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AbstratWe ompute the one-loop gauge ouplings in six-dimensional non-Abelian gauge the-ories on the T 2=Z2 orbifold with general GUT breaking boundary onditions. Foronreteness, we apply the obtained general formulae to the gauge oupling runningin a 6D SO(10) orbifold GUT where the GUT group is broken down to the stan-dard model gauge group up to an extra U(1). We �nd that the one-loop orretionsdepend on the parity matries enoding the orbifold boundary onditions as well asthe volume and shape moduli of extra dimensions. When the U(1) is broken by theVEV of bulk singlets, the aompanying extra olor triplets also a�et the uni�ationof the gauge ouplings. In this ase, the B � L breaking sale ompatible with thegauge oupling uni�ation is sensitive to the hange of the ompati�ation sales.
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1 IntrodutionGrand Uni�ed Theories(GUTs) [1℄ have been reonsidered reently in the ontext of orb-ifold GUTs [2, 3℄ where orbifold boundary onditions in extra dimensions are utilized tobreak down a GUT gauge symmetry to the Standard Model(SM) gauge group and at thesame time solve the doublet-triplet splitting problem. In orbifold GUTs, on top of theusual 4D logarithmi running to generate the di�erene between the SM gauge ouplingsat low energy [4℄, the Kaluza-Klein(KK) massive modes of the 4D gauge bosons give riseto additional threshold orretions. In orbifold GUTs, however, there is an ambiguity dueto the existene of the non-universal gauge kineti terms loalized at the �xed points [5{7℄where the loal gauge symmetry is redued ompared to the bulk one. Nonetheless, bymaking a strong oupling assumption at the uto� sale [8℄, the brane-loalized gauge ou-plings may be ignored ompared to the bulk gauge oupling, due to the volume suppressionof extra dimensions. So, the orbifold GUTs an provide a minimal setup for onsideringthe threshold orretions onsistent with a suessful gauge oupling uni�ation.Over the past years, the 5D orbifold GUTs have been muh studied as a simplest ase,in partiular, to ompute the resulting e�ets of the KK massive modes to the gaugeoupling uni�ation for one at [9℄ or warped [10℄ extra dimension. For larger GUT groupssuh as SO(10), however, the 5D ase turns out not to be a minimal setup, beause a usualHiggs mehanism is required for a further breaking to the SM gauge group or unwantedmassless modes of extra omponents of gauge �elds must get massive [11℄. In ontrast, the6D ase has drawn more attention beause it is more eonomi to obtain the SM gaugegroup diretly from a large GUT group [12,13℄ and there is more freedom to loate the SM�elds for satisfying the experimental requirements suh as the avor struture [14℄ and theproton lifetime [15℄. We may even regard the 6D orbifold GUTs as an e�etive theory ofdesribing (heteroti) string ompati�ations as an intermediate GUT [16℄ with the hopeto identify the remnants of string theory within the 6D orbifold �eld theory.In this paper, we onsider the one-loop e�etive ation for the gauge �elds ontainingzero modes in six-dimensional N = 1 supersymmetri GUTs ompati�ed on a T 2=Z2orbifold. This an be regarded as a generalization of the previous �ndings on orbifoldswithout gauge symmetry breaking [6℄. In the presene of the orbifold boundary onditionsthat are ommuting, we obtain the bulk and brane ontributions due to bulk vetor andhyper multiplets and identify the neessary ounterterms to anel the divergenes appear-ing in dimensional regularization. A bulk vetor multiplet leads to both brane and bulkorretions while a bulk hyper multiplet gives rise only to a bulk orretion. The bulkdivergenes are anelled by a higher derivative term with universal oeÆient whereas thebrane divergenes are anelled by brane-loalized gauge kineti terms the oeÆients ofwhih depend on the loal gauge symmetry at the �xed points. In the ase of the uto�regularization [6℄, there would be also power-like orretions in the uto� sale to the gaugeouplings, but they don't a�et the gauge oupling uni�ation at all. From the obtainede�etive ation, we also derive the general expressions for the running of the e�etive gaugeouplings for zero-mode gauge bosons. In the low energy limit, we onsider the running ofthe gauge ouplings, inluding the non-universal threshold orretions due to KK massive2



modes1.We apply the general formulae for the gauge oupling running in the six-dimensionalSO(10) orbifold GUT model proposed in Ref. [12℄. This is the minimal setup to breakSO(10) down to the SM gauge group up to a U(1) fator only by orbifold boundary on-ditions without obtaining massless modes from the extra omponents of gauge bosons. Insome realisti SO(10) orbifold GUT models, we disuss about the possibility of having alarge volume of extra dimensions ompatible with the suess of the gauge oupling uni�a-tion. We assume the breaking sale of the extra U(1) to be lower than the ompati�ationsale in order to ignore the e�et of the brane-loalized U(1) breaking mass terms.For the ase with isotropi ompati�ation of extra dimensions, we show that thevolume dependent term of the KK threshold orretion an give a sizable ontribution tothe di�erential running of the gauge ouplings for the large volume of extra dimensions. Inthis ase, in order for the additional ontribution due to extra olor triplets to be anelledby the volume dependent part, the breaking sale of the extra U(1) tends to be lose tothe ompati�ation sale for the gauge oupling uni�ation. On the other hand, in thease with anisotropi ompati�ation, e.g. in the 5D limit where the bulk gauge groupbeomes the Pati-Salam SU(4) � SU(2)L � SU(2)R, we show that the shape dependentterm of the KK threshold orretion an be dominant, giving rise to the 5D power-likethreshold orretions with non-universal oeÆient in the ompati�ation sales. Thesepower-like orretions in the 5D limit are alulable, in ontrast to the unalulable power-like orretions in the uto� sale in the genuine 5D ase. Consequently, we show thatthe allowed ontribution of extra olor triplets or the breaking sale of the extra U(1) issensitive to the shape modulus in a phenomenologially suessful SO(10) model.The paper is organized as follows. First we give a brief review on the general boundaryonditions for breaking the bulk gauge symmetry on T 2=Z2. In Setion 3, we present theone-loop e�etive ation for gauge bosons in the general 6D orbifold GUTs and derive therunning for the e�etive gauge ouplings at low energy. Then, in Setion 4, we onsiderthe ase with SO(10) bulk group and disuss the gauge oupling uni�ation for someembeddings of the MSSM. Finally the onlusion is drawn. The details on the propagatorson GUT orbifolds, the KK summations, the de�nition of speial funtions and some SO(10)group theory fats are given in the appendies.2 Boundary onditions on GUT orbifoldsBefore onsidering partiular models, we give a brief sketh for the orbifold breaking ofgauge symmetry in a six-dimensional non-Abelian gauge theory with a simple gauge group.Two extra dimensions are ompati�ed on the orbifold T 2=Z2. For the extra oordinatesz � x5+ ix6, there are double periodiities z � z+2�(R5n5+ iR6n6) with radii R5; R6 andinteger numbers n5; n6. Further, when the bulk positions are identi�ed by a Z2 reetionsymmetry as z ! �z, there are four �xed points on the orbifold: z0 = 0, z1 = �R5,z2 = i�R6 and z3 = �R5 + i�R6.1For some early works on string theory omputation of the one-loop gauge ouplings, see Ref. [17, 18℄3



In order to break the bulk gauge symmetry down to the SM gauge group, let us in-trodue nontrivial boundary onditions for bulk gauge �elds AM with M = 0; 1; 2; 3 � �and M = 5; 6 � m. The boundary onditions are spei�ed by unitary parity matriesPi(i = 0; 1; 2; 3) at the �xed points,PiA�(z)P�1i � PiA�(�z + zi)P�1i = A�(z + zi);PiAm(z)P�1i � �PiAm(�z + zi)P�1i = Am(z + zi) (1)where P 2i = 1(i = 0; 1; 2; 3). The above boundary onditions an be rewritten simply interms of omponent �elds with AM = AaMTa in the group spae asAa�(�z + zi) = (Qi)a bAb�(z + zi); (2)Aam(�z + zi) = �(Qi)a bAbm(z + zi) (3)where (Qi)a b � tr(T aPiTbPi): (4)Here the de�ned matries (Qi)a b(i = 0; 1; 2; 3) ful�ll(Qi)a a0(Qi)b b0�ab = �a0b0 ; fab(Qi)a a0(Qi)b b0(Qi) 0 = fa0b00 (5)where �ab is the Killing metri de�ned by tr(TaTb) = �ab on the group spae and it is usedto raise and low adjoint indies, and fab are the group struture onstants given in thegroup algebra [Ta; Tb℄ = ifabT . Note that Q2i = 1 from the Z2 symmetry and hene Qiare real symmetri matries. Eq. (4) and the seond property in eq. (5) an be rewritten,respetively, as PiT aPi = (Qi)a bT b; (6)QiT aGQi = (Qi)a bT bG (7)with (T bG)a = ifab.We also disuss on the Wilson lines on a torus in omparison to the loal boundaryonditions as given above. The boundary onditions along nonontratible loops on a torusare de�ned by the unitary matries U1; U2 asU1AM(z + 2�R5)U�11 = AM(z); (8)U2AM(z + i2�R6)U�12 = AM(z): (9)Sine x5 + �R5 ! �x5 + �R5 is equivalent to x5 + �R5 ! �x5 � �R5 ! �x5 + �R5 andsimilarly for the other oordinate, we obtain the following relations,U1 = P1P0; U2 = P2P0: (10)Then, we an see that the onsisteny onditions for the Wilson lines on orbifolds, U1P0U1 =P0 and U2P0U2 = P0, are satis�ed. Moreover, sine U2U1P0 = P3 and [U1; U2℄ = 0, theparity matrix P3 an be written asP3 = P2P0P1 = P1P0P2: (11)4



Therefore, the Wilson lines one an onsider are not independent of loal boundary ondi-tions, and one of the parity ations is not independent.For simpliity, let us fous on the ase with ommuting parity matries, i.e. [Pi; Pj℄ = 0or [Qi; Qj℄ = 0. For these parity ations, the rank of the gauge group is not redued. In thisase, it is onvenient to hoose the Cartan-Weyl basis suh that the orbifold ations beomediagonal. In this basis, the generators are organized into Cartan subalgebra generatorsHI ; I = 1; � � � ; rank(G), and the remaining generators, E�; � = 1; � � � ; (dim(G)�rank(G)),with [HI ; E�℄ = �IE�; (12)where �I is the rank(G)�dimensional root vetor assoiated with E�. Then, it is alwayspossible to write the parity matries asPi = e�2�iVi�H (13)whih de�nes the rank(G)�dimensional twist vetor Vi for eah �xed point. Thus, therelations (6) beome PiHIPi = HI; (14)PiE�Pi = e�2�i��ViE�: (15)In this basis, the matries Qi are also diagonal suh that (Qi)I J = ÆIJ and (Qi)� � =e�2�i��ViÆ�� and other entries are zero. Here we have that � � Vi = 0 or 12 mod Z for Z2ations at the �xed points beause Q2i = 1. Then, a bulk �eld takes a ombination ofparity eigenvalues (p0; p1; p2) with pi = +1 or �1 under three independent Z2 ations, soit is omposed of a subset of basis funtions on a torus with radii 2R5 and 2R6.3 The e�etive ation on GUT orbifoldsIn this setion, we present the general formulae for the one-loop e�etive ation in a 6DN = 1 supersymmetri GUT where the bulk gauge symmetry is broken by loal boundaryonditions at the �xed points on the T 2=Z2 orbifold as desribed in the previous setion.As a result, we also disuss about the running of the gauge ouplings for zero-mode gaugebosons at low energy.3.1 The one-loop e�etive ation on the T 2=Z2 orbifoldWe onsider a 6D N = 1 supersymmetri non-Abelian gauge theory ompati�ed on theorbifold T 2=Z2. In terms of omponent �elds, a vetor multiplet is omposed of gaugebosons AM and (right-handed) sympleti Majorana gauginos � while a hyper multiplet isomposed of two omplex hypersalars �� without opposite harges and a (left-handed) hy-perino  . Sine all harged hyperinos have the equal 6D hiralities due to supersymmetry,one is not allowed to write the 6D mass terms for hyper multiplets.5



In the proess of taking the usual gauge �xing for a non-Abelian gauge theory [6℄, wealso introdue ghost �elds a. Then, the orbifold boundary onditions for bulk omponent�elds that we are onsidering are as the following,Aa�(x;�z + zi) = (Qi)a bAb�(x; z + zi); Aam(x;�z + zi) = �(Qi)a bAbm(x; z + zi);a(x;�z + zi) = (Qi)a b b(x; z + zi); �a(x;�z + zi) = i5 (Qi)a b �b(x; z + zi); (x;�z + zi) = i5 �iPi  (x; z + zi);�+(x;�z + zi) = �iPi �+(x; z + zi); ��(x;�z + zi) = ��i��(x; z + zi)Pi (16)with i = 0; 1; 2; 3. Here the forms of the parity matries depend on the representation of ahyper multiplet under the bulk gauge group. Eah hyper multiplet an take its own valueof �i as either +1 or �1.Taking into aount the group struture of propagators in loops as disussed in theAppendix A and following the similar proedure as in the ase with no orbifold breaking ofthe gauge symmetry in Ref. [6℄, we obtain the one-loop e�etive ation for the bakgroundgauge bosons up to quadrati orders as�(2)[A�℄ = 12g2 X~k Z d4k(2�)4Aa�(�k;�~k)Aa�(k;~k)�� (k2 � ~k2)g�� + k�k��+ i2X~k;~k0 Z d4k(2�)4Ab�(�k;�~k0)A�a(k;~k) (17)����G��+4(k2g���k�k�)�G++ � 2~k � ~k0g��(�G+�+�G�+)� �H���a bwhere �G�� = �g��;+ +�g��;� +���� , �H�� = �h��;+ +�h��;� +� �� with(�g��;�)a b = X~p;~p0 Z d4p(2�)4Tr�n� (2p+ k)�(2p+ k)� ~Gg;�(p+ k; ~p0 + ~k0; ~p+ ~k)+2ig��Æ~p0;~p+~k�~k0oTb ~Gg;�(p; ~p; ~p0)T a�; (18)(�h��;�)a b = X~p;~p0 Z d4p(2�)4Tr�n� (2p+ k)�(2p+ k)� ~Gh;�(p+ k; ~p0 + ~k0; ~p+ ~k)+2ig��Æ~p0;~p+~k�~k0oTb ~Gh;�(p; ~p; ~p0)T a�; (19)(����)a b = X~p;~p0 Z d4p(2�)4Trh ~D�(p; ~p; ~p0)�Tb ~D�(p+ k; ~p0 + ~k0; ~p+ ~k)�T ai; (20)(� ��)a b = X~p;~p0 Z d4p(2�)4Trh ~D (p; ~p; ~p0)�Tb ~D (p+ k; ~p0 + ~k0; ~p+ ~k)�T ai; (21)6



and (�G��)a b = X~p;~p0 Z d4p(2�)4 Tr� ~Gg;�(p+ k; ~p+ ~k; ~p0 + ~k0)Tb ~Gg;�(p; ~p; ~p0)T a�; (22)(�G��)a b = X~p;~p0 Z d4p(2�)4 Tr� ~Gg;�(p+ k; ~p+ ~k; ~p0 + ~k0)Tb ~Gg;�(p; ~p; ~p0)T a�= (�G�;�)a b: (23)Here the propagators appearing in the loops are given in the Appendix A. Sine we onsiderthe ommuting parity matries, the orbifold ations with respet to the �xed points otherthat the origin are fatorized out of the propagators whih would be given for the asewith one Z2 orbifold ation only. Then, after identifying various equivalent terms, we getthe e�etive ation in a simpler form as a deomposition into bulk and brane parts,�(2)[A�℄ = �bulk + �brane (24)with �bulk = 12X~k;~k0 Z d4k(2�)4Ab�(�k;�~k)Aa�(k;~k0)((k2 � ~k2)g�� � k�k�)��� 1g2 Æab � i(�G +�H)a b(k;~k)�Æ~k;~k0; (25)�brane = 12X~k;~k0 Z d4k(2�)4Ab�(�k;�~k)Aa�(k;~k0)(k2g�� � k�k�)[�4i(~�G)a b℄ (26)where (�G)a b(k;~k) = �4�dX~p Z ddp(2�)d 1(p2 � ~p2)[(p + k)2 � (~p+ ~k)2℄�14trAdjhn1 + os(2p5�R5)Q0Q1on1 + os(2p6�R6)Q0Q2oT aTbi; (27)(�H)a b(k;~k) = ��4�dX~p Z ddp(2�)d 1(p2 � ~p2)[(p+ k)2 � (~p+ ~k)2℄�14trRhn1 + �0�1 os(2p5�R5)P0P1on1 + �0�2 os(2p6�R6)P0P2oT aTbi; (28)(~�G)a b(k;~k0; ~k) = �4�d2 X~p Z ddp(2�)d Æ�2~p;~k�~k0(p2 � ~p2)[(p + k)2 � (~p+ ~k)2℄�14trAdjhn1 + os(2p5�R5)Q0Q1on1 + os(2p6�R6)Q0Q2oQ0T aTbi: (29)Here � is the renormalization sale in dimensional regularization with d = 4 � �, and~p = (p5; p6) = ( n52R5 ; n62R6 ) with n5; n6 being integer, and similarly for ~k and ~k0. In simplifying7



the expressions in the above, for the generators satisfying PiT a = �T aPi, we made use ofos(2(p5+k5)�R5) = � os(2p5�R5) and os(2(p6+k6)�R6) = � os(2p6�R6). Further, wenotie that trAdj is the trae over indies of the adjoint representation and trR is the traeover indies of the R representation.From eq. (24), we an see that a vetor multiplet gives rise to both bulk and brane-loalized orretions while a hyper multiplet only leads to a bulk orretion. It has beenshown that the absene of the brane-loalized orretions due to a hyper multiplet isrestrited to the ase with even ordered orbifolds [5℄.In order to simplify the expression for the bulk ontribution (25), we de�ne the quantity�(�5;�6) � �4�dX~p Z ddp(2�)d 1(p2 � ~p2)[(p+ k)2 � (~p+ ~k)2℄= i(4�)2V (2��)� Z 10 dxJ0[x(1� x)(k2 + ~k2); xk5R5 + �5; xk6R6 + �6℄ (30)where ~p = (n5+�5R5 ; n6+�6R6 ) with �5; �6 = 0 or 12 and n5; n6 being integer, V � (2�)2R5R6, andJ0[; 1; 2℄ � Xn1;n22ZZ 10 dtt1��=2 e��t[+a1(n1+1)2+a2(n2+2)2℄ (31)with ai = 1=R2i+4(i = 1; 2). Thus, we an rewrite the bulk ontribution due to a vetormultiplet as(�G)a b = 14trAdj[T aTb℄ (�(0;0) +�(0; 12 ) +�( 12 ;0) +�( 12 ; 12 ))+14trAdj[Q0Q1T aTb℄ (�(0;0) +�(0; 12 ) � �( 12 ;0) � �( 12 ; 12 ))+14trAdj[Q0Q2T aTb℄ (�(0;0) � �(0; 12 ) +�( 12 ;0) � �( 12 ; 12 ))+14trAdj[Q1Q2T aTb℄ (�(0;0) � �(0; 12 ) � �( 12 ;0) +�( 12 ; 12 )): (32)Similarly, we an write the bulk ontribution of a hyper multiplet as(�H)a b = �14trR[T aTb℄ (�(0;0) +�(0; 12 ) +�( 12 ;0) +�( 12 ; 12 ))�14�0�1 trR[P0P1T aTb℄ (�(0;0) +�(0; 12 ) � �( 12 ;0) � �( 12 ; 12 ))�14�0�2trR[P0P2T aTb℄ (�(0;0) � �(0; 12 ) +�( 12 ;0) � �( 12 ; 12 ))�14�1�2trR[P1P2T aTb℄ (�(0;0) � �(0; 12 ) � �( 12 ;0) +�( 12 ; 12 )): (33)Also de�ning~�(�5;�6) � �4�d2 X~p Z ddp(2�)d Æ�2~p;~k�~k0(p2 � ~p2)[(p+ k)2 � (~p+ ~k)2℄ (34)8



where ~p = (n5+�5R5 ; n6+�6R6 ) with �5; �6 = 0 or 12 and n5; n6 being integer, we an rewrite thebrane ontribution as(~�G)a b = 14trAdj[Q0T aTb℄ (~�(0;0) + ~�(0; 12 ) + ~�( 12 ;0) + ~�( 12 ; 12 ))+14trAdj[Q1T aTb℄ (~�(0;0) + ~�(0; 12 ) � ~�( 12 ;0) � ~�( 12 ; 12 ))+14trAdj[Q2T aTb℄ (~�(0;0) � ~�(0; 12 ) + ~�( 12 ;0) � ~�( 12 ; 12 ))+14trAdj[Q3T aTb℄ (~�(0;0) � ~�(0; 12 ) � ~�( 12 ;0) + ~�( 12 ; 12 )): (35)Thus, we �nd that the brane-loalized ontribution at eah �xed point orresponds to thebrane projetion of the bulk quantity by the loal parity matrix.3.2 Counterterms for loop divergenesAfter the KK summation given in the Appendix B, we an separate the divergent term as�(�5;�6) = i(4�)2V �6R5R6(k2 + ~k2)��2� �+O(�0): (36)Thus, the bulk ontribution beomes(�G +�H)a b = 14(trAdj[T aTb℄� trR[T aTb℄) i(4�)2V �6R5R6(k2 + ~k2)��2� �+O(�0): (37)Therefore, we �nd that the loop orretions generate a divergent higher derivative termthe oeÆient of whih is proportional to the universal N = 2 beta funtion. At themomentum sale higher than the ompati�ation sales, the higher derivative operatorbeomes important so that the gauge ouplings run power-like in momentum sale ratherthan logarithmially [6℄. However, it does not a�et the uni�ation of the gauge ouplings,even if it is important in determining the value of the uni�ed gauge oupling and theuni�ation sale.For a given set of ingoing and outgoing momenta of gauge bosons satisfying ~p = ~k0�~k2 ,we ompute ~�(�5;�6) as~�(�5;�6) = i32�2�2�+ln(4��2e�E )�Z 10 dx ln �x(1�x)(k2+~k2)+�~k02 +(x� 12)~k�2��: (38)Thus, the brane ontribution beomes(~�G)a b = 14 i32�2 2� 3Xi=0 trAdj[QiT aTb℄ Æ2(z � zi) +O(�0): (39)Therefore, the appearing divergent term at eah �xed point respets the orrespondinggauge symmetry whih depends on the loal orbifold ation.9



Consequently, in order to subtrat the � poles in (�G)a b; (�H)a b and (~�G)a b obtainedin eqs. (37) and (39), we require the following new ounterterms whih are not present inthe original ation,L:t: = Z d2zd2�� 12h2 tr[W�6W ℄ + 12 3Xi=0 � 1g2i;aWaW aÆ2(z � zi)��+ h:: (40)Here h2 is a dimensionless bulk oupling while g2i;a(i = 0; 1; 2; 3) are dimensionless gaugeouplings orrespoding to the loal gauge groups at the �xed points. Note that the brane-loalized gauge oupling an be non-universal so it ould a�et the preditive power of theorbifold GUTs.3.3 Limiting asesFor a later use in the running of the zero-mode gauge oupling, let us take the asymptotilimits of the loop orretions. First, in the low momentum limit k2 � 1=R25;6, with ~k =~k0 = 0, by using eq. (B.4), we get the approximate forms for eq. (30),�(0;0) � i(4�)2V ��6R5R6k2��2� � ln h�eE�2R25j�(iu)j�4i�� ln h4�2e�2j�(iu)j4R26k2i�; (41)�(0; 12 ) � i(4�)2V ��6R5R6k2��2� � ln(�eE�2R25)� �u+ 2Xn�1(�1)n ln j1� e�2�unj2�� ln ����#1(1=2jiu)�(iu) ����2�; (42)�( 12 ;0) � i(4�)2V ��6R5R6k2��2� � ln(4�eE�2R25)� 2Xn�1 ln ����1 + e��un1� e��un ����2�� ln ����#1(�iu=2jiu)�(iu) e��u=4����2�; (43)�( 12 ; 12 ) � i(4�)2V ��6R5R6k2��2� � ln(4�eE�2R25)� 2Xn�1(�1)n ln ����1 + e��un1� e��un ����2�� ln ����#1(1=2� iu=2jiu)�(iu) e��u=4����2�: (44)Further, using the fat that �(0;0) +�(0; 12 ) +�( 12 ;0) +�( 12 ; 12 ) is the same as the KK sum ona torus with eah radius double sized and with no Wilson lines, i.e. from the approximate10



form of the sum,X�5;�6=0; 12 �(�5;�6) � i(4�)2V ��6 (4R5R6)k2��2� � ln h4�eE�2R25j�(iu)j�4i�� ln h16�2e�2j�(iu)j4R26k2i�; (45)we note the useful identity for the theta funtions,���#1(1=2jiu)#1(�iu=2jiu)#1(1=2� iu=2jiu)���2 = 4j�(iu)j6e�u: (46)In the high momentum limit k2 � 1=R25;6, with ~k = ~k0 = 0, eq. (30) beomes, indepen-dently of the orbifold ations,�(�5;�6) � i(4�)2V ��6R5R6k2��2� � ln �2k2 � ln�4�e8=3�E���: (47)Therefore, from eqs. (32) and (33), even the �nite part of the bulk orretion beomesuniversal at high energy.3.4 Running of the 4D e�etive gauge ouplingIn this setion, we onsider the running of the e�etive gauge oupling whih is de�ned asthe oeÆient of the kineti term of a zero-mode gauge boson. It also inludes the bulkhigher derivative term and the brane kineti terms.From the one-loop e�etive ation (24), the zero-mode gauge oupling reads1g2e�;ab(k2) = 1g2tree;ab � k2Vh2tree Æab + iV (�G(k; 0) + �H(k; 0))a b + 4i(~�G(k; 0; 0))a b (48)with 1g2tree;ab = �Vg2 + 3Xi=0 1g2i;a�Æab: (49)When taking the minimal subtration sheme for divergenes (37) and (39) at k2 = M2� ,where M� is the 6D fundamental sale, we de�ne the renormalized bulk and brane gaugeouplings for �1�2 =M2� with �1 = 4�e2�E at that sale. Then, below the ompati�ationsales (k2 � 1=R25;6), using eqs. (38), (41)-(44) with (46), we have eq. (48) as1g2e� ;ab(k2) = 1g2r;a Æab + 116�2Bab lnM2�k2 � 116�2 Xi;j=�BijabLij � 14��ab (50)11



where gr;a are the renormalized gauge ouplings and the beta funtions areBab = 14�� trAdj(T aTb) +XR trR(T aTb)� 2 3Xi=0 trAdj(QiT aTb)�+14 3Xi=1 h� trAdj(Q0QiT aTb) +XR �R0 �Ri trR(P0PiT aTb)i (51)and B++ab = 14�� trAdj(T aTb) +XR trR(T aTb)�; (52)B�+ab = 14�� trAdj(Q0Q1T aTb) +XR �R0 �R1 trR(P0P1T aTb)�; (53)B+�ab = 14�� trAdj(Q0Q2T aTb) +XR �R0 �R2 trR(P0P2T aTb)�; (54)B��ab = 14�� trAdj(Q0Q3T aTb) +XR �R0 �R3 trR(P0P3T aTb)� (55)with L++ = ln h4e�2j�(iu)j4uVM2� i; (56)L�+ = ln he�24 ���#1(12 jiu)���4uVM2� i; (57)L+� = ln he�24 ���#1(�12 iujiu)e��u=4���4uVM2� i; (58)L�� = ln he�24 ���#1(12 � 12 iujiu)e��u=4���4uVM2� i: (59)Further, �ab orresponds to the power-like dependene on the momentum sale and it issuppressed by the ompati�ation volume at low energy as in the ase without orbifoldbreaking of the gauge symmetry [6℄. Bab are the N = 1 beta funtion oeÆients of thelogarithmi running due to the massless modes. They are omposed of both bulk andbrane orretions. On the other hand, Bijab are the N = 2 beta funtion oeÆients forthe KK massive modes of the bulk �elds. The logarithms Lij have the ommon volume(V ) dependene, but also they are funtions of the shape modulus (u), being of di�erentform depending on the parities. Sine the KK massive mode orretion ontains a non-universal part due to the gauge symmetry breaking, they an a�et the uni�ation of gaugeouplings. 12



4 Gauge oupling uni�ation in a 6D SO(10) orbifoldGUTWe onsider a 6D N = 1 supersymmetri SO(10) orbifold GUT and ompute the gaugeoupling running by using the general formulae found in the previous setion.4.1 Orbifold breaking of SO(10)In order to break the bulk SO(10) gauge group down to the SM one, we introdue theparity matries in eq. (1) or (16) for a fundamental representation [12℄ asP0 = I10�10; (60)P1 = diag(�1;�1;�1; 1; 1)� �0; (61)P2 = diag(1; 1; 1; 1; 1)� �2; (62)and P3 = P1P2 from the onsisteny ondition (11). Then, the parity operations P1; P2break SO(10) down to maximal subgroups, the Pati-Salam group SU(4)�SU(2)L�SU(2)Rand the Georgi-Glashow group SU(5)� U(1)X , respetively. The parity operation P3 alsobreaks SO(10) down to the ipped SU(5) but it is not an independent breaking. Thus,the intersetion of two maximal subgroups leads to SU(3)C �SU(2)L�U(1)Y �U(1)X asthe remaining gauge group. This an be seen from the gauge bosons with positive parities:45 is deomposed into (15; 1; 1)+ + (6; 2; 2)� + (1; 3; 1)+ + (1; 1; 3)+ under P1 (where �indiate the parities) and 240;++ 10�4;�+ 104;�+ 10;+ under P2. Then, �nally, the extraU(1)X or U(1)B�L has to be broken further by the VEV of bulk or brane Higgs �elds.For applying the parity ation to other representations, from eq. (13), we an rewritethe parity matries in terms of Cartan-Weyl generators2 as a speial ase of eq. (13),P1 = e�2�ix1(�6TY +TX); x1 = 12 ; (63)P2 = e�2�ix2TX ; x2 = 18 (64)where TY ; TX are the U(1)Y and U(1)X generators3, respetively. We onsider a set of hypermultiplets, N10 10's and N16 16's satisfying N10 = 2 + N16 for no irreduible anomalies[21, 22℄. Both N10 and N16 have to be even for the absene of loalized anomalies unlessthere are split multiplets at the �xed points [22℄. A 10 = (H;G;H; G) is deomposed into(6; 1; 1)� + (1; 2; 2)+ under P1 and 5�2;� + �52;+ under P2. Then, we get a massless Higgsdoublet from H of 10. On the other hand, a 16 = (Q;L; U; E;D; N ) is deomposedinto (4; 2; 1)+ + (�4; 1; 2)� under P1 and 101;� + �5�3;+ + 15;+ under P2. Then, we also geta massless lepton doublet from L of 16. The N = 2 partner of eah hyper multiplet hasthe parity matries in the group spae multiplied by the negative overall parity, due to thedisrete hoie of the Sherk-Shwarz twist in SU(2)R spae. We note that in eq. (16),�0 = 1 and �3 = �1�2 for eah hyper multiplet.2One has to be areful with multiplying a U(1) phase for the orret parity matries satisfying P 2i = 1.3See the appendix D for details. 13



4.2 Gauge oupling running at low energyIn order to break the extra U(1)X gauge symmetry by a usual Higgs mehanism, one anintrodue 16 Higgs multiplets in the bulk [13, 14℄. In that ase, after the orbifolding, ontop of SM singlets, one ends up with extra olor triplets as zero modes. Sine the extraolor triplets an get masses of order the B � L breaking sale MB�L at the �xed points,they already start ontributing to the running of gauge ouplings at that sale. Thus, fromthe general result (50), we onsider the logarithmi running due to zero modes by takingtwo steps aross the B � L breaking sale.The brane-loalized B � L breaking masses for the olor triplets an modify their KKmassive modes so that there exists an additional ontribution to the the gauge ouplingrunning. However, when the B � L breaking sale is below the ompati�ation sale, thenew ontribution beomes suppressed as M2B�L=M2 with M � 1=pV . Thus, heneforthwe assume this ase to ignore the e�et of the brane-loalizedB�L breaking masses. Then,muh below the ompati�ation sale, the running of the 4D e�etive gauge oupling ofthe SM gauge group is governed by1g2e� ;ab(k2) = 1g2u Æab + 116�2B0ab lnM2B�Lk2 + 116�2 ~Bab ln M2�M2B�L� 116�2 Xi;j=�BijabLij + 18�2�aÆab (65)where gu is the universal renormalized gauge oupling4 and �a are orretions due to renor-malized gauge ouplings loalized at the Pati-Salam and ipped SU(5) �xed points. B0ab =baÆab are the beta funtions of the gauge ouplings in the MSSM with ba = (33=5; 1;�3)given below the B�L breaking sale. Moreover, above the B�L breaking sale, the betafuntions for the gauge ouplings are given by ~Bab = Bab � Cab + B̂ab whereBab = 14h� 3trAdj(T aTb) +XR trR(T aTb)i+14 3Xi=1 h� 3trAdj(QiT aTb) +XR �Ri trR(PiT aTb)i (66)with Q3 = Q1Q2, P3 = P1P2 and �R3 = �R1 �R2 , and Cab = aÆab is the ontribution omingfrom vetor-like massless modes whih get tree-level brane masses of order the GUT saleand B̂ab = b̂aÆab omes from the brane-loalized �elds. Further, the beta funtions of the4Although there are also power-like threshold orretions in the uto� regularization [6, 9℄, they don'tontribute to the di�erential running of gauge ouplings. Nevertheless, the power-like ontributions mayhave the net e�et of plaing an upper limit on the possible volume of the extra dimensions [23℄.14



KK massive mode orretions areB++ab = 14�� trAdj(T aTb) +XR trR(T aTb)�; (67)B�+ab = 14�� trAdj(Q1T aTb) +XR �R1 trR(P1T aTb)�; (68)B+�ab = 14�� trAdj(Q2T aTb) +XR �R2 trR(P2T aTb)�; (69)B��ab = 14�� trAdj(Q3T aTb) +XR �R3 trR(P3T aTb)�: (70)4.2.1 Computation of traesNow we ompute the neessary traes to get the running equations. To this, we de�ne thefollowing invariant quantity inluding all SO(10) gauge �elds,B � BabF aSO(10)F bSO(10)� BV +BM (71)where BV � �34htrAdjF 2SO(10) + 3Xi=1 trAdj(QiF 2SO(10))i; (72)BM � XR 14htrRF 2SO(10) + 3Xi=1 �Ri trR(PiF 2SO(10))i: (73)Moreover, similarly we de�ne Bij � BijabF aSO(10)F bSO(10): (74)By using the traes for maximal subgroups of SO(10) in the Appendix D, we obtainthe following result for the vetor multiplet,BV = �34trAdjF 2SO(10) + 6tr2F 2SU(2)L + 6tr2F 2SU(2)R�3tr5F 2SU(5) + 6F 2U(1)X � 3tr5F 2SU(5)0 + 6F 2U(1)X0 : (75)For the hyper multiplets, we also haveBM = B10 +B16 (76)15



with B10 = 14N10tr10F 2SO(10) + 12X10 �101 h� tr4F 2SU(4) + tr2F 2SU(2)L + tr2F 2SU(2)Ri; (77)B16 = 14N16tr16F 2SO(10) +X16 �161 htr2F 2SU(2)L � tr2F 2SU(2)Ri+14X16 �162 h� 2tr5F 2SU(5) + 32F 2U(1)Xi+14X16 �161 �162 h� 2tr5F 2SU(5)0 + 32F 2U(1)X0i (78)Further, we haveB++ = 14[�trAdjF 2SO(10) +N10tr10F 2SO(10) +N16tr16F 2SO(10)℄; (79)B�+ = 2tr2F 2SU(2)L + 2tr2F 2SU(2)R+12X10 �101 h� tr4F 2SU(4) + tr2F 2SU(2)L + tr2F 2SU(2)Ri+X16 �161 htr2F 2SU(2)L � tr2F 2SU(2)Ri; (80)B+� = �tr5F 2SU(5) + 2F 2U(1)X+14X16 �162 h� 2tr5F 2SU(5) + 32F 2U(1)Xi (81)B�� = �tr5F 2SU(5)0 + 2F 2U(1)X0+14X16 �161 �162 h� 2tr5F 2SU(5)0 + 32F 2U(1)X0i: (82)Therefore, by reading o� the gauge kineti terms for the SM gauge group in B and Bij,we an �nd the general expression for the beta funtion oming from the massless modesin the bulk as Bab = baÆab with ba = bVa + b10a + b16a (83)where bVa = (0;�6;�9); (84)b10a = 14N10(1; 1; 1) + 14X10 �101 (15 ; 1;�1); (85)b16a = 14(2N16 �X16 �162 )(1; 1; 1) + 14X16 �161 (�65 ; 2; 0)+14X16 �161 �162 (75 ;�1;�1); (86)16



and the beta funtion for KK massive modes as Bijab = bija Æab withb++a = 14(�8 +N10 + 2N16)(1; 1; 1); (87)b�+a = 14(125 ; 4; 0) + 14X10 �101 (15 ; 1;�1) + 14X16 �161 (�65 ; 2; 0); (88)b+�a = 14(2 +X16 �162 )(�1;�1;�1); (89)b��a = 14(385 ;�2;�2) + 14X16 �161 �162 (75 ;�1;�1): (90)Here, in order to get the beta funtion for U(1)Y , we made use of the relations betweenU(1) gauge bosons (D.23) in the Appendix D. The orretions due to hyper multiplets ineq. (77) and (78) also ontain mixing terms5 between the U(1)Y and U(1)X gauge bosons.After transforming to the anonial gauge kineti terms, this mixing leads to an overallshift in the U(1)X harges as well as the oupled renormalization group equations for twoU(1) gauge ouplings and the U(1)X harge shift [19℄. However, when the extra gaugeboson gets a heavy mass for giving the see-saw sale for neutrino masses, the mixing e�etis not relevant for the low energy physis while the running of the gauge oupling for alight U(1) gauge boson is not a�eted by the presene of the mixing term [19℄.Consequently, ompared to eq. (83), we obtain the relation between beta funtions asba = (0;�4;�6) + b++a + b�+a + b+�a + b��a : (91)The �rst term is only due to the di�erene between the beta funtions of N = 1 vetormultiplets and N = 2 vetor multiplets for the SM gauge group. Apart from that, the sumof theN = 2 beta funtions for the volume dependent part of the KKmassive ontributions,i.e. Pij bija , ontains only the KK massive modes for the bulk �elds ontaining the zeromodes. Therefore, from the beta funtions (85), (86), (88) and (90), one an �nd that theterms proportional to �R1 or �R1 �R2 , i.e. the orbifold ations assoiated with Pati-Salam andipped SU(5) gauge groups generate the non-universal orretions to the gauge ouplings.From the obtained beta funtions (83) and (87)-(90), eq. (65) beomes4�g2e� ;a(k2) = 4�g2u + 14�~ba ln M2�M2B�L + 14�b0a lnM2B�Lk2 � 14� Xi;j=� bija Lij + �a2� : (92)Here ~ba = ba � a + b̂a is the N = 1 beta funtion above the B � L breaking sale and bijaare the beta funtions for the KK massive modes.5The gauge kineti terms loalized at Pati-Salam and ipped SU(5) �xed points an also lead to amixing. 17



4.2.2 The di�erential running of the gauge ouplingsFor a number of hyper multiplets with arbitrary parities, we assume that both vetor-likepartiles (getting brane masses of order the GUT sale) and brane-loalized partiles �llGUT multiplets, i.e. a and b̂a are universal. Then, we get the general formula for thedi�erential running of gauge ouplings as1g23 � 127 1g22 + 57 1g21 = 18�2�~b ln M�MB�L � 12b�+L�+ � 12b��L���+ ~�8�2 (93)where ~b = 97 � 914X10 �101 � 1514X16 �161 + 37X16 �161 �162 ; (94)b�+ = �97 � 914X10 �101 � 1514X16 �161 ; (95)b�� = 127 + 37X16 �161 �162 : (96)Thus, we �nd a general relation between oeÆients as~b = 67 + b�+ + b��: (97)Then, from eq. (93) with the relation (97), we �nd the deviation from the 4D SGUTpredition of the QCD oupling at MZ , i.e. ��s � �KKs � �SGUT;0s as��s(MZ) � � 12��2s(MZ)�~b ln M�MB�L � (~b� 67) ln(M�pV )�12b�+ ln he�24 ���#1(12 jiu)���4ui�12(~b� 67 � b�+) ln he�24 ���#1(12 � 12 iujiu)e��u=4���4ui+ ~��: (98)The �rst term orresponds to the ontribution due to the extra partiles above the B � Lsale. The seond term is the volume dependent orretion due to the KK massive modeswhile the third part ontaining the theta funtions is the shape dependent orretion. Thelast term ~� is the e�et of the brane-loalized gauge ouplings.When u � 1, the shape dependent term is subdominant ompared to the other log-arithmi terms. As an be shown expliitly in the spei� models, the last term an bealso ignored by making a strong oupling assumption at the uto� sale. Then, the �rsttwo logarithms beome a dominant ontribution. For ~b(~b � 67) > 0, we an see that theindividual logarithm an be large, being ompatible with the gauge oupling uni�ationdue to a anellation. 18



Now we onsider the behavior of our result in the 5D limit with u = R6=R5 � 1. Inthis ase, the bulk gauge group beomes the Pati-Salam and there remain only two �xedpoints with the Pati-Salam group and the SM gauge group enlarged with a U(1) fator,respetively. Some relevant disussion on this limit has been made in Ref. [24℄, onerningthe power-like threshold orretions. Sine j#1(zjiu)j � 2e��u=4j sin(�z)j for u � 1, theshape dependent terms ould give a signi�ant e�et on the gauge oupling uni�ation bythe non-universal power-like threshold orretions. Thus, in this 5D limit, eq. (98) beomes��s(MZ) � � 12��2s(MZ)�~b ln M�MB�L � (~b� 67) ln(M�pV )�12(~b� 67) ln(4e�2u) + �2 b�+u+ ~��: (99)Therefore, we an interpret that the e�etive 5D gauge oupling(1=g25 = 1=(g24R6)) alsogets a power-like threshold orretion proportional to u=R6 � 1=R5 whih is set by themass sale of heavy gauge bosons belonging to SO(10)=SU(4)� SU(2)L � SU(2)R.On the other hand, when we take a di�erent 5D limit for u� 1, the bulk gauge groupbeomes SU(5)�U(1)X and there remain only two �xed points with SU(5)�U(1)X and theSM gauge group enlarged with a U(1) fator, respetively. In this ase, the appearing powerthreshold orretions are universal so there is no power threshold orretion in eq. (98).4.3 Gauge oupling uni�ation in some SO(10) orbifold GUTmodelsNow we are in a position to apply our general formula (98) to partiular ases for theuni�ation of the SM gauge ouplings. To this purpose, we onsider some known SO(10)models of embedding the MSSM into the extra dimensions. In the minimal model(: modelI) [13℄ that ontains Higgs �elds in the bulk for breaking U(1)B�L and the SM gauge group6,there are 4 10's with parities (�1; �2) suh as H1 = (+;+), H2 = (+;�), H3 = (�;+) andH4 = (�;�), and one pair of 16 and 16 with parities � = (�;+), � = (�;+). Then,the resulting massless modes are two doublet Higgs �elds H1 and H2 from H1 and H2,and G3; G4; (D; N ); (D;N) from H3; H4;� and � in order. Moreover, eah family ofquarks and leptons is introdued as a 16 being loalized at the �xed point without SO(10)gauge symmetry. After the B � L breaking via the bulk 16's with hNi = hN i 6= 0,neutrino masses are generated at the �xed points by a usual see-saw mehanism. Moreover,G3; G4; (D; N ); (D;N) an aquire masses of order the B�L breaking sale by the branesuperpotential [13, 14℄ W = �NDG3 + �0N DG4 for hNi = hN i 6= 0. In this ase, sineP10 �101 = 0, P16 �161 = P16 �161 �162 = �2, we get the values ~b = 187 ; b�+ = b�� = 67 ineq. (98). Thus, in the 5D limit, beause b�+ is nonzero in eq. (99), there exists an e�etive6In order to anel the bulk anomalies due to one 45, we need to add in the bulk two 10's. So, it isneessary to have two Higgs doublets of the 10's in the bulk unlike in 5D ase [3℄. Moreover, in order tobreak the U(1)B�L, we need one 16 in the bulk. However, for anellation of loalized and bulk anomalies,one needs one 16 and two more 10's. 19
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Figure 1: The 1� and 2� band of ��s: the model I on the left and the model II on theright for u = R6=R5 � 1. The dashed lines and the ontinuous lines denote 1� and 2�bounds of the experimental data, respetively. Only in the region above the straight lineat M=MB�L = 1, the B � L breaking brane mass terms an be negleted.5D power-like threshold orretion to the QCD oupling so the threshold orretion issensitive to the shape modulus.We onsider another 6D SO(10) GUT model where the realisti avor struture of theSM was disussed(: model II) [14℄. In this ase, on top of the minimal model, there aremore hyper multiplets: 2 10's suh as H5 = (�;+) and H6 = (�;�), and one pair of16 and 16 with � = (+;+) and � = (+;+). Then, there are additional zero modesG5; G6; L; L from H5; H6; � and � in order. They are assumed to get brane massesof order the GUT sale. Thus, the running of gauge ouplings between the GUT saleand the B � L breaking sale is the same as in the minimal model. In this ase, sineP10 �101 = �2, P16 �161 =P16 �161 �162 = 0, we get the values ~b = 187 ; b�+ = 0 and b�� = 127in eq. (98). Thus, in the 5D limit, beause b�+ = 0 in eq. (99), there is no e�etive 5Dpower-like threshold orretion to the QCD oupling.From the data of the eletroweak gauge ouplings at the sale of the Z mass, onean ompare the predited value of the QCD oupling in a theory to a measure one [25℄�exps = 0:1176�0:0020. In the 4D supersymmetri GUTs, the predition without thresholdorretions for the QCD oupling is �SGUT;0s = 0:130� 0:004. Thus, in this ase, there is adisrepany from the experimental data as Æ�s = �SGUT;0s � �exps = 0:0124� 0:0045.First we onsider the ase with isotropi ompati�ation of the extra dimensions,u � 1. In both models, sine ~b = 187 , we an see from eq. (98) that logarithmi ontributionsof zero modes and those of KK massive modes appear with opposite signs so that there isa possibility of having the large volume of extra dimensions onsistent with perturbativityand gauge oupling uni�ation. Ignoring the unknown brane-loalized gauge ouplings andthe B � L breaking e�et, we depit in Fig. 1 the parameter spae of (M;MB�L) withu � 1, being ompatible with the experimental data. If we take M�=M � 63=pC �22 for strong oupling assumption7 at the 6D fundamental sale [8℄, the orretion due7We inluded the group theory fator C = 8 for the SO(10) bulk gauge group in the naive dimensionalanalysis ompared to [8℄. 20
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Figure 2: The 1� and 2� band of ��s: the model I on the left and the model II onthe right for M�=M � 22. The dashed lines and the ontinuous lines denote 1� and 2�bounds of the experimental data, respetively. Only in the region above the straight lineat M=MB�L = 1, the B � L breaking brane mass terms an be negleted.to the brane-loalized gauge ouplings beomes ~� = O(1) so it is negligible to the KKthreshold orretions whih is of order ln(M�=M) � 3. In the model I(II), forM�=M � 22,MB�L=M an be as small as 0:23(0:12) at the 2� level. For MB�L=M � 1, the KKmassive modes of the olor triplets are modi�ed to m2n5;n6 � (n5=2R5)2 + (n6=2R6)2 +M2B�L where  is of order unity independent of the KK level for R5 6= R6 [26℄. Inthis ase, the B � L breaking e�et to the di�erential running is estimated as M2B�L=M2in omparison to ~� in eq. (98), so it is also suppressed ompared to the KK thresholdorretions. Apart from the two models, we an onsider other possibilities of embeddingthe matter representations into extra dimensions, like in the �eld-theory limit of a suessfulstring orbifold ompati�ation [16℄ where there are two families at the �xed points andone family in the bulk. In view of the general formula (98), however, as far as an extrapartile ontributes to the running of the gauge ouplings above the B�L breaking sale,MB�L tends to be lose to M for the suess of the gauge oupling uni�ation.Next we onsider the shape dependene of the loop orretions. As in the previous ase,we make the strong oupling assumption and take the B�L breaking sale to be below theompati�ation sale. Then, we depit in Fig. 2 the parameter spae of (u;MB�L) withM�=M � 22, being ompatible with the experimental data. Therefore, we an see thelear di�erene between the two models, through the dependene of the ompatible B�Lbreaking sale on the shape modulus. As shown in the limit of anisotropi ompati�ationof the extra dimensions in eq. (99), in the model I, the power-like threshold orretion inthe e�etive 5D theory gives a sizable ontribution to the di�erential running of the gaugeouplings, thus the B � L breaking sale is more sensitive to the shape modulus.5 ConlusionWe have onsidered the one-loop e�etive ation for gauge bosons in six-dimensional orb-ifold GUT models with a number of hyper multiplets satisfying arbitrary loal disrete21



twists. From the obtained e�etive ation, we enountered the divergenes whih requirethe introdution of brane-loalized gauge kineti terms and a bulk higher derivative term.Moreover, we derived the general expressions for the running of the gauge ouplings ofzero-mode gauge bosons in the low 4D momentum limit. Sine the KK massive mode or-retions depend on the parity ations, in general they an give a non-universal ontributionto the gauge oupling running.By taking a onrete example suh as the SO(10) orbifold GUTs, we estimated theorresponding KK massive mode orretions to the QCD oupling at the sale of the Zmass. The extra U(1) or the B�L symmetry is broken by the VEV of bulk singlets belowthe uni�ation sale. Then, the extra olor triplets, whih aompany bulk singlets fora full 16, also appear as zero modes so that they an lead to an additional logarithmirunning of the gauge ouplings starting at the B � L breaking sale.In the ase with isotropi ompati�ation of the extra dimensions, there is a partialanellation between two dominant logarithmi orretions; the volume dependent part ofthe KK threshold orretions and the threshold orretions due to the extra olor triplets.In this ase, we argued that the large volume of the extra dimensions an be ompatiblewith the gauge oupling uni�ation and perturbativity. We also onsidered the ase withanisotropi ompati�ation of the extra dimensions for whih a 5D orbifold GUT limitan be disussed. In this ase, the shape dependent part of the KK threshold orretionsorresponds to non-universal power-like orretions in the ompati�ation sales. Thesepower-like orretions are alulable beause they are �nite in the 6D sense. This situationis in ontrast to the genuine 5D orbifold GUTs with non-simple groups where power-likeorretions with the uto� dependene is unalulable. Further, we showed that for a �xedvolome of the extra dimensions ompatible with a strong oupling assumption, the B � Lbreaking sale is sensitive to the hange of the shape modulus, in order to maintain thesuess of the gauge oupling uni�ation.AknowledgmentsThe author would like to thank D. Ghilenea and K. Shmidt-Hoberg for early ollaborationon the related topi. This work is supported in part by the DOE Contrats DOE-ER-40682-143 and DEAC02-6CH03000.
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Appendix A: Propagators on GUT orbifoldsSuppose that the bulk gauge bosons satisfy the boundary onditions,PiA�(z)P�1i � PiA�(�z + zi)P�1i = A�(z + zi); (A.1)PiAm(z)P�1i � �PiAm(�z + zi)P�1i = Am(z + zi) (A.2)where P 2i = 1(i = 0; 1; 2; 3) and [Pi; Pj℄ = 0. Then, we an write the gauge bosons ~AM onorbifolds in terms of gauge �elds AM having 4�R5;6 periodiities along the extra dimensionsas ~AM(z) =Yi �12(1 + Pi)�AM(z)Yj �12(1 + P�1j )�: (A.3)After taking into aount the relation (11), the �eld rede�nition beomes in terms ofomponent �elds in the group spae~Aa�(z) = 18�Æa bAb�(z) + 2Xi=0 (Qi)a bAb�(�z + 2zi) + Xi<j 6=3(QiQj)a bAb�(z + 2zi � 2zj)+(Q0Q1Q2)a bAb�(�z + 2z0 � 2z1 + 2z2)�; (A.4)~Aam(z) = 18�Æa bAbm(z)� 2Xi=0 (Qi)a bAbm(�z + 2zi) + Xi<j 6=3(QiQj)a bAbm(z + 2zi � 2zj)�(Q0Q1Q2)a bAbm(�z + 2z0 � 2z1 + 2z2)� (A.5)where (Qi)a b � tr(T aPiTbPi). Thus, the orbifold-ompatible funtional di�erentiations forgauge �elds are(Æ ~A�(m)12 )a b = 18�Æa bÆ2(z1 � z2)� 2Xi=0 (Qi)a bÆ2(z1 + z2 � 2zi)+ Xi<j 6=3(QiQj)a bÆ2(z1 � z2 � 2zi + 2zj)�(Q0Q1Q2)a bÆ2(z1 + z2 � 2z0 + 2z1 � 2z2)� � Æ4(x1 � x2): (A.6)Consequently, the propagator of gauge �elds in the Feynman gauge is given byh ~AaM(z1) ~AbN (z2)i = gMN(Æ ~AM13 )a G(z3 � z4)(Æ ~AN24 ) b (A.7)23



where G(z3 � z4) is a bulk salar propagator satisfying 4�R5;6 periodiities. Then, weobtain the propagator of gauge �elds in 6D momentum spae ash ~Aa�(z1) ~Ab�(z2)i ! g�� 14(1 +Q0Q1 os(2p5�R5))a (1 +Q0Q2 os(2p6�R6)) d� i2 (Æ~p;~p0 +Q0Æ~p;�~p0)d bp2 � ~p2 � g��( ~Gg;+(p; ~p; ~p0))a b; (A.8)h ~Aam(z1) ~Abn(z2)i ! gmn14(1 +Q0Q1 os(2p5�R5))a (1 +Q0Q2 os(2p6�R6)) d� i2 (Æ~p;~p0 �Q0Æ~p;�~p0)d bp2 � ~p2 � gmn( ~Gg;�(p; ~p; ~p0))a b (A.9)where ~p = (p5; p6) = (n5=(2R5); n6=(2R6)) with n5; n6 integers. We note that the Wilsonline e�ets enoded into Q1 and Q2 are fatorized as two matries in front of the propagatoron orbifolds without Wilson lines.Next let us onsider a omplex salar �eld in the fundamental representation, satisfyingorbifold boundary onditions,Pi ~�(z) � �iPi ~�(�z + zi) = ~�(z + zi) (A.10)with �i = +1 or �1. Similarly, we an write the omplex salar �eld ~� on orbifolds interms of a omplex salar �eld satisfying 4�R5;6 periodiities as~�(z) =Yi �12(1 + Pi)��(z): (A.11)Then, we an write the above equation in terms of omponent �elds as~�a(z) = 18�Æa b�(z) + 2Xi=0 �i(Pi)a b�(�z + 2zi) + Xi<j 6=3 �i�j(PiPj)a b�j(z + 2zi � 2zj)+�0�1�2(P0P1P2)a b�b(�z + 2z0 � 2z1 + 2z2)�: (A.12)Therefore, the orbifold-ompatible funtional di�erentiation for a omplex salar �eld is(Æ ~�12)a b = 18�Æa bÆ2(z1 � z2) + 2Xi=0 �i(Pi)a bÆ2(z1 + z2 � 2zi)+ Xi<j 6=3 �i�j(PiPj)a bÆ2(z1 � z2 � 2zi + 2zj)+�0�1�2(P0P1P2)a bÆ2(z1 + z2 � 2z0 + 2z1 � 2z2)� � Æ4(x1 � x2): (A.13)Consequently, the propagator of a omplex salar is given byh~�a(z1)~�b(z2)i = (Æ ~�13)a G(z3 � z4)(Æ ~�24) b (A.14)24



or in 6D momentum spae,h~�a(z1)~�b(z2)i ! 14(1 + �0�1P0P1 os(2p5�R5))a (1 + �0�2P0P2 os(2p6�R6)) d� i2 (Æ~p;~p0 + �0P0Æ~p;�~p0)d bp2 � ~p2 � ( ~Gh;+(p; ~p; ~p0))a b: (A.15)For salar �elds of other representations, we only have to replae the parity matries withthe ones for orresponding representations.Finally let us onsider a bulk left-handed fermion in the fundamental representation,satisfying the boundary onditions,Pi ~ (z) � i�i5Pi ~ (�z + zi) = ~ (z + zi) (A.16)with �i = +1 or �1. Following the similar proedure, the propagator of a bulk fermion isgiven in 6D momentum spae ash ~ a(z1) ~ b(z2)i ! 14(1 + �0�1P0P1 os(2p5�R5))a (1 + �0�2P0P2 os(2p6�R6)) d� i2� Æd bÆ~p;~p0p=+ 5p5 + p6 � �0(P0)d b Æ~p;�~p0p=+ 5p5 + p6 i5�� ( ~D (p; ~p; ~p0))a b: (A.17)On the other hand, for a bulk right-handed gaugino in the adjoint representation, thepropagator in 6D momentum spae takes the above form with �iPi replaed by Qi andp=+ 5p5 + p6 ! p=+ 5p5 � p6.Appendix B: KK summations in 6D orbifoldsWe onsider the following KK summation (with  � 0, a1;2 > 0, 0 � 1;2 < 1):J0[; 1; 2℄ � �[�=2℄ Xn1;n22Zh�[+ a1(n1 + 1)2 + a2(n2 + 2)2℄i��=2= Xn1;n22ZZ 10 dtt1��=2 e�� t [+a1(n1+1)2+a2(n2+2)2℄: (B.1)If 0�=a1<1, with notations (n1) �pz(n1)=pa2 � i 2; and z(n1) � +a1(n1+1)2,u � pa1=a2, s~n1 � 2�~n1p=a1, E = 0:577216:::, we obtain [6℄ (in the text a1 = 1=R25,a2 = 1=R26) 25



J0[; 1; 2℄ = �pa1a2��2� +ln h4� a1 eE+ (1)+ (�1)i�+ 2� u �16 + 21 � �=a1 + 21� 12��Xn12Z ln ���1�e�2� (n1)���2+p� uXp�1 �[p+1=2℄(p+1)! ��a1 �p+1��[2p+1; 1+1℄+�[2p+1; 1�1℄� (B.2)while if we have =a1 > 1, thenJ0[; 1; 2℄ = �pa1a2��2� +ln h�  eE�1i��Xn12Zln ���1�e�2� (n1)���2+ 4ppa2 X~n1>0 os(2�~n1 1)~n1 K1(s~n1) (B.3)The pole struture is the same for both ases; if =a1 > 1 and exept the �rst squarebraket, no power-like terms in  are present (the last one being suppressed due to K1).Here �[z; a℄ is the Hurwitz Zeta funtion and  (x) = d=dx ln �[x℄ and K1 is the modi�edBessel funtion.Finally, we quote here a limiting ase for the behaviour of the funtion J0J0[� 1; 0; 0℄ = �pa1a2��2� + ln h4�e�Ea1���(ipa1=a2)��4i�� ln h4�2 j�(ipa1=a2)j4 a�12 i� ln J0[� 1; 0; 1=2℄ = �pa1a2��2� + ln(4�e�Ea1)� �u+ 2Xn�1(�1)n ln j1� e�2�unj2�� ln ����#1(1=2jiu)�(iu) ����2J0[� 1; 1=2; 0℄ = �pa1a2��2� + ln(�e�Ea1)� 2Xn�1 ln ����1 + e��un1� e��un ����2�� ln ����#1(�iu=2jiu)�(iu) e��u=4����2J0[� 1; 1=2; 1=2℄ = �pa1a2��2� + ln(�e�Ea1)� 2Xn�1(�1)n ln ����1 + e��un1� e��un ����2�� ln ����#1(1=2� iu=2jiu)�(iu) e��u=4����2: (B.4)26



Appendix C: De�nition of speial funtionsThe Hurwitz Zeta funtion �[z; a℄ is de�ned as�[z; a℄ =Xn�0(n + a)�z (C.1)with Re z > 1 and a 6= 0;�1;�2; � � � .The modi�ed Bessel funtion Kn is de�ned throughZ 10 dx x��1e�bxp�ax�p = 2p �ab� �2pK �p (2pa b); Re(b); Re(a) > 0 (C.2)with K1[x℄ = e�xr �2x �1 + 38x � 15128x2 +O(1=x3)� (C.3)whih is strongly suppressed at large argument.In the text, we used the Dedekind Eta funtion�(�) � e�i�=12Yn�1(1� e2i�� n);�(�1=�) = p�i� �(�); �(� + 1) = ei�=12�(�); (C.4)and the Jaobi Theta funtion #1#1(zj�) � 2q1=8 sin(�z)Yn�1(1� qn)(1� qne2i�z)(1� qne�2i�z); q � e2i��= �iXn2Z(�1)nei��(n+1=2)2e(2n+1)i�z (C.5)whih has the properties #1(zj� + 1) = ei�=4#1(zj�);#1(z + 1j�) = �#1(zj�);#1(z + � j�) = �e�i���2i�z#1(zj�);#1(�z=� j � 1=�) = ei�=4� 1=2ei�z2=�#1(zj�): (C.6)Appendix D: Some group theory for SO(10) GUT27



� Relations between fundamental and other representations:For SU(N) and SO(2N) gauge groups onsidered in the paper, we have [20℄trAdjF 2SU(N) = 2N trNF 2SU(N); (D.1)traijF 2SU(N) = (N � 2) trNF 2SU(N); (D.2)traijkF 2SU(N) = 12(N � 2)(N � 3) trNF 2SU(N); (D.3)trAdjF 2SO(2N) = 2(N � 1) tr2NF 2SO(2N); (D.4)tr2N�1F 2SO(2N) = 2N�4 tr2NF 2SO(2N) (D.5)where the subindex of the trae implies the representation of the group, for in-stane, aij(aijk) is the seond(third) rank totally antisymmetri tensor representationof SU(N). In the text, we take the normalization, trN (T aT b) = 12Æab for SU(N) andtr2N(T aT b) = Æab for SO(2N).� Computation of traes:By standard representation theory, we an do the deomposition of the quadratiCasimir for an adjoint representation of SO(10): under the Pati-Salam,trAdjF 2SO(10) = trAdjF 2SU(4) + 4tr6F 2SU(4) + 12tr2F 2SU(2)L + 12tr2F 2SU(2)R+trAdjF 2SU(2)L + trAdjF 2SU(2)R (D.6)and under the Georgi-Glashow,trAdjF 2SO(10) = trAdjF 2SU(5) + tr10F 2SU(5) + tr10F 2SU(5) + 8F 2U(1)X : (D.7)Using the de�nition trAdj(QiF 2SO(10)) = fadfbef�dQdfi F aSO(10)F bSO(10) and the fat thatQi is equal to +1(�1) for Z2-even(odd) modes of gauge �elds, we gettrAdj(Q1F 2SO(10)) = trAdjF 2SU(4) � 4tr6F 2SU(4) � 12tr2F 2SU(2)L � 12tr2F 2SU(2)R+trAdjF 2SU(2)L + trAdjF 2SU(2)R= �8tr2F 2SU(2)L � 8tr2F 2SU(2)R (D.8)and trAdj(Q2F 2SO(10)) = trAdjF 2SU(5) � tr10F 2SU(5) � tr10F 2SU(5) � 8F 2U(1)X= 4tr5F 2SU(5) � 8F 2U(1)X (D.9)and likewise trAdj(Q3F 2SO(10)) = 4tr5F 2SU(5)0 � 8F 2U(1)X0 : (D.10)Let us onsider a similar deomposition of the index of the other representation ofSO(10). First, the index of a fundamental representation of SO(10) is deomposed28



as tr10F 2SO(10) = tr6F 2SU(4) + 2tr2F 2SU(2)L + 2tr2F 2SU(2)R= tr5F 2SU(5) + 12F 2U(1)X + tr5F 2SU(5) + 12F 2U(1)X : (D.11)Then, with the parity matries in the traes, we gettr10(P1F 2SO(10)) = �tr6F 2SU(4) + 2tr2F 2SU(2)L + 2tr2F 2SU(2)R= �2tr4F 2SU(4) + 2tr2F 2SU(2)L + 2tr2F 2SU(2)R (D.12)and tr10(P2F 2SO(10)) = �tr5F 2SU(5) � 12F 2U(1)X + tr5F 2SU(5) + 12F 2U(1)X = 0 (D.13)and similarly tr10(P3F 2SO(10)) = 0. Next, we also do the deomposition of the indexof a 16 spinor representation of SO(10) astr16F 2SO(10) = 2tr4F 2SU(4) + 2tr4F 2SU(4) + 4tr2F 2SU(2)L + 4tr2F 2SU(2)R= tr10F 2SU(5) + tr5F 2SU(5) + 140(10 + 45 + 25)F 2U(1)X : (D.14)Then, we get the neessary traes for a 16 astr16(P1F 2SO(10)) = 2tr4F 2SU(4) � 2tr4F 2SU(4) + 4tr2F 2SU(2)L � 4tr2F 2SU(2)R= 4tr2F 2SU(2)L � 4tr2F 2SU(2)R (D.15)and tr16(P2F 2SO(10)) = �tr10F 2SU(5) + tr5F 2SU(5) + 140(�10 + 45 + 25)F 2U(1)X= �2tr5F 2SU(5) + 32F 2U(1)X (D.16)and likewise tr16(P3F 2SO(10)) = �2tr5F 2SU(5)0 + 32F 2U(1)X0 : (D.17)� Relations between U(1) generators:There are three maximal subgroups of SO(10), Georgi-Glashow (SU(5) � U(1)X)and Pati-Salam (SU(4)� SU(2)L � SU(2)R) and ipped SU(5) (SU(5)0 � U(1)X0).For a fundamental representation of SO(10), the U(1) generators are given byY = diag(13 ; 13 ; 13 ;�12 ;�12)� �2; X = diag(2; 2; 2; 2; 2)� �2;B � L = diag(23 ; 23 ; 23 ; 0; 0)� �2; T3R = diag(0; 0; 0;�12;�12)� �2:(D.18)29



Thus, we obtain the relation between U(1) generators appearing in the di�erentsubgroups, Y = T3R + 12(B � L); X = �4T3R + 3(B � L): (D.19)Moreover, by omparing the ipped SU(5) to the Georgi-Glashow as N $ eL anduL $ dL in 16 and h1 $ h2 in 10, we get another relationY = 15(�Y 0 +X 0); X = 15(24Y 0 +X 0): (D.20)Using the above relations, we an also �nd the relations between the U(1) gaugebosons. To this, let us onsider the bulk kineti terms for U(1) gauge bosons AY ; AXand a harged �eld �:Lbulk � � 14g21F 2Y � 14g2X F 2X + ���h� � i(r35Y AY + 1p40XAX)i����2 (D.21)where g1 = gX at tree level. By writingr35Y AY + 1p40XAX = r35Y 0AY 0 + 1p40X 0AX0= T3RAR +r38(B � L)AB�L; (D.22)and using eqs. (D.19) and (D.20), we obtain the relations between the U(1) gaugebosons as AY 0 = 15(�AY + 2p6AX); AX0 = 15(2p6AY + AX);AR = r35(AY �r23AX); AB�L =r35(r23AY + AX): (D.23)
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