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Abstract

We present an explicit on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing matrix at the one-loop level. It is based on a novel procedure to separate the
external-leg mixing corrections into gauge-independent self-mass (sm) and gauge-dependent wave-
function renormalization contributions, and to adjust non-diagonal mass counterterm matrices to
cancel all the divergent sm contributions, and also their finite parts subject to constraints imposed
by the hermiticity of the mass matrices. It is also shown that the proof of gauge independence and
finiteness of the remaining one-loop corrections to W — ¢; + g; reduces to that in the unmixed,
single-generation case. Diagonalization of the complete mass matrices leads then to an explicit
expression for the CKM counterterm matrix, which is gauge independent, preserves unitarity, and
leads to renormalized amplitudes that are non-singular in the limit in which any two fermions

become mass degenerate.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) [1] quark mixing matrix is one of the basic
pillars of the electroweak sector of the Standard Model (SM). In fact, the detailed determi-
nation of this matrix is one of the major aims of recent experiments carried out at the B
factories [2], as well as the objective of a wide range of theoretical studies [2, 13, 4].

An important theoretical problem associated with the CKM matrix is its renormalization.
An early discussion, in the two-generation framework, was presented in Ref. [3], which
focused mostly on the removal of the ultraviolet (UV) divergent contributions. In recent
years there have been a number of interesting analyses that address the renormalization of
both the UV-divergent and finite contributions at various levels of generality and complexity
[6].

In Ref. [7], we outlined an explicit and direct on-shell framework to renormalize the CKM
matrix at the one-loop level, which can be regarded as a simple generalization of Feynman’s
approach in Quantum Electrodynamics (QED) [§].

In the present paper, we present a detailed discussion of this renormalization framework
and of the calculations underpinning its implementation. We recall that, in QED, the self-
energy insertion in an external leg involving an outgoing fermion is of the form
p— (1)
X(p) = A+ B(p—m) + Zen(p), (2)

AM'E = T(p)S(p)

where u(p) is the spinor of the external particle, X(p) the self-energy, i(p—m) " the particle’s
propagator, A and B UV-divergent constants, and g, (p) the finite part that behaves as
Ygn(p) o (p —m)* in the neighborhood of p = m. The contribution of A to Eq. () exhibits
a pole as p — m, while the term proportional to B is regular in this limit and that involving
Yn(p) clearly vanishes. We may refer to A and B as the “self-mass” (sm) and “wave-function
renormalization” (wfr) contributions, respectively. The contribution A is gauge independent
and is canceled by the mass counterterm. The contribution B is in general gauge dependent
but, since the (p — m) factor cancels the propagator’s singularity, in Feynman’s approach
it is combined with the proper vertex diagrams leading to a gauge-independent result. In
other formulations, B in Eq. (2] is canceled by an explicit field renormalization counterterm

07, which also modifies the tree-level vertex coupling and, consequently, transfers once more



this contribution to the vertex amplitude.
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FIG. 1: Fermion self-energy diagrams.

In the case of the CKM matrix we encounter off-diagonal as well as diagonal external-
leg contributions generated by virtual effects involving W= bosons and charged Goldstone
bosons (¢*). As a consequence, the self-energy corrections to an external leg involving an

outgoing quark is of the form

1
p—mi

AMleg = u; (p)zii’ (Zb) (3)

i’
where 7 denotes the external quark of momentum p and mass m;, i’ the initial virtual quark of
mass m;, i(p—mi/)_l is the corresponding propagator, and Yy (p) the self-energy (see Fig. [I)).
In Fig. D(b) we have included the tadpole diagram involving a virtual ¢* boson because its
contribution is necessary to remove the gauge dependence in the diagonal contributions of
Fig. [(a).

There are other contributions involving virtual effects of Z° bosons, neutral Goldstone
bosons (¢°), photons (7), and Higgs bosons (H) as well as additional tadpole diagrams, but
all of these lead to diagonal expressions of the usual kind. An analytic expression for the
full result may be found, e.g., in Ref. [9].

In Sec. [TAl we analyze in detail the contributions arising from the diagrams in Fig. [
After carrying out the Dirac algebra in a way that treats the ¢ and ' quarks on an equal
footing, we find that the ¥ (p) contributions can be classified as follows: (i) terms with a
left factor (p — m;); (ii) terms with a right factor (p — my); (iii) terms with a left factor

(p —m;) and a right factor (p —my); and (iv) constant terms not involving p.
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We note that, in Eq. (B), 3z (p) is inserted between the external-quark spinor %;(p) and
the virtual-quark propagator z(p —my )L Tt follows that off-diagonal contributions of class
(i) vanish in Eq. (@), since (p — my)~" is non-singular for i’ # i, while @;(p)(p — m;) = 0.
However, there are in general diagonal contributions of class (i), since for i’ = i the factor
(p — m;) may cancel against the propagator in Eq. (). In contributions of class (ii), the
right factor ( — my) cancels the propagator in Eq. (). In analogy with the cancellation
of Yn(p) in Egs. (1) and (), contributions of class (iii) vanish in both the diagonal and
off-diagonal cases, since the right factor ( — my) cancels the propagator in Eq. (), and
again ;(p)(p —m;) = 0. A common feature of all the non-vanishing contributions to Eq. (3)
arising from classes (i) and (ii) is that the virtual-quark propagator i(j — my)~" has been
canceled in both the diagonal (i = i) and off-diagonal (i # i) cases and, as a consequence,
they are non-singular as p — my. Thus, they can be suitably combined with the proper
vertex diagrams, in analogy with B in QED. In contrast, the contributions of class (iv) to

Eq. @) retain the virtual-quark propagator i(p — my) !

and are singular in this limit.
In Sec. [TAl we show that, in our formulation, the contributions to Eq. [B) of class (iv)
are gauge independent, while those arising from classes (i) and (ii) contain gauge-dependent

pieces.

FIG. 2: Proper Wg;q; vertex diagrams.

In analogy with the QED case, we identify class (iv) and classes (i) and (ii) as self-mass
(sm) and wave-function renormalization (wfr) contributions, respectively. They are listed
explicitly in Secs. [IBl and [TCl In Sec. [T, we also discuss important simplifications that
occur in the wir contributions to the physical W — ¢; + g; amplitude. In particular, we

show that the gauge-dependent and the UV-divergent parts of these contributions depend
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only on the external-quark masses m; and m; and do not involve the CKM matrix elements,
except for an overall factor Vj;, in analogy with the proper vertex diagrams depicted in
Fig. Bl This result implies that, once the divergent sm contributions are removed in the
renormalization process, the proof of finiteness and gauge independence of the remaining
one-loop corrections to the W — ¢; +; amplitude is the same as in the much simpler case
of a hypothetical single generation made of the ¢+ and j quarks with unit CKM coupling.

By contrast, since the sm contributions to Eq. (Il) are proportional to (p — my ), they
have a structure unsuitable for the combination with vertex diagrams. Thus, one expects
such terms to be separately gauge independent, as we find.

The plan of this paper is the following. In Sec. [l we evaluate the diagrams depicted in
Fig.Mand prove the various properties described above. In Sec. Il we study the cancellation
of sm contributions by suitably adjusting the mass counterterms, subject to restrictions
imposed by hermiticity. In Sec. [V] we discuss the diagonalization of the complete mass
matrix, i.e. the renormalized plus counterterm mass matrices, and show explicitly how this
procedure generates a CKM counterterm matrix in a manner that preserves unitarity and

gauge independence. Section [V] contains our conclusions.

IT. EVALUATION OF 3X;(p) AND GAUGE INDEPENDENCE OF THE SELF-
MASS CONTRIBUTIONS

In subsection [TAlwe evaluate the one-loop diagrams of Fig.[Il explain the separation into
wir and sm amplitudes, and show explicitly the cancellation of gauge dependences in the
latter. Following standard conventions, ¥;; (p) is defined as 7 times the diagrams of Fig. [I.

We show how the various contributions can be classified in the categories (i)—(iv) described
in Sec. [ As explained in Sec. [, terms of class (iii) give a vanishing contribution to the
correction AME associated with an external leg, while those belonging to classes (i) and (ii)
effectively cancel the virtual-quark propagator i(p—m;)~'. They naturally combine with the
proper vertex diagrams and are identified with wfr contributions. They are generally gauge
dependent. By contrast, in our formulation, the contributions of class (iv) to AMEZ?’,g are
gauge independent and proportional to z(p— my)~", with a cofactor that is independent of P

although it depends on the chiral projectors a.. They are identified with sm contributions.

The sm and wfr contributions to AM® are given explicitly in subsections [TBl and [TCl



Although the main focus of this paper is the study of the sm contributions, in Sec. [LCl
we also digress on the further simplifications of the wfr contributions that occur in the

important W — ¢; + g, amplitude.

A. Evaluation of X (p)

For definiteness, we first consider the case in which ¢ and i’ in Fig. [{a) are up-type
quarks and [ is a down-type quark. Following standard conventions, we denote by Vj; the
CKM matrix element involving the up-type quark i and the down-type quark [. Simple
modifications in other cases are discussed in Sec.

Writing the WW-boson propagator in the ¢ gauge as

W — _ Guv — kukV(l - gW)/(I‘C2 - m%/vfw) (4)
p — Tt k2 — m%/v ’

where &y is the gauge parameter, we first consider the contribution to Fig.[(a) of the second,
&w-dependent term. We call this contribution MGP (W), where the notation reminds us

that this is the gauge-dependent part of the W -boson contribution. After some elementary

algebra, we find

1

(k* —miy) (k* — miyw)

<y |~k p— it (p=my G-m)a. 6

2
Mi(i}’D(W) = %Wz‘/}zf(l—fw)/

1
p—F—m
where ay = (1+75)/2, [ = p*" [d"k/(2m)", and p is the 't Hooft mass scale. The term

proportional to § cancels, since the integrand is odd under § — —§, and the m; term cancels

because of the chiral projectors. We rewrite pa_ as follows:

2pa_ = pa_ +asp

= (p — mi)a, + a+(p — mi/) + mya_ +myay, (6)

so that the ¢ and ¢’ quarks are treated on an equal footing. In the terms not involving my,
we employ the unitarity relation,

VEM} = Oyt (7)



and MSP (W) becomes

MPW) = L1~ &) / o (22 s {_52 las(p— mi) + (— mi)a_
o+ Vil = m) i} ®)

The tadpole diagram of Fig. l(b) contributes

g*m; 5 1
4m%,[, S A m%,Vfw.

Mit;d(@ =

Its combination with the term proportional to d;;m; in Eq. () gives

gimi s L

- 2
dmy,

, (10)

n k? — mIQ/V
a gauge-independent amplitude. Thus,

92mi5__ 1
T W
9 1
- S =) [ iy 4 ) + (= mia]

M (W) + M3 (9) =

9_2. Tt — 1 a - m ; —my)a
+ 2‘/21%1(1 5W)/n(k2 2 — 2 &) +(p Z)p—k—mz(p Na_. (11)

Using the relations

as(p—m) = (P —mi)a- +mia_ — ma,,

(¢ —mi)a— = ar(p —my) +miay —ma_, (12)

the last term of Eq. (II) may be written as

Mlast _ 9_2 g VT 1— 1 —m. . —
i = G VaVu(l=&w) n (k2 —miy,) (k2 — m%yfw)[(p i)t =]
K e (= my) + maa, — ma_]. (13)
p—F—m y

On the other hand, the contribution M (¢) to diagram [M(a) arising from the ¢* boson is

2
M (¢) = =—5VaV, | 5———=(mia_ — —(myay — ). 14
9)= s ViV | o (e — i) s —ma ). (14
Its combination with the term proportional to
1
(mia_ —myay) (mypay —mya_) (15)

p—F—m
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in Eq. (I3) leads to a gauge-independent amplitude.

Combining these results, we have

GD tad g_Qmi 1
Mg (W) + Mg(6) + Mg (9) = = —0ir | 75—
w n w
1

p—F—m
9 1
~ el =6 | G gl )+ (=

w mw&W
1

g_ Vi = —m;)a ;a — My
+ 9 Vzl‘/zi/(l fw)/ (k2 _ m%/[/) (k2 — m%/[/fw) |:(¢ z) —p _ k —my +(¢ ] )
+ (p—mi)a a.(p—my)| . (16)

e
1
V;zV} ’ / ———(mija_ — myay) (mypay —mya_)
2 v k2 —mi,

— )+ ( —
MGy — Mya_ m;a_ —may)————
p k — RS 3 + p _ k —my
The contribution of the gauge-independent part of the W-boson propagator, i.e. the first
term in Eq. (4), leads to
2
GI g t 1 1

M (W) = =5 VaViy /n mﬂlw“m%a—- (17)

In order to classify the various contributions according to the discussion of Sec.[lL we evaluate

the integral that appears in Eq. (I7) and in the second term of Eq. (I0):

1
K(p,m) = /n (k2 —miy) (p — § — )

- 16i7r2 {p[A + [(pza my) — J(p2, my)] + my[2A + [(pZ, ml)]} , (18)
where
A= ni4+%[7E—ln(4ﬂ)]+lnm—JV, (19)

mix +mi, (1 —x) — p?x(l —x) —ie

(102 m) 362 m)} = [ dr {1iapn : e

myy

Next, we insert Eq. (I8)) into the second term of Eq. (I8) and into Eq. (I7) and finally
add Eqs. (I6) and (I7). Treating the terms involving pa_ and pa, in the symmetric way
explained before Eq. (), evaluating the integral [ (k* — m%,)"" and employing once more

the unitarity relation () in some of the m;-independent terms, we find that the complete



contribution from Figs. [l(a) and (b) can be expressed in the form:

MY = MSP (W) + MSHW) + M24(p) + My ()

3 i1’ i1’ i’

o2 2
_ i m;

w
2

+ Gy 0+ M0 J3A+ 102, ) + (92, )]
— [mia_ +myay + %(mia+ + mi/a_)] [I(p?,my) — J(p*,my)]
_ ﬁ [mzml/((p —my)ay 4+ a_(p —my)) + m?((p —mg)a_ +ay(p— my))]

X [A+ I(p*,my) — J(p*,my)]

~l(p = o+ s = ] [+ T ) — TG m)

+ 2871'2(1 - gW)/; (k2 — mIQ/V) (]];2 _ m%yfw) [CL+ (p - mi’) + (p - mi)af]

| 1
— 1672 (1 — &w) /n (k2 = m2,) (k* — m2, &)

1
X [(p — mi)a_mmr(p —my) + (p — mi)a_

_
p—F—m

(= )y )| | 21)

(myay —mya_)

The last two terms in Eq. (2I) are gauge dependent and include a left factor ( —m;) or a
right factor (p — my) or both. Thus, they belong to the classes (i), (ii), or (iii) discussed in

Sec. [l The integrals in these two terms can readily be evaluated using the identity

1— &y 1 { (. 1 ] (22)
0 ) (2~ iG] iy (2w, 2w
and Eq. (I8). We find
. 1 1 1 1
1
— ip2
L(% my, &w) = 11677 (1 — gW)/n (k2 — m%v) (k2 — m%yfw) (p —F - m;)
1 1 miz +mylw(l — z) — p?x(l — ) —ie
B m—%v/o drfp(l =) +miln mix +my (1 —x) —p?e(l —x) —ic (24)

If 7 is an outgoing, on-shell up-type quark, the external-leg amplitude is obtained by
multiplying Eq. (2I]) on the left by %;(p), the spinor of the outgoing quark, and on the right
by z(p — my)~"', the propagator of the initial virtual quark. Thus, the relevant amplitude

9



associated with the external leg is

AM'E = 7, (p) M ! . 25

M =T M (25)
This brings about important simplifications. Using the well-known rules to treat indeter-
minate factors of the form @;(p)(p — m;)(p — ms)~" [8, 110], one readily finds the following

identities for both diagonal (i' = i) and off-diagonal (i' # i) contributions:

wi(p)[(p — mi)as + az(p — my)] = it (p)as, (26)

p—ms
i (p) (p — mi)Or (p — mi/)p _Zmi, — 0, (27)

w;(p)[(p — mi)a—L(p, mu, Ew) (miay — mya—) + (mia— — mya) L(p, mu, Ew)a (P — mi)]

S i (p) (mea— — myay ) L(p, my, Ew)ay, (28)

7
pm

where O is a generic Dirac operator that is regular in the limit p — m; and L(p, my, §w) is

the integral defined in Eq. (24). These identities tell us that terms in MZ.(Z}) of class (iii) give
a vanishing contribution to AM (cf. Bq. 7)), while those of classes (i) and (ii) combine
to cancel the (p —mgy)~" factor in Eq. (23) (cf. Egs. (26) and (28)).

In the second and third terms of Eq. (21]), we expand the functions I(p?, m;) and J(p?, m;)
about p* = m7. The lowest-order term, with p* set equal to m;, is independent of p and,
therefore, belongs the class (iv). The same is true of the other contributions in the first two
terms of Eq. 2I). They lead to a multiple of i(p — my)~" in Eq. [23) with a cofactor that

involves the chiral projectors a., but is independent of p. Thus, they belong to class (iv)

2

and are identified as the sm contributions. The terms of O (p?> — m?) in the expansions of

I(p?,my;) and J(p?, m;) give only diagonal contributions (i’ = i) to Eq. (23], belong to class

(i) because p* —m; = (p — m;)(pp+m;), and cancel the (p —m;)~" factor in Eq. (23). Terms

leg
i "

of O ((p2 — m?)2> and higher in this expansion give vanishing contributions to AM

As mentioned before, the terms of classes (i) and (ii) in MZ-(;) (including those generated
by the expansions of I(p* m;) and J(p?,m;)) are identified as wir contributions. In contrast
to the sm contributions, they contain gauge-dependent parts (cf. the last two terms in

Eq. (2I))). Both the sm and wfr contributions contain UV divergences.

10



B. Self~-Mass Contributions

The sm contributions AM;‘;,g’sm to the external-leg correction for an outgoing on-shell

up-type quark i are obtained by inserting the first three terms of Eq. (ZI)) with p* set equal
to m? into Eq. (28):

2
AMi.?,g’sm = V;ZVEZ u;(p ){mZ (1 + m; A)

32 2 2myy,

(mza +myay) [3A +1 (mf,ml) +J (m?,ml)]

2myy

(2 mi) — 7 (m? )] )

1
pomi

The amplitudes I (m?, m;) and J (m?,m;), defined in Eq. (20)), are real except when m; = m;

" 2m
[ _+myag + Z—mz(mzaJr +mya_ )]
m?

(29)

corresponding to an external on-shell top quark. The diagonal contributions in this case
include imaginary parts that cannot be removed by a mass counterterm, in conjunction
with a singular propagator. The problem arises because, in the usual calculation of its decay
rate, the top quark is treated as an asymptotic state, rather than an unstable particle. In
analogy with the case of the Z° boson, its proper treatment examines the resonance region
in the virtual propagation of the top quark between its production and decay vertices. One
finds that, in the narrow-width approximation, in which contributions of next-to-next-to-
leading order are neglected, Im ¥(m;) is related to the total decay width I'; by the expression
Im 3(m;) = =4[l — Re X'(my)] and provides the iI'; term in the resonance amplitude. The
latter is proportional to i(p—m,+i';) "' [I—Re ¥'(m;)] ", where the first factor is the resonant
propagator and the second one the wifr term that contributes to the top-quark couplings to
the external particles in the production and decay vertices. Since the imaginary parts of
I (m?,m;) and J (m?,m;) in the diagonal top-quark contributions are effectively absorbed
in the ¢I'; term in the resonance propagator, we remove them from Eq. (29]). Specifically,
in the diagonal contributions to Eq. (29) involving an external top quark, I (m?, m;) and
J (m?,my) are replaced by their real parts.

We see that Eq. (29)) satisfies the basic properties explained before: it is a multiple of
the virtual-quark propagator z(p — my)~" with a cofactor that is gauge and momentum

independent. As expected in a chiral theory, it involves the a1 projectors.
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C. Wave-Function Renormalization Contributions

For completeness, we exhibit the wir contributions AME?,g’Wﬁ" to the external-leg correc-
tion. They are obtained by inserting the last four terms of Eq. (21]) into Eq. (25), employing
the identities of Eqs. (28)-(28), and incorporating the diagonal contributions arising from

the expansions of I(p?,m;) and J(p? m;) in the second and third terms of Eq. (2I):

2
AMENT — 3;2 ViVl (p) {[I (m?,my) = J (m7,m)] ax

b mmea +miay) [A+ T (mdmy) = 7 (2, m)]
W
. m l2 / 2 / m?
B gt 1 () + 1 ()] + <1+2m%v )
1 () = (o) + [e (84 3w = 1) +1] o,
— N(mi,my, Ew)ay}, (30)

where

de{1l;z}x(1 — x)

2r+mi, (1 —2) —miz(l —x) —ic

(31)

I' (mZ,my); J (m3 /
(7 () 7 (n .
are the derivatives of I(p?,m;) and J(p* m;) with respect to p?, evaluated at p*> = m?, and

miz +my&w(l —x) —miz(l —z) —ie

1 1
N(m;,my, {w) = m—2/ dx [mf(l —r) — ml2] In
0

2 mix +mi, (1 —x) —miz(l —z) —ic

(32)
The previous to last term in Eq. (80) was obtained by using Eqs. (23) and (28]), and combin-
ing the result with other A-dependent contributions. The last term in Eq. (80) was obtained
by using Eqs. (24) and (28)), and carrying out some elementary Dirac algebra. Employing
Eq. (@) in m;-independent terms, we see that the UV-divergent part in Eq. (30) is given by

2 2
WA oo+ (& + g ) as. (33)

which contains both diagonal and off-diagonal pieces. In particular, the diagonal part of

I fi
AMZflgwrdlv _ 32 f

il lz’

Eq. (B3) contains a gauge-dependent contribution, while the off-diagonal term is gauge
independent.

We now digress on the further simplifications that take place when Eq. (B0) is inserted
in the physical W — ¢; + g; amplitude. In this case, Eq. (B0) is multiplied on the right
by (—ig/v/2)Vijv"a_v;e,, where v; is the spinor associated with the g, quark and € is the

12



polarization four-vector of the W boson. Because of the chiral projectors, the contribution
of the term proportional to (m;m;/2m?,)a_[A + I — J| vanishes. Next, we note that the
first, second, fifth, and sixth terms between curly brackets in Eq. ([B0) are independent of
i'. Denoting these contributions as f(m;, m;) and employing the unitarity relation (), we
have V;-ZVEI,V;-ij(mZ-,mZ) = Vi f(mi, my) = Vij f(mi,m;). Thus, the contributions of these
terms to the W — ¢;+¢q; amplitude are proportional to V;; and depend only on the external-
fermion masses m; and m;. The same is true of the corresponding contributions arising from
the g; external leg. We emphasize that this result includes all the gauge-dependent and all
the UV-divergent contributions in Eq. (B0). This important property is shared by the proper
vertex diagrams of Fig. 2, which are also proportional to V;; and depend only on m; and m;.
As explained in Sec. [ this property implies that, once the divergent sm contributions are
canceled by renormalization, the proof of finiteness and gauge independence of the remaining
one-loop corrections to the W — ¢; + q; amplitude is the same as in the single-generation
case.

Although the contributions to the W — ¢; + g; amplitude from the terms involving
I' (m?,my) and J' (m?,m;) in Eq. [B0) are not simplified by the unitarity relations without
appealing to suitable approximations, we note that they are finite and gauge independent.
It is important to point out that the simplifications we encountered in the W — ¢; +q; am-

plitude depend crucially on the fact that the wfr terms cancel the virtual-quark propagator

Z(p — mi/)’l.

D. Other Cases

Equations (29) and (30) exhibit the sm and wfr contributions to the external-leg correc-
tions in the case of an outgoing on-shell up-type quark i. Here ¢’ labels the initial virtual
up-type quark in Fig. {l(a) and [ the down-type quark in the loop.

The corresponding expressions for an incoming up-type quark can be gleaned by multi-
plying Eq. (2I) by uy(p) on the right and by i(p — m;)~" on the left. Interchanging i and
i', it is easy to see that the sm contributions for an incoming up-type quark are obtained
from Eq. (29) by substituting V;ﬂ/g, — V;fﬂ/}}, interchanging a_ <> a, between the curly
brackets, and multiplying the resulting expression by u;(p) on the right and by (p — my )~

on the left. Similarly, the wave-function renormalization for an incoming up-type quark is

13



obtained from Eq. (80) by substituting Vil‘/;z, — V}lel}, interchanging a_ <+ a, between the
curly brackets, and multiplying the resulting expression by u;(p) on the right. The expres-
sions for an incoming (outgoing) up-type antiquark are the same as those for an outgoing
(incoming) up-type quark with the substitution u;(p) — v;(—p), the negative-energy spinor.
In the case of antiquarks, p in these expressions is identified with the four-momentum in
the direction of the arrows in the Feynman diagrams, which is minus the four-momentum of
the antiparticle. Finally, the expression for an outgoing down-type quark is obtained from
that of an outgoing up-type quark by substituting V;-ZV;, — V;EV}]-/, where j and j' denote
the on-shell and virtual down-type quarks, respectively, and [ the up-type quark in the loop.
The other down-type-quark amplitudes are obtained from the corresponding up-type-quark

expressions in a similar manner.

IIT. MASS RENORMALIZATION

In order to generate mass counterterms suitable for the renormalization of the sm con-
tributions shown in Eq. (29), we may proceed as follows. In the weak-eigenstate basis, the
bare mass matrices mgQ for the up- and down-type quarks (@ = U, D) are non-diagonal, and
the corresponding terms in the Lagrangian density may be written as —E}?m@%’ﬁ + h.c.,
where 1/)'LQ and 1/);? are left- and right-handed column spinors that include the three up-type
(or down-type) quarks. Decomposing mi® = m/® —5m'?, where m/@ and 6m/@ are identified
as the renormalized and counterterm mass matrices, we envisage a biunitary transformation
of the quark fields that diagonalizes m'?, leading to a renormalized mass matrix m® that is
diagonal, real and endowed with positive entries. The same operation transforms ém'® into
a new matrix dm® which, in general, is non-diagonal. In the new framework, which we may

identify as the mass-eigenstate basis, the mass term is given by
— (m —omTa_ — 5m(+)a+) V= —tp (m - 6m(_)) Y — g (m - 6m(+)) Yr, (34)

where m is real, diagonal, and positive, and §m(~) and ém*) are arbitrary non-diagonal

matrices subject to the hermiticity constraint
om) = smt, (35)

This constraint follows from the requirement that the mass terms in the Lagrangian density,

displayed in Eq. (B4]), must be hermitian. In order to simplify the notation, we do not
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exhibit the label @, but it is understood that Eq. (34) represents two different mass matrices
involving the up- and down-type quarks.

As is customary, the mass counterterms are included in the interaction Lagrangian. Their
contribution to Eq. (23] is given by

;
pmi

and (sz(.;,r ) to cancel, as much as possible, the sm contributions given

iu;(p) (5m Ja_ +6m M a+) (36)

We now adjust 5mz(.z.7)

in Eq. (29). The cancellation of the UV-divergent parts is achieved by choosing

2.
(5mi57) . = Gamm (Bt =3Vt
2
g my
(5m40) . = Gy (Bmd = 3VViym?) (57)

It is important to note that

(mii),, = (6 (33)
so that 6m£f{v) and 5méi_v) satisfy the hermiticity requirement of Eq. (35).

In order to discuss the cancellation of the finite parts, we call 77’ channel the amplitude in
which 7 labels the outgoing, on-shell up-type quark and i’ the initial, virtual one (cf. Fig. ).
Then the ¢'i channel is the amplitude in which the roles are reversed: ¢’ is the outgoing,
on-shell quark, while ¢ is the initial, virtual one.

Comparing Eq. (29) with Eq. (86), we see that a complete cancellation of the sm correc-

tions for an outgoing up-type quark or an incoming up-type antiquark in the 7i’ channel is

achieved by adjusting the mass counterterms according to

-~ g*m; m?
m2
+ V;'l‘/;/ (1 22' > J }
myy
2 2
g my m;
5mz(;'r) = o2 {5ii' (1 + 2mwA> -V V}I, [3A +1 (m ml) +J (m?,ml)]

2

my;
+ VaVih (1 + 2m€v> (1 (m2,m)) —

2
m
2
My
J (m;

)]} (39)

Once 5mu, and 5mu, are fixed, the mass counterterms for the reverse i’ channel are

determined by the hermiticity condition of Eq. (B3]), to wit
6m£,;) = 5mz(-;,r)*, 6m£,4i—) = 5mz(-i7)*. (40)
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Since the functions I and J in Eq. (29) are evaluated at p?> = m? in the 4i' channel and

at p?> = m?

in the i'i channel, we see that the mass counterterms in Eqs. (39) and (40)
cannot remove completely the sm contributions in both amplitudes. Taking into account
this restriction, we choose the following renormalization prescription.

Writing the mass counterterm matrix for the up-type quark in the explicit form

OMyy OMye OMyy
OMey OMee OMer | s (41)

5mm 5mtc 5mtt

Ja_ + 6m M a+ (1, = u, ¢, t), we choose dmy,, dm,., and dmy, to cancel,

where dm;; = 5m y
as is customary, all the diagonal contributions in Eq. (29). For the non-diagonal entries, we
choose dmye, dmy;, and dme, to cancel completely the contributions in Eq. (29) corresponding
to the uc, ut, and ct channels, respectively. The remaining mass counterterms, 0m¢,, 0my,,
and dmy, are then fixed by the hermiticity condition in Eq. (35). This implies that the finite
parts of the sm corrections in the cu, tu, and tc channels are not fully canceled. However,
after the mass renormalization is implemented, the residual contributions from Eq. (29) to
the W — ¢; +q; amplitudes are finite, gauge independent, and very small in magnitude (see
Appendix [A]). In fact, they are of second (first) order in the small ratios m?/m3y, (¢ # t)
when the top quark is not (is) the external particle and, furthermore, they include small
CKM matrix elements.

An analogous approach is followed for the down-type-quark mass counterterms. We call
j'7 channel the amplitude involving an incoming, on-shell down-type quark j and a virtual
down-type quark j'. In analogy with Eq. (B9), the complete cancellation of the sm corrections

for an incoming down-type quark (or an outgoing down-type antiquark) in the j'j channel

is implemented by choosing:

200, 2 2
oml;) = ﬂ{(g (1+ ™ A) ViV [3A+I(m mg) +J (m3,my)]

3272 2mi, Tom2,
i m;
Vit (1+ 3 ) S b
2 2
o) = 25 { oy (1+2 . A) Vi (384 T (s ) + 7 ()
F Vi (14 - (mz,mo] b (42)
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where [ labels the virtual up-type quark in the self-energy loop.

We emphasize that Eqs. (89) and (@2)) contain all the off-diagonal sm contributions since
they only arise from Fig. [[[a) and the analogous diagrams involving the down-type quarks.
On the other hand, there are many additional diagonal sm contributions from other dia-
grams.

Writing the mass counterterm matrix for the down-type quarks in the form

dMgq OMas OMagp
Omgeq OMss Mgy | > (43)

5mbd 6mbs 5mbb

we choose dmgq, dmgs, and dmy, to cancel the diagonal sm contributions, and dmygg, dmyg,
and dmy, to cancel the corresponding off-diagonal terms. The hermiticity constraint implies
then that the finite parts of the sm contributions are not fully canceled in the reverse ds, db,
and sb channels. We find that, after the mass renormalization is implemented, the residual
contributions involving the top quark in the self-energy loop are of first order in the small
ratios, while the others are of second order. Nonetheless, as shown in Appendix [A] their
contributions to the W' — ¢;+¢q; amplitudes are also very small. In particular, the smallness
in the ds channel arises because some contributions are of second order in mg /mé, (q #1)
and others are proportional to m?/m? with very small CKM coefficients.

We note that, in these renormalization prescriptions, the residual sm contributions are
convergent in the limit m; — m; or my — m;, since the singularities of the virtual propaga-
tors i(p—my) " and i(p—m, )~ are canceled, a characteristic property of wfr contributions.
Thus, these residual sm terms can be regarded as additional finite and gauge-independent
contributions to wave-function renormalization that happen to be numerically very small.

It is also interesting to note that these renormalization prescriptions imply that the sm
contributions are fully canceled when the u or d quarks or antiquarks are the external, on-
shell particles. This is of special interest since V,4, the relevant parameter in the W — u+d

amplitude, is by far the most accurately measured CKM matrix element [3, 4].
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IV. DIAGONALIZATION OF THE MASS COUNTERTERMS AND DERIVA-
TION OF THE CKM COUNTERTERM MATRIX

In Sec. [T, we showed explicitly how the UV-divergent parts of the one-loop sm con-
tributions associated with external quark legs [cf. Fig. [a)] can be canceled by suitably
adjusting the non-diagonal mass counterterm matrix. By imposing on-shell renormalization
conditions, we also showed how the finite parts of such contributions can be canceled up
to the constraints imposed by the hermiticity of the mass matrix. We also recall that, in
our formulation, the sm contributions and, consequently, also the mass counterterms are
explicitly gauge independent.

In this section, we discuss the diagonalization of the complete mass matrix of Eq. (34),
which includes the renormalized and counterterm mass matrices. We show how this proce-
dure generates a CKM counterterm matrix that automatically satisfies the basic properties
of gauge independence and unitarity.

Starting with Eq. (34), we implement a biunitary transformation that diagonalizes the

matrix m — dm(~). Specifically, we consider the transformations
Y = Uiy, (44)
vr = Urtr, (45)
and choose the unitary matrices Uy, and Ug so that
UL (m — smO) Uy, =D, (46)
where D is diagonal and real. From Eq. (6, it follows that
Ul (m = ém1) (m — 6m ) U, = D?, (47)
which, through O(g?), reduces to
Ul (m? — mdom(~) — 5m(_)Tm) U, =D (48)
Writing Uy, = 1 + ihy, where hy, is hermitian and of O(g?), we have
m? +i(m*hy — hym?) — mom) — om I Tm = D2, (49)

where we have neglected terms of O(g*). Recalling that, in our formulation, m is diagonal

(cf. Sec. [[TI)) and taking the i3’ component, Eq. (@9) becomes

mfézzf +1 (Wll2 - mZQ,) (hL)ii’ - mzém(f) - 5m(7)Tmi/ = D1,2622’ (50)

i’ i’
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For diagonal terms, with ¢ = ', the term proportional to (hz);» does not contribute. Fur-
thermore, Eq. (39) tells us that 6ml(l_ ) = 6ml(l+ ). Consequently, for diagonal elements of the
mass counterterm matrix, one has 5mz(-;)a, + 5mgi+)a+ = dm;, where odm; = 6m£;) = 5mz(-z-+).
We note that the hermiticity condition of Eq. ([d0)) implies that dm; is real. Therefore, for

i =1i', Eq. (B0) reduces to m? — 2m;dm; = D? or, equivalently, through O(g?), to

In order to satisfy Eq. (B0) for i # ', we need to cancel the off-diagonal contributions

miémz(-; ) +5mz(.z.7 )Tmi,. This is achieved by adjusting the non-diagonal elements of h;, accord-

ing to
() (+)
. m;om..,” + dm ., my o,
il = =— gz — @7 (52)

where we have employed the hermiticity relation of Eq. (B3). Since the diagonal elements
(hz)i; do not contribute to Eq. (B0), it is convenient to choose (hz); = 0. In Appendix [B] we
show that the alternative selection (h); # 0 has no physical effect on the Wg¢,q; interactions.

Returning to Eq. ([@6]) and writing Ur = 1 + ihg, one finds that hg is obtained from hy,
by substituting dm(™) < §m(*) in Eq. (5Z). Thus,

omy) + omi, m
i(hR)ir = MidMyy 7+ Oy T

(i £ 7). (53)

m —mg
In fact, substituting Uy, = 1 + ih;, and Ur = 1 + ihg in Eq. (@) and employing Eqs. (52))
and (53)), one readily verifies that the Lh.s. of Eq. (@8] is indeed diagonal through O(g?).
Furthermore, one recovers Eq. (BI)).

The above analysis is carried out separately to diagonalize the mass matrices of the up-
and down-type quarks. Thus, we obtain two pairs of hj, and hg matrices: hY and hY for
the up-type quarks and h? and h¥ for the down-type quarks.

Next, we analyze the effect of transformation (44) on the W¢,g; interaction. Following

standard conventions, the latter is given by

9o
Lwqg, = 2

where ¥ (i = u,c,t) and 1/)jD (j = d, s,b) are the fields of the up- and down-type quarks,

G Vi a oPWy + he,, (54)

respectively, Wy is the field that annihilates a "W boson or creates a W~ boson, gq is the

bare SU(2);, coupling, and V;; are the elements of the unitary CKM matrix. Alternatively,
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in matrix notation, we have

—_%

£quqj - \/5

It is important to note that, in the formulation of this paper, in which the UV-divergent

DIVAMPW + hec.. (55)

sm terms are canceled by the mass counterterms and the proof of finiteness of the other
contributions to the W' — ¢; + g, amplitude after the renormalization of g is the same as
in the unmixed case (cf. Sec. [LC), V;; are finite quantities.

Inserting Eq. (@) in Eq. (53], we find, through terms of O(g?), that

—=U R
Lweiq; = —\g/—%lh (V = 6V)y [ Wy + hec., (56)

where

6V =i (hfV —Vhy). (57)

One readily verifies that V' — §V satisfies the unitarity condition through terms of O(g?),
namely

(V =6V)H(V = 6V) =1+ O(g"). (58)

Since V' is finite and unitary, it is identified with the renormalized CKM matrix. On the
other hand, in the (zﬁL, zﬂR) basis, in which the complete quark mass matrices are diagonal,
0V and Vo =V — 6V represent the counterterm and bare CKM matrices, respectively.

We now show explicitly that the i¢hYV term in 6V leads to the same off-diagonal contri-
bution to the W' — ¢; +q; amplitude as the insertion of the mass counterterms dmU(=) and
6mY) in the external up-type-quark line. Indeed, the ihYV contribution is given by

/Vﬂﬁthf)::i%%ihi(hg)“,V@ija_vth (59)
where, again, u; and v; are the external up- and down-type-quark spinors, respectively, and
€x is the W-boson polarization four-vector. Inserting Eq. (52)), Eq. (B9) becomes
ig __m?émg,(_) + 5mg,(+)mg

V2l =

) i

M(ihV) =

v a_vjes, (60)

where it is understood that i # ¢’ and the label Q = U, D, which we had suppressed from
Eq. (34) through Eq. (53)), is again displayed. On the other hand, the off-diagonal mass
counterterm insertion in the external up-type-quark line is given by
i

—my

‘/;/j’)//\a,’l)jﬁ)\. (61)

M (mV ) emV ) = — 1 i <5mg,(7)a, + 5mg,(+)a+> ;

V2
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Rationalizing the propagator i(p — mf)~!

, one finds after some elementary algebra that
Eq. (60) coincides with Eq. (6I). An analogous calculation shows that the —iVh? term
in oV leads to the same off-diagonal contribution to the W — ¢; + q; amplitude as the
insertion of the mass counterterms dm”(=) and dm”™ in the external down-type-quark
line. Since the mass counterterms are adjusted to cancel the off-diagonal sm contributions
to the extent allowed by the hermiticity of the mass matrix, the same is true of the CKM
counterterm matrix 0V. In particular, 6V fully cancels the UV-divergent part of the off-
diagonal sm contributions. As mentioned above, in the formulation of this section, the
complete mass matrix is diagonal, with elements of the form given in Eq. (&Il), where m; are
the renormalized masses and dm; the corresponding mass counterterms. The quantities dm;
are then adjusted to fully cancel the diagonal sm corrections in the external legs, in analogy
with QED. As also explained above, the additional UV divergences arising from the wir
contributions, proper vertex diagrams, and renormalization of gy cancel among themselves
as in the single-generation case.

For completeness, we explicitly exhibit the counterterm of the CKM matrix in component

form:

0Vij = i [(hg)zz’ Virg = Vig (hlL))j'j]
UsmP ) 4+ omUmy mBom ) + 6mp mP
M 0Mmy A 0my Ty Voo — Vo d T i'g Y (62)
- 2 2 2] ] 2 2 ’
(m{)” — (mj) (m7)” = (m?)

where we have used Eqs. (52)), (53)), and (57) and it is understood that i # i’ in the first
term and j' # j in the second one.

We note that Eq. (62 involves contributions proportional to (m? —m?)f1 and

(m]l-? — mJD )_1, which would become very large if the masses of different flavors were nearly
degenerate. This is to be expected, since the role of these counterterms is precisely to cancel
the analogous sm contributions to Eq. (3) arising from Fig. [I, so that the renormalized
expressions are indeed free from such singular behavior.

It is important to emphasize that, in this formulation, both the renormalized CKM
matrix V' and its bare counterpart V, = V — §V are explicitly gauge independent and
satisfy the unitarity constraints V1V = 1 and VOTVE) = 1, respectively, through the order
of the calculation. The explicit construction of the CKM counterterm matrix, as given in

Eqgs. (57) and (62), satisfying this important property, is the main result of this section.
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V. CONCLUSIONS

In this paper we have presented a natural on-shell framework to renormalize the CKM
matrix at the one-loop level. We have shown the gauge independence of the sm contributions
and discussed their cancellation in two equivalent formulations: the first one involves non-
diagonal mass counterterms, while the second one is based on a CKM counterterm matrix.
We have also established the important fact that the proof of gauge independence and
finiteness of the remaining one-loop corrections to the W — ¢; + g; amplitude can be
reduced to the single-generation case. The analysis has led us to an explicit expression
for the CKM counterterm matrix 0V;;, given in Eq. (62)), that satisfies the basic property of
gauge independence and is consistent with the unitarity of both V5 = V' —9§V and V, the bare
and renormalized CKM matrices. Furthermore, it leads to renormalized amplitudes that are
non-singular in the limit in which any two fermions become mass degenerate. Because V' is
finite, gauge independent, and unitary, its elements can be identified with the experimentally

measured CKM matrix elements.
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APPENDIX A: RESIDUAL SELF-MASS CORRECTIONS Cj;

In this appendix we evaluate the finite and gauge-independent residual contributions
—Cijﬂﬂka_vje,\ to the W — ¢; +¢; amplitude that are not removed in our mass renormal-
ization prescription due to the restrictions imposed by the hermiticity of the mass matrices.
Inserting Eq. (29) and its counterpart for down-quark matrices in the expression for the

W — ¢; + q; amplitude and implementing our mass renormalization subtractions, we find
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the residual sm corrections Cj; to be

9 t 29
g ViV Vi 2 o, Mymy 2 2
Gy = 32?2 { 2 ; mi o+ my m2 (I (p7,mu) = J(p7, m))

mg —my w

2
my

_ S (m? +my) (I(p*,my) + J(pZ,ml))]

m2m "y

2
(2 o+ P2 (162 — 0%, )
W

SR VAl .
4 V;J'V;"lcvk]

2 _ .9

2
J

_ QZI; (m? + m?/) ([(pZ,mk) + J(p2,mk))] ) } , (Al)

where the [ and k£ summations are over [ = d, s,b and k = u, ¢, t, and it is understood that
only terms with (i,4") = (¢, u), (¢t,u), (t,c) or (j',7) = (d, s), (d,b), (s, b) are included.

For the reader’s convenience, we list compact analytic results for the functions I(p?, m;)
and J(p?, m;) defined in Eq. (20):

p* +m? —m?

2 2 9 9
I(p*,m) = —2+ gy T T (p i mW>,
2p miy P 2mymyy
1 m?
J(p?,my) = 2—1[)2 —ml? + m%,[, + ml2 In m—2l + (p2 — ml2 + m%,v) I(pQ,ml)} , (A2)
w

where
V22 — 1cosh *(—x) if v < -1,
f(@) =14 /1T —=1a2cos ' (—x) if -1 <z <1, (A3)
x?2—1 (— Cosh71x+i7r) ifx > 1.
In practical applications of Eq. (A2]), one encounters strong numerical cancellations between

the various terms when |p?| < m,. It is then advantageous to employ the expansions of

I(p?,my) and J(p* m;) in p? about p? = 0,

m? m? p2 m?2 4+ m? m?m? m?
I(p?,my) = —1+ 5 L 5 In 21 +-— 5 2(— l 5 W 21 W2 In 2l>
mp —my, My (m?—mi,) mp = My My
O (),
I B 1 —m} +3mZ,  m](mi —2mi,) | m?
(p 7ml) = 2 2 + 2 2 n—
2 (mj —myy) 2 m; —myy, myy
N p? —mj + bmimiy + 2myy, mimy, | m}
— n
(m? —m¥,)° 6 m; —my,  miy
+0 ((p*)?). (Ad)
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TABLE I: Residual self-mass corrections Cj; as evaluated from Eq. (A)) in the form (Re Cjj, Im Cjj).

J d s b
i
u (0,0) (—1.6 x 1072, =52 x 10713)  (=3.2 x 1079,4.9 x 107)
c (4.5 x 107 13,1.2 x 1013) (49 x 10713, 1.5 x10°1)  (=6.1x10°8,2.1 x 10 12)

t (=15 x 1072, -7.9x 1078)  (=1.6 x 1077,3.7x 1077)  (—4.0 x 1079,1.6 x 107%)

The standard parameterization of the CKM matrix, in terms of the three angles 6,5, 03,

and 63 and the phase ¢, reads [2]:

—i0
Vud Vus Vup C12C13 S512€13 S13€
_ _ i6 i0
V= Vea Ves Ve - —812C23 — €12523513€ C12C23 — 512523513€ 523C13 ) (A5)
1) 1)
Via Vis Vi 512593 — C12C23513€"  —C12523 — S12C23513€"°  C23C13

where s;; = sinf;; and ¢;; = cos0;;. An equivalent set of four real parameters are A, A, p,

and 77, which are related to 69, 23, 613, and 0 as [2]

S12 = A,
S23 — A)‘27
) 3 (= A /1  A2)\4
813626 — AN (p+“7) 1 A2\ (A6)

V1= 2[1 — A2X¢(p+7)]

In our numerical evaluation of Eq. (&), we identify ¢%/(47) = a(my)/ sin® Oy (my) and
employ the values é(m) = 1/127.918 and sin® yy (mz) = 0.23122 [2]. We take the TW-boson
mass to be my, = 80.403 GeV [2]. As for the quark masses, we use the values m, = 62 MeV,
mg = 83 MeV, m; = 215 MeV, m, = 1.35 GeV, m;, = 4.5 GeV [3] and m; = 172.7 GeV
[2]; in the case of the lighter quarks, these correspond to effective masses that are especially
appropriate for electroweak analyses like ours. We evaluate the CKM matrix elements from
Eqs. (AD) and (AG]) using the values A = 0.2272, A = 0.818, p = 0.221, and 77 = 0.340 [2].

In Table [ we present our results for the residual sm corrections C;;. As explained in
Sec. [Tl in our renormalization prescription C,q = 0. As shown in Table [, for the other
W — ¢; + q; amplitudes, the real and imaginary parts of Cj; are very small. For example,

the fractional corrections of Re Cj; with respect to the real parts of the corresponding Born
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amplitude couplings, namely Re C;;/ Re Vj;, reach a maximum value of 4x10 % for t — W+s
and are much smaller for several other cases. It is important to note that the Cj; are non-
singular in the limits my — m; or mj — mj, since the (m? —m?2) ' and (m? — mf,)f1
singularities are canceled by the subtraction procedure in Eq. (AIl. For this reason, as
also explained in Sec. [TI} these residual corrections can be regarded as additional finite and

gauge-independent wir contributions, which happen to be very small.

APPENDIX B: CASE (hr)i; # 0

Since the diagonal elements (hr); do not contribute to the diagonalization condition of
Eq. (B0), in the analysis of Sec. [V], we chose (hr); = 0. We now show that the alternative
choice (hr)i # 0 has no physical effect on the W¢;g; coupling though O(g?). As explained
in Sec. [[V], the biunitary transformation of Eqs. (44) and (@3)) leads to a W¢;g; interaction
described through terms of O(g?) by Eqs. (B6) and (57). Writing these expressions in
component form and separating out the contributions involving the diagonal elements of AV
and h”, we obtain an expression proportional to
EEU) |:V;'j —1 (hg) Vi + Vit (hf) ] *y)‘aJ/A)](-D), (B1)

i Ji
which can be written as
—=(U)

b [1=i (), Vi 143 () )] et + 0(gY. (B2)

In turn, this can be expressed as

—(U) [

b exp [—i (hY),.] Vijexp i(hf)jj] Pa_” + 0(gh). (B3)

Since hY and hY are hermitian, the diagonal elements are real. Thus exp [—i (h{) ] and
exp [z (h? )jj] are multiplicative phases that can be absorbed in redefinitions of the @/A)](-U) and

PSP fields.
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