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tWe present an expli
it on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa(CKM) quark mixing matrix at the one-loop level. It is based on a novel pro
edure to separate theexternal-leg mixing 
orre
tions into gauge-independent self-mass (sm) and gauge-dependent wave-fun
tion renormalization 
ontributions, and to adjust non-diagonal mass 
ounterterm matri
es to
an
el all the divergent sm 
ontributions, and also their �nite parts subje
t to 
onstraints imposedby the hermiti
ity of the mass matri
es. It is also shown that the proof of gauge independen
e and�niteness of the remaining one-loop 
orre
tions to W ! qi + qj redu
es to that in the unmixed,single-generation 
ase. Diagonalization of the 
omplete mass matri
es leads then to an expli
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h is gauge independent, preserves unitarity, andleads to renormalized amplitudes that are non-singular in the limit in whi
h any two fermionsbe
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I. INTRODUCTIONThe Cabibbo-Kobayashi-Maskawa (CKM) [1℄ quark mixing matrix is one of the basi
pillars of the ele
troweak se
tor of the Standard Model (SM). In fa
t, the detailed determi-nation of this matrix is one of the major aims of re
ent experiments 
arried out at the Bfa
tories [2℄, as well as the obje
tive of a wide range of theoreti
al studies [2, 3, 4℄.An important theoreti
al problem asso
iated with the CKM matrix is its renormalization.An early dis
ussion, in the two-generation framework, was presented in Ref. [5℄, whi
hfo
used mostly on the removal of the ultraviolet (UV) divergent 
ontributions. In re
entyears there have been a number of interesting analyses that address the renormalization ofboth the UV-divergent and �nite 
ontributions at various levels of generality and 
omplexity[6℄.In Ref. [7℄, we outlined an expli
it and dire
t on-shell framework to renormalize the CKMmatrix at the one-loop level, whi
h 
an be regarded as a simple generalization of Feynman'sapproa
h in Quantum Ele
trodynami
s (QED) [8℄.In the present paper, we present a detailed dis
ussion of this renormalization frameworkand of the 
al
ulations underpinning its implementation. We re
all that, in QED, the self-energy insertion in an external leg involving an outgoing fermion is of the form�Mleg = u(p)�(=p) 1=p�m; (1)�(=p) = A+B(=p�m) + ��n(=p); (2)where u(p) is the spinor of the external parti
le, �(=p) the self-energy, i(=p�m)�1 the parti
le'spropagator, A and B UV-divergent 
onstants, and ��n(=p) the �nite part that behaves as��n(=p) / (=p�m)2 in the neighborhood of =p = m. The 
ontribution of A to Eq. (1) exhibitsa pole as =p! m, while the term proportional to B is regular in this limit and that involving��n(=p) 
learly vanishes. We may refer to A and B as the \self-mass" (sm) and \wave-fun
tionrenormalization" (wfr) 
ontributions, respe
tively. The 
ontribution A is gauge independentand is 
an
eled by the mass 
ounterterm. The 
ontribution B is in general gauge dependentbut, sin
e the (=p � m) fa
tor 
an
els the propagator's singularity, in Feynman's approa
hit is 
ombined with the proper vertex diagrams leading to a gauge-independent result. Inother formulations, B in Eq. (2) is 
an
eled by an expli
it �eld renormalization 
ountertermÆZ, whi
h also modi�es the tree-level vertex 
oupling and, 
onsequently, transfers on
e more2



this 
ontribution to the vertex amplitude.
i i0lp� kk(W�; '�)

p(a) i i0H
'�

p(b)FIG. 1: Fermion self-energy diagrams.In the 
ase of the CKM matrix we en
ounter o�-diagonal as well as diagonal external-leg 
ontributions generated by virtual e�e
ts involving W� bosons and 
harged Goldstonebosons (��). As a 
onsequen
e, the self-energy 
orre
tions to an external leg involving anoutgoing quark is of the form �Mlegii0 = ui(p)�ii0(=p) 1=p�mi0 ; (3)where i denotes the external quark of momentum p and massmi, i0 the initial virtual quark ofmassmi0 , i(=p�mi0)�1 is the 
orresponding propagator, and �ii0(=p) the self-energy (see Fig. 1).In Fig. 1(b) we have in
luded the tadpole diagram involving a virtual �� boson be
ause its
ontribution is ne
essary to remove the gauge dependen
e in the diagonal 
ontributions ofFig. 1(a).There are other 
ontributions involving virtual e�e
ts of Z0 bosons, neutral Goldstonebosons (�0), photons (
), and Higgs bosons (H) as well as additional tadpole diagrams, butall of these lead to diagonal expressions of the usual kind. An analyti
 expression for thefull result may be found, e.g., in Ref. [9℄.In Se
. IIA we analyze in detail the 
ontributions arising from the diagrams in Fig. 1.After 
arrying out the Dira
 algebra in a way that treats the i and i0 quarks on an equalfooting, we �nd that the �ii0(=p) 
ontributions 
an be 
lassi�ed as follows: (i) terms with aleft fa
tor (=p � mi); (ii) terms with a right fa
tor (=p � mi0); (iii) terms with a left fa
tor(=p�mi) and a right fa
tor (=p�mi0); and (iv) 
onstant terms not involving =p.3



We note that, in Eq. (3), �ii0(=p) is inserted between the external-quark spinor ui(p) andthe virtual-quark propagator i(=p�mi0)�1. It follows that o�-diagonal 
ontributions of 
lass(i) vanish in Eq. (3), sin
e (=p � mi0)�1 is non-singular for i0 6= i, while ui(p)(=p � mi) = 0.However, there are in general diagonal 
ontributions of 
lass (i), sin
e for i0 = i the fa
tor(=p � mi) may 
an
el against the propagator in Eq. (3). In 
ontributions of 
lass (ii), theright fa
tor (=p � mi0) 
an
els the propagator in Eq. (3). In analogy with the 
an
ellationof ��n(=p) in Eqs. (1) and (2), 
ontributions of 
lass (iii) vanish in both the diagonal ando�-diagonal 
ases, sin
e the right fa
tor (=p � mi0) 
an
els the propagator in Eq. (3), andagain ui(p)(=p�mi) = 0. A 
ommon feature of all the non-vanishing 
ontributions to Eq. (3)arising from 
lasses (i) and (ii) is that the virtual-quark propagator i(=p �mi0)�1 has been
an
eled in both the diagonal (i0 = i) and o�-diagonal (i0 6= i) 
ases and, as a 
onsequen
e,they are non-singular as =p ! mi0 . Thus, they 
an be suitably 
ombined with the propervertex diagrams, in analogy with B in QED. In 
ontrast, the 
ontributions of 
lass (iv) toEq. (3) retain the virtual-quark propagator i(=p�mi0)�1 and are singular in this limit.In Se
. IIA we show that, in our formulation, the 
ontributions to Eq. (3) of 
lass (iv)are gauge independent, while those arising from 
lasses (i) and (ii) 
ontain gauge-dependentpie
es.i i(Z;H) jjW(a)
i(Z;'; 
) jiW(b)

i (Z;'; 
)jjW(
)FIG. 2: Proper Wqiqj vertex diagrams.In analogy with the QED 
ase, we identify 
lass (iv) and 
lasses (i) and (ii) as self-mass(sm) and wave-fun
tion renormalization (wfr) 
ontributions, respe
tively. They are listedexpli
itly in Se
s. II B and IIC. In Se
. II C, we also dis
uss important simpli�
ations thato

ur in the wfr 
ontributions to the physi
al W ! qi + qj amplitude. In parti
ular, weshow that the gauge-dependent and the UV-divergent parts of these 
ontributions depend4



only on the external-quark masses mi and mj and do not involve the CKM matrix elements,ex
ept for an overall fa
tor Vij, in analogy with the proper vertex diagrams depi
ted inFig. 2. This result implies that, on
e the divergent sm 
ontributions are removed in therenormalization pro
ess, the proof of �niteness and gauge independen
e of the remainingone-loop 
orre
tions to the W ! qi + qj amplitude is the same as in the mu
h simpler 
aseof a hypotheti
al single generation made of the i and j quarks with unit CKM 
oupling.By 
ontrast, sin
e the sm 
ontributions to Eq. (1) are proportional to (=p�mi0)�1, theyhave a stru
ture unsuitable for the 
ombination with vertex diagrams. Thus, one expe
tssu
h terms to be separately gauge independent, as we �nd.The plan of this paper is the following. In Se
. II we evaluate the diagrams depi
ted inFig. 1 and prove the various properties des
ribed above. In Se
. III we study the 
an
ellationof sm 
ontributions by suitably adjusting the mass 
ounterterms, subje
t to restri
tionsimposed by hermiti
ity. In Se
. IV we dis
uss the diagonalization of the 
omplete massmatrix, i.e. the renormalized plus 
ounterterm mass matri
es, and show expli
itly how thispro
edure generates a CKM 
ounterterm matrix in a manner that preserves unitarity andgauge independen
e. Se
tion V 
ontains our 
on
lusions.II. EVALUATION OF �ii0(=p) AND GAUGE INDEPENDENCE OF THE SELF-MASS CONTRIBUTIONSIn subse
tion IIA we evaluate the one-loop diagrams of Fig. 1, explain the separation intowfr and sm amplitudes, and show expli
itly the 
an
ellation of gauge dependen
es in thelatter. Following standard 
onventions, �ii0(=p) is de�ned as i times the diagrams of Fig. 1.We show how the various 
ontributions 
an be 
lassi�ed in the 
ategories (i){(iv) des
ribedin Se
. I. As explained in Se
. I, terms of 
lass (iii) give a vanishing 
ontribution to the
orre
tion �Mlegii0 asso
iated with an external leg, while those belonging to 
lasses (i) and (ii)e�e
tively 
an
el the virtual-quark propagator i(=p�mi0)�1. They naturally 
ombine with theproper vertex diagrams and are identi�ed with wfr 
ontributions. They are generally gaugedependent. By 
ontrast, in our formulation, the 
ontributions of 
lass (iv) to �Mlegii0 aregauge independent and proportional to i(=p�mi0)�1, with a 
ofa
tor that is independent of =palthough it depends on the 
hiral proje
tors a�. They are identi�ed with sm 
ontributions.The sm and wfr 
ontributions to �Mlegii0 are given expli
itly in subse
tions II B and IIC.5



Although the main fo
us of this paper is the study of the sm 
ontributions, in Se
. II Cwe also digress on the further simpli�
ations of the wfr 
ontributions that o

ur in theimportant W ! qi + qj amplitude.A. Evaluation of �ii0(=p)For de�niteness, we �rst 
onsider the 
ase in whi
h i and i0 in Fig. 1(a) are up-typequarks and l is a down-type quark. Following standard 
onventions, we denote by Vil theCKM matrix element involving the up-type quark i and the down-type quark l. Simplemodi�
ations in other 
ases are dis
ussed in Se
. IID.Writing the W -boson propagator in the R� gauge asDW�� = �ig�� � k�k�(1� �W )=(k2 �m2W �W )k2 �m2W ; (4)where �W is the gauge parameter, we �rst 
onsider the 
ontribution to Fig. 1(a) of the se
ond,�W -dependent term. We 
all this 
ontribution MGDii0 (W ), where the notation reminds usthat this is the gauge-dependent part of the W -boson 
ontribution. After some elementaryalgebra, we �ndMGDii0 (W ) = g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )� a+ ��=k � =p�ml + (=p�ml) 1=p� =k �ml (=p�ml)� a�; (5)where a� = (1� 
5)=2, Rn = �4�n R dnk=(2�)n, and � is the 't Hooft mass s
ale. The termproportional to =k 
an
els, sin
e the integrand is odd under =k ! �=k, and the ml term 
an
elsbe
ause of the 
hiral proje
tors. We rewrite =pa� as follows:2=pa� = =pa� + a+=p= (=p�mi)a� + a+(=p�mi0) +mia� +mi0a+; (6)so that the i and i0 quarks are treated on an equal footing. In the terms not involving ml,we employ the unitarity relation, VilV yli0 = Æii0 ; (7)
6



and MGDii0 (W ) be
omesMGDii0 (W ) = g22 (1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) ��Æii02 [a+(=p�mi) + (=p�mi)a�+ mi℄ + VilV yli0a+(=p�ml) 1=p� =k �ml (=p�ml)a�� : (8)The tadpole diagram of Fig. 1(b) 
ontributesM tadii0 (�) = � g2mi4m2W Æii0 Zn 1k2 �m2W �W : (9)Its 
ombination with the term proportional to Æii0mi in Eq. (8) gives� g2mi4m2W Æii0 Zn 1k2 �m2W ; (10)a gauge-independent amplitude. Thus,MGDii0 (W ) +M tadii0 (�) = � g2mi4m2W Æii0 Zn 1k2 �m2W� g24 Æii0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) [a+(=p�mi) + (=p�mi)a�℄+ g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )a+(=p�ml) 1=p� =k �ml (=p�ml)a�: (11)Using the relations a+(=p�ml) = (=p�mi)a� +mia� �mla+;(=p�ml)a� = a+(=p�mi0) +mi0a+ �mla�; (12)the last term of Eq. (11) may be written asM lastii0 = g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )[(=p�mi)a� +mia� �mla+℄� 1=p� =k �ml [a+(=p�mi0) +mi0a+ �mla�℄: (13)On the other hand, the 
ontribution Mii0(�) to diagram 1(a) arising from the �� boson isMii0(�) = g22m2W VilV yli0 Zn 1k2 �m2W �W (mia� �mla+) 1=p� =k �ml (mi0a+ �mla�): (14)Its 
ombination with the term proportional to(mia� �mla+) 1=p� =k �ml (mi0a+ �mla�) (15)7



in Eq. (13) leads to a gauge-independent amplitude.Combining these results, we haveMGDii0 (W ) +M tadii0 (�) +Mii0(�) = � g2mi4m2W Æii0 Zn 1k2 �m2W+ g22m2W VilV yli0 Zn 1k2 �m2W (mia� �mla+) 1=p� =k �ml (mi0a+ �mla�)� g24 Æii0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) [a+(=p�mi) + (=p�mi)a�℄+ g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) �(=p�mi)a� 1=p� =k �mla+(=p�mi0)+ (=p�mi)a� 1=p� =k �ml (mi0a+ �mla�) + (mia� �mla+) 1=p� =k �ml a+(=p�mi0)� : (16)The 
ontribution of the gauge-independent part of the W -boson propagator, i.e. the �rstterm in Eq. (4), leads toMGIii0 (W ) = �g22 VilV yli0 Zn 1k2 �m2W a+
� 1=p� =k �ml
�a�: (17)In order to 
lassify the various 
ontributions a

ording to the dis
ussion of Se
. I, we evaluatethe integral that appears in Eq. (17) and in the se
ond term of Eq. (16):K(=p;ml) = Zn 1(k2 �m2W ) (=p� =k �ml)= � i16�2 �=p[� + I(p2; ml)� J(p2; ml)℄ +ml[2� + I(p2; ml)℄	 ; (18)where � = 1n� 4 + 12[
E � ln(4�)℄ + ln mW� ; (19)fI(p2; ml); J(p2; ml)g = Z 10 dx f1; xg lnm2l x+m2W (1� x)� p2x(1� x)� i"m2W : (20)Next, we insert Eq. (18) into the se
ond term of Eq. (16) and into Eq. (17) and �nallyadd Eqs. (16) and (17). Treating the terms involving =pa� and =pa+ in the symmetri
 wayexplained before Eq. (7), evaluating the integral Rn (k2 �m2W )�1 and employing on
e morethe unitarity relation (7) in some of the ml-independent terms, we �nd that the 
omplete
8




ontribution from Figs. 1(a) and (b) 
an be expressed in the form:M (1)ii0 = MGDii0 (W ) +MGIii0 (W ) +M tadii0 (�) +Mii0(�)= ig232�2VilV yli0 ��mi�1 + m2i2m2W ��+ m2l2m2W (mia� +mi0a+)[3� + I(p2; ml) + J(p2; ml)℄� �mia� +mi0a+ + mimi02m2W (mia+ +mi0a�)� [I(p2; ml)� J(p2; ml)℄� 12m2W �mimi0((=p�mi)a+ + a�(=p�mi0)) +m2l ((=p�mi)a� + a+(=p�mi0))�� [� + I(p2; ml)� J(p2; ml)℄� [(=p�mi)a� + a+(=p�mi0)℄ ��+ 12 + I(p2; ml)� J(p2; ml)�+ i8�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) [a+ �=p�mi0�+ (=p�mi)a�℄� i16�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )� �(=p�mi)a� 1=p� =k �mla+(=p�mi0) + (=p�mi)a� 1=p� =k �ml (mi0a+ �mla�)+ (mia� �mla+) 1=p� =k �mla+(=p�mi0)�� : (21)The last two terms in Eq. (21) are gauge dependent and in
lude a left fa
tor (=p�mi) or aright fa
tor (=p�mi0) or both. Thus, they belong to the 
lasses (i), (ii), or (iii) dis
ussed inSe
. I. The integrals in these two terms 
an readily be evaluated using the identity1� �W(k2 �m2W ) (k2 �m2W �W ) = 1m2W � 1k2 �m2W � 1k2 �m2W �W � (22)and Eq. (18). We �ndi8�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) = �� 12 � �W ��� 12 + 12 ln �W� ; (23)L(=p;ml; �W ) � i16�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) (=p� =k �ml)= 1m2W Z 10 dx [=p(1� x) +ml℄ ln m2l x+m2W �W (1� x)� p2x(1� x)� i"m2l x +m2W (1� x)� p2x(1� x)� i" : (24)If i is an outgoing, on-shell up-type quark, the external-leg amplitude is obtained bymultiplying Eq. (21) on the left by ui(p), the spinor of the outgoing quark, and on the rightby i(=p � mi0)�1, the propagator of the initial virtual quark. Thus, the relevant amplitude9



asso
iated with the external leg is�Mlegii0 = ui(p)M (1)ii0 i=p�mi0 : (25)This brings about important simpli�
ations. Using the well-known rules to treat indeter-minate fa
tors of the form ui(p)(=p � mi)(=p � mi)�1 [8, 10℄, one readily �nds the followingidentities for both diagonal (i0 = i) and o�-diagonal (i0 6= i) 
ontributions:ui(p)[(=p�mi)a� + a�(=p�mi0)℄ i=p�mi0 = iui(p)a�; (26)ui(p)(=p�mi)O1(=p�mi0) i=p�mi0 = 0; (27)ui(p)[(=p�mi)a�L(=p;ml; �W )(mi0a+ �mla�) + (mia� �mla+)L(=p;ml; �W )a+(=p�mi0)℄� i=p�mi0 = iui(p)(mia� �mla+)L(=p;ml; �W )a+; (28)where O1 is a generi
 Dira
 operator that is regular in the limit =p! mi0 and L(=p;ml; �W ) isthe integral de�ned in Eq. (24). These identities tell us that terms in M (1)ii0 of 
lass (iii) givea vanishing 
ontribution to �Mlegii0 (
f. Eq. (27)), while those of 
lasses (i) and (ii) 
ombineto 
an
el the (=p�mi0)�1 fa
tor in Eq. (25) (
f. Eqs. (26) and (28)).In the se
ond and third terms of Eq. (21), we expand the fun
tions I(p2; ml) and J(p2; ml)about p2 = m2i . The lowest-order term, with p2 set equal to m2i , is independent of =p and,therefore, belongs the 
lass (iv). The same is true of the other 
ontributions in the �rst twoterms of Eq. (21). They lead to a multiple of i(=p �mi0)�1 in Eq. (25) with a 
ofa
tor thatinvolves the 
hiral proje
tors a�, but is independent of =p. Thus, they belong to 
lass (iv)and are identi�ed as the sm 
ontributions. The terms of O (p2 �m2i ) in the expansions ofI(p2; ml) and J(p2; ml) give only diagonal 
ontributions (i0 = i) to Eq. (25), belong to 
lass(i) be
ause p2�m2i = (=p�mi)(=p+mi), and 
an
el the (=p�mi)�1 fa
tor in Eq. (25). Termsof O �(p2 �m2i )2� and higher in this expansion give vanishing 
ontributions to �Mlegii0 .As mentioned before, the terms of 
lasses (i) and (ii) in M (1)ii0 (in
luding those generatedby the expansions of I(p2; ml) and J(p2; ml)) are identi�ed as wfr 
ontributions. In 
ontrastto the sm 
ontributions, they 
ontain gauge-dependent parts (
f. the last two terms inEq. (21)). Both the sm and wfr 
ontributions 
ontain UV divergen
es.
10



B. Self-Mass ContributionsThe sm 
ontributions �Mleg;smii0 to the external-leg 
orre
tion for an outgoing on-shellup-type quark i are obtained by inserting the �rst three terms of Eq. (21) with p2 set equalto m2i into Eq. (25):�Mleg;smii0 = g232�2VilV yli0ui(p)�mi �1 + m2i2m2W��� m2l2m2W (mia� +mi0a+) �3� + I �m2i ; ml�+ J �m2i ; ml��+ �mia� +mi0a+ + mimi02m2W (mia+ +mi0a�)�� �I �m2i ; ml�� J �m2i ; ml��	 1=p�mi0 : (29)The amplitudes I (m2i ; ml) and J (m2i ; ml), de�ned in Eq. (20), are real ex
ept when mi = mt
orresponding to an external on-shell top quark. The diagonal 
ontributions in this 
asein
lude imaginary parts that 
annot be removed by a mass 
ounterterm, in 
onjun
tionwith a singular propagator. The problem arises be
ause, in the usual 
al
ulation of its de
ayrate, the top quark is treated as an asymptoti
 state, rather than an unstable parti
le. Inanalogy with the 
ase of the Z0 boson, its proper treatment examines the resonan
e regionin the virtual propagation of the top quark between its produ
tion and de
ay verti
es. One�nds that, in the narrow-width approximation, in whi
h 
ontributions of next-to-next-to-leading order are negle
ted, Im�(mt) is related to the total de
ay width �t by the expressionIm�(mt) = ��t[1�Re�0(mt)℄ and provides the i�t term in the resonan
e amplitude. Thelatter is proportional to i(=p�mt+i�t)�1[1�Re�0(mt)℄�1, where the �rst fa
tor is the resonantpropagator and the se
ond one the wfr term that 
ontributes to the top-quark 
ouplings tothe external parti
les in the produ
tion and de
ay verti
es. Sin
e the imaginary parts ofI (m2t ; ml) and J (m2t ; ml) in the diagonal top-quark 
ontributions are e�e
tively absorbedin the i�t term in the resonan
e propagator, we remove them from Eq. (29). Spe
i�
ally,in the diagonal 
ontributions to Eq. (29) involving an external top quark, I (m2t ; ml) andJ (m2t ; ml) are repla
ed by their real parts.We see that Eq. (29) satis�es the basi
 properties explained before: it is a multiple ofthe virtual-quark propagator i(=p � mi0)�1 with a 
ofa
tor that is gauge and momentumindependent. As expe
ted in a 
hiral theory, it involves the a� proje
tors.11



C. Wave-Fun
tion Renormalization ContributionsFor 
ompleteness, we exhibit the wfr 
ontributions �Mleg;wfrii0 to the external-leg 
orre
-tion. They are obtained by inserting the last four terms of Eq. (21) into Eq. (25), employingthe identities of Eqs. (26){(28), and in
orporating the diagonal 
ontributions arising fromthe expansions of I(p2; ml) and J(p2; ml) in the se
ond and third terms of Eq. (21):�Mleg;wfrii0 = g232�2VilV yli0ui(p)��I �m2i ; ml�� J �m2i ; ml�� a++ 12m2W (mimi0a� +m2l a+) ��+ I �m2i ; ml�� J �m2i ; ml��� Æii0m2im2l2m2W �I 0 �m2i ; ml�+ J 0 �m2i ; ml��+ Æii0m2i �1 + m2i2m2W �� �I 0 �m2i ; ml�� J 0 �m2i ; ml��+ ��W ��+ 12 ln �W � 12�+ 1� a+� N(mi; ml; �W )a+g ; (30)where �I 0 �m2i ; ml� ; J 0 �m2i ; ml�	 = � Z 10 dx f1; xgx(1� x)m2l x +m2W (1� x)�m2ix(1� x)� i" (31)are the derivatives of I(p2; ml) and J(p2; ml) with respe
t to p2, evaluated at p2 = m2i , andN(mi; ml; �W ) = 1m2W Z 10 dx �m2i (1� x)�m2l � ln m2l x+m2W �W (1� x)�m2ix(1� x)� i"m2l x +m2W (1� x)�m2ix(1� x)� i" :(32)The previous to last term in Eq. (30) was obtained by using Eqs. (23) and (26), and 
ombin-ing the result with other �-dependent 
ontributions. The last term in Eq. (30) was obtainedby using Eqs. (24) and (28), and 
arrying out some elementary Dira
 algebra. EmployingEq. (7) in ml-independent terms, we see that the UV-divergent part in Eq. (30) is given by�Mleg;wfr;divii0 = g232�2VilV yli0ui(p)� � m2i2m2W a� + ��W + m2l2m2W � a+� ; (33)whi
h 
ontains both diagonal and o�-diagonal pie
es. In parti
ular, the diagonal part ofEq. (33) 
ontains a gauge-dependent 
ontribution, while the o�-diagonal term is gaugeindependent.We now digress on the further simpli�
ations that take pla
e when Eq. (30) is insertedin the physi
al W ! qi + qj amplitude. In this 
ase, Eq. (30) is multiplied on the rightby (�ig=p2)Vi0j
�a�vj��, where vj is the spinor asso
iated with the qj quark and �� is the12



polarization four-ve
tor of the W boson. Be
ause of the 
hiral proje
tors, the 
ontributionof the term proportional to (mimi0=2m2W )a�[� + I � J ℄ vanishes. Next, we note that the�rst, se
ond, �fth, and sixth terms between 
urly bra
kets in Eq. (30) are independent ofi0. Denoting these 
ontributions as f(mi; ml) and employing the unitarity relation (7), wehave VilV yli0Vi0jf(mi; ml) = VilÆljf(mi; ml) = Vijf(mi; mj). Thus, the 
ontributions of theseterms to theW ! qi+qj amplitude are proportional to Vij and depend only on the external-fermion masses mi and mj. The same is true of the 
orresponding 
ontributions arising fromthe qj external leg. We emphasize that this result in
ludes all the gauge-dependent and allthe UV-divergent 
ontributions in Eq. (30). This important property is shared by the propervertex diagrams of Fig. 2, whi
h are also proportional to Vij and depend only on mi and mj.As explained in Se
. I, this property implies that, on
e the divergent sm 
ontributions are
an
eled by renormalization, the proof of �niteness and gauge independen
e of the remainingone-loop 
orre
tions to the W ! qi + qj amplitude is the same as in the single-generation
ase.Although the 
ontributions to the W ! qi + qj amplitude from the terms involvingI 0 (m2i ; ml) and J 0 (m2i ; ml) in Eq. (30) are not simpli�ed by the unitarity relations withoutappealing to suitable approximations, we note that they are �nite and gauge independent.It is important to point out that the simpli�
ations we en
ountered in the W ! qi+ qj am-plitude depend 
ru
ially on the fa
t that the wfr terms 
an
el the virtual-quark propagatori(=p�mi0)�1.D. Other CasesEquations (29) and (30) exhibit the sm and wfr 
ontributions to the external-leg 
orre
-tions in the 
ase of an outgoing on-shell up-type quark i. Here i0 labels the initial virtualup-type quark in Fig. 1(a) and l the down-type quark in the loop.The 
orresponding expressions for an in
oming up-type quark 
an be gleaned by multi-plying Eq. (21) by ui0(p) on the right and by i(=p �mi)�1 on the left. Inter
hanging i andi0, it is easy to see that the sm 
ontributions for an in
oming up-type quark are obtainedfrom Eq. (29) by substituting VilV yli0 ! Vi0lV yli , inter
hanging a� $ a+ between the 
urlybra
kets, and multiplying the resulting expression by ui(p) on the right and by (=p�mi0)�1on the left. Similarly, the wave-fun
tion renormalization for an in
oming up-type quark is13



obtained from Eq. (30) by substituting VilV yli0 ! Vi0lV yli , inter
hanging a� $ a+ between the
urly bra
kets, and multiplying the resulting expression by ui(p) on the right. The expres-sions for an in
oming (outgoing) up-type antiquark are the same as those for an outgoing(in
oming) up-type quark with the substitution ui(p)! vi(�p), the negative-energy spinor.In the 
ase of antiquarks, p in these expressions is identi�ed with the four-momentum inthe dire
tion of the arrows in the Feynman diagrams, whi
h is minus the four-momentum ofthe antiparti
le. Finally, the expression for an outgoing down-type quark is obtained fromthat of an outgoing up-type quark by substituting VilV yli0 ! V yjlVlj0, where j and j 0 denotethe on-shell and virtual down-type quarks, respe
tively, and l the up-type quark in the loop.The other down-type-quark amplitudes are obtained from the 
orresponding up-type-quarkexpressions in a similar manner.III. MASS RENORMALIZATIONIn order to generate mass 
ounterterms suitable for the renormalization of the sm 
on-tributions shown in Eq. (29), we may pro
eed as follows. In the weak-eigenstate basis, thebare mass matri
es m0Q0 for the up- and down-type quarks (Q = U;D) are non-diagonal, andthe 
orresponding terms in the Lagrangian density may be written as � 0QR m0Q0  0QL + h.
.,where  0QL and  0QR are left- and right-handed 
olumn spinors that in
lude the three up-type(or down-type) quarks. De
omposing m0Q0 = m0Q� Æm0Q, where m0Q and Æm0Q are identi�edas the renormalized and 
ounterterm mass matri
es, we envisage a biunitary transformationof the quark �elds that diagonalizes m0Q, leading to a renormalized mass matrix mQ that isdiagonal, real and endowed with positive entries. The same operation transforms Æm0Q intoa new matrix ÆmQ whi
h, in general, is non-diagonal. In the new framework, whi
h we mayidentify as the mass-eigenstate basis, the mass term is given by�  �m� Æm(�)a� � Æm(+)a+� = � R �m� Æm(�)� L �  L �m� Æm(+)� R; (34)where m is real, diagonal, and positive, and Æm(�) and Æm(+) are arbitrary non-diagonalmatri
es subje
t to the hermiti
ity 
onstraintÆm(+) = Æm(�)y: (35)This 
onstraint follows from the requirement that the mass terms in the Lagrangian density,displayed in Eq. (34), must be hermitian. In order to simplify the notation, we do not14



exhibit the label Q, but it is understood that Eq. (34) represents two di�erent mass matri
esinvolving the up- and down-type quarks.As is 
ustomary, the mass 
ounterterms are in
luded in the intera
tion Lagrangian. Their
ontribution to Eq. (25) is given byiui(p)�Æm(�)ii0 a� + Æm(+)ii0 a+� i=p�mi0 : (36)We now adjust Æm(�)ii0 and Æm(+)ii0 to 
an
el, as mu
h as possible, the sm 
ontributions givenin Eq. (29). The 
an
ellation of the UV-divergent parts is a
hieved by 
hoosing�Æm(�)div �ii0 = g2mi64�2m2W ��Æii0m2i � 3VilV yli0m2l � ;�Æm(+)div �ii0 = g2mi064�2m2W ��Æii0m2i � 3VilV yli0m2l � ; (37)It is important to note that �Æm(+)div �ii0 = �Æm(�)div ��i0i ; (38)so that Æm(+)div and Æm(�)div satisfy the hermiti
ity requirement of Eq. (35).In order to dis
uss the 
an
ellation of the �nite parts, we 
all ii0 
hannel the amplitude inwhi
h i labels the outgoing, on-shell up-type quark and i0 the initial, virtual one (
f. Fig. 1).Then the i0i 
hannel is the amplitude in whi
h the roles are reversed: i0 is the outgoing,on-shell quark, while i is the initial, virtual one.Comparing Eq. (29) with Eq. (36), we see that a 
omplete 
an
ellation of the sm 
orre
-tions for an outgoing up-type quark or an in
oming up-type antiquark in the ii0 
hannel isa
hieved by adjusting the mass 
ounterterms a

ording toÆm(�)ii0 = g2mi32�2 �Æii0 �1 + m2i2m2W ��� VilV yli0 m2l2m2W �3� + I �m2i ; ml�+ J �m2i ; ml��+ VilV yli0 �1 + m2i02m2W ��I �m2i ; ml�� J �m2i ; ml��� ;Æm(+)ii0 = g2mi032�2 �Æii0 �1 + m2i2m2W ��� VilV yli0 m2l2m2W �3� + I �m2i ; ml�+ J �m2i ; ml��+ VilV yli0 �1 + m2i2m2W ��I �m2i ; ml�� J �m2i ; ml��� : (39)On
e Æm(�)ii0 and Æm(+)ii0 are �xed, the mass 
ounterterms for the reverse i0i 
hannel aredetermined by the hermiti
ity 
ondition of Eq. (35), to witÆm(�)i0i = Æm(+)�ii0 ; Æm(+)i0i = Æm(�)�ii0 : (40)15



Sin
e the fun
tions I and J in Eq. (29) are evaluated at p2 = m2i in the ii0 
hannel andat p2 = m2i0 in the i0i 
hannel, we see that the mass 
ounterterms in Eqs. (39) and (40)
annot remove 
ompletely the sm 
ontributions in both amplitudes. Taking into a

ountthis restri
tion, we 
hoose the following renormalization pres
ription.Writing the mass 
ounterterm matrix for the up-type quark in the expli
it form0BBB� Æmuu Æmu
 ÆmutÆm
u Æm

 Æm
tÆmtu Æmt
 Æmtt 1CCCA ; (41)where Æmii0 = Æm(�)ii0 a� + Æm(+)ii0 a+ (i; i0 = u; 
; t), we 
hoose Æmuu, Æm

, and Æmtt to 
an
el,as is 
ustomary, all the diagonal 
ontributions in Eq. (29). For the non-diagonal entries, we
hoose Æmu
, Æmut, and Æm
t to 
an
el 
ompletely the 
ontributions in Eq. (29) 
orrespondingto the u
, ut, and 
t 
hannels, respe
tively. The remaining mass 
ounterterms, Æm
u, Æmtu,and Æmt
 are then �xed by the hermiti
ity 
ondition in Eq. (35). This implies that the �niteparts of the sm 
orre
tions in the 
u, tu, and t
 
hannels are not fully 
an
eled. However,after the mass renormalization is implemented, the residual 
ontributions from Eq. (29) tothe W ! qi+ qj amplitudes are �nite, gauge independent, and very small in magnitude (seeAppendix A). In fa
t, they are of se
ond (�rst) order in the small ratios m2q=m2W (q 6= t)when the top quark is not (is) the external parti
le and, furthermore, they in
lude smallCKM matrix elements.An analogous approa
h is followed for the down-type-quark mass 
ounterterms. We 
allj 0j 
hannel the amplitude involving an in
oming, on-shell down-type quark j and a virtualdown-type quark j 0. In analogy with Eq. (39), the 
omplete 
an
ellation of the sm 
orre
tionsfor an in
oming down-type quark (or an outgoing down-type antiquark) in the j 0j 
hannelis implemented by 
hoosing:Æm(�)j0j = g2mj032�2 �Æjj0 �1 + m2j2m2W��� V yj0lVlj m2l2m2W �3� + I �m2j ; ml�+ J �m2j ; ml��+ V yj0lVlj �1 + m2j2m2W ��I �m2j ; ml�� J �m2j ; ml��� ;Æm(+)j0j = g2mj32�2 �Æjj0 �1 + m2j2m2W ��� V yj0lVlj m2l2m2W �3� + I �m2j ; ml�+ J �m2j ; ml��+ V yj0lVlj �1 + m2j02m2W ��I �m2j ; ml�� J �m2j ; ml��� ; (42)16



where l labels the virtual up-type quark in the self-energy loop.We emphasize that Eqs. (39) and (42) 
ontain all the o�-diagonal sm 
ontributions sin
ethey only arise from Fig. 1(a) and the analogous diagrams involving the down-type quarks.On the other hand, there are many additional diagonal sm 
ontributions from other dia-grams.Writing the mass 
ounterterm matrix for the down-type quarks in the form0BBB� Æmdd Æmds ÆmdbÆmsd Æmss ÆmsbÆmbd Æmbs Æmbb 1CCCA ; (43)we 
hoose Æmdd, Æmss, and Æmbb to 
an
el the diagonal sm 
ontributions, and Æmsd, Æmbd,and Æmbs to 
an
el the 
orresponding o�-diagonal terms. The hermiti
ity 
onstraint impliesthen that the �nite parts of the sm 
ontributions are not fully 
an
eled in the reverse ds, db,and sb 
hannels. We �nd that, after the mass renormalization is implemented, the residual
ontributions involving the top quark in the self-energy loop are of �rst order in the smallratios, while the others are of se
ond order. Nonetheless, as shown in Appendix A, their
ontributions to theW ! qi+qj amplitudes are also very small. In parti
ular, the smallnessin the ds 
hannel arises be
ause some 
ontributions are of se
ond order in m2q=m2W (q 6= t)and others are proportional to m2s=m2t with very small CKM 
oeÆ
ients.We note that, in these renormalization pres
riptions, the residual sm 
ontributions are
onvergent in the limitmi0 ! mi or mj0 ! mj, sin
e the singularities of the virtual propaga-tors i(=p�mi0)�1 and i(=p�mj0)�1 are 
an
eled, a 
hara
teristi
 property of wfr 
ontributions.Thus, these residual sm terms 
an be regarded as additional �nite and gauge-independent
ontributions to wave-fun
tion renormalization that happen to be numeri
ally very small.It is also interesting to note that these renormalization pres
riptions imply that the sm
ontributions are fully 
an
eled when the u or d quarks or antiquarks are the external, on-shell parti
les. This is of spe
ial interest sin
e Vud, the relevant parameter in the W ! u+damplitude, is by far the most a

urately measured CKM matrix element [3, 4℄.
17



IV. DIAGONALIZATION OF THE MASS COUNTERTERMS AND DERIVA-TION OF THE CKM COUNTERTERM MATRIXIn Se
. III, we showed expli
itly how the UV-divergent parts of the one-loop sm 
on-tributions asso
iated with external quark legs [
f. Fig. 1(a)℄ 
an be 
an
eled by suitablyadjusting the non-diagonal mass 
ounterterm matrix. By imposing on-shell renormalization
onditions, we also showed how the �nite parts of su
h 
ontributions 
an be 
an
eled upto the 
onstraints imposed by the hermiti
ity of the mass matrix. We also re
all that, inour formulation, the sm 
ontributions and, 
onsequently, also the mass 
ounterterms areexpli
itly gauge independent.In this se
tion, we dis
uss the diagonalization of the 
omplete mass matrix of Eq. (34),whi
h in
ludes the renormalized and 
ounterterm mass matri
es. We show how this pro
e-dure generates a CKM 
ounterterm matrix that automati
ally satis�es the basi
 propertiesof gauge independen
e and unitarity.Starting with Eq. (34), we implement a biunitary transformation that diagonalizes thematrix m� Æm(�). Spe
i�
ally, we 
onsider the transformations L = UL ̂L; (44) R = UR ̂R; (45)and 
hoose the unitary matri
es UL and UR so thatU yR �m� Æm(�)�UL = D; (46)where D is diagonal and real. From Eq. (46), it follows thatU yL �m� Æm(�)y� �m� Æm(�)�UL = D2; (47)whi
h, through O(g2), redu
es toU yL �m2 �mÆm(�) � Æm(�)ym�UL = D2: (48)Writing UL = 1 + ihL, where hL is hermitian and of O(g2), we havem2 + i(m2hL � hLm2)�mÆm(�) � Æm(�)ym = D2; (49)where we have negle
ted terms of O(g4). Re
alling that, in our formulation, m is diagonal(
f. Se
. III) and taking the ii0 
omponent, Eq. (49) be
omesm2i Æii0 + i �m2i �m2i0� (hL)ii0 �miÆm(�)ii0 � Æm(�)yii0 mi0 = D2i Æii0: (50)18



For diagonal terms, with i = i0, the term proportional to (hL)ii0 does not 
ontribute. Fur-thermore, Eq. (39) tells us that Æm(�)ii = Æm(+)ii . Consequently, for diagonal elements of themass 
ounterterm matrix, one has Æm(�)ii a� + Æm(+)ii a+ = Æmi, where Æmi = Æm(�)ii = Æm(+)ii .We note that the hermiti
ity 
ondition of Eq. (40) implies that Æmi is real. Therefore, fori = i0, Eq. (50) redu
es to m2i � 2miÆmi = D2i or, equivalently, through O(g2), toDi = mi � Æmi: (51)In order to satisfy Eq. (50) for i 6= i0, we need to 
an
el the o�-diagonal 
ontributionsmiÆm(�)ii0 + Æm(�)yii0 mi0 . This is a
hieved by adjusting the non-diagonal elements of hL a

ord-ing to i(hL)ii0 = miÆm(�)ii0 + Æm(+)ii0 mi0m2i �m2i0 (i 6= i0); (52)where we have employed the hermiti
ity relation of Eq. (35). Sin
e the diagonal elements(hL)ii do not 
ontribute to Eq. (50), it is 
onvenient to 
hoose (hL)ii = 0. In Appendix B, weshow that the alternative sele
tion (hL)ii 6= 0 has no physi
al e�e
t on theWqiqj intera
tions.Returning to Eq. (46) and writing UR = 1 + ihR, one �nds that hR is obtained from hLby substituting Æm(�) $ Æm(+) in Eq. (52). Thus,i(hR)ii0 = miÆm(+)ii0 + Æm(�)ii0 mi0m2i �m2i0 (i 6= i0): (53)In fa
t, substituting UL = 1 + ihL and UR = 1 + ihR in Eq. (46) and employing Eqs. (52)and (53), one readily veri�es that the l.h.s. of Eq. (46) is indeed diagonal through O(g2).Furthermore, one re
overs Eq. (51).The above analysis is 
arried out separately to diagonalize the mass matri
es of the up-and down-type quarks. Thus, we obtain two pairs of hL and hR matri
es: hUL and hUR forthe up-type quarks and hDL and hDR for the down-type quarks.Next, we analyze the e�e
t of transformation (44) on the Wqiqj intera
tion. Followingstandard 
onventions, the latter is given byLWqiqj = � g0p2 Ui Vij
�a� Dj W� + h.
.; (54)where  Ui (i = u; 
; t) and  Dj (j = d; s; b) are the �elds of the up- and down-type quarks,respe
tively, W� is the �eld that annihilates a W+ boson or 
reates a W� boson, g0 is thebare SU(2)L 
oupling, and Vij are the elements of the unitary CKM matrix. Alternatively,19



in matrix notation, we haveLWqiqj = � g0p2 ULV 
� DLW� + h.
.: (55)It is important to note that, in the formulation of this paper, in whi
h the UV-divergentsm terms are 
an
eled by the mass 
ounterterms and the proof of �niteness of the other
ontributions to the W ! qi + qj amplitude after the renormalization of g0 is the same asin the unmixed 
ase (
f. Se
. II C), Vij are �nite quantities.Inserting Eq. (44) in Eq. (55), we �nd, through terms of O(g2), thatLWqiqj = � g0p2  ̂UL(V � ÆV )
� ̂DLW� + h.
.; (56)where ÆV = i �hULV � V hDL � : (57)One readily veri�es that V � ÆV satis�es the unitarity 
ondition through terms of O(g2),namely (V � ÆV )y(V � ÆV ) = 1 +O(g4): (58)Sin
e V is �nite and unitary, it is identi�ed with the renormalized CKM matrix. On theother hand, in the ( ̂L;  ̂R) basis, in whi
h the 
omplete quark mass matri
es are diagonal,ÆV and V0 = V � ÆV represent the 
ounterterm and bare CKM matri
es, respe
tively.We now show expli
itly that the ihULV term in ÆV leads to the same o�-diagonal 
ontri-bution to the W ! qi + qj amplitude as the insertion of the mass 
ounterterms ÆmU(�) andÆmU(+) in the external up-type-quark line. Indeed, the ihULV 
ontribution is given byM(ihULV ) = igp2uii �hUL�ii0 Vi0j
�a�vj��; (59)where, again, ui and vj are the external up- and down-type-quark spinors, respe
tively, and�� is the W -boson polarization four-ve
tor. Inserting Eq. (52), Eq. (59) be
omesM(ihULV ) = igp2uimUi ÆmU(�)ii0 + ÆmU(+)ii0 mUi0(mUi )2 � (mUi0 )2 Vi0j
�a�vj��; (60)where it is understood that i 6= i0 and the label Q = U;D, whi
h we had suppressed fromEq. (34) through Eq. (53), is again displayed. On the other hand, the o�-diagonal mass
ounterterm insertion in the external up-type-quark line is given byM �ÆmU(�); ÆmU(+)� = � igp2uii�ÆmU(�)ii0 a� + ÆmU(+)ii0 a+� i=p�mUi0 Vi0j
�a�vj��: (61)20



Rationalizing the propagator i(=p � mUi0 )�1, one �nds after some elementary algebra thatEq. (60) 
oin
ides with Eq. (61). An analogous 
al
ulation shows that the �iV hDL termin ÆV leads to the same o�-diagonal 
ontribution to the W ! qi + qj amplitude as theinsertion of the mass 
ounterterms ÆmD(�) and ÆmD(+) in the external down-type-quarkline. Sin
e the mass 
ounterterms are adjusted to 
an
el the o�-diagonal sm 
ontributionsto the extent allowed by the hermiti
ity of the mass matrix, the same is true of the CKM
ounterterm matrix ÆV . In parti
ular, ÆV fully 
an
els the UV-divergent part of the o�-diagonal sm 
ontributions. As mentioned above, in the formulation of this se
tion, the
omplete mass matrix is diagonal, with elements of the form given in Eq. (51), where mi arethe renormalized masses and Æmi the 
orresponding mass 
ounterterms. The quantities Æmiare then adjusted to fully 
an
el the diagonal sm 
orre
tions in the external legs, in analogywith QED. As also explained above, the additional UV divergen
es arising from the wfr
ontributions, proper vertex diagrams, and renormalization of g0 
an
el among themselvesas in the single-generation 
ase.For 
ompleteness, we expli
itly exhibit the 
ounterterm of the CKM matrix in 
omponentform: ÆVij = i h�hUL�ii0 Vi0j � Vij0 �hDL �j0ji= mUi ÆmU(�)ii0 + ÆmU(+)ii0 mUi0(mUi )2 � (mUi0 )2 Vi0j � Vij0mDj0 ÆmD(�)j0j + ÆmD(+)j0j mDj�mDj0�2 � �mDj �2 ; (62)where we have used Eqs. (52), (53), and (57) and it is understood that i 6= i0 in the �rstterm and j 0 6= j in the se
ond one.We note that Eq. (62) involves 
ontributions proportional to �mUi �mUi0 ��1 and�mDj0 �mDj ��1, whi
h would be
ome very large if the masses of di�erent 
avors were nearlydegenerate. This is to be expe
ted, sin
e the role of these 
ounterterms is pre
isely to 
an
elthe analogous sm 
ontributions to Eq. (3) arising from Fig. 1, so that the renormalizedexpressions are indeed free from su
h singular behavior.It is important to emphasize that, in this formulation, both the renormalized CKMmatrix V and its bare 
ounterpart V0 = V � ÆV are expli
itly gauge independent andsatisfy the unitarity 
onstraints V yV = 1 and V y0 V0 = 1, respe
tively, through the orderof the 
al
ulation. The expli
it 
onstru
tion of the CKM 
ounterterm matrix, as given inEqs. (57) and (62), satisfying this important property, is the main result of this se
tion.21



V. CONCLUSIONSIn this paper we have presented a natural on-shell framework to renormalize the CKMmatrix at the one-loop level. We have shown the gauge independen
e of the sm 
ontributionsand dis
ussed their 
an
ellation in two equivalent formulations: the �rst one involves non-diagonal mass 
ounterterms, while the se
ond one is based on a CKM 
ounterterm matrix.We have also established the important fa
t that the proof of gauge independen
e and�niteness of the remaining one-loop 
orre
tions to the W ! qi + qj amplitude 
an beredu
ed to the single-generation 
ase. The analysis has led us to an expli
it expressionfor the CKM 
ounterterm matrix ÆVij, given in Eq. (62), that satis�es the basi
 property ofgauge independen
e and is 
onsistent with the unitarity of both V0 = V �ÆV and V , the bareand renormalized CKM matri
es. Furthermore, it leads to renormalized amplitudes that arenon-singular in the limit in whi
h any two fermions be
ome mass degenerate. Be
ause V is�nite, gauge independent, and unitary, its elements 
an be identi�ed with the experimentallymeasured CKM matrix elements.A
knowledgmentsWe are grateful to the Max Plan
k Institute for Physi
s in Muni
h for the hospitalityduring a visit when this manus
ript was �nalized. The work of B.A.K. was supported in partby the German Resear
h Foundation through the Collaborative Resear
h Center No. 676Parti
les, Strings and the Early Universe|the Stru
ture of Matter and Spa
e-Time. Thework of A.S. was supported in part by the Alexander von Humboldt Foundation through theHumboldt Resea
h Award No. IV USA 1051120 USS and by the National S
ien
e Foundationthrough Grant No. PHY-0245068.APPENDIX A: RESIDUAL SELF-MASS CORRECTIONS CijIn this appendix we evaluate the �nite and gauge-independent residual 
ontributions�Cijui
�a�vj�� to the W ! qi + qj amplitude that are not removed in our mass renormal-ization pres
ription due to the restri
tions imposed by the hermiti
ity of the mass matri
es.Inserting Eq. (29) and its 
ounterpart for down-quark matri
es in the expression for theW ! qi + qj amplitude and implementing our mass renormalization subtra
tions, we �nd22



the residual sm 
orre
tions Cij to beCij = g232�2 (VilV yli0Vi0jm2i �m2i0 ��m2i +m2i0 + m2im2i0m2W � (I(p2; ml)� J(p2; ml))� m2l2m2W �m2i +m2i0� (I(p2; ml) + J(p2; ml))�p2=m2ip2=m2i0+ Vij0V yj0kVkjm2j �m2j0 ��m2j +m2j0 + m2jm2j0m2W � (I(p2; mk)� J(p2; mk))� m2k2m2W �m2j +m2j0� (I(p2; mk) + J(p2; mk))�p2=m2jp2=m2j0) ; (A1)where the l and k summations are over l = d; s; b and k = u; 
; t, and it is understood thatonly terms with (i; i0) = (
; u); (t; u); (t; 
) or (j 0; j) = (d; s); (d; b); (s; b) are in
luded.For the reader's 
onvenien
e, we list 
ompa
t analyti
 results for the fun
tions I(p2; ml)and J(p2; ml) de�ned in Eq. (20):I(p2; ml) = �2 + p2 +m2l �m2W2p2 ln m2lm2W � 2mlmWp2 f �p2 �m2l �m2W2mlmW � ;J(p2; ml) = 12p2 ��m2l +m2W +m2l ln m2lm2W + �p2 �m2l +m2W � I(p2; ml)� ; (A2)where f(x) = 8>>>><>>>>:px2 � 1 
osh�1(�x) if x � �1,�p1� x2 
os�1(�x) if �1 < x � 1,px2 � 1 �� 
osh�1 x+ i�� if x > 1. (A3)In pra
ti
al appli
ations of Eq. (A2), one en
ounters strong numeri
al 
an
ellations betweenthe various terms when jp2j � m2W . It is then advantageous to employ the expansions ofI(p2; ml) and J(p2; ml) in p2 about p2 = 0,I(p2; ml) = �1 + m2lm2l �m2W ln m2lm2W + p2(m2l �m2W )2 ��m2l +m2W2 + m2lm2Wm2l �m2W ln m2lm2W �+O �(p2)2� ;J(p2; ml) = 12 (m2l �m2W ) ��m2l + 3m2W2 + m2l (m2l � 2m2W )m2l �m2W ln m2lm2W �+ p2(m2l �m2W )3 ��m4l + 5m2lm2W + 2m4W6 � m2lm4Wm2l �m2W ln m2lm2W �+O �(p2)2� : (A4)23



TABLE I: Residual self-mass 
orre
tions Cij as evaluated from Eq. (A1) in the form (ReCij; ImCij).�����i j d s bu (0; 0) (�1:6 � 10�12;�5:2� 10�13) (�3:2 � 10�9; 4:9 � 10�9)
 (4:5 � 10�13; 1:2� 10�13) (4:9 � 10�13; 1:5 � 10�13) (�6:1� 10�8; 2:1 � 10�12)t (�1:5� 10�9;�7:9� 10�8) (�1:6� 10�7; 3:7 � 10�7) (�4:0 � 10�9; 1:6 � 10�8)The standard parameterization of the CKM matrix, in terms of the three angles �12, �23,and �13 and the phase Æ, reads [2℄:V = 0BBB� Vud Vus VubV
d V
s V
bVtd Vts Vtb 1CCCA = 0BBB� 
12
13 s12
13 s13e�iÆ�s12
23 � 
12s23s13eiÆ 
12
23 � s12s23s13eiÆ s23
13s12s23 � 
12
23s13eiÆ �
12s23 � s12
23s13eiÆ 
23
13 1CCCA ; (A5)where sij = sin �ij and 
ij = 
os �ij. An equivalent set of four real parameters are �, A, �,and �, whi
h are related to �12, �23, �13, and Æ as [2℄s12 = �;s23 = A�2;s13eiÆ = A�3(�+ i�)p1� A2�4p1� �2 [1� A2�4(� + i�)℄ : (A6)In our numeri
al evaluation of Eq. (A1), we identify g2=(4�) = �̂(mZ)= sin2 �̂W (mZ) andemploy the values �̂(mZ) = 1=127:918 and sin2 �̂W (mZ) = 0:23122 [2℄. We take theW -bosonmass to be mW = 80:403 GeV [2℄. As for the quark masses, we use the values mu = 62 MeV,md = 83 MeV, ms = 215 MeV, m
 = 1:35 GeV, mb = 4:5 GeV [3℄ and mt = 172:7 GeV[2℄; in the 
ase of the lighter quarks, these 
orrespond to e�e
tive masses that are espe
iallyappropriate for ele
troweak analyses like ours. We evaluate the CKM matrix elements fromEqs. (A5) and (A6) using the values � = 0:2272, A = 0:818, � = 0:221, and � = 0:340 [2℄.In Table I, we present our results for the residual sm 
orre
tions Cij. As explained inSe
. III, in our renormalization pres
ription Cud = 0. As shown in Table I, for the otherW ! qi + qj amplitudes, the real and imaginary parts of Cij are very small. For example,the fra
tional 
orre
tions of ReCij with respe
t to the real parts of the 
orresponding Born24



amplitude 
ouplings, namely ReCij=ReVij, rea
h a maximum value of 4�10�6 for t!W+sand are mu
h smaller for several other 
ases. It is important to note that the Cij are non-singular in the limits mi0 ! mi or mj0 ! mj, sin
e the (m2i �m2i0)�1 and �m2j �m2j0��1singularities are 
an
eled by the subtra
tion pro
edure in Eq. (A1). For this reason, asalso explained in Se
. III, these residual 
orre
tions 
an be regarded as additional �nite andgauge-independent wfr 
ontributions, whi
h happen to be very small.APPENDIX B: CASE (hL)ii 6= 0Sin
e the diagonal elements (hL)ii do not 
ontribute to the diagonalization 
ondition ofEq. (50), in the analysis of Se
. IV, we 
hose (hL)ii = 0. We now show that the alternative
hoi
e (hL)ii 6= 0 has no physi
al e�e
t on the Wqiqj 
oupling though O(g2). As explainedin Se
. IV, the biunitary transformation of Eqs. (44) and (45) leads to a Wqiqj intera
tiondes
ribed through terms of O(g2) by Eqs. (56) and (57). Writing these expressions in
omponent form and separating out the 
ontributions involving the diagonal elements of hUand hD, we obtain an expression proportional to ̂(U)i hVij � i �hUL�ii Vij + Viji �hDL �jji 
�a� ̂(D)j ; (B1)whi
h 
an be written as ̂(U)i �1� i �hUL�ii�Vij h1 + i �hDL �jji 
�a� ̂(D)j +O(g4): (B2)In turn, this 
an be expressed as ̂(U)i exp ��i �hUL�ii�Vij exp hi �hDL �jji 
�a� ̂(D)j +O(g4): (B3)Sin
e hUL and hDL are hermitian, the diagonal elements are real. Thus exp ��i �hUL�ii� andexp hi �hDL �jji are multipli
ative phases that 
an be absorbed in rede�nitions of the  ̂(U)j and ̂(D)j �elds.
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