1)+ = 12� ZS1 d#f �2 (#)f1(#) ; (31)the basis en(#) = ei n# ; n = 0; 1; 2; � � � ; (32)and the HO Hamilton operatorH = ~! ~K0 ; ~K0 = 1i �# + 1=2 : (33)All the well-known physial properties of the usual quantized HO an be derived in thisframework, and even some more, beause now we have three di�erent kinds of oherent states!The seond part of that se. deals with onrete Hilbert spaes where the index k of theirreduible unitary representations an have any real value > 0. One of these is the spaeL2(R+ ; du) with its orthonormal basis of Laguerre's funtions.Se. 8 briey realls the desription of a quantized free eletromagneti �eld in a avity asan in�nite set of HOs and the disturbing quantitative problems one enounters for the totalground state energy when using the value (5) of a single osillator. In the ('; I)-frameworkone has instead Ek; n=0 = ~! k , where k > 0, in prinipal, an be arbitrarily small. This mayshed new light on the notorious osmologial onstant problem and the origin of the relateddark energy [17{24℄.If di�erent eletromagneti modes have di�erent k by exposing them to external eletrior magneti �elds, the eletromagneti \vauum" an even aquire some sort of anomalousrefrative struure. This may lead (perhaps) to an understanding of the reently observed\dihroism" of the vauum in a strong stati magneti �eld [31℄.The se. loses with a very speulative remark on the possibility of \dark" normal matter.Se. 9 realls the e�etive HOs one has if a HO partile is harged and an additionalexternal eletri �eld is applied or if a free harged partile is in an external magneti �eld.Here, too, one may introdue angle and ation variables, the quantized versions of whih maylead to a shift of the usual ground state levels.Se. 10 briey disusses the (anonial) quantum statistis of a system with the energylevels (19), in order to see whih thermodynamial quantities depend on k and whih not.9



Appendix A gives the tehnial details for the alulation of the ation variables assoiatedwith the potentials disussed in subse. 2.3. Appendix B summarizes some essential propertiesof the universal overing group of SO"(1; 2), its irreduible unitary representations of thepositive disrete series and those of the m-fold overing groups as speial ases.1.3 Possible experimentsThe ruial question is, of ourse, whether there exist HOs in nature or may be prepared inthe laboratory whih have a spetrum of the type (19). It appears unnessary here to pointout in detail the important impliations this would have for the physis of many systems, notonly for the HO!For possible experimental setups one has to observe that the \primary observables" noware the operators Kj; j = 0; 1; 2; with their algebrai struture (13), not as usual the positionand momentum operators (22). Note also that K0 is not the Hamiltonian, but !K0, sothat Ek n=0('; I) from (19) an be the same for di�erent ! and k if their produt is thesame, i.e. the energy stays the same! One problem for the experiments is to �nd dynamialmehanisms whih do not bring the usual (q; p)-dynamis into play, e.g. the dominant atomidipole-transitions.Following the original proedure of Mulliken and others [7℄ the value of k in the spetrum(19) may, at least in priniple, be determined as follows: Aording to Eqs. (1) and (2) thefrequeny ! of the osillator an be hanged either by hanging its mass M or by modifyingthe strength b of the driving fore. Let !1 and !2 be two known frequenies of the same systemand let Ea and Eb two known �xed external energy levels di�erent from the two ground stateenergies E0(j) ; j = 1; 2 ; of the two slightly di�erent versions of the same HO. If transitionsEa ! E0(1) = ~!1 k ; Eb ! E0(2) = ~!2 k ; (34)with frequenies !a;1 = [Ea � E0(1)℄=~ ; !b;2 = [Eb � E0(2)℄=~ ; (35)are possible and measurable, then one an determine the value of k from the di�erene!a;1 � !b;2 = (Ea � Eb)=~� k (!1 � !2) : (36)In the ase of the vibrating diatomi moleules Mulliken investigated the levels Ea andEb where the vibrational ground states of a higher eletroni level and the levels E0(j) werethe vibrational ground states of a lower eletroni level of the two respetive isotopes forwhih the two frequenies !j di�er beause the orresponding redued masses � in ! = pb=�di�er [7℄.Note also that for k 6= 1=2 all energy levels of the spetrum (19) are shifted ompared tothe usual ones (4) .More re�ned versions of Mulliken's experiments with diatomi moleules using modernexperimental tehniques should be possible and appear highly desirable! In order to \freeze"the (q; p)-degrees of freedom when looking for ('; I)-properties one should probably go toextremely low temperatures, even below the ground state energies (5). Experiments withultraold moleules have reahed an impressive stage of re�nement [32℄ and the use of Feshbahresonanes [33℄ has led to fasinating experimental results for low lying vibrational bound statelevels of bosoni pairs of atoms in ultra-old BE-ondensates [34℄.10



Furthermore, modern experimental tehniques have provided sophistiated 1-dimensionalharmoni traps [35℄, for ions [36℄, atoms [37℄ and BE-ondensates [38℄, for whih the fre-queny ! from (2) an be tuned from outside, by hanging the fore strength b eletronially.Approximate 1-dimensional harmoni traps with ultra-old BE-ondensates mainly in theground state (5) have been built [39℄, the ground state energy being determined by laser lightBragg reetions o� the \untrapped" expanding loud of BEC atoms. Thus, these impressiveexperiments appear to be assoiated with the (q; p)-model of the HO! Nevertheless, similarsuh setups may provide new possibilities for a searh after the energy levels (19), again mostlikely at extremely low temperatures.In se. 6 it will be pointed out in detail that expetation values and transition probabilitiesinvolving Perelomov oherent states are proportional to the index k. As these states havealready been generated experimentally for k = 1=2, they may perhaps also be produed forother (lower) values of k.Then there are possible vauum birefringene and (or) dihroism e�ets of photons bystrong external eletri or magneti �elds as mentioned in se. 8.Se. 9 disusses shifts in the HO ground states of harged partiles in external eletri ormagneti �elds.Se. 10 �nally mentions the plans for determining the ground state energy of the HO bymeans of the Josephson e�et [40℄!1.4 GeneralizationsFinally it should be remembered that the harmoni osillator is, of ourse, not the onlyimportant integrable physial system whih lassially an be desribed by angle and ationvariables (e.g. the onst:=r potential, see Refs. [4℄ and [1{3℄ for more examples). Quantizingthose systems group theoretially one has to distinguish between the ases I 2 R+ andI 2 R . The latter has to be quantized in terms of the irreduible unitary representations ofthe Eulidean group of the plane E(2) and its overing groups. For details see Ref. [25℄.One has, however, to observe the following: If the group SO(2) �= S1 � SO"(1; 2) beomesa non-trivial subgroup of a larger ompat group (i.e. not just a diret abelian fator) itstopologial properties an hange drastially: E.g., if one passes from SO"(1; 2) to SO(3) theuniversal overing group is now the double overing SU(2). Going from SO"(1; 2) to SO"(1; 3)one has the universal double overing SL(2; C ).If, on the other hand, one goes from SO"(1; 2) to SO"(2; 3) = Sp(4;R)=Z2, where Sp(4;R)is the sympleti group in 4 dimensions, one again enounters the subgroup SO(2) �= S1 asa fator in the maximal ompat subgroup SO(2) � SO(3) and and also a positive disreteseries of irreduible unitary representations of the group Sp(4;R) and its in�nitely manyovering groups [41℄. This is just another speial ase of sympleti groups Sp(2n;R) in 2ndimensions: They have dimension 2n2 +n , rank n (i.e. a maximal abelian set of n ommutingLie algebra generators), the maximal ompat subgroup U(n) �= SU(n) � U(1) (whih hasrank n , too) and (positive) disrete series of irreduible unitary representations [42℄, inludingthose of their universal overing groups assoiated with the fator U(1) (the group SU(n)on the other hand is simply onneted [43℄). This should be of interest for the disussion ofquantum mehanial properties of higher-dimensional sympleti systems [1{3, 29, 44, 45℄.
11



1.5 Range of the paperAs the topis of the present paper reah from experimental to mathematial physis I shallhave missed many papers relevant to the subjets mentioned. I apologize to the experts andhope to do more justie to their work in the future. Many more related Refs. are ontainedin my paper [13℄ to whih I shall refer frequently in the present one. An essential di�erenebetween this paper and Ref. [13℄ is the almost omplete fous on the possible onsequenesof a onsistent quantum mehanis for the angle-ation variable desription of the harmoniosillator in di�erent branhes of physis, whih is laking in the previous paper.2 Some properties of the lassial harmoni osillator2.1 The globally singular relationship between the anonial pairs(q; p) and ('; I)The transformation (2) is loally sympleti (\anonial"):dq ^ dp = d' ^ dI ; or �(q; p)�('; I) = 1 : (37)As the angle ' is dimensionless and for other reasons it is onvenient to introdue dimension-less quantities by means of the unit of length �0 from Eqs. (22) and Plank's onstant ~ andrestore the physial dimensions when neessary:~q = q=�0 ; �0 = r ~M ! ; (38)~p = p �0=~ ; (39)~H = H=(~!) = 12(~q2 + ~p2) ; (40)~I = I=~ = ~H ; (41)~hj = hj=~ ; j = 0; 1; 2 ; (42)~t = ! t ; (43)dq ^ dp = ~ d~q ^ d~p = ~ d' ^ d~I ; (44)Now ~q = p2 ~I os' ; ~p = �p2 ~I sin' : (45)As ~p d~q = ~I d'� d(~I os' sin') ; (46)

12



we have loally the four equivalent generating funtionsdF1(~q; ') = ~I d'� ~p d~q ; �'F1 = ~I ; �~qF1 = �~p ; (47)F1(~q; ') = 12 ~q2 tan' ;dF2(~q; ~I) = ~p d~q + 'd~I ; (48)F2(~q; ~I) = ~I aros[~q=(p2 ~I)℄� 12 ~qq2~I � ~q2 ;dF3(~q; ~p) = �p2~I sin'd~q +p2~I os'd~p ; (49)F3(~q ~p) = ~q ~p ;dF4('; ~I) = 12 (~q2 � ~p2) d'� ~q ~p~q2 + ~p2 d~I ; (50)F4('; ~I) = ~I os' sin' :On S';~I we have the (trivial) equations of motion_' = � ~H� ~I = � ~I� ~I = 1 ; _~I = � � ~I�' = 0 ; (51)with the solutions (orbits) '(~t) = ~t + '0 ; ~I = onst. > 0 : (52)Inserted into the Eqs. (45) we get the usual orbits on S~q;~p, exept for the trivial one(~q(~t); ~p(~t)) � (0; 0) !That (~q; ~p) = (0; 0) or ~I = 0 is a singular point of the otherwise sympleti transformation(45) an be seen in di�erent ways:� The ation variable appears as p~I, i.e. one has a branh point at ~I = 0 .� If one introdues � = p~I then the funtional determinant�(~q; ~p)�('; �) = � (53)beomes singular for � = 0 .� The di�erential d ~H(~q; ~p) = ~q d~q + ~p d~p has a ritial point at (~q; ~p) = (0; 0) .� The di�erentials (47) { (50) of the generating funtions Fj beome singular for (~q; ~p) =(0; 0) or ~I = 0 .So one has to delete the origin of the phase spae S~q;~p in order to map it in a one-to-one manner onto S';~I and vie versa! But the puntured (~q; ~p) - plane is no longer simplyonneted and topologially non-trivial (its �rst homotopy group �1 is Z ). This non-trivialtopology also manifests itself in the multi-valuedness of the angle ' whih is mathematiallyrepresented by the unit irle S1 �= R mod 2�. This unit irle onstitutes the multiply-onneted \on�guration spae" of the phase spae S';~I . One of its here essential propertiesan be read o� Eq. (52): 13



In the ourse of time the periodial motion in both phase spaes (7) and (8) passes theposition '0 a few or many times. In this way the on�guration spae S1 � S';~I gets unwrappedonto the real axis R or at least a part of it, here represented by the variable ~t. R onstitutesthe universal overing spae of S1. A very similar situation in whih the same SO(2) �= S1plays a orresponding role is disussed in Ref. [25℄. The loal harater of the transformation(45) and its singularity at (~q = 0; ~p = 0) is emphasized in Thirring's textbook [3℄.Note that physially the point (~q = 0; ~p = 0) is the ground state (equilibrium point) ofthe lassial (~q; ~p)-desription of the osillator motion. In the ase of the ('; ~I)-desriptionthe notion of an angle does not make sense any more for ~I = 0. But ~I may be arbitrarilysmall as long as it stays positive. As H = ! I one an have H ! 0 for I > 0 by (formally)taking the limit ! ! 0 .2.2 A sympleti sale transformationThe replaement ' ! '� = '=� ; ~I ! ~I� = � ~I ; � > 0 ; (54)is sympleti (d'� ^ d~I� = d' ^ d~I ). The transformation implies (f. Eq. (52))~t! ~t� = ~t=� : (55)From ~q� = q2 ~I� os'� ; ~p� = �q2 ~I� sin'� ; (56)we get ~H� = 12 (~p2� + ~q2� ) = ~I� = � ~I = � ~H ; (57)and d'�d~t� = � ~H�� ~I� = � ~I�� ~I� = 1 ; ) '�(~t�) = ~t� + '�(0) : (58)Inserting this '�(~t�) into Eqs. (56) yields the ~t�-dependene for the variables ~q� ; ~p� , analo-gously to the ~t-dependene of the oordinates (45).As ~t = ! t (f. Eq. (43)) the transformation of the original dimensionful quantities isambiguous:1. One an hoose t! t� = t=� ; ! ! ! : (59)This implies (f. Eq. (2))q ! q� = p� q ; p! p� = p� p ; H ! H� = � H = ! I� : (60)2. A seond possibility is t! t ; ! ! !� = !=� ; (61)with q ! q� = � q ; p! p� = p ; H ! H� = H = !� I� : (62)Both possibilities are not sympleti as to q and p.Without further restritions on the values of � the transformation (54) presupposes theexistene of overing spaes for S1, beause '=� may be outside a given interval, e.g. (��; �℄.14



2.3 Going beyond the harmoni osillator2.3.1 Time-dependent perturbationsIf we perturb ~H0 = ~I0 by a time-dependent term~H1 = � ~I0 f(~t) � ~I0 ; (63)where f(~t) is independent of ' and ~I0 , then_' = �~I0( ~H0 + ~H1) = 1 + � f(~t) ; _~I = ��'( ~H0 + ~H1) = 0 ; (64)so that '(~t) = ~t + � Z ~t0 d� f(�) + '0 ; ~I = onst: : (65)Thus, only the time-dependene of ' gets modi�ed, but not that of ~I = ~I0 !The latter property is a speial ase of the famous adiabati theorem of mehanis whihsays that \small and slow" perturbations of integrable systems leave the values of ationvariables unhanged [1{4℄. This does, of ourse, not mean that the energy remains onserved!As to the important perturbation theory of integrable systems desribed by angle and ationvariables see the Refs. [1{4℄.2.3.2 Interations proportional to ~h1 or ~h2On the phase spae (7) the Hamilton funtions H(~q; ~p) depend on the basi variables ~q and~p, well beyond that of the HO. Similarly the Hamilton funtions on (8) have to be expressedby the basi variables (9). Simple examples for interation terms added to ~H = ~I are thefollowing ones: ~H = ~h0 +  ~h1 = ~I +  ~I os' ; jj < 1 : (66)The eqs. of motion _' = �~I ~H = 1 +  os' ; (67)_~I = ��' ~H =  ~I sin' ; (68)have the solutions [46℄tan[('(~t)� '0)=2℄ = r1 + 1�  tan[p1� 2(~t� ~t0)=2℄ : (69)~I(~t) = ~I0 [1 +  os('(~t)� '0)℄�1 : (70)If we replae ~h1 in Eq. (66) by ~h2 = �~I sin', we get the solutions [47℄tan[('(~t)� '0)=2℄ = p1� 2 ftan[p1� 2(~t� ~t0)=2℄� g : (71)~I(~t) = ~I0 [1�  sin('(~t)� '0)℄�1 : (72)Aording to the de�nitions of Refs. [1, 2℄ the angle '(~t) is the \fast" variable here andthe ation variable ~I(~t) the \slow" one. This language means to say that the perturbation ~I os' (or � ~I sin') for small jj merely leads to small osillations of the ation variable15



around its unperturbed value ~I0. This an be read o� the above solutions immediately forjj � 1. Closely related to this type of behaviour is the onept of averaging the '-dependentpart of the perturbation over a period 2�, an often powerful tool for estimating the inueneof perturbations on integrable systems [1{4℄. Suh averaging is espeially disussed in Ref. [2℄.On the other hand, for jj ! 1 the ation variables ~I(~t) in Eqs. (70) and (72) utuateenormously (\resonanes")!2.3.3 Morse and other \integrable" potentialsI briey disuss three well-known integrable systems [48℄ with potentials for whih the Hamil-ton funtions H('; ~I) are not just proportional to ~I like in the ase of the HO, but arequadrati in the ation variable. This is so for the potentialsVMo(q) = V0 (e�a q � 1)2 ; q 2 R ; a; V0 : onst: > 0 ; (73)VMo(q) � VMo(q = 0) = 0 ;VsMo(q) = V0[1� 1= osh2(aq)℄ = V0 tanh2(aq) ; VsMo(q) � VsMo(q = 0) = 0 ; (74)q 2 R ; V0 > 0 ;VPT (q) = V0 tan2(aq) ; aq 2 (��=2; �=2) ; V0 > 0 ; VPT (q = 0) = 0 : (75)The �rst one was introdued by Morse [49℄ in order to desribe radial vibrations of diatomimoleules (q = r � 0) somewhat better than the HO does, the seond one is a sort ofsymmetrized Morse potential [50℄ and the third one a slightly modi�ed version of a potentialdisussed by P�oshl and Teller [51℄ in order to improve upon ertain properties of the Morsepotential. The potentials VMo and VsMo have bound states (periodi motions) for 0 < E < V0,the potential VPT has only bound states, for all E > 0.For small a q � 1 the potentials redue to the HO one:VMo(q) � VsMo(q) � VPT (q) � 12 M!20q2 ; !0 = ap2V0=M : (76)The \integrable" potential [52℄V(q) = V0[aq � 1=(aq)℄2 ; q > 0 ; V(q) � V(q = 1=a) = 0 ; (77)provides an example for whih the energy is a linear funtion of the ation variable I, like forthe HO. For a q � 1 we here have the HO approximationV(q) � 12 M !20(q � 1=a)2 ; !0 = 2ap2V0=M : (78)For any potential V (q) with periodi orbits on the phase spae (7) the ation variable isde�ned by the losed path integral2�I(E) = IC(E) dq p(q; E) ; p(q; E) = �p2M [E � V (q)℄1=2 ; (79)where the integration is to be taken lokwise along the losed path C(E) determined by theenergy equation 12M p2 + V (q) = E : (80)16



The fator 2� in the de�nition (79) is due to the onvention whih uses the irularfrequeny !0 = 2�=T and not � = 1=T .The integral (79) desribes the area of the region the boundary of whih is given by thelosed urve C(E) .If we now insert the relations (2) into the integral (79) we get the identity 2� I(E) = 2� I.This shows expliitly that the mapping (2) is independent of the potential hosen.If q� < q+ are the inner and outer turning points of the motion we an replae the losedpath integral in Eq. (79) by2� I(E) = 2p2M Z q+q� dq [E � V (q)℄1=2 : (81)(Notie that p dq = p _q dt > 0 on the path C(E) in both, the upper and the lower (q; p)-half-planes.)As we have three free parameters now, M; a and V0 , we do not have to use Plank'sonstant in order to introdue dimensionless quantities~q = a q ; ~p = ppM V0 ; ~E = E=V0 ; ~I = I !0 =V0 : (82)Morse potentialFor the potential VM(q) the epression (81) now takes the form� ~I( ~E) = 2 Z ~q+~q� d~q [ ~E � (e�~q � 1)2℄1=2 : (83)The integral an be solved expliitly (f. Appendix A) and the result is~I = 2(1�p1� ~E) ; ) ~E(~I) = ~I �1� 14 ~I� : (84)The inequality 0 < ~E < 1 implies for ~I 0 < ~I < 2 : (85)Restoring the physial dimensions we get the Hamilton funtionHMo(I) = !0 I �1� !0 I4V0� : (86)It yields the eqs. of motion _I = 0 ; _' = !0 � !20I2V0 ; (87)whih an be integrated immediately.In order to quantize the system as to its setor of bound states, we merely have to replaethe ation variable I by the operator ~ ~K0 (f. Eq. (18)). This leads to the Hamilton operatorHMo( ~K) = ~!0 ~K0 � (~!0)24V0 ~K20 ; (88)17



whih, aording to Eq. (20), yields the spetrumEk; n = ~!0(n+ k)[1� ~!04V0 (n+ k)℄ ; (89)whih for k = 1=2 is well-known [53℄. Conrete Hilbert spaes and eigenfuntions are providedby irreduible unitary representations as disussed in se. 7. The eigenfuntions of HMo( ~K)do not, of ourse, have to be solutions of the Shr�odinger eq. in q-spae, as is the ase inRefs. [53℄. But, beause of the unitary equivalenes, all physial preditions are the same!As the square braket in Eq. (89) should be positive one has to ut o� the spetrum at amaximal n = nmax, like it is done usually.The other potentialsFor the potential (74) one gets (f. Appendix A) the same form for the Hamilton funtionas in Eq. (86), namely HsMo(I) = !0 I �1� !0 I4V0� : (90)For the potential (75) one obtains (f. Appendix A)~I = 2(p ~E + 1� 1) ; ) HPT (I) = !0 I �1 + !0 I4V0� ; (91)whih may be quantized aordingly. Again the result is well-known for k = 1=2 [54℄.Finally one obtains for the potential (77)H(I) = !0 I ; !0 = 2ap2V0=M : (92)Comparison of HsMo(I) with HMo(I) and of H(I) with HHO(I) shows that the possible orbitsof motion may not depend on the details of the potentials V (q), but only on some generiproperties represented by the assoiated H(I). There is still, however, the possibility thatthe quantized systems have di�erent indies k . This is indeed the ase for the solutions ofthe Shr�odinger eqs. with the Hamiltonians HMo(Q;P ) and HsMo(Q;P ) [55℄ .2.3.4 Free non-relativisti partileAording to the seond of the Eqs. (27) we an rewrite the Hamilton funtionH0(q; p) = 12M p2 (93)of a free partile as H0(~h) = ! h22=h0 ; ~h = (h0; h1; h2) : (94)What is remarkable is that one needs an additional time sale - here provided by ! - inorder to express H0 in terms of the funtions (9)!
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3 Ation of the sympleti group on the phase spaeS~q;~pThe transformation group SO"(1; 2) and its double overing, the sympleti group in 2 di-mensions Sp(2;R), play a signi�ant role in the following disussions. Some of their mainproperties have been summarized in Appendies A and B of Ref. [13℄. In order to keep thepresent paper at least partially self-ontained, some of those properties needed here are againskethed below (ses. 3 { 5) and in Appendix B of this artile.The present Setion provides a systemati justi�ation for the hoie of the basi oordi-nates (9) on the phase spae (8) in terms of the sympleti transformation group Sp(2;R) onthe phase spae (7), without assuming this to be the phase spae of the HO.3.1 Global and in�nitesimal transformations, \observables"The elements of the sympleti group G1 � Sp(2;R) ( = SL(2;R) ) are given by the matriesg1 = � a11 a12a21 a22 � ; ajk 2 R ; det g1 = 1 ; (95)whih have the (de�ning) propertygT1 �� 0 1�1 0 � � g1 = � 0 1�1 0 � : (96)If we introdue x = �~q~p� 2 S~q;~p �= R2 ; (97)then the elements g1 of Sp(2;R) at on x asx! x0 = g1 � x ; g1 2 G1 � Sp(2;R) ; (98)with the property d~q 0 ^ d~p 0 = d~q ^ d~p ; (99)i.e. the transformations (98) leave the sympleti form!~q;~p = d~q ^ d~p (100)invariant.The group ation (98) has some other remarkable properties:The whole group transforms the point x = 0 into itself and ats transitively on the om-plement S~q;~p; 0 � S~q;~p � fx = 0g �= R2 � f(0; 0)g ; (101)i.e., if x1 and x2 are any two points of S~q;~p; 0 , then they an be transformed into eah otherby an element of G1. This an easily be seen by onsidering the �rst two of the following
19



1-parameter subgroups of G1:R1 : r1 = � os(�=2) sin(�=2)� sin(�=2) os(�=2) � ; � 2 (�2�;+2�℄ ; (102)A1 : a1 =  e��=2 00 e�=2 ! ; � 2 R ; (103)B1 : b1 = � osh(s=2) sinh(s=2)sinh(s=2) osh(s=2) � ; s 2 R ; (104)N1 : n1 = � 1 �0 1 � ; � 2 R : (105)Eah element g1 has a (Cartan) deomposition g1 = k2 � a1 � k1 or g1 = k2 � b1 � k1 and a unique(Iwasawa) deomposition g1 = k1 � a1 � n1 , where k1; k2 2 R1 .Now, let x1 and x2 be any two points of S~q;~p; 0. First rotate x1 by an element of R1into x 01, where ~p 01 = 0 and ~q 01 has the same sign as ~q2. Then use an element of A1 so thate��=2 ~q 01 = ~q 001 = p~q22 + ~p22 . Finally rotate the point (~q 001 ; 0) into x2 .The group G1 ats also e�etively on Sq;p; 0, that is to say, ifx = g1 � x 8x ; (106)then g1 is the identity element e = E2 � �1 00 1� : (107)3.2 Vetor �elds and their assoiated Hamiltonian funtionsThe 1-parameter subgroups (102) - (105) generate vetor�elds on Sq;p; 0 in the following sense:Let � = f(s)g be a 1-parameter group suh that (s = 0) = 1 and let f(x) be a smoothfuntion. Then the �-assoiated vetor�eld ~A� is de�ned by[ ~A�f ℄(x) = lims!0 1s [f((�s) � x)� f(x)℄ : (108)From the �rst three subgroups above we get the following 3-dimensional basis of vetor-�elds assoiated with the group G1:~AR1 = 12(~q �~p � ~p �~q) ; (109)~AA1 = 12(~q �~q � ~p �~p) ; (110)~AB1 = �12(~p �~q + ~q �~p) ; (111)They obey the Lie algebra sp(2;R) = so(1; 2):[ ~AR1 ; ~AA1℄ = ~AB1 ; [ ~AR1 ; ~AB1 ℄ = � ~AA1 ; [ ~AA1 ; ~AB1℄ = � ~AR1 : (112)Notie that the vetor �elds (109) { (111) vanish for x = 0, a point to be exluded !20



These vetor �elds are global Hamiltonian ones, that is to say there exist global funtions�g(x) on Sq;p; 0 suh that the vetor �elds may be written as� [�~p�g(x) �~q � �~q�g(x) �~p℄ : (113)The three Hamiltonian funtions here areR1 : �g0(x) = 14(~q2 + ~p2) ; (114)A1 : �g2(x) = �12 ~q ~p ; (115)B1 : �g1(x) = 14(�~q2 + ~p2) : (116)(The numbering of the funtions is mere onvention.)Their Poisson brakets obey the Lie algebra sp(2;R) = so(1; 2) , too:f�g0; �g1g~q;~p = ��g2 ; f�g0; �g2g~q;~p = �g1 ; f�g1; �g2g~q;~p = �g0 : (117)The squares of the �gj(x) ful�ll the relation�g20 � �g21 � �g22 = 0 : (118)On the other hand, the vetor �elds indued by the following translations, but now on thephase spae S~q;~p, ~q ! ~q + a ; ~p! ~p ; ~q ! ~q ; ~p! ~p� b ; a; b 2 R ; (119)are ~A~q = ��~q ; ~A~p = �~p ; (120)with the Hamiltonian funtions �g~q(x) = ~p ; �g~p(x) = ~q ; (121)the Poisson brakets of whih generate the usual Born-Dira-Heisenberg-Jordan-Weyl (Lie)algebra(alled BDHJW-algebra in the following1) with its basis f~q; ~p; 1g !The bilinear funtions (114) { (116) are the generators of the in�nitesimal transformationsassoiated with the transformations (98) of the subgroups (102) { (104):f�g0; ~qg = �12 ~p ; f�g0; ~pg = 12 ~q ; (122)f�g1; ~qg = �12 ~p ; f�g1; ~pg = �12 ~q ; (123)f�g2; ~qg = 12 ~q ; f�g2; ~pg = �12 ~p : (124)Integrated they give the transformations (98) of the subgroups (102) { (104), exept for anunessential overall minus-sign of the group parameters, a onsequene of the de�nition (113).1The usual terminology is \Heisenberg-" or \Weyl-" algebra, but I think this to be unjust towards theontributions of the other authors. 21



It is evident that the phase spaes (97) and (101) have not only quite di�erent topologialbut, as a onsequene, also essentially di�erent anonial strutures as to the transformationgroups whih at transitively on them: The phase spae (97) has the translations (119) withtheir assoiated entral extension (haraterized by f~q; ~pg = 1 ) as its \anonial" group,but the phase spae (101) the sympleti group Sp(2;R). This di�erene has importantonsequenes for the quantum theory as we shall see!The Hamiltonian funtions (121) play a double role on the phase spae S~q;~p : They are thegenerators of the (anonial) translations and at the same time they are the basi lassial\observables" on that phase spae. Similarly one may onsider the Hamiltonian funtions(114) { (116) as basi observables on S~q;~p; 0. However, there is the following ambiguity: Givena triple (�g0 > 0; �g1; �g2) with the property (118), then the 2 pairs (~q; ~p) and (�~q;�~p) areompatible with a given triple. For further disussions of this important point see below.The group Sp(2;R) is not only a transformation (automorphism) group of the BDHJW-algebra but the relations (117), (122) { (124) and f~q; ~pg = 1 show that the diret sum of thevetor spaes of the Lie algebra sp(2;R) and the BDHJW-algebra forms a 6-dimensional Liealgebra of its own. This feature plays a major role in the harmoni (Fourier) analysis of theBDHJW-group [56℄.Whereas the oordinates of the points x transform as vetors with respet to the groupSp(2;R) , (f. Eq. (98)), the Hamiltonian funtions (114) { (116) transform as tensors ofseond degree: Applying the groups (102) - (104) to ~q and ~p and inserting the results into ther.h. sides of the expressions (114) { (116) yields the following transformationsR1 : �g0(x) ! �g0(x0) = �g0(x) ; (125)�g1(x) ! �g1(x0) = os � �g1(x) + sin � �g2(x) ;�g2(x) ! �g2(x0) = � sin � �g1(x) + os � �g2(x) ;A1 : �g0(x) ! �g0(x0) = osh � �g0(x) + sinh � �g1(x) ; (126)�g1(x) ! �g1(x0) = sinh � �g0(x) + osh � �g1(x) ;�g2(x) ! �g2(x0) = �g2(x) ;B1 : �g0(x) ! �g0(x0) = osh s �g0(x)� sinh s �g2(x) ; (127)�g1(x) ! �g1(x0) = �g1(x) ;�g2(x) ! �g2(x0) = � sinh s �g0(x) + osh s �g2(x) :These formulae show that the 3 funtions �gj transform as a 3-vetor with respet to the\Lorentz" group SO"(1; 2): The transformations (125) { (127) leave the quadrati form �g20 ��g21��g22 invariant. This is related to the fat that the group Sp(2;R) is a double overing of thegroup SO"(1; 2) with the enter Z2 = fe;�eg of Sp(2;R) as the kernel of the homomorphismSp(2;R) ! SO"(1; 2) (see Appendix B of Ref. [13℄). Notie that the kernel (enter) Z2 leavesthe bilinear expressions (114) { (116) invariant.3.3 Spae reetions and time reversalThe enter Z2 implements the parity operation� : ~q ! �~q ; ~p! �~p ; (128)22



whih obviously is sympleti (it leaves the 2-form d~q ^ d~p invariant).More subtle is the implementation of the time reversalT : ~t! �~t ; ~q ! ~qT = ~q ; ~p! ~pT = �~p ; (129)whih is not sympleti (we have d~q ^ d~p! �d~q ^ d~p). However, this an be taken are of inanalogy to quantum mehanis where time reversal - aording to Wigner - is implementedby an anti-unitary transformation in Hilbert spae:UT :  1 ! UT 1 ;  2 ! UT 2 ; (UT 2; UT 1) = ( 1;  2) = ( 2;  1)� ; (130)where ( 2;  1) denotes the omplex-valued salar produt. As =( 2;  1) de�nes a sympletiform [57℄ whih hanges sign under the omplex onjugation (130), this suggests to hangethe order in d~q ^ d~p in the ase of the time reversal (129):(d~q ^ d~p)T = d~pT ^ d~qT = �d~p ^ d~q = d~q ^ d~p : (131)This has orresponding onsequenes for the assoiated Poisson brakets: Let f (j)(~q; ~p); j =1; 2; be two smooth funtions on the phase spae S~q;~p. Withf (j)T (~q; ~p) = f (j)(~q;�~p); j = 1; 2; (132)we de�ne the time-reversed Poisson braket byff (2); f (1)gT = ff (1)T ; f (2)T g : (133)The de�nition is appropriate in the following sense: The time evolution of a funtion f [~q(~t); ~p(~t)℄(whih does not depend expliitly on time) is given by_f = ff; ~Hg ; (134)where ~H is the Hamilton funtion of the system. If HT (~q; ~p) = H(~q; ~p), we have for the time-reversed Eq. (134) d fTd(�~t) = ff; ~HgT = f ~H; fTg ; ) _fT = ffT ; ~Hg ; (135)whih is what one wants!3.4 The spae S~q;~p; 0 as a \homogeneous" oneThe phase spae S~q;~p; 0 an be interpreted as a homogeneous one as follows:The subgroup (105) leaves the points of the line f(~q; ~p = 0)g invariant, i.e. it is the\isotropy" or \little" group of these points. We have already seen that the group Sp(2;R)ats transitively on S~q;~p; 0. Both properties imply that we an represent S~q;~p; 0 as a homogeneousspae, namely S~q;~p; 0 �= Sp(2;R)=N1 ; (136)i.e. the points x 2 S~q;~p; 0 are in one-to-one orrespondene with the rest lasses g1�N1;where g1 2Sp(2;R). This is immediately plausible: The group G1 = Sp(2;R) has the unique (Iwasawa)subgroup deomposition R1 � A1 � N1 , with the topologial produt struture S1 � R+ � R .\Dividing out the subgroup N1" means dividing out the topologial fator R. The re-maining produt S1 � R+ orresponds to the polar oordinates of the puntured planeR2 � f(0; 0)g �= S~q;~p; 0 . 23



3.5 Some quantum aspetsThe present subse. is intended to illustrate the role the sympleti group Sp(2;R) from aboveplays in the onventional quantum mehanis of the HO, a role whih remains unmentionedin the usual QM textbook disussions.Let us apply the onventional quantization proedure to the funtions (114) { (116) byreplaing ~q and ~p by the operators ~Q and ~P and (Weyl) symmetrizing where neessary. Wethen get �g0(x) ! 14 ( ~P 2 + ~Q2) = ~K0 ; (137)�g1(x) ! 14( ~P 2 � ~Q2) = � ~K1 : (138)�g2(x) ! �14 ( ~Q ~P + ~P ~Q) = ~K2 : (139)With ~Q = 1p2 (ay + a) ; ~P = ip2 (ay � a) ; [a; ay℄ = 1 ; (140)we have ~K0 = 14 (2 aya + 1) ; ~K1 = 14 (ay2 + a2) ; ~K2 = � i4 (ay2 � a2) ; (141)and ~K+ = ~K1 + i ~K2 = 12 ay2 ; ~K� = ~K1 � i ~K2 = 12 a2 : (142)The assoiated Lie algebra is[ ~K0; ~K1℄ = i ~K2 ; [ ~K0; ~K2℄ = �i ~K1 ; [ ~K1; ~K2℄ = �i ~K0 ; (143)or [ ~K0; ~K�℄ = � ~K� ; [ ~K+; ~K�℄ = �2 ~K0 : (144)The relations (141) and (142) onstitute a well-known realization of the Lie algebra sp(2;R) =so(1; 2) whih yields two irreduible positive disrete series unitary representations of a twofoldovering group of Sp(2;R) [58℄:Let jnosi be a number eigenstate of the harmoni osillator Fok spae:ay jnosi = pnos + 1 jnos + 1i; a jnosi = pnos jnos � 1i; (145)ayajnosi = nos jnosi; nos = 0; 1; 2; : : : :As ~K� annihilates the states jnos = 0i and jnos = 1i,~K�jnos = 0i = 0 ; ~K�jnos = 1i = 0 ; (146)we get two di�erent irreduible unitary representations assoiated with the Lie algebra sp(2;R)= so(1; 2), one whih is given by states with even numbers of Fok spae quanta and one withodd numbers, both generated by the reation operator ~K+ : Beause~K0jnosi = 12 (nos + 1=2)jnosi ; nos = 0; 1; 2; : : : ; (147)24



we see that ~K0 has the eigenvalues(2nos + 1=2)=2 = n+ 14 and (2nos + 1 + 1=2)=2 = n + 34 ; n = 0; 1; : : : ; (148)in the ases of even and odd numbers of quanta, respetively. That is to say, we get oneirreduible unitary representation with k = 1=4 and one with k = 3=4.As to the related groups these are true representations of a 2-fold overing Mp(2;R) ofSp(2;R) = SL(2;R) �= SU(1; 1) and a 4-fold overing of SO"(1; 2). These 2-fold overinggroups of the sympleti groups Sp(2n;R) in 2n dimensions are alled \metapleti" [59, 60℄ones (for more details see below).As the operators (137) { (139) ommute with the parity transformation� : ~Q! � ~Q ; ~P ! � ~P ; �2 = 1 ; (149)the two irreduible representations may be assoiated with the eigenvalues �1 of �, respe-tively.The two representations with k = 1=4 and k = 3=4 may, of ourse, be realized in the 2subspaes H+ and H� of the onventional Hilbert spae L2(R; d~q) of the harmoni osillatorwith the orthonormal basisunos(~q) = e�~q2p2nosp� nos! Hnos(~q) ; Hnos(�~q) = (�1)nosHnos(~q) ; (150)where Hn(~q) is the nth Hermite polynomial.The subspae H+ for the unitary representation with k = 1=4 is spanned by the Hermitefuntions with even Hermite polynomials Hnos and the subspae H� for the representationwith k = 3=4 is spanned by the Hermite funtions with odd Hermite polynomials.In the \even" subspae H+ the Hamiltonian~Hos = 2 ~K0 (151)has the eigenvalues (nos + 1=2) ; nos = 2n ; n = 0; 1; 2; : : : ; (152)and in the \odd" subspae H� its eigenvalues are(nos + 1=2) ; nos = 2n+ 1 ; n = 0; 1; 2; : : : : (153)Notie that the operators (140) map H+ onto H� and vie versa!The operators (23) for the two irreduible representations areA(1=4) = 1p2 (N� + 1)�1=2 a2 ; Ay(1=4) = 1p2 ay2(N� + 1)�1=2 ; N� = aya ; (154)and A(3=4) = 1p2 (N� + 2)�1=2 a2 ; Ay(3=4) = 1p2 ay2(N� + 2)�1=2 : (155)(The index � stands for \Fok".)It follows from the properties of a and ay thatA(1=4)jnos = 2ni = pn j2n� 2i ; Ay(1=4)jnos = 2ni = pn + 1 j2n+ 2i ; (156)25



and N(1=4) = Ay(1=4)A(1=4) = 12 N� ; [A(1=4); Ay(1=4)℄ = 1 : (157)Analogously we getA(3=4)jnos = 2n+ 1i = pn j2n� 1i ; Ay(3=4)jnos = 2n+ 1i = pn + 1 j2n+ 3i ; (158)and N(3=4) = Ay(3=4)A(3=4) = 12 (N� � 1) ; [A(3=4); Ay(3=4)℄ = 1 : (159)This meansN1=4 jnos = 2ni = n jnos = 2ni ; N3=4 jnos = 2n + 1i = n jnos = 2n+ 1i : (160)Aording to Eqs. (22), (157) and (159) we may de�ne in H+ and H� the position andmomentum operators~Q(k) = 1p2 (A(k) +Ay(k)) ; ~P(k) = ip2 (Ay(k)�A(k)) ; [ ~Q(k); ~P(k)℄ = i 1 ; k = 1=4 ; 3=4 : (161)The operators ~Q(1=4) and ~P(1=4) or ~Q(3=4) and ~P(3=4) have on the subspae H+ or H�, respe-tively, the same matrix elements the operators (140) have on H = H+�H� ! This is possiblebeause in an in�nite dimensional linear (Hilbert) spae a genuine subspae may be isomorphito the spae itself. Here suh a orrespondene an be implemented by H 3 jni $ j2ni 2 H+or H 3 jni $ j2n+ 1i 2 H� , respetively.There is a ruial di�erene, however, between the \elementary" operators (140) and the\omposite" ones (161): Using the general operator formulaeCB e�C = B + [C;B℄ + 12! [C; [C;B℄℄ + 13! [C; [C; [C;B℄℄℄ + � � � ; (162)we get from Eqs. (140) and (141)U(�) aU(��) = ei�=2 a ; U(�) ay U(��) = e�i�=2 ay ; U(�) = e�i ~K0 � ; ~K0 = 14 (2 aya + 1) ;(163)so thatU(�) ~QU(��) = os(�=2) ~Q� sin(�=2) ~P ; U(�) ~P U(��) = sin(�=2) ~Q+ os(�=2) ~P : (164)Espeially for � = 2� we get the reetionU(� = 2�) ~QU [�(� = 2�)℄ = � ~Q ; U(� = 2�) ~P U [�(� = 2�)℄ = � ~P : (165)This shows that the operators (140) transform aording to the subgroup (102) of Sp(2;R) .For � = 4� the transformations (164) at as the identity on the pair ~Q; ~P , but we haveU(� = 4�) = e�i 4�(2Nos+1)=4 = e�i�1 = �1 ; Nos = aya : (166)This shows again that U(�); � 2 [0; 4�) ; is not a true representation of the group Sp(2;R),but that it is one of its 2-fold overing Mp(2;R) for whih U(� = 8�) = 1 .26



The reetions (165) may also be implemented by the simpli�ed operator � :� ~Q��1 = � ~Q ; � ~P��1 = � ~P ; � = ei�Nos ; (167)where the phase has been hoosen suh that�jnosi = (�1)nosjnosi : (168)Contrary to the relations (163) we have on the other handU(�)A(k) U(��) = ei� A(k) ; U(�)Ay(k) U(��) = e�i� Ay(k) ; U(�) = e�i ~K0 � ; (169)where ~K0 is now given by Ay(k)A(k) + k1.Thus, the operators (161) transform aording to the group Sp(2;R)=Z2 �= SO"(1; 2). Thisreets the fat that the operators ~K0; ~K+ and ~K� transform aording to the adjoint repre-sentation of Sp(2;R) [61℄.The transformation properties of the operators (161) under the subgroups generated bythe operators ~K1 and ~K2 are more ompliated than those of Eqs. (140). For the latter wehave, e.g. e�i� ~K2 ~Qei� ~K2 = e�=2 ~Q ; e�i� ~K2 ~Pei� ~K2 = e��=2 ~P ; (170)where ~K2 is given by Eq. (141). The transformation (170) is the usual \squeezing" transfor-mation of quantum optis [62℄. The orresponding transformation properties of the ~Q(k) and~P(k) are more ompliated (see se. 4.4 below).It is evident that by replaing the operators a and ay in Eqs. (141) and (142) by theoperators A(k) and Ay(k) of Eqs. (154) and (155) one may repeat the whole proedure indiatedabove, thereby splitting the subspaes H+ and H� again into two subspaes and so on.What is important for us at the present state of the disussion is that the quantized versionof the \(~q; ~p)-model" of the HO arries two di�erent irreduible unitary representations of a2-fold overing of the sympleti group Sp(2;R).There is muh more to ome with the quantized version of the ('; ~I)-model of the HO:4 Ation of the proper orthohronous homogeneous Lorentzgroup in 1+2 dimensions on the phase spae S';~I4.1 The basi anonial \observables" on S';~IIf we insert the relations ~q = p2~I os' ; ~p = �p2~I sin' ; (171)into the expressions (114) { (116) we get another set of funtions �hj('; ~I) ; j = 0; 1; 2; whihagain obey the Lie algebra sp(2;R) = so(1; 2) with respet to the Poisson brakets (11):�h0('; ~I) = 12 ~I ; (172)�h1('; ~I) = �12 ~I os(2') ; (173)�h2('; ~I) = 12 ~I sin(2') ; (174)27



with f�h0; �h1g';~I = ��h2 ; f�h0; �h2g';~I = �h1 ; f�h1; �h2g';~I = �h0 : (175)This is not yet quite the form (9) we would like to have. But implementing the saling (54)with � = 2 yields the funtions (9), exept for the signs of h1 and h2 whih may be reversedwithout a�eting their properties and the Lie algebra struture (10).Thus, we obtain on the phase spaeS';~I = f� = ('; ~I);' 2 R mod 2�; ~I > 0g (176)the basi dimensionless funtions~h0('; ~I) = ~I > 0 ; ~h1('; ~I) = ~I os' ; ~h2('; ~I) = �~I sin' ; (177)whih obey the Lie algebraf~h0; ~h1g';~I = �~h2 ; f~h0; ~h2g';~I = ~h1 ; f~h1; ~h2g';~I = ~h0 : (178)The two obvious main reasons to pass from the funtions (172) { (174) to the funtions (177)are the following ones:First, one would like ~h0 to be equal to the Hamiltonian ~H = ~I and, seondly, the basiperiodi funtions on S1 are os' and sin' from whih all the higher ones, osn'; sinn'; n =2; 3; : : : ; an be onstruted. The funtions os 2' and sin 2' annot serve that purpose! Forrelated disussions of this point see Ref. [63℄.A given triple (~h0; ~h1; ~h2) with the property~h20 � ~h21 � ~h22 = 0 ; ~h0 > 0 ; (179)determines a point � 2 S';~I uniquely. Eq. (179) shows that the phase spae S';~I is di�eomor-phi to a (light) one with the tip deleted, i.e. it is topologially equivalent to S1�R+ . Thus,S';~I has the same topologial struture as S~q;~p; 0 from above! It is, therefore, not surprisingthat the anonial group Sp(2;R) is intimately related to the oresponding one of S';~I , namelythe \proper orthohronous homogeneous Lorentz" group SO"(1; 2) �= Sp(2;R)=Z2 whih hasthe sympleti group Sp(2;R) as a double overing. SO"(1; 2) is that onneted subgroup ofthe four \piees" of the group O(1; 2) whih ontains the unit element and is time-diretionpreserving [64℄. More on this in subse. 4.5 below.The transformations of SO"(1; 2) on S';~I are onveniently implemented by passing to thegroup G0 � SU(1; 1) whih is isomorphi to the group Sp(2;R): The elements g0 2 G0 aregiven by g0 = � � ��� �� � ; det g0 = j�j2 � j�j2 = 1 : (180)They at on a 2-dimensional omplex vetor spae C 2 asg0 � � z1z2 � = � z01z02 � ; with jz01j2 � jz02j2 = jz1j2 � jz2j2 : (181)The isomorphism between the two groups G0 and G1 an be realized by the unitary matrixC0 = 1p2 � 1 �i�i 1 � ; detC0 = 1 ; C�10 = 1p2 � 1 ii 1 � = Cy0 ; (182)28



whih yields C0 � g1 � C�10 = g0 : (183)The hermitian matries� = � ~h0 = ~I ~h1 + i ~h2 = ~Ie�i'~h1 � i ~h2 = ~Iei' ~h0 = ~I � ; det� = ~h20 � ~h21 � ~h22 = 0 ; (184)are in 1-1 orrespondene to the points � 2 S';~I . The transformations � ! �0 under SO"(1; 2)are implemented by � ! �0 = g0 � � � gy0 ; det �0 = det � ; (185)where gy0 denotes the hermitian onjugate of the matrix g0.The last equality in Eq. (185) follows from the property detg0 = detgy0 = 1. Beausedet� = ~h20 � ~h21 � ~h22 ; the transformations (185) are indeed Lorentz transformations!One sees immediately that g0 and �g0 lead to the same transformations of the 3-vetors(~h0; ~h1; ~h2) and therefore of ~I and '. Thus, the group SU(1; 1) ats on the spae S';~I onlyalmost e�etively with the kernel Z2 representing the enter of the twofold overing groupsSU(1; 1) or Sp(2;R) of SO"(1; 2). It is well-known that the latter group ats e�etively andtransitively on the forward light one [65℄ and thus on S';~I .Applying a general g0 to the matrix (184) yields the mapping:,� = ('; ~I) ! �0 = ('0; ~I 0) :ei'0 = �� ei' + ���+ ei' � : (186)~I 0 = j� + ei' �j2 ~I ; (187)As �'0�' = j� + ei'�j�2 ; (188)we have the equality d'0 ^ d~I 0 = d' ^ d~I ; (189)that is, the transformations (186) and (187) are sympleti.It is, however, more instrutive to look at the ations of 1-parameter subgroups of SU(1; 1):The unitary transformation (182) maps the subgroups (102)-(105) of G1 onto the followingsubgroups of G0: R0 : r0 =  ei�=2 00 e�i�=2 ! ; � 2 (�2�;+2�℄ ; (190)A0 : a0 = � osh(�=2) i sinh(�=2)�i sinh(�=2) osh(�=2) � ; � 2 R ; (191)B0 : b0 = � osh(s=2) sinh(s=2)sinh(s=2) osh(s=2) � ; s 2 R ; (192)N0 : n0 = � 1 + i�=2 �=2�=2 1� i�=2 � ; � 2 R : (193)
29



(I here, too, list four - not independent - subgroups of G0 beause we shall need N0 for therepresentation of S';~I as a homogeneous spae below.) Their ations (185) on the 3-vetor(~h0; ~h1; ~h2) are given byR0 : ~h0 ! ~h00 = ~h0 ; (194)~h1 ! ~h01 = os � ~h1 � sin � ~h2 ;~h2 ! ~h02 = sin � ~h1 + os � ~h2 ;A0 : ~h0 ! ~h00 = osh � ~h0 + sinh � ~h2 ; (195)~h1 ! ~h01 = ~h1 ;~h2 ! ~h02 = sinh � ~h0 + osh � ~h2 ;B0 : ~h0 ! ~h00 = osh s ~h0 + sinh s ~h1 ; (196)~h1 ! ~h01 = sinh s ~h0 + osh s ~h1 ;~h2 ! ~h02 = ~h2 ;N0 : ~h0 ! ~h00 = (1 + �2=2) ~h0 + � ~h1 � (�2=2) ~h2 ; (197)~h1 ! ~h01 = � ~h0 + ~h1 � � ~h2 ;~h2 ! ~h02 = (�2=2) ~h0 + � ~h1 + (1� �2=2) ~h2 :So we have rotations in the ~h1� ~h2 plane and two Lorentz \boosts", one in the ~h0� ~h2 planeand the other in the ~h0� ~h1 plane! All transformations leave the form ~h20� ~h21� ~h22 invariant.For the variables ' and ~I these transformations meanR0 : ~I 0 = ~I ; (198)ei' 0 = ei('��) ;A0 : ~I 0 = �a(�; ') ~I ; �a(�; ') = osh � � sinh � sin' ; (199)os'0 = os'=�a(�; ') ;sin'0 = (osh � sin'� sinh �)=�a(�; ') ;B0 : ~I 0 = �b(s; ') ~I ; �b(s; ') = osh � + sinh � os' ; (200)os'0 = (osh s os'+ sinh s)=�b(s; ') ;sin'0 = sin'=�b(s; ') ;N0 : ~I 0 = �n(�; ') ~I ; �n(�; ') = 1 + � os'+ �2(1 + sin')=2 ; (201)os'0 = [os'+ �(1 + sin')℄=�n(�; ') ;sin'0 = [sin'� � os'� �2(1 + sin')=2℄=�n(�; ') :As the enter Z2 of SU(1; 1) ats as the identity in the transformations (194) { (201) theabove transformation subgroups are atually those of SO"(1; 2) = SU(1; 1)=Z2 whih we shalldenote by R = R0=Z2, A = A0=Z2 et. in the following.Transitivity of the SO"(1; 2) group ation on S';~I an be seen as follows: Any point �1 =('1; ~I1) may be transformed into any other point �2 = ('2; ~I2): �rst transform ('1; ~I1) into(0; ~I1) by r0(� = '1), then map this point into ('0 = � artan(sinh �0 ); ~I2) by a0(�0; osh �0 =~I2=~I1) and �nally transform ('0; ~I2) by r0(� = '0 � '2) into �2 = ('2; ~I2).30



For in�nitesimal values of the parameters �; � and s the transformations (198) { (201)take the form R : Æ' = ��; j�j � 1; Æ ~I = 0 ; (202)A : Æ' = �(os') �; Æ ~I = �~I (sin') �; j� j � 1 ; (203)B : Æ' = �(sin') s; Æ ~I = ~I (os') s; jsj � 1 : (204)Aording to Eq. (108) they indue on S';~I the vetor �elds~AR = �' ; (205)~AA = os'�' + ~I sin'�~I ; (206)~AB = sin'�' � ~I os'�~I : (207)It is easy to hek that the Lie algebra of these vetor �elds is isomorphi to the Lie algebraof SO"(1; 2), and all its overing groups, of ourse.The vetor �elds (205) { (207) are (global) Hamiltonian ones in the sense of Eq. (113).The orresponding Hamiltonian funtions f('; ~I) are:~AR : fR('; ~I) = �~I ; (208)~AA : fA('; ~I) = �~I os' ; (209)~AB : fB('; ~I) = �~I sin' : (210)The Hamiltonian funtions fR; fA and fB obey the Lie algebra so(1; 2) with respet to thePoisson brakets (11):ffR; fAg = �fB ; ffR; fBg = fA ; ffA; fBg = fR : (211)Reversing the minus signs on the right-hand side of Eqs. (208) and (209) we �nally arriveagain at our three basi lassial observables introdued before:~h0('; ~I) � �fR = ~I ; ~h1('; ~I) � �fA = ~I os' ; ~h2('; ~I) � fB = �~I sin' : (212)Thus, the anonial group SO"(1; 2) of the sympleti spae S';~I determines the basi \ob-servables" (177) of that lassial spae.4.2 S';~I as a homogeneous spaeThe transformation formulae (201) show that the subgroup N0 leaves the half-line ' =��=2; ~I > 0; pointwise invariant, that is, N0 is the stability group of those points. Thisimplies that the sympleti spae S';~I is di�eomorphi to the oset spae SO"(1; 2)=N0 :S';~I �= SO"(1; 2)=N0 : (213)Notie that the subgroups N0 and A0 do not ontain the seond enter element �e of SU(1; 1).The enter Z2 is a subgroup of R0.In the language of the ~hj the transformations (197) leave the points (~I; ~h1 = 0; ~h2 = ~I)invariant. 31



4.3 On the relationship between the phase spaes S~q;~p; 0 and S';~IThe two phase spaes S~q;~p; 0 and S';~I have the same topologial struture S1 � R+ , but theirorrespondene is nevertheless not one-to-one. The term \topologial" is somewhat impreisehere: the positive real numbers R+ an be mapped in a one-to-one fashion onto the full realline R by ~I = ea; a = ln ~I; ~I 2 R+ ; a 2 R; . This mapping is, however, not sympleti beaused' ^ d~I = ead' ^ da . But as we are interested in preserving the sympleti strutures, weonsider only (usually loal) \sympletomorphisms" [44℄.In order to see the essential di�erene between the spaes S~q;~p; 0 and S';~I let us look at theorbits of the transformation group R1 (f. Eq. (102)) on the former (f. Eq. (98)) and thoseof R0 (f. Eq. (190)) on the latter (f. Eqs. (194)):If we start with � = 0 and inrease � to � then - aording to Eq. (102) - the positive ~q-axisis rotated by 90Æ onto the positive ~p-axis and the latter is rotated onto the negative ~p-axis.On the other hand - aording to Eq. (194) - the ~h1- and ~h2-axis are both rotated by 180Æ,i.e. they hange sign. For � = 2� the transformation (194) beomes the identity, whereasnow the transformation (102) hanges the sign of x = (~q; ~p)T (\T" here means \transpose"):x! �x. Finally, for � = 4� both groups at as the identity.All this is, of ourse, a onsequene of the fat that the e�etive transformation groupon S~q;~p; 0 is Sp(2;R) , whereas the orresponding transformation group on S';~I is SO"(1; 2) =Sp(2;R)=Z2! The situation is ompletely similar to the well-known transformations of thegroup SU(2) on a 2-dimensional (omplex spinor) vetor spae whih indues a orrespondingtransformation of the group SO(3) = SU(2)=Z2 on a 3-dimensional vetor spae. Here, too, agiven element of SO(3) orresponds to two elements �u 2 SU(2) ! In our ase the x 2 S~q;~p; 0are the \spinors" and the � 2 S';~I are the \vetors".The remarks show in whih way the two spaes S~q;~p; 0 and S';~I di�er globally despite theloal equality d' ^ d~I = d~q ^ d~p whih is obviously invariant under the enter Z2 (it sends xto �x and � to �).One may haraterize the situation also in the following way [66℄: If we identify the pointsx and �x on S~q;~p; 0 then the group Sp(2;R) ats on this quotient spae in the same way asthe group SO"(1; 2) on S';~I and we have the orrespondeneS';~I �= S~q;~p;0=Z2 ; (214)whih follows also from omparing the homogeneous spaes (136) and (213).A quotient spae like (214) is alled an \orbifold". An orbifold may be generated from amanifold M by identifying points whih are onneted by a �nite disontinuous group Dn of nelements so that the orbifold is given by the quotient spae M=Dn. An orbifold generally hasadditional singularities as ompared to the manifold from whih it is onstruted, as we shallsee now:In our ase the orbifold S~q;~p; 0=Z2 is a one: Take the lower half of the (~q; ~p)-plane androtate it around the ~q-axis till it oinides with the upper half of the plane suh that thenegative ~p-axis lies on the positive one. Then rotate the left half of the upper half planearound the positive ~p-axis till the negative ~q-axis oinides with the positive one. Finally gluethe two ~q-half-axis together. The resulting spae is a one with its \tip" (vertex) at x = 0.The tip onstitutes a singularity to be deleted. It is a �xed point of the ation of Z2. We thusarrive at the one struture of the sympleti spae (214) by a di�erent route.32



4.4 Relationships between the oordinates ~q; ~p and ~h0; ~h1; ~h2Further below we shall enounter several important relations between the quantum operatorversions ~Q; ~P; ~K0; ~K1 and ~K2 of the orresponding lassial basi quantities ~q; ~p; ~h0; ~h1 and~h2. So it is useful to list a number of relations between the latter:~q('; ~I) = p2~I os' = s 2~h0 ~h1 ; ~h0 = ~I; ~h1 = ~I os' ; (215)~p('; ~I) = �p2~I sin' = s 2~h0 ~h2 ; ~h2 = �~I sin' ; (216)� = 1p2(~q + i~p) = p~I e�i' = ~h+=q~h0 ; (217)~h+ = ~h1 + i~h2 = ~I e�i' ; ~h� = ~h1 � i~h2 = ~I ei' : (218)Also of interest are a number of Poisson brakets:f~h0; ~qg';~I = �~p ; (219)f~h0; ~pg';~I = ~q ; (220)f~h0; �g';~I = i � : (221)These are just the anonial eqs. of motion for the HO.More ompliated are the following Poisson braketsf~h1; ~qg';~I = �12 sin' ~q � os' ~p ; (222)f~h1; ~pg';~I = �12 sin' ~p+ os' ~q ; (223)f~h2; ~qg';~I = �12 os' ~q + sin' ~p ; (224)f~h2; ~pg';~I = �12 os' ~p� sin' ~q ; (225)(226)where the right-hand sides may be expressed in di�erent ways by using the quantities de�nedin Eqs. (215) { (218). Examples aref~h+; �g';~I = 1p~I (�12 �� + i�)� = �12p~I + i~I3=2 (~h+)2 ; (227)f~h�; �g';~I = 1p~I (�12 � + i��)� = i2p~I � 12~I3=2 (~h�)2 : (228)The brakets f~h+; ��g';~I and f~h�; ��g';~I follow from omplex onjugation of the relations(228) and (227).4.5 Spae reetions and time reversalThe spae reetions (128) may be implemented on S';~I by� : '! '� � ; ~I ! ~I : (229)33



The reetion � leaves the sympleti form d' ^ d~I invariant (loally) and implies� : ~h0 ! ~h0 ; ~h1 ! �~h1 ; ~h2 ! �~h2 : (230)The time reversal (129) an be implemented byT : ~t! �~t ; '! �' ; ~I ! ~I : (231)In order to make this transformation into a sympleti one, we also have to hange the orderof the fators in d' ^ d~I as disussed after Eq. (129) above. We now haveT : ~h0 ! ~h0 ; ~h1 ! ~h1 ; ~h2 ! �~h2 : (232)Notie that the spae reetion properties (230) of the ~hj are di�erent from those of the �hjof Eqs. (172) { (174). The T-reversal properties are the same.The relationship of the above �- and T -transformations to the di�erent \piees" of thehomogeneous Lorentz group O(1; 2) is as follows: It follows from~hj ! ~h0j = 2Xk=0 � kj ~hk ; (~h00)2 � (~h01)2 � (~h02)2 = (~h0)2 � (~h1)2 � (~h2)2 ; (233)that det(� kj ) = �1 ; sgn� 00 = �1 : (234)The group SO"(1; 2) whih ontains the identity transformation is haraterized by det(� kj ) =1; sgn� 00 = 1 : The above transformations � and T have both sgn� 00 = 1 , but det(� kj ) = 1and det(� kj ) = �1 ; respetively.5 Quantizing the angle - ation variables phase spaeS';~I of the harmoni osillator5.1 Lie algebra of the self-adjoint observables ~Kj and the strutureof their irreduible representationsThe quantum theory of the HO desribed on the phase spae S~q;~p is a settled a�air, due tothe Stone-von Neumann uniqueness theorem for the irreduible unitary representations of theBDHJW-group [67℄!The situation is di�erent, however, for the quantum theory of the HO desribed by thephase spae S';~I of its angle and ation variables. We have seen that the \anonial" group ofthat phase spae is the group SO"(1; 2) whih has an in�nite number of overing groups, due toits maximal ompat rotation subgroup SO(2). The group SO"(1; 2) - and its overing groups -has 3 lasses of irreduible unitary representations [68℄: the \prinipal", the \supplementary"or \omplementary" series and two \disrete" series. In the prinipal and supplementaryseries the spetra of the generator ~K0 are unbounded from below and above. One of thedisrete series has a stritly positive spetrum of ~K0 and the other a stritly negative one.In our ase ~K0 orresponds to the positive ation variable ~I and, therefore, ought to bea positive de�nite operator. This leaves only the positive disrete series of the irreduible34



unitary representations. These may be - formally - onstruted as follows:As the group SO"(1; 2) is nonompat, its irreduible unitary representations are in�nite-dimensional. Di�erent onrete representation Hilbert spaes will be disussed later in se.7. In an irreduible unitary representation of the group the lassial funtions ~h0; ~h1; ~h2with their Lie algebra (10) orrespond to self-adjoint operators ~K0; ~K1; ~K2 whih obey theommutation relations[ ~K0; ~K1℄ = i ~K2 ; [ ~K0; ~K2℄ = �i ~K1 ; [ ~K1; ~K2℄ = �i ~K0 ; (235)or, with the de�nitions ~K+ = ~K1 + i ~K2 ; ~K� = ~K1 � i ~K2 ; (236)we have [ ~K0; ~K+℄ = ~K+ ; [ ~K0; ~K�℄ = � ~K� ; [ ~K+; ~K�℄ = �2 ~K0 : (237)The relations (235) are invariant under the replaement ~K1 ! � ~K1; ~K2 ! � ~K2 and ~K1 !� ~K2; ~K2 ! ~K1. The relations (237) are invariant under ~K+ ! � ~K+; ~K� ! �� ~K�; j�j = 1 ,and under the transformations ~K+ $ ~K�; ~K0 ! � ~K0. In irreduible unitary representationswith a salar produt (f1; f2) the operator ~K� is the adjoint operator of ~K+ : (f1; ~K+f2) =( ~K�f1; f2), and vie versa.The (Casimir) operator C = ~K21 + ~K22 � ~K20 (238)ommutes with all three ~Kj and therefore is a multiple of the identity operator in an irreduiblerepresentation. It obeys the relations~K+ ~K� = C + ~K0( ~K0 � 1) ; ~K� ~K+ = C + ~K0( ~K0 + 1) : (239)Most unitary representations make use of the fat that ~K0 is the generator of a ompatgroup and that its eigenfuntions gm are normalizable elements of the assoiated Hilbertspae H [69℄.The relations (237) show that the K� at es reation and annihilation operators and theyimply ~K0 gm = mgm ; m 2 R ; (gm; gm) = 1 ; (240)~K0 ~K+gm = (m+ 1) ~K+gm ; (241)~K0 ~K�gm = (m� 1) ~K�gm ; (242)whih, ombined with (239), lead to(gm; ~K+ ~K�gm) = ( ~K�gm; ~K�gm) =  +m(m� 1) � 0 ; (243)(gm; ~K� ~K+gm) =  +m(m+ 1) � 0 ;  = (gm;Cgm): (244)It follows that ( ~K+gm; ~K+gm) = 2m + ( ~K�gm; ~K�gm) � 0: (245)As we assume that we have an irreduible representation the funtions gm are eigenfuntionsof the Casimir operator C : C gm =  gm : (246)35



The relations (240) { (245) show that the eigenvalues m of ~K0 in priniple an be any realnumber, where, however, di�erent eigenvalues di�er by an integer.As already said above: For the \priniple" and the \omplementary" series the spetrumof ~K0 is unbounded from below and above [68℄, but as ~K0 orresponds to the lassial positivede�nite quantity ~I, these unitary representations are of no interest here.Here the positive disrete series D(+)k of irreduible unitary representations are important.These are haraterized by the property that there exists a lowest eigenvalue m = k suh that~K0 gk = k gk ; ~K� gk = 0 : (247)Now the relations (243) and (245) imply = k(1� k) ; k > 0 ; m = k + n; n = 0; 1; 2; : : : : (248)That k > 0 follows from Eq. (245) with m = k; ~K�gk = 0 , but ( ~K+gk; ~K+gk) > 0 , beausethe salar produt is positive de�nite! Exploiting the relations (240)-(242) yields~K0gk;n = (k + n) gk;n ; k > 0 ; n = 0; 1; : : : ; ; (gk;n; gk;n) = 1 ; (249)~K+gk;n = �n [(2k + n)(n + 1)℄1=2 gk;n+1 ; j�nj = 1 ; (250)~K�gk;n = 1�n�1 [(2k + n� 1)n℄1=2 gk;n�1 : (251)The phases �n guarantee that (f1; ~K+f2) = ( ~K�f1; f2). In most ases of interest �n is inde-pendent of n. Then one an absorb it into the de�nition of K� and forget about the phases�n!Up to now k may be any positive real number. A detailed analysis (see Appendix B)shows [68℄ that k = 1; 2; : : : ; for the group SO"(1; 2) itself, k = 1=2; 1; 3=2; : : : ; for theisomorphi groups Sp(2;R) �= SL(2;R) �= SU(1; 1) and k = 1=4; 1=2; 3=4; 1; : : : ; for themetapleti group Mp(2;R) we enountered above.For the universal overing group ~G � SO"[1℄(1; 2) the \Bargmann index" k may have anypositive value > 0. Further below we shall see that for an m-fold overing SO"[m℄(1; 2) theindex k an take the rational valuesk = �m ; � = 1; 2; : : : : (252)Here the natural number m may be arbitrary large, i.e. the lowest value k = 1=m an bemade arbitrary small > 0 !As long as I do not speify the onrete Hilbert spae used I shall employ Dira's braketnotation and write gk;n = jk; ni : It follows from Eq. (250) thatjk; ni = 1p(2k)n n! ( ~K+)njk; 0i ; (253)(2k)n � 2k (2k + 1) � � � (2k + n� 1) = �(2k + n)�(2k) ; (254)(2k)n=0 = 1 ; (1)n = n! ; (�2k)n = (�1)n n!�2kn � : (255)The Casimir operator relation~K21 + ~K22 = ~K20 + k(1� k) 1 (256)36



modi�es the orresponding lassial Pythagorean relation~h21 + ~h22 = ~h20 ; (257)unless k = 1! So for a HO with k = 1=2 \Pythagoras" is \violated" by quantum e�ets!5.2 The operators ~Q and ~P as funtions of the operators ~KjThe relations (2) , (27) , (215) and (216) as well show the dependene of the anonial oor-dinates ~q and ~p on the anonial oordinates ' and ~I. It is important that a orrespondingoperator relation expresses the position operator ~Q and the momentum operator ~P in termsof the operators ~Kj; j = 0; 1; 2 . That this is indeed possible was already stated in theintrodution. The relationship an be read o� the Eqs. (249) { (251) as follows:If we have annihilation and reation operators a and ay in a (Fok) Hilbert spae with anumber state basis jni suh thata jni = pn jn� 1i ; ay jni = pn + 1 jn+ 1i ; [a; ay℄ = 1 ; (258)we an de�ne ~Q = 1p2 (a + ay) ; ~P = ip2 (ay � a) ; [ ~Q; ~P ℄ = i1 : (259)The operators (258) have been used to onstrut non-linear realizations of the generators~Kj [27℄: ~K0 = N + k1 ; ~K+ = aypN + 2k1 ; ~K� = pN + 2k1 a ; N = aya : (260)However, as I pointed out in Ref. [13℄, it is muh more interesting to invert these relations:5.2.1 Operator version of the polar oordinates in the planeNow, as k > 0 and the operator ~K0 is positive de�nite in any irreduible unitary representationof the positive disrete series D(+)k , the operatorBk = ( ~K0 + k)�1=2 (261)is well-de�ned and self-adjoint. AsBkjk; ni = (2k + n)�1=2 jk; ni ; (262)then aording to the relations (249) { (251) (with �n = 1) the operatorsA(k)( ~~K) = Bk ~K� ; Ay(k)( ~~K) = ~K+Bk (263)have the propertiesA(k) jk; ni = pn jk; n� 1i ; Ay(k) jk; ni = pn+ 1 jk; n+ 1i ; (264)Ay(k)A(k)jk; ni = n jk; ni ; [A(k); Ay(k)℄ = 1 : (265)The ations of the operators (263) are independent of the (Bargmann) index k whih hara-terizes the irreduible representation of the group SO"(1; 2) or one of its overing groups. Sowe may drop their index (k) . 37



This k-independene is another manifestation of the Stone-von Neumann uniqueness the-orem whih says that - provided ertain regularity onditions are ful�lled - all the irreduiblerepresentations of ~Q and ~P with the property (259) are unitarily equivalent, i.e. have thesame matrix element whatever Hilbert spae is employed!Before drawing onsequenes let me derive the relationN = Ay( ~~K)A( ~~K) = ~K0 � k1 (266)in a di�erent way: If f( ~K0) is a \suitable" funtion of the operator ~K0, then a repeatedappliation of the relations (237) yields~K� f( ~K0) = f( ~K0 + 1) ~K� ; f( ~K0) ~K+ = ~K+ f( ~K0 + 1) ; (267)where \suitable" means that f( ~K0) and f( ~K0 + 1) are both well-de�ned operators; We thenhaveAyA = ~K+( ~K0+k)�1 ~K� = ( ~K0+k�1)�1 ~K+ ~K� = ( ~K0+k�1)�1[k(1�k)+ ~K0( ~K0�k)℄ ; (268)where the �rst of the relations (239) has been used.As k(1� k) + ~K0( ~K0 � k) = ( ~K0 + k � 1)( ~K0 � k) the Eq. (266) follows immediately.Expliitly written in terms of the operators ~K0, ~K1 and ~K2 we have~Q( ~~K) = 1p2 (A+ Ay) = 1p2 ( ~K1Bk +Bk ~K1) + ip2 ( ~K2Bk � Bk ~K2) ; (269)~P ( ~~K) = ip2 (Ay � A) = ip2 ( ~K1Bk � Bk ~K1)� 1p2 ( ~K2Bk +Bk ~K2) : (270)These relations show that - ontrary to the lassial ase (f. Eqs. (215) and (216)) - theoperators ~Q and ~P are not just proportional to ~K1 and ~K2, but ontain mixtures of both!5.2.2 Two kinds of energy spetra for the quantum mehanial HOWe now ome to the ruial point of the whole paper:Obviously the (dimensionless) (~q; ~p)-Hamiltonian~H[ ~Q( ~~K); ~P ( ~~K)℄ = 12 ~Q2 + 12 ~P 2 = AyA+ 12 (271)obeys the eigenvalue equation ~H( ~Q; ~P ) jk; ni = (n+ 1=2) jk; ni : (272)On the other hand we have for the ('; ~I)-Hamiltonian~H( ~K) = ~K0 ; ~K = ~ ( ~K0; ~K1; ~K2) ; H( ~K) = ~! ~K0 ; (273)that ~H( ~K) jk; ni = (n+ k)jk; ni ; k > 0 : (274)The last equation shows that the ground state energies of the Hamiltonian (273) in priniplemay take any real positive value! 38



In se. 3 we enountered the values k = 1 (for SO"(1; 2) ), k = 1=2 (for Sp(2;R) ) andk = 1=4; 3=4 (for the 4-fold overing group Mp(2;R) of SO"(1; 2) ). One an show (see belowand Appendix B) that for an m-fold overing (m 2 N) the lowest possible value for k isk = 1=m. Thus, we an make k > 0 as small as we like by going to higher and higheroverings.These surprising new possibilities ome, of ourse, from the non-trivial topologial stru-ture R2 � f(0; 0)g �= S1 � R+ of the phase spae S';~I , a struture whih is being \erased"when going over to the phase spae S~q;~p with its trivial topology R2 !Atually, the more general eigenvalues of Eq. (274) are a onsequene of the \riher" quantumtheory of sympleti group Sp(2;R) of the plane whih onstitutes the \anonial" group ofthe phase spae S';~I .It is, of ourse, of ruial importane, to look for this additional struture experimentally(see subse. 1.3 of the Introdution)!!If k 6= 1=2 then the two energy spetraE(q;p)n = ~! (n+ 1=2) ; E(';I)k;n = ~! (n + k) ; (275)are di�erent and transitions between di�erent levels should (in priniple) be possible if theE(';I)k;n - levels do appear at all in nature or an be produed in the laboratory! Of speialinterest here is the ase where 0 < k < 1=2 beause then transitions from the (q; p)-groundstate to a lower lying ('; I)-level are in priniple possible provided an appropriate dynamialmehanism is available. An obvious hallenge is that for k 6= 1=2 the same states jk; ni belongto di�erent energy eigenvalues of the operators H(Q;P ) and H( ~K)! Notie, however, thatfor ~H( ~K) the \observables" ~K0, ~K1 and ~K2 are the primary ones, whereas ~Q and ~P are\derived" or \omposite" quantities, at least in the present ontext!It may also happen, perhaps, that transitions between levels of the two di�erent spetraare more or less strongly impeded and that, therefore, ertain levels remain \in the dark"!(See also se. 8).5.2.3 Time evolution and the ground states for di�erent overing groupsLet us look at the provoking situation from a slightly di�erent point of view:The unitary time evolution operator for the ('; ~I)-model of the HO isU(~t) = e�i ~H ~t ; ~H = ~K0 ; ~t = � : (276)This equation shows that the rotation angle � an be identi�ed with the time variable ~twhih - in priniple - represents the universal overing spae of the irle S1.From the ommutation relations (235) and the formula (162) we get the (Heisenberg) eqs.of motion U(�~t) ~K1 U(~t) = os ~t ~K1 � sin ~t ~K2 ; (277)U(�~t) ~K2 U(~t) = sin ~t ~K1 + os ~t ~K2 ; (278)U(�~t) ~K+ U(~t) = ei ~t ~K+ ; (279)U(�~t) ~K� U(~t) = e�i ~t ~K� : (280)As the operator (261) ommutes with U(~t) the reation and annihilation operators Ay andA from Eq. (263) transform as ~K+ and ~K� in Eqs. (279) and (280). This means that the39



position and momentum operators (269) and (270) have the usual time evolution:U(�~t) ~QU(~t) = os ~t ~Q+ sin ~t ~P ; (281)U(�~t) ~P U(~t) = � sin ~t ~Q+ os ~t ~P : (282)Here, all the expliit k-dependene has dropped out!However, beause of the relation (266) we haveU(~t = 2�) = e�2�ik1 : (283)If k is a positive rational number, k = n=m ; n;m 2 N , then the unitary operator (283)belongs to the enter of a unitary representation of a m-fold overing of SO"(1; 2), the \lowest"representation of whih is given by k = 1=m. Only for k = 1; 2; : : : ; the operator (283) is theidentity operator, representing the identity of SO"(1; 2). If k = n=m then U(~t = m 2�) is theorresponding identity operator.Here we see, why the values of k in the interval (0; 1℄ may be generially the most importantones in the ontext of the HO (see also the related disussions in Ref. [63℄). The enterZm = fe2� i�=m ; � = 1; � � � ; mg (284)of the m-fold overing may be generated by the single elemente2� i=m : (285)For � = m + 1 we obviously get the same element. Corresponding arguments apply to theunitary operator (283).The relation (283) may also be interpreted in the following way: Applying the operator(276) to the ground state yields U(~t) jk; 0i = e�i k ~t jk; 0i : (286)As ~t = ! t an be used as an angle parametrizing one of the overing groups of the subgroupSO(2), the interval T2�; k = 2�!k ; !k � k ! (287)is the time the system needs in order to \run" through that group. So in a heuristi sensethe index k and the \angle" ! T2� ;k are omplementary! The larger the latter the smaller theformer! I repeat: The index k an prinipally be extremely small as long as it stays positive!5.2.4 The index k in number states matrix elementsThe index k plays a signi�ant role in matrix elements of the operators ~Kj; j = 0; 1; 2; withrespet to the number states jk; ni:It follows from ~K1 = 12( ~K+ + ~K�) ; ~K2 = 12i( ~K+ � ~K�) ; (288)that hk; nj ~Kjjk; ni = 0 ; j = 1; 2; (289)40



and (� ~Kj)2k;n = hk; nj ~K2j jk; ni � hk; nj ~Kjjk; ni2 = 12(n2 + 2nk + k) ; j = 1; 2; (290)so that (� ~K1)k;n (� ~K2)k;n = 12(n2 + 2kn+ k) ; (� ~K1)k;n=0 (� ~K2)k;n=0 = k2 ; (291)Thus, ~K1 and ~K2 have the same standard deviations (\unertainties") and the produt ofthese unertainties in the ground state is given by k=2, i.e. the smaller k the smaller theminimal standard deviations!For the operators ~Q( ~K) and ~P ( ~K) we havehk; nj ~Qjk; ni = 0 ; hk; nj ~P jk; ni = 0 ; (292)and (� ~Q)2k;n = hk; nj ~Q2jk; ni = n+ 1=2 ; (� ~P )2k;n = hk; nj ~P 2jk; ni = n+ 1=2 ; (293)whih are the usual k-independent relations, implying(� ~Q)k;n (� ~P )k;n = n + 1=2 : (294)5.2.5 Spae reetion and time reversalFrom Eqs. (277) and Eqs. (278), or Eqs. (281) and (282) we an infer the spae reetionoperator � : � ~Q�y = � ~Q ; � ~P �y = � ~P ; � = U(~t = ��) = ei� (N+k) : (295)Now �2 = e2�ik ; � jk; ni = (�1)n ei�k jk; ni ; (296)whih shows the k-dependene of the phases assoiated with the so de�ned operator �.The antiunitary time reversal transformation T (f. Eq. (232)) may be implemented bythe substitutions T : ~K0 ! ~K0 ; ~K1 ! ~K1 ; ~K2 ! � ~K2 ; i! �i ; (297)whih imply T : K� ! K� (298)and leave the ommutation relations (235) and (237) invariant. The transformations (297)imply the orret ones for the operators (269) and (270).Contrary to what happens in the ase of the anonial pair angle and orbital angular mo-mentum where reetion and time reversal invariane are generally in onit with frationalorbital angular momenta [25℄ this is not so for frational ground state energies / k of the HO!Like in the ase of the orresponding Poisson brakets (227) and (228) the ommutators[K�; A℄ et. are rather ompliated and will not be listed here. One an nevertheless de�nethe following \squeezing" operator [70℄ \by hand":S = e�iV  ; V = i2(A2 � (Ay)2) ;  2 R ; (299)whih has the property S ~QSy = e ~Q ; S ~P Sy = e� ~P ; (300)41



5.3 Restoring the physial dimensionsUp to now I have used dimensionless quantities, lassial and quantum ones, as introduedin subse. 2.1. Here I briey summarize the main physial quantities with their dimensionsrestored. For the lassial quantities the proedure is obvious from subse. 2.1. So I on�nemyself to the operators and their eigenvalues:The primary operators with the dimension of an ation areKj = ~ ~Kj ; j = 0; 1; 2 ; K� = ~ ~K� ; (301)they have the ommutation relations (f. Eqs. (235) and (237))[K0; K1℄ = i ~K2 ; [K0; K2℄ = �i ~K1 ; [K1; K2℄ = �i ~K0 ; (302)and [K0; K+℄ = ~K+ ; [K0; K�℄ = �~K� ; [K+; K�℄ = �2~K0 : (303)We have, e.g. K0jk; ni = ~ (n+ k) jk; ni : (304)The Hamilton operator is given byH( ~K) = !K0 ; Hjk; ni = ~! (n+ k) jk; ni : (305)The number operator remains dimensionless:N = ~K0 � k1 : (306)The onventional annihilation and reation operators (263) should also remain dimensionless:A( ~~K) = Bk ~K� ; Ay( ~~K) = ~K+Bk ; Bk = ( ~K0 + k)�1=2 = (N + 2k)�1=2 ; (307)so that [A; Ay℄ = 1 : (308)The physial position and momentum operators are then given by (f. Eqs. (38) and (39))Q = �0p2(Ay + A) ; P = i ~p2�0 (Ay � A) ; [Q; P ℄ = i ~ ; �0 = r ~m! : (309)6 Three types of oherent states6.1 De�nition and physial interpretationIt is well-known [71℄ that one an assoiate three di�erent types of oherent states (CS) withthe Lie algebra of the ~Kj; j = 0; 1; 2; in a representation D(+)k : Barut-Girardello, Perelomovand the onventional Shr�odinger-Glauber oherent states. The three kinds of CS may bede�ned by the relations~K�jk; zi = z jk; zi ; z = jzj e�i� 2 C ; (310)Ek;�jk; �i = � jk; �i ; � = j�j e�i � 2 D ; (311)Ek;� = ( ~K0 + k)�1 ~K� ; D = f� 2 C ; j�j < 1g ; (312)Ajk; �i = � jk; �i ; A = Bk ~K� ; � = j�j e�i � 2 C : (313)42



The minus-sign for the phases of the omplex numbers is mere onveniene2.Expanding with respet to a number basis jk; ni yields [71℄jk; zi = 1pgk(jzj2) 1Xn=0 znp(2k)n n! jk; ni ; (314)gk(jzj2) = 1Xn=0 jzj2n(2k)n n! = �(2k)jzj1�2k I2k�1(2jzj) ; (315)jk; �i = (1� j�j2)k 1Xn=0 �(2k)nn! �1=2 �n jk; ni ; j�j < 1 ; (316)jk; �i = e�j�j2=2 1Xn=0 �npn! jk; ni : (317)The funtion I�(x) in Eq. (315) is the usual modi�ed Bessel funtion of the �rst kind:I�(x) = �x2�� 1Xn=0 1n! �(� + n + 1) �x2�2n : (318)The series (314) - (317) are formal ones the onvergene properties of whih an be spei�edone the number states and their Hilbert spae are given expliitly.The physial interpretation of the omplex numbers z ,� and � an be dedued from thefollowing expetation values:6.1.1 Barut-Girardello oherent statesh ~K0ik;z � hk; zj ~K0jk; zi = k + jzj �k(jzj) ; (319)�k(jzj) = I2k(2jzj)I2k�1(2jzj) < 1 ; k � 1=4 ; (320)(� ~K0)2k;z = jzj2 [1� �2k(jzj)℄ + (1� 2k) jzj �k(jzj) ; (321)hNik;z � �nk;z = jzj �k(jzj) ; N = ~K0 � k1 ; (322)hN2ik;z = jzj2 + (1� 2k)jzj �k(jzj) ; (323)h ~K1ik;z = 12(z� + z) = <(z) = jzj os� ; (324)h ~K2ik;z = 12i(z� � z) = �=(z) = jzj sin� ; (325)(� ~K1)2k;z = (� ~K2)2k;z = 12 h ~K0ik;z ; (326)tan� = h ~K2ik;z=h ~K1ik;z ; (327)The behaviour of the ratio �k from Eq. (320) for all k > 0 is disussed in Appendix C.2Ref. [13℄ has the opposite sign onvention.
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6.1.2 Perelomov oherent statesh ~K0ik;� � hk; �j ~K0jk; �i = k 1 + j�j21� j�j2 = k osh jwj ; (328)w = jwj e�i� 2 C ; � = tanh(jwj=2) e�i� ; jwj = ln�1 + j�j1� j�j� ; (329)hNik;� � �nk;� = k (osh jwj � 1) ; (330)) j�j2 = �nk;��nk;� + 2k ; k sinh jwj = q�nk;� (�nk;� + 2k) ; (331)(� ~K0)2k;� = k2 sinh2 jwj = 12k �nk;� (�nk;� + 2k) ; (332)h ~K1ik;� = 2 k j�j1� j�j2 os � = k sinh jwj os � ; (333)(� ~K1)2k;� = k2 1 + 2 os 2� j�j2 + j�j4(1� j�j2)2 ; (334)h ~K2ik;� = 2 k j�j1� j�j2 sin � = k sinh jwj sin � ; (335)(� ~K2)2k;� = k2 1� 2 os 2� j�j2 + j�j4(1� j�j2)2 ; (336)h ~K0i2k;� = h ~K1i2k;� + h ~K2i2k;� + k2 ; (337)tan � = h ~K2ik;�=h ~K1ik;� : (338)6.1.3 Shr�odinger-Glauber oherent statesh ~Qik;� = p2<(�) = ~q = p2j�j os� ; (339)h ~P ik;� = p2=(�) = ~p = �p2j�j sin� ; (340)h ~H( ~Q; ~P )ik;� = j�j2 + 1=2 ; (341)h ~K0ik;� = hNik;� + k = j�j2 + k ; N = ~K0 � k1 (342)h ~K1ik;� = j�j os � hk; �jpN + 2kjk; �i ; (343)h ~K2ik;� = j�j sin � hk; �jpN + 2kjk; �i ; (344)hk; �jpN + 2kjk; �i = e�j�j2 1Xn=0p2k + n j�j2nn! � hk1(j�j) ; (345)tan� = h ~K2ik;�=h ~K1ik;� : (346)6.1.4 Physial interpretation of the omplex variablesBarut-Girardello statesEqs. (324) and (325) show that we an interpret <(z) as the lassial variable ~h1 and =(z)as ~h2, i.e. we have z = ~h1 + i ~h2 = ~h+ = jzj e�i� ; jzj = ~I > 0 ; � = ' : (347)44



Deviations from the lassial value jzj et. in the relations (319) and (321) { (323) areontrolled by the ratio �k. It has the limiting values [71℄�k(jzj) ! jzj2 k �1� jzj22 k (2k + 1)� for jzj ! 0 ; (348)and for very large jzj, the orrespondene limit , we get�k(jzj) � 1� 4k � 14jzj + 16 (k2 � k) + 332jzj2 +O(jzj�3) ; (349)�2k(jzj) � 1� 4k � 12jzj + 8 k2 � 6 k + 14 jzj2 +O(jzj�3) for jzj ! 1 : (350)The last two relations imply that for large jzjhK0ik;z � jzj+ 14 +O(jzj�1) ; (351)(�K0)2k;z � 12 jzj+O(jzj�1) ; (352)�nk;z � jzj+ 14 � k +O(jzj�1) ; (353)(�N)2k;z � 12 jzj+O(jzj�1) � 12 �nk;z ; (354)Perelomov statesHere the situation is di�erent from the previous one: The expetation values (333) and(335) are proportional to the index k, a ompletely non-lassial quantity. This suggests todivide out the fator k and make the \lassial" interpretations~h1 = ~I os � ; ~h2 = �~I sin � ; ~I = sinh jwj ; jwj > 0 ; � = ' : (355)It means that jwj = ln�~I +p~I2 + 1� ; j�j = tanh(jwj=2) = ~I1 +p~I2 + 1 ; (356)so that � = ~h1 + i ~h21 +p~I2 + 1 : (357)It follows that the expetation value (328) of ~K0 approahes the value k ~I in the lassial limitfor whih jwj ! 1 or j�j ! 1� .It is remarkable that the above expetation values with respet to the states jk; �i areall proportional to k, i.e. they have a sensitive k-dependene. This may be of interest forexperimental tests.Shr�odinger-Glauber statesThe �rst three of the expetation values (339) - (344) are well-known. They show thatj�j2 = ~I ; � = ': (358)The others have been disussed in subse. 3.3 of Ref. [13℄.45



Measuring the phasesThe three relations (327), (338) and (346) show that the operators ~K1 and ~K2 an be usedin order to \measure" phases of omplex amplitudes.6.2 Generation from the ground stateThe oherent states (314) - (317) may be generated from the ground state jk; 0i by unitaryor similar operators. The unitary operators are also useful for the experimental generation ofthose states (see subse. 6.5). Another problem is the appropriate experimental preparationof the ground state jk; 0i on whih the unitary operators at.6.2.1 Shr�odinger-Glauber statesThe oherent states (317) an be generated from the groundstate jk; 0i by the unitary operatorUSG = e�Ay��� A = e�j�j2=2 e�Ay e��� A ; USG jk; 0i = jk; �i ; (359)whih is well-known for the ase k = 1=2. The operator (359) has the \displaement" (trans-lation) properties U ySGAUSG = A + � ; U ySGAy USG = Ay + �� ; (360)so that U ySGAyAUSG = AyA+ �Ay + ��A + j�j2 ; (361)with hk; 0jU ySGAyAUSGjk; 0i = j�j2 : (362)If � beomes time-dependent, the transformed number operator (361) orresponds to a drivenharmoni osillator, i.e. an osillator oupled to an external soure [72℄. Suh external souresare atually used in order to generate these oherent states experimentally [73℄. In textbooksand artiles laser light is frequently mentioned as being in a oherent state. The harateristiPoisson distribution of the assoiated photons is, however, only reahed for lasers well abovethreshhold [74℄.6.2.2 Perelomov statesThe states (316) an be generated from jk; 0i by the unitary operator [75℄UP = e(w=2) ~K+�(w�=2) ~K� = e� ~K+ eln(1�j�j2) ~K0 e��� ~K� ; UP jk; 0i = jk; �i ; (363)where the omplex number w is the same as in Eq. (329).
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Instead of the displaements (360) we here have the Lorentz transformations [76℄U yP ~K0 UP = osh jwj ~K0 + (364)+12 sinh jwj(e�i � ~K+ + ei � ~K�) ;U yP ~K+ UP = 12(osh jwj+ 1) ~K+ + (365)+12e2 i �(osh jwj � 1) ~K� + ei � sinh jwj ~K0 ;U yP ~K� UP = 12(osh jwj+ 1) ~K� + (366)+12e�2 i �(osh jwj � 1) ~K+ + e�i � sinh jwj ~K0 ;The relation orresponding to Eq. (362) here ishk; 0jU yP ~K0UP jk; 0i = k osh jwj : (367)In terms of the vetors ~K? = ( ~K1; ~K2) ; ~n = (os �; sin �) ; (368)these relations may be written asU yP ~K0 UP = osh jwj ~K0 + sinh jwj (~n � ~K?) ; (369)U yP ~K?UP = ~K? + (osh jwj � 1)(~n � ~K?)~n+ sinh jwj~n ~K0 : (370)The operator (363) now generates interation terms for the original ~K0 whih are propor-tional to ~K+ and ~K� , or to ~K1 and (or) ~K2 . (Their lassial ounterparts for � = 0 and� = �=2 were briey disussed in subse. 2.3.) The use of the indued interation term in Eq.(369) in theoretial desriptions of experiments will be disussed in subse. 6.5 .6.2.3 Barut-Girardello statesHere the situation appears to be more ompliated, beause no orresponding unitary operatorhas been derived by now. The present situation is as follows [77℄:Beause of the relation (284) we an write1Xn=0 znp(2k)n n! jk; ni = 1Xn=0 zn(2k)n n! ( ~K+)njk; 0i : (371)As 1(2k)n ( ~K+)njk; 0i = (Ek;+)njk; 0i ; Ek;+ = ~K+( ~K0 + k)�1 = (Ek;�)y ; (372)where Ek;� as in Eq. (312), we have1Xn=0 znp(2k)n n! jk; ni = Fk(z) jk; 0i ; Fk(z) = ez Ek;+ : (373)47



The non-unitary operators Fk(z) and F yk (z) = exp(z� Ek;�) have the following properties:hk; 0jF yk(z)Fk(z)jk; 0i = gk(jzj2) > 0 ; F yk (z) jk; 0i = jk; 0i ; F yk (z) jk; �i = ez� � jk; �i ; (374)where gk(jzj2) is de�ned in Eq. (315) and jk; �i in Eq. (311).Thus, we have Fk(z) jk; 0i = pgk(jzj2) jk; zi ; (375)i.e. Fk(z) generates the unnormalized Barut-Girardello states. It orresponds to the similargenerating parts e�Ay ; e� ~K+ (376)of the unitary operators (359) and (363) for the unnormalized Shr�odinger-Glauber andPerelomov states. But, ontrary to Ay and ~K+ the operators Ek;+ and Ek;� are not ele-ments of a Lie algebra. They have - among others more ompliated ones - the ommutators[Ek;�; Ek;+℄ = 2k � 1( ~K0 + k)( ~K0 + k � 1) ; [ ~K�; Ek;+℄ = 1 ; [Ek;�; ~K+℄ = 1 : (377)It follows from the ompleteness relation (396) and the last of the relations (374) that onehas for F yk (z)Fk(z) the \spetral representation"F yk (z)Fk(z) = ZD d�k(�) ez� �+z �� jk; �ihk; �j : (378)6.2.4 Transitions between Perelomov and Barut-Girardello oherent statesNotie that, aording to Eqs. (314) and (316),hk; �jk; zi = (1� j�j2)kpgk(jzj2) e�� z ;pk(�$ z) = jhk; �jk; zij2 = (1� j�j2)2kgk(jzj2) e2j�j jzj os(���) : (379)As [71℄ g(jzj2) � �(2k)2p� jzj1=2�2k e2jzj [1 +O(1=jzj)℄ for large jzj ; (380)we get for the transition probability in the (lassial) limit of large jzj :pk(�$ z) � 2p��(2k)pjzj [jzj(1� j�j2)℄2k e�2jzj[1�j�j os(���)℄ for large jzj : (381)Aording to Eqs. (347) and (347) we havej�j � 1� kjzj for large jzj : (382)Inserting this approximation for j�j into the relation (381) yields in leading order for large jzjpk(�$ z) � 2p� (2k)2k�(2k)pjzj e�2jzj[1�os(���)℄ for jzj ! 1 : (383)48



Expanding os(� � �) around (� � �) = 0 gives an approximate Gaussian distribution forpk(�$ z): pk(�$ z) � 2p� (2k)2k�(2k)pjzj e�jzj(���)2 for jzj ! 1 : (384)This shows that for a given large jzj the transition probability is maximal for � = �.On the other hand, it follows fromlimk!0+(2k)2k = 1 ; �(2k) ! 12k for k! 0+ ; (385)that pk beomes very small for very small k.Properties of the matrix elements hk; �jk; zi and hk; �jk; �i are disussed in hap. 3 ofRef. [13℄. In the speial ase k = 1=2 they are desribed in subse. 7.1 below.6.3 Time evolutionIt follows from U(~t)jk; ni = e�i(n+k) ~t jk; ni ; U(~t) = e�i ~K0 ~t ; (386)that U(~t)jk; zi = e�i k ~tjk; z(~t)i ; z(~t) = z e�i ~t ; (387)U(~t)jk; �i = e�i k ~tjk; �(~t)i ; �(~t) = � e�i ~t ; (388)U(~t)jk; �i = e�i k ~tjk; �(~t)i ; �(~t) = � e�i ~t : (389)These equations show that the time evolution does not hange the form of the oherent states.It essentially shifts only the phases of the omplex numbers z, � and � linearly in time:�! �+ ~t ; � ! � + ~t ; � ! � + ~t : (390)6.4 Some general propertiesI �nally list some general properties of the above oherent states whih are very useful forappliations:6.4.1 Salar produtsUsing the orthonormality of the number states jk; ni two di�erent states within one of thetypes listed in Eqs. (314) { (317) have the salar produthk; z2jk; z1i = 1Xn=0hk; z2jk; nihk; njk; z1i = gk(z�2 z1)pgk(jz2j2) gk(jz1j2) ; (391)hk; �2jk; �1i = (1� j�1j2)k (1� j�2j2)k (1� ��2 �1)�2 k ; (392)h�2j�1i = e�(j�2j2+j�1j2)=2 e��2 �1 : (393)Di�erent states are not orthogonal, but they are \omplete" in the sense that they provide aresolution of the identity as follows [71℄: 49



6.4.2 CompletenessZC d�k(z) jk; zihk; zj = 1 ; (394)d�k(z) = 2� �(2k) jzj2kK2k�1(2jzj) gk(jzj2) djzjd� ; k > 0 ; (395)ZD d �k(�) jk; �ihk; �j = 1 ; (396)d�k(�) = 2k � 1� (1� j�j2)�2j�j dj�j d� ; k > 1=2 ; (397)1� ZC d2�j�ih�j = 1 ; (398)d2� = d<(�) d=(�) : (399)The modi�ed Bessel funtion of the third kind K�(2jzj) (f. Ref. [79℄) in the measure (395) hasthe property K��(2jzj) = K�(2jzj) whih makes the measure well-de�ned for k > 0, beausein the limit jzj ! 0 one has~K0(2jzj) ! ln(1=jzj) ; K�(2jzj) ! �(�) jzj��2 + �(��) jzj�2 for 0 < j�j < 1 ; (400)and ~K1(2jzj) ! 1=(2jzj) + jzj ln jzj ; K�(2jzj) ! �(j�j) jzj�j�j for j�j > 1 : (401)The extension of Hilbert spaes with the measure (397) for states jk; �i with 0 < k � 1=2 willbe disussed below.The relation (398) holds for all k > 0.6.4.3 Hilbert spaes of holomorphi funtions assoiated with the three types ofoherent statesIt is well-known that the three types of oherent states (314) { (317) an be assoiated withHilbert spaes of holomorphi funtions [80℄, the (normalized!) basis elements of whih aregiven by the oeÆients under the sums of the expensions with respet to the states jk; ni [71℄:Barut-Girardello holomorphi funtions
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(f2; f1)k;z � ZC d�̂k(z) f �2 (z)f1(z) ; (402)d�̂k(z) = 2� �(2k) jzj2kK2k�1(2jzj) djzjd� ; k > 0 ;f̂k;n(z) = znp(2k)n n! ; (f̂k;n2; f̂k;n1)k;z = Æn2 n1 ; (403)�k(z�2 ; z1) = 1Xn=0 f̂ �k;n(z2) f̂k;n(z1) = gk(z�2 z1) ; (404)ZC d�̂k(z2) �k(z�2 ; z1) f̂k;n(z2) = f̂k;n(z1) ; (405)ZC d�̂k(z2) �k(z�2 ; z1) f(z2) = f(z1) ; f(z) = 1Xn=0 an zn ; (406)ZC d�̂k(z) �k(z�2 ; z)�k(z�; z1) = �k(z�2 ; z1) ; (407)(f2; f1)k;z = 1Xn=0(2k)n n! a�n;2 an;1; fj(z) = 1Xn=0 an;j zn ; j = 1; 2 : (408)Beause of the properties (405) { (407) the funtion �k(z�2 ; z1) is alled the \reproduingkernel" of the Hilbert spae. It has a number of properties usually assoiated with the (moresingular) \delta-funtion" Æ(x2 � x1) for other spaes of funtions!In the Hilbert spae (402) a representation of the Lie algebra (237) is given by~K0 = z ddz + k ; ~K+ = z ; ~K� = 2k ddz + z d2dz2 : (409)Perelomov holomorphi funtionsThe orresponding relations for the states jk; �i are(f2; f1)k;� � ZD d~�k(�) f �2 (�)f1(�) ; (410)d~�k(�) = 2k � 1� (1� j�j2)2k�2 j�jdj�j d� ;(~ek;n2; ~ek;n1)k;� = Æn2 n1 ; ~ek;n(�) = r(2k)nn! �n ; (411)
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�k(��2; �1) = 1Xn=0 ~e�k;n(z2) ~ek;n(z1) = (1� ��2 �1)�2k ; (412)ZD d~�k(�2) �k(��2; �1) ~ek;n(�2) = ~ek;n(�1) ; (413)ZD d~�k(�2) �k(��2; �1) f(�2) = f(�1) ; f(�) = 1Xn=0 bn �n ; (414)ZD d~�k(�) �k(��2; �)�k(��; �1) = �k(��2; �1) ; (415)(f2; f1)k;� = 1Xn=0 n!(2k)n b�n;2 bn;1 ; fj(�) = 1Xn=0 bn;j �n ; j = 1; 2 : (416)As [81℄ Z 10 dj�j2 (1� j�j2)2k�2j�j2n+1 = �(2k � 1)n!�(2k + n) ; (417)the fator 2k�1 in the measure (410) is multiplied by �(2k�1), yielding �(2k), whih meansthat the integral and sums (410) { (415) are well-de�ned for k > 0. The right-hand side ofEq. (416) may be used in oder to de�ne the salar produt for all k > 0. The properties (413){ (415) an be interpreted as the ompleteness relation for the funtions (411) where k > 0.In the Hilbert spae (410) one has the following representation of the Lie algebra (237) byself-adjoint operators ~K0 = � dd� + k ; ~K+ = 2k �+ �2 dd� ; ~K� = dd� : (418)Bargmann-Segal holomorphi funtionsThe Hilbert spae of holomorphi funtions assoiated with the Shr�odinger-Glauber o-herent states (317) was thoroughly disussed by Bargmann [82℄. About the same time suhHilbert spaes were also introdued by Segal into quantum �eld theory [83℄ Suh a Hilbertspae has the following essential properties:(f2; f1)� � ZC d~�(�) f �2 (�)f1(�) ; (419)d~�(�) = d2�� e�j�j2 ;~hn(�) = �npn! ; (~hn2 ; ~hn1)� = Æn2;n1 ; (420)�(��2; �1) = 1Xn=0 ~h�n(�2) ~hn(�1) = e��2 �1 ; (421)ZC d~�(�2) �(��2; �1) ~hn(�2) = ~hn(�1) ; (422)ZC d~�(�2) �(��2; �1) f(�2) = f(�1) ; f(�) = 1Xn=0 n �n ; (423)
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ZC d~�(�) �(��2; �)�(��; �1) = �(��2; �1) ; (424)(f2; f1)� = 1Xn=0 n! �n;1 n;2 ; fj(�) = 1Xn=0 n;j �n ; j = 1; 2 : (425)Reall that df �(�)=d� = df(��)=d� = 0 for a holomorphi funtion f(�).The mutual adjoint annihilation and reation operators in the Hilbert spae (419) are[82, 84℄ a = dd� ; ay = � ; [a; ay℄ = 1 : (426)Inverting the relations (263) yields the following generators for the Lie algebra (237)~K0 = N + k ; ~K+ = �pN + 2k ; ~K� = pN + 2k dd� ; N = � dd� : (427)6.4.4 Probabilities for transitions to number statesBarut-Girardello statesFrom the expansions (314) { (317) one immediately an read o� the following transitionprobabilities pk(n$ z) = jzj2n(2k)n n! gk(jzj2) ; pk(n = 0 $ z) = 1gk(jzj2) : (428)In appliations one would like to express jzj in terms of the average number �nk;z , here givenby Eq. (322). As the ratio �k(jzj) depends on jzj , too, the inversion jzj = jzj(�nk;z) is notimmediate. But for large jzj one has in leading order [71℄�k(jzj) ! 1 ; gk(jzj2) ! �(2k)2p� e2jzjjzj2k�1=2 for jzj ! 1 ; (429)so that asymptotiallypk(n$ z) � 2p�n! �(2k + n) (�nk;z)2(n+k�1=4) e�2 �nk;z : (430)As the Barut-Girardello states have not yet been produed in a laboratory the distribution(430) has not been tested experimentally (to the best of my knowledge)!Perelomov statesHere we getpk(n$ �) = (1� j�j2)2k (2k)nn! j�j2n ; pk(n = 0 $ �) = (1� j�j2)2k : (431)Using the �rst of the relations (331) we an also writepk(n$ �) = 2k (2k)n(�nk;� + 2k)n! � �nk;��nk;� + 2k�n : (432)As the Perelomov states for k = 1=2 an be produed in the laboratory (see the next subse.),the distribution (432) has been veri�ed experimentally by ounting photon numbers emanatingfrom a Perelomov (squeezed) state [85℄. 53



Shr�odinger-Glauber statesHere we have the usual Poisson distributionpk(n$ �) = j�j2nn! e�j�j2 ; j�j2 = �n� : (433)As to its experimental veri�ation see subse. 6.2.1 above.6.5 Physial dynamis desribed by the basi operators ~K0; ~K+ and~K�The onventional annihilation and reation operators a and ay are a onvenient and populartool in order to build Hamiltonians whih desribe interations between elementary exi-tations, partiles and modes, be it sattering, annihilation or reation of them. Completelysimilar one an onstrut physially useful model Hamiltonians from the three basi operators~K0; ~K+ and ~K� (or ~K1 and ~K2 ).Atually there are already quite a number of suh models in use, espeially in the �eld ofquantum optis. They usually ome in a form in whih the ~Kj are expressed in terms of oneor several pairs of a and ay. I shall list several typial examples, without any laim of evenpartial ompleteness. I shall merely mention expliitly some quite early and some very reentoriginal papers, but otherwise refer to the orresponding hapters in textbooks [86℄ and theirassoiated Referenes.An early review on the dynamis of models expressed in terms of the generators ~Kj isRef. [87℄. Early papers using that Lie algebra expliitly for the generation of squeezed statesare Refs. [88℄. Usually all those appliations are disussed in the language of the groupSU(1; 1). I have stressed in the Introdution and in se. 3 why the language of the isomorphisympleti group Sp(2;R) is more appropriate beause of its potential for generalizations tohigher dimensions.An essential model to start with is the one whih we enountered in the ontext of theunitary transformation (363) whih generates the self-adjoint interation(sinh jwj)W (�; ~K) = (1=2)(sinh jwj)(e�i� ~K+ + ei� ~K�) = (sinh jwj)(~n � ~K?) (434)of Eqs. (364) and (369). The angle � here plays the role of a mixing angle as to the operators~K1 and ~K2: For � = 0 the term (434) is pure ~K1 and for � = �=2 pure ~K2. (As to propertiesof the lassial mehanis ounterpart of these interations see subse. 2.3)6.5.1 Generation of Perelomov oherent statesAs the operator UP from Eq. (363) generates the Perelomov oherent states jk; �i from theground state, the interation (434) an be used to generate suh states experimentally!In appliations the operator W from Eq. (434) is generally multiplied by a \lassial"funtionG[g(~t); C(~t; a)℄, ontaining oupling onstants g(~t) (possibly time-dependent) and (possibly)time-dependent external \lassial" �elds C(~t; a) whih themselves may depend on additionalparameters a, e.g. seond-order or third-order non-linear suseptibilities (�(2) or �(3)) [89℄,spatial oordinates et.The potential V = G[g(t); C(t; a)℄W (�; ~~K) (435)54



is then being dealt with in the interation piture, where V determines the time evolution ofthe states and the free Hamiltonian ~! ~K0 that of the operators.The interation Hamiltonian (434) is linear in the operators Kj. Another possibility is tohave interations whih are bilinear in the operators Kj, e.g. proportional to K+K� in thedesription of sattering proesses (see below). These an be diagonalized with the help ofthe Casimir relations (239).6.5.2 One-mode generated Lie algebra so(1; 2)Already in setion 3.5 we enountered the one-mode representations~K0 = 14(2aya+ 1) ; ~K+ = 12ay2 ; ~K� = 12a2 ; ~K1 = 14(ay2 +a2) ; ~K2 = 14i(ay2�a2) : (436)Inserted into Eq. (434) the term W desribes the reation or annihilation of two identialmodes (photons).Degenerate parametri down-onversions and ampli�ationsSuh proesses our experimenally in so-alled \degenerate parametri down-onversions"where a lassial eletromagneti (\pump") wave of frequeny 2! generates two idential pho-tons eah with frequeny ! in a �(2) nonlinear medium and amplifying one of the \quadra-tures" (a+ ay) and i (ay� a) and reduing the other. Thus, in appliations one often hooses� = �=2 in Eq. (435) in order to generate squeezed light (f. Eq. (170)).Squared hermitian amplitudesThe square of the hermitian �eld modeE = � (a e�i! t + ay ei! t) ; � 2 R ; (437)may be written in terms of the operators (436) asE2 = 4�2 [ ~K0 + ~K1 os(2! t)� ~K2 sin(2! t)℄: (438)This expression has also been used for the generation of squeezed light [90℄.6.5.3 Interations bilinear in the KjOptial Kerr e�etIn some materials a light beam has an additional term in its refrative index whih isproportional to the intensity of the light [91℄, i.e. that extra part of the index is proportionalto the square of the eletri �eld. Phenomenologially this means that the polarization of thematerial is proportional to the 3rd power of the eletri �eld, with a nonlinear oeÆient �(3).A very simple quantum mehanial model for the assoiated elementary proess is given bythe interation term g �(3) ayN a = g �(3)ayaya a / �(3) ~K+ ~K� ; (439)where, aording to Eqs. (239) and (148), the produt ~K+ ~K� an be replaed by ~K0( ~K0 �1) + (3=16)1 . Thus, the total Hamiltonian an be diagonalized in terms of the number statesjk; ni , where k = 1=4 and = 3=4. 55



Degenerate four-wave mixingThe simple model interation Hamiltonian (439) may also be used in order to desribeanother optial proess in a non-linear medium with 3rd order suseptibility: Two high in-tensity lassial optial light beams of the same frequeny ! interat with a weak (quantum)beam with frequeny !, reating a fourth photon beam, again with the same frequeny !and speial properties of interest, e.g. squeezed light. The proess, and the orresponding\nondegenerate one" mentioned below, is alled \four-wave mixing" and played a prominentrole in the �rst stages of light squeezing [92℄. The annihilation and reation of two photonsare represented by the operators a and ay.6.5.4 Two-mode generated Lie algebra so(1; 2)A muh larger variety of unitary irreduible representations an be generated with two \anon-ial" annihilation and reation operators [93℄:~K+ = ay1ay2 ; ~K� = a1a2 ; ~K0 = 12(ay1a1 + ay2a2 + 1) ; (440)obey the ommutation relations (237).The tensor produt Hos1 
 Hos2 of the two harmoni osillator Hilbert spaes ontainsall the irreduible unitary representations of the group SU(1; 1) �= SL(2;R) = Sp(2;R) (forwhih k = 1=2; 1; 3=2; : : :) in the following way:Let jnjij; nj = 0; 1; : : : ; j = 1; 2; be the eigenstates of the number operators Nj = ayjaj,generated by ayj from the osillator ground states.Then eah of those two subspaes of Hos1 
Hos2 = fjn1i1
jn2i2g with �xed jn1�n2j 6= 0ontains an irreduible representation with Bargmann indexk = 1=2 + jn1 � n2j=2 = 1; 3=2; 2; : : : ; (441)i.e. the operator N1 �N2 ommutes with all 3 operators in Eqs. (440)The number n in the eigenvalue n + k of ~K0 is given byn = minfn1; n2g (= 0; 1; 2; : : :) : (442)For the \diagonal" ase n2 = n1 one gets the unitary representation with k = 1=2.Inserting the operators (440) into the interation (435) yields other examples of assoiatedphysial proesses:Nondegenerate parametri down onversion and ampli�ationIn analogy to the degenerate ase mentioned above here a lassial light beam of frequeny2! generates two photons of now di�erent frequenies !1 and !2 with 2! = !1 + !2 in anonlinear medium.Nondegenerate four-wave mixingHere the frequenies of the two pump beams and those of the photons are no longer equal.Now the operators K+ and K� in the e�etive Hamiltonian (439) are replaed by those ofEq. (440). 56



Mah-Zehnder interferometerThe group SU(1:1) �= Sp(2;R) has played a prominent role in the quantum optial de-sriptions of the venerable Mah-Zehnder interferometer [94℄.6.5.5 Generation of Barut-Girardello oherent statesContrary to the Perelomov oherent states the Barut-Girardello oherent states have not yetprodued in the laboratory (to the best of my knowledge!). There exist, however, a numberof proposals how to generate them [95℄. One problem is the the lak of a unitary operatoranalogously to Eq. (363) as already disussed in subses. 6.2.3 and 6.2.4.6.5.6 Holstein-Primako� type generatorsThe one-mode and the 2-mode versions of the generators ~K0; ~K+ and ~K� from above anonly produe representations with k = 1=4; 3=4 and k = 1=2; 1; 3=2; : : :. As we are espeiallyinterested in representations with small k < 1=4 we have to use orresponding representations.Some of them will be disussed in the next Setion. If one wants to onstrut those with thehelp of the usual annihilation and reation operators one an try the nonlinear Holstein-Primako�-type operators [27℄~K0 = N + k ; ~K+ = aypN + 2k ~K� = pN + 2k a ; N = aya : (443)Inserted into the interation term (434) and (435) one has to �nd experimental ways in orderto generate a ground state with k 6= 1=2 (see also subse. 9.1) and to implement the nonlinearfator pN + 2k [96℄.6.5.7 Additional proposals for using sympleti groups in quantum optisThere have been a number of papers with proposals to use sympleti groups Sp(2n;R) ; n >1 ; in quantum optis whih are merely quoted here [97℄.7 Examples of expliit Hilbert spaes for the ('; I)-modelof the harmoni osillator7.1 The ase k = 1=2As a �rst step let us disuss the well-known quantum mehanis of the HO in the frameworkof onrete irreduible unitary representations of the group Sp(2;R) with Bargmann indexk = 1=2 [98℄, before passing to the more general ase with k 6= 1=2 :7.1.1 The Hardy spae H2+ on the irle as the Hilbert spae for the HOThe simplest example is the \Hardy (sub)spae" H2+(S1; d#) of the usual Hilbert spaeL2(S1; d#) on the unit irle S1 with the salar produt(f2; f1) = 12� ZS1 d# f �2 (#)f1(#) ; (444)57



and the orthonormal basis ei n# ; n 2 Z : (445)The assoiated Hardy spae H2+(S1; d#) is spanned by the basis onsisting of the elementswith non-negative n, namely en(#) = ei n # ; n = 0; 1; 2; � � � : (446)If we have two Fourier series 2 H2+(S1 ; d#),f1(#) = 1Xn=0 an ei n # ; f2(#) = 1Xn=0 bn ei n# ; (447)they have the salar produt(f2; f1)+ = 12� ZS1 d# f �2 (#)f1(#) = 1Xn=0 b�n an : (448)The reproduing kernel here has the form�('2; '1) = 1Xn=0 en('2)� en('1) = (1� ei ('1�'2))�1 ; (449)with the usual property 12 � Z 2�0 d'2 �('2; '1) en('2) = en('1) : (450)The kernel has a singularity (pole) for '2 = '1. In alulations one has to replaeexp(i ('1 � '2)) by (1� �) exp(i ('1 � '2)) and then take the limit �! 0 at the end.The Sp(2;R) Lie algebra generators for k = 1=2 are~K0 = 1i �# + 12 ; (451)~K+ = ei # (1i �# + 1) = ei #( ~K0 + 12) ; (452)~K� = e�i # 1i �# = e�i #( ~K0 � 12) = (1i �# + 1)e�i # : (453)The right-hand side of the salar produt (448) oinides with the right-hand side of thesalar produt (416) for k = 1=2. Atually the funtions (446) of the present Hilbert spaeH2+(S1; d#) may be onsidered as limits of those from Eq. (411) with k = 1=2 for j�j ! 1: For� = j�j exp(i#) the operators (418) beome the operators (451) { (453) in the limit j�j ! 1.For the operators (451) { (453) the relations (249) { (251) take the form~K0 en(#) = (n+ 12) en(#) ; (454)~K+ en(#) = (n+ 1) en+1(#) ; (455)~K� en(#) = n en�1(#) : (456)58



The (dimensionless) Hamilton operator for the ('; I)-model of the HO now has the ex-tremely simple expliit form ~H( ~K) = ~K0 = 1i �# + 12 ; (457)and the orresponding simple eigenfuntions (446)!I would like to stress again (like I did in Refs. [13℄ and [25℄) that the mathematial variable# used here is not the anonially onjugate \observable" of the operator (457): the angle # isnot a self-adjoint multipliation operator nor is exp(i #) a unitary operator! The self-adjointobservables \onjugate" to ~K0 are the operators ~K1 and ~K2 !The omposite ladder operatorsA = ( ~K0 + 1=2)�1=2 ~K� = ~K� ( ~K0 � 1=2)�1=2 = e�i #( ~K0 � 1=2)1=2 ; (458)Ay = ~K+ ( ~K0 + 1=2)�1=2 = ei # ( ~K0 + 1=2)1=2 ; (459)have the desired propertiesAen(#) = pn en�1(#) ; Ay en(#) = pn+ 1 en+1(#) ; (460)and, therefore, have the usual matrix elements [99℄. The same applies, of ourse, to those ofthe omposite operators ~Q and ~P :~Q = 1p2 (Ay + A) ; ~P = ip2 (Ay � A) : (461)Obviously we an reprodue all the quantum physial properties of the HO whih - overdeades - have been derived by means of the operators ~Q and ~P and the (~q; ~p)-Hamiltonian(271).The (omposite) number operator N = AyA is as expeted:N = AyA = ~K+( ~K0 +1=2)�1 ~K� = ei #( ~K0 +1=2)( ~K0 +1=2)�1 e�i # ( ~K0�1=2) = 1i �# : (462)Remarks:� The eigenfuntions (446) are periodi:en(#+ 2�) = en(#) ; (463)Further below we shall enounter unitarily equivalent quasi-periodi eigenfuntions.� The ground state of the Hamiltonian (457) is given by the number 1:en=0(#) = 1 : (464)� The probability densities pn(#) assoiated with the \number states" (446) are ompletelyat: pn(#) = 1 ; n = 0; 1; � � � : (465)� The number state relations (289) { (294) for general k do, of ourse, hold in the presentspeial ase k = 1=2 , too! 59



The time-dependent Shr�odinger equation for a general state  (~t; #) is given byi �~t  (~t; #) = ~K0  (~t; #) ; (466)whih means that the eigenfuntions (446) have the time dependeneen(~t; #) = e�i ~En ~t en(#) = e�i~t=2 ei n (#�~t) ; ~En = n+ 1=2 ; (467)and  (~t; #) may be expanded as (~t; #) = e�i~t=2 1Xn=0 n ei n (#�~t) ; n = (en;  (~t = 0))+ (468)The last two equations show again that the angle # plays the role of a time variable (up toa sign) and that the irle S1 parametrized by # 2 R mod 2� beomes \unwrapped" onto thetime-axis, �nitely or in�nitely many times, thus realizing an m-fold or a universal overing ofthe irle or of the group U(1)!Introduing the usual quantities with physial dimensions, we get from Eqs. (40) { (43)H = ~! ~K0 ; Hen(#) = En en(#) ; (469)En = ~! ~En = ~! (n+ 1=2) ; (470)i~ �t  (t; #) = H  (t; #) ; (471)en(t; #) = e�i(En=~) t ei n# = e�i ! t=2 ei n (#�! t) : (472)7.1.2 Spae reetions and time reversalAording to Subsets. 4.5 and 5.1 we an implement the spae reetions � and the timereversal T as follows: � : #! #� � ; (473)whih implies �# ! �# ; (474)~K0 ! ~K0 ; (475)K� ! �K� ; (476)~Q ! � ~Q ; (477)~P ! � ~P ; (478)en(#) ! en(#� �) = (�1)n en(#) : (479)The last relation shows that the funtions en(#) have the same symmetry properties underreetions as the usual Hermite funtions (150).Furthermore T : #! �# ; i! �i ; (480)
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yielding 1i �# ! 1i �# ; (481)~K0 ! ~K0 ; (482)K� ! K� ; (483)A ; Ay ! A ; Ay ; (484)~Q ! ~Q ; (485)~P ! � ~P ; (486)en(#) ! [en(�#)℄� = en(#) : (487)7.1.3 PerturbationsLike in the lassial ase (Eqs. (63) { (65)) external time-dependent perturbations of theHamilton operator (457) an be integrated immediately: Take~H = ~K0 + f(~t) ; (488)where f(~t) is a given real funtion of time. Then the usual produt separation of variablesgives the following solution of the time-dependent Shr�odinger Eq.i�~t  (~t; #) = [ ~K0 + f(~t)℄ (~t; #) : (489)The ansatz  (~t; #) = v(~t) u(#) (490)yields fi [�~t v(~t)℄=v(~t)g � f(~t) = f1i [�# u(#)℄=u(#)g+ 12 = ~E = onst. ; (491)with the (normalized) solution v(~t) = e�i[ ~E ~t+R ~t0 d�f(�) ℄ : (492)For u(#) we an take u(#) = en(#) ; with ~E = n + 1=2 ; (493)or appropriate superpositions.Thus, the perturbation f(~t) auses a time-dependent modi�ation of the phase ~E ~t.If f(~t) = a = onst. , (494)then we have v(~t) = e�i ( ~E+a) ~t ; (495)i.e. we have introdued an e�etive (dynamial) k 6= 1=2 ! For an expliit example see subse.9.1 .For the periodi perturbation f(~t) = � os(~� ~t) ; (496)61



we get for v(~t) the time - dependent phase fatorv(~t) = e�i [ ~E ~t+(�=~�) sin(~� ~t)℄ : (497)Similarly we have for the slightly di�erent perturbation~K0 ! [1 + g(~t)℄ ~K0 (498)a orresponding phase fator e�i ~E ~t ! e�i ~E[~t+R ~t0 d�g(�) ℄ : (499)If one inserts for g(~t) the same expressions as for f(~t) in Eqs. (494) and (496) one gets theorresponding similar expressions for the phase fator (499).7.1.4 A unitary transformationThe following unitary transformation is of interest, espeially later for the more general asek 6= 1=2:In the above desription of the states (524) and the operators (451) { (453) the dependeneon the index k = 1=2 is ontained in the operators. We shall see below that in the generalase we have ~K0 = 1i �# + k ; ~K+ = ei # (1i �# + 2k) ; ~K� = e�i # 1i �# : (500)The unitary transformation in question is de�ned by the replaementen(#) = ei n# ! e1=2; n(#) = ei(n+1=2)# ; n = 0; 1; � � � : (501)It shifts the ground state energy haraterized by k = 1=2 from the Hamiltonian (457) to theeigenfuntions (446).The operators (451) { (453) now take the form~K0 = 1i �# ; (502)~K+ = ei # (1i �# + 1=2) ; (503)~K� = e�i # (1i �# � 1=2) : (504)The eigenfuntions (501) are only quasi-periodi:e1=2; n(#+ 2�) = ei �=2 e1=2; n(#) (505)The relations (454) { (461) remain unhanged.7.1.5 Coherent state wave funtions and their probability densitiesPassing to the ('; I)-model of the HO and its assoiated Sp(2;R)-struture yields additionalinformation, even for k = 1=2:
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Wave funtions on S1We have two additional oherent states: Setting k = 1=2 and jk = 1=2; ni = en(#) in Eqs.(314) { (316) the series an be summed immediately, yieldingjk = 1=2; zi(#) � fz(#) = ez ei #pI0(2jzj) (506)and jk = 1=2; �i(#) � f�(#) = (1� j�j2)1=21� � ei # : (507)These new oherent state funtions have all the properties listed in se. 6 for general k .The series (317) annot be summed in an elementary way but yieldsjk = 1=2; �i(#) � f�(#) = e�j�j2=2 f̂�(#) ; (508)f̂�(#) = 1Xn=0 (� ei #)npn! = 1Xn=0 (j�j ei (#��))npn! : (509)The funtion f̂� in Eq. (509) is an entire funtion [100℄ of its omplex argument� = j�j ei (#��) : (510)The growth of suh funtions for large j�j has been investigated for more than a entury [100℄.Appliation of standard saddle point methods [101℄ yields for funtions likef (�)(�) = 1Xn=0 �n(n!)1=� (511)the following asymptoti expansion [102℄f (�)(�) � p� (2�)(1�1=�)=2 �(��1)=2e��=� for j�j ! 1 ; j arg(�)j � �2� � �; � > 0 : (512)For that part of the omplex plane where the funtion (511) dereases with inreasing j�j,Ref. [103℄ gives the estimatef (�)(�) � [1� sin(�=�)=�℄ 1� (ln �)1=� for j�j ! 1 ; �2� + � � j arg(�)j � � : (513)As the assumptions made in Ref. [103℄ inlude the exatly known ase � = 1 the estimate(513) does not appear to be a good one!The limits (512) for arg(�) ome from the requirement <(��) > 0 . They also imply� � 1=2. The result for the exponential growth in the setor j arg(�)j � �2� � � shows f (�)(�)to be of \order" � and of \type" 1=� there.The funtion f̂� from Eq. (509) has � = 2 and therefore we get for the wave funtion (508)f�(#) � (2�)1=4p2 j�jei (#��)=2 e�j�j2[1�e2i(#��)℄=2 ; for j�j ! 1 ; j#� �j � �4 � � : (514)
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Probability densitiesThe probability density of the wave funtion (506) is given bypz(#) = jfz(#)j2 = e2jzj os(#��)I0(2jzj) : (515)For large jzj we have [79℄ I0(2jzj) � e2jzj2p� jzj [1 +O(1=jzj)℄ ; (516)so that pz(#) � 2p� jzj e�2jzj[1�os(#��)℄[1 +O(1=jzj)℄ : (517)For j#� �j � 1 the density (517) takes (loally) an approximate Gaussian form:pz(#) � 2p� jzj e�jzj(#��)2[1 +O(1=jzj)℄ for large jzj : (518)The last relation shows that for large jzj (the lassial limit) the density pz(#) has a sharppeak at # = � = � arg(z) , so that in the orrespondene limit jzj ! 1 the variable #approahes the \lassial" angle � .As pz(# + 2�) = pz(#) and pz(#) an even funtion of # � � it may be expanded into aFourier series with respet to os(n#): Using the relation [104℄12� Z 2�0 d# e2jzj os # os(n#) = In(2jzj) ; (519)we get pz(#) = 1I0(2jzj) fI0(2jzj) + 2 1Xn=1 In(2jzj) os[n (#� �)℄g : (520)For the probability density of the wave funtion (507) we havep�(#) = 1� j�j21� 2j�j os(#� �) + j�j2 : (521)It has the propertiesp�(#) ! 1 for j�j ! 0 ; (522)p�(#) � �(1� �)[1� os(#� �)℄ for j�j = 1� � ; 0 < �� 1 ; os(#� �) 6= 1 ; (523)p�(#) = 1 + 2 1Xn=1 osn(#� �) j�jn : (524)Eq. (523) shows that for j�j ! 1� (the lassial limit) p�(#) is strongly peaked at # = �.For alulating the oeÆients of the Fourier series (524) the relation [105℄Z 2�0 d# os n#1� 2j�j os# + j�j2 = 2� j�jn1� j�j2 ; j�j < 1 ; (525)has been used. 64



The funtion (521) is well-known in the mathematial literature as the \Poisson kernel"Pj�j(#��) for the representation of harmoni funtions inside the unit dis [106℄ by funtionson the boundary �D = S1.The exat probability density p�(#) for the wave funtion (508) appears somewhat \un-ruly": p�(#) = jf�(#)j2 = e�j�j2 1Xn1;n2=0 j�jn1+n2pn1!n2! ei (#��)(n1�n2) : (526)More instrutive is the density for the asymptoti expansion (514):p�(#) � 2p2� j�j e�j�j2[1�os 2(#��)℄ for large j�j ; (527)whih for j#� �j � 1 ; j�j j#� �j �nite, beomes a Gaussian distribution, too:p�(#) � 2p2� j�j e�2j�j2(#��)2 for j#� �j � 1 ; j�j ! 1 ; j�j j#� �j �nite : (528)As p�(#) is a periodial and even funtion of #�� it may be Fourier expanded, but the resultdoes not appear to be very instrutive.7.1.6 Expetation values and transition probabilitiesAll the properties of the 3 types of oherent states listed in se. 6 for general k do hold,of ourse, for the speial value k = 1=2, too. I, therefore, mention here just a few speialfeatures:We have (f. Eqs. (315) and (320))g1=2(jzj2) = I0(2jzj) ; �1=2(jzj) = I1(2jzj)I0(2jzj) : (529)Remarkable is that now (f. Eq. (323))hN2i1=2;z = jzj2 ; (530)whih provides a diret \measurement" of the modulus jzj. For the transition probabilities(428) and (431) we getp(1=2; n$ z) = jzj2n(n!)2 I0(2jzj) � 2p�jzj2n+1=2(n!)2 e�2jzj for jzj ! 1 : (531)p(1=2; n$ �) = (1� j�j2) j�j2n = 1�n� + 1 � �n��n� + 1�n ; �n� � �n1=2; � : (532)The last probability may (formally) be interpreted in the ontext of Bose-Einstein statistis[107℄: Assume that a system of free Bose-Einstein quanta has distint energy levels E� ; � =0; 1; : : : and is in a heat bath with inverse temperature � = 1=(kBT ) and hemial potential�. Then (1� j�j2) j�j2n ; j�j2 = e��(E���) (533)is the probability to �nd n quanta in a state with energy E�.As already mentioned previously the distribution (532) has been veri�ed experimentally[85℄. 65



From Eq. (379) we get(f�; fz)+ = (1� j�j2)1=2pI0(2jzj) e�� z ; j(f�; fz)+j2 = 1� j�j2I0(2jzj) e2j�j jzj os(���) : (534)Furthermore [71℄ (f�; fz)+ = e�j�j2=2pI0(2jzj) 1Xn=0 (�� z)n(n!)3=2 ; (535)(f�; f�)+ = e�j�j2=2 (1� j�j2)1=2 1Xn=0 (�� �)npn! : (536)In evaluating the series (535) and (536) we enounter the same problems as for the series(509). The asymptoti expansion (512) yields for the transition probabilitiesj(f�; fz)+j2 � 23p2� j� zj1=3 e�j�j2I0(2jzj) e3j� zj2=3 os[2(���)=3)℄ (537)for large j� zj ; j� � �j � 3�=4� � ;j(f�; f�)+j2 � 2p2�j��j e�j�j2 (1� j�j2) ej��j2 os 2(���) (538)for large j�j ; j� � �j � �=4� � :7.1.7 Eigenfuntions of ~K1 and ~K2Like the operators ~Q and ~P , whih as generators of non-ompat groups in general have a on-tinuous spetrum, the self-adjoint operators ~K1 and ~K2 as generators of non-ompat groupshave a real ontinuous spetrum. Their \eigenfuntions" may be determined as solutions ofdi�erential eqs.:It follows from Eqs. (452) and (453) that~K1 = 12 ( ~K+ + ~K�) = os#1i �# + 12ei# ; ~K2 = 12i ( ~K+ � ~K�) = sin#1i �# + 12iei# : (539)It is helpful to observe that ~K1 is obtained from ~K2 by the substituation #! # + �=2. Theeigenvalue equation ~K2 fh2(#) = h2 fh2(#) ; h2 2 R ; (540)leads to (�#fh2)=fh2 = i h2sin# � 12 (ot# + i) : (541)As sin# and tan(#=2) are positive in the (open) interval (0; �) and negative in (�; 2�) onehas to treat the two intervals slightly di�erently. For the �rst interval we getfh2(#) = C1e�i#=2(sin#)�1=2 [tan(#=2)℄i h2 (542)= C1p2 e�i#=2 [sin(#=2)℄i h2�1=2 [os(#=2)℄�i h2�1=2 ;C1 = onst. ; # 2 (0; �) :66



For the seond we get, with (sin#)�1=2 = ei�=2(j sin#j)�1=2 and ln tan(#=2) = ln j tan(#=2)j+i�, fh2(#) = C2 e�i�=2 e�� h2 e�i#=2(j sin#j)�1=2 [j tan(#=2)j℄i h2 (543)= C2p2 e�i�=2 e�� h2 e�i#=2 [sin(#=2)℄i h2�1=2 [j os(#=2)j℄�i h2�1=2 ;C2 = onst. ; # 2 (�; 2�) :The three onstant fators in the last expression may be ombined to C1 = C2 e�i�=2 e�� h2 .For # = 0; � the funtions (542) beome singular, so do the funtions (543) for # = �; 2�.The onstant C1 an be determined like in the ase of plane waves: Substitutingu(#) = ln[tan(#=2)℄ ; du = d#sin# ; u(#! 0+) ! �1 ; u(#! ��) ! +1 ; (544)into 12� Z �0 d# f �h02(#) fh2(#) = jCj22� Z �0 d#sin# [tan(#=2)℄i(h2�h02) (545)yields 12� Z �0 d# f �h02(#) fh2(#) = jCj22� Z 1�1 du eiu (h2�h02) = jC1j2Æ(h2 � h02) : (546)The interval (�; 2�) gives the same ontribution, so that the \normalized" eigenfuntions of~K2 are fh2(#) = e�i#=2(2j sin#j)�1=2 [j tan(#=2)j℄i h2 (547)= 12 e�i#=2 [sin(#=2)℄i h2�1=2 [os(#=2)℄�i h2�1=2 ;# 2 (0; �) ; (�; 2�) ; h2 2 R :Implementing the substitution # + �=2 we get - up to an irrelevant phase fator - the eigen-futions of ~K1: fh1(#) = e�i#=2(2j os#j)�1=2 [j tan(#=2 + �=4)j℄i h1 ; (548)# 2 (��=2; �=2) ; (�=2; 3�=2) ; h1 2 R ;tan(#=2 + �=4) = (sin#+ 1)= os# :For the oeÆients n in the expansionfh2(#) = 1Xn=0 n ei n# (549)one gets [108℄n = 12� Z 2�0 d# fh2(#) e�i n # (550)= 12� Z �0 d' (os')�i h2�1=2 (sin')i h2�1=2 e�2i(n+1=2) '= e�i �(n+1=4�i h2=2) �(1=2 + i h2)n! �(1=2� n+ i h2) F (1=2 + i h2;�n; 1=2� n + i h2; z = �1)= (�1)n e�i�=4 e�h2=2 nXm=0(�1)m �(1=2 + i h2 +m) (�n)m�(1=2 + i h2 � n +m)m! ;67



where F (a; b; ; z) = 1Xm=0 (a)m (b)m()mm! zm (551)is the standard series for the hypergeometri funtion.The relation (550) holds for h2 > 0. For h2 < 0 one has to replae h2 in Eq. (550) by jh2j.Examples:0 = e�i�=4 e�� h2=2 ; j0j2 = e�� h2 ; 1 = �2i e�i�=4 h2 e�� h2=2 ; j1j2 = 4 h22 e�� h2 : (552)7.1.8 Relationship to the onventional desription of the HO on L2(R; dx)The relationship between the quantum mehanial desription of the HO in the above Hilbertspae H2+(S1; d#) and the usual one on L2(R; d�) has been disussed in some detail in hap.4 of Ref. [13℄. I here merely summarize the main steps:1. The spae H2+(S1; d#) is mapped unitarily onto the Hardy spae H2+(R; d�) of the realline, the elements of whih are boundary values lim�!0+ g(z = �+i �) of funtions whihare holomorphi in the upper half (� > 0) of the omplex plane.2. The spae L2(R; d�) is projeted on H2+(R; d�) by the following Fourier tranformationsĝ(p) = 1p2� Z 1�1 d� g(�) e�i�p ; g(�) 2 L2(R; d�) ; (553)g(+)(�) = 1p2� Z 10 dp ĝ(p) eip� ; g(+)(�) 2 H2+(R; d�) : (554)7.2 The general ase k > 0In ase nature \allows" for quantized harmoni osillators with ground state energies forwhih k 6= 1=2 , espeially k 2 (0; 1=2) , then one needs orresponding Hilbert spaes for thedesription of suh systems. I shall briey mention three examples whih may be useful andwhih are all unitarily equivalent: The Hilbert spae of holomorphi funtions on the unitirle as desribed by the Eqs. (410) { (418) in the subsetion 6.4.3 above, Hilbert spaesassoiated with the Hardy spae on the irle given by Eqs. (446) { (448) and the Hilbertspae L2([0;1); du) on the positive real line with Laguerre's funtions as basis.One an use the Hardy spae (410) { (418) itself by using a Holstein-Primako� variant [27℄for the Lie algebra generators~K0 = 1i �# + k ; (555)~K+ = ei # [(N + 2k)(N + 1)℄1=2 ; N = 1i �# : (556)~K� = [(N + 2k)(N + 1)℄1=2 e�i # : (557)These operators have the properties (249) { (251) when applied to the basis (524) and one has(f2; ~K+f1)+ = ( ~K�f2; f1) for funtions (447). For k = 1=2 the operators (555)-(557) redueto the ones in Eqs. (451) { (453). For k 6= 1=2 the roots in the expressions (556) and (557)beome umbersome and unpleasent to deal with. They will not be disussed here further.They might, however, be quite useful under ertain irumstanes.68



7.2.1 Hilbert spae of holomorphi funtions on the unit disIn subse. 6.4.3 above I have indiated in onnetion with Eqs. (417) and (418) that theHilbert spae of holomorphi funtions on the unit dis D = f� 2 C ; j�j < 1g with thesalar produt (410) an provide irreduible unitary representations of the group SO"(1; 2)and all its overing groups with k > 0, the self-adjoint generators given by Eq. (450) (see alsoAppendix B).The omplex numbers � 2 D were introdued in Eq. (311) as eigenvalues of the operator(312). It appears helpful to introdue a new omplex variable ! 2 D (not to be onfused withthe irular frequeny) in order to distinguish the Hilbert spae variable in Eqs. (410) { (418)from the eigenvalue �. So we have(f2; f1)k;! � ZD d~�k(!) f �2 (!)f1(!) ; (558)d~�k(!) = 2k � 1� (1� j!j2)2k�2 j!jdj!j d� ;~ek;n(!) = r(2k)nn! !n ; (~ek;n2; ~ek;n1)k;! = Æn2 n1 ; (559)(f2; f1)k;! = 1Xn=0 n!(2k)n b�n;2 bn;1 ; fj(!) = 1Xn=0 bn;j !n ; j = 1; 2 ; (560)and ~K0 = ! dd! + k ; ~K+ = ! (2k + ! dd! ) ; ~K� = dd! ; (561)with the usual properties ~K0 ~ek;n = (n+ k)~ek;n ; (562)~K+ ~ek;n = p(2k + n)(n+ 1) ~ek;n+1 ; (563)~K� ~ek;n = p(2k + n� 1)n ~ek;n�1 : (564)The assoiated ladder operatorsA = ( ~K0 + k)�1=2 ~K� ; Ay = ~K+ ( ~K0 + k)�1=2 (565)have the onventional k-independent Fok spae propertiesA ~ek;n = pn ~ek;n�1 ; Ay ~ek;n = pn+ 1 ~ek;n+1 : (566)Inserting the number state basis funtions (559) into the right-hand sides of the Eqs. (314),(316) and (317) yields the oherent state funtions of !:jk; zi(!) � fk;z(!) = ez !pgk(jzj2) ; (567)jk; �i(!) � fk;�(!) = (1� j�j2)k(1� �!)2k ; (568)jk; �i(!) � fk;�(!) = e�j�j2=2 1Xn=0 p(2k)nn! (�!)n : (569)The general properties of the three types of oherent states as disussed in subses. 6.1 and6.2 are, of ourse, here valid, too, and will not be repeated.69



7.2.2 Hilbert spaes related to the Hardy spae on the irleThe salar produt (560) as a series an be implemented on the Hardy spae H2+(S1; d#) inthe following way:Let us introdue [109℄ the following positive de�nite (self-adjoint) operator Ak byAk en(#) = n!(2k)n en(#) ; en(#) = ei n # ; n = 0; 1; : : : : (570)Then we an de�ne an additional salar produt for funtionsfj(#) = 1Xn=0 n;jen(#) ; j = 1; 2; (571)by (f2; f1)k;+ � (f2; Ak f1)+ = 1Xn=0 n!(2k)n �n;2 n;1 : (572)The series here is obviously of the same type as the one in Eq. (560). Asn!(2k)n = 8<: < 1 for k > 1=2 ; n > 0= 1 for k = 1=2 ;> 1 for 0 < k < 1=2 ; n > 0 ; (573)one might suspet that these oeÆients a�et the onvergene properties of the series (572).However, as limn!1� n!(2k)n�1=n = 1 for k > 0; (574)the radius of onvergene of that series is the same with or without the fator (573) (aordingto the Cauhy riterium [110℄)!Let us denote the (Hardy spae assoiated) Hilbert spae with the salar produt (572)by H2k;+(S1; d#). An orthonormal basis in this Hilbert spae is given byêk;n(#) = r(2k)nn! en(#) ; (êk;n2; êk;n1)k;+ = Æn2n1 : (575)From the expressions (561) one an infer (taking the limit ! ! exp(i #) that~K0 = 1i �# + k ; ~K+ = ei #(1i �# + 2k) ; ~K� = e�i # 1i �# ; (576)with the right properties for the basis (575):~K0 êk;n = (n+ k) êk;n ; (577)~K+ êk;n = p(2k + n)(n+ 1) êk;n+1 ; (578)~K� êk;n = p(2k + n� 1)n êk;n�1 : (579)The operators (576) do not have these properties with respet to the basis en(#)! Corre-spondingly the operators ~K+ and ~K� are adjoint to eah other only with respet to the salar70



produt (572), not with respet to (448). Their adjointness as to (572) an be veri�ed bytaking two series fj(#) = 1Xn=0 an;j êk;n(#) ; j = 1; 2; (580)and showing that ( ~K�f2; f1)k;+ = (f2; ~K+f1)k;+!Note that (en2 ; êk;n1)+ = (êk;n1; en2)+ = s(2k)n1n1! Æn2 n1 ; (581)(en2 ; êk;n1)k;+ = (êk;n1; en2)k;+ = s n1!(2k)n1 Æn2 n1 ; (582)(êk;n2; êk;n1)+ = (2k)n1n1! Æn2 n1 ; (en1 ; en2)k;+ = n1!(2k)n1 Æn2 n1 : (583)The Fok spae ladder operators A and Ay assoiated with the Lie algebra generators(576) are given in the same way as in Eq. (565).Coherent state wave funtionsAnalogously to the relations (567) { (569) we obtain on H2k;+ the following oherent statewave funtions by using the basis (575):jk; zi(#) � fk;z(#) = ez ei #pgk(jzj2) ; (584)jk; �i(#) � fk;�(#) = (1� j�j2)(1� � ei #)2k ; (585)jk; �i(#) � fk;�(#) = e�j�j2=2 1Xn=0 p(2k)nn! (� ei #)n : (586)The reproduing kernel on H2k;+ is given byÂk(#2 � #1) = 1Xn=0 ê�k;n(#2) êk;n(#1) = [1� ei (#1�#2)℄�2k = Â�k(#1 � #2) : (587)Aording to the relations (581) { (583) it has the properties(Âk(1; 2); êk;m(2))k;+ = êk;m(#1) ; (588)(Âk(1; 2); êk;m(2))+ = (2k)mm! êk;m(#1) ; (589)(Âk(1; 2); em(2))k;+ = s m!(2k)m êk;m(#1) = em(#1) ; (590)(Âk(1; 2); em(2))+ = r(2k)mm! êk;m(#1) = (2k)mm! em(#1) : (591)The numbers 1 and 2 mean the variables #1 and #2, the latter being integration variable.71



A unitary transformationIn the above disussion the k-dependene of the representation is ontained in the operators(576), not in the basis en(#) of H2+ we started from. Like in subsetion 7.1.4 one an shift thek-dependene partially from the operators to the basis by a unitary transformation:en(#) = ei n # ! ek;n(#) = ei (n+k)# ; (592)the generators (576) now taking the form~K0 = 1i �# ; ~K+ = ei #(1i �# + k) ; ~K� = e�i # (1i �# � k) : (593)The operators (593) at in a Hilbert spae H2k;+, now with the orthonormal basisêk;n(#) = r(2k)nn! ek;n(#) : (594)The basis funtions (592) are no longer periodi but quasi-periodi:ek;n(# + 2�) = e2i k � ek;n(#) : (595)These funtions are speial Bloh-type wave funtions on the irle [25℄ .7.2.3 Hilbert spae on the positive real lineThere exists a unitary mapping [111℄ from the Hilbert spae of holomorphi funtions on theunit dis as haraterized by the Eqs. (558) and (559) to the Hilbert spae L2(R+ ; du), whereR+ = [0;1), i.e. we have the salar produt(f2; f1) = Z 10 du f �2 (u) f1(u) (596)for funtions f(u) on R+ . The standard orthonormal basis on this spae are Laguerre'sfuntions [112℄, slightly adapted for our purposes,�ek ;n(u) = s n!�(2k) (2k)n uk�1=2 e�u=2 L2k�1n (u) ; k > 0 ; (597)where the funtions L�n(u) are Laguerre's polynomialsL�n(u) = m=nXm=0�n+ �n�m� (�u)mm! ; L�n(0) = (� + 1)nn! : (598)These have the generating funtion [112℄1Xn=0 L2k�1n (u)!n = (1� !)�2k e�u!=(1�!) ; ! 2 D : (599)This implies thatBk(!; u) = 1Xn=0 ~ek;n(!) �ek;n(u) = 1p�(2k) (1� !)�2k uk�1=2 e�(u=2) (1+!)=(1�!) ; (600)72



where ~ek;n(!) denotes the basis (559). The funtion Bk(!; u) is by onstrution the kernel ofa unitary transformation from the basis �ek;n to the basis ~ek;n, B�k(!; u) being the kernel forthe inverse transformation:Z 10 duBk(!; u) �ek;n = ~ek;n(!) ; ZD d~�k(!)B�k(!; u) ~ek;n(!) = �ek;n(u) : (601)One an show [113℄ that the operators ~K0, ~K1 and ~K2 now have the form~K0 = �u d2du2 � ddu + (2k � 1)24u + u4 ; ~K0 �ek ;n(u) = (n + k) �ek ;n(u) ; (602)~K1 = �u d2du2 � ddu + (2k � 1)24u � u4 ; (603)~K2 = 1i (u ddu + 1=2) : (604)As ~K0 � ~K1 = u2 ; (605)the integration variable u may be assoiated with the lassial quantity~h0 � ~h1 = ~I(1� os') = 2~I sin2('=2) ; (606)that is to say we have the orrespondeneu$ 4~I sin2('=2) � 0 : (607)Inserting �ek;n(u) for the general number state jk; ni into the series (314), (316) and (317)yields the following oherent state wave funtionsjk; zi(u) � fz(u) = uk�1=2 e�u=2pgk(jzj2) 1Xn=0 zn�(2k + n) L2k�1n (u) (608)= uk�1=2 e(z�u=2)pgk(jzj2) (u z)�k+1=2 J2k�1(2pu z)= uk�1=2 e(z�u=2)pgk(jzj2) 1Xn=0 (�u z)nn! �(2k + n)= uk�1=2 e(z�u=2) gk(�u z)pgk(jzj2) ;where the relations [112℄1Xn=0 zn�(2k + n) L2k�1n (u) = ez (u z)�k+1=2 J2k�1(2pu z) ; (609)J�(�) = (�=2)� 1Xn=0 (�1)nn! �(� + n + 1)(�=2)2n ; (610)and (315) have been used. 73



The relation (599) impliesjk; �i(u) � f�(u) = (1� j�j2)k (1� �)�2kp�(2k) uk�1=2 e�(u=2)(1+�)=(1��) : (611)Finally jk; �i(u) � f�(u) = 1p�(2k) e�(j�j2+u)=2 uk�1=2 1Xn=0 �np(2k)n L2k�1n (u) : (612)Let us have a brief look at the behaviour of the probability densitiespk;n(u) = j�ek;n(u)j2 = n!�(2k) (2k)n u2k�1 e�ujL2k�1n (u)j2 (613)for small u as a funtion of k. Beause of the seond of the relations (598) we havepk;n(u! 0+) � 1�(2k) u2k�1 : (614)Thus pk;n(u) vanish in the limit u ! 0 for k > 1=2, has the �nite value 1 for k = 1=2and diverges for 0 < k < 1=2 (but is still integrable). Notie that the behaviour (614) isindependent of n :As �(2k) behaves like 1=(2k) near k = 0 we havepk;n(u! 0+; k ! 0+) � 2k u2k�1 : (615)The ground state probability density ispk;n=0(u) = 1�(2k) u2k�1 e�u : (616)For k > 1=2 it has a maximum at u = u0 = 2k � 1.The eigenfuntions fh2(u) of the operator ~K2 in Eq. (604) an easily be found asfh2(u) = 1p2� ui h2�1=2 ; Z 10 du fh02(u) fh2(u) = Æ(h02 � h2) : (617)The last relation an be veri�ed by the substitution u = ev ; du = u dv. The eigenfuntions,whih are independent of k, an be used for Mellin transformations [114℄ĝ(s) = Z 10 du g(u) us�1 ; s = ih2 + 1=2 ; (618)with the inversion g(u) = 12�i Z 1=2+i11=2�i1 ds u�s ĝ(s) : (619)The substitution u = ev shows the lose relationship of the Mellin transform to the Fouriertransform.The eigenfuntions of ~K1 are more ompliated [115℄:fh1(u) = C uk�1=2 e�iu=2 �(k � ih1; 2k; iu) ; C = onst. ; (620)where �(a; ; z) is the onuent hypergeometri series�(a; ; z) = 1Xn=0 (a)n()n n! zn : (621)74



8 On the ground state of the quantized free eletro-magneti �eld in a avity8.1 The eletromagneti �eld in a avity as a set of harmoni os-illatorsThe standing free eletromagneti waves in a avity an be interpreted as a denumerable setof harmoni osillators eah of them having the ground state energy (5), the sum of whih isin�nite! This \nuisane" led to the onept of \normal-ordering", whih just means to ignorethe in�nite ground state energies. On the other hand, subtrating two suh in�nities leadsto the Casimir e�et [8, 15, 16℄, a quantum (\vauum") fore between two ideally ondutingplates, now experimentally veri�ed [116℄. The e�et an, however, also be derived with-out refering to vauum energies and their utuations, by subtrating appropriate Green'sfuntions assoiated with ertain boundary onditions [117℄.The issue of quantum vauum energies assumes \osmi" dimensions in the ontext of theosmologial onstant in Einstein's theory of gravity. The usual estimates for that onstantare essentially based on the value (5). Those estimates turn out to be up to more than 100orders of magnitudes larger than the experimentally determined value, the estimate dependingon the uto� hosen. This disrepany obviously onstitutes the most urgent and provoativehallenge as to the quantitative powers of physial theories. The issue has beome very autereently by the observation of an appreiable \dark energy" in the universe (about 75% ofall matter), very likely related to the gravitational osmologial onstant and the assoiated\vauum energies" [17{24℄.It is obvious that the muh riher spetrum of possible ground states for the HO Hamil-tonian (18) an shed new light on the subjet. I here shall only point out the ruial part ofthe issue without going into further details.I �rst reall the main elements as to the formulation of standing waves in a ubi avitywith side lengths L in terms of harmoni osillators [118℄, with the slight generalization(ompared to most textbooks) to allow for relative dieletri onstants � and relative magnetipermeabilities � di�erent from the vauum values � = 1; � = 1:In the Coulomb gauge Maxwell's equations without soures are given by1v2 �2t ~A�� ~A = 0 ; div ~A = 0 ; ~E = ��t ~A ; ~B = url ~A ; v = =n ; n = +p� � : (622)Postulating periodi boundary onditions for the vetor potential leads to the solution type~A(t; ~x) = 1p�0 L3 X~m2Z3 ~A~l (t) ei~l�~x + ~A�~l (t) e�i~l�~x ; (623)where ~l = 2�L ~m ; ~m = (m1; m2; m3) ; mj 2 Z ; j = 1; 2; 3 ; ~l � ~A~l (t) = 0 : (624)The time-dependent fators ~A~l (t) obey the HO equations�2t ~A~l (t) + !2(~l ) ~A~l (t) = 0 ; !2(~l ) = v2~l 2 = 2n2 ~l 2 ; ! (~l ) � 0 ; (625)75



with the solutions ~A~l(t) = 2X�=1 ~~l �(t)~�~l � + ~�~l �(t)~�~l � ; ~~l �(t) = ~l � e�i! (~l ) t ; (626)where the ~�~l � are two polarization vetors.Inserting the assoiated eletri and magneti �elds into the integral for the eletromag-neti �eld energy in the avity,Eem(avity) = 12 Zavity d3x [� �0 ~E 2(t; ~x) + 1��0 ~B 2(t; ~x)℄ ; �0 �0 = 1=2 ; (627)and observing that for plane wave solutions [119℄~B2 = � �0 ��0 ~E2 = n22 ~E2 ; (628)yields Eem(avity) = 2�X~m X� [!(~l )℄2 j~~l �j2 : (629)Notie that j~~l; �(t)j2 = j~l �j2 . De�ning~~l � = 12 [q~l � + i!(~l ) p~l �℄ ; p~l � = _q~l � ; (630)the expression (629) �nally beomesEem(avity) = Hem(q; p) = �2 X~m X� [p2~l � + !2(~l ) q2~l �℄ ; (631)where the individual terms H~l �(q; p) = 12 [p2~l � + !2(~l ) q2~l �℄ (632)are independent of time!As an be seen from Maxwell's eqs. (622), the eletri �eld provides the anonial momenta,the magneti �eld (via its vetor potential) the anonial oordinates [120℄.The standard quantization proedure is now obvious: The lassial quantities q~l � and p~l �are promoted to operators Q~l � and P~l �, having the ommutation relations[Q~l � ; P~l0 �0℄ = i ~ Æ~l ~l 0 Æ��0 : (633)A very minor point may be worth mentioning here: The right-hand side of the energy (631)does not ontain a mass term. As the dimension of the energy is given, [L2 T�2M ℄, thequantities q~l � and p~l � here have dimensions [M1=2 L℄ and [M1=2 LT�1℄, respetively. Buttheir produt still has the dimension of an ation, [M L2 T�1℄!We now ome to the point of departure: Assuming (for a moment) � = 1; � = 1 andintroduing angle and ation variable for eah mode,q~l � = q2 I~l �=!(~l ) os'~l � ; p~l � = �q2!(~l ) I~l � sin'~l � ; (634)76



yields H~l �('; I) = !(~l ) I~l � ; Hem('; I) = X~m X� H~l � : (635)Quantization proeeds now as disussed above for the angle-ation model of the HO: Eahof the H~l � is replaed by an operatorH~l �( ~K) = ~!(~l ) ~K0(~l ; �) ; Hem( ~K) = X~m X� �H~l �( ~K) : (636)Eah ~K0(~l ; �) ats irreduibly in a Hilbert spae that arries a unitary representation withBargmann index k, together with the operators ~K1(~l ; �) and ~K2(~l ; �) or the ladder operators~K+(~l ; �) and ~K�(~l ; �). Beause of the required bosoni exhange symmetries I here assumethe same Bargmann index k for all representations. I here do not enter the important subjetof onstruting and analyzing the quantized free or even interating eletromagneti �eldsthemselves in terms of the operators ~Kj(~l ; �) et. The usual k-independent annihilation andreation operators assoiated with the �elds themselves are given byA~l; � = [ ~K0(~l ; �) + k℄�1=2 ~K�(~l ; �)) ; Ay~l; � = ~K+(~l ; �) [ ~K0(~l ; �) + k℄�1=2 : (637)8.2 The osmologial onstant problemPresently I am merely interested in the ground state expetation valuehk; 0
jHem( ~K)jk; 0
i = X~m X� hk; 0jH~l �( ~K)jk; 0i = 2 k ~X~m !(~l ) : (638)The usual replaement X~m;� ! L3�23 Z!�0 d! !2 (639)leads to a strongly divergent ground state energy densityk ~�23 Z!�0 d! !3 : (640)Cutting the in�nite integral o� at ! = !̂ yields the \vauum" energy densityuem; 0(!̂; k) = k ~4�23 !̂4 : (641)De�ning the e�etive length ` = 2� !̂ (642)�nally gives uem; 0(`; k) = 4�2 k`4 ~  � 4�2 k`4 � (2 � 10�11 MeV m): (643)We know from se. 5 that the index k may beome arbitrarily small > 0, perhaps in theourse of time| So the k in the expression (643) may beome so small - for a given value of77



the interation length ` - that the value of uem; 0(`; k) omes near the order of magnitude ofthe observed dark energy density [121℄2�� � 4 keV m�3 : (644)Suh a welome adjustment of k is, of ourse, here not proven at all, and one would liketo have more sophistiated arguments in the present framework for the desired appropriatevalue of the index k in order to get a \reasonable" estimate for the osmologial onstant.Nevertheless, the mere existene of that index, originating from the non-trivial topology ofthe ('; I)-phase spae of the HO and its related quantizing group SO"(1; 2) (inluding itsin�nitely many overing groups), may be an important key for the solution of the osmologialonstant problem!I list a few of the many problems I leave open here:� The role of the index k has to be examined for other matter �elds, espeially fermionsand non-abelian gauge �elds and assoiated interations, partiularly for those withspontaneous symmetry breaking!� The ompatibility with (loal) Poinar�e ovariane and its onept of ausality has tobe analyzed.� Most of the prevailing disussions of the Casimir e�et - with their by now quite sophis-tiated subtrations of two in�nities - (see the literature quoted above) and espeiallytheir experimental on�rmations appear to ontradit the introdution of an index kdi�erent from 1=2. There are di�erent answers to suh an objetion:First, it is evident from the disussions above, that the ground state of the HO Hamil-tonian H(Q;P ) is neessarily tight to k = 1=2. In order to have k 6= 1=2 the basiquantum observables have to be the ~Kj. An analysis of the Casimir e�et in terms ofthese new variables has not yet been done.Seond, there have been alternative proposals for deriving the Casimir e�et (fore)instead of subtrating in�nite vauum energies [117℄!� As the number k is a (dimensionless) measure for some energy, it may beome time-dependent, i.e. dynamial, on a osmi sale and might lead to a time-dependent osmo-logial onstant. The index k may also beome a funtion of the frequeny ! or (and)of spae oordinates, like the dieleti onstant � from above.8.3 Birefringene and dihroism of the vauumComparing the expressions (631) and (638) suggests to preliminarily interpret the index khere as a kind of \anomalous" dieletri onstant (or the square of an \anomalous" indexof refration, f. Eq. (622)) of the vauum. This interpretation leads (tentatively) to thefollowing possible quantum optial appliation:Lets assume we have in vauum initially just two photon modes of the same frequeny!, the same initial wave number ~l, but orthogonal linear polarizations. Both should initiallybelong to the same index k. If one lets these photons pass through strong eletri or (and)stati magneti �elds ~E0 ; ~B0, these \perturbations" add onstant terms proportional to �0 ~E20or (and) ~B20=�0 to the free Hamiltonians H~l �( ~K) ; � = 1; 2 , (see also the disussion around78



Eq. (495)). The energy of the stati �elds may hange the index k of at least one of the �eldsby a small amount Æ k whih ould lead to the following possible e�ets:� Compared to the photon the vauum energy of whih is \lifted" by an amount Æ k > 0the other photon with the orthogonal polarization \lost" energy, leading to an e�etive\dihroism"!� If the energetially lifted photon returns to its original index k after passing the external�elds, then we have an e�etive \birefringene"!As to the onventional optial phenomena of this type in materials (eletro-optial \Kerr-e�et" or magneto-optial \Cotton-Mouton-" and \Voigt-" e�ets and related dihroismset.) see Refs. [122℄.The e�ets mentioned should be proportional to the square of the external eletri or(and) magneti �elds.Possibly the reent PVLAS experiment [31,123℄ with its observation of vauum dihroismindued by an external magneti �eld an be understood in this framework!8.4 \Dark" normal matter?Let me dare to add a very speulative remark: As the quantum spetra (20) and (21) of thetwo HO lassial models (3) an be di�erent, the index k > 0 possibly being very small. So(radiation) energy may get \stuk" in the interval 1=2 > k > 0 or even at higher exitedlevels whih perhaps an deay by higher order eletromagneti transitions only. In suh aspeulation dark matter would be just \normal" matter prevented from radiating normally(e.g., the abundane of diatomi moleular hydrogen [124℄ provides an abundane of e�etiveHOs). This ould \explain" why visible and dark matter are of the same order of magnitude!In suh a speulative senario dark matter ould have been formed only after the formationof atoms and moleules. All this has, of ourse, to be evaluated muh more ritially.9 Charged partiles in external eletri and magneti�elds9.1 Charged harmoni osillator in an external eletri �eldIf one puts a harmonially vibrating partile of mass M and harge Ze0 ; Z 2 Z ; in an externaleletri �eld E0 in q-diretion then the potential term� Ze0E0 q (645)has to be added to the Hamiltonian of the HO:H = 12M p2 + M2 !2 q2 � Ze0E0 q = 12M p2 + M2 !2 (q � Ze0E0!2M )2 � Z2e20E202!2M : (646)De�ning � = q � Ze0E0!2M (647)79



we again have an e�etive HO with oordinate � and the ground state energy shifted by theamount V0 = �Z2e20 E202!2M � 0 : (648)Replaing q in Eq. (2) by � yieldsH(�; p) = 12M p2 + M2 !2 �2 + V0 = ! I + V0 : (649)The �ne struture onstant � = e204� �0  ~ � 7:3 � 10�3 (650)allows V0 to be rewritten as� V0 = ~! 2� �Z2 �0E20(!=)3M2 = ~! �Z24�2 �0E20 �3M2 ; � = 2� ! = � : (651)Comparing with Eq. (19) suggest to introdue an e�etive Bargmann indexk ! keff = k � Æ ; Æ = �Z24�2 �0E20 �3M2 : (652)In order to get an impression of the order of magnitude for Æ in experiments onsider anion of rest energy M 2 � 100 GeV � 10�8 J and harge e0 in a 1-dimensional harmoniPaul trap [36℄. With E0 � 103 V/m along the longitudinal diretion, � � 108 Hz one getsapproximately the value Æ � 10 , whih makes keff negative! One further has to redue theenergy �0E20 �3 ompared to M2 in order to have keff positive.9.2 Charged partile in an external magneti �eldIt is well-known that the 3-dimensional motion of a partile with harge q in a homogeneousmagneti �eld ~B = url ~A an be assoiated with an e�etive harmoni osillator for themotion transversal to the magneti �eld [125℄: The Hamilton funtion is given by (here mobviously means the mass, as opposed to previous Ses.)H = 12m~�2 ; ~� = m _~x = ~p� q ~A(~x) ; (653)with the basi Poisson brakets fxj; pkg = Æj k ; j; k = 1; 2; 3 : (654)The Eqs. of motion are_xj = fxj; Hg = 1m(pj � q Aj); ; _pj = fpj; Hg = q 3Xk=1 _xk�jAk : (655)It follows from the Poisson brakets (654) thatf�j; �kg = q (�jAk � �kAj) = q Bl ; (j; k; l) = yl. (1; 2; 3) : (656)80



For ~B = (0; 0; B) we havef�1; �2g = q B ; f�1; �3g = 0 ; f�2; �3g = 0 : (657)The last relations imply _�3 = f�3; Hg = 0 ; (658)i.e. �3 is a onstant of motion.Of speial interest here is the remaining \transversal" Hamilton funtionH? = 12m(�21 + �22) : (659)De�ning ! = q B=m ; �1 = m! � ; �2 = �� ; (660)and assuming q B > 0 we getH? = 12m�2� + 12m!2 �2 ; f�; ��g = 1 : (661)This is an e�etive HO Hamilton funtion for the transversal motion of a partile with hargeq in a magneti �eld ~B = (0; 0; B). As the \anonial oordinate" � atually is proportinal toa time derivative of the original oordinates, one needs another integration. This is providedby the quantitiesb1 = x1 + 1m!�� ; b2 = x2 � � = x2 � 1m! �1 ; (x1 � b1)2 + (x2 � b2)2 = 2m!2 H? ; (662)whih obey fbj; �kg = 0 ; j; k = 1; 2 ; fb2; b1g = 1m! ; (663)implying fbj; H?g = 0 ; j = 1; 2 ; (664)i.e. the bj are onstants of motion. Aording to their de�nition they are the oordinates ofthe enter of the irle on whih the partile moves in the tansversal (1; 2)-plane.If q B < 0 one just has to interhange the roles of �1 and �2 in the relations (659) and(660) and de�nes ! = jq Bj .For the HO Hamilton funtion (661) one an introdue angle and ation variables as usual:With ! > 0 and de�ning � = r 2Im! os' ; �� = �p2m!I sin' ; (665)we get H?('; I) = ! I ; (666)whih an be dealt with as previously:The usual quantization proedure for the Hamilton funtions (659) or (661) is the standardone, yielding the (Landau) energy levelsE?;n = ~!(n+ 1=2) ; n = 0; 1; : : : : (667)81



However, quantizing the Hamilton funtion (666) in the spirit of the present paper yields theHamilton operator Ĥ? = ~! ~K0 ; (668)with the possible energy levelsEk;n = ~!(n+ k) ; n = 0; 1; 2; : : : : (669)If k 6= 1=2 the usual Landau energy levels are being shifted to lower or higher values. Whetherthis really happens has, of ourse, to be found out experimentally!10 ThermodynamisNext I ollet some thermodynamial properties of a system with energy levels En = ~! (n+k)in a heat bath of temperature kB T � 1=� in order to see whih quantity depends on theindex k, and whih not! That index k is here, of ourse, not to be onfused with Boltzmann'sonstant kB.The following simple formulae should be of interest for the interpretation of experiments inpreparation for measuring the ground state energy of the HO by means of the AC Josephsone�et [40℄.From the partition funtionZ(�; k) = 1Xn=0 e�� ~! (n+k) = e�� ~! k1� e�� ~! (670)we get the probability to �nd the system in the nth state aspn(�) = e�� ~! (n+k)=Z(�; k) = e�� ~! n (1� e�� ~!) ; (671)whih is independent of k.Furthermore we haveFree energy: � F (�; k) = � lnZ(�; k) = � ~! k + ln(1� e�� ~!) : (672)Internal energy: U(�; k) = hEi(�; k) = ���Z(�; k) = ~! �k + 1e� ~! � 1� : (673)Energy mean square utuations:(�E)2(�) = �2� lnZ(�; k) = (~!)2 e� ~!(e� ~! � 1)2 = kBT 2CV : (674)Entropy: S(�)=kB = lnZ(�; k) + � U = � ln(1� e�� ~!) + � ~!e� ~! � 1 : (675)Here CV is the heat apaity of the system at onstant volume.We see that energy utuations (heat apaities) and entropy are independent of the indexk. 82



AknowledgementsI am indebted to a number of people for stimulating orrespondenes and disussions: Ithank C. Bek, T. H�ansh, W. Ketterle, K.-P. Marzlin and W. Shleih for orrespondenesonerning possible experimental determinations of the ground state energy of the HO, G.Agarwal, V. Bu�zek and B. Sanders for orrespondenes on the experimental prodution ofPerelomov and Barut-Girardello oherent states, and W. Shleih for a orrespondene onthe experimental generation of Shr�odinger-Glauber oherent states. I thank P. Toshek fordisussions on the di�erent harmoni traps in quantum optis and A. Ringwald for disussionson the PVLAS experiment.As before I thank DESY Hamburg, espeially the Theory Group, for its generous hospi-tality after my retirement from the Institute for Theoretial Physis of the RWTH Aahen.The DESY Library has always been very helpful in providing the neessary literature.Most thanks go to my wife Dorothea who had to endure my many outer and inner abseneswhile I was preoupied with the present paper!AppendiesA Calulating the ation variables for ertain potentialsof 1-dimensional systemsThe alulations of the ation variable (81) of subse. 2.3.3 for the di�erent potentials disussedthere an all be redued to that of the integralf(b) = Z +b�b du (b2 � u2)1=21 + u ; 0 < b < 1 ; (676)whih may be transformed into [126℄f(b) =� Z +b�b du u(b2 � u2)1=2 + Z +b�b du 1(b2 � u2)1=2 (677)+ (b2 � 1) Z +b�b du 1(1 + u)(b2 � u2)1=2 :Here the �rst term vanishes (replae u by �u), the seond gives � [127℄, and the last �(1�b2)1=2 � [128℄, so that f(b) = [1� (1� b2)1=2℄ � : (678)In the ase of the Morse potential VMo one puts in Eq. (83)b2 = ~E ; u = e�~q � 1 : (679)In the ase of the potential VsMo the substitutionu = tanh ~q ; (680)ombined with the observation thatZ +b�b du (b2 � u2)1=21� u2 = 12 Z +b�b du (b2 � u2)1=2 � 11 + u + 11� u� = Z +b�b du (b2 � u2)1=21 + u (681)works.For the potential VPT one substitutes u = sin ~q and for V one puts u = ~q2 + onst:83



B The overing groups of SO"(1:2) and the positive dis-rete series of their irreduible unitary representa-tionsI have stressed repeatedly in the Setions above that the irreduible unitary representationsof those overing groups of SO"(1; 2) or Sp(2;R) with a very small Bargmann index k < 1=2may be of speial interest. In this Appendix, therefore, I ollet some here relevant propertiesof those groups and the assoiated unitary representations. A rather omplete list of theliterature on the irreduible unitary representations of the group SO"(1; 2) and its overinggroups is ontained in the Refs. to Appendix B of Ref. [13℄. That Appendix ontains also asummary of essential properties of those groups.B.1 The universal overing group of SO"(1; 2)Aording to Bargmann [129℄ the universal overing group ~G � ^SO"(1; 2) an be parametrizedonveniently by starting from a modi�ed parametrization of the group SU(1; 1) as given bythe matries (180), namely by de�ning = �=� ; jj < 1) ; (682)! = arg(�) ; (683)with the inverse relations � = ei!(1� jj2)�1=2 ; jj < 1 ; (684)� = ei!(1� jj2)�1=2 : (685)The inequality jj < 1 in Eq. (682) follows from the relation j�j2 � j�j2 = 1 :With SO"(1; 2)[m℄ ; m-fold overing of SO"(1; 2) ; (686)we have the following relationsSO"(1; 2) : f(; !) ; jj < 1 ; ! 2 (��=2; �=2℄ g ; (687)Sp(2;R) �= SU(1; 1) = SO"(1; 2)[2℄ : f(; !) ; jj < 1 ; ! 2 (��; �℄ g ; (688)SO"(1; 2)[m℄ : f(; !) ; jj < 1 ; ! 2 (�m�=2; m�=2℄ g ;(689)~G � SO"(1; 2)[1℄ : ~g � f(; !) ; jj < 1 ; ! 2 R g : (690)From the multipliation of the matries (180) one dedues the group omposition law(3; !3) = (2; !2) Æ (1; !1) ; (691)where 3 = (1 + 2e�2i!1)(1 + �12e�2i!1)�1 ; (692)!3 = !1 + !2 + 12i ln[(1 + �12e�2i!1)(1 + 1�2e2i!1)�1℄ : (693)84



For the four subgroups (190) - (193) the new parametrization meansR0 : r0 = ( = 0; ! = �=2) (694)(0; !3) = (0; !2 + !1) ;A0 : a0 = ( = i tanh(�=2); ! = 0) ; � 2 R ; (695)(3; 0) = (i tanh[(�2 + �1)=2℄; 0) ;B0 : b0 = ( = tanh(s=2); ! = 0) ; s 2 R ; (696)(3; 0) = (tanh[(s2 + s1)=2℄; 0) ;N0 : n0 = ( = �(�2 + 4)�1=2 e�i !; ! = artan(�=2) ) ; � 2 R : (697)For the universal overing group ~G the transformations (187) and (186) now takethe form ~I 0 = �(~g; ') ~I ; �(~g; ') = j1 + ei' j2 (1� jj2)�1 ; (698)ei'0 = e�2i! ei' + �1 + ei' : (699)As �'0=�' = 1=�(~g; '), the equality (189) holds again.The transformations (699) at, however, not e�etively on S';~I beause the (in�nite)disrete enter C[1℄ = (0; ! 2 � Z ) � ~G (700)leaves all points � = ('; ~I) invariant. Correspondingly the enterC[m℄ = (0; ! = 0; ��; : : : ; �m�) � SO"[m℄(1; 2) (701)of an m-fold overing group leaves the points � invariant, too.With the elements of the group SU(1; 1) given by the restrition�� < ! � +�; � = exp(i!)(1� jj2)�1=2; � =  � ; the homomorphisms�[1℄=2 : ~G � SO"[1℄(1; 2) ! SU(1; 1) �= Sp(2;R) ; (702)�[2℄ : SU(1; 1) �= Sp(2;R) ! SO"(1; 2) ; (703)have the kernels ker(�[1℄=2) = 2�Z ; ker(�[2℄) = Z2 ; (704)respetively, and the omposite homomorphism �[1℄ = �[2℄ � �[1℄=2 has the kernelker(�[1℄ = �[2℄ � �[1℄=2) = �Z : (705)As the spae S2';~I is homeomorphi to R2 � f0g = C � f0g, its universal overing spae isgiven by ' 2 R; ~I 2 R+ , whih is the in�nitely sheeted Riemann surfae of the logarithm.The transformations (698) and (699) may be reinterpreted as ating transitively and ef-fetively on that universal overing spae.
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B.2 Irreduible unitary representations of the positive disrete se-ries for k > 0I have already mentioned in subse. 6.4.3 that in the Hilbert spae of holomorphi funtionson the unit dis D = fz 2 C ; jzj < 1g with the salar produt(f; g)k = 2k � 1� ZD f �(z)g(z)(1� jzj2)2k�2dxdy : (706)one an de�ne irreduible unitary representations for any k > 0 .The unitary operators representing the universal overing group in that spae are givenby [U(~g; k)f ℄(z) = e2ik!(1� jj2)k(1 + � z)�2kf � �z + ��� z + ��� ; (707)~g = (; !) ; � � ��� �� � = �[1℄=2(~g) 2 SU(1; 1) : (708)Beause j zj < 1, the funtion (1 + � z)�2k is, for k > 0, de�ned in terms of the seriesexpansion (1 + �z)�2k = 1Xn=0 (2k)nn! (�� z)n : (709)The phase fator e2ik! (710)in Eq. (707) determines the possible values of k for a given overing group:For SO"(1; 2) itself we have (see Eq. (687)) ! 2 R mod �. Requiring the phase fator(710) to be unique implies k = 1; 2; � � � .For SU(1; 1) we have ! 2 R mod 2�. Uniqueness of the phase fator then requires k =1=2; 1; 3=2; � � � .Uniqness of the same phase fator as to the overing group SO"(1; 2)[m℄ for whih ! 2R mod m� requires k = nm ; n = 1; 2; : : : : (711)For any irrational k > 0 we get an irreduible representation of the universal overinggroup SO"(1; 2)[1℄.C Estimates for the ratios I2k(2jzj)=I2k�1(2jzj) of modi-�ed Bessel funtions of the �rst kind for k > 0In Appendix D.1 of Ref. [13℄ I dedued the inequality�k(jzj) = I2k(2jzj)=I2k�1(2jzj) < 1 (712)for the ratio (320) whih ours frequently in expetation values with respet to Barut-Girardello oherent states. The argments were:86



It follows from the relation [130℄x dI�dx (x) = � I�(x) + x I�+1 (713)that I�+1(x)=I�(x) = ddx ln(I�(x)=x�) : (714)As [131℄ I�(x) = x�2� p� �(� + 1=2) Z �0 d� ex os � sin2� � ; (715)we get for the ratio (714)I�+1(x)=I�(x) = R �0 d� (os �) ex os � sin2� �R �0 d� ex os � sin2� � < 1 : (716)The argument is, however, only valid for � > �1=2 , i.e. for k > 1=4 , beause otherwise theintegrals (715) beome singular. Thus, the interval k 2 (0; 1=4℄ has to be treated di�erently:For k = 1=4 we have [132℄�k=1=4(jzj) = I1=2(2jzj)I�1=2(2jzj) = sinh 2jzj)osh 2jzj) = tanh 2jzj < 1 : (717)For k 2 (0; 1=4) , however, the ratio �k may beome larger than 1! This an already be seenfrom the asymptoti expression (349): If we put k = 1=4� Æ; Æ 2 (0; 1=4) it takes the form�(0<k<1=4)(jzj) � 1 + Æjzj + Æ(1 + 2Æ)4jzj2 +O(jzj�3) ; Æ 2 (0; 1=4) ; jzj ! 1 : (718)Now the seond and third non-leading terms in the expansion are positive, making the right-hand side larger than 1. The same feature may also been seen in the following way: Beauseof the relation [133℄ I2k�1(2jzj) = 2kjzj I2k(2jzj) + I2k+1(2jzj) (719)we have �k(jzj) = jzj2k + jzj �k+1=2(jzj) ; �k+1=2(jzj) = I2k+1(2jzj)I2k(2jzj) ; (720)whih has the limit limk!0 �k(jzj) = I0(2jzj)I1(2jzj) > 1 : (721)Here the right-hand side even diverges for jzj ! 0 ! That the expression (720) an beomelarge for �xed small jzj and dereasing k may also be seen from the approximation (348)whih yields �k+1=2(jzj) ! jzj2k + 1 �1� jzj2(2k + 1)(2k + 2)� for jzj ! 0 : (722)If jzj is so small that we an neglet the term of order jzj2 in the braket ompared to 1, weget for the relation (720) �k(jzj) � jzj2k + jzj2=(2k + 1) : (723)87



For k � 1=2 and jzj > 2k + jzj2 the right-hand side of the expression (723) beomes largerthan 1 .The possibility that �k(jzj) > 1 for k 2 (0; 1=4) an also be seen from the graphs in Figure50-1 of Ref. [134℄.Referenes[1℄ V.I. Arnold, Mathematial Methods of Classial Mehanis, 2nd edition (Graduate Textsin Mathematis 60; Springer-Verlag, New York et., 1989), hap. 10, Appendies 7 and8.[2℄ V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematial Aspets of Classial andCelestial Mehanis, 3rd edition (Enylopaedia of Mathematial Sienes 3; DynamialSystems III; Springer-Verlag, Berlin et., 2006), haps. 5 and 6.[3℄ W. Thirring, Classial Mathematial Physis, Dynamial Systems and Field Theories,3rd edition (Springer, New York et., 1997), haps. 2 and 3.[4℄ M. Born, Vorlesungen �uber Atommehanik, herausg. unter Mitwirkung von F. Hund,Bd. 1 (Struktur der Materie in Einzeldarstellungen II; Verlag Julius Springer, Berlin,1925)English translation: The Mehanis of the Atom (G. Bell and Sons, Ltd., London, 1927;reprinted by Frederik Ungar Publ. Co., New York, 1960).[5℄ W. Heisenberg, Zeitshr. Physik 33, 879 (1925).[6℄ R.S. Mulliken, Phys. Rev. 25, 119 and 259 (1925); the measurements were later im-proved by F.A. Jenkins and A. MKellar, Phys. Rev. 42, 464 (1932); and the theoretialanalysis by J.H. Van Vlek, Journ. Chem. Physis 4, 327 (1936).[7℄ G. Herzberg, Moleular Spetra and Moleular Struture I. Spetra of DiatomiMoleules, 2nd edition (Litton Eduational Publ., In., New York, 1950; afterwardspubl. by Van Nostrand Reinhold Co., New York; republished by Krieger Publ. Co.,Malabar, Fl., USA, 1989), haps. III,2, IV,2 and IV,3 .I owe the referene to these disussions by Herzberg on the experimental veri�ations ofthe HO ground state energy to one of my teahers, the late Fritz Bopp, who drew ourattention to that book during my time as a PhD student at the University of Muniharound 1960 .[8℄ P.W. Milonni, The Quantum Vauum, An Introdution to Quantum Eletrodynamis(Aademi Press, In., Boston et., 1994).[9℄ M. Moshinsky and Y.F. Smirnov, The Harmoni Osillator in Modern Physis (Con-temporary Conepts in Physis 9; harwood aademi publishers, Australia et., 1996).[10℄ P.A.M. Dira, Pro. Royal So. London, Ser. A, 109, 642 (1925); 110, 561 (1926); 114,243 (1927).[11℄ F. London, Zeitshr. Physik 37, 915 (1926); 40, 193 (1927).88



[12℄ P. Jordan, Zeitshr. Physik 44, 1 (1927); Jordan here quotes Dira as telling him thathe (Dira) atually needed only the operator relation \exp i' Î � Î\exp i' = �~\exp i'instead of the ontraditory '̂ Î � Î '̂ = i ~ ! Jordan does not mention the additionalimportant ondition Î > 0 .[13℄ H.A. Kastrup, Fortshr. Physik 51, 975 (2003); Addendum: ibidem 52, 388 (2004).Quotations in the present paper will refer to the expanded e-print versionarXiv: quant-ph/0307069.[14℄ F. London, Zeitshr. Physik 63, 245 (1930); Zeitshr. Physikal. Chemie, Abt. B 11, 222(1931); Transat. Faraday So. 33, 8 (1937); in the present ontext the seond paper isthe most essential one.N.B. It appears to me that F. London's important ontributions to the early devel-opment of quantum mehanis have been underrated and still are. He was also the�rst to formulate the gauge priniple in quantum mehanis (Zeitshr. Physik 42, 375(1927)), long before Weyl santioned London's quantum mehanial reinterpretationof Weyl's unsuesful gauge theoretial extension of Einstein's General Relativity (H.Weyl, Die Naturwiss. 19, 49 (1931)). As to the life and sienti� work of F. London seeK. Gavroglu, Fritz London, a sienti� biography (Cambridge Univ. Press, Cambridgeet., 1995).[15℄ H.B.G. Casimir, Koninkl. Nederl. Akad. Wetensh. (Amsterdam), Pro. Se. Sienes51, 793 (1948).[16℄ K.A. Milton, The Casimir E�et, Physial Manifestations of Zero-Point Energy (WorldSienti�, Singapore et., 2001).[17℄ S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).[18℄ S.M. Carroll, Living Reviews: http://www.livingreviews.org/lrr-2001-1[astro-ph/0004075℄.[19℄ P.J.E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).[20℄ G.E. Volovik, Ann. Physik (Leipzig) 14, 165 (2005); id., e-print arXiv: gr-q/0604062.[21℄ E.J. Copeland, M. Sami and S. Tsujikawa, Intern. Journ. Mod. Phys. D 15, 1753 (2006)[hep-th/0603057℄.[22℄ T. Padmanabhan, Phys. Reports 380, 235 (2003); id., e-print arXiv: astro-ph/0603114.[23℄ N. Straumann, Mod. Phys. Lett. A 21, 1083 (2006); Ann. Physik (Leipzig) 15, 701(2006).[24℄ S. Nobbenhuis, e-print arXiv: gr-q/0609011 (Ph.D. Thesis, Utreht University); thispaper ontains a long list of referenes.[25℄ H.A. Kastrup, Phys. Rev. A 73, 052104 (2006).[26℄ M. Bojowald, H.A. Kastrup, F. Shramm and T. Strobl, Phys. Rev. D 62, 044026(2000). 89

http://arxiv.org/abs/quant-ph/0307069
http://www.livingreviews.org/lrr-2001-1
http://arxiv.org/abs/astro-ph/0004075
http://arxiv.org/abs/gr-qc/0604062
http://arxiv.org/abs/hep-th/0603057
http://arxiv.org/abs/astro-ph/0603114
http://arxiv.org/abs/gr-qc/0609011


[27℄ L.D. Mlodinow and N. Papanioulaou, Ann. Phys. (N.Y.) 128, 314 (1980); see alsoC.C. Gerry, J. Phys. A: Math. Gen. 16, L1 (1983);J. Katriel, A.I. Solomon, G. D'Ariano and M. Rasetti, Phys. Rev. D 34, 2332 (1986);H. Bary, Journ. Mathem. Phys. 31, 2061 (1990);C.C. Gerry and R. Grobe, Quantum Semilass. Opt. 9, 59 (1997);A. W�unshe, Ata physia slov. 49, 771 (1999); Journ. Opt. B: Quantum Semilass.Opt. 5, S429 (2003).[28℄ C.J. Isham in: Relativity, Groups and Topology II (Les Houhes Session XL, 1983),edited by B.S. Dewitt and R. Stora (North-Holland, Amsterdam et., 1984), p. 1059.[29℄ V. Guillemin and S. Sternberg, Sympleti tehniques in physis (Cambridge UniversityPress, Cambridge et., 1984; paperbak edition: 1990).[30℄ Refs. [13, 26℄[31℄ E. Zavattini et al., Phys. Rev. Lett. 96, 110406 (2006); as to previous theoretial andexperimental work whih led to this experiment see the literature quoted in the paper.For very reent ritial evaluations of that experiment seeS.L. Adler, Journ. Phys. A: Math. Theor. 40, F143 (2007);A.C. Melissinos, e-print arXiv: hep-ph/0702135.[32℄ J. Doyle, B. Friedrih, R.V. Kraus and F. Masnou-Seeuws, Europ. Phys. Journ. D 31,149 (2004).[33℄ H. Feshbah, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287 (1962); id., Theoretial NulearPhysis (John Wiley & Sons, N.Y., 1992) hap. III;in the literature on potential sattering theory the \Feshbah" resonanes are alled\virtual" or \anti-" bound states. They orrespond to zeros of the Jost{funtion on thenegative imaginary axis of the omplex momentum plane (see, e.g.S.T. Ma, Rev. Mod. Phys. 25, 853 (1953);V. de Alfaro and T. Regge, Potential Sattering (North-Holland Publ. Co., Amsterdam,1965) hap. 7.5.;J.R. Taylor, Sattering Theory: The Quantum Theory on Nonrelativisti Collisions(John Wiley & Sons, In., New York et., 1972) hap. 13);theoretial papers on Feshbah resonanes at very low temperatures inlude:E. Tiesinga, A.J. Moerdijk, B.J. Verhaar and H.T.C. Stoof, Phys. Rev. A 46, R1167(1992); E. Tiesinga, B.J. Verhaar and H.T.C. Stoof, Phys. Rev. A 47, 4114 (1993);B. Marelis, E.G.M. van Kempen, B.J. Verhaar and S.J.J.M.F. Kokkelmans, Phys. Rev.A 70, 012701 (2004);J.N. Milstein, PhD Thesis University of Colorado, Boulder, 2004; available underhttps://jilawww.olorado.edu/pubs/thesis/milstein;V.A. Yurovsky, Phys. Rev. A 71, 012709 (2005);S. D�urr et al., Phys. Rev. 72, 052707 (2005);N. Nygaard, B.I. Shneider and P.S. Julienne, Phys. Rev. A 73, 042705 (2006);the later papers mentioned here ontain further Refs. to earlier ones.[34℄ Early experimental observations of Feshbah resonanes in BEC areS. Inouye et al., Nature 392, 151 (1998);90

http://arxiv.org/abs/hep-ph/0702135


Ph. Courteille et al., Phys. Rev. Lett. 81, 69 (1998);J.L. Roberts et al., Phys. Rev. Lett. 81, 5109 (1998);more reent experimental papers with further referenes areM.W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004);C.H. Shunk et al., Phys. Rev. A 71, 045601 (2005);T. Volz et al., Nature Physis 2, 692 (2006).[35℄ Properties of lower dimensional gases at low temperatures are disussed in the ontri-butions to the shool Quantum Gases in Low Dimensions, (QGLD 2003) from April2003 at the Centre de physique des Houhes; Pro. edited by L. Prioupenko, H. Perrinand M. Olshanii, Journ. Physique IV (Proeedings) 116 (2004).[36℄ Reviews areD. Leibfried, R. Blatt, C. Monroe and D. Wineland, Rev. Mod. Phys. 75, 281 (2003);J. Eshner, G. Morigi, F. Shmidt-Kaler and R. Blatt, Journ. Opt. So. Am. B 20, 1003(2003);for a disussion of theoretial aspets as to Paul traps seeW.P. Shleih, Quantum Optis in Phase Spae (WILEY - VCH Verlag, Berlin et.,2001), hap. 17.[37℄ Reviews:Laser Manipulations of Atoms and Ions, Pro. Intern. Shool of Physis \Enrio Fermi",Course CXVIII (1991), edited by E. Arimondo, W.D. Phillips and F. Strumia (North-Holland, Elsevier Siene Publ., Amsterdam, 1992);J.M. Raimond, M. Brune and S. Harohe, Rev. Mod. Phys. 73, 565 (2001);P. Domokos and H. Ritsh, Journ. Opt. So. Am. 20, 1098 (2003);Several ontributions in Ref. [35℄Speial issue: Atoms, Quanta and Relativity - a entury after Einstein's miraulousyear, edited by T.W. H�ansh, H. Shmidt-B�oking and H. Walther, Journ. Physis B:Atomi, Moleular and Optial Physis 38, No. 9 (2005)P. Treutlein et al., Fortshr. Physik 54, 702 (2006) [quant-ph/0605163℄;A. Ashkin, Optial Trapping and Manipulations of Neutral Partiles Using Lasers, AReprint Volume with Commentaries (World Sienti� Publ. Co. Pte. Ltd., New Jerseyet., 2006).[38℄ A.S. Parkins and D.F. Walls, Phys. Reports 303, 1 (1998);Bose-Einstein Condensation in Atomi Gases, Pro. Intern. Shool of Physis \EnrioFermi", Course CXL (1998), edited by M. Ingusio, S. Stringari and C.E. Wieman (IOSPress, Amsterdam, 1999);A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001);E.A. Cornell and C.E. Wieman, Rev. Mod. Phys. 74, 875 (2002);W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002);Several review artiles in Nature 416, 206-248 (2002);K. Bongs and K. Sengstok, Rep. Progr. Phys. 67, 907 (2004);O. Morsh and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).[39℄ W. Ketterle and N.J. van Druten, Phys. Rev. A 54, 656 (1996);D.S. Petrov, G.V. Shlyapnikov and J.T.M. Walraven, Phys. Rev. Lett. 85, 3745 (2000);K. Bongs et al., Phys. Rev. A 63, 031600(R) (2001);91

http://arxiv.org/abs/quant-ph/0605163


G�orlitz et al., Phys. Rev. Lett. 87, 130402 (2001);M. Greiner et al., Phys. Rev. Lett. 87, 160405 (2001);S. Dettmer et al., Phys. Rev. Lett. 87, 160406 (2001).[40℄ C. Bek, Journ. Physis: Conf. Series 31, 123 (2006); C. Bek and M.C. Makey, PhysiaA 379, 101 (2007);these papers ontain referenes to previous and future experimental work.[41℄ See Appendix C of Ref. [13℄ and the literature on the sympleti groups Sp(2n;R) andthe disrete series of their irreduible unitary representations quoted there. See alsoR.C. King and B.G. Wybourne, Journ. Phys. A: Math. Gener. 18, 3113 (1985).[42℄ V. Bargmann, in: Analytial methods in mathematial physis, edited by R.P. Gilbertand R.G. Newton (Based on the onferene held at Indiana University, Bloomington,Indiana, June 2-6, 1968; Gordon and Breah Siene Publ., N.Y., London and Paris,1970), p. 27;a famous theorem by Harish-Chandra says that a non-ompat semisimple group hasdisrete series of irreduible unitary representations i� the rank of the maximal ompatsubgroup is equal to the rank of the group itself (Ata Mathem. 116, 1 (1966); theorem13). This is the ase for the sympleti groups Sp(2n;R).Disrete series and Harish-Chandra's work on them play a major role in the textbookA.W. Knapp, Representation Theory of Semisimple Groups, an Overview based on Ex-amples (Prineton University Press, Prineton, N.J., 1986).[43℄ D. Husemoller, Fibre Bundles, 2nd edition (Graduate Texts in Mathematis 20;Springer-Verlag, New York et., 1975), pp. 92-93.[44℄ J.-M. Souriau, Struture of Dynamial Systems, A Sympleti View of Physis (Progressin Mathematis 149; Birkh�auser, Boston et., 1997; English translation of the Frenhedition Struture des syst�emes dynamiques, Dunod, Paris, 1969).[45℄ J.E. Marsden and T.S. Ratiu, Introdution to Mehanis and Symmetry, A Basi Ex-position of Classial Mehanial Systems, 2nd edition (Texts in Applied Mathematis17; Springer-Verlag, New York et., Correted printing, 2003).[46℄ I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Produts, 4th edition(Aademi Press, New York and London, 1965), p. 148 , formula 2.553 3.[47℄ Ref. [46℄, p. 147 , formula 2.551 3.[48℄ Many suh examples are also disussed inO.L. De Lange and R.E. Raab, Operator Methods in Quantum Mehanis (ClarendonPress, Oxford, 1991).[49℄ P.M. Morse, Phys. Rev. 34, 57 (1929); for the radial (s-wave) ase q = r � 0 one hasto hoose appropriate boundary onditions at r = 0 ( D. ter Haar, Phys. Rev. 70, 222(1946) ).
92



[50℄ N. Rosen and P.M. Morse, Phys. Rev. 42, 210 (1932);L.D. Landau and E.M. Lifshitz, Quantum Mehanis, Non-Relativisi Theory, 3rd edi-tion (Vol. 3 of Course of Theoretial Physis, Butterworth-Heinemann (Elsevier Si-ene), Amsterdam et., 1977, 1991), p. 73 (problem 5);M.M. Nieto and L.M. Simmons, Jr., Phys. Rev. D 20, 1342 (1979).[51℄ G. P�oshl und E. Teller, Zeitshr. Physik 83, 143 (1933).[52℄ P. Camiz, A. Gerardi, C. Marhioro, E. Presutti and E. Saiatelli, Journ. Math. Phys.12, 2040 (1971);E. Onofri and M. Pauri, Lett. Nuovo Cim. 3, 35 (1972);P. Cordero, S. Hojman, P. Furlan and G.C. Ghirardi, Nuovo Cim. 3 A, 807 (1971);V.V. Dodonov, I.A. Malkin and V.I. Man'ko, Physia 72, 597 (1974);V. De Alfaro and S. Fubini and G. Furlan, Nuovo Cim. 34 A, 569 (1976);M.M. Nieto and L.M. Simmons, Jr., Phys. Rev. D 20, 1332 (1979); M. Nieto, Phys.Rev. D 22, 391 (1980).[53℄ P.M. Morse, Ref. [49℄;Landau/Lifshitz, Ref. [50℄, p. 72 (problem 4);P. Cordero and S. Hojman, Lett. Nuovo Cim. 4, 1123 (1970);M.M. Nieto and L.M. Simmons, Jr., Phys. Rev. D 19, 438 (1979); 20, 1342 (1979);C.C. Gerry, Phys. Rev. A 33, 2207 (1986);J.P. Dahl and M. Springborg, Journ. Chem. Phys. 88, 4535 (1988);S. Kais and R.D. Levine, Phys. Rev. A 41, 2301 (1990).[54℄ M.M. Nieto and L.M. Simmons, Jr., Phys. Rev. 20, 1332 (1979);V.P. Gutshik and M.M. Nieto, Phys. Rev. D 22, 403 (1980);A. W�unshe, Journ. Opt. B: Quantum Semilass. Opt. 4, 359 (2002).[55℄ See Landau/Lifshitz, Ref. [50℄, pp. 72-74.[56℄ A.A. Kirillov, Elements of the Theory of Representations (Grundlehren der mathema-tishen Wissenshaften 220; Springer-Verlag, Berlin, Heidelberg and N.Y., 1976; trans-lation of the Russian edition from 1972), pp. 287-290;R. Howe, Bull. Amer. Math. So. (New Ser.) 3, 821 (1980);id. , in: The Mathematial Heritage of Hermann Weyl, edited by R.O. Wells, Jr. (Pro.Symposia Pure Mathem. 48; Amer. Math. So., Providene, R.I., 1988), p. 61;G.B. Folland, Harmoni Analysis in Phase Spae (Ann. Mathem. Studies 122; Prine-ton University Press, Prineton, N.J., 1989);E.M. Stein, Harmoni Analysis: Real-Variable Methods, Orthogonality, and OsillatoryIntegrals (Prineton University Press, Prineton, N.J., 1993, 2nd printing 1995), haps.XII and XIII.[57℄ See, e.g. Ref. [45℄, p. 68.[58℄ See subse. 6.3 of Ref. [13℄ and the literature quoted there.[59℄ A. Weil, Ata mathem. 111, 143 (1964).93



[60℄ A seletion of books and artiles ontaining disussions of metapleti groups and ref-erenes to original papers is:D. Shale, Trans. Amer. Math. So. 103, 149 (1962);G. Lion and M. Vergne, The Weil representation, Maslov index and Theta series(Progress in Mathematis 6; Birkh�auser, Boston, 1980);R. Howe, Ref. [56℄;V. Guillemin and S. Sternberg, Ref. [29℄;G.B. Folland, Ref. [56℄;R. Simon and N. Mukunda, in: Symmetries in Siene VI, From the Rotation Groupto Quantum Algebras, edited by B. Gruber (Proeed. Symposium Bregenz (Austria)August 1992; Plenum Press, New York and London, 1993), p. 659;Arvind, B. Dutta, C.L. Mehta and N. Mukunda, Phys. Rev. A 50, 39 (1994);E.M. Stein, Ref. [56℄.[61℄ See subse. 6.1 of Ref. [13℄.[62℄ See subses. 6.2 and 6.3 of Ref. [13℄.[63℄ M. Bojowald and T. Strobl, Journ. Math. Phys. 41, 2537 (2000); Intern. Journ. Mod.Phys. D 12, 713 (2003).[64℄ For more details see Ref. [13℄, Appendix B.[65℄ See Ref. [26℄, se. III.[66℄ As to orbifolds see subses. 1.4 and A.3 of Ref. [13℄ and the referenes quoted there.[67℄ See subse. 1.3 of Ref. [13℄.[68℄ See the literature quoted in Appendix B of Ref. [13℄.[69℄ As to desriptions of irreduible unitary representations of the same group in terms ofa \ontinuous" basis seeN. Mukunda, Journ. Math. Phys. 8, 2210 (1967);J.G. Kuriyan, N. Mukunda and E.C.G. Sudarshan, Journ. Mathem. Phys. 9, 2100(1968);N. Mukunda, Journ. Mathem. Phys. 10, 2086 and 2092 (1969);G. Lindblad and B. Nagel, Ann. Inst. Henri Poinar�e 13, 27 (1970);W. Montgomery and L. O'Raifeartaigh, Journ. Math. Phys. 15, 380 (1974).[70℄ For a omprehensive survey as to the literature on squeezed states seeV.V. Dodonov, Journ. Opt. B: Quantum Semilass. Opt. 4, R1 (2002).[71℄ See hap. 3 of Ref. [13℄ and the literature quoted there.[72℄ W. Thirring and B. Toushek, Philos. Mag. (7th Ser.) 42, 244 (1951);R.J. Glauber, Phys. Rev. 84, 395 (1951);K.O. Friedrihs, Mathematial Aspets of the Quantum Theory of Fields (IntersienePubl., In., New York, 1953), part III;J.R. Klauder, Ann. Phys. (N.Y.) 11, 123 (1960);R.J. Glauber, Phys. Rev. 131, 2766 (1963);P. Carruthers and M.M. Nieto, Amer. Journ. Phys. 33, 537 (1965).94



[73℄ M. Sargent III, M.O. Sully and W.E. Lamb, Jr., Laser Physis (Addison-Wesley Publ.Co., Reading, Mass. et., 1974), hap. 15-2;Fam Le Kien, M.O. Sully and H. Walther, Found. Physis 23, 177 (1993);for a reent disussion as to experimental reations of oherent states see hap. VI. A.of the review by Leibfried et al. quoted in Ref. [36℄.[74℄ D.F. Walls and G.J. Milburn, Quantum Optis (Springer-Verlag, Berlin et., 1994),hap. 12.2;L. Mandel and E. Wolf, Optial Coherene and Quantum Optis (Cambridge UniversityPress, Cambridge et., 1995), hap. 20.4;M.O. Sully and M.S. Zubairy, Quantum Optis (Cambridge University Press, Cam-bridge (UK) et., 1997), hap. 11.2;W.E. Lamb, W.P. Shleih, M.O. Sully and C.H. Townes, Rev. Mod. Phys. 71, S263(1999).[75℄ A. Perelomov, Generalized Coherent States and Their Appliations (Springer-Verlag,Berlin et., 1986), hap. 5.[76℄ Ref. [13℄, subse. 6.1.[77℄ P. Shanta, S. Chaturvedi, V. Srinivasan, G.S. Agarwal and C.L. Mehta, Phys. Rev.Lett. 72, 1447 (1994);X.-G. Wang, Intern. Journ. Mod. Phys. B 14, 1093 (2000);A. W�unshe, Journ. Opt. B: Quantum Semilass. Opt. 4, 359 (2002); 5, S429 (2003);these papers ontain many referenes to earlier work. For a non-grouptheoretial ap-proah to generating oherent states by non-linear funtions of the onventional reationand annihilation operators seeR.L. de Matos Filho and W. Vogel, Phys. Rev. A 54, 4560 (1996);V.I. Man'ko, G. Marmo, E.C.G. Sudarshan and F. Zaaria, in: Proeed. of the IV.Wigner Symposium, Guadalajara 1995, edited by N. Atakishiyev, T. Seligman and K.B.Wolf (World Sienti�, Singapore, 1996), p. 421; Physia Sr. 55, 528 (1997);S. Sivakumar, Journ. Opt. B: Quantum Semilass. Opt. 2, R61 (2000);X. Wang, Canad. Journ. Phys. 79, 833 (2001).[78℄ Ref. [13℄, subse. 3.1.[79℄ A. Erd�elyi et al. (Eds.), Higher Transendental Funtions II (MGraw-Hill Book Co.,In., New York et., 1953), hap. VII.[80℄ See hap. 3 of Ref. [13℄ and the literature quoted there.[81℄ A. Erd�elyi et al. (Eds.), Higher Transendental Funtions I (MGraw-Hill Book Co.,In., New York et., 1953), here p. 9.[82℄ V. Bargmann, Commun. Pure and Appl. Math. 14, 187 (1961); 20, 1 (1967).[83℄ I. Segal, Mathematial Problems of Relativisti Physis, Letures in Applied Mathemat-is II, Proeed. Summer Seminar, Boulder, Colorado, 1960, edited by M. Ka (Amer.Math. So., Providene, R.I., 1963);idem, Illinois Journ. Math. 6, 500 (1962);95



For a reent review of Bargmann's and Segal's work see B.C. Hall, Contemp. Mathem.260, 1 (2000) [quant-ph/9912072℄.[84℄ V. Fok, Zeitshr. Physik 49, 339 (1928).[85℄ G.M. D'Ariano, M. Vasilyev and P. Kumar, Phys. Rev. A 58, 636 (1998);M. Vasilyev, S.-K. Choi, P. Kumar and G.M. D'Ariano, Opt. Lett. 23, 1393 (1998);G.M. D'Ariano, M. Sahi and P. Kumar, Phys. Rev. A 61, 013806 (1999);M. Vasilyev, S.-K. Choi, P. Kumar and G.M. D'Ariano, Phys. Rev. Lett. 84,2354 (2000);H. Cao, Y. Ling, J.Y. Xu and C.Q. Cao and P. Kumar, Phys. Rev. Lett. 86, 4524 (2001);P. Voss, T.-G. Noh, S. Dugan, M. Vasilyev, P. Kumar and G.M. D'Ariano, Journ. Mod.Opt. bf 49, 2289 (2002);P.L. Voss, R. Tang and P. Kumar, Opt. Lett. 28, 549 (2003).[86℄ D.F. Walls and G.J. Milburn, Ref. [74℄, hap. 5;L. Mandel and E. Wolf, Optial Coherene and Quantum Optis (Cambridge UniversityPress, Cambridge et., 1995), hap. 22;P. Hariharan and B.C. Sanders, Progr. Optis 36, 49 (1996);M.O. Sully and M.S. Zubairy, Ref. [74℄, hap. 16;V. Pe�rinov�a, A. Luk�s and J. Pe�rina, Phase in Optis (World Sienti� Publ. Co., Sin-gapore, 1998), hap. 5.4;W. Vogel, D.-G. Welsh and S. Wallentowitz, Quantum Optis. An Introdution, 2ndedition (Wiley-VHC Verlag, Weinheim, 2001), hap. 8;R.R. Puri, Mathematial Methods of Quantum Optis (Springer Series in Optial Si-enes 79, Springer, Berlin et., 2001), hap. 7;U. Leonhardt, Rep. Prog. Phys. 66, 1207 (2003);H.-A. Bahor and T.C. Ralph, A Guide to Experiments in Quantum Optis, 2nd revisedand enlarged edition (Wiley-VCH Verlag, Weinheim, 2004), haps. 6.2 and 9.[87℄ G. Dattoli, J.C. Gallardo and A. Torre, Rivista Nuovo Cim. 11, artile No. 11 (1988).[88℄ K. W�odkiewiz and J.H. Eberly, Journ. Opt. So. Amer. B 2, 458 (1985);K. W�odkiewiz, Journ. Mod. Opt. 34, 941 (1987);C.C. Gerry, Phys. Rev. A 31, 2721 (1985); 35, 2146 (1987); Journ. Opt. So. Amer. B8,685 (1991); C.C. Gerry and J. Kiefer, Journ. Phys. A: Math. Gener. 24, 3513 (1991);G.S. Agarwal, Phys. Rev. Lett. 57, 827 (1986); Journ. Opt. So. Amer. B 5, 1940(1988);P.K. Aravind, Journ. Opt. So. Amer. B 5, 1545 (1988);V. Bu�zek, Phys. Rev. A 39, 3196 (1989); 39, 5432 (1989); Phys. Lett. A 136, 188(1989); Ata phys. slov. 39, 344 (1989); Journ. Mod. Opt. 37, 303 (1990);Z.W. Gortel and  L.A. Turski, Phys. Rev. A 43, 3221 (1991);V. Penna, Ann. Phys. (N.Y.) 245, 389 (1996).[89℄ R.W. Boyd, Nonlinear Optis, 2nd edition (Aademi Press, Elsevier, San Diego, 2003);see also the textbooks of the previous Ref. [86℄ andA. Yariv, Optial Eletronis in Modern Communiations, 5th edition (Oxford Univer-sity Press, New York and Oxford, 1997).
96

http://arxiv.org/abs/quant-ph/9912072


[90℄ M. Hillery, Opt. Commun. 62, 135 (1987); Phys. Rev. A 36, 3796 (1987); Phys. Rev.A 40, 3147 (1989);C.C. Gerry and E.R. Vrsay, Phys. Rev. 37, 1779 (1988).[91℄ R.W. Boyd, Ref. [89℄, hap. 4;A. Yariv, Ref. [89℄, hap. 17.[92℄ See the Refs. of hap. 16 (pp. 484-486) in the textbook by Sully and Zubairy, Ref. [74℄above.[93℄ See hap. 6.4 of Ref. [13℄ and the literature quoted there.[94℄ B. Yurke, S.L. MCall and J.R. Klauder, Phys. Rev. A 33, 4033 (1986);U. Leonhardt, Phys. Rev. A 49, 1231 (1994);C. Brif and Y. Ben-Aryeh, Quantum Semilass. Opt. 8, 1 (1996);C. Brif and A. Mann, Phys. Lett. A 219, 257 (1996); Phys. Rev. A 54, 4505 (1996);Y. Ben-Aryeh, D. Ludwin and A. Mann, Journ. Opt. B: Quantum Semilass. Opt. 3,138 (2001)B.C. Sanders and D.A. Rie, Phys. Rev. A 61, 013805 (1999); Opt. Quantum Eletron.31, 525 (1999);C.C. Gerry, Phys. Rev. A 59, 4095 (1999);V. Pe�rinov�a, A. Luk�s and J. K�repelka, Journ. Opt. B: Quantum Semilass. Opt. 2, 81(2000).[95℄ G.S. Agarwal, papers quoted in Ref. [88℄;G.S. Prakash and G.S. Agarwal, Phys. Rev. A 50, 4258 (1994); 52, 2335 (1995);B.A. Bambah and G.S. Agarwal, Phys. Rev. A 51, 4918 (1995);A. Joshi and R.R. Puri, Phys. Rev. A 42, 4336 (1990);C.C. Gerry and R.F. Welh, Journ. Opt. So. Amer. B 8, 868 (1991);C.C. Gerry and R. Grobe, Phys. Rev. A 51, 1698 (1995);S.-C. Gou, J. Steinbah and P.L. Knight, Phys. Rev. A 54, 4315 (1996);C.C. Gerry, S.-C. Gou and J. Steinbah, Phys. Rev. A 55, 630 (1997);M.S. Abdalla, F.A.A. El-Orany and J. Pe�rina, Ata phys. slovaa 50, 613 (2000);X. Wang, B.C. Sanders and S.-h. Pan, Journ. Phys. A: Math. Gener. 33, 7451 (2000);G.S. Agarwal and A. Biswas, Journ. Opt. B: Quantum Semilass. Opt. 7, 350 (2005);New Journ. Phys. 7, 211 (2005).[96℄ V. Bu�zek, papers quoted in Ref. [88℄;C.C. Gerry and R. Grobe, Ref. [27℄; Quantum Semilass. Opt. 9, 59 (1997);G. Ariunbold and J. Pe�rina, Ata phys. slovaa 48, 315 (1998).[97℄ See the literature quoted in Appendix C.5.1 of Ref. [13℄;S.D. Bartlett, D.A. Rie, B.C. Sanders, J. Daboul and H. de Guise, Phys. Rev. A 63,042310 (2001).[98℄ See also hap. 4 of Ref. [13℄ (e-print version).[99℄ See, e.g. A. Messiah, Quantum Mehanis, vol. I (North-Holland Publ. Co., Amsterdam,1961), hap. XII and Appendix B III. 97



[100℄ E. Hille, Analyti Funtion Theory II, 2nd edition (Chelsea Publ. Co., New York, 1987),hap. 14;B. Ya. Levin, in ollaboration with Yu. Lyubarskii, M. Sodin and V. Tkahenko, Letureson Entire Funtions (Transl. Mathem. Monographs 150, Amer. Math. So., Providene,R.I., 1996).[101℄ N.G. de Bruijn, Asymptoti Methods in Analysis (Bibliothea Mathematia IV; North-Holland Publ. Co., Amsterdam, 1958), haps. 5 and 6;N. Bleistein and R.A. Handelsman, Asymptoti Expansions of Integralss (Dover Publ.,In., New York, 1975, reprinted 1986), hap. 7;J.D. Murray, Asymptoti Analysis (Appl. Mathem. Sienes 48, Springer, New Yorket., 1984), hap. 3.[102℄ Here one puts �n=(n!)1=� = exp [n ln ��(1=�) ln �(n+1)℄, takes for ln �(x+1) the usualasymptoti expansion (see, e.g. Ref. [46℄, subse. 8.34) and then determines the saddlepoint.[103℄ M.A. Evgrafov, Asymptoti Estimates and Entire Funtions (Russian Trats on Ad-vaned Mathematis and Physis IV; Gordon and Breah, Siene Publ., In., NewYork, 1961), hap. III, here pp. 149-151;The 3rd enlarged and improved Russian edition (Asimptoti�eskie oenki i elye funkii,Moskva, 1979) ontains also the estimate (512), with the fator p� missing (hap. IV,pp. 289-294).For real � > 0 the asymptoti expansion (512) is ontained inM.�E. Le Roy, Bull. Sienes Math�em. (2. S�er.) 24, 245 (1900); see alsoG.H. Hardy, Orders of In�nity (Cambridge Trats Mathem. and Mathemat. PhysisNo. 12; Cambridge Univ. Press, 1910), here p. 55.[104℄ G.N. Watson, A Treatise on the Theory of Bessel Funtions, 2nd edition (CambridgeUniv. Press, Cambridge, 1966), p. 181, formula (4).[105℄ Ref. [46℄, formula 3.613 2.[106℄ See, e.g. J.B. Conway, Funtions of One Complex Variable (Graduate Texts in Mathem.11; Springer-Verlag, New York et., 1973), hap. X.[107℄ G.S. Agarwal, Phys. Rev. A 45, 1787. (1992); Opt. Commun. 100, 479 (1993);A. Vourdas, Phys. Rev. A 45, 1943 (1992).[108℄ Ref. [81℄, here p. 80.[109℄ H.S. Shapiro and A.L. Shields, Mathem. Zeitshr. 80, 217 (1962);P.J. Sally, Jr., Journ. Funt. Analysis 6, 441 (1970);C.P. Boyer and K.B. Wolf, Journ. Mathem. Phys. 16, 1493 (1975);Ref. [26℄, hap. V, C; Ref. [13℄, hap. 4.5.[110℄ E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th edition (Cam-bridge Univ. Press, Cambridge, 1969), p. 21.[111℄ V. Bargmann, �rst of the Refs. [82℄, pp. 203-204.98



[112℄ Ref. [79℄, hap. X.12[113℄ Ref. [26℄, hap V, ses. D-F; in Eq. (103) there one has 2t = u.[114℄ E.C. Tithmarsh, Introdution to the Theory of Fourier Integrals, 2nd edition (OxfordUniv. Press, London et., 1950), subse. 3.16;R. Courant and D. Hilbert, Methods of Mathematial Physis I (Intersiene, New York,1953), pp. 103-105.[115℄ Ref. [81℄, p. 251.[116℄ See subse. 3.6. of the following review: K.A. Milton, Journ. Physis A: Math. Gener.37, R209 (2004).[117℄ J. Shwinger, Lett. Mathem. Phys. 1, 43 (1975);J. Shwinger, L.L. DeRaad, Jr., and K.A. Milton, Ann. Phys. (N.Y.) 115, 1 (1978); seealsoR.L. Ja�e, Phys. Rev. D 72, 021301(R) (2005);A. Sardihio and R.L. Ja�e, Nul. Phys. B 743, 249 (2006);A. Lambreht, P.A. Maia Neto and S. Reynaud, New Journ. Physis 8, 243 (2006);N.A. Kawakami, M.C. Nemes and W.F. Wreszinski, e-print arXiv: math-ph/0611025;S.K. Lamoreaux, Physis Today, Febr. 2007, p. 40.[118℄ See, e.g.W.K.H. Panofsky and M. Phillips, Classial Eletriity and Magnetism, 2nd edition(Addison-Wesley Publ. Co., Reading, Mass., et., 1972), se. 24-4;W.H. Louisell, Quantum Statistial Properties of Radiation (John Wiley & Sons, NewYork et., 1973), se. 4.3;L. Mandel and E. Wolf, Optial Coherene and Quantum Optis (Cambridge UniversityPress, Cambridge et., 1995), se. 10.2;W.P. Shleih, Ref. [36℄, ses. 10.2 and 10.3.[119℄ In this ontext see alsoJ.D. Jakson, Classial Eletrodynamis, 3rd edition (John Wiley & Sons, In., NewYork et., 1999), ses. 7.1 and 7.2.[120℄ See the espeially luid disussion by Louisell, Ref. [118℄.[121℄ D.N. Spergel et al., e-print arXiv: astro-ph/0603449.[122℄ L.D. Baron, Moleular Light Sattering and Optial Ativity (Cambridge Univ. Press,Cambridge et., 1982);M. Born and E. Wolf, Priniples of Optis, 7th (expanded) edition (Cambridge Univ.Press, Cambridge et., 1999), hap. XV;Enylopedia of Applied Physis, edited by G.L. Trigg et al., vol. 9, p. 157; vol. 12, p.285; vol. 14, p. 341 (VCH Publ., In., New York et., 1994-96).[123℄ G. Cantatore (PVLAS Collaboration), Talk given at the Workshop \Axions atthe Institute for Advaned Study, Ot. 20-23, 2006"; slides available underhttp://www.sns.ias.edu/�axions/shedule.shtml.99

http://arxiv.org/abs/math-ph/0611025
http://arxiv.org/abs/astro-ph/0603449
http://www.sns.ias.edu/~axions/schedule.shtml


[124℄ Moleular Hydrogen in Spae (Contributions Intern. Conf. on H2 in Spae, Paris, Sept.1999), edited by F. Combes and G. Pineau des Forets (Cambridge Contemporary As-trophysis Series, Cambridge Univ. Press, Cambridge, 2001);S. Lepp, P.C. Stanil and A. Dalgarno, Journ. Phys. B: At. Mol. Opt. Phys. 35, R57(2002).[125℄ L. Landau, Zeitshr. Physik 64, 629 (1930);M.H. Johnson and B.A. Lippmann, Phys. Rev. 76, 828 (1949);W. Thirring, Quantum Mathematial Physis, 2nd edition, orr. and rev. 2nd printing(Springer-Verlag, Heidelberg et., 2003), pp. 109-110; 410-412.[126℄ Ref. [46℄, p. 89, formula 2.282 2.[127℄ Ref. [46℄, p. 81, formula 2.261.[128℄ Ref. [46℄, p. 89, formula 2.281.[129℄ V. Bargmann, Ann. Math. 48, 568 (1947).[130℄ Ref. [104℄, p. 79, formula (4).[131℄ Ref. [104℄, p. 79, formula (9).[132℄ Ref. [104℄, p. 80, formulae (10) and (11) for n = 0.[133℄ Ref. [104℄, p. 79, formula (1).[134℄ J. Spanier and K.B. Oldham, An Atlas of Funtions (Hemisphere Publ. Corpor. - Taylor& Franis Group - , New York et., 1987), Fig. 50-1 on p. 490.

100


	Introduction and overview
	The issue: Quantum mechanics of the harmonic oscillator in terms of angle and action variables
	Contents overview
	Possible experiments
	Generalizations
	Range of the paper

	Some properties of the classical harmonic oscillator
	The globally singular relationship between the canonical pairs (q,p) and (,I)
	A symplectic scale transformation
	Going beyond the harmonic oscillator
	Time-dependent perturbations
	Interactions proportional to 1 or 2
	Morse and other ``integrable'' potentials
	Free non-relativistic particle


	Action of the symplectic group on the phase space S,
	Global and infinitesimal transformations, ``observables''
	Vector fields and their associated Hamiltonian functions
	Space reflections and time reversal
	The space S,;0 as a ``homogeneous'' one
	Some quantum aspects

	Action of the proper orthochronous homogeneous Lorentz group in 1+2 dimensions on the phase space S,
	The basic canonical ``observables'' on S,
	S, as a homogeneous space
	On the relationship between the phase spaces S,;0 and S,
	Relationships between the coordinates ,  and 0, 1,  2 
	Space reflections and time reversal

	Quantizing the angle - action variables phase space  S, of the harmonic oscillator
	Lie algebra of the self-adjoint observables j and the structure of their irreducible representations
	The operators  and  as functions of the operators j
	Operator version of the polar coordinates in the plane
	Two kinds of energy spectra for the quantum mechanical HO
	Time evolution and the ground states for different covering groups
	The index k in number states matrix elements
	Space reflection and time reversal

	Restoring the physical dimensions

	Three types of coherent states
	Definition and physical interpretation
	Barut-Girardello coherent states
	Perelomov coherent states
	Schrödinger-Glauber coherent states
	Physical interpretation of the complex variables

	Generation from the ground state
	Schrödinger-Glauber states
	Perelomov states
	Barut-Girardello states
	Transitions between Perelomov and Barut-Girardello coherent states

	Time evolution
	Some general properties
	Scalar products
	Completeness
	Hilbert spaces of holomorphic functions associated with the three types of coherent states
	Probabilities for transitions to number states

	Physical dynamics described by the basic operators 0,+ and -
	Generation of Perelomov coherent states
	One-mode generated Lie algebra so(1,2)
	Interactions bilinear in the Kj
	Two-mode generated Lie algebra so(1,2)
	Generation of Barut-Girardello coherent states
	Holstein-Primakoff type generators
	Additional proposals for using symplectic groups in quantum optics


	Examples of explicit Hilbert spaces for the (,I)-model of the harmonic oscillator
	The case k=1/2
	The Hardy space H2+ on the circle as the Hilbert space for the HO
	Space reflections and time reversal
	Perturbations
	A unitary transformation
	Coherent state wave functions and their probability densities
	Expectation values and transition probabilities
	Eigenfunctions of 1 and 2
	Relationship to the conventional description of the HO on L2(R,dx)

	The general case k >0
	Hilbert space of holomorphic functions on the unit disc
	Hilbert spaces related to the Hardy space on the circle
	Hilbert space on the positive real line


	On the ground state of the quantized free electromagnetic field in a cavity
	The electromagnetic field in a cavity as a set of harmonic oscillators
	The cosmological constant problem
	Birefringence and dichroism of the vacuum
	``Dark'' normal matter?

	Charged particles in external electric and magnetic fields
	Charged harmonic oscillator in an external electric field
	Charged particle in an external magnetic field

	Thermodynamics
	Acknowledgements
	Appendices
	Calculating the action variables for certain potentials of 1-dimensional systems
	The covering groups of SO"3222378 (1.2) and the positive discrete series of their irreducible unitary representations
	The universal covering group of SO"3222378 (1,2)
	Irreducible unitary representations of the positive discrete series for k>0

	Estimates for the ratios I2k(2|z|)/I2k-1(2|z|) of modified Bessel functions of the first kind for k>0

