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[3, 4, 5, 6, 7, 8℄. The starting point of [2℄ is a lever gauge-�xing ondition, whih makes thein�nite system of equations of motion amenable to a reursive analysis. Shnabl's gauge hoiefor the open string �eld 	 is B0	 = 0 ; (1.1)where B0 is the antighost zero mode in the onformal frame z = fS(�) = 2� artan � of thesliver1: B0 � I dz2�i z b(z) = I d�2�i fS(�)f 0S(�) b(�)= I d�2�i (1 + �2) artan � b(�) = b0 + 23 b2 � 215 b4 + : : : : (1.2)The sliver state W1 is a nontrivial projetor of the open string star algebra, i.e., a string �elddi�erent from the identity that squares to itself [9, 10, 11, 12℄. The wedge states W� with � � 0are a family of states whih interpolate between the sliver W1 and the identity W0 � I, andthey obey the abelian relation: W� �W� =W�+� : (1.3)Shnabl's solution is onstruted in terms of a state  �, with � � 0, whih is the wedge stateW�+1 with suitable operator insertions. One de�nes the derivative state 0� � d �d� ; � � 0; (1.4)and then Shnabl's solution an be written as follows:2	 = limN!1h� N + NXn=0  0n i : (1.5)A simple desription of the states  � was presented in [3℄ using the CFT formulation of OSFT[13℄.While the sliver was historially the �rst example of a projetor, it was soon realized thatin�nitely many projetors exist [14℄. Let us restrit attention to the subset of string �eldsknown as surfae states. A surfae state is spei�ed by a loal oordinate map z = f(�) fromthe anonial half-disk D + � f� j =� � 0 ; j�j � 1g to a region in the upper-half plane (UHP)H � fz j =z � 0g. The surfae state jfi is de�ned by its inner produth�; f i = h f Æ �(0) iH (1.6)1 For onveniene, we have resaled the traditional onformal frame of the sliver by a fator of 2=�. This doesnot hange the sliver state beause of the SL(2; R) invariane of the vauum, nor does it a�et the de�nitionof B0.2 We use the onventions of [3℄, and the solution di�ers from that in [2℄ by an overall sign. See the beginningof setion 2 of [3℄ for more details. 2



with any state � in the Fok spae. The ondition that jfi is a projetor is f(i) = 1 [14℄,namely, the loal oordinate urve goes to the boundary of H at the open string midpoint� = i. (Throughout this paper, we will restrit our onsiderations to \single-split" projetors,i.e., surfae states whose oordinate urve goes to in�nity only at the open string midpoint.) Theassoiated open string funtional 	f [X(�)℄ is split, namely, it is the produt of a funtional of theleft half of the string times a funtional of the right half of the string, 	f [X℄ = 	Lf (XL)	Rf (XR).In the half-string formalism of OSFT [15, 16℄, where string �elds are regarded as operatorsating on the spae of half-string funtionals, surfae state projetors are interpreted as rank-one projetors [14℄. From this viewpoint, all surfae state projetors should be equivalent. Thisis the intuition provided by �nite dimensional vetor spaes, where all rank-one projetors arerelated by similarity transformations.These observations raise the natural question of whether Shnabl's solution, based on thesliver projetor, an be generalized to solutions based on a generi surfae state projetor.In this paper we �nd that this is indeed the ase. We also �nd, however, that the solutiontehnially simpli�es for the sublass of speial projetors [5℄, whih inludes the sliver as itsanonial representative. While we give a geometri desription of the solution assoiated witha general projetor, with the tehnology urrently available we are able to evaluate its expliitFok spae expansion only when the projetor is speial.It is useful at this point to reall some fats about speial projetors [5℄. The ruial algebraiproperty of a speial projetor is that the zero mode L0 of the energy-momentum tensor in theframe of the projetor3, L0 � I dz2�i zT (z) = I d�2�i f(�)f 0(�)T (�) ; (1.7)and its BPZ onjugate L?0 obey[L0;L?0℄ = s(L0 + L?0) ; s > 0 : (1.8)The sliver is a speial projetor with s = 1 and the buttery is a speial projetor with s = 2.The sliver and the buttery �t into an in�nite \hypergeometri" olletion of speial projetors| one projetor P (s)1 for eah real s � 1 | whih was briey desribed in [5℄. We believethat the hypergeometri olletion ontains all the single-split speial projetors. For speialprojetors, we shall use the notationsL � L0s ; L? � L?0s : (1.9)3The de�nition of a speial projetor further requires the onformal frame f(�) to obey ertain regularityonditions [5℄ whih guarantee that the operator L+ = 1s (L0+L?0) has a non-anomalous left/right deomposition.3



In terms of L and L? the algebra (1.8) takes the anonial form[L; L?℄ = L + L? : (1.10)For any speial projetor P1 a family of states P� with � � 0 analogous to the wedge statefamily of the sliver is desribed by the following simple expression:P� = e��2 L+I ; L+ � L+ L� : (1.11)The states in the family interpolate between the projetor P1 and the identity P0 � I, andthey obey the relation: P� � P� = P�+� : (1.12)We are now in the position to outline our strategy. Our starting point is the fat that allsingle-split, twist-invariant projetors an be related to one another by a reparameterizationof the open string oordinate. Reparameterizations are generated in�nitesimally by the star-algebra derivations Kn = Ln � (�)nL�n and are familiar gauge symmetries of OSFT [17, 18℄.Given a generi projetor P1, there exists a �nite reparameterization that relates it to thesliver, formally implemented by an operator eH , with H a linear ombination of Kn's:P1 = eHW1 ; H = 1Xn=1 anKn : (1.13)Ating with eH on the solution 	W1 assoiated with the sliver W1, we �nd the solution 	P1assoiated with P1: 	P1 � eH	W1 : (1.14)By onstrution, 	P1 is gauge equivalent to 	W1. The idea of using reparameterizations asa solution-generating tehnique was already noted in [3℄. The solution 	P1 will take the form(1.5), with the replaement of all the elements assoiated with the sliver by the orrespondingelements assoiated with P1. In partiular, we an de�ne an abelian family of states interpo-lating between the identity and a generi projetor P1 simply by taking P� � eHW�. If wewrite W� = e��2 L+S I ; (1.15)where the subsript S in L+S denotes that it is an operator related to the sliver, we haveP� � eHW� = eH e��2 L+S e�H eH I � e��2 L+ I : (1.16)Note that the identity is annihilated by H and we have de�nedL+ � eH L+S e�H : (1.17)4



Similarly we take L � eH LS e�H ; L? � eH L?S e�H : (1.18)The operators L and L? are BPZ onjugates of eah other sine H? = �H, and they obeythe anonial algebra (1.10). If the projetor P1 is speial, the de�nition (1.18) turns out tooinide with (1.9), but for general projetors the operator L is not proportional to L0.It is in pratie prohibitively diÆult to determine the operator H. The onstrution,while motivated by the above onsiderations, must be realized di�erently. The main resultof this paper is to give a geometri desription of the reparameterization proedure and aonrete implementation using the CFT language of OSFT. In partiular we provide a geometridesription for the family of interpolating states P� assoiated with an arbitrary projetor thatmakes the abelian relation (1.12) obvious.The desription simpli�es further for the ase of a speial projetor. It should be emphasizedthat the geometrial onstrution of the family of states has been a long-standing question |there have been several attempts for the buttery. In this paper we �nd out that the answer isquite simple if one uses the onformal frame of the projetor itself.It is remarkable that projetors play a entral role in the onstrution of the analyti tahyonsolution. Projetors have been intensively studied in the ontext of vauum string �eld theory(VSFT) [19, 20℄. In its simplest inarnation, VSFT is the onjeture that the OSFT ationexpanded around the tahyon vauum has a kineti operator Q of the form [20℄:Q = (i)� (�i)2i : (1.19)Taking a matter/ghost fatorized ansatz for lassial solutions, 	 = 	g 
 	m, the VSFTequations of motion redue to projetor equations for the matter part 	m. VSFT orretlydesribes the lassial dynamis of D-branes [11, 12, 21℄, but it is somewhat singular. Forexample, the overall onstant in front of the VSFT ation must be taken to be formally in�nite.It is believed that VSFT arises from OSFT, expanded around the tahyon vauum, by a singular�eld rede�nition. Moreover, the operator (1.19) is expeted to be the leading term of a moreompliated kineti operator that involves the matter energy-momentum tensor as well, asdisussed in more detail in [22℄. One spei� example of suh a �eld rede�nition given in [20℄was the reparameterization that maps wedge states to one another, whih in a singular limitformally maps all wedge states to the sliver. Interestingly, this reparameterization emergesnaturally in the ontext of this paper. Indeed, it turns out that for eah projetor P1 there is areparameterization that leaves the projetor invariant but maps the states in the interpolatingfamily to one another. It takes P� to Pe2��, where � is an arbitrary real number. If we implement5



this reparameterization on the sliver-based solution and take the large � limit, all wedge statesapproah the sliver and the solution takes the form of an operator insertion on the sliver. Alosely related approah in onstruting a solution in a series expansion was proposed sometime ago in [23℄ and investigated further in [24℄. It would be interesting to �nd a systematiway to derive the kineti operator of VSFT starting from a suitably reparameterized version ofthe tahyon vauum solution.We begin in setion 2 with a general introdution to reparameterizations. After reviewingbasi de�nitions and algebrai properties, we explain why any two regular twist-invariant surfaestates an be related by a reparameterization. The geometrial reason is simple. A surfae statean be de�ned by what we all the redued surfae: it is the surfae H for the inner produtin (1.6) minus the loal oordinate path. In this piture the open string is a parameterizedboundary urve reated by removing the path. The two string endpoints and the stringmidpoint de�ne three speial points on the boundary of the redued surfae. Given two surfaestates, the Riemann mapping theorem ensures that there is a onformal map between theredued surfaes that maps the two endpoints and the midpoint of one string into those of theother. This map de�nes a relationship between the parameterizations of the two open strings;this is the indued reparameterization. When the surfae state is a projetor, the reduedsurfae is split in two at the point where the open string midpoint reahes the boundary of thefull surfae. When we map the redued surfaes of two projetors to eah other, eah of thesplit surfaes of one redued surfae is mapped to a split surfae of the other redued surfae.Sine eah split surfae has only two speial points (a string midpoint and a string endpoint),the onformal map has a one-parameter ambiguity.4In setion 3 we use the above insights to give the geometri onstrution of the abelianfamily P� assoiated with a generi projetor. In fat, one we hoose a map R that relates thesliver to the hosen projetor, the surfae states P� are obtained from the wedge states by areparameterization naturally indued by R. This onstrution represents the surfae states P�using the onformal frame of the projetor: the loal oordinate path is that of the projetorbut the surfae only overs part of the UHP. The geometri desription of the surfae states P�simpli�es in this onformal frame | a fat that was missed in the earlier attempts to desribethem. In x3.2 we speialize to speial projetors, for whih we �nd remarkable simpli�ation.The reparameterization map that relates the sliver to the speial projetor in the hypergeometriolletion with the parameter s an be hosen to be simply R(z) = zs, where z is the oordinatein the UHP. For any �xed s, the regions of the UHP needed to represent states P� with di�erent4The maps of the two split surfaes are related by a symmetry onstraint, so there are no two independentparameters. 6



values of � are related to one another by resaling. This is related to the fat that for speialprojetors the operator L de�ned in (1.18) is proportional to L0, whih is the dilation operatorin the onformal frame of the projetor.In setion 4 we begin by disussing the algebrai framework of the tahyon vauum solution.We then present our main result, the CFT onstrution of the solution using reparameteriza-tions. We also present a detailed analysis of various operator insertions in the CFT desriptionand derive useful formulas. In setion 5 we use the operator formalism to derive an expressionfor the solutions assoiated with speial projetors. The solution is written as a sequene ofnormal-ordered operators ating on the vauum and an be readily expanded in level. Ourexpression has two parameters, s 2 [1;1) labeling the speial projetors and � 2 (�1;1)labeling the reparameterizations of the solution that leave the projetor invariant.In setion 6 we give the level expansion of the solutions for speial projetors up to levelfour. We �rst set � = 0 and examine the dependene of the energy on s to level zero, two, andfour. We �nd that as the level is inreased the energy density approahes the expeted valuethat anels the D-brane tension. The solutions onstruted by our method an be written interms of even-moded total Virasoro operators and even-moded antighost operators in additionto the modes of  ghost. This struture imposes additional onstraints, and thus the solutionsbelong to a restited setor of the universal subspae of the CFT. We then examine the mostaurate expression for the solution in the Siegel gauge omputed in [25℄ and �nd evidene thatit does not belong to the restrited universal subspae at level four. We thus onlude that thesolution in the Siegel gauge annot be obtained by our onstrution. In x6.4 we examine thesolution for a �xed value of s and in the limit as � beomes large. The leading term in thesolution takes the form of an insertion of the  ghost in P� multiplied by e2�=s and by a �nite,alulable oeÆient. We o�er some onluding remarks in setion 7.2 ReparameterizationsIn this setion we desribe some general fats about reparameterizations. The �rst three subse-tions are for a review of well-known material. In x2.1 we de�ne the notion of midpoint-preservingreparameterization ' of the open string oordinate, t! t0 = '(t), with t = ei�. Correspondingto ' there is an operator U' ating on the spae of string �elds that obeys a number of algebraiproperties, as explained in x2.2. The transformation 	 ! U'	 is a gauge transformation ofOSFT with a vanishing inhomogeneous term, as we review in x2.3. Finally, in x2.4 we explainthe key idea: any two regular twist-invariant surfae states an be related to one another bya unique reparameterization. For surfae states that orrespond to single-split projetors, an7



interesting and useful ambiguity arises.In the rest of the paper we shall use these fats to �nd solutions of OSFT orresponding to ageneral projetor, starting from Shnabl's solution orresponding to the sliver. By onstrution,all these solutions will be gauge equivalent.2.1 De�nitionsLet us start by realling the de�nition of midpoint-preserving reparameterizations (heneforth,simply reparameterizations) [17℄. A reparameterization of the open string oordinate is a map� ! �0 = �(�) (with � ; �0 2 [0 ; �℄) that obeys�(� � �) = � � �(�) : (2.1)Note that this is a muh stronger ondition on � than just �xing the midpoint � = �=2: itimplies that points at equal parameter distane from the midpoint remain at equal parameterdistane after the map. We will use the oordinate t � exp(i�) de�ned on the unit semiirlein the upper half plane. It follows from (2.1) that a map t ! t0 = '(t) (with jtj = jt0j = 1,<t � 0 ;<t0 � 0) is a reparameterization if'��1t� = � 1'(t) : (2.2)For an in�nitesimal reparameterization we write the general ansatz'(t) = t + � v(t) +O(�2) ; (2.3)where � is an in�nitesimal real parameter and v(t) is a omplex vetor. We dedue from (2.2)that the vetor �eld v(t) must be BPZ odd:v��1t� = 1t2 v(t) : (2.4)Hene v(t) is a linear ombination of the BPZ odd vetor �elds vKn orresponding to the familiarderivations Kn = Ln � (�1)nL�n:v(t) = 1Xn=1 anvKn = 1Xn=1 an �tn+1 � (�1)nt�n+1� : (2.5)By de�nition, reparameterizations preserve the unit norm of jtj. Using (2.3) this ondition givest v(t)� + t�v(t) = 0 ; (2.6)8



whih implies that the oeÆients an in (2.5) satisfyan = (�)na�n : (2.7)We see that an must be real for n even and imaginary for n odd.A �nite reparameterization '(t) an be obtained by exponentiation of a vetor v(t) of theform (2.5): exp(v(t)�t) t = '(t) : (2.8)Indeed, the ondition (2.4) implies that '(t) satis�es (2.2). Moreover, (2.6) implies that '(t)has unit norm. In general '(t) is de�ned only on the unit semiirle with jtj = 1 and annotbe extended to a holomorphi funtion inside the loal oordinate half-disk D + . If v is a �nitelinear ombination of vKn vetors, '(t) an be extended to a �nite annulus in the upper-halfplane H ontaining the unit semiirle.2.2 The operator U'We now onsider the operator U' that implements a �nite reparameterization. The operator isde�ned to at on any operator O(t) in the CFT asU'O(t)U�1' = ' Æ O(t) : (2.9)This is the same relation one has for operators that realize the onformal maps used for surfaestates, the di�erene being that here the ation on O is only de�ned for jtj = 1 and typiallydoes not extend to the origin. We write5U' = e�H ; H = 1Xn=1 anKn ; an = (�1)na�n : (2.10)We an verify that the reality ondition on the oeÆients an guarantees that U' preserves thereality ondition of the string �eld. In OSFT the string �eld 	 obeys the reality ondition:	 = h�1 Æ bpz(	) : (2.11)BPZ onjugation (bpz) and hermitian onjugation (h) at on Virasoro generators as follows:bpz(Ln) = (�1)nL�n ; h(Ln) = L�n : (2.12)5We use the symbol H rather than K sine we reserve the latter for the operator introdued in [5℄: K �eL+ � L+R � L+L . 9



For any operator O we let O? denote its BPZ onjugate. Realling that BPZ onjugation isa linear transformation while hermitian onjugation is an anti-linear transformation, we easilyhek that reparameterizations preserve the reality of the string �eld:h�1 Æ bpz (U'j	i) = h�1 �hbpz(	)jePn anKn�= e�Pn(�1)na�nKnjh�1 Æ bpz(	)i= ePn anKnj	i = U'j	i : (2.13)The operator U' obeys the following formal properties:U?' = U�1' ; (2.14)[QB; U'℄ = 0 ; (2.15)U' I = U?' I = I ; (2.16)U'	1 � U'	2 = U'(	1 �	2) ; 8 	1 ;	2 : (2.17)These identities are the exponentiated version of the following familiar properties of H =P1n=1 anKn: H? = �H ; (2.18)[QB; H℄ = 0 ; (2.19)H I = 0 ; (2.20)H	1 �	2 +	1 �H	2 = H(	1 �	2) ; 8 	1 ;	2 : (2.21)The properties (2.14){(2.17) an also be understood from the viewpoint of OSFT withoutreferene to the operator H. For example, sine points at equal parameter distane from themidpoint remain at equal parameter distane after reparameterizations, (2.17) follows at onefrom the piture of the star produt as gluing of half open string funtionals. Similarly, (2.16)follows, at least formally, from the understanding of the identity string �eld as the funtionalthat identi�es the left and the the right halves of the open string. In [5℄ it was found thatthe property (2.20) may fail to hold for ertain singular BPZ odd operators H. The �nitereparameterizations that we expliitly onsider in this paper appear to be perfetly smooth,and we believe that they obey all the formal properties (2.14){(2.17). Following the disussionof [5℄, we note that a regular H should admit a left/right deomposition H = HL +HR that isnon-anomalous:[HL ; HR℄ = 0 ; HL(A �B) = (HLA) �B ; HR(A �B) = A � (HRB) (2.22)for general string �elds A and B. 10



2.3 Reparameterizations as gauge symmetriesReparameterizations are well-known gauge symmetries of OSFT. (See, for example, [18℄ for anearly general disussion.) In�nitesimal gauge transformations take the familiar formÆ�	 = QB� +	 � �� � �	 ; (2.23)where, in the lassial theory, 	 arries ghost number one and the gauge parameter � arriesghost number zero. Choose now � = HRI = �HLI. The inhomogeneous term in (2.23)vanishes sine [QB; HR℄ = 0 and QBI = 0. Using (2.22) we haveÆHRI	 = 	 � (HRI) + (HLI) �	 = HR(	 � I) +HL(I �	) = (HR +HL)	 = H	 : (2.24)This shows that the in�nitesimal reparameterization generated by H an be viewed as anin�nitesimal gauge transformation with gauge parameter HRI. Exponentiating this relation,we laim that U'	 � eH	 = U�1' �	 � U' ; (2.25)where the string �elds U' and U�1' are de�ned byU' � exp�(HRI) � I +HRI + 12HRI �HRI + : : : 1n! (HRI)n + : : : ; (2.26)U�1' � exp�(�HRI) � I �HRI + 12HRI �HRI + : : : (�1)nn! (HRI)n + : : : ; (2.27)and they obey U�1' � U' = U' � U�1' = I : (2.28)It is straighforward to hek that for arbitrary string �eld A,exp�(HLI) � A = eHLA ; and A � exp�(HRI) = eHRA : (2.29)These identities, together with [HL; HR℄ = 0, an be used to show that the equality in (2.25)holds. The right-hand side of (2.25) has the struture of a �nite gauge-transformation in OSFT:	 ! U�1' �	 � U' + U�1' �QBU' ; (2.30)where the inhomogeneous term U�1' �QBU' is identially zero.Sine reparameterizations are gauge symmetries, it is lear that they map a lassial solutionof OSFT to other gauge-equivalent lassial solutions. If 	 is a solution then U'	 is also asolution, as is veri�ed using the formal properties (2.15) and (2.17):QB	+	 �	 = 0 �! U'(QB	+	 �	) = 0 �! QBU'	+ U'	 � U'	 = 0 : (2.31)11



It is also lear that 	 and U' have the same vauum energy. Indeed, using (2.14) and (2.15),hU'	; QBU'	i = hbpz(U'	)jQBU'j	i = hbpz(	)jU�1' U'QBj	i = h	; QB	i : (2.32)Furthermore, from (2.14) and (2.17),hU'	; U'	 � U'	i � hbpz(U'	)jU'	 � U'	i = hbpz(	)jU�1' U'j	 �	i = h	;	 �	i : (2.33)The two equations (2.32) and (2.33) guarantee that if the equations of motion for 	 are obeyedwhen ontrated with 	 itself, the same is true for U'	.2.4 Reparameterizations of surfae statesWe now explain how reparameterizations an be used to relate surfae states. Consider a twist-invariant surfae states jfi, spei�ed as usual by a loal oordinate map z = f(�) from theanonial half-disk D + to a region in the upper half plane H . (Both D + and H are de�nedabove (1.6).) We denote by V(f) the redued surfae orresponding to the surfae state jfi. Theredued surfae is de�ned as the omplement of the loal oordinate half-disk in H :V(f) � H =f(D +) : (2.34)The redued surfae V(f) has two types of boundary. The �rst type is the boundary where openstring boundary onditions apply; it is the part of the boundary of H whih belongs to V(f).The seond type is provided by the oordinate urve Cf whih represents the open string:Cf � ff(t) 2 H ; jtj = 1 ; =(t) � 0g : (2.35)Let us assume for the time being that the loal oordinate urve does not go to in�nity anywhere.Then V(f) has the topology of a disk. The twist invariane f(��) = �f(�), together with thestandard onjugation symmetry (f(�))� = f(��), implies that f(�) = �(f(���))� so V(f) isinvariant under a reetion about the imaginary z axis. We now laim that given any two suhsurfae states jfi and jgi, there exists a reparameterization ' (depending of ourse on f andg) that relates them: jgi = U'jfi : (2.36)This is shown as follows. By the Riemann mapping theorem, there exists a holomorphi mapz0 = bR(z) relating the redued surfaes V(f) and V(g):V(g) = bR(V(f)) : (2.37)12



We onstrut the map using the symmetry of the problem: �rst we uniquely map the regionto the right of the imaginary axis of V(f) to that of V(g) by requiring that f(1), f(i), andin�nity are mapped to g(1), g(i), and in�nity, respetively. We then extend the map to theleft of the imaginary line using Shwarz's reetion priniple, whih applied here gives bR(z) =�( bR(�z�))�. The map bR so onstruted takes the loal oordinate urve Cf to the loaloordinate urve Cg (de�ned by (2.35) with f replaed by g):Cg = bR(Cf) : (2.38)A reparameterization t0 = '(t) of the two oordinate urves is de�ned impliitly by the relationbR(f(t)) � g('(t)) : (2.39)It follows from the above onstrution that ' is a reparameterization. Indeed one readily veri�esthat bR�f��1t�� = bR(f(�t�)) = bR(�(f(t))�) = �( bR(f(t)))�= �(g('(t)))� = g(�('(t))�) = g�� 1'(t)� ; (2.40)whih establishes that (2.2) holds.We now give a formal argument that explains why (2.36) holds. The surfae state hf j isde�ned by its overlap with a generi state j	i. Without loss of generality, we an restrit tostates j	i = jXbi whih are eigenstates of the position operator6 X̂(t),X̂(t)jXbi = Xb(t)jXbi : (2.41)The overlap hf jXbi is omputed by the path-integral over V(f), where we impose open stringboundary onditions on the portion of the boundary with =z = 0 and the boundary onditionsX(f(t)) = Xb(t) on the oordinate urve Cf . Shematially,hf jXbi = Zz2V(f) [dX(z)℄ e�SBCFT [X℄ with X(f(t)) � Xb(t) on Cf : (2.42)Applying the reparameterization z ! z0 = bR(z), we see that hf jXbi is equivalently omputedby the path-integral over V(g), provided we keep trak of how the boundary onditions aremapped,hf jXbi = Zz02V(g) [dX(z0)℄ e�SBCFT [X℄ with X(g(t0)) � Xb('�1(t0)) on Cg : (2.43)6For notational simpliity, we are foussing on the matter part of the CFT.13



The path-integral in (2.43) an now be interpreted as omputing the overlap of the surfae statehgj with the position eigenstate jXb Æ '�1i. Thushf jXbi = hgjXb Æ '�1i : (2.44)To proeed, we note that the reparameterization U' that givesU'X̂(t)U�1' = X̂('(t)) ; (2.45)will also give U'jXbi = jXb Æ '�1i : (2.46)Indeed̂X(t)U'jXbi = U'U�1' X̂(t)U'jXbi = U'X̂('�1(t)) jXbi = Xb('�1(t))U'jXbi ; (2.47)on�rming that U'jXbi is the X̂(t) eigenstate of eigenvalue Xb Æ '�1(t), as stated in (2.46).Bak in (2.44), we see that hf jXbi = hgjU'jXbi 8 jXbi ; (2.48)whih implies hgj = hf jU�1' = hf jU?' : (2.49)This is the BPZ onjugate of the laimed relation (2.36).So far we have assumed that the oordinate urves Cf and Cg do not reah in�nity. It is vitalfor us to onsider projetors, for whih the oordinate urve does reah in�nity at the open stringmidpoint: f(i) =1. If we assume that the midpoint is the only point for whih f(t) is in�nitethen the redued surfae V(f) splits into two disks V(f)� and V(f)+, with <z < 0 and <z > 0,respetively, joined at the point at in�nity. The laim (2.36) still holds in this ase: any twosuh twist-invariant projetors jfi and jgi an be related by a reparameterization '. We de�nethe map bR for V(f)+ and, as before, we extend it to V(f)�. Again, the map bR : V(f)+ ! V(g)+,is guaranteed to exist by the Riemann mapping theorem, but this time it is not unique. Whilebefore f(i) and 1 provided two di�erent points whose maps ould be onstrained, now theyare the same one. We partially �x the SL(2; R) symmetry by requiring that f(1) and f(i) =1are mapped to g(1) and g(i) = 1, respetively. There is one degree of freedom left un�xed,so there exists a one parameter family of analyti maps from V(f)+ to V(g)+. This redundanywill play an important role in the following.Finally, we note that we an never hope to relate regular surfae states to projetors usingreparameterizations, sine the topologies of the redued surfaes V(f) are di�erent in the twolasses. 14



3 Abelian families for general projetorsThe basi building blok of Shnabl's solution is the state  �, whih is onstruted from thewedge stateW�+1 by adding suitable operator insertions. In this setion we generalize the wedgestates W�, assoiated with the sliver W1, to states P� assoiated with a generi twist-invariantprojetor P1. In the next setion we shall deal with the operator insertions and onstrut theanalog of the state  � for a generi projetor.As we have explained in x2.4, given a projetor P1, there exists a reparameterization ' thatrelates it to the sliver: W1 = U'P1 : (3.1)(There is in fat a one-parameter family of suh reparameterizations. For now we simply hooseone of them.) We de�ne P� by P� � U�1' W� = U'�1W� : (3.2)It follows from (2.16) that P0 = I and from (2.17) that the states P� obey the same abelianrelation as W�:P� � P� = U'�1W� � U'�1W� = U'�1(W� �W�) = U'�1(W�+�) = P�+� : (3.3)In x3.1 we give a geometri onstrution of P� by determining the shape of the assoiatedone-puntured disk P� in the presentation where the loal oordinate path is that of theprojetor P1. In x3.2 we fous on speial projetors, for whih the onstrution simpli�esonsiderably and the reparameterization to the sliver an be given in losed form. For a speialprojetor the orresponding abelian family obeys a remarkable geometri property: the surfaesP� with di�erent values of � are related to one another by overall onformal saling.3.1 Abelian families by reparameterizationsGiven a single-split, twist-invariant projetor jfi, we wish to �nd a reparameterization thatrelates it to the sliver. In the notations of x2.4, we write the sliver as jW1i � jgi withz0 = g(�) = 2� artan(�) and look for a one-parameter family of onformal maps bR� : V(f) ! V(g).From now on we shall drop the supersript in V(f) ! V, and we rename the sliver's oordinatez0 ! zS and the sliver's region V(g) ! U .To desribe the onformal maps bR�(z) we need to de�ne a set of urves and regions inthe onformal plane. We denote by C+0 and C�0 the right and left parts, respetively, of theoordinate urve C0 of the projetor jfi. It is onvenient to extend C+0 and C�0 by omplex15



Figure 1: Left: Coordinate urves C�0 of the projetor and (shaded) regions V� to the left andright of the oordinate disk. Right: Coordinate urves V �0 for the sliver and (shaded) regionsU� to the left and right of the oordinate disk. The map bR relates the redued surfaes ofthe two projetors. It takes V� to U� and de�nes the reparameterization that relates the twoprojetors.onjugation to urves on the full plane, making the extended urves invariant under omplexonjugation. For twist invariane of the projetors, the urve C�0 is determined by C+0 : z 2 C�0if �z 2 C+0 . The urve C�0 is the mirror image of C+0 aross the imaginary axis. (See Figure 1.)Let V+ denote the region of the z-plane to the right of C+0 and let V� denote the regionof the z-plane to the left of C�0 . Sine the oordinate urves reah the point at in�nity, bothV+ and V� are onformally equivalent to the UHP, with the role of the real axis in the UHPplayed by the urves C�0 . The union of V+ and V� is V, the surfae of the projetor minus itsoordinate disk. Let us de�ne analogous regions U� for the sliver as follows:U+ = nzS��� <(zS) � 12 o ; U� = nzS��� <(zS) � �12 o : (3.4)It is also useful to de�ne vertial lines V �� in the sliver frame:V �� = n zS ��� <(zS) = �12(1 + �)o : (3.5)The boundaries of U� are V �. Both U+ and U� are onformally equivalent to the UHP, withthe role of the real axis in the UHP played by the lines V +0 and V �0 . (See Figure 1.)We are interested in the mapR : V+ ! U+ ; zS = R(z) : (3.6)16



The map must exist sine both regions are onformal to the UHP. Of ourse, the map will takethe boundary C+0 to the boundary V +0 . We impose two additional onditions:1. The intersetion of C+0 with the real axis is mapped to zS = 1=2.2. The point at in�nity on C+0 is mapped to the point at in�nity on V +0 .The map R ommutes with the operation of omplex onjugation: R(z�) = (R(z))�. Thus theportion of the real axis ontained in V+ is mapped to the portion of the real axis ontainedin U+. We an then de�ne the map bR that maps the whole V to the whole U as follows:bR(z) = 8<: R(z) if z 2 V+0 ;�R(�z) if z 2 V�0 : (3.7)It is easy to hek that bR is an odd funtion:bR(�z) = � bR(z) : (3.8)The map bR desribes a reparameterization between the projetor and the sliver. Indeed, lettingf(�) denote the oordinate funtion of the projetor and fS(�S) denote the oordinate funtionof the sliver, we have the relation �S = f�1Æ bRÆf(�). As be�ts a reparameterization, it satis�esthe ondition in (2.2).As we have already remarked, the reparameterization bR(z) is not unique: we only spei�edtwo out of the three onditions needed to determine a map H ! H uniquely. The remainingambiguity is that of post-omposition with the self maps of U+ that leave the points zS = 1=2and zS =1 invariant. Given a funtion R0(z) that realizes the map in (3.6) with the onditionslisted above, we an generate a one-parameter family R�(z) of maps that satisfy the sameonditions as follows: R�(z) � e�2� �R0(z)� 12� + 12 ; (3.9)with �1 < � < 1 an arbitrary real onstant. It is lear that the map is a saling aboutz = 1=2 with sale fator e�2�. With R� replaing R in (3.7) we obtain a family bR� ofreparameterizations. We will later use this ambiguity to produe, for any �xed projetor, afamily of solutions parameterized by �.Let us ontinue our analysis, assuming that a hoie of bR has been made for the projetorunder onsideration. Sine the funtion bR(z) is invertible we an de�ne the urves C�� as theimage under the inverse funtion bR�1 of the vertial lines V �� :C�� � bR�1(V �� ) : (3.10)17



Figure 2: Left: The surfae P� with its oordinate disk shaded. Right: The wedge surfae W�with its oordinate disk shaded.It follows from bR(C�� ) = V �� that<( bR(z)) = 12(1 + �) ; z 2 C+� : (3.11)The various lines V �� and C�� are shown in Fig 1.We now proeed to the key step in the onstrution: we introdue a family P� of statesassoiated with the projetor that is related by a reparameterization to the wedge states.Consider �rst the surfae W� for the wedge state W� given byWedge state surfae W� : �12(1 + �) � <(zS) � 12(1 + �) : (3.12)This surfae is shown on the right side of Figure 2. We writeW� = (V �� ; V +� ) ; (3.13)where (C;C 0) denotes the region between the urves C and C 0. The oordinate disk for W�is (V �0 ; V +0 ). Using z�S for oordinates on V �� , the identi�ation for the surfae is desribed asfollows: z+S � z�S = 1 + � : (3.14)Now de�ne the surfae P� � (C�� ; C+� ) = � bR�1(V �� ) ; bR�1(V +� ) �; (3.15)18



with the identi�ation inherited from that of the vertial lines in (3.14). The surfae P� isshown on the left side of Figure 2. The oordinate disk in P� is the region (C�0 ; C+0 ), or P0without the identi�ation. It follows that the omplement of the oordinate disk in W� ismapped by bR�1 to the omplement of the oordinate disk in P�. We have thus related thestates P� and W� by a reparameterization. Using z� for oordinates on C�� , the identi�ation(3.14) beomes bR(z+)� bR(z�) = 1 + � : (3.16)Using (3.7) this gives R(z+) +R(�z�) = 1 + � : (3.17)A few omments are in order. Sine P0 is the oordinate disk of the projetor with its boundariesidenti�ed, this is simply another surfae for the identity state. Moreover, the limit of P� as�!1 is expeted to be the surfae for the projetor itself. In fat, the urves to be identi�edare going to in�nity, and the identi�ation beomes immaterial beause in�nity is a single pointin the UHP. We thus obtain the UHP with the oordinate path of the projetor | this is thesurfae for the projetor.In order to desribe star produts of wedge states it is onvenient to use an alternativepresentation of the region (3.12). We use the transition funtion (3.14) to move the region(V �� ; V �0 ) to the right of V +� . Sine the image of z�S = �1=2 is z+S = (1 + 2�)=2, we haveW� = (V �0 ; V +2�) ; (3.18)with the identi�ation in (3.14) still operational. (See Figure 3.) Similarly, the surfae P� analso be represented as P� = (C�0 ; C+2�) ; (3.19)with the identi�ation in (3.17) still operational. (See Figure 3.)The gluing for the star produt of wedge states is performed simply by translation with areal parameter in the sliver frame. Using the representation (3.18), the two vertial lines to beglued are always in U+. This indues the identi�ation between two C+ urves in V+ for thestar produt of the states P�. If the urve C+� desribed with a oordinate z< is to be glued toC+�+ with a oordinate z>, then z< and z> are related byR(z>)�R(z<) = 2 : (3.20)The right-hand side is the real translation parameter that relates the urves R(C+� ) andR(C+�+). 19



Figure 3: Left: The surfae P� presented as the region between C�0 and C+2�. Right: The wedgesurfae W� presented as the region between V �0 and V +2�.

Figure 4: Left: P� presented as the region between C�0 and C+2�. Middle: P� presented as theregion between C�0 and C+2�. Right: The surfae P�+� obtained by gluing the omplement ofthe oordinate disk in P� to P�.
20



We now demonstrate the abelian relation P� � P� = P�+� geometrially. We present P� asthe region (C�0 ; C+2�) and P� as the region (C�0 ; C+2�), as shown in Figure 4. The surfae forP� �P� is obtained by mapping the region (C+0 ; C+2�) in P� to the immediate right of C+2� 2 P�and by gluing together C+2� 2 P� and C+0 2 P�. Using oordinates z 2 P� and z0 2 P�, thegluing identi�ation that follows from (3.20) isR(z)�R(z0) = � : (3.21)When z0 2 C+2�, we have<(R(z)) = <(R(z0)) + � = 12(1 + 2�) + � = 12(1 + 2(� + �)) ; (3.22)where we made use of (3.11). It thus follows that, after gluing, the image of C+2� in the z-planeis the urve C+2�+2�. The omposite surfae is the region (C�0 ; C+2�+2�) shown on the right side ofFigure 4. To fully on�rm that this is simply P�+� we must examine the identi�ation betweenC�0 and C+2(�+�). Let z0 2 C�0 and z1 2 C+2� denote two points identi�ed in P� (see Figure 4):R(z1) +R(�z0) = 1 + � : (3.23)Let z2 2 C+0 2 P� denote the point identi�ed with z1 by the following relation:R(z1)� R(z2) = � : (3.24)Let z3 2 C+2� 2 P� be the point assoiated with z2 on aount of having the same imaginaryvalue after mapping by R: R(z3)� R(z2) = � : (3.25)Finally, let z4 2 C+2(�+�) in the z-plane denote the point glued to z3:R(z4)� R(z3) = � : (3.26)The relation between z4 and z0 is the identi�ation derived from the gluing proedure. To �ndthis relation we note that the last three equations imply that R(z1) = R(z4)��. Together with(3.23) we obtain R(z4) + R(�z0) = 1 + � + �, whih is the expeted gluing relation on P�+�.This ompletes the veri�ation that P� � P� = P�+�.3.2 Abelian families for speial projetorsFor single-split speial projetors, the maps R(z) that relate them to the sliver are expliitlygiven by R(z) = zs ; (3.27)21



Figure 5: The surfae P� for an arbitrary speial projetor with parameter s. The urves C��and C+� are identi�ed via the relation (z+)s + (�z�)s = 1 + �. The loal oordinate path isthe region between C�0 and C+0 .where s is the parameter appearing in the algebra [L0;L?0℄ = s(L0+L?0) of the speial projetor.We will explain (3.27) in x5.1. The full map from the omplement of the oordinate disk in theprojetor to the omplement of the oordinate disk of the sliver given by (3.7) isbR(z) = 8<: zs if z 2 V+ ;�(�z)s if z 2 V� : (3.28)It follows from (3.27) that the oordinate urve C+0 is the s-th root of the sliver line V +0 .Similarly C+� is the s-th root of V +� . The surfae P� assoiated with a speial projetor withparameter s is shown in Figure 5.Another key feature of speial projetors is that we an write the map from P� to H interms of the map z = f(�) that de�nes the projetor. Reall that f(�) maps the upper-halfdisk of � to the region (C�0 ; C+0 ) | this is P0 without the identi�ation The map f(�) is knownexpliitly for speial projetors, as we shall review in x5.1.The �rst step in onstruting the map from P� to H is relating the urves C+� to the urveC+0 . From the relation (3.11) we have<(zs) = 12(1 + �) for z 2 C+� and <(zs) = 12 for z 2 C+0 : (3.29)It follows that C+� is obtained from C+0 by a onstant saling! Indeed,z0 2 C+� ; z 2 C+0 ! z0 = (1 + �)1=s z : (3.30)22



Sine it appears frequently later, we de�ne the saling funtion I�;s as follows:I�;s(z) � (1 + �)1=sz : (3.31)Beause of the reetion symmetry about the imaginary axis, C�� is obtained from C�0 by thesame onstant saling. The identi�ation for P� is also properly transformed by the saling.Indeed, using (3.17) we have(z+0)s + (�z�0)s = 1 + � for P� and (z+)s + (�z�)s = 1 for P0 ; (3.32)and the saling z�0 = (1 + �)1=s z� relates the identi�ations. We thus have a full mapping ofthe surfaes: P� = I�;s(P0 ) for speial projetors : (3.33)For a general projetor, this map is diÆult to obtain and does not follow diretly from theknowledge of R(z) and f(�).We now laim that the map from P� to H is given by the following funtion h�:h� = fI Æ f�1 Æ I�1�;s : (3.34)The funtion I�1�;s sales P� down to P0, with the identi�ation applied to the boundary of P0.The funtion f�1 then maps P0 to the upper-half disk with the inherited identi�ation. Finally,the funtion fI is de�ned by fI(�) = �1� �2 : (3.35)This is the funtion that de�nes the identity state: it maps the upper-half disk of �, with theleft and right parts of the semiirle boundary identi�ed via � � �1=�, to H . It is then learthat h� maps P� to H .The surfae state P� orresponding to the surfae P� is de�ned byh�; P� i � h f Æ �(0) iP� = h f� Æ �(0) iH (3.36)for any state � in the Fok spae. The orrelation funtion on P� in the projetor frame hasbeen mapped to that on the UHP on the right-hand side, where f� is given byf� = h� Æ f = fI Æ f�1 Æ I�1�;s Æ f : (3.37)This is the expression obtained in [5℄. (See (3.35) of [5℄.) In that work, however, the presentationof P� using the onformal frame of the projetor was not given, and a geometri proof of the23



relation P� � P� = P�+� was not provided. The above results will be useful later in ouralulations on the tahyon vauum solutions. For a general projetor, the alulation of f� isompliated beause the map from P� to P0 is nontrivial.We onlude this setion with an example. Aside from the sliver, the simplest and mostfamiliar projetor is the buttery state. The buttery is a speial projetor with s = 2. Reallthat the onformal frame of the buttery is de�ned byz = f(�) = �p1 + �2 : (3.38)Let us see that the buttery is related to the sliver through the reparameterization indued byR(z) = z2 : (3.39)The full map (3.7) between the omplements of the oordinate disks is then given byzS = bR(z) = 8<: z2 if z 2 V+ ;�z2 if z 2 V� : (3.40)Sine the buttery is a speial projetor with s = 2, the square of the oordinate urvemust be a straight line or a set of straight lines [5℄. Points on the oordinate urve are f(�) for� = ei�, so we have z2 = (f(ei�))2 = e2i�1 + e2i� = ei�2 os � = 12 + i2 tan � : (3.41)The points here span a vertial line with real part equal to 1=2. For � 2 [��2 ; �2 ℄, we obtain thefull vertial line so we indeed �nd that bR maps C+0 ! V +0 . For � 2 [�2 ; 3�2 ℄, (3.41) shows thatz2 also spans the full vertial line with its real part equal to 1=2. With the minus sign in theseond ase of (3.40), we �nd that bR maps C�0 ! V �0 .If we write z = x + i y, with x and y real, it follows from the real part of (3.41) that thebuttery oordinate urve is part of the hyperbola given by< (z2) = x2 � y2 = 12 : (3.42)In fat, the full oordinate urve is the part of the hyperbola that lies on H .Consider now the surfae P0, namely, the region in H in between C�0 and C+0 . Let z+ 2 C+0and z� 2 C�0 . How do we write the identi�ation of C�0 and C+0 as an analyti relation betweenz� and z+? From (3.17) we have z2+ + z2� = 1 : (3.43)24



Figure 6: (a) The surfae P� in the buttery family. The urves C�� and C+� are identi�ed. Theoordinate path is that of the buttery itself. (b) The same surfae, with the omplement ofthe oordinate path plaed ompletely to the right of the path. The urves C�0 and C+2� areidenti�ed.This orretly identi�es z� = �1=p2 with z+ = 1=p2. We an on�rm (3.43) by realling thatthe identi�ation is indued by that of � and �1=�. Therefore the point z� = f(��) is identi�edwith z+ = f(�+) when �+ = �1=��. This givesz2� = �2�1 + �2� = 11 + �2+ = 1� z2+ (3.44)in agreement with (3.43).The surfae P� assoiated with the buttery projetor is obtained by a dilation z ! (1 +�)1=2z of P0, as we have seen in (3.33). Under this dilation the bounding urves C+0 and C�0 in(3.42) beome the urves C+� and C�� whose points satisfyz 2 C�� ! <(z2) = 12(1 + �) : (3.45)Their identi�ation is obtained from (3.43) by the dilation:z2+ + z2� = 1 + � : (3.46)The surfae P� is the region between C�� and C+� . The oordinate disk an be viewed as P0,without identi�ations, inside P�. The surfae P� is shown in Figure 6(a).We an use the identi�ation (3.46) to move the region (C�� ; C�0 ) to the right of C+� . Sinepoints z� 2 C�0 satisfy <(z2�) = 1=2, (3.46) shows that under the identi�ation they beome<(z2+) = 12(1 + 2�) ! z+ 2 C+2� ; (3.47)where we have used (3.45). The surfae P� an therefore be desribed as the region between C�0and C+2�, with these two urves identi�ed via (3.46). This presentation is shown in Figure 6(b).25



4 Solutions from reparameterizationsIn this setion we onstrut the tahyon vauum solution assoiated with a general twist-invariant projetor. We begin x4.1 with a review of the algebrai struture of Shnabl's solution.We then give a formal onstrution of the solution assoiated with a general projetor usingreparameterizations. In x4.2 we present the CFT desription of the states  � and  0� for ageneral projetor. In the last subsetion we analyze the various operator insertions in moredetail and geometrially on�rm that they obey the expeted algebrai properties.4.1 Review of the algebrai onstrutionShnabl's solution 	 onsists of two piees and is de�ned by a limit:	 = limN!1h� N + NXn=0  0n i : (4.1)The \phantom piee"  N does not ontribute to inner produts with states in the Fok spaein the limit. Namely, limN!1h�;  N i = 0 (4.2)for any state � in the Fok spae. On the other hand, the piee involving the sum of  0n is thelimit �! 1 of a state 	�, 	� � 1Xn=0 �n+1  0n ; (4.3)whih formally satis�es the equation of motion for all �,QB	� +	� �	� = 0 : (4.4)The state 	� an be formally written as a pure-gauge on�guration [3℄ and is onsidered tobe gauge-equivalent to 	 = 0 for j�j < 1. The equation (4.4) for any � is equivalent to thefollowing relations for  0n with integer n:QB 00 = 0 ; (4.5)QB 0n = � n�1Xm=0 0m �  0n�m�1 ; n > 0 : (4.6)There is a simple algebrai onstrution of the states  0n, whih we now review. It helps touse the abstrat notation of [5℄ even though for the time being all the operators are meant tobe those assoiated with the sliver. The left and right parts of the operator L+ = L + L? are26



denoted by L+L and L+R, respetively, and L+ = L+L + L+R. The operator K � eL+ is de�ned byK = eL+ = L+R � L+L . For the sliver, its expliit form derived in [2℄ isK = eL+ = �2 K1 = �2 (L1 + L�1 ) : (4.7)The antighost operators B, B?, B+ = B+B?, eB+ = B+R�B+L are similarly de�ned by replaingT (z)! b(z) or Ln ! bn. Thus for the sliver,eB+ = �2 ( b1 + b�1 ) : (4.8)In this language, we an write 0 = CjP1i ; (4.9) n = � CjP1i � jPn�1i �B+LCjP1i ; n > 0 ; (4.10)as well as  00 = �QBB+LCjP1i (4.11) 0n = CjP1i � jPn�1i �B+LL+LCjP1i ; n > 0 ; (4.12)where the operator C is C � 2� 1 : (4.13)Again, at this stage all objets are de�ned in the sliver frame. In partiular, jP�i is the wedgestate jW�i and jP1i is just the SL(2; R)-invariant vauum j0i.It was algebraially shown in [3℄ that the string �elds  0n de�ned by (4.11) and (4.12) satisfy(4.5) and (4.6). In the proof, one uses the abelian algebra P� �P� = P�+�, standard propertiesof the BRST operator (QB is a nilpotent derivation of the star algebra and annihilates thevauum state), as well as the following identities:eB+jP1i = (B+R �B+L ) jP1i = 0 ; (4.14)eB+CjP1i = (B+R �B+L )CjP1i = jP1i ; (4.15)(B+R�1) � �2 = (�1)�1�1 � (B+L�2) : (4.16)The �rst two equations (4.14) and (4.15) are immediately heked using jP1i = j0i and theexpansions (4.8) and (4.13). The identity (4.14) an also be understood as a speial ase of thefamiliar onservation laws obeyed by wedge states,eL+jP�i = (L+R � L+L)jP�i = 0 ;eB+jP�i = (B+R � B+L )jP�i = 0 : (4.17)27



The last identity (4.16) is obtained by observing that for any derivation D = DL+DR one has(DR�1) � �2 = � (�1)�1�D�1 � (DL�2) : (4.18)For D = eB+ we �nd (4.16), while for D = K we obtain(L+R�1) � �2 = �1 � (L+L�2) : (4.19)Let us on�rm that  0n as de�ned in (4.12) is indeed the derivative with respet to n of thestate  n in (4.10). Sine jP�i = e��2 L+jIi, we havedd� jP�i = �12 L+jP�i = � L+R jP�i ; (4.20)where we have used (4.17). With the help of (4.19) we �nd thatddn n = CjP1i � L+RjPn�1i �B+LCjP1i = CjP1i � jPn�1i � L+LB+LCjP1i ; (4.21)as laimed. Note that L+L and B+L ommute beause L+L = fQB; B+L g and (B+L )2 = 0.One an also show that the solution satis�es the gauge ondition B	 = 0. The algebraiproperties that guarantee this fat arefB ;Cg = fB? ; Cg = 0 ; (4.22)LC jP1i = � C jP1i ;whih follow immediately from the mode expansions on B, L, and C in the sliver frame.To show that (4.22) imply B n = B 0n = 0, the following identities are useful. WritingB = 12(B� +B+L +B+R), one an prove thatB( 1 �  2) = B 1 �  2 + (�1) 1 1 � (B �B+L ) 2 : (4.23)For a larger number of fators we haveB( 1 � 2 � : : :  n) = (B 1) � : : : � n+ nXm=2(�)Pm�1k=1  k  1 � : : : � (B�B+L ) m � : : : � n : (4.24)One an atually make manifest the fat that  0n is annihilated by B in the following way: 0n = 1nB�C jP1i � jPn�1i � (L+L + 1n)C jP1i� : (4.25)We have seen in the previous setion that a generi single-split projetor P1 an be relatedto the sliver W1 by a reparameterization ' as P1 = U�1' W1. This allowed us to onstrut28



the abelian family P� from the wedge states by the same transformation P� � U�1' W�. Wenow proeed to de�ne operators assoiated with P1 by similarity transformations of the orre-sponding operators assoiated with the sliver. From now on we use the subsript S to denoteobjets in the sliver frame, and objets without the subsript are those in the frame of P1. Wehave C � U�1' CS U' ; (4.26)L � U�1' LS U' ; (4.27)L? � U�1' L?S U' ; (4.28)L� � U�1' L�S U' = L� L? ; (4.29)L+L � U�1' (L+L)S U' ; (4.30)L+R � U�1' (L+R)S U' ; (4.31)and analogous expressions for the antighost operators B, B?, B�, B+R , B+L . Beause of theformal property (2.14), L? in (4.28) is the BPZ onjugate of L in (4.27), so our notation isonsistent. It is also onsistent to use L+L and L+R in (4.30) and (4.31) sine reparameterizationspreserve the left/right deomposition of operators. As we will see expliitly in x4.3, the operatorsL+L and L+R are, respetively, the left and right parts of the operator L+ de�ned in (4.29). It isalso obvious that all the algebrai properties (4.14), (4.15), (4.16), (4.17), and (4.22) are obeyedby the operators in the frame of P1.The states  n assoiated with P1 are given by n � U�1'  n S = �CjP1i � jPn�1i �B+LCjP1i ; (4.32)and  0n assoiated with P1 are similarly obtained. Finally, the solution 	 assoiated with P1is obtained from the sliver's solution 	S as	 = U�1' 	S : (4.33)Clearly, it takes the same form (4.1), with the understanding that the states  0n and  N arenow those in the frame of P1.4.2 Solutions in the CFT formulationWe now translate the above formal onstrution into a geometri desription. In the CFTformulation, the state  n S in the sliver frame is de�ned byh�;  nS i = � fS Æ �(0) (1) Z�V +� dz2�i b(z) (n+ 1)�Wn+1 ; (4.34)29



Figure 7: A diagram of the orrelator on Wn+1 used in (4.34) to desribe the solution in thesliver frame. Shown are ghost insertions at zS = 1 and zS = n+1. The vertial line in betweenthese insertions represents the antighost line integral.for any state � in the Fok spae, where 1 < � < 2n+1. A pitorial representation of the or-relator is given in Figure 7. The ontour V +� is oriented in the diretion of inreasing imaginaryzS , and by �V +� we denote the same ontour with opposite orientation. The expression (4.34) isthe diret geometri translation of the algebrai expression (4.10), as explained in detail in [3℄.Reall the hange in the normalization of fS .Let us apply the reparameterization U�1' to the state  n S . Geometrially, this amounts tomapping the region (V +0 ; V +2(n+1)), inluding the operator insertions, by the onformal transfor-mationR�1 used to onstrut the state jPn+1i from the wedge state jWn+1i. It is straightforwardto alulate the transformations of the operator insertions in (4.34). We �nd that the state  nassoiated with a general projetor is given byh�;  n i = h f Æ �(0) C(1)B C(2n+ 1) iPn+1 (4.35)for any state � in the Fok spae, whereC(�) � R0�R�1�1 + �2 �� �R�1�1 + �2 �� ; B � Z dz2�i b(z)R0(z) : (4.36)The ontour of the integral for B an be taken to be �C+� with 1 < � < 2n+1. (The orientationof the ontour C+� , inherited from the orientation of V +� , is direted towards inreasing imaginaryz). In general, when B is loated between two operators, the ontour of the integral must runbetween the two operators. Note that C(�) is nothing but the operator (zS), with zS = 12(1+�),expressed in the frame z = R�1(zS). The argument � of C denotes the label of the line C+�that ontains the insertion. The surfae and insertions for the orrelator indiated in (4.35) areshown in Figure 8. 30



Figure 8: The surfae and insertions relevant to the orrelator (4.35) used to de�ne  n. Thesurfae Pn+1 inludes two ghost insertions C and an antighost line integral B.This de�nition of  n is valid for n > 0, and  0 an be de�ned by the limit n! 0: 0 � limn!0 n : (4.37)Let us alulate  0 expliitly. The antiommutation relation of B and C is given byfB ; C(�) g = B C(�) + C(�)B = 1 : (4.38)Note that the ontour for B in the term B C(�) should be �C+� with � < �, and the ontourfor B in the term C(�)B should be �C+� with � > �. Using this antiommutation relation, theinner produt h�;  n i in the limit n! 0 is given bylimn!0h�;  n i = h f Æ �(0) C(1) iP1 : (4.39)This gives the CFT desription of the state  0 = CjP1i in (4.9) for a general projetor. Itoinides with the state obtained by reparameterization from the sliver's  0.Another useful expression for the inner produt h�;  n i ish�;  n i = � R0(R�1(1))2� (�R�1(1)) f Æ �(0) (R�1(1)) ZC+� dz2�i b(z)bR0(z) �Pn+1 ; (4.40)where � > 1, and we have mapped the operator C(2n + 1) to bR0( bR�1(�1)) ( bR�1(�1)) =R0(R�1(1)) (�R�1(1)) using the identi�ation (3.17) for the surfae Pn+1. Note that � mustbe Grassmann even in order for the inner produt to be nonvanishing. We will use (4.40) inthe next setion.Let us now onsider  0n. Taking a derivative of  n S with respet to n is equivalent to aninsertion of the operator Z�V +� dz2�i T (z) (4.41)31



Figure 9: The surfae and insertions relevant to the orrelator (4.43) used to de�ne  0n. Thesurfae Pn+1 inludes two ghost insertions C, an antighost line integral B, and a stress-tensorline integral L.in (4.34), with 1 < � < 2n+ 1. See [3℄ for more details. Sine the operator is transformed byR�1 to L � Z dz2�i T (z)R0(z) ; (4.42)the geometri translation of (4.12) for a general projetor ish�;  0n i = h f Æ �(0) C(1)LB C(2n+ 1) iPn+1 ; (4.43)where the ontour of the integral for L an be taken to be �C+� with 1 < � < 2n + 1. Thesurfae and insertions for this orrelator are shown in Figure 9.Note that B and L ommute. In general, when L is loated between two operators, theontour of the integral must run between the two operators. The de�nition (4.43) is valid forn in the range n > 0. As in the ase of  0, the state  00 an be de�ned by the limit n! 0: 00 = limn!0 0n : (4.44)Using the antiommutation relation (4.38), the inner produt h�;  0n i an be written ash�;  0n i = h f Æ �(0) C(1)BLC(2n+ 1) iPn+1= h f Æ �(0) LC(2n+ 1) iPn+1 � h f Æ �(0) B C(1)LC(2n+ 1) iPn+1 : (4.45)It is trivial to take the limit n ! 0 for the �rst term. The limit of the seond term an bealulated using the formulalim�!0 C(�)LC(�+ �) = lim�!0 C(�) [L; C(�+ �) ℄ = QB � C(�) ; (4.46)32



where QB � O is the BRST transformation of O. The inner produt h�;  00 i is thush�;  00 i = h f Æ �(0) LC(1) iP1 � h f Æ �(0) B QB � C(1) iP1 : (4.47)This gives the geometri translation of the state  00 = �L+LCjP1i+B+LQBCjP1i = �QBB+LCjP1iin (4.11) for a general projetor, as we will explain further in the next subsetion. The stateoinides with the state obtained by reparameterization from the sliver's  00.4.3 Operator insertions in the geometri languageThe expressions of  n and  0n in (4.35), (4.40), and (4.43) are the entral results of this setion.While the solution onstruted from these states are guaranteed to satisfy the equation of motionbeause it is related to Shnabl's solution by a reparameterization, it is also possible to on�rmthis diretly without referring to the reparameterization. In this subsetion we o�er a moredetailed analysis of how various operator insertions are presented in the CFT formulation. Itis then straightforward to on�rm that the equation of motion is satis�ed using the formulas inthis subsetion. The tehniques developed in this subsetion will be useful in handling operatorinsertions in the onformal frame of a general projetor.Let us begin with the operator L. It is, by de�nition, obtained from LS by the reparam-eterization ', where ' is impliitly de�ned by the relation bR(f(t)) = fS('(t)) in (2.39). Thefuntion fS(t) beomes fS('(t)) = bR(f(t)), and thus L in the general projetor frame z = f(�)is given by LS in the sliver frame zS = fS(�S) by the onformal transformation z = bR�1(zS):L � U�1' LS U' = U�1'  ZV +0 �V �0 dzS2�i zS T (zS)!U' = ZC+0 �C�0 dz2�i bR(z)bR0(z) T (z)= ZC+0 dz2�i R(z)R0(z) T (z) + ZC�0 dz2�i R(�z)R0(�z) T (z) : (4.48)In obtaining the seond line we made use of (3.7). For speial projetors, R(z) = zs and theexpression for L simpli�es to L = 1s I dz2�i z T (z) = L0s : (4.49)The operator L0 is the Virasoro zero mode in the frame of the projetor. This is the de�nitionof L given in [5℄. If the projetor is not speial, (4.49) does not hold. Generially the expansionof L in ordinary Virasoro operators Ln ontains terms with negative n.
33



The inner produt hL�; P� i for any state � in the Fok spae is given byhL�; P� i = �ZC+0 �C�0 dz2�i bR(z)bR0(z) T (z) f Æ �(0)�P�= �ZC+0 dz2�i R(z)R0(z) T (z) f Æ �(0)�P� +�ZC�0 dz2�i R(�z)R0(�z) T (z) f Æ �(0)�P� : (4.50)This provides the CFT representation of the state L? jP�i beause hL�; P� i = h�; L? P� i.Next, we wish to derive a representation of L jP�i. To this end, we need an expressionfor hL? �; P� i. While it is possible to onstrut L? from L?S by the reparameterization ' asin (4.48), it is instrutive to understand BPZ onjugation diretly on the surfae P�. BPZonjugation is, by de�nition, performed by the map I(�) = �1=� in the � oordinate. For anoperator in the z-plane, BPZ onjugation requires mapping the operator to the � oordinate,performing the onjugation, and mapping the resulting operator bak to the z oordinate. Thefull onformal transformation is thenz0 = If (z) = f Æ I Æ f�1(z) ; I(�) = �1=� : (4.51)This relation between z0 and z is nothing but the identi�ation between z+ and z� for P0,namely, R(z+) +R(�z�) = 1 : (4.52)Let us apply this geometri understanding of BPZ onjugation to the operator L. The map Iftransforms the two integrals in (4.48) as follows:ZC+0 dz+2�i R(z+)R0(z+) T (z+) ! � ZC�0 dz�2�i R(�z�)R0(�z�) T (z�) + ZC�0 dz�2�i T (z�)R0(�z�) ;ZC�0 dz�2�i R(�z�)R0(�z�) T (z�) ! � ZC+0 dz+2�i R(z+)R0(z+) T (z+) + ZC+0 dz+2�i T (z+)R0(z+) : (4.53)Thus the inner produt hL? �; P� i is given byhL? �; P� i = � �ZC+0 �C�0 dz2�i bR(z)bR0(z) T (z) f Æ �(0)�P� +�ZC+0 +C�0 dz2�i T (z)bR0(z) f Æ �(0)�P� :(4.54)Realling (4.50), we an writehL? �; P� i = � hL�; P� i+�ZC+0 +C�0 dz2�i T (z)bR0(z) f Æ �(0)�P� : (4.55)34



It immediately follows thathL+�; P� i = h (L+ L? )�; P� i = �ZC+0 +C�0 dz2�i T (z)bR0(z) f Æ �(0)�P�; (4.56)and thus the operator L+ isL+ = ZC+0 dz2�i T (z)R0(z) + ZC�0 dz2�i T (z)R0(�z) : (4.57)From these expressions, we easily on�rm the algebra [L; L? ℄ = L+ L?,[L; L? ℄ = [L; L+ L? ℄ = ZC+0 +C�0 dw2�i 1bR0(w) I dz2�i bR(z)bR0(z) T (z)T (w)= ZC+0 +C�0 dw2�i T (w)bR0(w) = L + L? ; (4.58)where the ontour of the integral of z enirles w ounterlokwise, and we have negleted surfaeterms of the form bR(w)T (w)=bR0(w)2 for integration by parts with respet to w. Whether or notthe surfae terms vanish should be heked for a given bR(z) by evaluating them in a oordinatewhere the midpoint of the open string is loated at a �nite point.We now onsider the operators L+L and L+R. Sine C�0 and C+0 are respetively the left andright parts of the oordinate urve, the expression in (4.56) splits as follows:hL+R �; P� i = �ZC+0 dz2�i T (z)R0(z) f Æ �(0)�P�;hL+L �; P� i = �ZC�0 dz2�i T (z)R0(�z) f Æ �(0)�P� : (4.59)The BPZ onjugation map If ats asIf : ZC+0 dz+2�i T (z+)R0(z+) ! ZC�0 dz�2�i T (z�)R0(�z�) ; (4.60)so we see (L+R)? = L+L : (4.61)Sine BPZ onjugation is an involution, we also have (L+L )? = L+R.Using the presentation of P� as the region between C�0 and C+2� and realling that theseurves are identi�ed by (3.17), we an rewrite hL+L �; P� i in (4.59) ashL+L �; P� i = �ZC+2� dz2�i T (z)R0(z) f Æ �(0)�P�: (4.62)35



Sine (L+R)? = L+L and (L+L)? = L+R, the inner produts h�; L+RP� i and h�; L+LP� i are given byh�; L+RP� i = � f Æ �(0) ZC+2� dz2�i T (z)R0(z) �P�;h�; L+LP� i = � f Æ �(0) ZC+0 dz2�i T (z)R0(z) �P� : (4.63)We see that the states L+RjP�i and L+L jP�i are both represented as the region between C+0 andC+2� with the same operator inserted on di�erent loations: it is on the right edge for L+RjP�iand on the left edge for L+L jP�i. Sine there are no operator insertions in the region betweenC+0 and C+2�, the ontour C+2� an be deformed to C+0 , and we on�rm that the states are thesame: L+RjP�i = L+L jP�i : (4.64)Let us next onsider the star multipliation of states with insertions of L+R or L+L . Wetake P� � (L+LP�) as an example, but the generalization to other ases is straightforward. Theoperator L+L of L+LP� is represented by an integral over C+0 on P� in (4.63). For the gluing ofthe star produt we need the identi�ation of urves in two di�erent oordinate systems. Aurve C+q in the z< oordinate is mapped to C+q+ in the z> oordinate when z< and z> arerelated by R(z>) = R(z<) + 2 : (4.65)Under this identi�ation the operator insertion in (4.63) takes the same form in the two oor-dinates: ZC+q dz<2�i T (z<)R0(z<) = ZC+q+ dz>2�i T (z>)R0(z>) : (4.66)The operator integrated over C+0 on P� is thus mapped to the same operator integrated overC+2� on the surfae P�+� = (C�0 ; C+2�+2�) for the star produt P� � (L+LP�). It follows from the�rst equation in (4.63) that the star produt an also be interpreted as (L+RP�) � P�. We havethus shown that (L+RP�) � P� = P� � (L+LP�) : (4.67)The antighost �eld b(z) transforms in the same way as the energy-momentum tensor T (z).Therefore the formulas we have derived for the energy-momentum tensor based on its transfor-
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mation properties also apply to the antighost. The equations in (4.59), for example, beomehB+R �; P� i = �ZC+0 dz2�i b(z)R0(z) f Æ �(0)�P� ;hB+L �; P� i = �ZC�0 dz2�i b(z)R0(�z) f Æ �(0)�P� = �ZC+2� dz2�i b(z)R0(z) f Æ �(0)�P� ; (4.68)and the equations in (4.63) beomeh�;B+RP� i = � f Æ �(0) ZC+2� dz2�i b(z)R0(z) �P� ;h�;B+LP� i = � f Æ �(0) ZC+0 dz2�i b(z)R0(z) �P� : (4.69)We also have the analogs of (4.61), (4.64), and (4.67)(B+R)? = B+L ; (B+L )? = B+R ; (4.70)eB+jP�i = (B+R � B+L ) jP�i = 0 ; (4.71)(B+RP�) � P� = P� � (B+LP�) : (4.72)Finally let us examine the operator C. As we have disussed in the alulation of  0 in x4.2,the state CjP1 i for a general projetor is given byh�; CP1 i = h f Æ �(0) C(1) iP1 = R0(R�1(1)) h f Æ � (R�1(1)) iP1 (4.73)for any state � in the Fok spae, where P1 is represented by the region between C�0 and C+2 .Let us on�rm that CjP1i satis�es the relation (4.15). We need to show that h�; eB+CP1 i =h�; P1 i for any state � in the Fok spae. Sine � must be Grassmann odd in order to have anonvanishing inner produt, there is an extra minus sign in taking the BPZ onjugate of eB+,and we haveh�; eB+CP1 i = h�; (B+R�B+L )CP1 i = �h (B+R�B+L )? �; CP1 i = h (B+R�B+L )�; CP1 i : (4.74)The relevant orrelation funtion an be written using (4.68), and it an be evaluated as follows:h (B+R �B+L )�; CP1 i = R0(R�1(1))�ZC+0 �C+2 dz2�i b(z)R0(z) f Æ �(0) (R�1(1))�P1= R0(R�1(1)) � f Æ �(0) �I dz2�i b(z)R0(z) (R�1(1)) ��P1 = h f Æ �(0) iP1 ;(4.75)where the ontour of the integral in the last line enirles z = R�1(1) ounterlokwise. Thisonludes the on�rmation that eB+CjP1i = jP1i.37



5 Operator onstrution of the solutionIn this setion we give an expliit operator onstrution of the solution 	 for the most generalsingle-split speial projetor for arbitrary value of the reparameterization parameter � intro-dued in (3.9). We begin in x5.1 with a disussion of single-split speial projetors. They form a\hypergeometri olletion," indexed by a parameter s � 1. Then in x5.2 we derive an operatorexpression for the state  n, the key ingredient of 	 in (1.5). The result, given in (5.50), takesthe form of normal-ordered operators ating on the SL(2; R)-invariant vauum. It holds forany projetor in the hypergeometri olletion.5.1 The hypergeometri olletionIn a previous paper [5℄, a family of speial projetors with a parameter s � 1 was introdued.It was demanded that the vetor �eld vL�s assoiated with the Virasoro operator L�s in theframe z = ~f(�) take the form:7 vL�s( ~f) � s( ~f s)0 = (1 + �2)s�s�1 ; (5.1)or, equivalently, d ~f sd� = s�s�1(1 + �2)s : (5.2)By integrating this di�erential equation, ~f(�) was found to be~f(�) = � �2F1 hs2 ; s ; 1 + s2 ;��2i�1=s : (5.3)It turns out that for even s the operator L�s is proportional to L+ while for eah odd s it isproportional to K = L+R � L+L . More preisely, we found thatq(s)L�s = (L+ for s even ;K for s odd ; with q(s) = �(s=2 + 1)�(s=2)�(s+ 1) : (5.4)It will be onvenient to �x the normalization of ~f(�) by introduing a resaled f(�) withf(� = 1) = 2�1=s. To implement this, we simply takef(�) = 2� 1s ~f(�)~f(1) = 2� 1s � 2F1 � s2 ; s ; 1 + s2 ;��2�2F1 � s2 ; s ; 1 + s2 ;�1� !1=s : (5.5)7 We reserve the use of f for the map with a di�erent normalization. The map ~f(�) here orresponds to f(�)of [5℄. 38



Noting that 2F1 hs2 ; s ; 1 + s2 ;�1i � �(s) = 2�sp� �[1 + s2 ℄�[12 + s2 ℄ ; (5.6)a short omputation shows that with the new normalization1s L�s = (L+ for s even ;K for s odd : (5.7)This means that in the z-oordinate of the projetor we have1s 1zs�1 = ( v+(z) for s even ;�(t(z)) v+(z) for s odd ; with z = f(t) ; t = ei� : (5.8)In here we have used the step funtion �(t) de�ned in [5℄, eqn. (2.37). By de�nition, the vetorv orresponding to L = L0=s is v = 1s z : (5.9)It now follows from v + v? = v+ thatv?(z) = (1s � 1�zszs�1 for s even ;1s � ��zszs�1 for s odd : (5.10)The hypergeometri onformal frames are projetors for all real s � 1: f(i) =1. Moreoverthe midpoint � = i is the only singular point, so the projetors are single-split. These propertiesand the preise shape of the oordinate urve an be dedued from the di�erential equation(5.2). A little algebra givesdF (�)d� = i s2s+1 ~f(1)s 1(os �)s ; F (�) � (f(ei�))s : (5.11)By twist symmetry it is suÆient to onsider the part of the urve with 0 � � � �=2. Thedi�erential equation (5.11) must be supplemented with the initial ondition F (0) = f(1)s = 1=2.Sine the right-hand side of (5.11) is purely imaginary we see at one that <(F (�)) = 1=2 for0 � � < �=2. It follows also that for s � 1, =(F (�)) is a monotonially inreasing funtion in theinterval 0 � � < �=2 with lim�!�=2� =(F (�)) = +1. We reognize F0 = fF (�) j0 � � < �=2gas the vertial line V +0 = fzS j <(zS) = 1=2)g, the positive part of the sliver's oordinate urve.We onlude that the reparameterization mapping the hypergeometri projetor with s > 1 tothe sliver is simply z ! zS = R(z) = zs ; <z > 0 ; (5.12)a fundamental fat that we had so far laimed without proof.39



It seems to us plausible that the hypergeometri olletion ontains all the single-split speialprojetors. It was shown in [5℄ (setion 7.2) that for a onformal frame to be speial the funtionzS = F (�), 0 � � � �=2, needs to be piee-wise linear in the zS-plane. On the other hand wealso saw in [5℄ (setion 7.3) that orners in F0 seem to lead to operators K that fail to kill theidentity, thus violating one of the onditions required to have a speial projetor. If orners arenot allowed anywhere, the intersetion of F0 with the real line must be orthogonal and thenF0 = V +0 , up to a real saling onstant. This would imply that all single-split projetors are inthe hypergeometri olletion.For integer s the hypergeometri funtion an be expressed in terms of elementary funtions.For the �rst few integer values one �ndss = 1 : f(�) = 2� artan � ;s = 2 : f(�) = �p1 + �2 ;s = 3 : f(�) = � 2�� 13�artan � � �(1� �2)(1 + �2)2 �1=3 ;s = 4 : f(�) = x� 3 + x2(1 + x2)3 �1=4 ;s = 5 : f(�) = � 2�� 15�artan � � �(1� �2)(3 + 14�2 + 3�4)3(1 + �2)4 �1=5 ;s = 6 : f(�) = x� 10 + 5x2 + x4(1 + x2)5 �1=6 :
(5.13)

For s = 1 we reover the sliver frame with a saling. For s = 2 we reover the buttery. Fors = 3 we reover the projetor in (7.56) of [5℄. For s = 4 we have the projetor with a = 4=3in (6.3) of [5℄.For arbitrary s, a series expansion gives L = L0=s with a simple analyti form:L0 = L0 + 2 1Xk=1 s!!(s� 2k)!! s!!(s + 2k)!!L2k= L0 + 2s2 + s L2 + 2s(s� 2)(2 + s)(4 + s)L4 + 2s(s� 2)(s� 4)(2 + s)(4 + s)(6 + s)L6 + : : : (5.14)For even s the operator L ontains a �nite number of terms and therefore so does L+. This isonsistent with (5.7), sine aording to (5.1) L�s involves a �nite number of operators for anyinteger s. 40



5.2 The solution in operator formTo obtain the operator representation of the solution we will begin with equation (4.40). Fornotational larity it is useful to introdue the de�nitionr � R�1(1) ; or R(r) = 1 : (5.15)Moreover, letting n! n� 2, we have that (4.40) givesh�;  n�2 i = � (R0(r))2� (�r) f Æ �(0) (r) ZC+ dz2�i b(z)R0(z) �Pn�1 ; (5.16)with 1 <  � n � 1. The surfae Pn�1 in this orrelator is de�ned by the reparameterizationfuntion R. Our goal is to obtain a formula for the state  n�2 as a string of operators ating onthe vauum. The operators must be normal ordered so that evaluation in the level expansionis possible.In order to inorporate the reparameterizations that at within the family of surfae statesassoiated with a projetor we take R to be �-dependent as in (3.9),R�(z) = e�2��R0(z)� 12�+ 12 ; (5.17)where R0 is the \original" funtion and R� the funtion obtained by reparameterization. Forgeneri projetors, the state  n�2 an be evaluated expliitly only if ertain onformal mapsare known. For the ase of speial projetors in the hypergeometri olletion, full and expliitevaluation is possible. Our result is an operator formula for  n�2 that depends on the parameters of the speial projetor and the parameter � in (5.17).5.2.1 Reparameterizations within a familyLet us begin with some preparatory results onerning the relations between operators andsurfaes de�ned by R� and those de�ned by R0. Using (5.17) one an readily verify thatR�(z)R0�(z) = R0(z)R00(z) + 12�e2� � 1� 1R00(z) : (5.18)Letting L; L� denote operators de�ned by R and �L; �L? denote operators de�ned by R0, equation(4.48) gives L = ZC+0 dz2�i R(z)R0(z) T (z) + ZC�0 dz2�i R(�z)R0(�z) T (z) ;= �L + 12�e2� � 1�� ZC+0 dz2�i T (z)R00(z) + ZC�0 dz2�i T (z)R00(�z) � : (5.19)41



We have therefore obtained L = �L + 12�e2� � 1�(�L+ �L?) : (5.20)Analogous relations hold for the operators assoiated with the antighost �eld b(z).It is interesting to examine L for some speial values of �. As � = 0, we get L = �L. As �beomes arbitrarily large and positive L beomes proportional to �L+:L ! 12e2�(�L + �L?) ; as � !1 : (5.21)As � beomes arbitrarily large and negative L approahes �L�:L ! 12(�L� �L?) ; as � ! �1 : (5.22)The transition from R0 to R an be viewed as a reparameterization, as disussed around equa-tion (3.9). Indeed, a short alulation givesL = e�(�L��L?) �L e��(�L��L?) ; (5.23)showing that �L� �L? generates the reparameterization that maps the R0-based operators to theR-based operators.Let us ompare surfaes de�ned by R� and surfaes de�ned by R0. Sine R maps C+� toV +� , we �nd z 2 C+� ! <(R�(z)) = 12(1 + �) : (5.24)For suh z we also have<(R0(z)) = e2��12(1 + �)� 12� + 12 = 12(1 + e2��) : (5.25)Sine we are fousing on a single urve in the projetor we onlude thatC+� = �C+e2�� ; (5.26)where the bar indiates a urve de�ned by R0. We thus have the identi�ation of surfaesP� = Pe2�� ; (5.27)where the overline indiates a surfae de�ned by R0. Note that the surfae P0 oinides withP0. This means that the funtion z = f(�) that de�nes the projetor does not depend on �.The last ingredient we onsider is the antighost insertion in (5.16). We wish to rewrite it interms of a losed ontour integral that involves R0. We begin by noting the equalityZC+ dz2�i b(z)R0(z) = e2� ZC+n�1 dz2�i b(z)R00(z) ; (5.28)42



whih follows from (5.17) and ontour deformation. To rewrite the right-hand side in terms ofan integral over a losed ontour we reall that on the surfae Pn�1 the identi�ation of pointson C+n�1 and C�n�1 is given by (3.17):R�(z+) +R�(�z�) = n ; (5.29)In terms of R0 the identi�ation readsR0(z+) +R0(�z�) = 1 + (n� 1)e2�: (5.30)We now onsider the integralZC+n�1�C�n�1 dz2�i bR0(z)bR00(z) b(z) = ZC+n�1 dz+2�i R0(z+)R00(z+) b(z+) + ZC�n�1 dz�2�i R0(�z�)R00(�z�) b(z�) : (5.31)Using (5.30) and its di�erential form R00(z+)dz+ � R00(�z�)dz� = 0, we an write the seondintegral above as an integral over C+n�1. We then �nd a anellation and we are left withZC+n�1�C�n�1 dz2�i bR0(z)bR00(z) b(z) = �1 + (n� 1)e2�� ZC+n�1 dz2�i b(z)R00(z) ; (5.32)or, equivalently, ZC+n�1 dz2�i b(z)R00(z) = 11 + (n� 1)e2� ZC+n�1�C�n�1 dz2�i bR0(z)bR00(z) b(z) : (5.33)Bak in (5.28) and using again ontour deformation, we �ndZC+ dz2�i b(z)R0�(z) = e2�1 + (n� 1)e2� ZC+ �C� dz2�i bR0(z)bR00(z) b(z) ; on Pn�1 : (5.34)This is our desired result.5.2.2 Operator formulaWe are now in a position to derive an operator result beginning with (5.16). As a �rst step weuse (5.34) to obtainh�;  n�2 i = � R00(r)2 e�2�1 + (n� 1)e2��ZC+ �C� dz2�i bR0(z)bR00(z) b(z) (�r) f Æ �(0) (r)�Pe2�(n�1) : (5.35)
43



Note that we have expressed the surfae in terms of the funtion R0. Moving the antighostinsertion ontours inwards we pik up ontributions from eah of the ghost insertions and weremain with an antighost insertion that e�etively surrounds the insertion of the test state �:h�;  n�2 i = R00(r)R0(r)e�2�1 + (n� 1)e2� � 
 (�r) f Æ � �Pe2�(n�1) + 
 f Æ � (r) �Pe2�(n�1)�+ R00(r)2 e�2�1 + (n� 1)e2� �(�r)� ZC+ �C� dz2�i bR0(z)bR00(z) b(z) f Æ �(0)� (r)�Pe2�(n�1) : (5.36)Here 0 �  < 1. This is the most simpli�ed expression we have obtained for  n�2 when theprojetor is ompletely general.Let us now assume that we have a speial projetor with parameter s. We thus takeR0(z) = zs ! R0(z)R00(z) = 1s z ; (5.37)whih implies thatZC+ �C� dz2�i bR0(z)bR00(z) b(z) = 1s ZC+ �C� dz2�i z b(z) = 1s I dz2�i z b(z) : (5.38)Notie the great simpli�ation: all that is left of the antighost insertion is a holomorphi integralenirling the origin. We also de�nean � �1 + (n� 1)e2���1=s ; (5.39)and on�rm that R0(r) = rs = 12�1 + e2�� : (5.40)Using the above relations (5.36) an be written ash�;  n�2 i = sr2s�1(an)se�2� � 
 (�r) f Æ � �Pe2�(n�1) + 
 f Æ � (r) �Pe2�(n�1)�+ s r2s�2(an)s e�2� �(�r)�I dz2�i z b(z) f Æ �(0)� (r)�Pe2�(n�1) : (5.41)To map the orrelators to the upper-half plane we �rst sale Pe2�(n�1) down to P0. This requiresthe saling map z0 = anz ; (5.42)44



with an de�ned in (5.39). We let ~f � an Æ f and perform the saling, �ndingh�;  n�2 i = sr2s�1(an)s�1e�2� � 
 (�anr) ~f Æ � �P0 + 
 ~f Æ � (anr) �P0�+ s r2s�2(an)s�2 e�2� �(�anr)�I dz2�i z b(z) ~f Æ �(0)� (anr)�P0 : (5.43)The map g � fI Æ f�1 (5.44)takes P0 to the upper half plane H . Lettingfn�1 � g Æ ~f = fI Æ f�1 Æ an Æ f ; (5.45)we map the orrelators by g and �nd, noting that g is an odd funtion,h�;  n�2 i = srs(anr)s�1 e�2�g0(anr) � 
 (�g(anr)) fn�1 Æ � �H + 
 fn�1 Æ � (g(anr)) �H �+ srs(anr)s�2 e�2�(g0(anr))2 �(�g(anr))� bB fn�1 Æ �(0)� (g(anr))�H : (5.46)Here all orrelators are now on the upper half plane H andbB � I dz2�i g�1(z)(g�1)0(z) b(z) : (5.47)Note that the bB insertion is � independent and n independent.Sine the operator I Æ fn�1 Æ �(0) orresponds to h�jU?fn�1 in the state-operator orrespon-dene, it is onvenient to perform a �nal map by I(z) = �1=z. Noting that the test state �must be Grassman even, the result ish�;  n�2 i =  s(anr)s�1g(anr)2g0(anr) " DI Æ fn�1 Æ � � 1g(anr)�EH + DI Æ fn�1 Æ � �� 1g(anr)�EH+ g(anr)2anrg0(anr)�I Æ fn�1 Æ �(0) bB? �� 1g(anr)� � 1g(anr)��H # ;(5.48)where we de�ned  � e�2�rs = 12(1 + e�2�) : (5.49)
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We an now read out the operator expression for  n�2: n�2 =  s(anr)s�1 g(anr)2g0(anr) U?fn�1� �� 1g(anr)� + � 1g(anr)�+ g(anr)2anrg0(anr) bB? �� 1g(anr)� � 1g(anr)� �j0i : (5.50)
Equation (5.50) is the expeted result: a formula for the state  n�2 in whih operators at onthe SL(2; R)-invariant vauum. The state depends on both s and �. Moreover, as we will seein the following setion, we an readily �nd a level expansion of the solution. We reall thatthe \phantom" piee  N of the solution in (1.5) does not ontribute in the level expansion, sowe have h�;	 i = 1Xn=2h�;  0n�2 i (5.51)for any state � in the Fok spae.6 Level and other expansionsIn this setion we will expand and analyze the operator form (5.50) of the solution. We set upthe level expansion omputation for arbitrary s and � in x6.1. We proeed up to level four, butgive the ingredients neessary to arry the omputations to arbitrary order, if so desired.In x6.2 we onsider the speial ase � = 0 and ompute the vauum expetation values of�elds up to level four for arbitrary values of s. This allows us to ompute the level zero, two,and four vauum energies as funtions of s. For s � 1 we �nd numerial evidene onsistentwith onvergene of the vauum energy to the expeted value of minus the D-brane tension.Reall that for s < 1 the speial frames are not projetors. The string �eld 	 whih providesa solution for s � 1 is therefore not expeted to provide a solution for s < 1. Indeed, for s < 1we �nd numerial evidene onsistent with the energy failing to onverge to the expeted value.In x6.3 we show that the tahyon vauum solution in the Siegel gauge annot be obtainedin the present framework. The framework imposes onstraints on expetation values that weshow are not satis�ed in the most aurate version of the Siegel gauge solution known to date.Finally, in x6.4 we onsider the limit � !1 of the solution. This limit is of some interestbeause the surfae states used to build the solution approah the surfae state of the projetor.For large � the solution provides an analyti expression losely related to the alternative levelexpansion sheme introdued in [23℄ and explored further in [24℄. In this sheme, the string46



�eld solution is written in terms of operators of inreasing level inserted at the midpoint ofa regulated projetor. Our solution is given in terms of exponentials of � and has a leadingdivergent term as well as terms that vanish as � !1.6.1 Level expansion preliminariesWe now set up the level expansion of the solution (5.50). We begin by level expanding theoperators U?fn�1 and bB�. We then write out the level four string �eld and ompute the expe-tation values of the various omponents. The results are given in terms of in�nite sums thatwe evaluate numerially.The operator U?fn�1 is de�ned by the funtion fn�1(�) introdued in (5.45):fn�1 = fI Æ f�1 Æ an Æ f : (6.1)It is most onvenient to obtain a fatorized form in whihUfn�1 = e�t0L0 e�t2L2 e�t4L4 e�t6L6 � � � ; (6.2)with alulable oeÆients �tn. The bpz dual is immediately writtenU?fn�1 = � � � e�t6L�6 e�t4L�4 e�t2L�2 e�t0L0 : (6.3)Given an arbitrary funtion f(�) that de�nes a surfae state and has an expansionf(�) = � + f2�3 + f4�5 + f6�7 + f8�9 + � � � ; (6.4)the �rst few �tn oeÆients are obtained following the steps indiated in appendix A of [2℄. We�nd that they are given by �t2 = f2 ;�t4 = f4 � 32f 22 ;�t6 = f6 � 3f2f4 + 2f 32 ;�t8 = f8 � 3f2f6 � 52f 24 + 9f 22 f4 � 194 f 42 : (6.5)
Using this result and the power series expansion of fn�1 we an readily alulate the oeÆients�tn needed to obtain Ufn�1 to level four:e�t0 = an ; �t2 = �s+ 2a2n(1 + s)2 + s ; �t4 = �(s� 2)s+ 8a4n(1 + s)2(2 + s)(4 + s) : (6.6)47



With these we get U?fn�1 = � � � e�t4L�4 e�t2L�2 (an)L0 : (6.7)The expansion of bB? is easier to obtain. Realling (5.47) and the relation g = fI Æ f�1 we �ndbB = 1Xn=0 �n bn = b0 + 4(1 + s)2 + s b2 � 16(1 + s)(2 + s)(4 + s)b4 + � � � : (6.8)Note that both the Virasoro operators and the antighost operators in the above expansions areeven moded.The level expansion of the string is obtained by the ation on the vauum of arbitrary ghostosillators, even moded Virasoro operators, and even moded antighost osillators. The string�eld up to level four is thus given by	4 = � � t 1 j0i+ u �1 j0i+ v L�21 j0i+ w b�201 j0i+ AL�41 j0i+BL�2L�21 j0i+ C �3 j0i+ E b�2�21 j0i+ F L�2�1 j0i+ w2 b�2�10 j0i+ w3 b�401 j0i+ w4 L�2b�201 j0i� : (6.9)
The �rst line ontains the level-zero tahyon, the seond line ontains the three level-two �elds,and the last two lines ontain the eight level-four �elds. In this expansion the Virasoro operatorsinlude matter and ghost ontributions and have zero entral harge.To desribe the solution, assume a general expansion in a basis of Fok spae states	 =Xi �(i) jOii : (6.10)Up to level four, the states jOii and the expansion oeÆients �(i) are those in (6.9). Our goal isto ompute those expansion oeÆients, sine they are the expetation values of the omponent�elds. Assume now that  n�2, given in (5.50), is also expanded in the same basis: n�2 =Xi �(i)n jOii : (6.11)Using (5.51) we have 	 = 1Xn=2  0n�2 =Xi 1Xn=2(�n�(i)n ) jOii : (6.12)Comparing with (6.10) we �nd that the vevs are given by�(i) = 1Xn=2 �n �(i)n : (6.13)48



We an now expand the solution (5.50) to level four. Sine the ombination anr appearsrepeatedly both by itself and as the argument of g we introdue the notation~a � anr ; g � g(~a) : (6.14)Using the expansion (6.7) of U?fn�1 and the expansion (6.8) of bB, together with (6.11), we �ndthat the expansion of (5.50) yieldstn = 2rs ~as�2 g2g0 �1� g~ag0� ; un = r ~a2g2 tn ; vn = r�t2 tn ; wn = �2r s�2 ~as�1 g3g02 ;An = r�t4 tn ; Bn = 12 r�t22 tn ; Cn = r3 ~a4g4 tn ; En = �2 r3 s ~as+1 �2 gg02 ;Fn = r ~a2g2 �t2 tn ; (w2)n = � r3En ; (w3)n = �2 r3 s ~as+1 �4 g3g02 ;(w4)n = �2r s ~as�1 �t2�2 g3g02 :
(6.15)

The powers of r here arise from the fator (an)L0 = (~a=r)L0 in U?fn�1 | see (6.7). In the aboveformulae all appearanes of an are in the ombination ~a. Note, however, that the oeÆients �t2and �t4 have an dependene. Following (6.13), the expetation value of A, for example, wouldbe given by A = 1Xn=2 �nAn : (6.16)For arbitrary � and s, the derivatives with respet to n of the omponent �elds in (6.15) givelong and ompliated expressions. Therefore, we do not attempt any further simpli�ation ofthe string �eld.6.2 Level Expansion for � = 0In this subsetion we set � = 0 and explore the solution for various values of s. We alulateexpliitly the expetation values of level four �elds and use them evaluate the approximateenergy of the solution. We �nd numerial evidene onsistent with the energy onverging tothe expeted value of �1 (in units of the D-brane tension) for s � 1. For s < 1 we an still use(5.50) to alulate a string �eld but given that the s < 1 surfae states are not projetors, wehave no reason to believe that the onstruted �eld is a solution. Indeed, a level omputationof the energy in those ases suggests that it does not onverge to minus one.49



For � = 0 we have r = 1 and the solution in (5.50) redues to n�2 = s(an)s�1g(an)2g0(an) U?fn�1� �� 1g(an)�+ � 1g(an)�+ g(an)2ang0(an) bB? �� 1g(an)� � 1g(an)� �j0i : (6.17)This time we write a � an = n�1=s ; g � g(a) ; g0 � g0(a) ; (6.18)and the results in (6.15) simplify totn = 2s as�2 g2g0 �1� gag0� ; un = a2g2 tn ; vn = �t2 tn ; wn = �2s�2 as�1 g3g02 ;An = �t4 tn ; Bn = 12 �t22 tn ; Cn = a4g4 tn ; En = �2s as+1 �2 gg02 ;Fn = a2g2 �t2 tn ; (w2)n = �En ; (w3)n = �2s as+1 �4 g3g02 ; (w4)n = �2s as�1 �t2�2 g3g02 : (6.19)
These formulae, together with (6.13) allow the evaluation of the level four expetation values.As in [2℄, no simple losed form seems possible and the omputation must be done numerially.The level four string �eld in (6.9) an be rewritten using matter Virasoro operators. Ex-panding the Virasoro operators in (6.9) into matter and ghost parts one obtains the string�eld	4 = � � t0 1 j0i+ u0 �1 j0i+ v0 Lm�21 j0i+ w0 b�201 j0i+ A0 Lm�41 j0i+B0Lm�2Lm�21 j0i+ C 0 �3 j0i+D0 b�3�11 j0i+ E 0 b�2�21 j0i+ F 0 Lm�2�1 j0i+ w02 b�2�10 j0i+ w03 b�401 j0i+ w04 Lm�2b�201 j0i� ; (6.20)
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s = 0:6 s = 0:8 s = 1 s = 1:2 s = 1:4 s = 2:0 s = 3:0t(s) 0:52860 0:53755 0:55347 0:57278 0:59361 0.65779 0:75882u(s) 0:02935 0:03881 0:04367 0:04600 0:04694 0:04634 0:04268v(s) 0:04541 0:09289 0:13765 0:17939 0:21840 0:32231 0:46548w(s) 0:09945 0:11908 0:13108 0:13860 0:14330 0:14857 0:14617Table 1: The expetation values of all �elds up to level two alulated using the exat analytiexpressions as a funtion of the parameter s.where the primed �elds are given byt0 = t u0 = u+ 3vv0 = v w0 = w � 2vA0 = A B0 = BC 0 = C + 7A+ 15B + 5F D0 = �5A + 3B + F (6.21)E 0 = E � 6A� 8B + 4w4 F 0 = F + 6Bw02 = w2 + 12B + 2F � 3w4 w03 = w3 � 4Aw04 = w4 � 4BNote that in (6.20) we had to introdue a �eld D0 to multiply the state b�3�11 j0i. SinebB only has even-moded osillators, that state arises from (5.50) only after expanding the totalVirasoro operators in U?fn�1 into matter and ghost parts. Note also that the state Lm�30j0idoes not arise in the expansion. The expansion in ghost and matter parts annot generateodd-moded Virasoro operators, only odd-moded antighost operators.We an now onsider some numerial work. For s = 1 we �nd the expetation valuet = 0:553466, u = 0:0436719, v = 0:137646, and w = 0:131082. These imply t0 = 0:553466,u0 = 0:45661, v0 = 0:137646, and w0 = �0:14421 in omplete agreement with [2℄. We have alsoheked that the expetation values of the level four �elds for s = 1 agree with those in [2℄. Fors = 2 we �nd t = 0:65779 ; u = 0:04634 ; v = 0:32231 ; w = 0:14857 : (6.22)Vauum expetation values for these and other values of s are listed in Table 1.51



s = 0:6 s = 0:8 s = 1 s = 1:2 s = 1:4 s = 2:0 s = 3:0E0(s) �0:91925 �0:95064 �1:00777 �1:07934 �1:15927 -1.42348 �1:8943E2(s) �0:91495 �0:96663 �1:00782 �1:02736 �1:02271 �0:87438 �0:2896E4(s) �0:91389 �0:97221 �1:0045 �1:00843 �0:99591 �0:98916 �1:4827Table 2: The energy alulated at levels zero, two, and four, for several values of the parameter s.The energy, normalized to minus one, an be omputed using the vevs of the �elds and thekineti terms in the string �eld theory. To level zero, two, and four we getE0 = 2�23 ��12t2� ;E2 = E0 + 2�23 ��12u2 + 3u(v � w) + 2(v � w)2� ;E4 = E2 + 2�23 � 4A2 + 24AB + 5AC � 6AE + 18AF � 8Aw3 � 24Aw4� 3BC + 8BE � 24Bw2 � 24Bw3 + CF � Cw2 � 5Cw3 + 3Cw4� 32E2 + 6EF + 3Ew2 + 6Ew3 � 8Ew4 � 132 F 2 � 5Fw2 � 18Fw3� 2w22 + 24w2w4 + 4w23 + 24w3w4� :
(6.23)

In Figure 10 we plot energies as a funtion of s 2 [0:6; 2:0℄. There are three urves: thelevel-zero energy E0(s), the level-two energy E2(s), and the level-four energy E4(s). At eahlevel the energy was omputed using the exat numerial values for all the �elds. For s � 1 thevarious urves are onsistent with an energy that approahes the orret value. For s < 1 theplot suggests that the energy will not approah the orret value. Some partiular values arealso tabulated in Table 2. Note how eÆient the onvergene is for s = 2, while for s = 0:6 itappears that the energy will not move muh beyond the value �0:91.6.3 No Siegel gauge in the familyThe solution for the tahyon vauum in the Siegel gauge is a state in the universal subspae ofthe total CFT: the ghost number one subspae spanned by all states built on the vauum byating with �nite numbers of ghost and antighost osillators as well as �nite number of matterVirasoro operators. Apart from an SU(1; 1) symmetry that relates ertain expetation valuesno additional relations are known. 52



Figure 10: Plot of the energies E0(s); E2(s); and E4(s) omputed at levels zero, two, and four,respetively. The exat value is �1.It is lear from the form of  n that the solution 	 belongs to a onstrained universalspae where states are built ating on the vauum with arbitrary ghost osillators, even-modedantighost osillators, and even-moded total Virasoro operators. Before imposing any gaugeondition, the level four universal subspae ontains 10 states, while the level four onstrainedspae has only 8 states.As we show now, at level four the Siegel gauge expetation values must satisfy an additionalrelation if it is to lie on the onstrained universal spae. This ondition is not satis�ed.In the Siegel gauge we an use the expansion (6.20) of the string �eld. The question iswhether the values of the primed �elds in the Siegel gauge are onsistent with expetationvalues for the unprimed �elds. Can we solve for the unprimed �elds using (6.21)? There is aonstraint, however. We readily �nd thatD0 = �5A0 � 3B0 + F 0 : (6.24)This is a onstraint that must be satis�ed by the Siegel gauge solution, if it is to have thestrutural form required by the general s solution. From [25℄ we haveA0 = �0:005049 ;B0 = �0:000681 ;F 0 = 0:001234 : (6.25)This together with (6.24) preditsD0 = 0:028522. The value from [25℄, however, isD0 = 0:01976,in lear disagreement. We onlude that we annot reah the Siegel gauge solution for any value53



of the parameter s.6.4 Projetor expansionIn [23℄ a variant of level expansion was proposed in whih the string �eld solution is written interms of operators of inreasing level inserted at the midpoint of a regulated projetor surfaestate. The original disussion used the buttery state but this was extended to large lassesof projetors in [24℄. In this setion we show how to obtain a possibly related expansion usingthe � parameter in the limit of large �.In the solution (5.50) and in its level expansion we noted the repeated appearane of anr = ~a,whih is given by ~a = anr = h12 � 1 + e2�1 + (n� 1)e2� i1=s : (6.26)For � !1 we get a �nite limit lim�!1 ~a = � 12n� 2 �1=s � �a : (6.27)We also note that for large � r ' 2�1=se2�=s ; an ' 21=s�a e�2�=s : (6.28)Let us separate the fator U?f from U?fn�1 . We reall (6.1), whih implies thatUfn�1 = UfIÆf�1 (an)L0 Uf : (6.29)It follows that U?fn�1 = U?f h(an)L0 U?fIÆf�1 (an)�L0i (an)L0 : (6.30)Sine fn�1 is independent of the overall sale of f , we an assume that f(z) � z + : : : inevaluating UfIÆf�1 . We an then write an expansion without an L0 term:U?fIÆf�1 = � � � e �d6L�6 e �d4L�4 e �d2L�2 : (6.31)Here the �dn are alulable oeÆients that are independent of �. We then haveU?fn�1 = U?f � � � � e �d6a6nL�6 e �d4a4nL�4 e �d2a2nL�2 � (an)L0 : (6.32)The string �eld will be an expansion in powers of e2�=s. The leading term in the expansion ofthe string �eld will our when U?fn�1 ats on the tahyon state, the state with L0 = �1. Inthis ase, to leading order in e2�=s, the above fator in parenthesis is equal to one, and we haveU?fn�11j0i ' U?f 1j0i � 1�a 2�1=s e2�=s : (6.33)54



It now follows from (5.50) that n�2 ' 12 s �as�1 g(�a)2g0(�a) 1�a 2�1=s e2�=s U?f 1j0i � 2�1� g(�a)�ag0(�a)� ; (6.34)or, equivalently,  n�2 ' U?f 1j0i � 2�1� 1s s e2�=s 2�as�2 g(�a)2g0(�a) �1� g(�a)�ag0(�a)� : (6.35)This means that to leading order in the expansion the string �eld is given byj	i = U?f 1j0i � 2�1� 1s e2�=s 2 1Xn=2 �n��as�2 g(�a)2g0(�a) �1� g(�a)�ag0(�a)�� : (6.36)This is the general result, valid for all arbitrary s � 1. Note that this term diverges parame-terially with �. For the ase of the sliver, the string �eld beomesj	i = U?f 1j0i � 14e2� � 2 1Xn=2 �n� g2(�a)�ag0(�a)�1� g(�a)�ag0(�a)�� ; s = 1 ; (6.37)with g(z) = 12 tan(�z). Realling the de�nition of �a in (6.27) one an easily evaluate the aboveexpression numerially. The result isj	i = U?f 1j0i � 14e2� � (0:39545107) : (6.38)We will not attempt the alulation of the subleading terms in the solution. In the work of [23℄the leading term of the solution is a divergent oeÆient that multiplies a ghost insertion ona regulated projetor. The regulation parameter and the divergent oeÆient are related, andthis helps produe �nite energy. While the expansion of the solution around the sliver in thissubsetion is well de�ned in alulating oeÆients in front of states in the Fok spae, it is notwell de�ned in alulating the energy of the solution. It would be interesting to �nd a moresystemati way to expand the solution for large �, in partiular, in the ontext of VSFT.7 Conluding RemarksWe �nd it tantalizing that projetors play a signi�ant role in the onstrution of solutions ofOSFT. Projetors are essentially the solutions of vauum string �eld theory (VSFT), so thisfat should help relate OSFT to VSFT and, with some luk, to obtain a regular form of VSFT.In addition to �nding new solutions of OSFT, the development of VSFT may pave the way forfurther progress in this �eld. 55



The role of projetors was somewhat hidden in the tahyon vauum solution of Shnabl [2℄.The L0, L?0 struture assoiated with the geometry of the wedge states seemed to be the entraland neessary ingredient. In [5℄ it was found that the L0, L?0 struture is not unique to thewedge states. Inluding other onditions required by solvability, one is led to speial projetors.In this work we have used reparameterizations to show that any twist-invariant, single-splitprojetor furnishes a solution. It is not required to have a speial projetor, but the form of thesolution simpli�es onsiderably for that ase. This is a satisfying onlusion: eah single-splitprojetor furnishes a solution in a di�erent gauge, and all single-split projetors are allowed.Our methods using reparameterizations do not immediately apply to multiple-split proje-tors, i.e., onformal frames where the oordinate urve goes to in�nity at other points besidesthe string midpoint. These projetors are not related by regular reparameterizations to thesliver. Examples of multiple-split speial projetors were given in [5℄. It is not diÆult toonstrut formal solutions for a ertain lass of multiple-split speial projetors by inserting op-erators analogous to those in setion 4, but it is not obvious if the alulation of their energiesis well de�ned.While the idea of using reparameterizations is ertainly not new, it was generally felt thatonrete omputations would be diÆult sine the operators that perform reparameterizationsare extremely diÆult to onstrut. We found a way to implement the neessary reparameter-izations without onstruting the operators.One partiularly interesting by-produt is the onstrution of an abelian algebra of statesfor any projetor. The surfae states interpolate between the identity and the projetor. Forthe sliver this is the familiar algebra of wedge states. We believe, although we have not proven,that the wedge states are the unique states that interpolate between the identity and the sliverand star-multiply among themselves. If this is the ase, the possibility of reparameterizationsimplies that the interpolating family must be a anonial unique objet for any projetor. Inthis sense there is no preferred projetor and our use of the sliver is reognized to be just atehnial tool.AknowledgmentsWe would like to thank Ian Ellwood and Wati Taylor for helpful onversations. The workof LR is supported in part by the National Siene Foundation Grant No. PHY-0354776. Anyopinions, �ndings, and onlusions or reommendations expressed in this material are those ofthe authors and do not neessarily reet the views of the National Siene Foundation. Thework of BZ is supported in part by the U.S. DOE grant DE-FC02-94ER40818.56
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