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AbstratMotivated by a areful analysis of the Laplaian on the supergroup SU(2j1) weformulate a proposal for the state spae of the SU(2j1) WZNW model. We thenuse properties of bsl(2j1) haraters to ompute the partition funtion of the theory.In the speial ase of level k = 1 the latter is found to agree with the properlyregularized partition funtion for the ontinuum limit of the integrable sl(2j1) 3� �3super-spin hain. Some general onlusions appliable to other WZNW models (inpartiular the ase k = �1=2) are also drawn.
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1 IntrodutionThe SU(2j1) WZNW model is a key example of the sigma models with supergroup targetsthat appear in the supersymmetri desription of non interating disordered systems in lowdimensional statistial mehanis. The �rst ourrene of this model probably arose viaa supersymmetrization of the path integral for two opies of the two dimensional ritialIsing model. It was shown in [1℄ how a � system (with entral harge  = �1) ould beintrodued to anel out the pair of free Majorana fermions (regrouped for onvenieneinto a Dira fermion) path integralsZ = Z [d d yd�d℄ exp[S0 + ÆS℄ = 1 (1.1)where S0 = Z d2x2� � y �� + � y� � + � �� + ����� (1.2)and ÆS = Z d2x2� im(x)2 � � y �  y � + �� � ��� : (1.3)The theory without random massm(x) = 0 is obviously a free OSP(2j2) theory, whih anbe onsidered as a SU(2j1) WZNW model at level k = �1=2 1. Averaging over disorderprodues a marginally irrelevant urrent urrent perturbation of this WZNW model. Thisis ruial to understanding the (logarithmi) orretions to pure Ising model saling. Thedeep infrared (IR) behavior however is not hanged by the disorder, whih orrespondsto the fat that (1.2) is a simple free theory, with pure fermioni orrelators idential tothose of the usual Ising model.The seond ourrene of the SU(2j1) model is more involved. It arises in the studyof 2 + 1 dimensional spin-full eletrons in the presene of a random (non abelian) gaugepotential. The supersymmetrization of the path integral for two opies of the Dirafermions produes a free OSP(4j4) theory whih has been argued to ow to the SU(2j1)WZNWmodel at level one under the ation of the disorder [2℄. The nature of the spetrumand orrelation funtions play an important role in the desription of the eletroni wavefuntions at that �xed point.1Our onventions are suh that the sub SU(2) algebra has level k. In part of the literature, the levelis de�ned as �2� ours, so the free system in (1.1) has k = 1 there.
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Previous works on the SU(2j1) model have foused on some orrelation funtions [3℄,[4℄and on the onstrution of some haraters [5℄, but a omplete piture of the theory hasbeen missing.Indeed, the analysis of WZNW on supergroups is notoriously diÆult, even for thesimplest ase of GL(1j1) [6℄. In a reent paper [7℄, we have shown how a areful studyof the partile limit (in partiular, of the simultaneous left and right invariant ations onthe spae of funtions on the group) ould provide onsiderable insight into this problem.Combining this insight with some additional input from the representation theory of theurrent algebras allowed us to formulate a omplete proposal for the state spae of thetheory in the ase of GL(1j1). The latter involves a rather intriate mixing of left andright movers that is intimately related to the representation theory of Lie superalgebras,in partiular to the importane of indeomposable representations. We were then ableto hek this proposal through an exat onstrution of the theory in the ontinuumformulation.The aim of this work is to extend the lessons we have learned in [7℄ to a non-abeliansetup, using SU(2j1) as the simplest non-trivial example.2 One more, the analysis ofthe partile limit (setion 2) along with some input from the representation theory ofthe sl(2j1) urrent algebra (setion 3) shall provide all the neessary ingredients for theonstrution of the �eld theory state spae (setion 4), in lose analogy to our previousinvestigation of the GL(1j1) model. In the present ase we shall not attempt to verifythe struture of the state spae through alulations of orrelators, though this wouldbe possible as well (see [8℄). Instead we shall use results on an integrable sl(2j1) spinhain to test our ontinuum onstrutions. Suh a spin hain was �rst investigated in [9℄as a disrete version of the SU(2j1) WZNW model. We shall see that both approahesare onsistent. The omparison, however, is a bit subtle, mainly due to the fat thatthe supergroup SU(2j1) has an inde�nite metri. While this poses no problem for the(algebrai) onformal �eld theory analysis, the omputation of the partition funtionon the lattie su�ers from divergenies whih need to be regularized. We shall do thisthrough some appropriate analyti ontinuation. In this sense, our analysis also supportsa partiular presription for extrating information from spin hains with an inde�nitemetri.2To be more preise, we shall onsider the universal over of SU(2j1) in whih the abelian, time-likeirle is replaed by the real line. We shall omment on this in muh more detail in setion 4.2



2 The minisuperspae analysisThe aim of this setion is to deompose the spae of funtions on the supergroup SU(2j1)into (generalized) eigenfuntions of the quadrati Casimir element in the regular rep-resentations. Sine the Casimir ommutes with the generator, the eigenspaes may bedeomposed into representation of the Lie superalgebra sl(2j1). It is therefore useful tohave some bakground on the representation theory of sl(2j1). We shall review a fewknown fats below before addressing the harmoni analysis. More details an be founde.g. in [10, 11℄.2.1 The Lie superalgebra sl(2j1)In this subsetion we provide a short overview on �nite dimensional representations ofsl(2j1). Rather than reproduing a omplete list of suh representations we shall fouson those that are relevant below, namely on Ka modules and the projetive overs ofatypials.2.1.1 The de�ning relations of sl(2j1)The even part g(0) = gl(1) � sl(2) of the Lie superalgebra g = sl(2j1) is generated by fourbosoni elements H, E� and B whih obey the ommutation relations[H;E�℄ = �E� ; [E+; E�℄ = 2H ; [B;E�℄ = [B;H℄ = 0 : (2.1)In addition, there exist two fermioni multiplets (F+; F�) and ( �F+; �F�) whih generatethe odd part g(1). They transform as (� 12 ; 12) with respet to the even subalgebra, i.e.[H;F�℄ = �12F� [H; �F�℄ = �12 �F�[E�; F�℄ = [E�; �F�℄ = 0 [E�; F�℄ = �F� [E�; �F�℄ = �F� (2.2)[B;F�℄ = 12F� [B; �F�℄ = �12 �F� :Finally, the fermioni elements possess the following simple anti-ommutation relationsfF�; F�g = f �F�; �F�g = 0 fF�; �F�g = E� fF�; �F�g = B �H (2.3)among eah other. Formulas (2.1) to (2.3) provide a omplete list of relations in the Liesuperalgebra sl(2j1). 3



2.1.2 Ka modules and irreduible representationsKa modules [12℄ are the basi tool in the onstrution of irreduible representations. Inthe ase of g = sl(2j1), these form a 2-parameter family fb; jg of 8j-dimensional repre-sentations. We may indue them from the 2j-dimensional representations (b � 12 ; j � 12)of the bosoni subalgebra g(0) by applying the pair F� of fermioni elements. Our labelb 2 C denotes a gl(1)-harge and spins of sl(2) are labeled by j = 12 ; 1; : : : . The dualonstrution whih promotes the fermioni generators �F� to reation operators, yieldsanti-Ka modules fb; jg (b and j take the same values as above). The bosoni ontent of(anti-)Ka modules may be read o� rather easily from their onstrution,fb; jg��g(0) �= fb; jg��g(0) �= (b� 12 ; j � 12) � (b; j) � (b; j � 1) � (b + 12 ; j � 12) : (2.4)For generi values of b and j, the modules fb; jg and fb; jg are irreduible and isomorphi.At the points �b = j, however, they degenerate, i.e. the representations are indeompos-able and no longer isomorphi. In fat, Ka and anti-Ka modules are then easily seen topossess di�erent invariant subspaes. To be more preise the (anti-)Ka modules f�j; jgand f�j; jg are built from two atypial representations suh thatf�j; jg : fjg� �! fj � 12g�f�j; jg : fj � 12g� �! fjg� : (2.5)The atypial irreduible representations fjg� that appear in these small diagrams are4j + 1 dimensional. With respet to the even subalgebra they deompose aording tofjg�jg(0) = 8<:(j; j)� (j + 12 ; j � 12) ; for + and j = 12 ; 1; : : :(�j; j)� ��(j + 12); j � 12� ; for � and j = 12 ; 1; : : : (2.6)For j = 0, only the trivial representation (0) ours. It is also useful to introdue theharaters of these representations. By de�nition, these are obtained as�R(z; �) = strR ��BzH�where the super-trae extends over all states in the representation R of sl(2j1). For Kamodules the harater is rather simple. In fat, it fatorizes�fb;jg(�; z) = �b�1=2 �f(�; z) l=j�1=2Xl=�j+1=2 zl4



with a fermioni ontribution �f that is independent of the Ka module under onsider-ation, �f(�; z) = 1� �1=2 z1=2 � �1=2 z�1=2 + � :The haraters of atypial representations an be obtained easily form their deomposi-tion formulas (2.6). We would like to pursue a rather di�erent route here that uses thedeomposition (2.5) of Ka modules into atypials. The �rst formula implies that�f�j;jg(�; z) = �fjg�(�; z)� �fj�1=2g�(�; z) : (2.7)We an solve these equations for the haraters of atypial representations by the followingin�nite sums �fj�1=2g�(�; z) = � 1Xn=0 �f�j�n=2;j+n=2g(�; z) : (2.8)

Figure 1: A graphial illustration of how haraters for an atypial representationan be obtained as an in�nite sum of haraters of Ka modules. Here the onedimensional atypial identity 0 appears as a sum over f1=2; 1=2g (thin lines anddots), f1; 1g (medium lines and dots), f3=2; 3=2g (thik lines and dots) et. Allspurious ontributions (that is, the whole tower but the origin) appear twie, andthey disappear by anellations of bosoni and fermioni degrees of freedom. Thediagram orresponds to the hoie of plus sign in formula (2.8).5



One may hek by expliit omputation that the ontributions from all but two bosonimultiplets anel eah other in the in�nite sum through a mehanism that is visualizedin Figure 1. The remaining two terms ertainly agree with the deomposition formulas(2.6). Our derivation here may seem like a rather ompliated path for suh a simpleresult, but we shall see later that the same trik works for haraters of atypial aÆnerepresentations whih are otherwise diÆult to obtain.2.1.3 Projetive overs of atypial irreduible modulesBy de�nition, the projetive over of a representation fjg� is the largest indeomposablerepresentation P�(j) whih has fjg� as a subrepresentation (its sole). We do not wantto onstrut these representations expliitly here. Instead, we shall display how theyare omposed from atypials. The projetive over of the trivial representation is an8-dimensional module of the formP(0) : f0g �! f 12g+ � f 12g� �! f0g : (2.9)For the other atypial representations fjg� with j = 12 ; 1; : : : one �nds the followingdiagram, P�(j) : fjg� �! fj + 12g� � fj � 12g� �! fjg� : (2.10)These representation spaes are 16j+4-dimensional. Let us agree to absorb the supersript� on P into the argument, i.e. P�(j) = P(�j), wherever this is onvenient.2.2 Funtions on the supergroup SU(2j1)Now we are prepared to analyze the spae of funtions on the supergroup SU(2j1). Forthis purpose, let us introdue oordinates through the following expliit deomposition ofelements U 2 SU(2j1), U = ei��� �F � eizB g ei��F �Here, the bosoni base SU(2)�R is parametrized by an element g 2 SU(2) �= S3 alongwith the time-like variable z. In these oordinates, the generators of the right regular
6



ation read RF� = �i�� ; RE� = R0E� + ���� (2.11)RH = R0H + 12���� � 12�+�+ ; RB = �i�z � 12���� � 12�+�+ ; (2.12)R �F� = ie�iz=2D1=2�(�1=2)(g) ���� + i��(R0E� + ����)� i��(i�z � R0H) (2.13)where R0X are the generators of the right regular representation of SU(2). They at onthe matrix elements Djab(g); a; b = �j;�j + 1; : : : j; aording toR0H Djab(g) = bDjab(g) ; R0E+ Djab(g) = p(j + b + 1)(j � b) Dja(b+1)(g) ;R0E� Dja(b+1)(g) = p(j + b + 1)(j � b) Djab(g) :Matrix elements with j = 1=2 appear as oeÆients in the di�erential operators R �F�and their behavior under the ation of R0X plays an important role in heking that theabove generators of the right regular representation obey the de�ning relations of sl(2j1).Formulas for the left regular representation may be obtained similarly,L �F� = �i��� ; LE� = L0E� � ��� ��� (2.14)LH = L0H + 12 ��� ��� � 12 ��+ ��+ ; LB = i�z + 12 ��� ��� + 12 ��+ ��+ ; (2.15)LF� = ie�iz=2Dj(�1=2)�(g) ��� + i���(L0E� � ��� ���) + i���(i�z � L0H) (2.16)It is probably not neessary to stress that left and right generators (anti-)ommute withrespet to eah other.By onstrution (see however [8℄), the generators of the left and right regular rep-resentation at on the spae of all Grassmann valued funtions with square integrableoeÆients on the bosoni base, i.e. on the spaeL2(SU(2j1)) := L2(SU(2)� R) 
 �(��; ���)where �(��; ���) denotes the Grassmann algebra that is generated by our four fermionioordinates �� and ���. With respet to the left regular ation, the spae of squareintegrable funtions an be shown to deompose as follows,L2(SU(2j1)) �=L 1Xj=1=2 Xb6=�j 4j (f�b; jg � fb; jg0) � (2.17)� Xj (2j + 1) �P+j � P�j �� 2j �P+j � P�j �0 :7



Here, the summation runs over j = 0; 1=2; 1; : : : , fb; jg denotes the typial representationsof sl(2j1) and P�j are the projetive overs of the atypial representations fjg�. Most ofour onventions an be found e.g. in [10℄. A prime 0 on a representation means thatthe degree is inverted, i.e. that fermioni vetors beome bosoni and vie versa. Theresult is a speial ase of the general observation made in [13℄ and it generalizes a similardeomposition we desribed in [7℄ for the left regular ation of gl(1j1). The interestedreader an �nd an expliit proof in Appendix A. Let us omment that the deompositionof the left regular ation displays the same violation of the Peter-Weyl theorem as in thease of GL(1j1). In partiular, sine the quadrati Casimir is not diagonalizable in theprojetive overs P�j , the Laplaian on the supergroup SU(2j1) an only be brought intoJordan normal form. The bloks an reah a rank up to three.The funtions on our supergroup arry another (anti-)ommuting ation of the Liesuperalgebra g by left derivations. There is a orresponding deomposition whih is er-tainly idential to the deomposition above. A more interesting problem is to deomposethe spae of funtions with respet to the graded produt g
 g in whih the �rst fatorats through the left regular ation while for the seond fator we use the right regularation. In the typial setor, the 4jj4j-dimensional multipliity spaes in the �rst line ofeq. (2.17) get promoted to typial representations of the right regular ation, i.e.L2(SU(2j1)) �=L�R 1Xj=1=2 Xb6=�j (fb; jgL 
 f�b; jgR) � J (2.18)where J is a single indeomposable, ontaining all the atypial building bloks. Itsstruture may be summarized by the following pituref 12g� � f 12g+
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This diagram is the natural extension of the orresponding piture for GL(1j1). Itextends to in�nity in both diretions and ombines all the atypial setors into a single8



indeomposable representation. Note that by onstrution, eah projetive over in thedeomposition of the right regular representation appears with the orret multipliity.We shall see below how this piture is modi�ed in the full quantum theory.3 Representation theory of the aÆne algebraThe previous analysis of the partile limit applies to all sigma models on SU(2j1), butthe information it provides is usually not suÆient in order to reonstrut the entire �eldtheory from it. This is very di�erent for the WZNW model in whih the entire spetruman be generated from partile wave funtions through urrent algebra symmetries. Weneed some fats on the representation theory of the sl(2j1) urrent algebra and shallprovide them in the following setion. All the results we ollet here are well knownfrom [14, 5, 15, 16, 17℄. Their derivation, however, is somewhat original. In partiular,we shall use a simple, but highly eÆient presription to onstrut haraters of atypialrepresentations of bsl(2j1) through in�nite sums over typials. This extends the formula(2.8) we have disussed in setion 2 to an in�nite dimensional setting, thereby generalizinga trik that has �rst been proposed in the ontext of the gl(1j1) urrent algebra [18℄.3.1 Some basi ingredientsIrreduible representations of the aÆne sl(2j1) algebra an be built over the irreduibletypial representations fb; jg with j = 1=2; : : : ; k=2 as well as over the atypials fjg�with j = 0; 1=2; 1; : : : ; k=2. Ground states in the former set of representations possessonformal dimension hfb;jg = (j2 � b2)=(k + 1)while the onformal dimension for ground states in the latter set vanishes. Followingthe work [14℄ of Bowok et al. we shall divide these representations into three di�erentlasses. The generi lass I representations our for fb; jg with b 6= j�m where we de�nedj�m := �j +m(k + 1) for m integer :Class II representations inlude those ereted over fb; jg with b = j�m; m 6= 0; along withthe setors generated from atypials fjg�; j 6= 0. The vauum representation that is gen-erated from the atypial f0g is the only member of the �nal lass, whih we denote as lass9



IV for historial reasons. Our aim is to desribe the singular vetors in the orrespondingVerma modules and to provide the assoiated formulas for the super-haraters�R(q; z; �) := strR � qL0� 24 �B0 zH0 �of irreduible representations. The results we desribe have �rst appeared in [14℄.Before we start our disussion of haraters let us quikly reall that it is possible toonstrut sl(2j1) urrents in terms of deoupled bosoni and fermioni variables. To bemore preise, we introdue a set of bosoni urrents e�(z); h(z); b(z) and assume themto satisfy the operator produt expansions of an aÆne sl(2) algebra at level k � 1. Inaddition, let us introdue two sets of fermioni �elds pa and �a obeying the anonialrelations �a(z1) pb(z2) � Æabz1 � z2 + : : : :Then we an onstrut an sl(2j1) urrent algebra at level k through the following pre-sription,E+(z) = e+(z)+ : �1p2 : (z) ; H(z) = h(z) + 12 : ��1p1 � �2p2� : (z) ;E�(z) = e�(z)+ : �1p2 : (z) ; B(z) = b(z) � 12 : ��1p1 + �2p2� : (z) ;F+(z) = p2(z) ; �F+ = �2e+(z) + �1(b + h)(z)� : �1�2p2 : (z) ;F�(z) = p1(z) ; �F� = �1e�(z) + �2(b� h)(z)+ : �1�2p2 : (z) : (3.1)
Sine the fermioni �elds �a and pa are supposed to ommute with the bosoni �eldse�(z); h(z) and b(z), the haraters of typial representations fatorize with the fators�1(y; q) arising from the fermioni pairs. The shift j ! j�1=2 in the bosoni ontributionmay be traed bak to a similar shift in the labeling of typial sl(2j1) representations, seeeq. (2.4).3.2 Typial (lass I) representationsThe generi lass I representations have no singular vetors exept from the ones thatarise through the representations of a bosoni su(2) urrent algebra at level k � 1. Inthis sense, they may be onsidered the typial representations of the aÆne sl(2j1) algebra.10



The statement implies a preise expression for the haraters of lass I representations�Ifb;jg(q; z; �) = q�b2=(k+1)��b�3(q) �1(z1=2�1=2; q) �1(z�1=2�1=2; q) �k�1j�1=2(z; q) (3.2)where �1(y; q) = �iy1=2q1=8 1Yn=1 (1� qn)(1� yqn)(1� y�1qn�1) (3.3)and b 6= j�m and 1=2 � j � k=2. We also reall that the su(2) haraters are given by�k�1j�1=2(z; q) = q j2k+1� 18 zj�1Pa q(k+1)a2+2aj �za(k+1) � z�a(k+1)�2j�Q1n=1(1� zqn)(1� z�1qn�1)(1� qn) :We shall use the symbol fb; jg^ for these irreduible representations of the aÆne algebra.The formulas are easy to understand: they follow diretly from the representation (3.1)of the sl(2j1) urrent algebra. In fat, eah pair of fermioni �elds ontributes a fator�1=� while the bosoni sl(2) and u(1) urrent algebras are responsible for the haraters�k�1 and an additional fator ��1, respetively.3.3 Atypial (lass II) representationsNothing prevents us from evaluating the previous harater formulas at the points b = j�m.But the resulting funtions turn out to be the haraters of indeomposable representa-tions fj�m; jg^ whih ontain one fermioni singular multiplet. In order to state this morepreisely, let us onsider in more detail the set of atypial labels,A := f fj�m; jg j 1=2 � j � k=2 ; m 2 Z g :The set A is visualized in Figure 2. Our piture shows learly that the projetion to theb-oordinate of eah element in A is injetive and hene it an be used to enumerate ouratypial labels. Note, however, that values b 2 (k + 1)=2Z are omitted. This motivatesto introdue an improved enumeration map �̂ from A to non-zero half-integers whih isde�ned by�̂(fj+m; jg) = j+m �m for m � 0 ; �̂(fj�m; jg) = j�m �m+ 1=2 for m > 0�̂(fj�m; jg) = j�m +m for m � 0 ; �̂(fj+m; jg) = j+m +m� 1=2 for m < 0 :By onstrution, �̂ is not only an injetion but its image now also onsists of all nonzerohalf-integers. We may view �̂ as an aÆne version of the enumeration map �(f�j; jg) = �jfor representations of sl(2j1). 11
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Figure 2: The set A of atypial labels for the aÆne sl(2j1) algebra. Even thoughthe sl(2) spin j is ut o� at j = k=2, there exist in�nitely many atypial labels (blakdots) whih are in one to one orrespondene with the atypial labels of the �nitedimensional algebra sl(2j1) (entral blak and pink dots). This orrespondene isformalized by our map �̂.At �rst sight, the enumeration of atypial labels for our sl(2j1) urrent algebra mayseem like a rather tehnial devie. But there is more to it. We reall that atypial labelsf�j; jg an also be enumerated by non-zero half-integers, i.e. �(f�j; jg) = �j. Our laimnow is that the atypial lass I representation with label fj�m; jg behaves very similarlyto its �nite dimensional ounterpart ��1 Æ �̂(fj�m; jg) in the sense that�Ifj�m;jg(q; z; �) = �IIf�̂(fj�m;jg)g(q; z; �)� �IIf�̂(f�jm;jg)�1=2sgnj�mg(q; z; �) : (3.4)This formula is a rather entral result for the representation theory of our urrent alge-bra. Let us stress that it is the aÆne version of a orresponding equality (2.7) between12



haraters of sl(2j1) representations. As in the �nite dimensional setup, eq. (3.4) emergesfrom the existene of fermioni singular vetors in atypial lass I representations. In thease m = 0, it laims that the only suh singular vetors are those that appear in theatypial Ka-module spanned by the ground states. When m 6= 0, however, the groundstates form a typial representation and the singular vetors appear only on the jmjthlevel of the lass I module.At �rst it may seem a bit surprising that aÆne representations fj�m; jg and m 6=0 behave so similarly to the Ka modules of sl(2j1). In the next subsetion we shallunderstand this behavior in terms of spetral ow symmetries in the representation theoryof the urrent algebra. Before any study of spetral ow automorphisms, it might be usefulto illustrate the similarity between atypial representations of the urrent algebra and their�nite dimensional ounterpart more expliitly, at least for one example. To this end, let usfous on the representation fk=2+1; k=2g^ whih we laim to be a lose ousin of the sl(2j1)representation fk=2 + 1=2; k=2 + 1=2g. By onstrution, the ground states of the urrentalgebra representation transform in the typial multiplet fk=2+ 1; k=2g and they possessonformal weight h = �1. From these vetors we an generate states with vanishingonformal weight with the help of modes in the urrent algebra. Suh modes transform inthe 8-dimensional adjoint representation f0; 1g of sl(2j1). Through deomposition of thetensor produt between fk=2 + 1; k=2g and f0; 1g one �nds that the Verma module overfk=2+1=2; k=2+1=2g ontains an atypial sl(2j1) multiplet with onformal weight h = 0.In fat, the results of [11℄ imply that the latter transforms aording to the projetiveover P(k=2+1=2), see eq. (2.10). Not all of these states survive when we desend from theVerma module to the lass I representation. This step involves removing bosoni singularvetors and a moment of reetions shows that suh vetors with h = 0 exist and that theytransform in the submodule fk=2+1; k=2+1g of P(k=2+1=2). Hene, the states with h = 0in our lass I representation deompose into the Ka-module fk=2 + 1=2; k=2+ 1=2g plusa bunh of typial representations. The fermioni singular vetors that are responsible foreq. (3.4) transform in the subrepresentation fk=2; k=2g of fk=2 + 1=2; k=2 + 1=2g, givingrise to the identity (3.4) with j�1 = k=2 + 1 and j = k=2.Before we draw some onlusions from eq. (3.4), let us quikly omment on our nota-tions. Note that for j = 1=2 and m = 0 the above formula involves the harater �IIf0g ofa representation whih has a somewhat speial status. In fat, it annot be obtained asquotient of one of the indeomposable representations fj�m; jg^, unlike the representations13



with haraters �IIfn=2g; n 6= 0;. Instead, it arises as a submodule of the representationsf�1=2; 1=2g^. Our disussion suggest that �IIf0g must be the harater of the vauum rep-resentation. In the terminology of Bowok et al. the latter is a lass IV representation.Thus, we shall also write �IVf0g for this quantity.Even though equation (3.4) is not a losed formula for the haraters of lass II repre-sentations, we an now use the same trik as in setion 2.1.2 and write haraters of lassII representations as an in�nite sum of lass I haraters,�IIf�j�1=2g(q; �; z) = � 1Xn=0 �Î��1(�j�n=2)(q; �; z) (3.5)for j = 1=2; 1; 3=2; : : : . Note that the map �̂ is invertible on all non-zero half-integers andit furnishes the label of the Ka module that sits at the bottom of the orresponding lassI representation. By inserting our expliit formulas for lass I haraters we �nd�IIfjg�(q; z; �) = �i �1(z1=2��1=2; q) �1(z1=2�1=2; q)�3(q) �1(z; q) � (3.6)� Xa2Z q(k+1)a2�2aj ��j � z�a(k+1)�j1 + qaz�1=2��1=2 � za(k+1)�j1 + qaz1=2��1=2� :Charater formulas of this type have to be used with some are: Before the denominatorsare expanded, one should spit the summation over a into two parts. The one arisingfrom positive values of a an be onverted into a power series right away. In all termswith non-negative a, however, one must �rst redue the fration by qa suh that thesubsequent expansion ontains only non-negative powers of q. In the end, we reoverthe known results on the representation theory of the aÆne sl(2j1) algebra [5, 17℄. Ourderivation was based on three ingredients: the deoupling formulas (3.1) for bosoni andfermioni generators, the struture (2.5) of atypial Ka modules for sl(2j1) and the fatthat atypial lass I representations with m 6= 0 deompose in the same way as in thease of m = 0. We shall argue now that the last ingredient emerges from spetral owsymmetries in the representation theory of aÆne sl(2j1).3.4 Spetral ow symmetriesThe aÆne sl(2j1) algebra admits several interesting automorphisms. We shall be mainlyonerned with two suh spetral ow automorphisms �. By onstrution, � are de�ned14



on the entire urrent algebra, but for our purposes it is suÆient to know how they aton the generators B0; H0; L0,�(B0) = B0 � k=2 ; �(H0) = H0 + k=2 ; �(L0) = L0 +H0 �B0 :From these formulas we may infer how (super-)haraters behave under the ation of� and this in turn is suÆient to determine how spetral ow automorphisms maprepresentations of the urrent algebra onto eah other. Along with � we shall also beinterested in the omposite automorphism  = +�1� whih ats as(B0) = B0 + k ; (H0) = H0 ; (L0) = L0 � 2B0 � k :Any automorphisms of the urrent algebra gives rise to a map between representationsand hene to a map between haraters. From the ation on the zero modes B0; H0 andL0 we an easily read o� that��(q; �; z) = ��k=2zk=2 �(q; q�1�; qz) ; �(q; �; z) = �kq�k �(q; q�2�; z) (3.7)for all haraters � of the sl(2j1) urrent algebra. If R is any representation of bsl(2j1) and�R is its harater, then the image �R of R under an automorphism � obeys��R(q; �; z) = ��R(q; �; z) :Given the harater �R of some representation R, we an use eqs. (3.7) to ompute itsimage under the above automorphisms � = �; . This in turn allows us to reoveruniquely the representations �R and R.In the following we shall spell out the ation of our spetral ow automorphisms onthe lass I and II representations we have studied above. Our rather ompat notationsallow us to summarize the results for the spetral ow automorphisms � in a single line�(fb; jg^) = fb� k=2� 12 ; k=2 + 12 � jg^ ; �(fn=2g^) = fn=2� k=2g^ : (3.8)To verify our assertions, the reader is invited to onvert them into identities betweensuper-haraters and to hek these identities by diret omputation. The formulas be-ome somewhat more expliit if we label irreduible representations aording to the
15



representation their ground states transform in,fb; jg ��! fb� k=2� 12 ; k=2 + 12 � jg for b 6= �(j � k � 1)fb; jg ��! fk=2 + 12 � jg� for b = �(j � k � 1)fjg� ��! f�(j + k=2 + 12); k=2 + 12 � jg for j 6= 0fjg� ��! fk=2� jg� ; f0g ��! fk=2g� : (3.9)
The third line, for example, tells us that the image of the irreduible representationgenerated from the atypial representation fjg+ under the ation of + is an irreduiblerepresentation whose ground states transform in the typial representation fj + k=2 +12 ; k=2 + 12 � jg. The latter may be obtained from the orresponding Verma module byremoving singular vetors on some exited levels.We also want to spell out analogous formulas for the automorphism  = + Æ �1� . Inthe ompat notation, its ation is given by(fb; jg^) = fb+ k + 1; jg^ ; (fn=2g^) = fn=2 + kg^ : (3.10)Note that the symmetry  maps setors whose ground states transform in an atypialrepresentation fjg� of the Lie superalgebra sl(2j1) into setors with typial spaes ofground states aording to the following rules,fjg� m�! fj�m; jg for �m > 0fjg� m�! fj�m � 1=2; j + 1=2g for �m < 0 :Hene, the existene of the spetral ow symmetries explains why the representationsfj�m; jg behave like atypial representations of the aÆne sl(2j1) algebra: they are simplyrelated to the setors ereted over atypial sl(2j1) representations by an automorphism.3.5 Modular transformation and S-matrixWe would like to onlude this setion on the representation theory of the sl(2j1) urrentalgebra with a few omments on modular properties of the haraters. In the following weshall onsider the haraters as funtions of �; � and �. They are related to the variableswe used above through q = exp 2�i�; z = exp 2�i� and � = exp 2�i�, as usual. From16



our expliit formula (3.2) for haraters of lass I representations it is easy to infer theauxiliary formula�Ifb=0;jg(�1� ; �� ; �� ) = � 1p�i� e i�k2� �2e i�2� �2 k2Xj0=1=2r 2k + 1 sin 4�jj 0k + 1�Ifb=0;j0g(�; �; �) :Note that the right hand side ontains an expliit � dependene whih, if we demand thatthe modular transform be interpreted in a onventional sense and loses onto haraters,suggests the ontribution of a ontinuous spetrum of exponents. The need is on�rmed bythe modular transformation of the harater for fb; jg representations with b 6= 0, whihrequire an integral representation of e2i��b2=(k+1) et. After some Gaussian integration, we�nd�Ifb;jg(�1� ; �� ; �� ) = ie i�k2� (�2��2) k2Xj0=1=2 2k + 1 sin 4�jj 0k + 1 Z 1�1 db0 e 4i�bb0k+1 �Ifb0;j0g(�; �; �) (3.11)where we formally evaluated integrals of the type R exp(�i�x2) = p�=i� [of ourse, theintegrals are naively divergent as Im � > 0.℄Modular transformations of the type II and IV haraters are a bit more umbersometo work out. It an be attaked rather eÆiently using our representations (3.5) as in�nitesums of lass I haraters. Here we shall ontent ourselves with the example of the lassIV representation at k = 1. If we also set � = � = 0 we �nd that�IVf0g(�1=�) = � i2 Z 1�1 db0os �b0 �Ifb0;1=2g(�) (3.12)where the ontour has to avoid the poles. Rotating into the purely imaginary diretiongives a ontribution from poles whih is easily identi�ed with �IVf0g. The remaining integralan be fatored in terms of �If0;1=2g,�IVf0g(�1=�) = ��IVf0g(�) + Z d� q �22osh �� �If0;1=2g(�) : (3.13)We thus reover by this very elementary means the results of [5℄ obtained through use ofthe Mordell integral [19℄. The onstrution of modular invariants using these transforma-tion formulas is a omplex problem, whih we shall address later in the ase k = 1.17



4 The state spae and partition funtionsOur aim now is to formulate a proposal for the states spae of the sl(2j1) WZNW model.We shall then verify our laim in the speial ase k = 1 through a free �eld representationof the model. The third subsetion is devoted to the partition funtion of the theory. Thelatter forgets all information about the ompliated way in whih irreduible bloks areglued together to build J . We then speialize one more to k = 1 and omment on theglobal topology of the target spae.4.1 The proposal for integer level kIt is now rather straightforward to ome up with a proposal for the state spae of theWZNW model on SU(2j1). In fat, we an simply depart from formula (2.18) and make itsymmetri with respet to the ation of our spetral ow symmetry. The invariane underthe ation of  should be onsidered as an additional input. In priniple, the spetral owsymmetry of the sl(2j1) urrent algebra ould be broken by the physial ouplings of thetheory. Sine this did not happen for the GL(1j1) WZNW model, it seems natural topropose HCFT = k=2Xj=1=2 Xb6=j�m fb; jgL̂ 
 f�b; jgR̂ � J ^ (4.1)where J ^ is a single indeomposable representation of the two (anti-)ommuting superurrent algebras that ontains all the atypial ontributions. It is omposed from theatypial building bloks fl1g 
 fl2g in the same way as in the minisuperspae theory. Toobtain the orresponding diagram one simply has to replae fjg� = f�jg with f�jg^.By onstrution, all the sl(2j1) urrents at on the state spae (4.1) and they obeyperiodi boundary onditions. This applies in partiular to the fermioni �elds. One an�nd a seond, losely related theory in whih only bosoni �elds are periodi. In order toonstrut its state spae, we need to revisit our disussion of spetral ow symmetries. Aswe have mentioned above, the automorphisms we have investigated in the previous setionall extend to the entire urrent algebra. In partiular, they map fermioni modes withinteger mode numbers onto eah other, i.e. they respet periodi boundary onditions onthe fermioni urrents. There exists yet another important isomorphism that intertwinesbetween integer and half-integer mode numbers for the fermioni generators. It an beonsidered as the square root of the automorphism . On the bosoni zero modes, the18



new isomorphism # is given by#(B0) = B0 + k=2 ; #(H0) = H0 ; #(L0) = L0 �B0 � k=2 :# extends to the full urrent algebra suh that it ats trivially on the bosoni sl(2) urrentsand it shifts modes of the fermioni urrents by �1=2, as usual.Our isomorphism # indues a map between representations of the urrent algebra withinteger fermioni modes and a new type of representations in whih fermioni generatorshave half integer mode numbers. Aording to the usual terminology, the former lass ofrepresentations form the R setor while the latter belong to the NS setor of the theory.The theory with state spae (4.1) inludes exlusively R setor representations in whihall urrents obey periodi boundary onditions. Another option is to onsider a theorythat enompasses both R and NS setor with the state spae given by~HCFT = HRCFT �HNSCFT = HCFT � #HCFT :Note that the NS setor has exatly the same intriate struture as the R setor sine theformer is the image of the latter under the ation of �. In the following we shall refer toboth models as WZNW model on SU(2j1). Even though it seems natural to inlude theNS setor, it is not required by all appliations.4.2 Free �eld representation at k = 1So far, the main motivation for our proposal (4.1) ame from the harmoni analysis onSU(2j1). By onstrution, we are guaranteed to reover the orret state spae of thepartile limit when we send the level k to in�nity. Our formula (4.1) applies to �nitek and it suggest that �eld theory e�ets would merely trunate the spin j to an valuej � k=2 and then make the whole theory symmetri with respet to spetral ow. We arenow going to test this proposal in the extreme quantum ase, namely at k = 1. At thispoint, the WZNW model admits a free �eld representation that we are going to spell outmomentarily. It involves a pair of sympleti fermions �1; �2, and a pair of bosons �; �0.While the boson � omes with the usual metri, �0 is assumed to be time-like. For theirpropagators this means h �1(z; �z) �2(w; �w) i = � ln jz � wj2h �(z; �z) �(w; �w) i = � ln jz � wj2h�0(z; �z)�0(w; �w) i = ln jz � wj2 : (4.2)19



Note that the entral harge of this free �eld theory is  = �2 + 1 + 1 = 0 and hene itagrees with the entral harge of SU(2j1) WZNW models. We shall begin our disussionof the WZNW model with expliit formulas for the urrents. In order to onstrut thefour bosoni urrents, we need to split the spae-like bosoni �eld �(z; �z) = '(z) + �'(�z)into its hiral omponents. Our bosoni urrents then read,E+(z) = ep2i'(z) ; E�(z) = e�p2i'(z)H(z) = 1p2 i��(z) ; B(z) = � 1p2 i��0(z) : (4.3)The neessity to split � into its hiral omponents means that the boson � is ompat-i�ed to the so-alled self-dual radius, as usual in the free �eld representation of theSU(2) WZNW model at level k = 1. In addition, the following expressions for the fourfermioni urrents also involve the hiral omponents '0 and �'0 of the time-like bosoni�eld �0(z; �z) = '0(z) + �'0(�z),V �(z) = e 1p2 i(�'(z)+'0(z))��1(z) ; W�(z) = e 1p2 i(�'(z)�'0(z))��2(z) : (4.4)Similarly, one may spell out the anti-holomorphi generators of the sl(2j1) urrent algebra.It is rather easy to hek that the above expressions give rise to �elds with the orretoperator produt expansions. Let us note that the free �eld representation we onsiderin this setion has to be distinguished learly from the Ka-Wakimoto type onstrution(3.1) we have used earlier to onstrut the haraters at integer levels k. We shall ommenton this a bit more later on.It is possible to hek that �elds of dimension zero an be organized exatly as it issuggested by our diagram (2.19). We shall just sketh the relevant arguments beause afull proof is rather laborious to write down. Let us onsider the left part of the diagramonly and identify the �elds that make up the various bloks of the omposition series.Clearly, the f0g � f0g representation at the top orresponds to the �eld �1�2. From herewe an at with the fermioni urrents W�; �V � and arrive at expressions for the twobloks on the intermediate level of the diagram,f1=2g� � f0g : e�i'=p2 e�i'0=p2 �2 ; e�ip2'0 �2��2 ;f0g � f1=2g+ : e�i �'=p2 ei �'0=p2 �1 ; eip2 �'0 �1 ���1 :20



From the previous formulas we an read o� the �elds that make up the topmost repre-sentation f1=2g� � f1=2g+ in our diagram,f1=2g� � f1=2g+ : ( e�i'=p2 e�i'0=p2 �2e�ip2'0 �2��2 � ( e�i �'=p2 ei �'0=p2 �1eip2 �'0 �1 ���1 : (4.5)Ating with the holomorphi fermioni urrents V �(z) we arrive at the following formulasfor �elds that belong to the multipletf1g��f1=2g+ : 8><>: (��� + ��0) �2��2 e�i'=p2 e�3i'0=p2�2 e�ip2' e�ip2'0�2�� e�ip2'0 � ( e�i �'=p2 ei �'0=p2eip2 �'0 ���1 :: (4.6)on the intermediate level of the diagram. Our notation means that every produt of thethree holomorphi �elds on the left hand side with the three anti-holomorphi �elds onthe right hand side is part of this 9-dimensional blok. Similarly, we an now desend tothe bottom of the diagram,f1=2g� � f1=2g+ : ( e�i'=p2 e�i'0=p2�2��0 e�ip2'0 � ( e�i �'=p2 ei �'0=p2eip2 �'0 ���1 (4.7)Finally, the representation f0g � f0g in enter bottom position is represented by theidentity �eld. It is easy but laborious to hek that the di�erent representations areonneted by the ation of the left and right generators as indiated in the diagram. Inheking this, notie that �2��0e�ip2'0 � ��2e�ip2'0 up to a total derivative.There are a number of interesting further omments and observations that we wouldlike to make. Let us begin with a brief omment on the relation with Ka-Wakimoto likerepresentations of the form (3.1). As disussed in [8℄, a naive evaluation of the ation ofthe latter on vertex operators leads to a muh simpler piture in whih the atypial setoris a smooth deformation of the typial part. In partiular, there is no mixing betweenleft- and right movers as in the ase of the representation J ^. In order to see the latter,the sreening harge of the Ka-Wakimoto representation must be taken into aount (see[8℄ for details). The free �eld representation we have employed in this subsetion is muhsimpler to use, but it is restrited to k = 1.The free �eld representation also allows us to illustrate very expliitly how atypial�elds of dimension h = 0 are embedded into setors with ground states in typial multi-plets one their spin exeeds k=2. Take, for instane, the �eld O = eip2('�'0)�2 from the21



f1g� representation and observe thatE�(z) eip2('�'0) �2(w) = 1(z � w)2 : e�ip2�(z) eip2('�'0) �2(w) : + : : : : (4.8)Thus O is not a highest weight of the urrent algebra, and applying a urrent operator angive rise to a �eld of dimension h = �1, namely the �eld P = e�ip2'0�2. This �eld belongsto the typial representation f�3=2; 1=2g in the setor f1g� with aÆne highest weightQ = ei('�3'0)=p2�2��2. One may easily generalize these observations to all representationsin the omplex, hene on�rming our analysis based on spetral ow.Let us �nally ome to the most important point, whih onerns the possible onstru-tion of onsistent theories3 that are realized on a subspae of our state spae (4.1). Notethat H does ontain a large number of fermioni singular vetors that we deided not dodeouple, partly beause the minisuperspae analysis suggested that it was unnatural todo so. But to a ertain extend one should onsider (4.1) as some kind of maximal hoiefrom whih other models an be obtained by onsistent deoupling of singular vetors.In general there an be several suh redued theories. One more we may use our free�eld representation for the k = 1 model to illustrate niely how this works. Note that theexpressions (4.4) for the urrents only ontain derivatives of the fermioni �elds. Hene,we do not spoil the sl(2j1) urrent algebra symmetry if we deide to work with a model inwhih the fundamental �elds are e.g. �; �0; �2 and ��1. Sine �1 is not part of this model,some of the setors we disussed above do no longer appear. This onerns the setorsf0g � f0g and f1=2g� � f1=2g+ on the top oor of J ^ and the setor f0g � f1=2g+ onthe intermediate oor. In the resulting model, there is still a single atypial setor thatomprises all the irreduible atypials, but it is redued to two oors and has the shape ofa saw blade. Obviously, a similar analysis applies to the theory that ontains ��2 insteadof �2. But we an even go one step further and drop both �1 and �2 so that only fermioniderivatives remain. What results is a model whose atypial setor deomposes into anin�nite sum of irreduibles. The latter are the setors that appear on the bottom oorof J ^, i.e. f0g � f0g and f1=2g� � f1=2g+ from our list above. All others need either�1 or �2. Similar phenomena are possible at other levels. We shall see another expliitexample in setion 5.2. Let us stress, however, that the free �eld onstrution at k = 1does not inlude the \de�ning" f0; 1=2g �eld of the WZNW model. A areful study of3 Consisteny in this paragraph refers to the existene of genus zero orrelators obeying the usualfatorization onstraints. The onstrution and behavior of torus amplitudes is not addressed.22



the Knizhnik-Zamolodhikov equations [3, 2℄ shows that onsisteny in the presene ofthe f0; 1=2g setor requires the identity �eld to be embedded into an indeomposablesetor. In this sense, the fully trunated atypial setor we have just desribed annot beembedded into the sl(2j1) WZNW model.4.3 Partition funtionsWe now go bak to the full theory based on our proposal (4.1). We would like to omputethe partition funtion of the model, with and without inlusion of the NS setor. Sinepartition funtions are obtained by taking the trae over the state spae, the details ofthe ation of fermioni generators in the atypial setor J ^ do not show up in the result.In other words, the ontribution from the indeomposable J ^ is the same as if we wouldtake the trae over a sum of its irreduible omponents. The latter an be resumed asfollows,strJ ^ qL0+�L0 = X�2Z=2 2�IIf�g(�q)�IIf��g(q)� �IIf�+1=2g(�q)�IIf��g(q)� �IIf��1=2g(�q)�IIf��g(q)= X�2Z=2 ��IIf�g(�q)� �IIf��1=2g(�q)� ��IIf��g(q)� �IIf��+1=2g(q)�= X�=1=2;1;::: ��IIf�g(�q)� �IIf��1=2g(�q)� ��IIf��g(q)� �IIf��+1=2g(q)�+ X�=1=2;1;::: ��IIf��g(�q)� �IIf��+1=2g(�q)� ��IIf�g(q)� �IIf��1=2g(q)�= X� Xm2Z k=2Xj=1=2 �Ifj�m;jg(�q)�If�j�m;jg(q) :In the last step we have inserted the relation (3.4) between haraters of lass I andlass II representations and we used the isomorphism �̂ to onvert the sum over non-zerohalf-integers into a sum over m and j. Our result shows that the ontribution from theatypial representations agrees exatly with the part that we omitted from the typialsetor of the theory. Hene, the full partition funtion beomesZ(q) = k=2Xj=1=2Xb2R �Ifb;jg(�q)�If�b;jg(q) : (4.9)23



Let us also briey disuss how the partition funtions is modi�ed when we want to inludethe NS setor. In that ase, the trae extends over both HCFT and its image under thespetral ow #. The modular invariant partition funtion ~Z(q) of this theory ontains fourdi�erent terms, two in whih (�1)F is inserted and two in whih it is not. It is ustomaryto label the orresponding ontributions with R, sR, NS and sNS where the small ssignals the insertion of (�1)F . With these notations, the standard super-haraters wehave disussed throughout the previous setion should all arry a supersript sR. It is easyto �nd expliit formulas for the other three sets of (super-)haraters using the relation�sNS(q; �; z) = #�sR(q; �; z) = �k=2q�k=2�sR(q; q�1�; z)to onvert sR haraters into sNS super-haraters. The same presription is used whenwe onstrut NS haraters from the R setor, only that we have to replae the R super-haraters � by ordinary haraters. The partition funtion ~Z(q), �nally, has the sameform as eq. (4.9) with an additional summation over all four types of terms.Let us illustrate the previous results in the ase of k = 1 again. The (sR) haratersof this theory take a partiularly simple form, as was �rst observed by Bowok et al. in[5℄, �Ifb;1=2g(q; z; �) = q�b2=2�b�(q) ��1=2(q; �)�0(q; z)� �0(q; �)�1=2(q; z)� (4.10)where �0 and �1=2 are SU(2) level one haraters for spin 0 and 1=2 respetively. Thisexpression allows us to determine the modular invariant physial partition funtion ~Zinvolving periodi or antiperiodi boundary onditions for the fermions along both periodsof the torus. The doubly periodi setor (�sR) gives a vanishing ontribution for haraters�fb;1=2g sine the super-dimension of the horizontal Ka modules vanishes. We are leftwith three ontributions, whih read respetively�Rfb;1=2g(q) = 2q�b2=2�(q) �1=2(q)�0(q) (4.11)�NSfb;1=2g(q) = q�b2=2�(q) ��20(q) + �21=2(q)� (4.12)�sNSfb;1=2g(q) = q�b2=2�(q) ��20(q)� �21=2(q)� : (4.13)
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Their modular transformations are easy to obtain for b = 0�Rf0;1=2g(�1=�) = 1p�i� �sNSf0;1=2g(�)�NSf0;1=2g(�1=�) = 1p�i� �NSf0;1=2g(�) (4.14)�sNSf0;1=2g(�1=�) = 1p�i� �Rf0;1=2g(�) :Obviously, the � dependene of these formulas originates in the 1=� term in the haraters,and has to be ompensated by a similar fator oming from the b sum in order to obtaina modular invariant quantity.The question we want to ask now is what kind of sum over b one should onsider.It seems at �rst sight that, sine we are dealing with SU(2j1), the b number should bedisrete, in agreement with the imaginary exponential appearing in setion 2.2 (note thatthis is also ompatible with invariane under ation of the spetral ow). It is likely thatsuh a theory would make sense in genus zero. DiÆulties arise, however, when we try toestablish modular invariane of the partition funtion, i.e. onsider the theory in genusone. Indeed, even if b is disretized, there is no reason to trunate its range, and thus thenaive spetrum of onformal weights is unbounded from below, and exhibits arbitrarilylarge negative dimensions. This should not ome as a surprise sine the metri on thegroup is not positive de�nite, and thus the naive funtional integral in the WZNW modelis divergent. What is required to obtain a physial partition funtion on the torus - onethat ould be ompared with the spetrum of some lattie Hamiltonian say - is some sortof analyti ontinuation.This raises some interesting questions on whih we would like to digress briey. For aompati�ed time-like boson, partition funtions would involve sums of the formXn e�n2 ; Re � > 0 :This sum is obviously divergent, but one ould be tempted to give it a meaning byanalytial ontinuation from a similar sum with Re � < 0. An equivalent problem ariseswhen we try to ontinue a theta funtion suh as�(�) = Xn ei��n225



into the lower half plane Im � < 0. It is known that this ontinuation is not possible,sine the � funtion has singularities whih are dense on the real axis (a quik proof isobtained by �rst observing that � is singular for � an even integer, and then using modulartransformations). Theta funtions have a natural boundary, and are simple examples oflaunary funtions, i.e. \almost all" their Fourier oeÆients are zero [20℄. The partitionfuntion of a ompati�ed time-like boson is thus a formal objet from whih it is hardto extrat physial meaning. On the other hand, without ompati�ation, the partitionfuntion an easily be analytially ontinued. Indeed, replaing the disrete sum by anintegral we have Z 1�1 dxei��x2 = 1p�i�whih an be ontinued in the lower half plane sine it has a single ut along the negativeimaginary axis.We thus restrit to the theory with ontinuous spetrum of b, and propose the simplestpartition funtionZk=1 = �j�Rf0;1=2gj2 + j�NSf0;1=2gj2 + j�sNSf0;1=2gj2� Z 1�1 db(q�q)�b2=2 (4.15)whih we interpret through analyti ontinuation, up to an irrelevant phase, asZphysk=1 = �j�Rf0;1=2gj2 + j�NSf0;1=2gj2 + j�sNSf0;1=2gj2� Z 1�1 d�(q�q)�2=2 (4.16)= �j�0j2 + j�1=2j2�2 � 1��� Z 1�1 d�(q�q)�2=2 : (4.17)This objet is obviously modular invariant sine, from a diret alulation of the integrals,Z d�(q�q)�2=2 = 1p� �� Z d�(~q�~q)�2=2 (4.18)hene ompensating the fators oming from the � funtions in the haraters. We notethat the spetrum of onformal weights in the periodi setor is a ontinuum starting ath = 1=8. The �eld with h = 0 does not appear.In onlusion, the requirement for our theory to possess a \physial partition funtion"has fored us to let b be ontinuous. Geometrially, this amounts to a deompati�ationof the time-like irle. Hene we are led to onsider the universal over of SU(2j1) sothat we an perform an analytial ontinuation on the number b. One may interpretthe presription that leads to the physial partition funtion as an e�etive hange of the26



target spae along the lines advoated in [21℄. Let us also stress that, while our argumentswere based on the k = 1 theory, it is lear that a similar reasoning an be arried out forother levels.The argument leading to b being ontinuous also seems to exlude the smaller theorieswhere part of the omplex J is dropped, at least for general values of k. We shall see anexeption in the ase k = �1=2 later.5 Some seleted appliationsThis following setion ontains some seleted appliations of our general analysis. In the�rst subsetion we shall ompare our results with studies of the ontinuum limit of theintegrable sl(2j1) 3��3 spin hain [9℄. The agreement we �nd supports a new interpretationof lattie results. The seond subsetion is devoted to the k = �1=2 theory whih wasnot inluded above, but we shall see that it shares many of the strutures we unoveredthroughout the last few setions.5.1 The 3� �3 super-spin hain revisited.In [9℄ an integrable sl(2j1) invariant super-spin hain was studied using both analytialand numerial tehniques. Its Hamiltonian ats on the tensor produt (3 
 �3)
L where3 and �3 stand for the representations f1=2g� in our previous terminology. It was arguedthat in the ontinuum limit this hain ows to a SU(2j1) WZNW model at level k = 1.At the time, the WZNW model on the supergroup SU(2j1) had not been onstruted andit seems instrutive to revisit the issue now on the basis of our improved understandingof the ontinuum �eld theory. We shall see that the suggested identi�ation with theontinuum limit of the spin hain an be maintained, but some of the lattie resultsreeive an interesting reinterpretation.Let us begin by reviewing briey some results on the spetrum of the lattie model. In[9℄ it was found analytially that this spetrum exhibits a unique ground state at h = �h =0, whih lies in the single \true singlet" of the model, i.e. it is a sl(2j1) invariant state thatis not part of a larger indeomposable representation. This ground state orresponds to anextremely degenerate solution of the Bethe ansatz equations where all roots ollapse to theorigin. Besides the ground state, many exited states were also found. The lowest lyingstate above the ground state orresponds to a �lled sea of some (non omplex onjugate)27



string omplexes. The rest of the spetrum is given by exitations obeying the usualpattern of holes and shifts of the sea. The saled energies of these exitations over theground state were found analytially to beL2�v�E = 14 + 12 (�N+ +�N�)2 + 18 (D+ +D�)2 ++ CN(L) (�N+ ��N�)2 + CD(L) (D+ �D�)2 (5.1)where CN(L) ! 0 ; CD(L) ! 1 for L!1Here, �N�; D� are quantum numbers haraterizing the Bethe ansatz solution. In theontinuum limit, the quantity (5.1) is expeted to onverge to x = h + �h (all weights inthe  = 0 theory), as usual. Formula (5.1) indiates an in�nite degeneray of the levelh = �h = 1=8 (obtained with �N+ = �N� = D+ = D� = 0 say) in the limit L ! 1.Numerial studies on�rm this behavior: Indeed, they show that that an in�nite numberof levels onverges to h = �h = 1=8 as L inreases. This was already interpreted in [9℄ asindiating the existene of a ontinuum of onformal weights starting at h = �h = 1=8 inthe thermodynami limit.Although an analytial study of the asymptoti orretions to (5.1) seems still out ofreah, numerial studies in a losely related model suggest that the leading ontributionsto CN and CL an be well �tted by the formulasCN(L) � lnL + : : : ; CD(L) � 4 lnL + : : : (5.2)for large number 2L of lattie sites. When these leading terms are plugged bak intothe formula (5.1) for the spetrum of the lattie model, we see that the seond lineresembles very muh the spetrum of a free boson whih has been ompati�ed to a irlewith radius square of the order lnL. In other words, if we assume that eqs. (5.2) areorret, the ontribution from the \antisymmetri setor" (i.e. form exitations for whih�N+ ��N� or D+ �D� are non zero) to the partition funtion an be estimated asZanti = 1��� Xe;m q(e=R+mR=2)2 �q(e=R�mR=2)2= Rp2 1pIm � ��� Xm;m0 exp���R2jm� �m0j22Im � �� Rp2 1pIm ���� (5.3)28



where �(q) is Dedekind's eta funtion, as before. The divergene is proportional to R,i.e. to the size of the target spae, as expeted. We onlude that in the lattie model,the ontribution from the antisymmetri setor to the partition funtion multiplies theontribution from the symmetri setor in eq. (5.1) by a term of the order of plnL. Theground state meanwhile, being a very degenerate Bethe ansatz solution, does not omewith suh an extra fator. The generating funtion of levels in the periodi setor willtherefore have the formZR = 1 + stplnL � 1pIm � P �P (q�q)1=8 + : : :� (5.4)where the dots represent exitations from the symmetri setor in (5.1).The �rst onlusion we draw is that the ontribution of the ontinuum ompletelyoverrides the one from the disrete state (as would be the ase in any quantum mehanisproblem with disrete states and a ontinuum with delta funtion normalizable states),and that a properly normalized partition funtion does not see the singlet with h = �h = 0.The resulting objet is in good agreement with our onjetured partition funtion (4.17).Referene [9℄ ontained various failed attempts to build a onformal �eld theory on-taining both the ontinuum of representations fb; j = 1=2g and a single identity �eldassoiated with the representation f0g. Given our new insight into the ontinuum model,the problems to inorporate the singlet state may not ome as a omplete surprise. Al-though the free �eld onstrution at k = 1 suggests the possibility of smaller theories, thestudy of modular invariants (as well as of four point funtions, as we mentioned above)seems to prelude the appearane of the singlet representation on its own - i.e. withoutbeing part of a big indeomposable with vanishing super-dimension. In addition all thestates we found in the ontinuum approah were non normalizable. Both observationslead us to speulate that eq. (4.17) represents the full operator ontent of the ontinuumlimit, and that there is no disrete state assoiated with a true singlet. Put di�erently,the new investigation suggests that the true singlet observed on the lattie is an artifatof the regularization and does not belong to the ontinuum limit. Our new interpreta-tion of the lattie results reeives additional support from the very singular nature of theBethe ansatz solution that orresponds to the singlet state. It would be interesting tohek further the deoupling of the true singlet by studying the saling behavior of matrixelements of lattie regularized urrent algebra generators.29



There is one more potential objetion one might raise. Note that in our ontinuumtheory fermioni and bosoni states are perfetly paired so that the Witten index of theSU(2j1) WZNW model is guaranteed to vanish. Meanwhile, for our lattie spin hain onthe spae (3
 �3)
L one �nds an exess by one for the number of bosoni states over thenumber of fermioni ones. Hene, the Witten index is non-zero on the lattie and onewould naively expet the same to be true for the ontinuum limit, in onit with what wehave proposed above. In order to resolve this issue, we suggest that there exist di�erentspin hains whih give rise to the same ontinuum limit while possessing an exess offermioni states over bosoni. More onretely, while we do not understand the wholestruture yet, we have found 4 that the ground states of integrable hains of the type(3
�3)
L
3 and �3
 (3
�3)
L sale to onformal weight h = 0 as well (in fat the groundstate energy is given exatly by E0 = �length� e0 where e0 has no �nite size orretionand is the same for all hains), but this time they ome in the representation 3 (resp. �3).One we sum over the various lattie models, the balane between bosoni and fermionistates may be restored even before taking the ontinuum limit.5.2 The WZNW model at k = �1=2Our investigation above was restrited to integer level k. But as we have mentioned before,these are some frational values of k, in partiular k = �1=2, whih play an importantrole for appliations. While we are not prepared to give a systemati aount on frationallevel theories, we would like to disuss briey a model with k = �1=2. Our analysis willlead to the remarkable onlusion that the basi struture of this model is essentially thesame as for integer k, only that there exist several omponents within the atypial setor,eah of them being modeled after J .In this ase k = �1=2, the relevant representation theory of the sl(2j1) urrent algebrais partiularly simple. In fat, all relevant representations an be obtained from thevauum setor f0g^ through appliation of spetral ow symmetries. It is not diÆultto show that at k = �1=2 the automorphism 2 is inner, i.e. 2 � id. This means thatappliation of 2 does not lead to any new representations. The remaining nontrivialautomorphisms are of the form n+� with n 2 Z and � = 0; 1. We shall denote the4We thank F. Essler for kindly exploring this question numerially.30



orresponding irreduible representations of the sl(2j1) urrent algebra byf(n; �)g �= n+ �f0g^ :By onstrution, this set loses under fusion. In fat, the fusion produt simply amountsto a omposition of the assoiated automorphism.With the exeption of the setors labeled by n = 0;�1, the representations f(n; �)gdo not ontain a highest or lowest weight. The representation f(0; 0)g is to be identi-�ed with the vauum representation. f(0; 1)g = f0; 1=2g^ is the only other admissiblerepresentation at k = �1=2. It is generated from the 4-dimensional typial multipletf0; 1=2g of ground states with onformal weight h = 1=2. In addition, there are fourmore highest/lowest weight weight representations whih are ereted over the atypialdisrete series representations f(�1; ��)g = f(�;�1=4)g�̂ and f(1; ��g = f(+;�1=4)g�̂orresponding to a negative spin j = �1=4. The hoie of the sign in the �rst argument ofthe braket determines on whether the representation is highest (�) or lowest (+) weight.The subsript, on the other hand orresponds to the two di�erent hoies of the param-eter b that make these representations atypial. All four representations possess groundstates of onformal weight h = 0. In all other representations f(n; �)g with jnj � 2, theonformal weight is unbounded from below.Sine we an generate every representations from f0g^, is suÆes to display the har-ater of the vauum representation,�f0g(q; z; �) = 12 �#3(q; �1=2)#4(q; z1=2) + #4(q; �1=2)#3(q; z1=2)� :We shall explain the origin of this formula in a moment. Charaters of all the otherrepresentations are obtained from the vauum harater �f0g through�f(n;�)g(q; z; �) = n+ � �f0g(q; z; �) = ��n4��2 z�n4 q n+12 � �f0g(q; q�n�2��; qnzz) :To derive the above harater formula and for the subsequent disussion we note thatthe sl(2j1) urrent algebra at level k = �1=2 possesses a free �eld representation whihemploys the same free �elds as in the ase of the k = 1 theory, i.e. two free bosoni �elds� and �0 with spae-like and time-like signature, respetively, and a pair of sympletifermions �1; �2. The bosoni sl(2j1) urrents readE+(z) = 12 e�2i'0(z) �2�1(z) ��1(z) ; H(z) = i2 ��0(z) (5.5)E�(z) = 12 e2i'0(z) �2�2(z) ��2(z) ; B(z) = i2 ��(z) : (5.6)31



Note that, unlike in the ase of k = 1, the bosoni urrents involve the sympleti fermionsand the time-like free boson. For the fermioni urrents one �ndsV �(z) = 1p2 e�i('(z)�'0(z)) ��2(z) ; V +(z) = 1p2 e�i('(z)+'0(z)) ��1(z)W�(z) = 1p2 ei('(z)+'0(z)) ��2(z) ; W+(z) = 1p2 ei('(z)�'0(z)) ��1(z) :As in the ase of the k = 1 theory, the free �eld onstrution determines a onsistent modelwith a sl(2j1) urrent algebra symmetry. If we do not inlude the sympleti fermions(note that one more the urrents only involve derivatives), but only their derivativesthen the state spae readsHk=�1=2 = Mn;� f(n; �)g^ � f(�n; �)g^ :Sine the spetral ow automorphisms � and  orrespond to multipliation with the�elds � $ e� i2 (�0��) ;  $ e�i�is is fairly easy to write down at least one �eld in eah setor of the model,f(n; �)g^ � f(�n; �)g^ ontains e�in2 �0�in+2�2 � :The spae Hk=�1=2 ontains R setor representations only, but it is ertainly possible toinlude the NS setor by adding the image under the spetral ow #. Sine this worksjust in the same way as above, we shall not repeat the disussion here.Even though all the representations we are working with are atypial, the state spaedeomposes into irreduible building bloks. This is quite di�erent from the struture ofthe atypial setors J ^ we desribed above. On the other hand, is is very similar to oneof the onsistent theories with k = 1 that we desribed at the end of setion 4.2. In thek = 1 theory, the singular vetors of the indeomposable blok J ^ were deoupled byrestriting to a theory that ontained only derivatives of the fermioni �elds. Conversely,the experiene from k = 1 suggest that in the k = �1=2 ase we may be able to onstrut atheory with a more ompliated atypial setor by inluding one or both of the sympletifermion �elds �1 and �2 [22℄.We laim that in ase we inlude both fermioni zero modes we end up with an atypialstruture that deomposes into four di�erent bloks, eah of them being built in the same32



way as our setor J ^. We shall present the analysis only for the blok that ontains thevauum setor f0g^. The other three setors are obtained by ating with ; + and +Æ.Let us start our disussion with the �eld �1�2. Any ation with V �;W� and E� willremove one of the two fermioni zero modes and hene �1�2 sits at the top of a setorf0g^. The ation of V +;W+ and E+ takes us from here into a set of �elds whih allontain a fator �1. These �elds an be shown to belong to a setor that is isomorphi tof(2; 0)g �= 2+f0g^. Further appliation of V �;W� and E� bring us to a set of �elds thatontain only derivatives of fermions. These form a subrepresentation f0g^ at the bottomof our atypial representation. A similar analysis applies if we at with V �;W� and E��rst. This time, we desend to f0g^ via the setor f(�2; 0)g �= �2+ f0g^. Continuing alongthis line of thoughts, one an see that the setors f(2n; 0)g; n 2 Z; form the ompositionseries for an indeomposable representation J ^ with f(2n; 0)g in plae of fn=2g. Thestate spae of the maximal theory therefore deomposes into four indeomposable bloks.One more, there are two intermediate theories, eah of whih has four saw-blade shapedatypial setors. They are obtained if we omit either �1 or �2 (but not their derivatives,of ourse) from the above maximal theory.Even though we are not prepared to analyze WZNW models for generi frationallevels, it is remarkable that the struture we have �rst unovered in our minisuperspaelimit, re-appears even for k = �1=2. It seems very likely that the same is true for ageneri hoie of the level.6 Conlusions and OutlookAn obvious onlusion of our study is that WZNW models on supergroups are interestingexamples of logarithmi CFTs, muh riher than it has been antiipated in earlier works.Gurarie (see [23℄ and referenes therein), for instane, argued that super WZNW modelswith  = 0 ould be onsidered as made of two \deoupled" omponent theories withopposite values of the entral harge, an observation justi�ed in part by the fat that inthe GL(1j1) WZNW model, the stress energy tensor belongs naturally to a four dimen-sional GL(1j1) multiplet in whih L0 is diagonalizable, and hene T has no \non triviallogarithmi partner". The SU(2j1) WZNW learly does not obey any suh deoupling.In fat, restriting to the right moving urrent algebra as in [23℄ we see that the identity�eld belongs to a projetive representation of the zero mode algebra on whih the Casimir33



- and hene L0 - is not diagonalizable. Applying L�2 to this representation produes aVirasoro Jordan ell at level h = 2 and a non trivial logarithmi partner of the stressenergy tensor. This an be seen quite expliitely in the ase k = 1 where, within the free�eld representation (and similarly to the ase of sympleti fermions), the �eldt(z) := : �1(z)�2(z)T (z) :is a logarithmi partner ofT := : ��1(z)��2(z) : �12 : (��(z))2 : +12 : (��0(z))2 : :Note that the whole struture of indeomposables is in fat muh more ompliated thanenvisioned in [23℄ when the interplay of left and right urrent algebras is taken intoaount.Even though the struture of the state spae is rather diÆult when analyzed withrespet to the ombined left and right ation, it is surprisingly simple one we restrit toeither the left or the right ation alone. Note that the Lie superalgebra sl(2j1) has a largenumber of indeomposables (see e.g. [11℄) from whih only a very distinguished sub-lassdoes atually our within the state spae of our model. In fat, we have seen abovethat all states (both in the minisuperspae theory and the full �eld theory) transformaording to the so-alled projetive representations of sl(2j1), i.e. either in typials andprojetive overs of atypials. This is not to say, however, that other representationsof sl(2j1) have no relevane for sigma models on supergroups. In addition to the leftand right regular representation there is yet one more important symmetry that arisesfrom the adjoint ation of sl(2j1) on the state spae. With respet to the latter, statesan transform in other indeomposables. The underlying mathematial struture turnsout to be quite intriguing and will be desribed elsewhere. Sine the adjoint ation isleft unbroken by maximally symmetri boundary onditions, the resulting deompositionshould have appliations, in partiular to the study of boundary onditions for sigmamodels on supergroups.As a �nal omment let us point out one generi feature we have enountered in bothGL(1j1) and SU(2j1), namely that the ontribution of the indeomposable setor J simplymakes up for the subtrations in the atypial setors of the theory, so that the partitionfuntion sees only ontributions from Ka modules, and has a simple fatorized form. Thisbehavior is suÆient for a modular invariant partition funtion but it is not neessary.34



The potential existene of di�erent versions of the theory where only parts of the omplexJ appear, requires more study. We note that some hints in this diretion are providedby the study of four point funtions. In the ase k = 1, the four point funtion of the�elds in the f0; 1=2g representation has been studied in detail. It turns out that the KZequations fatorize, and that it is possible to deouple one onformal blok. Two bloksremain, leading to logarithmi dependene, and indiating that the identity �eld remainspart of an indeomposable representation. This suggests that the smallest theory, wherethe omplex J is redued to an in�nite sum of irreduibles, annot appear in the sl(2j1)WZNW model. In the ase k = �1=2 meanwhile it is possible to deouple two onformalbloks, leaving only the identity �eld, and indiating that the smallest theory does makesense this time - a feature onsistent with the free �eld representation and the modularinvariant. The sl(2j1) WZNW model at frational level and the expliit onstrution ofonsistent theories with a trunated atypial setor ertainly deserve a more systematiinvestigation.Aknowledgments: We thank Fabian Essler, Gerhard G�otz, Thomas Quella and AnneTaormina for interesting onversations. V.S. would like to thank the SPhT for the warmhospitality during several stays. This work was partially supported by the EU ResearhTraining Network grants \Eulid", ontrat number HPRN-CT-2002-00325 and \Fore-sUniverse", ontrat number MRTN-CT-2004-005104.7 Appendix A: The right regular representationIn this appendix we would like to prove the deomposition formula for the right regularrepresentation. We shall use the same notations that were introdued in setion 2.2.In order to analyze the deomposition of the spae of funtions under the right regularation of sl(2j1), we shall �rst study its restrition to the Lie sub-superalgebra gl(1j1).More preisely, we shall make use of the following embedding�( +) = F+ ; �( �) = �F� ; �(E) = B �H ; �(N) = B +H :The main tehnial Lemma of this setion implies that under the ation of gl(1j1), thespae H of funtions on the supergroup SU(2j1) deomposes into projetives only.35



Lemma: Under the ation of RX � R�(X) of the generators X 2 gl(1j1), the spae H offuntions of SU(2j1) deomposes aording toH �= Mj jMb=�jP(2b + 1)� 2 � P(2b)� P(2b� 1)� T :Here, T is a diret sum of typial gl(1j1) representations and P(a) denotes the projetiveover of the atypial irreduible hai.Before we prove this statement, let us formulate two onsequenes for the right regularrepresentation of sl(2j1). To begin with, let us reall from [11℄ that an sl(2j1) represen-tation � desends on a projetive representation of the embedded gl(1j1) algebra if andonly if � is projetive. Our lemma laims that the gl(1j1) ation on H ontains onlyprojetives. Hene, the same must be true for the right regular ation of sl(2j1).Proof of Lemma: For the proof it will be useful to introdue the following odd funtions��� := e�iz=2D1=2(�1=2)�(g�1) ��� ; ~�� = eiz�� :It is not diÆult to see that the spae H is spanned by funtions of the formF n;jab � = einz Djab(g) �(~��; �+; ���) ;where �(~��; �+; ���) is an arbitrary element in the algebra generated by the arguments. Itis very easy to desribe expliitly the spae of funtions whih are organized in atypialsof gl(1j1). The latter is haraterized by the vanishing of RE,AR = f� 2 H j �i�z +R0h + ������ = 0g : (7.1)We an easily solve the equation for � and desribe the spae AR expliitly. In fat, it isspanned by the funtions F b;jab � = eibzDjab(g) �(~��; �+; ���) :On the subspae AR the other generators of gl(1j1) simplify toRN� = (�2i�z � ���� � �+�+)� (7.2)R	+� = �i�+� ; R	�� = ie�iz=2D1=2�(�1=2)(g) ���� � i��R0E� : (7.3)36



for all � 2 AR. The representation of gl(1j1) an be restrited to the spae A0R of allelements � 2 AR suh that ����� = �. A short look on the ation of the gl(1j1)generators reveals that A0R = Mj jMb=�jP(2b+ 1)� P(2b) :Similarly, we see that AR=A0R = Mj jMb=�jP(2b)� P(2b� 1) :Sine all representations are projetive we onlude thatAR = Mj jMb=�jP(2b + 1)� 2 � P(2b)� P(2b� 1) :This onludes the proof of our Lemma.Referenes[1℄ D. Bernard, (Perturbed) onformal �eld theory applied to 2D disordered systems:An introdution, hep-th/9509137.[2℄ M. J. Bhaseen, J. S. Caux, I. I. Kogan and A. M. Tsvelik, Disordered dirafermions: the marriage of three di�erent approahes, Nul. Phys. B618 (2001)465{499 [ond-mat/0012240℄.[3℄ Z. Maassarani and D. Serban, Non-unitary onformal �eld theory and logarithmioperators for disordered systems, Nul. Phys. B489 (1997) 603{625[hep-th/9605062℄.[4℄ A. W. W. Ludwig, A free �eld representation of the osp(2j2) urrent algebra at levelk = �2, and Dira fermions in a random SU(2) gauge potential,ond-mat/0012189.[5℄ P. Bowok, M. Hayes and A. Taormina, Charaters of admissible representations ofthe aÆne superalgebra sl(2j1), Nul. Phys. B510 (1998) 739{764 [hep-th/9705234℄.37

http://arxiv.org/abs/hep-th/9509137
http://arXiv.org/abs/hep-th/9509137
http://arxiv.org/abs/cond-mat/0012240
http://arXiv.org/abs/cond-mat/0012240
http://arxiv.org/abs/hep-th/9605062
http://arXiv.org/abs/hep-th/9605062
http://arxiv.org/abs/cond-mat/0012189
http://arXiv.org/abs/cond-mat/0012189
http://arxiv.org/abs/hep-th/9705234
http://arXiv.org/abs/hep-th/9705234


[6℄ L. Rozansky and H. Saleur, Quantum �eld theory for the multivariableAlexander-Conway polynomial, Nul. Phys. B376 (1992) 461{509.[7℄ V. Shomerus and H. Saleur, The GL(1j1) WZW model: From supergeometry tologarithmi CFT, hep-th/0510032.[8℄ G. Gotz, T. Quella and V. Shomerus, The WZNW model on PSU(1,1j2),hep-th/0610070.[9℄ F. H. L. Essler, H. Frahm and H. Saleur, Continuum limit of the integrable sl(2j1)3� �3 superspin hain, Nul. Phys. B712 (2005) 513{572 [ond-mat/0501197℄.[10℄ L. Frappat, P. Sorba and A. Siarrino, Ditionary on Lie algebras andsuperalgebras. Aademi Press In., San Diego, CA, 2000. Extended and orretedversion of the E-print [hep-th/9607161℄.[11℄ G. G�otz, T. Quella and V. Shomerus, Representation theory of sl(2j1),hep-th/0504234.[12℄ V. G. Ka, Lie superalgebras, Adv. Math. 26 (1977) 8{96.[13℄ A. H�u�mann, On representations of superoalgebras, J. Phys. A27 (1994)6421{6432 [hep-th/9403100℄.[14℄ P. Bowok and A. Taormina, Representation theory of the aÆne lie superalgebrasl(2j1; C) at frational level, Commun. Math. Phys. 185 (1997) 467{493[hep-th/9605220℄.[15℄ M. Hayes and A. Taormina, Admissible sl(2j1; C)(k) haraters and parafermions,Nul. Phys. B529 (1998) 588{610 [hep-th/9803022℄.[16℄ A. M. Semikhatov and A. Taormina, Twists and singular vetors in bsl(2j1)representations, Theor. Math. Phys. 128 (2001) 1236{1251 [hep-th/0311166℄.[17℄ A. M. Semikhatov, A. Taormina and I. Y. Tipunin, Higher level Appell funtions,modular transformations, and haraters, Comm. Math. Phys. 255 (2005) 469{512[math.qa/0311314℄. 38

http://arxiv.org/abs/hep-th/0510032
http://arXiv.org/abs/hep-th/0510032
http://arxiv.org/abs/hep-th/0610070
http://arXiv.org/abs/hep-th/0610070
http://arxiv.org/abs/cond-mat/0501197
http://arXiv.org/abs/cond-mat/0501197
http://arxiv.org/abs/hep-th/9607161
http://arxiv.org/abs/hep-th/0504234
http://arXiv.org/abs/hep-th/0504234
http://arxiv.org/abs/hep-th/9403100
http://arXiv.org/abs/hep-th/9403100
http://arxiv.org/abs/hep-th/9605220
http://arXiv.org/abs/hep-th/9605220
http://arxiv.org/abs/hep-th/9803022
http://arXiv.org/abs/hep-th/9803022
http://arxiv.org/abs/hep-th/0311166
http://arXiv.org/abs/hep-th/0311166
http://arxiv.org/abs/math/0311314
http://arXiv.org/abs/math.qa/0311314


[18℄ L. Rozansky and H. Saleur, S and T matries for the U(1j1) WZW model:Appliation to surgery and three manifolds invariants based on theAlexander-Conway polynomial, Nul. Phys. B389 (1993) 365{423[hep-th/9203069℄.[19℄ L. J. Mordell, Ata Math. 61 (1933) 323.[20℄ T. Apostol, Modular Funtions and Dirihlet Series in Number Theory, vol. 41.Springer-Verlag, Berlin, Heidelberg, New York, 1997.[21℄ M. Boquet, D. Serban and M. R. Zirnbauer, Disordered 2d quasipartiles in lassd: Dira fermions with random mass, and dirty superondutors, Nulear Physis B578 (2000) 628.[22℄ F. Lesage, P. Mathieu, J. Rasmussen and H. Saleur, Nul. Phys. B686 (2004) 313.[23℄ V. Gurarie and A. W. W. Ludwig, Conformal �eld theory at entral harge  = 0and two-dimensional ritial systems with quenhed disorder, hep-th/0409105.

39

http://arxiv.org/abs/hep-th/9203069
http://arXiv.org/abs/hep-th/9203069
http://arxiv.org/abs/hep-th/0409105
http://arXiv.org/abs/hep-th/0409105

	Introduction
	The minisuperspace analysis
	The Lie superalgebra sl(2|1)
	The defining relations of sl(2|1)
	Kac modules and irreducible representations
	Projective covers of atypical irreducible modules

	Functions on the supergroup SU(2|1)

	Representation theory of the affine algebra
	Some basic ingredients
	Typical (class I) representations
	Atypical (class II) representations
	Spectral flow symmetries
	Modular transformation and S-matrix

	The state space and partition functions
	The proposal for integer level k
	Free field representation at k=1
	Partition functions

	Some selected applications
	The 3- super-spin chain revisited.
	The WZNW model at k=-1/2

	Conclusions and Outlook
	Appendix A: The right regular representation

