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I. INTRODUCTIONThe Cabibbo-Kobayashi-Maskawa (CKM) [1℄ quark mixing matrix is one of the basipillars of the eletroweak setor of the Standard Model (SM). In fat, the detailed determi-nation of this matrix is one of the major aims of reent experiments arried out at the Bfatories [2℄, as well as the objetive of a wide range of theoretial studies [2, 3, 4℄.An important theoretial problem assoiated with the CKM matrix is its renormalization.An early disussion, in the two-generation framework, was presented in Ref. [5℄, whihfoused mostly on the removal of the ultraviolet (UV) divergent ontributions. In reentyears there have been a number of interesting analyses that address the renormalization ofboth the UV-divergent and �nite ontributions at various levels of generality and omplexity[6℄.In Ref. [7℄, we outlined an expliit and diret on-shell framework to renormalize the CKMmatrix at the one-loop level, whih an be regarded as a simple generalization of Feynman'sapproah in Quantum Eletrodynamis (QED) [8℄.In the present paper, we present a detailed disussion of this renormalization frameworkand of the alulations underpinning its implementation. We reall that, in QED, the self-energy insertion in an external leg involving an outgoing fermion is of the form�Mleg = u(p)�(=p) 1=p�m; (1)�(=p) = A+B(=p�m) + ��n(=p); (2)where u(p) is the spinor of the external partile, �(=p) the self-energy, i(=p�m)�1 the partile'spropagator, A and B UV-divergent onstants, and ��n(=p) the �nite part that behaves as��n(=p) / (=p�m)2 in the neighborhood of =p = m. The ontribution of A to Eq. (1) exhibitsa pole as =p! m, while the term proportional to B is regular in this limit and that involving��n(=p) learly vanishes. We may refer to A and B as the \self-mass" (sm) and \wave-funtionrenormalization" (wfr) ontributions, respetively. The ontribution A is gauge independentand is aneled by the mass ounterterm. The ontribution B is in general gauge dependentbut, sine the (=p � m) fator anels the propagator's singularity, in Feynman's approahit is ombined with the proper vertex diagrams leading to a gauge-independent result. Inother formulations, B in Eq. (2) is aneled by an expliit �eld renormalization ountertermÆZ, whih also modi�es the tree-level vertex oupling and, onsequently, transfers one more2



this ontribution to the vertex amplitude.
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p(b)FIG. 1: Fermion self-energy diagrams.In the ase of the CKM matrix we enounter o�-diagonal as well as diagonal external-leg ontributions generated by virtual e�ets involving W� bosons and harged Goldstonebosons (��). As a onsequene, the self-energy orretions to an external leg involving anoutgoing quark is of the form �Mlegii0 = ui(p)�ii0(=p) 1=p�mi0 ; (3)where i denotes the external quark of momentum p and massmi, i0 the initial virtual quark ofmassmi0 , i(=p�mi0)�1 is the orresponding propagator, and �ii0(=p) the self-energy (see Fig. 1).In Fig. 1(b) we have inluded the tadpole diagram involving a virtual �� boson beause itsontribution is neessary to remove the gauge dependene in the diagonal ontributions ofFig. 1(a).There are other ontributions involving virtual e�ets of Z0 bosons, neutral Goldstonebosons (�0), photons (), and Higgs bosons (H) as well as additional tadpole diagrams, butall of these lead to diagonal expressions of the usual kind. An analyti expression for thefull result may be found, e.g., in Ref. [9℄.In Se. IIA we analyze in detail the ontributions arising from the diagrams in Fig. 1.After arrying out the Dira algebra in a way that treats the i and i0 quarks on an equalfooting, we �nd that the �ii0(=p) ontributions an be lassi�ed as follows: (i) terms with aleft fator (=p � mi); (ii) terms with a right fator (=p � mi0); (iii) terms with a left fator(=p�mi) and a right fator (=p�mi0); and (iv) onstant terms not involving =p.3



We note that, in Eq. (3), �ii0(=p) is inserted between the external-quark spinor ui(p) andthe virtual-quark propagator i(=p�mi0)�1. It follows that o�-diagonal ontributions of lass(i) vanish in Eq. (3), sine (=p � mi0)�1 is non-singular for i0 6= i, while ui(p)(=p � mi) = 0.However, there are in general diagonal ontributions of lass (i), sine for i0 = i the fator(=p � mi) may anel against the propagator in Eq. (3). In ontributions of lass (ii), theright fator (=p � mi0) anels the propagator in Eq. (3). In analogy with the anellationof ��n(=p) in Eqs. (1) and (2), ontributions of lass (iii) vanish in both the diagonal ando�-diagonal ases, sine the right fator (=p � mi0) anels the propagator in Eq. (3), andagain ui(p)(=p�mi) = 0. A ommon feature of all the non-vanishing ontributions to Eq. (3)arising from lasses (i) and (ii) is that the virtual-quark propagator i(=p �mi0)�1 has beenaneled in both the diagonal (i0 = i) and o�-diagonal (i0 6= i) ases and, as a onsequene,they are non-singular as =p ! mi0 . Thus, they an be suitably ombined with the propervertex diagrams, in analogy with B in QED. In ontrast, the ontributions of lass (iv) toEq. (3) retain the virtual-quark propagator i(=p�mi0)�1 and are singular in this limit.In Se. IIA we show that, in our formulation, the ontributions to Eq. (3) of lass (iv)are gauge independent, while those arising from lasses (i) and (ii) ontain gauge-dependentpiees.i i(Z;H) jjW(a)
i(Z;'; ) jiW(b)

i (Z;'; )jjW()FIG. 2: Proper Wqiqj vertex diagrams.In analogy with the QED ase, we identify lass (iv) and lasses (i) and (ii) as self-mass(sm) and wave-funtion renormalization (wfr) ontributions, respetively. They are listedexpliitly in Ses. II B and IIC. In Se. II C, we also disuss important simpli�ations thatour in the wfr ontributions to the physial W ! qi + qj amplitude. In partiular, weshow that the gauge-dependent and the UV-divergent parts of these ontributions depend4



only on the external-quark masses mi and mj and do not involve the CKM matrix elements,exept for an overall fator Vij, in analogy with the proper vertex diagrams depited inFig. 2. This result implies that, one the divergent sm ontributions are removed in therenormalization proess, the proof of �niteness and gauge independene of the remainingone-loop orretions to the W ! qi + qj amplitude is the same as in the muh simpler aseof a hypothetial single generation made of the i and j quarks with unit CKM oupling.By ontrast, sine the sm ontributions to Eq. (1) are proportional to (=p�mi0)�1, theyhave a struture unsuitable for the ombination with vertex diagrams. Thus, one expetssuh terms to be separately gauge independent, as we �nd.The plan of this paper is the following. In Se. II we evaluate the diagrams depited inFig. 1 and prove the various properties desribed above. In Se. III we study the anellationof sm ontributions by suitably adjusting the mass ounterterms, subjet to restritionsimposed by hermitiity. In Se. IV we disuss the diagonalization of the omplete massmatrix, i.e. the renormalized plus ounterterm mass matries, and show expliitly how thisproedure generates a CKM ounterterm matrix in a manner that preserves unitarity andgauge independene. Setion V ontains our onlusions.II. EVALUATION OF �ii0(=p) AND GAUGE INDEPENDENCE OF THE SELF-MASS CONTRIBUTIONSIn subsetion IIA we evaluate the one-loop diagrams of Fig. 1, explain the separation intowfr and sm amplitudes, and show expliitly the anellation of gauge dependenes in thelatter. Following standard onventions, �ii0(=p) is de�ned as i times the diagrams of Fig. 1.We show how the various ontributions an be lassi�ed in the ategories (i){(iv) desribedin Se. I. As explained in Se. I, terms of lass (iii) give a vanishing ontribution to theorretion �Mlegii0 assoiated with an external leg, while those belonging to lasses (i) and (ii)e�etively anel the virtual-quark propagator i(=p�mi0)�1. They naturally ombine with theproper vertex diagrams and are identi�ed with wfr ontributions. They are generally gaugedependent. By ontrast, in our formulation, the ontributions of lass (iv) to �Mlegii0 aregauge independent and proportional to i(=p�mi0)�1, with a ofator that is independent of =palthough it depends on the hiral projetors a�. They are identi�ed with sm ontributions.The sm and wfr ontributions to �Mlegii0 are given expliitly in subsetions II B and IIC.5



Although the main fous of this paper is the study of the sm ontributions, in Se. II Cwe also digress on the further simpli�ations of the wfr ontributions that our in theimportant W ! qi + qj amplitude.A. Evaluation of �ii0(=p)For de�niteness, we �rst onsider the ase in whih i and i0 in Fig. 1(a) are up-typequarks and l is a down-type quark. Following standard onventions, we denote by Vil theCKM matrix element involving the up-type quark i and the down-type quark l. Simplemodi�ations in other ases are disussed in Se. IID.Writing the W -boson propagator in the R� gauge asDW�� = �ig�� � k�k�(1� �W )=(k2 �m2W �W )k2 �m2W ; (4)where �W is the gauge parameter, we �rst onsider the ontribution to Fig. 1(a) of the seond,�W -dependent term. We all this ontribution MGDii0 (W ), where the notation reminds usthat this is the gauge-dependent part of the W -boson ontribution. After some elementaryalgebra, we �ndMGDii0 (W ) = g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )� a+ ��=k � =p�ml + (=p�ml) 1=p� =k �ml (=p�ml)� a�; (5)where a� = (1� 5)=2, Rn = �4�n R dnk=(2�)n, and � is the 't Hooft mass sale. The termproportional to =k anels, sine the integrand is odd under =k ! �=k, and the ml term anelsbeause of the hiral projetors. We rewrite =pa� as follows:2=pa� = =pa� + a+=p= (=p�mi)a� + a+(=p�mi0) +mia� +mi0a+; (6)so that the i and i0 quarks are treated on an equal footing. In the terms not involving ml,we employ the unitarity relation, VilV yli0 = Æii0 ; (7)
6



and MGDii0 (W ) beomesMGDii0 (W ) = g22 (1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) ��Æii02 [a+(=p�mi) + (=p�mi)a�+ mi℄ + VilV yli0a+(=p�ml) 1=p� =k �ml (=p�ml)a�� : (8)The tadpole diagram of Fig. 1(b) ontributesM tadii0 (�) = � g2mi4m2W Æii0 Zn 1k2 �m2W �W : (9)Its ombination with the term proportional to Æii0mi in Eq. (8) gives� g2mi4m2W Æii0 Zn 1k2 �m2W ; (10)a gauge-independent amplitude. Thus,MGDii0 (W ) +M tadii0 (�) = � g2mi4m2W Æii0 Zn 1k2 �m2W� g24 Æii0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) [a+(=p�mi) + (=p�mi)a�℄+ g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )a+(=p�ml) 1=p� =k �ml (=p�ml)a�: (11)Using the relations a+(=p�ml) = (=p�mi)a� +mia� �mla+;(=p�ml)a� = a+(=p�mi0) +mi0a+ �mla�; (12)the last term of Eq. (11) may be written asM lastii0 = g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )[(=p�mi)a� +mia� �mla+℄� 1=p� =k �ml [a+(=p�mi0) +mi0a+ �mla�℄: (13)On the other hand, the ontribution Mii0(�) to diagram 1(a) arising from the �� boson isMii0(�) = g22m2W VilV yli0 Zn 1k2 �m2W �W (mia� �mla+) 1=p� =k �ml (mi0a+ �mla�): (14)Its ombination with the term proportional to(mia� �mla+) 1=p� =k �ml (mi0a+ �mla�) (15)7



in Eq. (13) leads to a gauge-independent amplitude.Combining these results, we haveMGDii0 (W ) +M tadii0 (�) +Mii0(�) = � g2mi4m2W Æii0 Zn 1k2 �m2W+ g22m2W VilV yli0 Zn 1k2 �m2W (mia� �mla+) 1=p� =k �ml (mi0a+ �mla�)� g24 Æii0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) [a+(=p�mi) + (=p�mi)a�℄+ g22 VilV yli0(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) �(=p�mi)a� 1=p� =k �mla+(=p�mi0)+ (=p�mi)a� 1=p� =k �ml (mi0a+ �mla�) + (mia� �mla+) 1=p� =k �ml a+(=p�mi0)� : (16)The ontribution of the gauge-independent part of the W -boson propagator, i.e. the �rstterm in Eq. (4), leads toMGIii0 (W ) = �g22 VilV yli0 Zn 1k2 �m2W a+� 1=p� =k �ml�a�: (17)In order to lassify the various ontributions aording to the disussion of Se. I, we evaluatethe integral that appears in Eq. (17) and in the seond term of Eq. (16):K(=p;ml) = Zn 1(k2 �m2W ) (=p� =k �ml)= � i16�2 �=p[� + I(p2; ml)� J(p2; ml)℄ +ml[2� + I(p2; ml)℄	 ; (18)where � = 1n� 4 + 12[E � ln(4�)℄ + ln mW� ; (19)fI(p2; ml); J(p2; ml)g = Z 10 dx f1; xg lnm2l x+m2W (1� x)� p2x(1� x)� i"m2W : (20)Next, we insert Eq. (18) into the seond term of Eq. (16) and into Eq. (17) and �nallyadd Eqs. (16) and (17). Treating the terms involving =pa� and =pa+ in the symmetri wayexplained before Eq. (7), evaluating the integral Rn (k2 �m2W )�1 and employing one morethe unitarity relation (7) in some of the ml-independent terms, we �nd that the omplete
8



ontribution from Figs. 1(a) and (b) an be expressed in the form:M (1)ii0 = MGDii0 (W ) +MGIii0 (W ) +M tadii0 (�) +Mii0(�)= ig232�2VilV yli0 ��mi�1 + m2i2m2W ��+ m2l2m2W (mia� +mi0a+)[3� + I(p2; ml) + J(p2; ml)℄� �mia� +mi0a+ + mimi02m2W (mia+ +mi0a�)� [I(p2; ml)� J(p2; ml)℄� 12m2W �mimi0((=p�mi)a+ + a�(=p�mi0)) +m2l ((=p�mi)a� + a+(=p�mi0))�� [� + I(p2; ml)� J(p2; ml)℄� [(=p�mi)a� + a+(=p�mi0)℄ ��+ 12 + I(p2; ml)� J(p2; ml)�+ i8�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) [a+ �=p�mi0�+ (=p�mi)a�℄� i16�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W )� �(=p�mi)a� 1=p� =k �mla+(=p�mi0) + (=p�mi)a� 1=p� =k �ml (mi0a+ �mla�)+ (mia� �mla+) 1=p� =k �mla+(=p�mi0)�� : (21)The last two terms in Eq. (21) are gauge dependent and inlude a left fator (=p�mi) or aright fator (=p�mi0) or both. Thus, they belong to the lasses (i), (ii), or (iii) disussed inSe. I. The integrals in these two terms an readily be evaluated using the identity1� �W(k2 �m2W ) (k2 �m2W �W ) = 1m2W � 1k2 �m2W � 1k2 �m2W �W � (22)and Eq. (18). We �ndi8�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) = �� 12 � �W ��� 12 + 12 ln �W� ; (23)L(=p;ml; �W ) � i16�2(1� �W ) Zn 1(k2 �m2W ) (k2 �m2W �W ) (=p� =k �ml)= 1m2W Z 10 dx [=p(1� x) +ml℄ ln m2l x+m2W �W (1� x)� p2x(1� x)� i"m2l x +m2W (1� x)� p2x(1� x)� i" : (24)If i is an outgoing, on-shell up-type quark, the external-leg amplitude is obtained bymultiplying Eq. (21) on the left by ui(p), the spinor of the outgoing quark, and on the rightby i(=p � mi0)�1, the propagator of the initial virtual quark. Thus, the relevant amplitude9



assoiated with the external leg is�Mlegii0 = ui(p)M (1)ii0 i=p�mi0 : (25)This brings about important simpli�ations. Using the well-known rules to treat indeter-minate fators of the form ui(p)(=p � mi)(=p � mi)�1 [8, 10℄, one readily �nds the followingidentities for both diagonal (i0 = i) and o�-diagonal (i0 6= i) ontributions:ui(p)[(=p�mi)a� + a�(=p�mi0)℄ i=p�mi0 = iui(p)a�; (26)ui(p)(=p�mi)O1(=p�mi0) i=p�mi0 = 0; (27)ui(p)[(=p�mi)a�L(=p;ml; �W )(mi0a+ �mla�) + (mia� �mla+)L(=p;ml; �W )a+(=p�mi0)℄� i=p�mi0 = iui(p)(mia� �mla+)L(=p;ml; �W )a+; (28)where O1 is a generi Dira operator that is regular in the limit =p! mi0 and L(=p;ml; �W ) isthe integral de�ned in Eq. (24). These identities tell us that terms in M (1)ii0 of lass (iii) givea vanishing ontribution to �Mlegii0 (f. Eq. (27)), while those of lasses (i) and (ii) ombineto anel the (=p�mi0)�1 fator in Eq. (25) (f. Eqs. (26) and (28)).In the seond and third terms of Eq. (21), we expand the funtions I(p2; ml) and J(p2; ml)about p2 = m2i . The lowest-order term, with p2 set equal to m2i , is independent of =p and,therefore, belongs the lass (iv). The same is true of the other ontributions in the �rst twoterms of Eq. (21). They lead to a multiple of i(=p �mi0)�1 in Eq. (25) with a ofator thatinvolves the hiral projetors a�, but is independent of =p. Thus, they belong to lass (iv)and are identi�ed as the sm ontributions. The terms of O (p2 �m2i ) in the expansions ofI(p2; ml) and J(p2; ml) give only diagonal ontributions (i0 = i) to Eq. (25), belong to lass(i) beause p2�m2i = (=p�mi)(=p+mi), and anel the (=p�mi)�1 fator in Eq. (25). Termsof O �(p2 �m2i )2� and higher in this expansion give vanishing ontributions to �Mlegii0 .As mentioned before, the terms of lasses (i) and (ii) in M (1)ii0 (inluding those generatedby the expansions of I(p2; ml) and J(p2; ml)) are identi�ed as wfr ontributions. In ontrastto the sm ontributions, they ontain gauge-dependent parts (f. the last two terms inEq. (21)). Both the sm and wfr ontributions ontain UV divergenes.
10



B. Self-Mass ContributionsThe sm ontributions �Mleg;smii0 to the external-leg orretion for an outgoing on-shellup-type quark i are obtained by inserting the �rst three terms of Eq. (21) with p2 set equalto m2i into Eq. (25):�Mleg;smii0 = g232�2VilV yli0ui(p)�mi �1 + m2i2m2W��� m2l2m2W (mia� +mi0a+) �3� + I �m2i ; ml�+ J �m2i ; ml��+ �mia� +mi0a+ + mimi02m2W (mia+ +mi0a�)�� �I �m2i ; ml�� J �m2i ; ml��	 1=p�mi0 : (29)The amplitudes I (m2i ; ml) and J (m2i ; ml), de�ned in Eq. (20), are real exept when mi = mtorresponding to an external on-shell top quark. The diagonal ontributions in this aseinlude imaginary parts that annot be removed by a mass ounterterm, in onjuntionwith a singular propagator. The problem arises beause, in the usual alulation of its deayrate, the top quark is treated as an asymptoti state, rather than an unstable partile. Inanalogy with the ase of the Z0 boson, its proper treatment examines the resonane regionin the virtual propagation of the top quark between its prodution and deay verties. One�nds that, in the narrow-width approximation, in whih ontributions of next-to-next-to-leading order are negleted, Im�(mt) is related to the total deay width �t by the expressionIm�(mt) = ��t[1�Re�0(mt)℄ and provides the i�t term in the resonane amplitude. Thelatter is proportional to i(=p�mt+i�t)�1[1�Re�0(mt)℄�1, where the �rst fator is the resonantpropagator and the seond one the wfr term that ontributes to the top-quark ouplings tothe external partiles in the prodution and deay verties. Sine the imaginary parts ofI (m2t ; ml) and J (m2t ; ml) in the diagonal top-quark ontributions are e�etively absorbedin the i�t term in the resonane propagator, we remove them from Eq. (29). Spei�ally,in the diagonal ontributions to Eq. (29) involving an external top quark, I (m2t ; ml) andJ (m2t ; ml) are replaed by their real parts.We see that Eq. (29) satis�es the basi properties explained before: it is a multiple ofthe virtual-quark propagator i(=p � mi0)�1 with a ofator that is gauge and momentumindependent. As expeted in a hiral theory, it involves the a� projetors.11



C. Wave-Funtion Renormalization ContributionsFor ompleteness, we exhibit the wfr ontributions �Mleg;wfrii0 to the external-leg orre-tion. They are obtained by inserting the last four terms of Eq. (21) into Eq. (25), employingthe identities of Eqs. (26){(28), and inorporating the diagonal ontributions arising fromthe expansions of I(p2; ml) and J(p2; ml) in the seond and third terms of Eq. (21):�Mleg;wfrii0 = g232�2VilV yli0ui(p)��I �m2i ; ml�� J �m2i ; ml�� a++ 12m2W (mimi0a� +m2l a+) ��+ I �m2i ; ml�� J �m2i ; ml��� Æii0m2im2l2m2W �I 0 �m2i ; ml�+ J 0 �m2i ; ml��+ Æii0m2i �1 + m2i2m2W �� �I 0 �m2i ; ml�� J 0 �m2i ; ml��+ ��W ��+ 12 ln �W � 12�+ 1� a+� N(mi; ml; �W )a+g ; (30)where �I 0 �m2i ; ml� ; J 0 �m2i ; ml�	 = � Z 10 dx f1; xgx(1� x)m2l x +m2W (1� x)�m2ix(1� x)� i" (31)are the derivatives of I(p2; ml) and J(p2; ml) with respet to p2, evaluated at p2 = m2i , andN(mi; ml; �W ) = 1m2W Z 10 dx �m2i (1� x)�m2l � ln m2l x+m2W �W (1� x)�m2ix(1� x)� i"m2l x +m2W (1� x)�m2ix(1� x)� i" :(32)The previous to last term in Eq. (30) was obtained by using Eqs. (23) and (26), and ombin-ing the result with other �-dependent ontributions. The last term in Eq. (30) was obtainedby using Eqs. (24) and (28), and arrying out some elementary Dira algebra. EmployingEq. (7) in ml-independent terms, we see that the UV-divergent part in Eq. (30) is given by�Mleg;wfr;divii0 = g232�2VilV yli0ui(p)� � m2i2m2W a� + ��W + m2l2m2W � a+� ; (33)whih ontains both diagonal and o�-diagonal piees. In partiular, the diagonal part ofEq. (33) ontains a gauge-dependent ontribution, while the o�-diagonal term is gaugeindependent.We now digress on the further simpli�ations that take plae when Eq. (30) is insertedin the physial W ! qi + qj amplitude. In this ase, Eq. (30) is multiplied on the rightby (�ig=p2)Vi0j�a�vj��, where vj is the spinor assoiated with the qj quark and �� is the12



polarization four-vetor of the W boson. Beause of the hiral projetors, the ontributionof the term proportional to (mimi0=2m2W )a�[� + I � J ℄ vanishes. Next, we note that the�rst, seond, �fth, and sixth terms between urly brakets in Eq. (30) are independent ofi0. Denoting these ontributions as f(mi; ml) and employing the unitarity relation (7), wehave VilV yli0Vi0jf(mi; ml) = VilÆljf(mi; ml) = Vijf(mi; mj). Thus, the ontributions of theseterms to theW ! qi+qj amplitude are proportional to Vij and depend only on the external-fermion masses mi and mj. The same is true of the orresponding ontributions arising fromthe qj external leg. We emphasize that this result inludes all the gauge-dependent and allthe UV-divergent ontributions in Eq. (30). This important property is shared by the propervertex diagrams of Fig. 2, whih are also proportional to Vij and depend only on mi and mj.As explained in Se. I, this property implies that, one the divergent sm ontributions areaneled by renormalization, the proof of �niteness and gauge independene of the remainingone-loop orretions to the W ! qi + qj amplitude is the same as in the single-generationase.Although the ontributions to the W ! qi + qj amplitude from the terms involvingI 0 (m2i ; ml) and J 0 (m2i ; ml) in Eq. (30) are not simpli�ed by the unitarity relations withoutappealing to suitable approximations, we note that they are �nite and gauge independent.It is important to point out that the simpli�ations we enountered in the W ! qi+ qj am-plitude depend ruially on the fat that the wfr terms anel the virtual-quark propagatori(=p�mi0)�1.D. Other CasesEquations (29) and (30) exhibit the sm and wfr ontributions to the external-leg orre-tions in the ase of an outgoing on-shell up-type quark i. Here i0 labels the initial virtualup-type quark in Fig. 1(a) and l the down-type quark in the loop.The orresponding expressions for an inoming up-type quark an be gleaned by multi-plying Eq. (21) by ui0(p) on the right and by i(=p �mi)�1 on the left. Interhanging i andi0, it is easy to see that the sm ontributions for an inoming up-type quark are obtainedfrom Eq. (29) by substituting VilV yli0 ! Vi0lV yli , interhanging a� $ a+ between the urlybrakets, and multiplying the resulting expression by ui(p) on the right and by (=p�mi0)�1on the left. Similarly, the wave-funtion renormalization for an inoming up-type quark is13



obtained from Eq. (30) by substituting VilV yli0 ! Vi0lV yli , interhanging a� $ a+ between theurly brakets, and multiplying the resulting expression by ui(p) on the right. The expres-sions for an inoming (outgoing) up-type antiquark are the same as those for an outgoing(inoming) up-type quark with the substitution ui(p)! vi(�p), the negative-energy spinor.In the ase of antiquarks, p in these expressions is identi�ed with the four-momentum inthe diretion of the arrows in the Feynman diagrams, whih is minus the four-momentum ofthe antipartile. Finally, the expression for an outgoing down-type quark is obtained fromthat of an outgoing up-type quark by substituting VilV yli0 ! V yjlVlj0, where j and j 0 denotethe on-shell and virtual down-type quarks, respetively, and l the up-type quark in the loop.The other down-type-quark amplitudes are obtained from the orresponding up-type-quarkexpressions in a similar manner.III. MASS RENORMALIZATIONIn order to generate mass ounterterms suitable for the renormalization of the sm on-tributions shown in Eq. (29), we may proeed as follows. In the weak-eigenstate basis, thebare mass matries m0Q0 for the up- and down-type quarks (Q = U;D) are non-diagonal, andthe orresponding terms in the Lagrangian density may be written as � 0QR m0Q0  0QL + h..,where  0QL and  0QR are left- and right-handed olumn spinors that inlude the three up-type(or down-type) quarks. Deomposing m0Q0 = m0Q� Æm0Q, where m0Q and Æm0Q are identi�edas the renormalized and ounterterm mass matries, we envisage a biunitary transformationof the quark �elds that diagonalizes m0Q, leading to a renormalized mass matrix mQ that isdiagonal, real and endowed with positive entries. The same operation transforms Æm0Q intoa new matrix ÆmQ whih, in general, is non-diagonal. In the new framework, whih we mayidentify as the mass-eigenstate basis, the mass term is given by�  �m� Æm(�)a� � Æm(+)a+� = � R �m� Æm(�)� L �  L �m� Æm(+)� R; (34)where m is real, diagonal, and positive, and Æm(�) and Æm(+) are arbitrary non-diagonalmatries subjet to the hermitiity onstraintÆm(+) = Æm(�)y: (35)This onstraint follows from the requirement that the mass terms in the Lagrangian density,displayed in Eq. (34), must be hermitian. In order to simplify the notation, we do not14



exhibit the label Q, but it is understood that Eq. (34) represents two di�erent mass matriesinvolving the up- and down-type quarks.As is ustomary, the mass ounterterms are inluded in the interation Lagrangian. Theirontribution to Eq. (25) is given byiui(p)�Æm(�)ii0 a� + Æm(+)ii0 a+� i=p�mi0 : (36)We now adjust Æm(�)ii0 and Æm(+)ii0 to anel, as muh as possible, the sm ontributions givenin Eq. (29). The anellation of the UV-divergent parts is ahieved by hoosing�Æm(�)div �ii0 = g2mi64�2m2W ��Æii0m2i � 3VilV yli0m2l � ;�Æm(+)div �ii0 = g2mi064�2m2W ��Æii0m2i � 3VilV yli0m2l � ; (37)It is important to note that �Æm(+)div �ii0 = �Æm(�)div ��i0i ; (38)so that Æm(+)div and Æm(�)div satisfy the hermitiity requirement of Eq. (35).In order to disuss the anellation of the �nite parts, we all ii0 hannel the amplitude inwhih i labels the outgoing, on-shell up-type quark and i0 the initial, virtual one (f. Fig. 1).Then the i0i hannel is the amplitude in whih the roles are reversed: i0 is the outgoing,on-shell quark, while i is the initial, virtual one.Comparing Eq. (29) with Eq. (36), we see that a omplete anellation of the sm orre-tions for an outgoing up-type quark or an inoming up-type antiquark in the ii0 hannel isahieved by adjusting the mass ounterterms aording toÆm(�)ii0 = g2mi32�2 �Æii0 �1 + m2i2m2W ��� VilV yli0 m2l2m2W �3� + I �m2i ; ml�+ J �m2i ; ml��+ VilV yli0 �1 + m2i02m2W ��I �m2i ; ml�� J �m2i ; ml��� ;Æm(+)ii0 = g2mi032�2 �Æii0 �1 + m2i2m2W ��� VilV yli0 m2l2m2W �3� + I �m2i ; ml�+ J �m2i ; ml��+ VilV yli0 �1 + m2i2m2W ��I �m2i ; ml�� J �m2i ; ml��� : (39)One Æm(�)ii0 and Æm(+)ii0 are �xed, the mass ounterterms for the reverse i0i hannel aredetermined by the hermitiity ondition of Eq. (35), to witÆm(�)i0i = Æm(+)�ii0 ; Æm(+)i0i = Æm(�)�ii0 : (40)15



Sine the funtions I and J in Eq. (29) are evaluated at p2 = m2i in the ii0 hannel andat p2 = m2i0 in the i0i hannel, we see that the mass ounterterms in Eqs. (39) and (40)annot remove ompletely the sm ontributions in both amplitudes. Taking into aountthis restrition, we hoose the following renormalization presription.Writing the mass ounterterm matrix for the up-type quark in the expliit form0BBB� Æmuu Æmu ÆmutÆmu Æm ÆmtÆmtu Æmt Æmtt 1CCCA ; (41)where Æmii0 = Æm(�)ii0 a� + Æm(+)ii0 a+ (i; i0 = u; ; t), we hoose Æmuu, Æm, and Æmtt to anel,as is ustomary, all the diagonal ontributions in Eq. (29). For the non-diagonal entries, wehoose Æmu, Æmut, and Æmt to anel ompletely the ontributions in Eq. (29) orrespondingto the u, ut, and t hannels, respetively. The remaining mass ounterterms, Æmu, Æmtu,and Æmt are then �xed by the hermitiity ondition in Eq. (35). This implies that the �niteparts of the sm orretions in the u, tu, and t hannels are not fully aneled. However,after the mass renormalization is implemented, the residual ontributions from Eq. (29) tothe W ! qi+ qj amplitudes are �nite, gauge independent, and very small in magnitude (seeAppendix A). In fat, they are of seond (�rst) order in the small ratios m2q=m2W (q 6= t)when the top quark is not (is) the external partile and, furthermore, they inlude smallCKM matrix elements.An analogous approah is followed for the down-type-quark mass ounterterms. We allj 0j hannel the amplitude involving an inoming, on-shell down-type quark j and a virtualdown-type quark j 0. In analogy with Eq. (39), the omplete anellation of the sm orretionsfor an inoming down-type quark (or an outgoing down-type antiquark) in the j 0j hannelis implemented by hoosing:Æm(�)j0j = g2mj032�2 �Æjj0 �1 + m2j2m2W��� V yj0lVlj m2l2m2W �3� + I �m2j ; ml�+ J �m2j ; ml��+ V yj0lVlj �1 + m2j2m2W ��I �m2j ; ml�� J �m2j ; ml��� ;Æm(+)j0j = g2mj32�2 �Æjj0 �1 + m2j2m2W ��� V yj0lVlj m2l2m2W �3� + I �m2j ; ml�+ J �m2j ; ml��+ V yj0lVlj �1 + m2j02m2W ��I �m2j ; ml�� J �m2j ; ml��� ; (42)16



where l labels the virtual up-type quark in the self-energy loop.We emphasize that Eqs. (39) and (42) ontain all the o�-diagonal sm ontributions sinethey only arise from Fig. 1(a) and the analogous diagrams involving the down-type quarks.On the other hand, there are many additional diagonal sm ontributions from other dia-grams.Writing the mass ounterterm matrix for the down-type quarks in the form0BBB� Æmdd Æmds ÆmdbÆmsd Æmss ÆmsbÆmbd Æmbs Æmbb 1CCCA ; (43)we hoose Æmdd, Æmss, and Æmbb to anel the diagonal sm ontributions, and Æmsd, Æmbd,and Æmbs to anel the orresponding o�-diagonal terms. The hermitiity onstraint impliesthen that the �nite parts of the sm ontributions are not fully aneled in the reverse ds, db,and sb hannels. We �nd that, after the mass renormalization is implemented, the residualontributions involving the top quark in the self-energy loop are of �rst order in the smallratios, while the others are of seond order. Nonetheless, as shown in Appendix A, theirontributions to theW ! qi+qj amplitudes are also very small. In partiular, the smallnessin the ds hannel arises beause some ontributions are of seond order in m2q=m2W (q 6= t)and others are proportional to m2s=m2t with very small CKM oeÆients.We note that, in these renormalization presriptions, the residual sm ontributions areonvergent in the limitmi0 ! mi or mj0 ! mj, sine the singularities of the virtual propaga-tors i(=p�mi0)�1 and i(=p�mj0)�1 are aneled, a harateristi property of wfr ontributions.Thus, these residual sm terms an be regarded as additional �nite and gauge-independentontributions to wave-funtion renormalization that happen to be numerially very small.It is also interesting to note that these renormalization presriptions imply that the smontributions are fully aneled when the u or d quarks or antiquarks are the external, on-shell partiles. This is of speial interest sine Vud, the relevant parameter in the W ! u+damplitude, is by far the most aurately measured CKM matrix element [3, 4℄.
17



IV. DIAGONALIZATION OF THE MASS COUNTERTERMS AND DERIVA-TION OF THE CKM COUNTERTERM MATRIXIn Se. III, we showed expliitly how the UV-divergent parts of the one-loop sm on-tributions assoiated with external quark legs [f. Fig. 1(a)℄ an be aneled by suitablyadjusting the non-diagonal mass ounterterm matrix. By imposing on-shell renormalizationonditions, we also showed how the �nite parts of suh ontributions an be aneled upto the onstraints imposed by the hermitiity of the mass matrix. We also reall that, inour formulation, the sm ontributions and, onsequently, also the mass ounterterms areexpliitly gauge independent.In this setion, we disuss the diagonalization of the omplete mass matrix of Eq. (34),whih inludes the renormalized and ounterterm mass matries. We show how this proe-dure generates a CKM ounterterm matrix that automatially satis�es the basi propertiesof gauge independene and unitarity.Starting with Eq. (34), we implement a biunitary transformation that diagonalizes thematrix m� Æm(�). Spei�ally, we onsider the transformations L = UL ̂L; (44) R = UR ̂R; (45)and hoose the unitary matries UL and UR so thatU yR �m� Æm(�)�UL = D; (46)where D is diagonal and real. From Eq. (46), it follows thatU yL �m� Æm(�)y� �m� Æm(�)�UL = D2; (47)whih, through O(g2), redues toU yL �m2 �mÆm(�) � Æm(�)ym�UL = D2: (48)Writing UL = 1 + ihL, where hL is hermitian and of O(g2), we havem2 + i(m2hL � hLm2)�mÆm(�) � Æm(�)ym = D2; (49)where we have negleted terms of O(g4). Realling that, in our formulation, m is diagonal(f. Se. III) and taking the ii0 omponent, Eq. (49) beomesm2i Æii0 + i �m2i �m2i0� (hL)ii0 �miÆm(�)ii0 � Æm(�)yii0 mi0 = D2i Æii0: (50)18



For diagonal terms, with i = i0, the term proportional to (hL)ii0 does not ontribute. Fur-thermore, Eq. (39) tells us that Æm(�)ii = Æm(+)ii . Consequently, for diagonal elements of themass ounterterm matrix, one has Æm(�)ii a� + Æm(+)ii a+ = Æmi, where Æmi = Æm(�)ii = Æm(+)ii .We note that the hermitiity ondition of Eq. (40) implies that Æmi is real. Therefore, fori = i0, Eq. (50) redues to m2i � 2miÆmi = D2i or, equivalently, through O(g2), toDi = mi � Æmi: (51)In order to satisfy Eq. (50) for i 6= i0, we need to anel the o�-diagonal ontributionsmiÆm(�)ii0 + Æm(�)yii0 mi0 . This is ahieved by adjusting the non-diagonal elements of hL aord-ing to i(hL)ii0 = miÆm(�)ii0 + Æm(+)ii0 mi0m2i �m2i0 (i 6= i0); (52)where we have employed the hermitiity relation of Eq. (35). Sine the diagonal elements(hL)ii do not ontribute to Eq. (50), it is onvenient to hoose (hL)ii = 0. In Appendix B, weshow that the alternative seletion (hL)ii 6= 0 has no physial e�et on theWqiqj interations.Returning to Eq. (46) and writing UR = 1 + ihR, one �nds that hR is obtained from hLby substituting Æm(�) $ Æm(+) in Eq. (52). Thus,i(hR)ii0 = miÆm(+)ii0 + Æm(�)ii0 mi0m2i �m2i0 (i 6= i0): (53)In fat, substituting UL = 1 + ihL and UR = 1 + ihR in Eq. (46) and employing Eqs. (52)and (53), one readily veri�es that the l.h.s. of Eq. (46) is indeed diagonal through O(g2).Furthermore, one reovers Eq. (51).The above analysis is arried out separately to diagonalize the mass matries of the up-and down-type quarks. Thus, we obtain two pairs of hL and hR matries: hUL and hUR forthe up-type quarks and hDL and hDR for the down-type quarks.Next, we analyze the e�et of transformation (44) on the Wqiqj interation. Followingstandard onventions, the latter is given byLWqiqj = � g0p2 Ui Vij�a� Dj W� + h..; (54)where  Ui (i = u; ; t) and  Dj (j = d; s; b) are the �elds of the up- and down-type quarks,respetively, W� is the �eld that annihilates a W+ boson or reates a W� boson, g0 is thebare SU(2)L oupling, and Vij are the elements of the unitary CKM matrix. Alternatively,19



in matrix notation, we haveLWqiqj = � g0p2 ULV � DLW� + h..: (55)It is important to note that, in the formulation of this paper, in whih the UV-divergentsm terms are aneled by the mass ounterterms and the proof of �niteness of the otherontributions to the W ! qi + qj amplitude after the renormalization of g0 is the same asin the unmixed ase (f. Se. II C), Vij are �nite quantities.Inserting Eq. (44) in Eq. (55), we �nd, through terms of O(g2), thatLWqiqj = � g0p2  ̂UL(V � ÆV )� ̂DLW� + h..; (56)where ÆV = i �hULV � V hDL � : (57)One readily veri�es that V � ÆV satis�es the unitarity ondition through terms of O(g2),namely (V � ÆV )y(V � ÆV ) = 1 +O(g4): (58)Sine V is �nite and unitary, it is identi�ed with the renormalized CKM matrix. On theother hand, in the ( ̂L;  ̂R) basis, in whih the omplete quark mass matries are diagonal,ÆV and V0 = V � ÆV represent the ounterterm and bare CKM matries, respetively.We now show expliitly that the ihULV term in ÆV leads to the same o�-diagonal ontri-bution to the W ! qi + qj amplitude as the insertion of the mass ounterterms ÆmU(�) andÆmU(+) in the external up-type-quark line. Indeed, the ihULV ontribution is given byM(ihULV ) = igp2uii �hUL�ii0 Vi0j�a�vj��; (59)where, again, ui and vj are the external up- and down-type-quark spinors, respetively, and�� is the W -boson polarization four-vetor. Inserting Eq. (52), Eq. (59) beomesM(ihULV ) = igp2uimUi ÆmU(�)ii0 + ÆmU(+)ii0 mUi0(mUi )2 � (mUi0 )2 Vi0j�a�vj��; (60)where it is understood that i 6= i0 and the label Q = U;D, whih we had suppressed fromEq. (34) through Eq. (53), is again displayed. On the other hand, the o�-diagonal massounterterm insertion in the external up-type-quark line is given byM �ÆmU(�); ÆmU(+)� = � igp2uii�ÆmU(�)ii0 a� + ÆmU(+)ii0 a+� i=p�mUi0 Vi0j�a�vj��: (61)20



Rationalizing the propagator i(=p � mUi0 )�1, one �nds after some elementary algebra thatEq. (60) oinides with Eq. (61). An analogous alulation shows that the �iV hDL termin ÆV leads to the same o�-diagonal ontribution to the W ! qi + qj amplitude as theinsertion of the mass ounterterms ÆmD(�) and ÆmD(+) in the external down-type-quarkline. Sine the mass ounterterms are adjusted to anel the o�-diagonal sm ontributionsto the extent allowed by the hermitiity of the mass matrix, the same is true of the CKMounterterm matrix ÆV . In partiular, ÆV fully anels the UV-divergent part of the o�-diagonal sm ontributions. As mentioned above, in the formulation of this setion, theomplete mass matrix is diagonal, with elements of the form given in Eq. (51), where mi arethe renormalized masses and Æmi the orresponding mass ounterterms. The quantities Æmiare then adjusted to fully anel the diagonal sm orretions in the external legs, in analogywith QED. As also explained above, the additional UV divergenes arising from the wfrontributions, proper vertex diagrams, and renormalization of g0 anel among themselvesas in the single-generation ase.For ompleteness, we expliitly exhibit the ounterterm of the CKM matrix in omponentform: ÆVij = i h�hUL�ii0 Vi0j � Vij0 �hDL �j0ji= mUi ÆmU(�)ii0 + ÆmU(+)ii0 mUi0(mUi )2 � (mUi0 )2 Vi0j � Vij0mDj0 ÆmD(�)j0j + ÆmD(+)j0j mDj�mDj0�2 � �mDj �2 ; (62)where we have used Eqs. (52), (53), and (57) and it is understood that i 6= i0 in the �rstterm and j 0 6= j in the seond one.We note that Eq. (62) involves ontributions proportional to �mUi �mUi0 ��1 and�mDj0 �mDj ��1, whih would beome very large if the masses of di�erent avors were nearlydegenerate. This is to be expeted, sine the role of these ounterterms is preisely to anelthe analogous sm ontributions to Eq. (3) arising from Fig. 1, so that the renormalizedexpressions are indeed free from suh singular behavior.It is important to emphasize that, in this formulation, both the renormalized CKMmatrix V and its bare ounterpart V0 = V � ÆV are expliitly gauge independent andsatisfy the unitarity onstraints V yV = 1 and V y0 V0 = 1, respetively, through the orderof the alulation. The expliit onstrution of the CKM ounterterm matrix, as given inEqs. (57) and (62), satisfying this important property, is the main result of this setion.21



V. CONCLUSIONSIn this paper we have presented a natural on-shell framework to renormalize the CKMmatrix at the one-loop level. We have shown the gauge independene of the sm ontributionsand disussed their anellation in two equivalent formulations: the �rst one involves non-diagonal mass ounterterms, while the seond one is based on a CKM ounterterm matrix.We have also established the important fat that the proof of gauge independene and�niteness of the remaining one-loop orretions to the W ! qi + qj amplitude an beredued to the single-generation ase. The analysis has led us to an expliit expressionfor the CKM ounterterm matrix ÆVij, given in Eq. (62), that satis�es the basi property ofgauge independene and is onsistent with the unitarity of both V0 = V �ÆV and V , the bareand renormalized CKM matries. Furthermore, it leads to renormalized amplitudes that arenon-singular in the limit in whih any two fermions beome mass degenerate. Beause V is�nite, gauge independent, and unitary, its elements an be identi�ed with the experimentallymeasured CKM matrix elements.AknowledgmentsWe are grateful to the Max Plank Institute for Physis in Munih for the hospitalityduring a visit when this manusript was �nalized. The work of B.A.K. was supported in partby the German Researh Foundation through the Collaborative Researh Center No. 676Partiles, Strings and the Early Universe|the Struture of Matter and Spae-Time. Thework of A.S. was supported in part by the Alexander von Humboldt Foundation through theHumboldt Reseah Award No. IV USA 1051120 USS and by the National Siene Foundationthrough Grant No. PHY-0245068.APPENDIX A: RESIDUAL SELF-MASS CORRECTIONS CijIn this appendix we evaluate the �nite and gauge-independent residual ontributions�Cijui�a�vj�� to the W ! qi + qj amplitude that are not removed in our mass renormal-ization presription due to the restritions imposed by the hermitiity of the mass matries.Inserting Eq. (29) and its ounterpart for down-quark matries in the expression for theW ! qi + qj amplitude and implementing our mass renormalization subtrations, we �nd22



the residual sm orretions Cij to beCij = g232�2 (VilV yli0Vi0jm2i �m2i0 ��m2i +m2i0 + m2im2i0m2W � (I(p2; ml)� J(p2; ml))� m2l2m2W �m2i +m2i0� (I(p2; ml) + J(p2; ml))�p2=m2ip2=m2i0+ Vij0V yj0kVkjm2j �m2j0 ��m2j +m2j0 + m2jm2j0m2W � (I(p2; mk)� J(p2; mk))� m2k2m2W �m2j +m2j0� (I(p2; mk) + J(p2; mk))�p2=m2jp2=m2j0) ; (A1)where the l and k summations are over l = d; s; b and k = u; ; t, and it is understood thatonly terms with (i; i0) = (; u); (t; u); (t; ) or (j 0; j) = (d; s); (d; b); (s; b) are inluded.For the reader's onveniene, we list ompat analyti results for the funtions I(p2; ml)and J(p2; ml) de�ned in Eq. (20):I(p2; ml) = �2 + p2 +m2l �m2W2p2 ln m2lm2W � 2mlmWp2 f �p2 �m2l �m2W2mlmW � ;J(p2; ml) = 12p2 ��m2l +m2W +m2l ln m2lm2W + �p2 �m2l +m2W � I(p2; ml)� ; (A2)where f(x) = 8>>>><>>>>:px2 � 1 osh�1(�x) if x � �1,�p1� x2 os�1(�x) if �1 < x � 1,px2 � 1 �� osh�1 x+ i�� if x > 1. (A3)In pratial appliations of Eq. (A2), one enounters strong numerial anellations betweenthe various terms when jp2j � m2W . It is then advantageous to employ the expansions ofI(p2; ml) and J(p2; ml) in p2 about p2 = 0,I(p2; ml) = �1 + m2lm2l �m2W ln m2lm2W + p2(m2l �m2W )2 ��m2l +m2W2 + m2lm2Wm2l �m2W ln m2lm2W �+O �(p2)2� ;J(p2; ml) = 12 (m2l �m2W ) ��m2l + 3m2W2 + m2l (m2l � 2m2W )m2l �m2W ln m2lm2W �+ p2(m2l �m2W )3 ��m4l + 5m2lm2W + 2m4W6 � m2lm4Wm2l �m2W ln m2lm2W �+O �(p2)2� : (A4)23



TABLE I: Residual self-mass orretions Cij as evaluated from Eq. (A1) in the form (ReCij; ImCij).�����i j d s bu (0; 0) (�1:6 � 10�12;�5:2� 10�13) (�3:2 � 10�9; 4:9 � 10�9) (4:5 � 10�13; 1:2� 10�13) (4:9 � 10�13; 1:5 � 10�13) (�6:1� 10�8; 2:1 � 10�12)t (�1:5� 10�9;�7:9� 10�8) (�1:6� 10�7; 3:7 � 10�7) (�4:0 � 10�9; 1:6 � 10�8)The standard parameterization of the CKM matrix, in terms of the three angles �12, �23,and �13 and the phase Æ, reads [2℄:V = 0BBB� Vud Vus VubVd Vs VbVtd Vts Vtb 1CCCA = 0BBB� 1213 s1213 s13e�iÆ�s1223 � 12s23s13eiÆ 1223 � s12s23s13eiÆ s2313s12s23 � 1223s13eiÆ �12s23 � s1223s13eiÆ 2313 1CCCA ; (A5)where sij = sin �ij and ij = os �ij. An equivalent set of four real parameters are �, A, �,and �, whih are related to �12, �23, �13, and Æ as [2℄s12 = �;s23 = A�2;s13eiÆ = A�3(�+ i�)p1� A2�4p1� �2 [1� A2�4(� + i�)℄ : (A6)In our numerial evaluation of Eq. (A1), we identify g2=(4�) = �̂(mZ)= sin2 �̂W (mZ) andemploy the values �̂(mZ) = 1=127:918 and sin2 �̂W (mZ) = 0:23122 [2℄. We take theW -bosonmass to be mW = 80:403 GeV [2℄. As for the quark masses, we use the values mu = 62 MeV,md = 83 MeV, ms = 215 MeV, m = 1:35 GeV, mb = 4:5 GeV [3℄ and mt = 172:7 GeV[2℄; in the ase of the lighter quarks, these orrespond to e�etive masses that are espeiallyappropriate for eletroweak analyses like ours. We evaluate the CKM matrix elements fromEqs. (A5) and (A6) using the values � = 0:2272, A = 0:818, � = 0:221, and � = 0:340 [2℄.In Table I, we present our results for the residual sm orretions Cij. As explained inSe. III, in our renormalization presription Cud = 0. As shown in Table I, for the otherW ! qi + qj amplitudes, the real and imaginary parts of Cij are very small. For example,the frational orretions of ReCij with respet to the real parts of the orresponding Born24



amplitude ouplings, namely ReCij=ReVij, reah a maximum value of 4�10�6 for t!W+sand are muh smaller for several other ases. It is important to note that the Cij are non-singular in the limits mi0 ! mi or mj0 ! mj, sine the (m2i �m2i0)�1 and �m2j �m2j0��1singularities are aneled by the subtration proedure in Eq. (A1). For this reason, asalso explained in Se. III, these residual orretions an be regarded as additional �nite andgauge-independent wfr ontributions, whih happen to be very small.APPENDIX B: CASE (hL)ii 6= 0Sine the diagonal elements (hL)ii do not ontribute to the diagonalization ondition ofEq. (50), in the analysis of Se. IV, we hose (hL)ii = 0. We now show that the alternativehoie (hL)ii 6= 0 has no physial e�et on the Wqiqj oupling though O(g2). As explainedin Se. IV, the biunitary transformation of Eqs. (44) and (45) leads to a Wqiqj interationdesribed through terms of O(g2) by Eqs. (56) and (57). Writing these expressions inomponent form and separating out the ontributions involving the diagonal elements of hUand hD, we obtain an expression proportional to ̂(U)i hVij � i �hUL�ii Vij + Viji �hDL �jji �a� ̂(D)j ; (B1)whih an be written as ̂(U)i �1� i �hUL�ii�Vij h1 + i �hDL �jji �a� ̂(D)j +O(g4): (B2)In turn, this an be expressed as ̂(U)i exp ��i �hUL�ii�Vij exp hi �hDL �jji �a� ̂(D)j +O(g4): (B3)Sine hUL and hDL are hermitian, the diagonal elements are real. Thus exp ��i �hUL�ii� andexp hi �hDL �jji are multipliative phases that an be absorbed in rede�nitions of the  ̂(U)j and ̂(D)j �elds.
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