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Abstra
tMotivated by a 
areful analysis of the Lapla
ian on the supergroup SU(2j1) weformulate a proposal for the state spa
e of the SU(2j1) WZNW model. We thenuse properties of bsl(2j1) 
hara
ters to 
ompute the partition fun
tion of the theory.In the spe
ial 
ase of level k = 1 the latter is found to agree with the properlyregularized partition fun
tion for the 
ontinuum limit of the integrable sl(2j1) 3� �3super-spin 
hain. Some general 
on
lusions appli
able to other WZNW models (inparti
ular the 
ase k = �1=2) are also drawn.

SPhT-T06/143DESY 06-201

e-mail:hubert.saleur�
ea.fr, volker.s
homerus�desy.de



1 Introdu
tionThe SU(2j1) WZNW model is a key example of the sigma models with supergroup targetsthat appear in the supersymmetri
 des
ription of non intera
ting disordered systems in lowdimensional statisti
al me
hani
s. The �rst o

urren
e of this model probably arose viaa supersymmetrization of the path integral for two 
opies of the two dimensional 
riti
alIsing model. It was shown in [1℄ how a �
 system (with 
entral 
harge 
 = �1) 
ould beintrodu
ed to 
an
el out the pair of free Majorana fermions (regrouped for 
onvenien
einto a Dira
 fermion) path integralsZ = Z [d d yd�d
℄ exp[S0 + ÆS℄ = 1 (1.1)where S0 = Z d2x2� � y �� + � y� � + � ��
 + ����
� (1.2)and ÆS = Z d2x2� im(x)2 � � y �  y � + ��
 � ��
� : (1.3)The theory without random massm(x) = 0 is obviously a free OSP(2j2) theory, whi
h 
anbe 
onsidered as a SU(2j1) WZNW model at level k = �1=2 1. Averaging over disorderprodu
es a marginally irrelevant 
urrent 
urrent perturbation of this WZNW model. Thisis 
ru
ial to understanding the (logarithmi
) 
orre
tions to pure Ising model s
aling. Thedeep infrared (IR) behavior however is not 
hanged by the disorder, whi
h 
orrespondsto the fa
t that (1.2) is a simple free theory, with pure fermioni
 
orrelators identi
al tothose of the usual Ising model.The se
ond o

urren
e of the SU(2j1) model is more involved. It arises in the studyof 2 + 1 dimensional spin-full ele
trons in the presen
e of a random (non abelian) gaugepotential. The supersymmetrization of the path integral for two 
opies of the Dira
fermions produ
es a free OSP(4j4) theory whi
h has been argued to 
ow to the SU(2j1)WZNWmodel at level one under the a
tion of the disorder [2℄. The nature of the spe
trumand 
orrelation fun
tions play an important role in the des
ription of the ele
troni
 wavefun
tions at that �xed point.1Our 
onventions are su
h that the sub SU(2) algebra has level k. In part of the literature, the levelis de�ned as �2� ours, so the free system in (1.1) has k = 1 there.
1



Previous works on the SU(2j1) model have fo
used on some 
orrelation fun
tions [3℄,[4℄and on the 
onstru
tion of some 
hara
ters [5℄, but a 
omplete pi
ture of the theory hasbeen missing.Indeed, the analysis of WZNW on supergroups is notoriously diÆ
ult, even for thesimplest 
ase of GL(1j1) [6℄. In a re
ent paper [7℄, we have shown how a 
areful studyof the parti
le limit (in parti
ular, of the simultaneous left and right invariant a
tions onthe spa
e of fun
tions on the group) 
ould provide 
onsiderable insight into this problem.Combining this insight with some additional input from the representation theory of the
urrent algebras allowed us to formulate a 
omplete proposal for the state spa
e of thetheory in the 
ase of GL(1j1). The latter involves a rather intri
ate mixing of left andright movers that is intimately related to the representation theory of Lie superalgebras,in parti
ular to the importan
e of inde
omposable representations. We were then ableto 
he
k this proposal through an exa
t 
onstru
tion of the theory in the 
ontinuumformulation.The aim of this work is to extend the lessons we have learned in [7℄ to a non-abeliansetup, using SU(2j1) as the simplest non-trivial example.2 On
e more, the analysis ofthe parti
le limit (se
tion 2) along with some input from the representation theory ofthe sl(2j1) 
urrent algebra (se
tion 3) shall provide all the ne
essary ingredients for the
onstru
tion of the �eld theory state spa
e (se
tion 4), in 
lose analogy to our previousinvestigation of the GL(1j1) model. In the present 
ase we shall not attempt to verifythe stru
ture of the state spa
e through 
al
ulations of 
orrelators, though this wouldbe possible as well (see [8℄). Instead we shall use results on an integrable sl(2j1) spin
hain to test our 
ontinuum 
onstru
tions. Su
h a spin 
hain was �rst investigated in [9℄as a dis
rete version of the SU(2j1) WZNW model. We shall see that both approa
hesare 
onsistent. The 
omparison, however, is a bit subtle, mainly due to the fa
t thatthe supergroup SU(2j1) has an inde�nite metri
. While this poses no problem for the(algebrai
) 
onformal �eld theory analysis, the 
omputation of the partition fun
tionon the latti
e su�ers from divergen
ies whi
h need to be regularized. We shall do thisthrough some appropriate analyti
 
ontinuation. In this sense, our analysis also supportsa parti
ular pres
ription for extra
ting information from spin 
hains with an inde�nitemetri
.2To be more pre
ise, we shall 
onsider the universal 
over of SU(2j1) in whi
h the abelian, time-like
ir
le is repla
ed by the real line. We shall 
omment on this in mu
h more detail in se
tion 4.2



2 The minisuperspa
e analysisThe aim of this se
tion is to de
ompose the spa
e of fun
tions on the supergroup SU(2j1)into (generalized) eigenfun
tions of the quadrati
 Casimir element in the regular rep-resentations. Sin
e the Casimir 
ommutes with the generator, the eigenspa
es may bede
omposed into representation of the Lie superalgebra sl(2j1). It is therefore useful tohave some ba
kground on the representation theory of sl(2j1). We shall review a fewknown fa
ts below before addressing the harmoni
 analysis. More details 
an be founde.g. in [10, 11℄.2.1 The Lie superalgebra sl(2j1)In this subse
tion we provide a short overview on �nite dimensional representations ofsl(2j1). Rather than reprodu
ing a 
omplete list of su
h representations we shall fo
uson those that are relevant below, namely on Ka
 modules and the proje
tive 
overs ofatypi
als.2.1.1 The de�ning relations of sl(2j1)The even part g(0) = gl(1) � sl(2) of the Lie superalgebra g = sl(2j1) is generated by fourbosoni
 elements H, E� and B whi
h obey the 
ommutation relations[H;E�℄ = �E� ; [E+; E�℄ = 2H ; [B;E�℄ = [B;H℄ = 0 : (2.1)In addition, there exist two fermioni
 multiplets (F+; F�) and ( �F+; �F�) whi
h generatethe odd part g(1). They transform as (� 12 ; 12) with respe
t to the even subalgebra, i.e.[H;F�℄ = �12F� [H; �F�℄ = �12 �F�[E�; F�℄ = [E�; �F�℄ = 0 [E�; F�℄ = �F� [E�; �F�℄ = �F� (2.2)[B;F�℄ = 12F� [B; �F�℄ = �12 �F� :Finally, the fermioni
 elements possess the following simple anti-
ommutation relationsfF�; F�g = f �F�; �F�g = 0 fF�; �F�g = E� fF�; �F�g = B �H (2.3)among ea
h other. Formulas (2.1) to (2.3) provide a 
omplete list of relations in the Liesuperalgebra sl(2j1). 3



2.1.2 Ka
 modules and irredu
ible representationsKa
 modules [12℄ are the basi
 tool in the 
onstru
tion of irredu
ible representations. Inthe 
ase of g = sl(2j1), these form a 2-parameter family fb; jg of 8j-dimensional repre-sentations. We may indu
e them from the 2j-dimensional representations (b � 12 ; j � 12)of the bosoni
 subalgebra g(0) by applying the pair F� of fermioni
 elements. Our labelb 2 C denotes a gl(1)-
harge and spins of sl(2) are labeled by j = 12 ; 1; : : : . The dual
onstru
tion whi
h promotes the fermioni
 generators �F� to 
reation operators, yieldsanti-Ka
 modules fb; jg (b and j take the same values as above). The bosoni
 
ontent of(anti-)Ka
 modules may be read o� rather easily from their 
onstru
tion,fb; jg��g(0) �= fb; jg��g(0) �= (b� 12 ; j � 12) � (b; j) � (b; j � 1) � (b + 12 ; j � 12) : (2.4)For generi
 values of b and j, the modules fb; jg and fb; jg are irredu
ible and isomorphi
.At the points �b = j, however, they degenerate, i.e. the representations are inde
ompos-able and no longer isomorphi
. In fa
t, Ka
 and anti-Ka
 modules are then easily seen topossess di�erent invariant subspa
es. To be more pre
ise the (anti-)Ka
 modules f�j; jgand f�j; jg are built from two atypi
al representations su
h thatf�j; jg : fjg� �! fj � 12g�f�j; jg : fj � 12g� �! fjg� : (2.5)The atypi
al irredu
ible representations fjg� that appear in these small diagrams are4j + 1 dimensional. With respe
t to the even subalgebra they de
ompose a

ording tofjg�jg(0) = 8<:(j; j)� (j + 12 ; j � 12) ; for + and j = 12 ; 1; : : :(�j; j)� ��(j + 12); j � 12� ; for � and j = 12 ; 1; : : : (2.6)For j = 0, only the trivial representation (0) o

urs. It is also useful to introdu
e the
hara
ters of these representations. By de�nition, these are obtained as�R(z; �) = strR ��BzH�where the super-tra
e extends over all states in the representation R of sl(2j1). For Ka
modules the 
hara
ter is rather simple. In fa
t, it fa
torizes�fb;jg(�; z) = �b�1=2 �f(�; z) l=j�1=2Xl=�j+1=2 zl4



with a fermioni
 
ontribution �f that is independent of the Ka
 module under 
onsider-ation, �f(�; z) = 1� �1=2 z1=2 � �1=2 z�1=2 + � :The 
hara
ters of atypi
al representations 
an be obtained easily form their de
omposi-tion formulas (2.6). We would like to pursue a rather di�erent route here that uses thede
omposition (2.5) of Ka
 modules into atypi
als. The �rst formula implies that�f�j;jg(�; z) = �fjg�(�; z)� �fj�1=2g�(�; z) : (2.7)We 
an solve these equations for the 
hara
ters of atypi
al representations by the followingin�nite sums �fj�1=2g�(�; z) = � 1Xn=0 �f�j�n=2;j+n=2g(�; z) : (2.8)

Figure 1: A graphi
al illustration of how 
hara
ters for an atypi
al representation
an be obtained as an in�nite sum of 
hara
ters of Ka
 modules. Here the onedimensional atypi
al identity 0 appears as a sum over f1=2; 1=2g (thin lines anddots), f1; 1g (medium lines and dots), f3=2; 3=2g (thi
k lines and dots) et
. Allspurious 
ontributions (that is, the whole tower but the origin) appear twi
e, andthey disappear by 
an
ellations of bosoni
 and fermioni
 degrees of freedom. Thediagram 
orresponds to the 
hoi
e of plus sign in formula (2.8).5



One may 
he
k by expli
it 
omputation that the 
ontributions from all but two bosoni
multiplets 
an
el ea
h other in the in�nite sum through a me
hanism that is visualizedin Figure 1. The remaining two terms 
ertainly agree with the de
omposition formulas(2.6). Our derivation here may seem like a rather 
ompli
ated path for su
h a simpleresult, but we shall see later that the same tri
k works for 
hara
ters of atypi
al aÆnerepresentations whi
h are otherwise diÆ
ult to obtain.2.1.3 Proje
tive 
overs of atypi
al irredu
ible modulesBy de�nition, the proje
tive 
over of a representation fjg� is the largest inde
omposablerepresentation P�(j) whi
h has fjg� as a subrepresentation (its so
le). We do not wantto 
onstru
t these representations expli
itly here. Instead, we shall display how theyare 
omposed from atypi
als. The proje
tive 
over of the trivial representation is an8-dimensional module of the formP(0) : f0g �! f 12g+ � f 12g� �! f0g : (2.9)For the other atypi
al representations fjg� with j = 12 ; 1; : : : one �nds the followingdiagram, P�(j) : fjg� �! fj + 12g� � fj � 12g� �! fjg� : (2.10)These representation spa
es are 16j+4-dimensional. Let us agree to absorb the supers
ript� on P into the argument, i.e. P�(j) = P(�j), wherever this is 
onvenient.2.2 Fun
tions on the supergroup SU(2j1)Now we are prepared to analyze the spa
e of fun
tions on the supergroup SU(2j1). Forthis purpose, let us introdu
e 
oordinates through the following expli
it de
omposition ofelements U 2 SU(2j1), U = ei��� �F � eizB g ei��F �Here, the bosoni
 base SU(2)�R is parametrized by an element g 2 SU(2) �= S3 alongwith the time-like variable z. In these 
oordinates, the generators of the right regular
6



a
tion read RF� = �i�� ; RE� = R0E� + ���� (2.11)RH = R0H + 12���� � 12�+�+ ; RB = �i�z � 12���� � 12�+�+ ; (2.12)R �F� = ie�iz=2D1=2�(�1=2)(g) ���� + i��(R0E� + ����)� i��(i�z � R0H) (2.13)where R0X are the generators of the right regular representation of SU(2). They a
t onthe matrix elements Djab(g); a; b = �j;�j + 1; : : : j; a

ording toR0H Djab(g) = bDjab(g) ; R0E+ Djab(g) = p(j + b + 1)(j � b) Dja(b+1)(g) ;R0E� Dja(b+1)(g) = p(j + b + 1)(j � b) Djab(g) :Matrix elements with j = 1=2 appear as 
oeÆ
ients in the di�erential operators R �F�and their behavior under the a
tion of R0X plays an important role in 
he
king that theabove generators of the right regular representation obey the de�ning relations of sl(2j1).Formulas for the left regular representation may be obtained similarly,L �F� = �i��� ; LE� = L0E� � ��� ��� (2.14)LH = L0H + 12 ��� ��� � 12 ��+ ��+ ; LB = i�z + 12 ��� ��� + 12 ��+ ��+ ; (2.15)LF� = ie�iz=2Dj(�1=2)�(g) ��� + i���(L0E� � ��� ���) + i���(i�z � L0H) (2.16)It is probably not ne
essary to stress that left and right generators (anti-)
ommute withrespe
t to ea
h other.By 
onstru
tion (see however [8℄), the generators of the left and right regular rep-resentation a
t on the spa
e of all Grassmann valued fun
tions with square integrable
oeÆ
ients on the bosoni
 base, i.e. on the spa
eL2(SU(2j1)) := L2(SU(2)� R) 
 �(��; ���)where �(��; ���) denotes the Grassmann algebra that is generated by our four fermioni

oordinates �� and ���. With respe
t to the left regular a
tion, the spa
e of squareintegrable fun
tions 
an be shown to de
ompose as follows,L2(SU(2j1)) �=L 1Xj=1=2 Xb6=�j 4j (f�b; jg � fb; jg0) � (2.17)� Xj (2j + 1) �P+j � P�j �� 2j �P+j � P�j �0 :7



Here, the summation runs over j = 0; 1=2; 1; : : : , fb; jg denotes the typi
al representationsof sl(2j1) and P�j are the proje
tive 
overs of the atypi
al representations fjg�. Most ofour 
onventions 
an be found e.g. in [10℄. A prime 0 on a representation means thatthe degree is inverted, i.e. that fermioni
 ve
tors be
ome bosoni
 and vi
e versa. Theresult is a spe
ial 
ase of the general observation made in [13℄ and it generalizes a similarde
omposition we des
ribed in [7℄ for the left regular a
tion of gl(1j1). The interestedreader 
an �nd an expli
it proof in Appendix A. Let us 
omment that the de
ompositionof the left regular a
tion displays the same violation of the Peter-Weyl theorem as in the
ase of GL(1j1). In parti
ular, sin
e the quadrati
 Casimir is not diagonalizable in theproje
tive 
overs P�j , the Lapla
ian on the supergroup SU(2j1) 
an only be brought intoJordan normal form. The blo
ks 
an rea
h a rank up to three.The fun
tions on our supergroup 
arry another (anti-)
ommuting a
tion of the Liesuperalgebra g by left derivations. There is a 
orresponding de
omposition whi
h is 
er-tainly identi
al to the de
omposition above. A more interesting problem is to de
omposethe spa
e of fun
tions with respe
t to the graded produ
t g
 g in whi
h the �rst fa
tora
ts through the left regular a
tion while for the se
ond fa
tor we use the right regulara
tion. In the typi
al se
tor, the 4jj4j-dimensional multipli
ity spa
es in the �rst line ofeq. (2.17) get promoted to typi
al representations of the right regular a
tion, i.e.L2(SU(2j1)) �=L�R 1Xj=1=2 Xb6=�j (fb; jgL 
 f�b; jgR) � J (2.18)where J is a single inde
omposable, 
ontaining all the atypi
al building blo
ks. Itsstru
ture may be summarized by the following pi
turef 12g� � f 12g+
||yyyyyyyyyyyyy
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}}
}}f 12g� � f 12g+ f0g � f0g

(2.19)
This diagram is the natural extension of the 
orresponding pi
ture for GL(1j1). Itextends to in�nity in both dire
tions and 
ombines all the atypi
al se
tors into a single8



inde
omposable representation. Note that by 
onstru
tion, ea
h proje
tive 
over in thede
omposition of the right regular representation appears with the 
orre
t multipli
ity.We shall see below how this pi
ture is modi�ed in the full quantum theory.3 Representation theory of the aÆne algebraThe previous analysis of the parti
le limit applies to all sigma models on SU(2j1), butthe information it provides is usually not suÆ
ient in order to re
onstru
t the entire �eldtheory from it. This is very di�erent for the WZNW model in whi
h the entire spe
trum
an be generated from parti
le wave fun
tions through 
urrent algebra symmetries. Weneed some fa
ts on the representation theory of the sl(2j1) 
urrent algebra and shallprovide them in the following se
tion. All the results we 
olle
t here are well knownfrom [14, 5, 15, 16, 17℄. Their derivation, however, is somewhat original. In parti
ular,we shall use a simple, but highly eÆ
ient pres
ription to 
onstru
t 
hara
ters of atypi
alrepresentations of bsl(2j1) through in�nite sums over typi
als. This extends the formula(2.8) we have dis
ussed in se
tion 2 to an in�nite dimensional setting, thereby generalizinga tri
k that has �rst been proposed in the 
ontext of the gl(1j1) 
urrent algebra [18℄.3.1 Some basi
 ingredientsIrredu
ible representations of the aÆne sl(2j1) algebra 
an be built over the irredu
ibletypi
al representations fb; jg with j = 1=2; : : : ; k=2 as well as over the atypi
als fjg�with j = 0; 1=2; 1; : : : ; k=2. Ground states in the former set of representations possess
onformal dimension hfb;jg = (j2 � b2)=(k + 1)while the 
onformal dimension for ground states in the latter set vanishes. Followingthe work [14℄ of Bow
o
k et al. we shall divide these representations into three di�erent
lasses. The generi
 
lass I representations o

ur for fb; jg with b 6= j�m where we de�nedj�m := �j +m(k + 1) for m integer :Class II representations in
lude those ere
ted over fb; jg with b = j�m; m 6= 0; along withthe se
tors generated from atypi
als fjg�; j 6= 0. The va
uum representation that is gen-erated from the atypi
al f0g is the only member of the �nal 
lass, whi
h we denote as 
lass9



IV for histori
al reasons. Our aim is to des
ribe the singular ve
tors in the 
orrespondingVerma modules and to provide the asso
iated formulas for the super-
hara
ters�R(q; z; �) := strR � qL0� 
24 �B0 zH0 �of irredu
ible representations. The results we des
ribe have �rst appeared in [14℄.Before we start our dis
ussion of 
hara
ters let us qui
kly re
all that it is possible to
onstru
t sl(2j1) 
urrents in terms of de
oupled bosoni
 and fermioni
 variables. To bemore pre
ise, we introdu
e a set of bosoni
 
urrents e�(z); h(z); b(z) and assume themto satisfy the operator produ
t expansions of an aÆne sl(2) algebra at level k � 1. Inaddition, let us introdu
e two sets of fermioni
 �elds pa and �a obeying the 
anoni
alrelations �a(z1) pb(z2) � Æabz1 � z2 + : : : :Then we 
an 
onstru
t an sl(2j1) 
urrent algebra at level k through the following pre-s
ription,E+(z) = e+(z)+ : �1p2 : (z) ; H(z) = h(z) + 12 : ��1p1 � �2p2� : (z) ;E�(z) = e�(z)+ : �1p2 : (z) ; B(z) = b(z) � 12 : ��1p1 + �2p2� : (z) ;F+(z) = p2(z) ; �F+ = �2e+(z) + �1(b + h)(z)� : �1�2p2 : (z) ;F�(z) = p1(z) ; �F� = �1e�(z) + �2(b� h)(z)+ : �1�2p2 : (z) : (3.1)
Sin
e the fermioni
 �elds �a and pa are supposed to 
ommute with the bosoni
 �eldse�(z); h(z) and b(z), the 
hara
ters of typi
al representations fa
torize with the fa
tors�1(y; q) arising from the fermioni
 pairs. The shift j ! j�1=2 in the bosoni
 
ontributionmay be tra
ed ba
k to a similar shift in the labeling of typi
al sl(2j1) representations, seeeq. (2.4).3.2 Typi
al (
lass I) representationsThe generi
 
lass I representations have no singular ve
tors ex
ept from the ones thatarise through the representations of a bosoni
 su(2) 
urrent algebra at level k � 1. Inthis sense, they may be 
onsidered the typi
al representations of the aÆne sl(2j1) algebra.10



The statement implies a pre
ise expression for the 
hara
ters of 
lass I representations�Ifb;jg(q; z; �) = q�b2=(k+1)��b�3(q) �1(z1=2�1=2; q) �1(z�1=2�1=2; q) �k�1j�1=2(z; q) (3.2)where �1(y; q) = �iy1=2q1=8 1Yn=1 (1� qn)(1� yqn)(1� y�1qn�1) (3.3)and b 6= j�m and 1=2 � j � k=2. We also re
all that the su(2) 
hara
ters are given by�k�1j�1=2(z; q) = q j2k+1� 18 zj�1Pa q(k+1)a2+2aj �za(k+1) � z�a(k+1)�2j�Q1n=1(1� zqn)(1� z�1qn�1)(1� qn) :We shall use the symbol fb; jg^ for these irredu
ible representations of the aÆne algebra.The formulas are easy to understand: they follow dire
tly from the representation (3.1)of the sl(2j1) 
urrent algebra. In fa
t, ea
h pair of fermioni
 �elds 
ontributes a fa
tor�1=� while the bosoni
 sl(2) and u(1) 
urrent algebras are responsible for the 
hara
ters�k�1 and an additional fa
tor ��1, respe
tively.3.3 Atypi
al (
lass II) representationsNothing prevents us from evaluating the previous 
hara
ter formulas at the points b = j�m.But the resulting fun
tions turn out to be the 
hara
ters of inde
omposable representa-tions fj�m; jg^ whi
h 
ontain one fermioni
 singular multiplet. In order to state this morepre
isely, let us 
onsider in more detail the set of atypi
al labels,A := f fj�m; jg j 1=2 � j � k=2 ; m 2 Z g :The set A is visualized in Figure 2. Our pi
ture shows 
learly that the proje
tion to theb-
oordinate of ea
h element in A is inje
tive and hen
e it 
an be used to enumerate ouratypi
al labels. Note, however, that values b 2 (k + 1)=2Z are omitted. This motivatesto introdu
e an improved enumeration map �̂ from A to non-zero half-integers whi
h isde�ned by�̂(fj+m; jg) = j+m �m for m � 0 ; �̂(fj�m; jg) = j�m �m+ 1=2 for m > 0�̂(fj�m; jg) = j�m +m for m � 0 ; �̂(fj+m; jg) = j+m +m� 1=2 for m < 0 :By 
onstru
tion, �̂ is not only an inje
tion but its image now also 
onsists of all nonzerohalf-integers. We may view �̂ as an aÆne version of the enumeration map �(f�j; jg) = �jfor representations of sl(2j1). 11
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Figure 2: The set A of atypi
al labels for the aÆne sl(2j1) algebra. Even thoughthe sl(2) spin j is 
ut o� at j = k=2, there exist in�nitely many atypi
al labels (bla
kdots) whi
h are in one to one 
orresponden
e with the atypi
al labels of the �nitedimensional algebra sl(2j1) (
entral bla
k and pink dots). This 
orresponden
e isformalized by our map �̂.At �rst sight, the enumeration of atypi
al labels for our sl(2j1) 
urrent algebra mayseem like a rather te
hni
al devi
e. But there is more to it. We re
all that atypi
al labelsf�j; jg 
an also be enumerated by non-zero half-integers, i.e. �(f�j; jg) = �j. Our 
laimnow is that the atypi
al 
lass I representation with label fj�m; jg behaves very similarlyto its �nite dimensional 
ounterpart ��1 Æ �̂(fj�m; jg) in the sense that�Ifj�m;jg(q; z; �) = �IIf�̂(fj�m;jg)g(q; z; �)� �IIf�̂(f�jm;jg)�1=2sgnj�mg(q; z; �) : (3.4)This formula is a rather 
entral result for the representation theory of our 
urrent alge-bra. Let us stress that it is the aÆne version of a 
orresponding equality (2.7) between12




hara
ters of sl(2j1) representations. As in the �nite dimensional setup, eq. (3.4) emergesfrom the existen
e of fermioni
 singular ve
tors in atypi
al 
lass I representations. In the
ase m = 0, it 
laims that the only su
h singular ve
tors are those that appear in theatypi
al Ka
-module spanned by the ground states. When m 6= 0, however, the groundstates form a typi
al representation and the singular ve
tors appear only on the jmjthlevel of the 
lass I module.At �rst it may seem a bit surprising that aÆne representations fj�m; jg and m 6=0 behave so similarly to the Ka
 modules of sl(2j1). In the next subse
tion we shallunderstand this behavior in terms of spe
tral 
ow symmetries in the representation theoryof the 
urrent algebra. Before any study of spe
tral 
ow automorphisms, it might be usefulto illustrate the similarity between atypi
al representations of the 
urrent algebra and their�nite dimensional 
ounterpart more expli
itly, at least for one example. To this end, let usfo
us on the representation fk=2+1; k=2g^ whi
h we 
laim to be a 
lose 
ousin of the sl(2j1)representation fk=2 + 1=2; k=2 + 1=2g. By 
onstru
tion, the ground states of the 
urrentalgebra representation transform in the typi
al multiplet fk=2+ 1; k=2g and they possess
onformal weight h = �1. From these ve
tors we 
an generate states with vanishing
onformal weight with the help of modes in the 
urrent algebra. Su
h modes transform inthe 8-dimensional adjoint representation f0; 1g of sl(2j1). Through de
omposition of thetensor produ
t between fk=2 + 1; k=2g and f0; 1g one �nds that the Verma module overfk=2+1=2; k=2+1=2g 
ontains an atypi
al sl(2j1) multiplet with 
onformal weight h = 0.In fa
t, the results of [11℄ imply that the latter transforms a

ording to the proje
tive
over P(k=2+1=2), see eq. (2.10). Not all of these states survive when we des
end from theVerma module to the 
lass I representation. This step involves removing bosoni
 singularve
tors and a moment of re
e
tions shows that su
h ve
tors with h = 0 exist and that theytransform in the submodule fk=2+1; k=2+1g of P(k=2+1=2). Hen
e, the states with h = 0in our 
lass I representation de
ompose into the Ka
-module fk=2 + 1=2; k=2+ 1=2g plusa bun
h of typi
al representations. The fermioni
 singular ve
tors that are responsible foreq. (3.4) transform in the subrepresentation fk=2; k=2g of fk=2 + 1=2; k=2 + 1=2g, givingrise to the identity (3.4) with j�1 = k=2 + 1 and j = k=2.Before we draw some 
on
lusions from eq. (3.4), let us qui
kly 
omment on our nota-tions. Note that for j = 1=2 and m = 0 the above formula involves the 
hara
ter �IIf0g ofa representation whi
h has a somewhat spe
ial status. In fa
t, it 
annot be obtained asquotient of one of the inde
omposable representations fj�m; jg^, unlike the representations13



with 
hara
ters �IIfn=2g; n 6= 0;. Instead, it arises as a submodule of the representationsf�1=2; 1=2g^. Our dis
ussion suggest that �IIf0g must be the 
hara
ter of the va
uum rep-resentation. In the terminology of Bow
o
k et al. the latter is a 
lass IV representation.Thus, we shall also write �IVf0g for this quantity.Even though equation (3.4) is not a 
losed formula for the 
hara
ters of 
lass II repre-sentations, we 
an now use the same tri
k as in se
tion 2.1.2 and write 
hara
ters of 
lassII representations as an in�nite sum of 
lass I 
hara
ters,�IIf�j�1=2g(q; �; z) = � 1Xn=0 �Î��1(�j�n=2)(q; �; z) (3.5)for j = 1=2; 1; 3=2; : : : . Note that the map �̂ is invertible on all non-zero half-integers andit furnishes the label of the Ka
 module that sits at the bottom of the 
orresponding 
lassI representation. By inserting our expli
it formulas for 
lass I 
hara
ters we �nd�IIfjg�(q; z; �) = �i �1(z1=2��1=2; q) �1(z1=2�1=2; q)�3(q) �1(z; q) � (3.6)� Xa2Z q(k+1)a2�2aj ��j � z�a(k+1)�j1 + qaz�1=2��1=2 � za(k+1)�j1 + qaz1=2��1=2� :Chara
ter formulas of this type have to be used with some 
are: Before the denominatorsare expanded, one should spit the summation over a into two parts. The one arisingfrom positive values of a 
an be 
onverted into a power series right away. In all termswith non-negative a, however, one must �rst redu
e the fra
tion by qa su
h that thesubsequent expansion 
ontains only non-negative powers of q. In the end, we re
overthe known results on the representation theory of the aÆne sl(2j1) algebra [5, 17℄. Ourderivation was based on three ingredients: the de
oupling formulas (3.1) for bosoni
 andfermioni
 generators, the stru
ture (2.5) of atypi
al Ka
 modules for sl(2j1) and the fa
tthat atypi
al 
lass I representations with m 6= 0 de
ompose in the same way as in the
ase of m = 0. We shall argue now that the last ingredient emerges from spe
tral 
owsymmetries in the representation theory of aÆne sl(2j1).3.4 Spe
tral 
ow symmetriesThe aÆne sl(2j1) algebra admits several interesting automorphisms. We shall be mainly
on
erned with two su
h spe
tral 
ow automorphisms 
�. By 
onstru
tion, 
� are de�ned14



on the entire 
urrent algebra, but for our purposes it is suÆ
ient to know how they a
ton the generators B0; H0; L0,
�(B0) = B0 � k=2 ; 
�(H0) = H0 + k=2 ; 
�(L0) = L0 +H0 �B0 :From these formulas we may infer how (super-)
hara
ters behave under the a
tion of
� and this in turn is suÆ
ient to determine how spe
tral 
ow automorphisms maprepresentations of the 
urrent algebra onto ea
h other. Along with 
� we shall also beinterested in the 
omposite automorphism 
 = 
+
�1� whi
h a
ts as
(B0) = B0 + k ; 
(H0) = H0 ; 
(L0) = L0 � 2B0 � k :Any automorphisms of the 
urrent algebra gives rise to a map between representationsand hen
e to a map between 
hara
ters. From the a
tion on the zero modes B0; H0 andL0 we 
an easily read o� that
��(q; �; z) = ��k=2zk=2 �(q; q�1�; qz) ; 
�(q; �; z) = �kq�k �(q; q�2�; z) (3.7)for all 
hara
ters � of the sl(2j1) 
urrent algebra. If R is any representation of bsl(2j1) and�R is its 
hara
ter, then the image �R of R under an automorphism � obeys��R(q; �; z) = ��R(q; �; z) :Given the 
hara
ter �R of some representation R, we 
an use eqs. (3.7) to 
ompute itsimage under the above automorphisms � = 
�; 
. This in turn allows us to re
overuniquely the representations 
�R and 
R.In the following we shall spell out the a
tion of our spe
tral 
ow automorphisms onthe 
lass I and II representations we have studied above. Our rather 
ompa
t notationsallow us to summarize the results for the spe
tral 
ow automorphisms 
� in a single line
�(fb; jg^) = fb� k=2� 12 ; k=2 + 12 � jg^ ; 
�(fn=2g^) = fn=2� k=2g^ : (3.8)To verify our assertions, the reader is invited to 
onvert them into identities betweensuper-
hara
ters and to 
he
k these identities by dire
t 
omputation. The formulas be-
ome somewhat more expli
it if we label irredu
ible representations a

ording to the
15



representation their ground states transform in,fb; jg 
��! fb� k=2� 12 ; k=2 + 12 � jg for b 6= �(j � k � 1)fb; jg 
��! fk=2 + 12 � jg� for b = �(j � k � 1)fjg� 
��! f�(j + k=2 + 12); k=2 + 12 � jg for j 6= 0fjg� 
��! fk=2� jg� ; f0g 
��! fk=2g� : (3.9)
The third line, for example, tells us that the image of the irredu
ible representationgenerated from the atypi
al representation fjg+ under the a
tion of 
+ is an irredu
iblerepresentation whose ground states transform in the typi
al representation fj + k=2 +12 ; k=2 + 12 � jg. The latter may be obtained from the 
orresponding Verma module byremoving singular ve
tors on some ex
ited levels.We also want to spell out analogous formulas for the automorphism 
 = 
+ Æ 
�1� . Inthe 
ompa
t notation, its a
tion is given by
(fb; jg^) = fb+ k + 1; jg^ ; 
(fn=2g^) = fn=2 + kg^ : (3.10)Note that the symmetry 
 maps se
tors whose ground states transform in an atypi
alrepresentation fjg� of the Lie superalgebra sl(2j1) into se
tors with typi
al spa
es ofground states a

ording to the following rules,fjg� 
m�! fj�m; jg for �m > 0fjg� 
m�! fj�m � 1=2; j + 1=2g for �m < 0 :Hen
e, the existen
e of the spe
tral 
ow symmetries explains why the representationsfj�m; jg behave like atypi
al representations of the aÆne sl(2j1) algebra: they are simplyrelated to the se
tors ere
ted over atypi
al sl(2j1) representations by an automorphism.3.5 Modular transformation and S-matrixWe would like to 
on
lude this se
tion on the representation theory of the sl(2j1) 
urrentalgebra with a few 
omments on modular properties of the 
hara
ters. In the following weshall 
onsider the 
hara
ters as fun
tions of �; � and �. They are related to the variableswe used above through q = exp 2�i�; z = exp 2�i� and � = exp 2�i�, as usual. From16



our expli
it formula (3.2) for 
hara
ters of 
lass I representations it is easy to infer theauxiliary formula�Ifb=0;jg(�1� ; �� ; �� ) = � 1p�i� e i�k2� �2e i�2� �2 k2Xj0=1=2r 2k + 1 sin 4�jj 0k + 1�Ifb=0;j0g(�; �; �) :Note that the right hand side 
ontains an expli
it � dependen
e whi
h, if we demand thatthe modular transform be interpreted in a 
onventional sense and 
loses onto 
hara
ters,suggests the 
ontribution of a 
ontinuous spe
trum of exponents. The need is 
on�rmed bythe modular transformation of the 
hara
ter for fb; jg representations with b 6= 0, whi
hrequire an integral representation of e2i��b2=(k+1) et
. After some Gaussian integration, we�nd�Ifb;jg(�1� ; �� ; �� ) = ie i�k2� (�2��2) k2Xj0=1=2 2k + 1 sin 4�jj 0k + 1 Z 1�1 db0 e 4i�bb0k+1 �Ifb0;j0g(�; �; �) (3.11)where we formally evaluated integrals of the type R exp(�i�x2) = p�=i� [of 
ourse, theintegrals are naively divergent as Im � > 0.℄Modular transformations of the type II and IV 
hara
ters are a bit more 
umbersometo work out. It 
an be atta
ked rather eÆ
iently using our representations (3.5) as in�nitesums of 
lass I 
hara
ters. Here we shall 
ontent ourselves with the example of the 
lassIV representation at k = 1. If we also set � = � = 0 we �nd that�IVf0g(�1=�) = � i2 Z 1�1 db0
os �b0 �Ifb0;1=2g(�) (3.12)where the 
ontour has to avoid the poles. Rotating into the purely imaginary dire
tiongives a 
ontribution from poles whi
h is easily identi�ed with �IVf0g. The remaining integral
an be fa
tored in terms of �If0;1=2g,�IVf0g(�1=�) = ��IVf0g(�) + Z d� q �22
osh �� �If0;1=2g(�) : (3.13)We thus re
over by this very elementary means the results of [5℄ obtained through use ofthe Mordell integral [19℄. The 
onstru
tion of modular invariants using these transforma-tion formulas is a 
omplex problem, whi
h we shall address later in the 
ase k = 1.17



4 The state spa
e and partition fun
tionsOur aim now is to formulate a proposal for the states spa
e of the sl(2j1) WZNW model.We shall then verify our 
laim in the spe
ial 
ase k = 1 through a free �eld representationof the model. The third subse
tion is devoted to the partition fun
tion of the theory. Thelatter forgets all information about the 
ompli
ated way in whi
h irredu
ible blo
ks areglued together to build J . We then spe
ialize on
e more to k = 1 and 
omment on theglobal topology of the target spa
e.4.1 The proposal for integer level kIt is now rather straightforward to 
ome up with a proposal for the state spa
e of theWZNW model on SU(2j1). In fa
t, we 
an simply depart from formula (2.18) and make itsymmetri
 with respe
t to the a
tion of our spe
tral 
ow symmetry. The invarian
e underthe a
tion of 
 should be 
onsidered as an additional input. In prin
iple, the spe
tral 
owsymmetry of the sl(2j1) 
urrent algebra 
ould be broken by the physi
al 
ouplings of thetheory. Sin
e this did not happen for the GL(1j1) WZNW model, it seems natural topropose HCFT = k=2Xj=1=2 Xb6=j�m fb; jgL̂ 
 f�b; jgR̂ � J ^ (4.1)where J ^ is a single inde
omposable representation of the two (anti-)
ommuting super
urrent algebras that 
ontains all the atypi
al 
ontributions. It is 
omposed from theatypi
al building blo
ks fl1g 
 fl2g in the same way as in the minisuperspa
e theory. Toobtain the 
orresponding diagram one simply has to repla
e fjg� = f�jg with f�jg^.By 
onstru
tion, all the sl(2j1) 
urrents a
t on the state spa
e (4.1) and they obeyperiodi
 boundary 
onditions. This applies in parti
ular to the fermioni
 �elds. One 
an�nd a se
ond, 
losely related theory in whi
h only bosoni
 �elds are periodi
. In order to
onstru
t its state spa
e, we need to revisit our dis
ussion of spe
tral 
ow symmetries. Aswe have mentioned above, the automorphisms we have investigated in the previous se
tionall extend to the entire 
urrent algebra. In parti
ular, they map fermioni
 modes withinteger mode numbers onto ea
h other, i.e. they respe
t periodi
 boundary 
onditions onthe fermioni
 
urrents. There exists yet another important isomorphism that intertwinesbetween integer and half-integer mode numbers for the fermioni
 generators. It 
an be
onsidered as the square root of the automorphism 
. On the bosoni
 zero modes, the18



new isomorphism # is given by#(B0) = B0 + k=2 ; #(H0) = H0 ; #(L0) = L0 �B0 � k=2 :# extends to the full 
urrent algebra su
h that it a
ts trivially on the bosoni
 sl(2) 
urrentsand it shifts modes of the fermioni
 
urrents by �1=2, as usual.Our isomorphism # indu
es a map between representations of the 
urrent algebra withinteger fermioni
 modes and a new type of representations in whi
h fermioni
 generatorshave half integer mode numbers. A

ording to the usual terminology, the former 
lass ofrepresentations form the R se
tor while the latter belong to the NS se
tor of the theory.The theory with state spa
e (4.1) in
ludes ex
lusively R se
tor representations in whi
hall 
urrents obey periodi
 boundary 
onditions. Another option is to 
onsider a theorythat en
ompasses both R and NS se
tor with the state spa
e given by~HCFT = HRCFT �HNSCFT = HCFT � #HCFT :Note that the NS se
tor has exa
tly the same intri
ate stru
ture as the R se
tor sin
e theformer is the image of the latter under the a
tion of �. In the following we shall refer toboth models as WZNW model on SU(2j1). Even though it seems natural to in
lude theNS se
tor, it is not required by all appli
ations.4.2 Free �eld representation at k = 1So far, the main motivation for our proposal (4.1) 
ame from the harmoni
 analysis onSU(2j1). By 
onstru
tion, we are guaranteed to re
over the 
orre
t state spa
e of theparti
le limit when we send the level k to in�nity. Our formula (4.1) applies to �nitek and it suggest that �eld theory e�e
ts would merely trun
ate the spin j to an valuej � k=2 and then make the whole theory symmetri
 with respe
t to spe
tral 
ow. We arenow going to test this proposal in the extreme quantum 
ase, namely at k = 1. At thispoint, the WZNW model admits a free �eld representation that we are going to spell outmomentarily. It involves a pair of symple
ti
 fermions �1; �2, and a pair of bosons �; �0.While the boson � 
omes with the usual metri
, �0 is assumed to be time-like. For theirpropagators this means h �1(z; �z) �2(w; �w) i = � ln jz � wj2h �(z; �z) �(w; �w) i = � ln jz � wj2h�0(z; �z)�0(w; �w) i = ln jz � wj2 : (4.2)19



Note that the 
entral 
harge of this free �eld theory is 
 = �2 + 1 + 1 = 0 and hen
e itagrees with the 
entral 
harge of SU(2j1) WZNW models. We shall begin our dis
ussionof the WZNW model with expli
it formulas for the 
urrents. In order to 
onstru
t thefour bosoni
 
urrents, we need to split the spa
e-like bosoni
 �eld �(z; �z) = '(z) + �'(�z)into its 
hiral 
omponents. Our bosoni
 
urrents then read,E+(z) = ep2i'(z) ; E�(z) = e�p2i'(z)H(z) = 1p2 i��(z) ; B(z) = � 1p2 i��0(z) : (4.3)The ne
essity to split � into its 
hiral 
omponents means that the boson � is 
ompa
t-i�ed to the so-
alled self-dual radius, as usual in the free �eld representation of theSU(2) WZNW model at level k = 1. In addition, the following expressions for the fourfermioni
 
urrents also involve the 
hiral 
omponents '0 and �'0 of the time-like bosoni
�eld �0(z; �z) = '0(z) + �'0(�z),V �(z) = e 1p2 i(�'(z)+'0(z))��1(z) ; W�(z) = e 1p2 i(�'(z)�'0(z))��2(z) : (4.4)Similarly, one may spell out the anti-holomorphi
 generators of the sl(2j1) 
urrent algebra.It is rather easy to 
he
k that the above expressions give rise to �elds with the 
orre
toperator produ
t expansions. Let us note that the free �eld representation we 
onsiderin this se
tion has to be distinguished 
learly from the Ka
-Wakimoto type 
onstru
tion(3.1) we have used earlier to 
onstru
t the 
hara
ters at integer levels k. We shall 
ommenton this a bit more later on.It is possible to 
he
k that �elds of dimension zero 
an be organized exa
tly as it issuggested by our diagram (2.19). We shall just sket
h the relevant arguments be
ause afull proof is rather laborious to write down. Let us 
onsider the left part of the diagramonly and identify the �elds that make up the various blo
ks of the 
omposition series.Clearly, the f0g � f0g representation at the top 
orresponds to the �eld �1�2. From herewe 
an a
t with the fermioni
 
urrents W�; �V � and arrive at expressions for the twoblo
ks on the intermediate level of the diagram,f1=2g� � f0g : e�i'=p2 e�i'0=p2 �2 ; e�ip2'0 �2��2 ;f0g � f1=2g+ : e�i �'=p2 ei �'0=p2 �1 ; eip2 �'0 �1 ���1 :20



From the previous formulas we 
an read o� the �elds that make up the topmost repre-sentation f1=2g� � f1=2g+ in our diagram,f1=2g� � f1=2g+ : ( e�i'=p2 e�i'0=p2 �2e�ip2'0 �2��2 � ( e�i �'=p2 ei �'0=p2 �1eip2 �'0 �1 ���1 : (4.5)A
ting with the holomorphi
 fermioni
 
urrents V �(z) we arrive at the following formulasfor �elds that belong to the multipletf1g��f1=2g+ : 8><>: (��� + ��0) �2��2 e�i'=p2 e�3i'0=p2�2 e�ip2' e�ip2'0�2�� e�ip2'0 � ( e�i �'=p2 ei �'0=p2eip2 �'0 ���1 :: (4.6)on the intermediate level of the diagram. Our notation means that every produ
t of thethree holomorphi
 �elds on the left hand side with the three anti-holomorphi
 �elds onthe right hand side is part of this 9-dimensional blo
k. Similarly, we 
an now des
end tothe bottom of the diagram,f1=2g� � f1=2g+ : ( e�i'=p2 e�i'0=p2�2��0 e�ip2'0 � ( e�i �'=p2 ei �'0=p2eip2 �'0 ���1 (4.7)Finally, the representation f0g � f0g in 
enter bottom position is represented by theidentity �eld. It is easy but laborious to 
he
k that the di�erent representations are
onne
ted by the a
tion of the left and right generators as indi
ated in the diagram. In
he
king this, noti
e that �2��0e�ip2'0 � ��2e�ip2'0 up to a total derivative.There are a number of interesting further 
omments and observations that we wouldlike to make. Let us begin with a brief 
omment on the relation with Ka
-Wakimoto likerepresentations of the form (3.1). As dis
ussed in [8℄, a naive evaluation of the a
tion ofthe latter on vertex operators leads to a mu
h simpler pi
ture in whi
h the atypi
al se
toris a smooth deformation of the typi
al part. In parti
ular, there is no mixing betweenleft- and right movers as in the 
ase of the representation J ^. In order to see the latter,the s
reening 
harge of the Ka
-Wakimoto representation must be taken into a

ount (see[8℄ for details). The free �eld representation we have employed in this subse
tion is mu
hsimpler to use, but it is restri
ted to k = 1.The free �eld representation also allows us to illustrate very expli
itly how atypi
al�elds of dimension h = 0 are embedded into se
tors with ground states in typi
al multi-plets on
e their spin ex
eeds k=2. Take, for instan
e, the �eld O = eip2('�'0)�2 from the21



f1g� representation and observe thatE�(z) eip2('�'0) �2(w) = 1(z � w)2 : e�ip2�(z) eip2('�'0) �2(w) : + : : : : (4.8)Thus O is not a highest weight of the 
urrent algebra, and applying a 
urrent operator 
angive rise to a �eld of dimension h = �1, namely the �eld P = e�ip2'0�2. This �eld belongsto the typi
al representation f�3=2; 1=2g in the se
tor f1g� with aÆne highest weightQ = ei('�3'0)=p2�2��2. One may easily generalize these observations to all representationsin the 
omplex, hen
e 
on�rming our analysis based on spe
tral 
ow.Let us �nally 
ome to the most important point, whi
h 
on
erns the possible 
onstru
-tion of 
onsistent theories3 that are realized on a subspa
e of our state spa
e (4.1). Notethat H does 
ontain a large number of fermioni
 singular ve
tors that we de
ided not dode
ouple, partly be
ause the minisuperspa
e analysis suggested that it was unnatural todo so. But to a 
ertain extend one should 
onsider (4.1) as some kind of maximal 
hoi
efrom whi
h other models 
an be obtained by 
onsistent de
oupling of singular ve
tors.In general there 
an be several su
h redu
ed theories. On
e more we may use our free�eld representation for the k = 1 model to illustrate ni
ely how this works. Note that theexpressions (4.4) for the 
urrents only 
ontain derivatives of the fermioni
 �elds. Hen
e,we do not spoil the sl(2j1) 
urrent algebra symmetry if we de
ide to work with a model inwhi
h the fundamental �elds are e.g. �; �0; �2 and ��1. Sin
e �1 is not part of this model,some of the se
tors we dis
ussed above do no longer appear. This 
on
erns the se
torsf0g � f0g and f1=2g� � f1=2g+ on the top 
oor of J ^ and the se
tor f0g � f1=2g+ onthe intermediate 
oor. In the resulting model, there is still a single atypi
al se
tor that
omprises all the irredu
ible atypi
als, but it is redu
ed to two 
oors and has the shape ofa saw blade. Obviously, a similar analysis applies to the theory that 
ontains ��2 insteadof �2. But we 
an even go one step further and drop both �1 and �2 so that only fermioni
derivatives remain. What results is a model whose atypi
al se
tor de
omposes into anin�nite sum of irredu
ibles. The latter are the se
tors that appear on the bottom 
oorof J ^, i.e. f0g � f0g and f1=2g� � f1=2g+ from our list above. All others need either�1 or �2. Similar phenomena are possible at other levels. We shall see another expli
itexample in se
tion 5.2. Let us stress, however, that the free �eld 
onstru
tion at k = 1does not in
lude the \de�ning" f0; 1=2g �eld of the WZNW model. A 
areful study of3 Consisten
y in this paragraph refers to the existen
e of genus zero 
orrelators obeying the usualfa
torization 
onstraints. The 
onstru
tion and behavior of torus amplitudes is not addressed.22



the Knizhnik-Zamolod
hikov equations [3, 2℄ shows that 
onsisten
y in the presen
e ofthe f0; 1=2g se
tor requires the identity �eld to be embedded into an inde
omposablese
tor. In this sense, the fully trun
ated atypi
al se
tor we have just des
ribed 
annot beembedded into the sl(2j1) WZNW model.4.3 Partition fun
tionsWe now go ba
k to the full theory based on our proposal (4.1). We would like to 
omputethe partition fun
tion of the model, with and without in
lusion of the NS se
tor. Sin
epartition fun
tions are obtained by taking the tra
e over the state spa
e, the details ofthe a
tion of fermioni
 generators in the atypi
al se
tor J ^ do not show up in the result.In other words, the 
ontribution from the inde
omposable J ^ is the same as if we wouldtake the tra
e over a sum of its irredu
ible 
omponents. The latter 
an be resumed asfollows,strJ ^ qL0+�L0 = X�2Z=2 2�IIf�g(�q)�IIf��g(q)� �IIf�+1=2g(�q)�IIf��g(q)� �IIf��1=2g(�q)�IIf��g(q)= X�2Z=2 ��IIf�g(�q)� �IIf��1=2g(�q)� ��IIf��g(q)� �IIf��+1=2g(q)�= X�=1=2;1;::: ��IIf�g(�q)� �IIf��1=2g(�q)� ��IIf��g(q)� �IIf��+1=2g(q)�+ X�=1=2;1;::: ��IIf��g(�q)� �IIf��+1=2g(�q)� ��IIf�g(q)� �IIf��1=2g(q)�= X� Xm2Z k=2Xj=1=2 �Ifj�m;jg(�q)�If�j�m;jg(q) :In the last step we have inserted the relation (3.4) between 
hara
ters of 
lass I and
lass II representations and we used the isomorphism �̂ to 
onvert the sum over non-zerohalf-integers into a sum over m and j. Our result shows that the 
ontribution from theatypi
al representations agrees exa
tly with the part that we omitted from the typi
alse
tor of the theory. Hen
e, the full partition fun
tion be
omesZ(q) = k=2Xj=1=2Xb2R �Ifb;jg(�q)�If�b;jg(q) : (4.9)23



Let us also brie
y dis
uss how the partition fun
tions is modi�ed when we want to in
ludethe NS se
tor. In that 
ase, the tra
e extends over both HCFT and its image under thespe
tral 
ow #. The modular invariant partition fun
tion ~Z(q) of this theory 
ontains fourdi�erent terms, two in whi
h (�1)F is inserted and two in whi
h it is not. It is 
ustomaryto label the 
orresponding 
ontributions with R, sR, NS and sNS where the small ssignals the insertion of (�1)F . With these notations, the standard super-
hara
ters wehave dis
ussed throughout the previous se
tion should all 
arry a supers
ript sR. It is easyto �nd expli
it formulas for the other three sets of (super-)
hara
ters using the relation�sNS(q; �; z) = #�sR(q; �; z) = �k=2q�k=2�sR(q; q�1�; z)to 
onvert sR 
hara
ters into sNS super-
hara
ters. The same pres
ription is used whenwe 
onstru
t NS 
hara
ters from the R se
tor, only that we have to repla
e the R super-
hara
ters � by ordinary 
hara
ters. The partition fun
tion ~Z(q), �nally, has the sameform as eq. (4.9) with an additional summation over all four types of terms.Let us illustrate the previous results in the 
ase of k = 1 again. The (sR) 
hara
tersof this theory take a parti
ularly simple form, as was �rst observed by Bow
o
k et al. in[5℄, �Ifb;1=2g(q; z; �) = q�b2=2�b�(q) ��1=2(q; �)�0(q; z)� �0(q; �)�1=2(q; z)� (4.10)where �0 and �1=2 are SU(2) level one 
hara
ters for spin 0 and 1=2 respe
tively. Thisexpression allows us to determine the modular invariant physi
al partition fun
tion ~Zinvolving periodi
 or antiperiodi
 boundary 
onditions for the fermions along both periodsof the torus. The doubly periodi
 se
tor (�sR) gives a vanishing 
ontribution for 
hara
ters�fb;1=2g sin
e the super-dimension of the horizontal Ka
 modules vanishes. We are leftwith three 
ontributions, whi
h read respe
tively�Rfb;1=2g(q) = 2q�b2=2�(q) �1=2(q)�0(q) (4.11)�NSfb;1=2g(q) = q�b2=2�(q) ��20(q) + �21=2(q)� (4.12)�sNSfb;1=2g(q) = q�b2=2�(q) ��20(q)� �21=2(q)� : (4.13)
24



Their modular transformations are easy to obtain for b = 0�Rf0;1=2g(�1=�) = 1p�i� �sNSf0;1=2g(�)�NSf0;1=2g(�1=�) = 1p�i� �NSf0;1=2g(�) (4.14)�sNSf0;1=2g(�1=�) = 1p�i� �Rf0;1=2g(�) :Obviously, the � dependen
e of these formulas originates in the 1=� term in the 
hara
ters,and has to be 
ompensated by a similar fa
tor 
oming from the b sum in order to obtaina modular invariant quantity.The question we want to ask now is what kind of sum over b one should 
onsider.It seems at �rst sight that, sin
e we are dealing with SU(2j1), the b number should bedis
rete, in agreement with the imaginary exponential appearing in se
tion 2.2 (note thatthis is also 
ompatible with invarian
e under a
tion of the spe
tral 
ow). It is likely thatsu
h a theory would make sense in genus zero. DiÆ
ulties arise, however, when we try toestablish modular invarian
e of the partition fun
tion, i.e. 
onsider the theory in genusone. Indeed, even if b is dis
retized, there is no reason to trun
ate its range, and thus thenaive spe
trum of 
onformal weights is unbounded from below, and exhibits arbitrarilylarge negative dimensions. This should not 
ome as a surprise sin
e the metri
 on thegroup is not positive de�nite, and thus the naive fun
tional integral in the WZNW modelis divergent. What is required to obtain a physi
al partition fun
tion on the torus - onethat 
ould be 
ompared with the spe
trum of some latti
e Hamiltonian say - is some sortof analyti
 
ontinuation.This raises some interesting questions on whi
h we would like to digress brie
y. For a
ompa
ti�ed time-like boson, partition fun
tions would involve sums of the formXn e�n2 ; Re � > 0 :This sum is obviously divergent, but one 
ould be tempted to give it a meaning byanalyti
al 
ontinuation from a similar sum with Re � < 0. An equivalent problem ariseswhen we try to 
ontinue a theta fun
tion su
h as�(�) = Xn ei��n225



into the lower half plane Im � < 0. It is known that this 
ontinuation is not possible,sin
e the � fun
tion has singularities whi
h are dense on the real axis (a qui
k proof isobtained by �rst observing that � is singular for � an even integer, and then using modulartransformations). Theta fun
tions have a natural boundary, and are simple examples ofla
unary fun
tions, i.e. \almost all" their Fourier 
oeÆ
ients are zero [20℄. The partitionfun
tion of a 
ompa
ti�ed time-like boson is thus a formal obje
t from whi
h it is hardto extra
t physi
al meaning. On the other hand, without 
ompa
ti�
ation, the partitionfun
tion 
an easily be analyti
ally 
ontinued. Indeed, repla
ing the dis
rete sum by anintegral we have Z 1�1 dxei��x2 = 1p�i�whi
h 
an be 
ontinued in the lower half plane sin
e it has a single 
ut along the negativeimaginary axis.We thus restri
t to the theory with 
ontinuous spe
trum of b, and propose the simplestpartition fun
tionZk=1 = �j�Rf0;1=2gj2 + j�NSf0;1=2gj2 + j�sNSf0;1=2gj2� Z 1�1 db(q�q)�b2=2 (4.15)whi
h we interpret through analyti
 
ontinuation, up to an irrelevant phase, asZphysk=1 = �j�Rf0;1=2gj2 + j�NSf0;1=2gj2 + j�sNSf0;1=2gj2� Z 1�1 d�(q�q)�2=2 (4.16)= �j�0j2 + j�1=2j2�2 � 1��� Z 1�1 d�(q�q)�2=2 : (4.17)This obje
t is obviously modular invariant sin
e, from a dire
t 
al
ulation of the integrals,Z d�(q�q)�2=2 = 1p� �� Z d�(~q�~q)�2=2 (4.18)hen
e 
ompensating the fa
tors 
oming from the � fun
tions in the 
hara
ters. We notethat the spe
trum of 
onformal weights in the periodi
 se
tor is a 
ontinuum starting ath = 1=8. The �eld with h = 0 does not appear.In 
on
lusion, the requirement for our theory to possess a \physi
al partition fun
tion"has for
ed us to let b be 
ontinuous. Geometri
ally, this amounts to a de
ompa
ti�
ationof the time-like 
ir
le. Hen
e we are led to 
onsider the universal 
over of SU(2j1) sothat we 
an perform an analyti
al 
ontinuation on the number b. One may interpretthe pres
ription that leads to the physi
al partition fun
tion as an e�e
tive 
hange of the26



target spa
e along the lines advo
ated in [21℄. Let us also stress that, while our argumentswere based on the k = 1 theory, it is 
lear that a similar reasoning 
an be 
arried out forother levels.The argument leading to b being 
ontinuous also seems to ex
lude the smaller theorieswhere part of the 
omplex J is dropped, at least for general values of k. We shall see anex
eption in the 
ase k = �1=2 later.5 Some sele
ted appli
ationsThis following se
tion 
ontains some sele
ted appli
ations of our general analysis. In the�rst subse
tion we shall 
ompare our results with studies of the 
ontinuum limit of theintegrable sl(2j1) 3��3 spin 
hain [9℄. The agreement we �nd supports a new interpretationof latti
e results. The se
ond subse
tion is devoted to the k = �1=2 theory whi
h wasnot in
luded above, but we shall see that it shares many of the stru
tures we un
overedthroughout the last few se
tions.5.1 The 3� �3 super-spin 
hain revisited.In [9℄ an integrable sl(2j1) invariant super-spin 
hain was studied using both analyti
aland numeri
al te
hniques. Its Hamiltonian a
ts on the tensor produ
t (3 
 �3)
L where3 and �3 stand for the representations f1=2g� in our previous terminology. It was arguedthat in the 
ontinuum limit this 
hain 
ows to a SU(2j1) WZNW model at level k = 1.At the time, the WZNW model on the supergroup SU(2j1) had not been 
onstru
ted andit seems instru
tive to revisit the issue now on the basis of our improved understandingof the 
ontinuum �eld theory. We shall see that the suggested identi�
ation with the
ontinuum limit of the spin 
hain 
an be maintained, but some of the latti
e resultsre
eive an interesting reinterpretation.Let us begin by reviewing brie
y some results on the spe
trum of the latti
e model. In[9℄ it was found analyti
ally that this spe
trum exhibits a unique ground state at h = �h =0, whi
h lies in the single \true singlet" of the model, i.e. it is a sl(2j1) invariant state thatis not part of a larger inde
omposable representation. This ground state 
orresponds to anextremely degenerate solution of the Bethe ansatz equations where all roots 
ollapse to theorigin. Besides the ground state, many ex
ited states were also found. The lowest lyingstate above the ground state 
orresponds to a �lled sea of some (non 
omplex 
onjugate)27



string 
omplexes. The rest of the spe
trum is given by ex
itations obeying the usualpattern of holes and shifts of the sea. The s
aled energies of these ex
itations over theground state were found analyti
ally to beL2�v�E = 14 + 12 (�N+ +�N�)2 + 18 (D+ +D�)2 ++ CN(L) (�N+ ��N�)2 + CD(L) (D+ �D�)2 (5.1)where CN(L) ! 0 ; CD(L) ! 1 for L!1Here, �N�; D� are quantum numbers 
hara
terizing the Bethe ansatz solution. In the
ontinuum limit, the quantity (5.1) is expe
ted to 
onverge to x = h + �h (all weights inthe 
 = 0 theory), as usual. Formula (5.1) indi
ates an in�nite degenera
y of the levelh = �h = 1=8 (obtained with �N+ = �N� = D+ = D� = 0 say) in the limit L ! 1.Numeri
al studies 
on�rm this behavior: Indeed, they show that that an in�nite numberof levels 
onverges to h = �h = 1=8 as L in
reases. This was already interpreted in [9℄ asindi
ating the existen
e of a 
ontinuum of 
onformal weights starting at h = �h = 1=8 inthe thermodynami
 limit.Although an analyti
al study of the asymptoti
 
orre
tions to (5.1) seems still out ofrea
h, numeri
al studies in a 
losely related model suggest that the leading 
ontributionsto CN and CL 
an be well �tted by the formulasCN(L) � 
lnL + : : : ; CD(L) � 4
 lnL + : : : (5.2)for large number 2L of latti
e sites. When these leading terms are plugged ba
k intothe formula (5.1) for the spe
trum of the latti
e model, we see that the se
ond lineresembles very mu
h the spe
trum of a free boson whi
h has been 
ompa
ti�ed to a 
ir
lewith radius square of the order lnL. In other words, if we assume that eqs. (5.2) are
orre
t, the 
ontribution from the \antisymmetri
 se
tor" (i.e. form ex
itations for whi
h�N+ ��N� or D+ �D� are non zero) to the partition fun
tion 
an be estimated asZanti = 1��� Xe;m q(e=R+mR=2)2 �q(e=R�mR=2)2= Rp2 1pIm � ��� Xm;m0 exp���R2jm� �m0j22Im � �� Rp2 1pIm ���� (5.3)28



where �(q) is Dedekind's eta fun
tion, as before. The divergen
e is proportional to R,i.e. to the size of the target spa
e, as expe
ted. We 
on
lude that in the latti
e model,the 
ontribution from the antisymmetri
 se
tor to the partition fun
tion multiplies the
ontribution from the symmetri
 se
tor in eq. (5.1) by a term of the order of plnL. Theground state meanwhile, being a very degenerate Bethe ansatz solution, does not 
omewith su
h an extra fa
tor. The generating fun
tion of levels in the periodi
 se
tor willtherefore have the formZR = 1 + 
stplnL � 1pIm � P �P (q�q)1=8 + : : :� (5.4)where the dots represent ex
itations from the symmetri
 se
tor in (5.1).The �rst 
on
lusion we draw is that the 
ontribution of the 
ontinuum 
ompletelyoverrides the one from the dis
rete state (as would be the 
ase in any quantum me
hani
sproblem with dis
rete states and a 
ontinuum with delta fun
tion normalizable states),and that a properly normalized partition fun
tion does not see the singlet with h = �h = 0.The resulting obje
t is in good agreement with our 
onje
tured partition fun
tion (4.17).Referen
e [9℄ 
ontained various failed attempts to build a 
onformal �eld theory 
on-taining both the 
ontinuum of representations fb; j = 1=2g and a single identity �eldasso
iated with the representation f0g. Given our new insight into the 
ontinuum model,the problems to in
orporate the singlet state may not 
ome as a 
omplete surprise. Al-though the free �eld 
onstru
tion at k = 1 suggests the possibility of smaller theories, thestudy of modular invariants (as well as of four point fun
tions, as we mentioned above)seems to pre
lude the appearan
e of the singlet representation on its own - i.e. withoutbeing part of a big inde
omposable with vanishing super-dimension. In addition all thestates we found in the 
ontinuum approa
h were non normalizable. Both observationslead us to spe
ulate that eq. (4.17) represents the full operator 
ontent of the 
ontinuumlimit, and that there is no dis
rete state asso
iated with a true singlet. Put di�erently,the new investigation suggests that the true singlet observed on the latti
e is an artifa
tof the regularization and does not belong to the 
ontinuum limit. Our new interpreta-tion of the latti
e results re
eives additional support from the very singular nature of theBethe ansatz solution that 
orresponds to the singlet state. It would be interesting to
he
k further the de
oupling of the true singlet by studying the s
aling behavior of matrixelements of latti
e regularized 
urrent algebra generators.29



There is one more potential obje
tion one might raise. Note that in our 
ontinuumtheory fermioni
 and bosoni
 states are perfe
tly paired so that the Witten index of theSU(2j1) WZNW model is guaranteed to vanish. Meanwhile, for our latti
e spin 
hain onthe spa
e (3
 �3)
L one �nds an ex
ess by one for the number of bosoni
 states over thenumber of fermioni
 ones. Hen
e, the Witten index is non-zero on the latti
e and onewould naively expe
t the same to be true for the 
ontinuum limit, in 
on
i
t with what wehave proposed above. In order to resolve this issue, we suggest that there exist di�erentspin 
hains whi
h give rise to the same 
ontinuum limit while possessing an ex
ess offermioni
 states over bosoni
. More 
on
retely, while we do not understand the wholestru
ture yet, we have found 4 that the ground states of integrable 
hains of the type(3
�3)
L
3 and �3
 (3
�3)
L s
ale to 
onformal weight h = 0 as well (in fa
t the groundstate energy is given exa
tly by E0 = �length� e0 where e0 has no �nite size 
orre
tionand is the same for all 
hains), but this time they 
ome in the representation 3 (resp. �3).On
e we sum over the various latti
e models, the balan
e between bosoni
 and fermioni
states may be restored even before taking the 
ontinuum limit.5.2 The WZNW model at k = �1=2Our investigation above was restri
ted to integer level k. But as we have mentioned before,these are some fra
tional values of k, in parti
ular k = �1=2, whi
h play an importantrole for appli
ations. While we are not prepared to give a systemati
 a

ount on fra
tionallevel theories, we would like to dis
uss brie
y a model with k = �1=2. Our analysis willlead to the remarkable 
on
lusion that the basi
 stru
ture of this model is essentially thesame as for integer k, only that there exist several 
omponents within the atypi
al se
tor,ea
h of them being modeled after J .In this 
ase k = �1=2, the relevant representation theory of the sl(2j1) 
urrent algebrais parti
ularly simple. In fa
t, all relevant representations 
an be obtained from theva
uum se
tor f0g^ through appli
ation of spe
tral 
ow symmetries. It is not diÆ
ultto show that at k = �1=2 the automorphism 
2 is inner, i.e. 
2 � id. This means thatappli
ation of 
2 does not lead to any new representations. The remaining nontrivialautomorphisms are of the form 
n+
� with n 2 Z and � = 0; 1. We shall denote the4We thank F. Essler for kindly exploring this question numeri
ally.30




orresponding irredu
ible representations of the sl(2j1) 
urrent algebra byf(n; �)g �= 
n+ 
�f0g^ :By 
onstru
tion, this set 
loses under fusion. In fa
t, the fusion produ
t simply amountsto a 
omposition of the asso
iated automorphism.With the ex
eption of the se
tors labeled by n = 0;�1, the representations f(n; �)gdo not 
ontain a highest or lowest weight. The representation f(0; 0)g is to be identi-�ed with the va
uum representation. f(0; 1)g = f0; 1=2g^ is the only other admissiblerepresentation at k = �1=2. It is generated from the 4-dimensional typi
al multipletf0; 1=2g of ground states with 
onformal weight h = 1=2. In addition, there are fourmore highest/lowest weight weight representations whi
h are ere
ted over the atypi
aldis
rete series representations f(�1; ��)g = f(�;�1=4)g�̂ and f(1; ��g = f(+;�1=4)g�̂
orresponding to a negative spin j = �1=4. The 
hoi
e of the sign in the �rst argument ofthe bra
ket determines on whether the representation is highest (�) or lowest (+) weight.The subs
ript, on the other hand 
orresponds to the two di�erent 
hoi
es of the param-eter b that make these representations atypi
al. All four representations possess groundstates of 
onformal weight h = 0. In all other representations f(n; �)g with jnj � 2, the
onformal weight is unbounded from below.Sin
e we 
an generate every representations from f0g^, is suÆ
es to display the 
har-a
ter of the va
uum representation,�f0g(q; z; �) = 12 �#3(q; �1=2)#4(q; z1=2) + #4(q; �1=2)#3(q; z1=2)� :We shall explain the origin of this formula in a moment. Chara
ters of all the otherrepresentations are obtained from the va
uum 
hara
ter �f0g through�f(n;�)g(q; z; �) = 
n+ 
� �f0g(q; z; �) = ��n4��2 z�n4 q n+12 � �f0g(q; q�n�2��; qnzz) :To derive the above 
hara
ter formula and for the subsequent dis
ussion we note thatthe sl(2j1) 
urrent algebra at level k = �1=2 possesses a free �eld representation whi
hemploys the same free �elds as in the 
ase of the k = 1 theory, i.e. two free bosoni
 �elds� and �0 with spa
e-like and time-like signature, respe
tively, and a pair of symple
ti
fermions �1; �2. The bosoni
 sl(2j1) 
urrents readE+(z) = 12 e�2i'0(z) �2�1(z) ��1(z) ; H(z) = i2 ��0(z) (5.5)E�(z) = 12 e2i'0(z) �2�2(z) ��2(z) ; B(z) = i2 ��(z) : (5.6)31



Note that, unlike in the 
ase of k = 1, the bosoni
 
urrents involve the symple
ti
 fermionsand the time-like free boson. For the fermioni
 
urrents one �ndsV �(z) = 1p2 e�i('(z)�'0(z)) ��2(z) ; V +(z) = 1p2 e�i('(z)+'0(z)) ��1(z)W�(z) = 1p2 ei('(z)+'0(z)) ��2(z) ; W+(z) = 1p2 ei('(z)�'0(z)) ��1(z) :As in the 
ase of the k = 1 theory, the free �eld 
onstru
tion determines a 
onsistent modelwith a sl(2j1) 
urrent algebra symmetry. If we do not in
lude the symple
ti
 fermions(note that on
e more the 
urrents only involve derivatives), but only their derivativesthen the state spa
e readsHk=�1=2 = Mn;� f(n; �)g^ � f(�n; �)g^ :Sin
e the spe
tral 
ow automorphisms 
� and 
 
orrespond to multipli
ation with the�elds 
� $ e� i2 (�0��) ; 
 $ e�i�is is fairly easy to write down at least one �eld in ea
h se
tor of the model,f(n; �)g^ � f(�n; �)g^ 
ontains e�in2 �0�in+2�2 � :The spa
e Hk=�1=2 
ontains R se
tor representations only, but it is 
ertainly possible toin
lude the NS se
tor by adding the image under the spe
tral 
ow #. Sin
e this worksjust in the same way as above, we shall not repeat the dis
ussion here.Even though all the representations we are working with are atypi
al, the state spa
ede
omposes into irredu
ible building blo
ks. This is quite di�erent from the stru
ture ofthe atypi
al se
tors J ^ we des
ribed above. On the other hand, is is very similar to oneof the 
onsistent theories with k = 1 that we des
ribed at the end of se
tion 4.2. In thek = 1 theory, the singular ve
tors of the inde
omposable blo
k J ^ were de
oupled byrestri
ting to a theory that 
ontained only derivatives of the fermioni
 �elds. Conversely,the experien
e from k = 1 suggest that in the k = �1=2 
ase we may be able to 
onstru
t atheory with a more 
ompli
ated atypi
al se
tor by in
luding one or both of the symple
ti
fermion �elds �1 and �2 [22℄.We 
laim that in 
ase we in
lude both fermioni
 zero modes we end up with an atypi
alstru
ture that de
omposes into four di�erent blo
ks, ea
h of them being built in the same32



way as our se
tor J ^. We shall present the analysis only for the blo
k that 
ontains theva
uum se
tor f0g^. The other three se
tors are obtained by a
ting with 
; 
+ and 
+Æ
.Let us start our dis
ussion with the �eld �1�2. Any a
tion with V �;W� and E� willremove one of the two fermioni
 zero modes and hen
e �1�2 sits at the top of a se
torf0g^. The a
tion of V +;W+ and E+ takes us from here into a set of �elds whi
h all
ontain a fa
tor �1. These �elds 
an be shown to belong to a se
tor that is isomorphi
 tof(2; 0)g �= 
2+f0g^. Further appli
ation of V �;W� and E� bring us to a set of �elds that
ontain only derivatives of fermions. These form a subrepresentation f0g^ at the bottomof our atypi
al representation. A similar analysis applies if we a
t with V �;W� and E��rst. This time, we des
end to f0g^ via the se
tor f(�2; 0)g �= 
�2+ f0g^. Continuing alongthis line of thoughts, one 
an see that the se
tors f(2n; 0)g; n 2 Z; form the 
ompositionseries for an inde
omposable representation J ^ with f(2n; 0)g in pla
e of fn=2g. Thestate spa
e of the maximal theory therefore de
omposes into four inde
omposable blo
ks.On
e more, there are two intermediate theories, ea
h of whi
h has four saw-blade shapedatypi
al se
tors. They are obtained if we omit either �1 or �2 (but not their derivatives,of 
ourse) from the above maximal theory.Even though we are not prepared to analyze WZNW models for generi
 fra
tionallevels, it is remarkable that the stru
ture we have �rst un
overed in our minisuperspa
elimit, re-appears even for k = �1=2. It seems very likely that the same is true for ageneri
 
hoi
e of the level.6 Con
lusions and OutlookAn obvious 
on
lusion of our study is that WZNW models on supergroups are interestingexamples of logarithmi
 CFTs, mu
h ri
her than it has been anti
ipated in earlier works.Gurarie (see [23℄ and referen
es therein), for instan
e, argued that super WZNW modelswith 
 = 0 
ould be 
onsidered as made of two \de
oupled" 
omponent theories withopposite values of the 
entral 
harge, an observation justi�ed in part by the fa
t that inthe GL(1j1) WZNW model, the stress energy tensor belongs naturally to a four dimen-sional GL(1j1) multiplet in whi
h L0 is diagonalizable, and hen
e T has no \non triviallogarithmi
 partner". The SU(2j1) WZNW 
learly does not obey any su
h de
oupling.In fa
t, restri
ting to the right moving 
urrent algebra as in [23℄ we see that the identity�eld belongs to a proje
tive representation of the zero mode algebra on whi
h the Casimir33



- and hen
e L0 - is not diagonalizable. Applying L�2 to this representation produ
es aVirasoro Jordan 
ell at level h = 2 and a non trivial logarithmi
 partner of the stressenergy tensor. This 
an be seen quite expli
itely in the 
ase k = 1 where, within the free�eld representation (and similarly to the 
ase of symple
ti
 fermions), the �eldt(z) := : �1(z)�2(z)T (z) :is a logarithmi
 partner ofT := : ��1(z)��2(z) : �12 : (��(z))2 : +12 : (��0(z))2 : :Note that the whole stru
ture of inde
omposables is in fa
t mu
h more 
ompli
ated thanenvisioned in [23℄ when the interplay of left and right 
urrent algebras is taken intoa

ount.Even though the stru
ture of the state spa
e is rather diÆ
ult when analyzed withrespe
t to the 
ombined left and right a
tion, it is surprisingly simple on
e we restri
t toeither the left or the right a
tion alone. Note that the Lie superalgebra sl(2j1) has a largenumber of inde
omposables (see e.g. [11℄) from whi
h only a very distinguished sub-
lassdoes a
tually o

ur within the state spa
e of our model. In fa
t, we have seen abovethat all states (both in the minisuperspa
e theory and the full �eld theory) transforma

ording to the so-
alled proje
tive representations of sl(2j1), i.e. either in typi
als andproje
tive 
overs of atypi
als. This is not to say, however, that other representationsof sl(2j1) have no relevan
e for sigma models on supergroups. In addition to the leftand right regular representation there is yet one more important symmetry that arisesfrom the adjoint a
tion of sl(2j1) on the state spa
e. With respe
t to the latter, states
an transform in other inde
omposables. The underlying mathemati
al stru
ture turnsout to be quite intriguing and will be des
ribed elsewhere. Sin
e the adjoint a
tion isleft unbroken by maximally symmetri
 boundary 
onditions, the resulting de
ompositionshould have appli
ations, in parti
ular to the study of boundary 
onditions for sigmamodels on supergroups.As a �nal 
omment let us point out one generi
 feature we have en
ountered in bothGL(1j1) and SU(2j1), namely that the 
ontribution of the inde
omposable se
tor J simplymakes up for the subtra
tions in the atypi
al se
tors of the theory, so that the partitionfun
tion sees only 
ontributions from Ka
 modules, and has a simple fa
torized form. Thisbehavior is suÆ
ient for a modular invariant partition fun
tion but it is not ne
essary.34



The potential existen
e of di�erent versions of the theory where only parts of the 
omplexJ appear, requires more study. We note that some hints in this dire
tion are providedby the study of four point fun
tions. In the 
ase k = 1, the four point fun
tion of the�elds in the f0; 1=2g representation has been studied in detail. It turns out that the KZequations fa
torize, and that it is possible to de
ouple one 
onformal blo
k. Two blo
ksremain, leading to logarithmi
 dependen
e, and indi
ating that the identity �eld remainspart of an inde
omposable representation. This suggests that the smallest theory, wherethe 
omplex J is redu
ed to an in�nite sum of irredu
ibles, 
annot appear in the sl(2j1)WZNW model. In the 
ase k = �1=2 meanwhile it is possible to de
ouple two 
onformalblo
ks, leaving only the identity �eld, and indi
ating that the smallest theory does makesense this time - a feature 
onsistent with the free �eld representation and the modularinvariant. The sl(2j1) WZNW model at fra
tional level and the expli
it 
onstru
tion of
onsistent theories with a trun
ated atypi
al se
tor 
ertainly deserve a more systemati
investigation.A
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t number MRTN-CT-2004-005104.7 Appendix A: The right regular representationIn this appendix we would like to prove the de
omposition formula for the right regularrepresentation. We shall use the same notations that were introdu
ed in se
tion 2.2.In order to analyze the de
omposition of the spa
e of fun
tions under the right regulara
tion of sl(2j1), we shall �rst study its restri
tion to the Lie sub-superalgebra gl(1j1).More pre
isely, we shall make use of the following embedding�( +) = F+ ; �( �) = �F� ; �(E) = B �H ; �(N) = B +H :The main te
hni
al Lemma of this se
tion implies that under the a
tion of gl(1j1), thespa
e H of fun
tions on the supergroup SU(2j1) de
omposes into proje
tives only.35



Lemma: Under the a
tion of RX � R�(X) of the generators X 2 gl(1j1), the spa
e H offun
tions of SU(2j1) de
omposes a

ording toH �= Mj jMb=�jP(2b + 1)� 2 � P(2b)� P(2b� 1)� T :Here, T is a dire
t sum of typi
al gl(1j1) representations and P(a) denotes the proje
tive
over of the atypi
al irredu
ible hai.Before we prove this statement, let us formulate two 
onsequen
es for the right regularrepresentation of sl(2j1). To begin with, let us re
all from [11℄ that an sl(2j1) represen-tation � des
ends on a proje
tive representation of the embedded gl(1j1) algebra if andonly if � is proje
tive. Our lemma 
laims that the gl(1j1) a
tion on H 
ontains onlyproje
tives. Hen
e, the same must be true for the right regular a
tion of sl(2j1).Proof of Lemma: For the proof it will be useful to introdu
e the following odd fun
tions��� := e�iz=2D1=2(�1=2)�(g�1) ��� ; ~�� = eiz�� :It is not diÆ
ult to see that the spa
e H is spanned by fun
tions of the formF n;jab � = einz Djab(g) �(~��; �+; ���) ;where �(~��; �+; ���) is an arbitrary element in the algebra generated by the arguments. Itis very easy to des
ribe expli
itly the spa
e of fun
tions whi
h are organized in atypi
alsof gl(1j1). The latter is 
hara
terized by the vanishing of RE,AR = f� 2 H j �i�z +R0h + ������ = 0g : (7.1)We 
an easily solve the equation for � and des
ribe the spa
e AR expli
itly. In fa
t, it isspanned by the fun
tions F b;jab � = eibzDjab(g) �(~��; �+; ���) :On the subspa
e AR the other generators of gl(1j1) simplify toRN� = (�2i�z � ���� � �+�+)� (7.2)R	+� = �i�+� ; R	�� = ie�iz=2D1=2�(�1=2)(g) ���� � i��R0E� : (7.3)36



for all � 2 AR. The representation of gl(1j1) 
an be restri
ted to the spa
e A0R of allelements � 2 AR su
h that ����� = �. A short look on the a
tion of the gl(1j1)generators reveals that A0R = Mj jMb=�jP(2b+ 1)� P(2b) :Similarly, we see that AR=A0R = Mj jMb=�jP(2b)� P(2b� 1) :Sin
e all representations are proje
tive we 
on
lude thatAR = Mj jMb=�jP(2b + 1)� 2 � P(2b)� P(2b� 1) :This 
on
ludes the proof of our Lemma.Referen
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