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tThe ta
hyon va
uum solution of S
hnabl is based on the wedge states, whi
h 
lose underthe star produ
t and interpolate between the identity state and the sliver proje
tor. We usereparameterizations to solve the long-standing problem of �nding an analogous family of statesfor arbitrary proje
tors and to 
onstru
t analyti
 solutions based on them. The solutionssimplify for spe
ial proje
tors and allow expli
it 
al
ulations in the level expansion. We test thesolutions in detail for a one-parameter family of spe
ial proje
tors that in
ludes the sliver andthe butter
y. Reparameterizations further allow a one-parameter deformation of the solutionfor a given proje
tor, and in a 
ertain limit the solution takes the form of an operator insertionon the proje
tor. We dis
uss impli
ations of our work for va
uum string �eld theory.
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 solution of open string �eld theory (OSFT) [1℄, 
orresponding to 
ondensationof the open string ta
hyon, was re
ently 
onstru
ted by S
hnabl [2℄ and further studied in1



[3, 4, 5, 6, 7, 8℄. The starting point of [2℄ is a 
lever gauge-�xing 
ondition, whi
h makes thein�nite system of equations of motion amenable to a re
ursive analysis. S
hnabl's gauge 
hoi
efor the open string �eld 	 is B0	 = 0 ; (1.1)where B0 is the antighost zero mode in the 
onformal frame z = fS(�) = 2� ar
tan � of thesliver1: B0 � I dz2�i z b(z) = I d�2�i fS(�)f 0S(�) b(�)= I d�2�i (1 + �2) ar
tan � b(�) = b0 + 23 b2 � 215 b4 + : : : : (1.2)The sliver state W1 is a nontrivial proje
tor of the open string star algebra, i.e., a string �elddi�erent from the identity that squares to itself [9, 10, 11, 12℄. The wedge states W� with � � 0are a family of states whi
h interpolate between the sliver W1 and the identity W0 � I, andthey obey the abelian relation: W� �W� =W�+� : (1.3)S
hnabl's solution is 
onstru
ted in terms of a state  �, with � � 0, whi
h is the wedge stateW�+1 with suitable operator insertions. One de�nes the derivative state 0� � d �d� ; � � 0; (1.4)and then S
hnabl's solution 
an be written as follows:2	 = limN!1h� N + NXn=0  0n i : (1.5)A simple des
ription of the states  � was presented in [3℄ using the CFT formulation of OSFT[13℄.While the sliver was histori
ally the �rst example of a proje
tor, it was soon realized thatin�nitely many proje
tors exist [14℄. Let us restri
t attention to the subset of string �eldsknown as surfa
e states. A surfa
e state is spe
i�ed by a lo
al 
oordinate map z = f(�) fromthe 
anoni
al half-disk D + � f� j =� � 0 ; j�j � 1g to a region in the upper-half plane (UHP)H � fz j =z � 0g. The surfa
e state jfi is de�ned by its inner produ
th�; f i = h f Æ �(0) iH (1.6)1 For 
onvenien
e, we have res
aled the traditional 
onformal frame of the sliver by a fa
tor of 2=�. This doesnot 
hange the sliver state be
ause of the SL(2; R) invarian
e of the va
uum, nor does it a�e
t the de�nitionof B0.2 We use the 
onventions of [3℄, and the solution di�ers from that in [2℄ by an overall sign. See the beginningof se
tion 2 of [3℄ for more details. 2



with any state � in the Fo
k spa
e. The 
ondition that jfi is a proje
tor is f(i) = 1 [14℄,namely, the lo
al 
oordinate 
urve goes to the boundary of H at the open string midpoint� = i. (Throughout this paper, we will restri
t our 
onsiderations to \single-split" proje
tors,i.e., surfa
e states whose 
oordinate 
urve goes to in�nity only at the open string midpoint.) Theasso
iated open string fun
tional 	f [X(�)℄ is split, namely, it is the produ
t of a fun
tional of theleft half of the string times a fun
tional of the right half of the string, 	f [X℄ = 	Lf (XL)	Rf (XR).In the half-string formalism of OSFT [15, 16℄, where string �elds are regarded as operatorsa
ting on the spa
e of half-string fun
tionals, surfa
e state proje
tors are interpreted as rank-one proje
tors [14℄. From this viewpoint, all surfa
e state proje
tors should be equivalent. Thisis the intuition provided by �nite dimensional ve
tor spa
es, where all rank-one proje
tors arerelated by similarity transformations.These observations raise the natural question of whether S
hnabl's solution, based on thesliver proje
tor, 
an be generalized to solutions based on a generi
 surfa
e state proje
tor.In this paper we �nd that this is indeed the 
ase. We also �nd, however, that the solutionte
hni
ally simpli�es for the sub
lass of spe
ial proje
tors [5℄, whi
h in
ludes the sliver as its
anoni
al representative. While we give a geometri
 des
ription of the solution asso
iated witha general proje
tor, with the te
hnology 
urrently available we are able to evaluate its expli
itFo
k spa
e expansion only when the proje
tor is spe
ial.It is useful at this point to re
all some fa
ts about spe
ial proje
tors [5℄. The 
ru
ial algebrai
property of a spe
ial proje
tor is that the zero mode L0 of the energy-momentum tensor in theframe of the proje
tor3, L0 � I dz2�i zT (z) = I d�2�i f(�)f 0(�)T (�) ; (1.7)and its BPZ 
onjugate L?0 obey[L0;L?0℄ = s(L0 + L?0) ; s > 0 : (1.8)The sliver is a spe
ial proje
tor with s = 1 and the butter
y is a spe
ial proje
tor with s = 2.The sliver and the butter
y �t into an in�nite \hypergeometri
" 
olle
tion of spe
ial proje
tors| one proje
tor P (s)1 for ea
h real s � 1 | whi
h was brie
y des
ribed in [5℄. We believethat the hypergeometri
 
olle
tion 
ontains all the single-split spe
ial proje
tors. For spe
ialproje
tors, we shall use the notationsL � L0s ; L? � L?0s : (1.9)3The de�nition of a spe
ial proje
tor further requires the 
onformal frame f(�) to obey 
ertain regularity
onditions [5℄ whi
h guarantee that the operator L+ = 1s (L0+L?0) has a non-anomalous left/right de
omposition.3



In terms of L and L? the algebra (1.8) takes the 
anoni
al form[L; L?℄ = L + L? : (1.10)For any spe
ial proje
tor P1 a family of states P� with � � 0 analogous to the wedge statefamily of the sliver is des
ribed by the following simple expression:P� = e��2 L+I ; L+ � L+ L� : (1.11)The states in the family interpolate between the proje
tor P1 and the identity P0 � I, andthey obey the relation: P� � P� = P�+� : (1.12)We are now in the position to outline our strategy. Our starting point is the fa
t that allsingle-split, twist-invariant proje
tors 
an be related to one another by a reparameterizationof the open string 
oordinate. Reparameterizations are generated in�nitesimally by the star-algebra derivations Kn = Ln � (�)nL�n and are familiar gauge symmetries of OSFT [17, 18℄.Given a generi
 proje
tor P1, there exists a �nite reparameterization that relates it to thesliver, formally implemented by an operator eH , with H a linear 
ombination of Kn's:P1 = eHW1 ; H = 1Xn=1 anKn : (1.13)A
ting with eH on the solution 	W1 asso
iated with the sliver W1, we �nd the solution 	P1asso
iated with P1: 	P1 � eH	W1 : (1.14)By 
onstru
tion, 	P1 is gauge equivalent to 	W1. The idea of using reparameterizations asa solution-generating te
hnique was already noted in [3℄. The solution 	P1 will take the form(1.5), with the repla
ement of all the elements asso
iated with the sliver by the 
orrespondingelements asso
iated with P1. In parti
ular, we 
an de�ne an abelian family of states interpo-lating between the identity and a generi
 proje
tor P1 simply by taking P� � eHW�. If wewrite W� = e��2 L+S I ; (1.15)where the subs
ript S in L+S denotes that it is an operator related to the sliver, we haveP� � eHW� = eH e��2 L+S e�H eH I � e��2 L+ I : (1.16)Note that the identity is annihilated by H and we have de�nedL+ � eH L+S e�H : (1.17)4



Similarly we take L � eH LS e�H ; L? � eH L?S e�H : (1.18)The operators L and L? are BPZ 
onjugates of ea
h other sin
e H? = �H, and they obeythe 
anoni
al algebra (1.10). If the proje
tor P1 is spe
ial, the de�nition (1.18) turns out to
oin
ide with (1.9), but for general proje
tors the operator L is not proportional to L0.It is in pra
ti
e prohibitively diÆ
ult to determine the operator H. The 
onstru
tion,while motivated by the above 
onsiderations, must be realized di�erently. The main resultof this paper is to give a geometri
 des
ription of the reparameterization pro
edure and a
on
rete implementation using the CFT language of OSFT. In parti
ular we provide a geometri
des
ription for the family of interpolating states P� asso
iated with an arbitrary proje
tor thatmakes the abelian relation (1.12) obvious.The des
ription simpli�es further for the 
ase of a spe
ial proje
tor. It should be emphasizedthat the geometri
al 
onstru
tion of the family of states has been a long-standing question |there have been several attempts for the butter
y. In this paper we �nd out that the answer isquite simple if one uses the 
onformal frame of the proje
tor itself.It is remarkable that proje
tors play a 
entral role in the 
onstru
tion of the analyti
 ta
hyonsolution. Proje
tors have been intensively studied in the 
ontext of va
uum string �eld theory(VSFT) [19, 20℄. In its simplest in
arnation, VSFT is the 
onje
ture that the OSFT a
tionexpanded around the ta
hyon va
uum has a kineti
 operator Q of the form [20℄:Q = 
(i)� 
(�i)2i : (1.19)Taking a matter/ghost fa
torized ansatz for 
lassi
al solutions, 	 = 	g 
 	m, the VSFTequations of motion redu
e to proje
tor equations for the matter part 	m. VSFT 
orre
tlydes
ribes the 
lassi
al dynami
s of D-branes [11, 12, 21℄, but it is somewhat singular. Forexample, the overall 
onstant in front of the VSFT a
tion must be taken to be formally in�nite.It is believed that VSFT arises from OSFT, expanded around the ta
hyon va
uum, by a singular�eld rede�nition. Moreover, the operator (1.19) is expe
ted to be the leading term of a more
ompli
ated kineti
 operator that involves the matter energy-momentum tensor as well, asdis
ussed in more detail in [22℄. One spe
i�
 example of su
h a �eld rede�nition given in [20℄was the reparameterization that maps wedge states to one another, whi
h in a singular limitformally maps all wedge states to the sliver. Interestingly, this reparameterization emergesnaturally in the 
ontext of this paper. Indeed, it turns out that for ea
h proje
tor P1 there is areparameterization that leaves the proje
tor invariant but maps the states in the interpolatingfamily to one another. It takes P� to Pe2��, where � is an arbitrary real number. If we implement5



this reparameterization on the sliver-based solution and take the large � limit, all wedge statesapproa
h the sliver and the solution takes the form of an operator insertion on the sliver. A
losely related approa
h in 
onstru
ting a solution in a series expansion was proposed sometime ago in [23℄ and investigated further in [24℄. It would be interesting to �nd a systemati
way to derive the kineti
 operator of VSFT starting from a suitably reparameterized version ofthe ta
hyon va
uum solution.We begin in se
tion 2 with a general introdu
tion to reparameterizations. After reviewingbasi
 de�nitions and algebrai
 properties, we explain why any two regular twist-invariant surfa
estates 
an be related by a reparameterization. The geometri
al reason is simple. A surfa
e state
an be de�ned by what we 
all the redu
ed surfa
e: it is the surfa
e H for the inner produ
tin (1.6) minus the lo
al 
oordinate pat
h. In this pi
ture the open string is a parameterizedboundary 
urve 
reated by removing the pat
h. The two string endpoints and the stringmidpoint de�ne three spe
ial points on the boundary of the redu
ed surfa
e. Given two surfa
estates, the Riemann mapping theorem ensures that there is a 
onformal map between theredu
ed surfa
es that maps the two endpoints and the midpoint of one string into those of theother. This map de�nes a relationship between the parameterizations of the two open strings;this is the indu
ed reparameterization. When the surfa
e state is a proje
tor, the redu
edsurfa
e is split in two at the point where the open string midpoint rea
hes the boundary of thefull surfa
e. When we map the redu
ed surfa
es of two proje
tors to ea
h other, ea
h of thesplit surfa
es of one redu
ed surfa
e is mapped to a split surfa
e of the other redu
ed surfa
e.Sin
e ea
h split surfa
e has only two spe
ial points (a string midpoint and a string endpoint),the 
onformal map has a one-parameter ambiguity.4In se
tion 3 we use the above insights to give the geometri
 
onstru
tion of the abelianfamily P� asso
iated with a generi
 proje
tor. In fa
t, on
e we 
hoose a map R that relates thesliver to the 
hosen proje
tor, the surfa
e states P� are obtained from the wedge states by areparameterization naturally indu
ed by R. This 
onstru
tion represents the surfa
e states P�using the 
onformal frame of the proje
tor: the lo
al 
oordinate pat
h is that of the proje
torbut the surfa
e only 
overs part of the UHP. The geometri
 des
ription of the surfa
e states P�simpli�es in this 
onformal frame | a fa
t that was missed in the earlier attempts to des
ribethem. In x3.2 we spe
ialize to spe
ial proje
tors, for whi
h we �nd remarkable simpli�
ation.The reparameterization map that relates the sliver to the spe
ial proje
tor in the hypergeometri

olle
tion with the parameter s 
an be 
hosen to be simply R(z) = zs, where z is the 
oordinatein the UHP. For any �xed s, the regions of the UHP needed to represent states P� with di�erent4The maps of the two split surfa
es are related by a symmetry 
onstraint, so there are no two independentparameters. 6



values of � are related to one another by res
aling. This is related to the fa
t that for spe
ialproje
tors the operator L de�ned in (1.18) is proportional to L0, whi
h is the dilation operatorin the 
onformal frame of the proje
tor.In se
tion 4 we begin by dis
ussing the algebrai
 framework of the ta
hyon va
uum solution.We then present our main result, the CFT 
onstru
tion of the solution using reparameteriza-tions. We also present a detailed analysis of various operator insertions in the CFT des
riptionand derive useful formulas. In se
tion 5 we use the operator formalism to derive an expressionfor the solutions asso
iated with spe
ial proje
tors. The solution is written as a sequen
e ofnormal-ordered operators a
ting on the va
uum and 
an be readily expanded in level. Ourexpression has two parameters, s 2 [1;1) labeling the spe
ial proje
tors and � 2 (�1;1)labeling the reparameterizations of the solution that leave the proje
tor invariant.In se
tion 6 we give the level expansion of the solutions for spe
ial proje
tors up to levelfour. We �rst set � = 0 and examine the dependen
e of the energy on s to level zero, two, andfour. We �nd that as the level is in
reased the energy density approa
hes the expe
ted valuethat 
an
els the D-brane tension. The solutions 
onstru
ted by our method 
an be written interms of even-moded total Virasoro operators and even-moded antighost operators in additionto the modes of 
 ghost. This stru
ture imposes additional 
onstraints, and thus the solutionsbelong to a resti
ted se
tor of the universal subspa
e of the CFT. We then examine the mosta

urate expression for the solution in the Siegel gauge 
omputed in [25℄ and �nd eviden
e thatit does not belong to the restri
ted universal subspa
e at level four. We thus 
on
lude that thesolution in the Siegel gauge 
annot be obtained by our 
onstru
tion. In x6.4 we examine thesolution for a �xed value of s and in the limit as � be
omes large. The leading term in thesolution takes the form of an insertion of the 
 ghost in P� multiplied by e2�=s and by a �nite,
al
ulable 
oeÆ
ient. We o�er some 
on
luding remarks in se
tion 7.2 ReparameterizationsIn this se
tion we des
ribe some general fa
ts about reparameterizations. The �rst three subse
-tions are for a review of well-known material. In x2.1 we de�ne the notion of midpoint-preservingreparameterization ' of the open string 
oordinate, t! t0 = '(t), with t = ei�. Correspondingto ' there is an operator U' a
ting on the spa
e of string �elds that obeys a number of algebrai
properties, as explained in x2.2. The transformation 	 ! U'	 is a gauge transformation ofOSFT with a vanishing inhomogeneous term, as we review in x2.3. Finally, in x2.4 we explainthe key idea: any two regular twist-invariant surfa
e states 
an be related to one another bya unique reparameterization. For surfa
e states that 
orrespond to single-split proje
tors, an7



interesting and useful ambiguity arises.In the rest of the paper we shall use these fa
ts to �nd solutions of OSFT 
orresponding to ageneral proje
tor, starting from S
hnabl's solution 
orresponding to the sliver. By 
onstru
tion,all these solutions will be gauge equivalent.2.1 De�nitionsLet us start by re
alling the de�nition of midpoint-preserving reparameterizations (hen
eforth,simply reparameterizations) [17℄. A reparameterization of the open string 
oordinate is a map� ! �0 = �(�) (with � ; �0 2 [0 ; �℄) that obeys�(� � �) = � � �(�) : (2.1)Note that this is a mu
h stronger 
ondition on � than just �xing the midpoint � = �=2: itimplies that points at equal parameter distan
e from the midpoint remain at equal parameterdistan
e after the map. We will use the 
oordinate t � exp(i�) de�ned on the unit semi
ir
lein the upper half plane. It follows from (2.1) that a map t ! t0 = '(t) (with jtj = jt0j = 1,<t � 0 ;<t0 � 0) is a reparameterization if'��1t� = � 1'(t) : (2.2)For an in�nitesimal reparameterization we write the general ansatz'(t) = t + � v(t) +O(�2) ; (2.3)where � is an in�nitesimal real parameter and v(t) is a 
omplex ve
tor. We dedu
e from (2.2)that the ve
tor �eld v(t) must be BPZ odd:v��1t� = 1t2 v(t) : (2.4)Hen
e v(t) is a linear 
ombination of the BPZ odd ve
tor �elds vKn 
orresponding to the familiarderivations Kn = Ln � (�1)nL�n:v(t) = 1Xn=1 anvKn = 1Xn=1 an �tn+1 � (�1)nt�n+1� : (2.5)By de�nition, reparameterizations preserve the unit norm of jtj. Using (2.3) this 
ondition givest v(t)� + t�v(t) = 0 ; (2.6)8



whi
h implies that the 
oeÆ
ients an in (2.5) satisfyan = (�)na�n : (2.7)We see that an must be real for n even and imaginary for n odd.A �nite reparameterization '(t) 
an be obtained by exponentiation of a ve
tor v(t) of theform (2.5): exp(v(t)�t) t = '(t) : (2.8)Indeed, the 
ondition (2.4) implies that '(t) satis�es (2.2). Moreover, (2.6) implies that '(t)has unit norm. In general '(t) is de�ned only on the unit semi
ir
le with jtj = 1 and 
annotbe extended to a holomorphi
 fun
tion inside the lo
al 
oordinate half-disk D + . If v is a �nitelinear 
ombination of vKn ve
tors, '(t) 
an be extended to a �nite annulus in the upper-halfplane H 
ontaining the unit semi
ir
le.2.2 The operator U'We now 
onsider the operator U' that implements a �nite reparameterization. The operator isde�ned to a
t on any operator O(t) in the CFT asU'O(t)U�1' = ' Æ O(t) : (2.9)This is the same relation one has for operators that realize the 
onformal maps used for surfa
estates, the di�eren
e being that here the a
tion on O is only de�ned for jtj = 1 and typi
allydoes not extend to the origin. We write5U' = e�H ; H = 1Xn=1 anKn ; an = (�1)na�n : (2.10)We 
an verify that the reality 
ondition on the 
oeÆ
ients an guarantees that U' preserves thereality 
ondition of the string �eld. In OSFT the string �eld 	 obeys the reality 
ondition:	 = h
�1 Æ bpz(	) : (2.11)BPZ 
onjugation (bpz) and hermitian 
onjugation (h
) a
t on Virasoro generators as follows:bpz(Ln) = (�1)nL�n ; h
(Ln) = L�n : (2.12)5We use the symbol H rather than K sin
e we reserve the latter for the operator introdu
ed in [5℄: K �eL+ � L+R � L+L . 9



For any operator O we let O? denote its BPZ 
onjugate. Re
alling that BPZ 
onjugation isa linear transformation while hermitian 
onjugation is an anti-linear transformation, we easily
he
k that reparameterizations preserve the reality of the string �eld:h
�1 Æ bpz (U'j	i) = h
�1 �hbpz(	)jePn anKn�= e�Pn(�1)na�nKnjh
�1 Æ bpz(	)i= ePn anKnj	i = U'j	i : (2.13)The operator U' obeys the following formal properties:U?' = U�1' ; (2.14)[QB; U'℄ = 0 ; (2.15)U' I = U?' I = I ; (2.16)U'	1 � U'	2 = U'(	1 �	2) ; 8 	1 ;	2 : (2.17)These identities are the exponentiated version of the following familiar properties of H =P1n=1 anKn: H? = �H ; (2.18)[QB; H℄ = 0 ; (2.19)H I = 0 ; (2.20)H	1 �	2 +	1 �H	2 = H(	1 �	2) ; 8 	1 ;	2 : (2.21)The properties (2.14){(2.17) 
an also be understood from the viewpoint of OSFT withoutreferen
e to the operator H. For example, sin
e points at equal parameter distan
e from themidpoint remain at equal parameter distan
e after reparameterizations, (2.17) follows at on
efrom the pi
ture of the star produ
t as gluing of half open string fun
tionals. Similarly, (2.16)follows, at least formally, from the understanding of the identity string �eld as the fun
tionalthat identi�es the left and the the right halves of the open string. In [5℄ it was found thatthe property (2.20) may fail to hold for 
ertain singular BPZ odd operators H. The �nitereparameterizations that we expli
itly 
onsider in this paper appear to be perfe
tly smooth,and we believe that they obey all the formal properties (2.14){(2.17). Following the dis
ussionof [5℄, we note that a regular H should admit a left/right de
omposition H = HL +HR that isnon-anomalous:[HL ; HR℄ = 0 ; HL(A �B) = (HLA) �B ; HR(A �B) = A � (HRB) (2.22)for general string �elds A and B. 10



2.3 Reparameterizations as gauge symmetriesReparameterizations are well-known gauge symmetries of OSFT. (See, for example, [18℄ for anearly general dis
ussion.) In�nitesimal gauge transformations take the familiar formÆ�	 = QB� +	 � �� � �	 ; (2.23)where, in the 
lassi
al theory, 	 
arries ghost number one and the gauge parameter � 
arriesghost number zero. Choose now � = HRI = �HLI. The inhomogeneous term in (2.23)vanishes sin
e [QB; HR℄ = 0 and QBI = 0. Using (2.22) we haveÆHRI	 = 	 � (HRI) + (HLI) �	 = HR(	 � I) +HL(I �	) = (HR +HL)	 = H	 : (2.24)This shows that the in�nitesimal reparameterization generated by H 
an be viewed as anin�nitesimal gauge transformation with gauge parameter HRI. Exponentiating this relation,we 
laim that U'	 � eH	 = U�1' �	 � U' ; (2.25)where the string �elds U' and U�1' are de�ned byU' � exp�(HRI) � I +HRI + 12HRI �HRI + : : : 1n! (HRI)n + : : : ; (2.26)U�1' � exp�(�HRI) � I �HRI + 12HRI �HRI + : : : (�1)nn! (HRI)n + : : : ; (2.27)and they obey U�1' � U' = U' � U�1' = I : (2.28)It is straighforward to 
he
k that for arbitrary string �eld A,exp�(HLI) � A = eHLA ; and A � exp�(HRI) = eHRA : (2.29)These identities, together with [HL; HR℄ = 0, 
an be used to show that the equality in (2.25)holds. The right-hand side of (2.25) has the stru
ture of a �nite gauge-transformation in OSFT:	 ! U�1' �	 � U' + U�1' �QBU' ; (2.30)where the inhomogeneous term U�1' �QBU' is identi
ally zero.Sin
e reparameterizations are gauge symmetries, it is 
lear that they map a 
lassi
al solutionof OSFT to other gauge-equivalent 
lassi
al solutions. If 	 is a solution then U'	 is also asolution, as is veri�ed using the formal properties (2.15) and (2.17):QB	+	 �	 = 0 �! U'(QB	+	 �	) = 0 �! QBU'	+ U'	 � U'	 = 0 : (2.31)11



It is also 
lear that 	 and U' have the same va
uum energy. Indeed, using (2.14) and (2.15),hU'	; QBU'	i = hbpz(U'	)jQBU'j	i = hbpz(	)jU�1' U'QBj	i = h	; QB	i : (2.32)Furthermore, from (2.14) and (2.17),hU'	; U'	 � U'	i � hbpz(U'	)jU'	 � U'	i = hbpz(	)jU�1' U'j	 �	i = h	;	 �	i : (2.33)The two equations (2.32) and (2.33) guarantee that if the equations of motion for 	 are obeyedwhen 
ontra
ted with 	 itself, the same is true for U'	.2.4 Reparameterizations of surfa
e statesWe now explain how reparameterizations 
an be used to relate surfa
e states. Consider a twist-invariant surfa
e states jfi, spe
i�ed as usual by a lo
al 
oordinate map z = f(�) from the
anoni
al half-disk D + to a region in the upper half plane H . (Both D + and H are de�nedabove (1.6).) We denote by V(f) the redu
ed surfa
e 
orresponding to the surfa
e state jfi. Theredu
ed surfa
e is de�ned as the 
omplement of the lo
al 
oordinate half-disk in H :V(f) � H =f(D +) : (2.34)The redu
ed surfa
e V(f) has two types of boundary. The �rst type is the boundary where openstring boundary 
onditions apply; it is the part of the boundary of H whi
h belongs to V(f).The se
ond type is provided by the 
oordinate 
urve Cf whi
h represents the open string:Cf � ff(t) 2 H ; jtj = 1 ; =(t) � 0g : (2.35)Let us assume for the time being that the lo
al 
oordinate 
urve does not go to in�nity anywhere.Then V(f) has the topology of a disk. The twist invarian
e f(��) = �f(�), together with thestandard 
onjugation symmetry (f(�))� = f(��), implies that f(�) = �(f(���))� so V(f) isinvariant under a re
e
tion about the imaginary z axis. We now 
laim that given any two su
hsurfa
e states jfi and jgi, there exists a reparameterization ' (depending of 
ourse on f andg) that relates them: jgi = U'jfi : (2.36)This is shown as follows. By the Riemann mapping theorem, there exists a holomorphi
 mapz0 = bR(z) relating the redu
ed surfa
es V(f) and V(g):V(g) = bR(V(f)) : (2.37)12



We 
onstru
t the map using the symmetry of the problem: �rst we uniquely map the regionto the right of the imaginary axis of V(f) to that of V(g) by requiring that f(1), f(i), andin�nity are mapped to g(1), g(i), and in�nity, respe
tively. We then extend the map to theleft of the imaginary line using S
hwarz's re
e
tion prin
iple, whi
h applied here gives bR(z) =�( bR(�z�))�. The map bR so 
onstru
ted takes the lo
al 
oordinate 
urve Cf to the lo
al
oordinate 
urve Cg (de�ned by (2.35) with f repla
ed by g):Cg = bR(Cf) : (2.38)A reparameterization t0 = '(t) of the two 
oordinate 
urves is de�ned impli
itly by the relationbR(f(t)) � g('(t)) : (2.39)It follows from the above 
onstru
tion that ' is a reparameterization. Indeed one readily veri�esthat bR�f��1t�� = bR(f(�t�)) = bR(�(f(t))�) = �( bR(f(t)))�= �(g('(t)))� = g(�('(t))�) = g�� 1'(t)� ; (2.40)whi
h establishes that (2.2) holds.We now give a formal argument that explains why (2.36) holds. The surfa
e state hf j isde�ned by its overlap with a generi
 state j	i. Without loss of generality, we 
an restri
t tostates j	i = jXbi whi
h are eigenstates of the position operator6 X̂(t),X̂(t)jXbi = Xb(t)jXbi : (2.41)The overlap hf jXbi is 
omputed by the path-integral over V(f), where we impose open stringboundary 
onditions on the portion of the boundary with =z = 0 and the boundary 
onditionsX(f(t)) = Xb(t) on the 
oordinate 
urve Cf . S
hemati
ally,hf jXbi = Zz2V(f) [dX(z)℄ e�SBCFT [X℄ with X(f(t)) � Xb(t) on Cf : (2.42)Applying the reparameterization z ! z0 = bR(z), we see that hf jXbi is equivalently 
omputedby the path-integral over V(g), provided we keep tra
k of how the boundary 
onditions aremapped,hf jXbi = Zz02V(g) [dX(z0)℄ e�SBCFT [X℄ with X(g(t0)) � Xb('�1(t0)) on Cg : (2.43)6For notational simpli
ity, we are fo
ussing on the matter part of the CFT.13



The path-integral in (2.43) 
an now be interpreted as 
omputing the overlap of the surfa
e statehgj with the position eigenstate jXb Æ '�1i. Thushf jXbi = hgjXb Æ '�1i : (2.44)To pro
eed, we note that the reparameterization U' that givesU'X̂(t)U�1' = X̂('(t)) ; (2.45)will also give U'jXbi = jXb Æ '�1i : (2.46)Indeed̂X(t)U'jXbi = U'U�1' X̂(t)U'jXbi = U'X̂('�1(t)) jXbi = Xb('�1(t))U'jXbi ; (2.47)
on�rming that U'jXbi is the X̂(t) eigenstate of eigenvalue Xb Æ '�1(t), as stated in (2.46).Ba
k in (2.44), we see that hf jXbi = hgjU'jXbi 8 jXbi ; (2.48)whi
h implies hgj = hf jU�1' = hf jU?' : (2.49)This is the BPZ 
onjugate of the 
laimed relation (2.36).So far we have assumed that the 
oordinate 
urves Cf and Cg do not rea
h in�nity. It is vitalfor us to 
onsider proje
tors, for whi
h the 
oordinate 
urve does rea
h in�nity at the open stringmidpoint: f(i) =1. If we assume that the midpoint is the only point for whi
h f(t) is in�nitethen the redu
ed surfa
e V(f) splits into two disks V(f)� and V(f)+, with <z < 0 and <z > 0,respe
tively, joined at the point at in�nity. The 
laim (2.36) still holds in this 
ase: any twosu
h twist-invariant proje
tors jfi and jgi 
an be related by a reparameterization '. We de�nethe map bR for V(f)+ and, as before, we extend it to V(f)�. Again, the map bR : V(f)+ ! V(g)+,is guaranteed to exist by the Riemann mapping theorem, but this time it is not unique. Whilebefore f(i) and 1 provided two di�erent points whose maps 
ould be 
onstrained, now theyare the same one. We partially �x the SL(2; R) symmetry by requiring that f(1) and f(i) =1are mapped to g(1) and g(i) = 1, respe
tively. There is one degree of freedom left un�xed,so there exists a one parameter family of analyti
 maps from V(f)+ to V(g)+. This redundan
ywill play an important role in the following.Finally, we note that we 
an never hope to relate regular surfa
e states to proje
tors usingreparameterizations, sin
e the topologies of the redu
ed surfa
es V(f) are di�erent in the two
lasses. 14



3 Abelian families for general proje
torsThe basi
 building blo
k of S
hnabl's solution is the state  �, whi
h is 
onstru
ted from thewedge stateW�+1 by adding suitable operator insertions. In this se
tion we generalize the wedgestates W�, asso
iated with the sliver W1, to states P� asso
iated with a generi
 twist-invariantproje
tor P1. In the next se
tion we shall deal with the operator insertions and 
onstru
t theanalog of the state  � for a generi
 proje
tor.As we have explained in x2.4, given a proje
tor P1, there exists a reparameterization ' thatrelates it to the sliver: W1 = U'P1 : (3.1)(There is in fa
t a one-parameter family of su
h reparameterizations. For now we simply 
hooseone of them.) We de�ne P� by P� � U�1' W� = U'�1W� : (3.2)It follows from (2.16) that P0 = I and from (2.17) that the states P� obey the same abelianrelation as W�:P� � P� = U'�1W� � U'�1W� = U'�1(W� �W�) = U'�1(W�+�) = P�+� : (3.3)In x3.1 we give a geometri
 
onstru
tion of P� by determining the shape of the asso
iatedone-pun
tured disk P� in the presentation where the lo
al 
oordinate pat
h is that of theproje
tor P1. In x3.2 we fo
us on spe
ial proje
tors, for whi
h the 
onstru
tion simpli�es
onsiderably and the reparameterization to the sliver 
an be given in 
losed form. For a spe
ialproje
tor the 
orresponding abelian family obeys a remarkable geometri
 property: the surfa
esP� with di�erent values of � are related to one another by overall 
onformal s
aling.3.1 Abelian families by reparameterizationsGiven a single-split, twist-invariant proje
tor jfi, we wish to �nd a reparameterization thatrelates it to the sliver. In the notations of x2.4, we write the sliver as jW1i � jgi withz0 = g(�) = 2� ar
tan(�) and look for a one-parameter family of 
onformal maps bR� : V(f) ! V(g).From now on we shall drop the supers
ript in V(f) ! V, and we rename the sliver's 
oordinatez0 ! zS and the sliver's region V(g) ! U .To des
ribe the 
onformal maps bR�(z) we need to de�ne a set of 
urves and regions inthe 
onformal plane. We denote by C+0 and C�0 the right and left parts, respe
tively, of the
oordinate 
urve C0 of the proje
tor jfi. It is 
onvenient to extend C+0 and C�0 by 
omplex15



Figure 1: Left: Coordinate 
urves C�0 of the proje
tor and (shaded) regions V� to the left andright of the 
oordinate disk. Right: Coordinate 
urves V �0 for the sliver and (shaded) regionsU� to the left and right of the 
oordinate disk. The map bR relates the redu
ed surfa
es ofthe two proje
tors. It takes V� to U� and de�nes the reparameterization that relates the twoproje
tors.
onjugation to 
urves on the full plane, making the extended 
urves invariant under 
omplex
onjugation. For twist invarian
e of the proje
tors, the 
urve C�0 is determined by C+0 : z 2 C�0if �z 2 C+0 . The 
urve C�0 is the mirror image of C+0 a
ross the imaginary axis. (See Figure 1.)Let V+ denote the region of the z-plane to the right of C+0 and let V� denote the regionof the z-plane to the left of C�0 . Sin
e the 
oordinate 
urves rea
h the point at in�nity, bothV+ and V� are 
onformally equivalent to the UHP, with the role of the real axis in the UHPplayed by the 
urves C�0 . The union of V+ and V� is V, the surfa
e of the proje
tor minus its
oordinate disk. Let us de�ne analogous regions U� for the sliver as follows:U+ = nzS��� <(zS) � 12 o ; U� = nzS��� <(zS) � �12 o : (3.4)It is also useful to de�ne verti
al lines V �� in the sliver frame:V �� = n zS ��� <(zS) = �12(1 + �)o : (3.5)The boundaries of U� are V �. Both U+ and U� are 
onformally equivalent to the UHP, withthe role of the real axis in the UHP played by the lines V +0 and V �0 . (See Figure 1.)We are interested in the mapR : V+ ! U+ ; zS = R(z) : (3.6)16



The map must exist sin
e both regions are 
onformal to the UHP. Of 
ourse, the map will takethe boundary C+0 to the boundary V +0 . We impose two additional 
onditions:1. The interse
tion of C+0 with the real axis is mapped to zS = 1=2.2. The point at in�nity on C+0 is mapped to the point at in�nity on V +0 .The map R 
ommutes with the operation of 
omplex 
onjugation: R(z�) = (R(z))�. Thus theportion of the real axis 
ontained in V+ is mapped to the portion of the real axis 
ontainedin U+. We 
an then de�ne the map bR that maps the whole V to the whole U as follows:bR(z) = 8<: R(z) if z 2 V+0 ;�R(�z) if z 2 V�0 : (3.7)It is easy to 
he
k that bR is an odd fun
tion:bR(�z) = � bR(z) : (3.8)The map bR des
ribes a reparameterization between the proje
tor and the sliver. Indeed, lettingf(�) denote the 
oordinate fun
tion of the proje
tor and fS(�S) denote the 
oordinate fun
tionof the sliver, we have the relation �S = f�1Æ bRÆf(�). As be�ts a reparameterization, it satis�esthe 
ondition in (2.2).As we have already remarked, the reparameterization bR(z) is not unique: we only spe
i�edtwo out of the three 
onditions needed to determine a map H ! H uniquely. The remainingambiguity is that of post-
omposition with the self maps of U+ that leave the points zS = 1=2and zS =1 invariant. Given a fun
tion R0(z) that realizes the map in (3.6) with the 
onditionslisted above, we 
an generate a one-parameter family R�(z) of maps that satisfy the same
onditions as follows: R�(z) � e�2� �R0(z)� 12� + 12 ; (3.9)with �1 < � < 1 an arbitrary real 
onstant. It is 
lear that the map is a s
aling aboutz = 1=2 with s
ale fa
tor e�2�. With R� repla
ing R in (3.7) we obtain a family bR� ofreparameterizations. We will later use this ambiguity to produ
e, for any �xed proje
tor, afamily of solutions parameterized by �.Let us 
ontinue our analysis, assuming that a 
hoi
e of bR has been made for the proje
torunder 
onsideration. Sin
e the fun
tion bR(z) is invertible we 
an de�ne the 
urves C�� as theimage under the inverse fun
tion bR�1 of the verti
al lines V �� :C�� � bR�1(V �� ) : (3.10)17



Figure 2: Left: The surfa
e P� with its 
oordinate disk shaded. Right: The wedge surfa
e W�with its 
oordinate disk shaded.It follows from bR(C�� ) = V �� that<( bR(z)) = 12(1 + �) ; z 2 C+� : (3.11)The various lines V �� and C�� are shown in Fig 1.We now pro
eed to the key step in the 
onstru
tion: we introdu
e a family P� of statesasso
iated with the proje
tor that is related by a reparameterization to the wedge states.Consider �rst the surfa
e W� for the wedge state W� given byWedge state surfa
e W� : �12(1 + �) � <(zS) � 12(1 + �) : (3.12)This surfa
e is shown on the right side of Figure 2. We writeW� = (V �� ; V +� ) ; (3.13)where (C;C 0) denotes the region between the 
urves C and C 0. The 
oordinate disk for W�is (V �0 ; V +0 ). Using z�S for 
oordinates on V �� , the identi�
ation for the surfa
e is des
ribed asfollows: z+S � z�S = 1 + � : (3.14)Now de�ne the surfa
e P� � (C�� ; C+� ) = � bR�1(V �� ) ; bR�1(V +� ) �; (3.15)18



with the identi�
ation inherited from that of the verti
al lines in (3.14). The surfa
e P� isshown on the left side of Figure 2. The 
oordinate disk in P� is the region (C�0 ; C+0 ), or P0without the identi�
ation. It follows that the 
omplement of the 
oordinate disk in W� ismapped by bR�1 to the 
omplement of the 
oordinate disk in P�. We have thus related thestates P� and W� by a reparameterization. Using z� for 
oordinates on C�� , the identi�
ation(3.14) be
omes bR(z+)� bR(z�) = 1 + � : (3.16)Using (3.7) this gives R(z+) +R(�z�) = 1 + � : (3.17)A few 
omments are in order. Sin
e P0 is the 
oordinate disk of the proje
tor with its boundariesidenti�ed, this is simply another surfa
e for the identity state. Moreover, the limit of P� as�!1 is expe
ted to be the surfa
e for the proje
tor itself. In fa
t, the 
urves to be identi�edare going to in�nity, and the identi�
ation be
omes immaterial be
ause in�nity is a single pointin the UHP. We thus obtain the UHP with the 
oordinate pat
h of the proje
tor | this is thesurfa
e for the proje
tor.In order to des
ribe star produ
ts of wedge states it is 
onvenient to use an alternativepresentation of the region (3.12). We use the transition fun
tion (3.14) to move the region(V �� ; V �0 ) to the right of V +� . Sin
e the image of z�S = �1=2 is z+S = (1 + 2�)=2, we haveW� = (V �0 ; V +2�) ; (3.18)with the identi�
ation in (3.14) still operational. (See Figure 3.) Similarly, the surfa
e P� 
analso be represented as P� = (C�0 ; C+2�) ; (3.19)with the identi�
ation in (3.17) still operational. (See Figure 3.)The gluing for the star produ
t of wedge states is performed simply by translation with areal parameter in the sliver frame. Using the representation (3.18), the two verti
al lines to beglued are always in U+. This indu
es the identi�
ation between two C+ 
urves in V+ for thestar produ
t of the states P�. If the 
urve C+� des
ribed with a 
oordinate z< is to be glued toC+�+
 with a 
oordinate z>, then z< and z> are related byR(z>)�R(z<) = 
2 : (3.20)The right-hand side is the real translation parameter that relates the 
urves R(C+� ) andR(C+�+
). 19



Figure 3: Left: The surfa
e P� presented as the region between C�0 and C+2�. Right: The wedgesurfa
e W� presented as the region between V �0 and V +2�.

Figure 4: Left: P� presented as the region between C�0 and C+2�. Middle: P� presented as theregion between C�0 and C+2�. Right: The surfa
e P�+� obtained by gluing the 
omplement ofthe 
oordinate disk in P� to P�.
20



We now demonstrate the abelian relation P� � P� = P�+� geometri
ally. We present P� asthe region (C�0 ; C+2�) and P� as the region (C�0 ; C+2�), as shown in Figure 4. The surfa
e forP� �P� is obtained by mapping the region (C+0 ; C+2�) in P� to the immediate right of C+2� 2 P�and by gluing together C+2� 2 P� and C+0 2 P�. Using 
oordinates z 2 P� and z0 2 P�, thegluing identi�
ation that follows from (3.20) isR(z)�R(z0) = � : (3.21)When z0 2 C+2�, we have<(R(z)) = <(R(z0)) + � = 12(1 + 2�) + � = 12(1 + 2(� + �)) ; (3.22)where we made use of (3.11). It thus follows that, after gluing, the image of C+2� in the z-planeis the 
urve C+2�+2�. The 
omposite surfa
e is the region (C�0 ; C+2�+2�) shown on the right side ofFigure 4. To fully 
on�rm that this is simply P�+� we must examine the identi�
ation betweenC�0 and C+2(�+�). Let z0 2 C�0 and z1 2 C+2� denote two points identi�ed in P� (see Figure 4):R(z1) +R(�z0) = 1 + � : (3.23)Let z2 2 C+0 2 P� denote the point identi�ed with z1 by the following relation:R(z1)� R(z2) = � : (3.24)Let z3 2 C+2� 2 P� be the point asso
iated with z2 on a

ount of having the same imaginaryvalue after mapping by R: R(z3)� R(z2) = � : (3.25)Finally, let z4 2 C+2(�+�) in the z-plane denote the point glued to z3:R(z4)� R(z3) = � : (3.26)The relation between z4 and z0 is the identi�
ation derived from the gluing pro
edure. To �ndthis relation we note that the last three equations imply that R(z1) = R(z4)��. Together with(3.23) we obtain R(z4) + R(�z0) = 1 + � + �, whi
h is the expe
ted gluing relation on P�+�.This 
ompletes the veri�
ation that P� � P� = P�+�.3.2 Abelian families for spe
ial proje
torsFor single-split spe
ial proje
tors, the maps R(z) that relate them to the sliver are expli
itlygiven by R(z) = zs ; (3.27)21



Figure 5: The surfa
e P� for an arbitrary spe
ial proje
tor with parameter s. The 
urves C��and C+� are identi�ed via the relation (z+)s + (�z�)s = 1 + �. The lo
al 
oordinate pat
h isthe region between C�0 and C+0 .where s is the parameter appearing in the algebra [L0;L?0℄ = s(L0+L?0) of the spe
ial proje
tor.We will explain (3.27) in x5.1. The full map from the 
omplement of the 
oordinate disk in theproje
tor to the 
omplement of the 
oordinate disk of the sliver given by (3.7) isbR(z) = 8<: zs if z 2 V+ ;�(�z)s if z 2 V� : (3.28)It follows from (3.27) that the 
oordinate 
urve C+0 is the s-th root of the sliver line V +0 .Similarly C+� is the s-th root of V +� . The surfa
e P� asso
iated with a spe
ial proje
tor withparameter s is shown in Figure 5.Another key feature of spe
ial proje
tors is that we 
an write the map from P� to H interms of the map z = f(�) that de�nes the proje
tor. Re
all that f(�) maps the upper-halfdisk of � to the region (C�0 ; C+0 ) | this is P0 without the identi�
ation The map f(�) is knownexpli
itly for spe
ial proje
tors, as we shall review in x5.1.The �rst step in 
onstru
ting the map from P� to H is relating the 
urves C+� to the 
urveC+0 . From the relation (3.11) we have<(zs) = 12(1 + �) for z 2 C+� and <(zs) = 12 for z 2 C+0 : (3.29)It follows that C+� is obtained from C+0 by a 
onstant s
aling! Indeed,z0 2 C+� ; z 2 C+0 ! z0 = (1 + �)1=s z : (3.30)22



Sin
e it appears frequently later, we de�ne the s
aling fun
tion I�;s as follows:I�;s(z) � (1 + �)1=sz : (3.31)Be
ause of the re
e
tion symmetry about the imaginary axis, C�� is obtained from C�0 by thesame 
onstant s
aling. The identi�
ation for P� is also properly transformed by the s
aling.Indeed, using (3.17) we have(z+0)s + (�z�0)s = 1 + � for P� and (z+)s + (�z�)s = 1 for P0 ; (3.32)and the s
aling z�0 = (1 + �)1=s z� relates the identi�
ations. We thus have a full mapping ofthe surfa
es: P� = I�;s(P0 ) for spe
ial proje
tors : (3.33)For a general proje
tor, this map is diÆ
ult to obtain and does not follow dire
tly from theknowledge of R(z) and f(�).We now 
laim that the map from P� to H is given by the following fun
tion h�:h� = fI Æ f�1 Æ I�1�;s : (3.34)The fun
tion I�1�;s s
ales P� down to P0, with the identi�
ation applied to the boundary of P0.The fun
tion f�1 then maps P0 to the upper-half disk with the inherited identi�
ation. Finally,the fun
tion fI is de�ned by fI(�) = �1� �2 : (3.35)This is the fun
tion that de�nes the identity state: it maps the upper-half disk of �, with theleft and right parts of the semi
ir
le boundary identi�ed via � � �1=�, to H . It is then 
learthat h� maps P� to H .The surfa
e state P� 
orresponding to the surfa
e P� is de�ned byh�; P� i � h f Æ �(0) iP� = h f� Æ �(0) iH (3.36)for any state � in the Fo
k spa
e. The 
orrelation fun
tion on P� in the proje
tor frame hasbeen mapped to that on the UHP on the right-hand side, where f� is given byf� = h� Æ f = fI Æ f�1 Æ I�1�;s Æ f : (3.37)This is the expression obtained in [5℄. (See (3.35) of [5℄.) In that work, however, the presentationof P� using the 
onformal frame of the proje
tor was not given, and a geometri
 proof of the23



relation P� � P� = P�+� was not provided. The above results will be useful later in our
al
ulations on the ta
hyon va
uum solutions. For a general proje
tor, the 
al
ulation of f� is
ompli
ated be
ause the map from P� to P0 is nontrivial.We 
on
lude this se
tion with an example. Aside from the sliver, the simplest and mostfamiliar proje
tor is the butter
y state. The butter
y is a spe
ial proje
tor with s = 2. Re
allthat the 
onformal frame of the butter
y is de�ned byz = f(�) = �p1 + �2 : (3.38)Let us see that the butter
y is related to the sliver through the reparameterization indu
ed byR(z) = z2 : (3.39)The full map (3.7) between the 
omplements of the 
oordinate disks is then given byzS = bR(z) = 8<: z2 if z 2 V+ ;�z2 if z 2 V� : (3.40)Sin
e the butter
y is a spe
ial proje
tor with s = 2, the square of the 
oordinate 
urvemust be a straight line or a set of straight lines [5℄. Points on the 
oordinate 
urve are f(�) for� = ei�, so we have z2 = (f(ei�))2 = e2i�1 + e2i� = ei�2 
os � = 12 + i2 tan � : (3.41)The points here span a verti
al line with real part equal to 1=2. For � 2 [��2 ; �2 ℄, we obtain thefull verti
al line so we indeed �nd that bR maps C+0 ! V +0 . For � 2 [�2 ; 3�2 ℄, (3.41) shows thatz2 also spans the full verti
al line with its real part equal to 1=2. With the minus sign in these
ond 
ase of (3.40), we �nd that bR maps C�0 ! V �0 .If we write z = x + i y, with x and y real, it follows from the real part of (3.41) that thebutter
y 
oordinate 
urve is part of the hyperbola given by< (z2) = x2 � y2 = 12 : (3.42)In fa
t, the full 
oordinate 
urve is the part of the hyperbola that lies on H .Consider now the surfa
e P0, namely, the region in H in between C�0 and C+0 . Let z+ 2 C+0and z� 2 C�0 . How do we write the identi�
ation of C�0 and C+0 as an analyti
 relation betweenz� and z+? From (3.17) we have z2+ + z2� = 1 : (3.43)24



Figure 6: (a) The surfa
e P� in the butter
y family. The 
urves C�� and C+� are identi�ed. The
oordinate pat
h is that of the butter
y itself. (b) The same surfa
e, with the 
omplement ofthe 
oordinate pat
h pla
ed 
ompletely to the right of the pat
h. The 
urves C�0 and C+2� areidenti�ed.This 
orre
tly identi�es z� = �1=p2 with z+ = 1=p2. We 
an 
on�rm (3.43) by re
alling thatthe identi�
ation is indu
ed by that of � and �1=�. Therefore the point z� = f(��) is identi�edwith z+ = f(�+) when �+ = �1=��. This givesz2� = �2�1 + �2� = 11 + �2+ = 1� z2+ (3.44)in agreement with (3.43).The surfa
e P� asso
iated with the butter
y proje
tor is obtained by a dilation z ! (1 +�)1=2z of P0, as we have seen in (3.33). Under this dilation the bounding 
urves C+0 and C�0 in(3.42) be
ome the 
urves C+� and C�� whose points satisfyz 2 C�� ! <(z2) = 12(1 + �) : (3.45)Their identi�
ation is obtained from (3.43) by the dilation:z2+ + z2� = 1 + � : (3.46)The surfa
e P� is the region between C�� and C+� . The 
oordinate disk 
an be viewed as P0,without identi�
ations, inside P�. The surfa
e P� is shown in Figure 6(a).We 
an use the identi�
ation (3.46) to move the region (C�� ; C�0 ) to the right of C+� . Sin
epoints z� 2 C�0 satisfy <(z2�) = 1=2, (3.46) shows that under the identi�
ation they be
ome<(z2+) = 12(1 + 2�) ! z+ 2 C+2� ; (3.47)where we have used (3.45). The surfa
e P� 
an therefore be des
ribed as the region between C�0and C+2�, with these two 
urves identi�ed via (3.46). This presentation is shown in Figure 6(b).25



4 Solutions from reparameterizationsIn this se
tion we 
onstru
t the ta
hyon va
uum solution asso
iated with a general twist-invariant proje
tor. We begin x4.1 with a review of the algebrai
 stru
ture of S
hnabl's solution.We then give a formal 
onstru
tion of the solution asso
iated with a general proje
tor usingreparameterizations. In x4.2 we present the CFT des
ription of the states  � and  0� for ageneral proje
tor. In the last subse
tion we analyze the various operator insertions in moredetail and geometri
ally 
on�rm that they obey the expe
ted algebrai
 properties.4.1 Review of the algebrai
 
onstru
tionS
hnabl's solution 	 
onsists of two pie
es and is de�ned by a limit:	 = limN!1h� N + NXn=0  0n i : (4.1)The \phantom pie
e"  N does not 
ontribute to inner produ
ts with states in the Fo
k spa
ein the limit. Namely, limN!1h�;  N i = 0 (4.2)for any state � in the Fo
k spa
e. On the other hand, the pie
e involving the sum of  0n is thelimit �! 1 of a state 	�, 	� � 1Xn=0 �n+1  0n ; (4.3)whi
h formally satis�es the equation of motion for all �,QB	� +	� �	� = 0 : (4.4)The state 	� 
an be formally written as a pure-gauge 
on�guration [3℄ and is 
onsidered tobe gauge-equivalent to 	 = 0 for j�j < 1. The equation (4.4) for any � is equivalent to thefollowing relations for  0n with integer n:QB 00 = 0 ; (4.5)QB 0n = � n�1Xm=0 0m �  0n�m�1 ; n > 0 : (4.6)There is a simple algebrai
 
onstru
tion of the states  0n, whi
h we now review. It helps touse the abstra
t notation of [5℄ even though for the time being all the operators are meant tobe those asso
iated with the sliver. The left and right parts of the operator L+ = L + L? are26



denoted by L+L and L+R, respe
tively, and L+ = L+L + L+R. The operator K � eL+ is de�ned byK = eL+ = L+R � L+L . For the sliver, its expli
it form derived in [2℄ isK = eL+ = �2 K1 = �2 (L1 + L�1 ) : (4.7)The antighost operators B, B?, B+ = B+B?, eB+ = B+R�B+L are similarly de�ned by repla
ingT (z)! b(z) or Ln ! bn. Thus for the sliver,eB+ = �2 ( b1 + b�1 ) : (4.8)In this language, we 
an write 0 = CjP1i ; (4.9) n = � CjP1i � jPn�1i �B+LCjP1i ; n > 0 ; (4.10)as well as  00 = �QBB+LCjP1i (4.11) 0n = CjP1i � jPn�1i �B+LL+LCjP1i ; n > 0 ; (4.12)where the operator C is C � 2� 
1 : (4.13)Again, at this stage all obje
ts are de�ned in the sliver frame. In parti
ular, jP�i is the wedgestate jW�i and jP1i is just the SL(2; R)-invariant va
uum j0i.It was algebrai
ally shown in [3℄ that the string �elds  0n de�ned by (4.11) and (4.12) satisfy(4.5) and (4.6). In the proof, one uses the abelian algebra P� �P� = P�+�, standard propertiesof the BRST operator (QB is a nilpotent derivation of the star algebra and annihilates theva
uum state), as well as the following identities:eB+jP1i = (B+R �B+L ) jP1i = 0 ; (4.14)eB+CjP1i = (B+R �B+L )CjP1i = jP1i ; (4.15)(B+R�1) � �2 = (�1)�1�1 � (B+L�2) : (4.16)The �rst two equations (4.14) and (4.15) are immediately 
he
ked using jP1i = j0i and theexpansions (4.8) and (4.13). The identity (4.14) 
an also be understood as a spe
ial 
ase of thefamiliar 
onservation laws obeyed by wedge states,eL+jP�i = (L+R � L+L)jP�i = 0 ;eB+jP�i = (B+R � B+L )jP�i = 0 : (4.17)27



The last identity (4.16) is obtained by observing that for any derivation D = DL+DR one has(DR�1) � �2 = � (�1)�1�D�1 � (DL�2) : (4.18)For D = eB+ we �nd (4.16), while for D = K we obtain(L+R�1) � �2 = �1 � (L+L�2) : (4.19)Let us 
on�rm that  0n as de�ned in (4.12) is indeed the derivative with respe
t to n of thestate  n in (4.10). Sin
e jP�i = e��2 L+jIi, we havedd� jP�i = �12 L+jP�i = � L+R jP�i ; (4.20)where we have used (4.17). With the help of (4.19) we �nd thatddn n = CjP1i � L+RjPn�1i �B+LCjP1i = CjP1i � jPn�1i � L+LB+LCjP1i ; (4.21)as 
laimed. Note that L+L and B+L 
ommute be
ause L+L = fQB; B+L g and (B+L )2 = 0.One 
an also show that the solution satis�es the gauge 
ondition B	 = 0. The algebrai
properties that guarantee this fa
t arefB ;Cg = fB? ; Cg = 0 ; (4.22)LC jP1i = � C jP1i ;whi
h follow immediately from the mode expansions on B, L, and C in the sliver frame.To show that (4.22) imply B n = B 0n = 0, the following identities are useful. WritingB = 12(B� +B+L +B+R), one 
an prove thatB( 1 �  2) = B 1 �  2 + (�1) 1 1 � (B �B+L ) 2 : (4.23)For a larger number of fa
tors we haveB( 1 � 2 � : : :  n) = (B 1) � : : : � n+ nXm=2(�)Pm�1k=1  k  1 � : : : � (B�B+L ) m � : : : � n : (4.24)One 
an a
tually make manifest the fa
t that  0n is annihilated by B in the following way: 0n = 1nB�C jP1i � jPn�1i � (L+L + 1n)C jP1i� : (4.25)We have seen in the previous se
tion that a generi
 single-split proje
tor P1 
an be relatedto the sliver W1 by a reparameterization ' as P1 = U�1' W1. This allowed us to 
onstru
t28



the abelian family P� from the wedge states by the same transformation P� � U�1' W�. Wenow pro
eed to de�ne operators asso
iated with P1 by similarity transformations of the 
orre-sponding operators asso
iated with the sliver. From now on we use the subs
ript S to denoteobje
ts in the sliver frame, and obje
ts without the subs
ript are those in the frame of P1. Wehave C � U�1' CS U' ; (4.26)L � U�1' LS U' ; (4.27)L? � U�1' L?S U' ; (4.28)L� � U�1' L�S U' = L� L? ; (4.29)L+L � U�1' (L+L)S U' ; (4.30)L+R � U�1' (L+R)S U' ; (4.31)and analogous expressions for the antighost operators B, B?, B�, B+R , B+L . Be
ause of theformal property (2.14), L? in (4.28) is the BPZ 
onjugate of L in (4.27), so our notation is
onsistent. It is also 
onsistent to use L+L and L+R in (4.30) and (4.31) sin
e reparameterizationspreserve the left/right de
omposition of operators. As we will see expli
itly in x4.3, the operatorsL+L and L+R are, respe
tively, the left and right parts of the operator L+ de�ned in (4.29). It isalso obvious that all the algebrai
 properties (4.14), (4.15), (4.16), (4.17), and (4.22) are obeyedby the operators in the frame of P1.The states  n asso
iated with P1 are given by n � U�1'  n S = �CjP1i � jPn�1i �B+LCjP1i ; (4.32)and  0n asso
iated with P1 are similarly obtained. Finally, the solution 	 asso
iated with P1is obtained from the sliver's solution 	S as	 = U�1' 	S : (4.33)Clearly, it takes the same form (4.1), with the understanding that the states  0n and  N arenow those in the frame of P1.4.2 Solutions in the CFT formulationWe now translate the above formal 
onstru
tion into a geometri
 des
ription. In the CFTformulation, the state  n S in the sliver frame is de�ned byh�;  nS i = � fS Æ �(0) 
(1) Z�V +� dz2�i b(z) 
(n+ 1)�Wn+1 ; (4.34)29



Figure 7: A diagram of the 
orrelator on Wn+1 used in (4.34) to des
ribe the solution in thesliver frame. Shown are ghost insertions at zS = 1 and zS = n+1. The verti
al line in betweenthese insertions represents the antighost line integral.for any state � in the Fo
k spa
e, where 1 < � < 2n+1. A pi
torial representation of the 
or-relator is given in Figure 7. The 
ontour V +� is oriented in the dire
tion of in
reasing imaginaryzS , and by �V +� we denote the same 
ontour with opposite orientation. The expression (4.34) isthe dire
t geometri
 translation of the algebrai
 expression (4.10), as explained in detail in [3℄.Re
all the 
hange in the normalization of fS .Let us apply the reparameterization U�1' to the state  n S . Geometri
ally, this amounts tomapping the region (V +0 ; V +2(n+1)), in
luding the operator insertions, by the 
onformal transfor-mationR�1 used to 
onstru
t the state jPn+1i from the wedge state jWn+1i. It is straightforwardto 
al
ulate the transformations of the operator insertions in (4.34). We �nd that the state  nasso
iated with a general proje
tor is given byh�;  n i = h f Æ �(0) C(1)B C(2n+ 1) iPn+1 (4.35)for any state � in the Fo
k spa
e, whereC(�) � R0�R�1�1 + �2 �� 
�R�1�1 + �2 �� ; B � Z dz2�i b(z)R0(z) : (4.36)The 
ontour of the integral for B 
an be taken to be �C+� with 1 < � < 2n+1. (The orientationof the 
ontour C+� , inherited from the orientation of V +� , is dire
ted towards in
reasing imaginaryz). In general, when B is lo
ated between two operators, the 
ontour of the integral must runbetween the two operators. Note that C(�) is nothing but the operator 
(zS), with zS = 12(1+�),expressed in the frame z = R�1(zS). The argument � of C denotes the label of the line C+�that 
ontains the insertion. The surfa
e and insertions for the 
orrelator indi
ated in (4.35) areshown in Figure 8. 30



Figure 8: The surfa
e and insertions relevant to the 
orrelator (4.35) used to de�ne  n. Thesurfa
e Pn+1 in
ludes two ghost insertions C and an antighost line integral B.This de�nition of  n is valid for n > 0, and  0 
an be de�ned by the limit n! 0: 0 � limn!0 n : (4.37)Let us 
al
ulate  0 expli
itly. The anti
ommutation relation of B and C is given byfB ; C(�) g = B C(�) + C(�)B = 1 : (4.38)Note that the 
ontour for B in the term B C(�) should be �C+� with � < �, and the 
ontourfor B in the term C(�)B should be �C+� with � > �. Using this anti
ommutation relation, theinner produ
t h�;  n i in the limit n! 0 is given bylimn!0h�;  n i = h f Æ �(0) C(1) iP1 : (4.39)This gives the CFT des
ription of the state  0 = CjP1i in (4.9) for a general proje
tor. It
oin
ides with the state obtained by reparameterization from the sliver's  0.Another useful expression for the inner produ
t h�;  n i ish�;  n i = � R0(R�1(1))2� 
(�R�1(1)) f Æ �(0) 
(R�1(1)) ZC+� dz2�i b(z)bR0(z) �Pn+1 ; (4.40)where � > 1, and we have mapped the operator C(2n + 1) to bR0( bR�1(�1)) 
( bR�1(�1)) =R0(R�1(1)) 
(�R�1(1)) using the identi�
ation (3.17) for the surfa
e Pn+1. Note that � mustbe Grassmann even in order for the inner produ
t to be nonvanishing. We will use (4.40) inthe next se
tion.Let us now 
onsider  0n. Taking a derivative of  n S with respe
t to n is equivalent to aninsertion of the operator Z�V +� dz2�i T (z) (4.41)31



Figure 9: The surfa
e and insertions relevant to the 
orrelator (4.43) used to de�ne  0n. Thesurfa
e Pn+1 in
ludes two ghost insertions C, an antighost line integral B, and a stress-tensorline integral L.in (4.34), with 1 < � < 2n+ 1. See [3℄ for more details. Sin
e the operator is transformed byR�1 to L � Z dz2�i T (z)R0(z) ; (4.42)the geometri
 translation of (4.12) for a general proje
tor ish�;  0n i = h f Æ �(0) C(1)LB C(2n+ 1) iPn+1 ; (4.43)where the 
ontour of the integral for L 
an be taken to be �C+� with 1 < � < 2n + 1. Thesurfa
e and insertions for this 
orrelator are shown in Figure 9.Note that B and L 
ommute. In general, when L is lo
ated between two operators, the
ontour of the integral must run between the two operators. The de�nition (4.43) is valid forn in the range n > 0. As in the 
ase of  0, the state  00 
an be de�ned by the limit n! 0: 00 = limn!0 0n : (4.44)Using the anti
ommutation relation (4.38), the inner produ
t h�;  0n i 
an be written ash�;  0n i = h f Æ �(0) C(1)BLC(2n+ 1) iPn+1= h f Æ �(0) LC(2n+ 1) iPn+1 � h f Æ �(0) B C(1)LC(2n+ 1) iPn+1 : (4.45)It is trivial to take the limit n ! 0 for the �rst term. The limit of the se
ond term 
an be
al
ulated using the formulalim�!0 C(�)LC(�+ �) = lim�!0 C(�) [L; C(�+ �) ℄ = QB � C(�) ; (4.46)32



where QB � O is the BRST transformation of O. The inner produ
t h�;  00 i is thush�;  00 i = h f Æ �(0) LC(1) iP1 � h f Æ �(0) B QB � C(1) iP1 : (4.47)This gives the geometri
 translation of the state  00 = �L+LCjP1i+B+LQBCjP1i = �QBB+LCjP1iin (4.11) for a general proje
tor, as we will explain further in the next subse
tion. The state
oin
ides with the state obtained by reparameterization from the sliver's  00.4.3 Operator insertions in the geometri
 languageThe expressions of  n and  0n in (4.35), (4.40), and (4.43) are the 
entral results of this se
tion.While the solution 
onstru
ted from these states are guaranteed to satisfy the equation of motionbe
ause it is related to S
hnabl's solution by a reparameterization, it is also possible to 
on�rmthis dire
tly without referring to the reparameterization. In this subse
tion we o�er a moredetailed analysis of how various operator insertions are presented in the CFT formulation. Itis then straightforward to 
on�rm that the equation of motion is satis�ed using the formulas inthis subse
tion. The te
hniques developed in this subse
tion will be useful in handling operatorinsertions in the 
onformal frame of a general proje
tor.Let us begin with the operator L. It is, by de�nition, obtained from LS by the reparam-eterization ', where ' is impli
itly de�ned by the relation bR(f(t)) = fS('(t)) in (2.39). Thefun
tion fS(t) be
omes fS('(t)) = bR(f(t)), and thus L in the general proje
tor frame z = f(�)is given by LS in the sliver frame zS = fS(�S) by the 
onformal transformation z = bR�1(zS):L � U�1' LS U' = U�1'  ZV +0 �V �0 dzS2�i zS T (zS)!U' = ZC+0 �C�0 dz2�i bR(z)bR0(z) T (z)= ZC+0 dz2�i R(z)R0(z) T (z) + ZC�0 dz2�i R(�z)R0(�z) T (z) : (4.48)In obtaining the se
ond line we made use of (3.7). For spe
ial proje
tors, R(z) = zs and theexpression for L simpli�es to L = 1s I dz2�i z T (z) = L0s : (4.49)The operator L0 is the Virasoro zero mode in the frame of the proje
tor. This is the de�nitionof L given in [5℄. If the proje
tor is not spe
ial, (4.49) does not hold. Generi
ally the expansionof L in ordinary Virasoro operators Ln 
ontains terms with negative n.
33



The inner produ
t hL�; P� i for any state � in the Fo
k spa
e is given byhL�; P� i = �ZC+0 �C�0 dz2�i bR(z)bR0(z) T (z) f Æ �(0)�P�= �ZC+0 dz2�i R(z)R0(z) T (z) f Æ �(0)�P� +�ZC�0 dz2�i R(�z)R0(�z) T (z) f Æ �(0)�P� : (4.50)This provides the CFT representation of the state L? jP�i be
ause hL�; P� i = h�; L? P� i.Next, we wish to derive a representation of L jP�i. To this end, we need an expressionfor hL? �; P� i. While it is possible to 
onstru
t L? from L?S by the reparameterization ' asin (4.48), it is instru
tive to understand BPZ 
onjugation dire
tly on the surfa
e P�. BPZ
onjugation is, by de�nition, performed by the map I(�) = �1=� in the � 
oordinate. For anoperator in the z-plane, BPZ 
onjugation requires mapping the operator to the � 
oordinate,performing the 
onjugation, and mapping the resulting operator ba
k to the z 
oordinate. Thefull 
onformal transformation is thenz0 = If (z) = f Æ I Æ f�1(z) ; I(�) = �1=� : (4.51)This relation between z0 and z is nothing but the identi�
ation between z+ and z� for P0,namely, R(z+) +R(�z�) = 1 : (4.52)Let us apply this geometri
 understanding of BPZ 
onjugation to the operator L. The map Iftransforms the two integrals in (4.48) as follows:ZC+0 dz+2�i R(z+)R0(z+) T (z+) ! � ZC�0 dz�2�i R(�z�)R0(�z�) T (z�) + ZC�0 dz�2�i T (z�)R0(�z�) ;ZC�0 dz�2�i R(�z�)R0(�z�) T (z�) ! � ZC+0 dz+2�i R(z+)R0(z+) T (z+) + ZC+0 dz+2�i T (z+)R0(z+) : (4.53)Thus the inner produ
t hL? �; P� i is given byhL? �; P� i = � �ZC+0 �C�0 dz2�i bR(z)bR0(z) T (z) f Æ �(0)�P� +�ZC+0 +C�0 dz2�i T (z)bR0(z) f Æ �(0)�P� :(4.54)Re
alling (4.50), we 
an writehL? �; P� i = � hL�; P� i+�ZC+0 +C�0 dz2�i T (z)bR0(z) f Æ �(0)�P� : (4.55)34



It immediately follows thathL+�; P� i = h (L+ L? )�; P� i = �ZC+0 +C�0 dz2�i T (z)bR0(z) f Æ �(0)�P�; (4.56)and thus the operator L+ isL+ = ZC+0 dz2�i T (z)R0(z) + ZC�0 dz2�i T (z)R0(�z) : (4.57)From these expressions, we easily 
on�rm the algebra [L; L? ℄ = L+ L?,[L; L? ℄ = [L; L+ L? ℄ = ZC+0 +C�0 dw2�i 1bR0(w) I dz2�i bR(z)bR0(z) T (z)T (w)= ZC+0 +C�0 dw2�i T (w)bR0(w) = L + L? ; (4.58)where the 
ontour of the integral of z en
ir
les w 
ounter
lo
kwise, and we have negle
ted surfa
eterms of the form bR(w)T (w)=bR0(w)2 for integration by parts with respe
t to w. Whether or notthe surfa
e terms vanish should be 
he
ked for a given bR(z) by evaluating them in a 
oordinatewhere the midpoint of the open string is lo
ated at a �nite point.We now 
onsider the operators L+L and L+R. Sin
e C�0 and C+0 are respe
tively the left andright parts of the 
oordinate 
urve, the expression in (4.56) splits as follows:hL+R �; P� i = �ZC+0 dz2�i T (z)R0(z) f Æ �(0)�P�;hL+L �; P� i = �ZC�0 dz2�i T (z)R0(�z) f Æ �(0)�P� : (4.59)The BPZ 
onjugation map If a
ts asIf : ZC+0 dz+2�i T (z+)R0(z+) ! ZC�0 dz�2�i T (z�)R0(�z�) ; (4.60)so we see (L+R)? = L+L : (4.61)Sin
e BPZ 
onjugation is an involution, we also have (L+L )? = L+R.Using the presentation of P� as the region between C�0 and C+2� and re
alling that these
urves are identi�ed by (3.17), we 
an rewrite hL+L �; P� i in (4.59) ashL+L �; P� i = �ZC+2� dz2�i T (z)R0(z) f Æ �(0)�P�: (4.62)35



Sin
e (L+R)? = L+L and (L+L)? = L+R, the inner produ
ts h�; L+RP� i and h�; L+LP� i are given byh�; L+RP� i = � f Æ �(0) ZC+2� dz2�i T (z)R0(z) �P�;h�; L+LP� i = � f Æ �(0) ZC+0 dz2�i T (z)R0(z) �P� : (4.63)We see that the states L+RjP�i and L+L jP�i are both represented as the region between C+0 andC+2� with the same operator inserted on di�erent lo
ations: it is on the right edge for L+RjP�iand on the left edge for L+L jP�i. Sin
e there are no operator insertions in the region betweenC+0 and C+2�, the 
ontour C+2� 
an be deformed to C+0 , and we 
on�rm that the states are thesame: L+RjP�i = L+L jP�i : (4.64)Let us next 
onsider the star multipli
ation of states with insertions of L+R or L+L . Wetake P� � (L+LP�) as an example, but the generalization to other 
ases is straightforward. Theoperator L+L of L+LP� is represented by an integral over C+0 on P� in (4.63). For the gluing ofthe star produ
t we need the identi�
ation of 
urves in two di�erent 
oordinate systems. A
urve C+q in the z< 
oordinate is mapped to C+q+
 in the z> 
oordinate when z< and z> arerelated by R(z>) = R(z<) + 
2 : (4.65)Under this identi�
ation the operator insertion in (4.63) takes the same form in the two 
oor-dinates: ZC+q dz<2�i T (z<)R0(z<) = ZC+q+
 dz>2�i T (z>)R0(z>) : (4.66)The operator integrated over C+0 on P� is thus mapped to the same operator integrated overC+2� on the surfa
e P�+� = (C�0 ; C+2�+2�) for the star produ
t P� � (L+LP�). It follows from the�rst equation in (4.63) that the star produ
t 
an also be interpreted as (L+RP�) � P�. We havethus shown that (L+RP�) � P� = P� � (L+LP�) : (4.67)The antighost �eld b(z) transforms in the same way as the energy-momentum tensor T (z).Therefore the formulas we have derived for the energy-momentum tensor based on its transfor-
36



mation properties also apply to the antighost. The equations in (4.59), for example, be
omehB+R �; P� i = �ZC+0 dz2�i b(z)R0(z) f Æ �(0)�P� ;hB+L �; P� i = �ZC�0 dz2�i b(z)R0(�z) f Æ �(0)�P� = �ZC+2� dz2�i b(z)R0(z) f Æ �(0)�P� ; (4.68)and the equations in (4.63) be
omeh�;B+RP� i = � f Æ �(0) ZC+2� dz2�i b(z)R0(z) �P� ;h�;B+LP� i = � f Æ �(0) ZC+0 dz2�i b(z)R0(z) �P� : (4.69)We also have the analogs of (4.61), (4.64), and (4.67)(B+R)? = B+L ; (B+L )? = B+R ; (4.70)eB+jP�i = (B+R � B+L ) jP�i = 0 ; (4.71)(B+RP�) � P� = P� � (B+LP�) : (4.72)Finally let us examine the operator C. As we have dis
ussed in the 
al
ulation of  0 in x4.2,the state CjP1 i for a general proje
tor is given byh�; CP1 i = h f Æ �(0) C(1) iP1 = R0(R�1(1)) h f Æ � 
(R�1(1)) iP1 (4.73)for any state � in the Fo
k spa
e, where P1 is represented by the region between C�0 and C+2 .Let us 
on�rm that CjP1i satis�es the relation (4.15). We need to show that h�; eB+CP1 i =h�; P1 i for any state � in the Fo
k spa
e. Sin
e � must be Grassmann odd in order to have anonvanishing inner produ
t, there is an extra minus sign in taking the BPZ 
onjugate of eB+,and we haveh�; eB+CP1 i = h�; (B+R�B+L )CP1 i = �h (B+R�B+L )? �; CP1 i = h (B+R�B+L )�; CP1 i : (4.74)The relevant 
orrelation fun
tion 
an be written using (4.68), and it 
an be evaluated as follows:h (B+R �B+L )�; CP1 i = R0(R�1(1))�ZC+0 �C+2 dz2�i b(z)R0(z) f Æ �(0) 
(R�1(1))�P1= R0(R�1(1)) � f Æ �(0) �I dz2�i b(z)R0(z) 
(R�1(1)) ��P1 = h f Æ �(0) iP1 ;(4.75)where the 
ontour of the integral in the last line en
ir
les z = R�1(1) 
ounter
lo
kwise. This
on
ludes the 
on�rmation that eB+CjP1i = jP1i.37



5 Operator 
onstru
tion of the solutionIn this se
tion we give an expli
it operator 
onstru
tion of the solution 	 for the most generalsingle-split spe
ial proje
tor for arbitrary value of the reparameterization parameter � intro-du
ed in (3.9). We begin in x5.1 with a dis
ussion of single-split spe
ial proje
tors. They form a\hypergeometri
 
olle
tion," indexed by a parameter s � 1. Then in x5.2 we derive an operatorexpression for the state  n, the key ingredient of 	 in (1.5). The result, given in (5.50), takesthe form of normal-ordered operators a
ting on the SL(2; R)-invariant va
uum. It holds forany proje
tor in the hypergeometri
 
olle
tion.5.1 The hypergeometri
 
olle
tionIn a previous paper [5℄, a family of spe
ial proje
tors with a parameter s � 1 was introdu
ed.It was demanded that the ve
tor �eld vL�s asso
iated with the Virasoro operator L�s in theframe z = ~f(�) take the form:7 vL�s( ~f) � s( ~f s)0 = (1 + �2)s�s�1 ; (5.1)or, equivalently, d ~f sd� = s�s�1(1 + �2)s : (5.2)By integrating this di�erential equation, ~f(�) was found to be~f(�) = � �2F1 hs2 ; s ; 1 + s2 ;��2i�1=s : (5.3)It turns out that for even s the operator L�s is proportional to L+ while for ea
h odd s it isproportional to K = L+R � L+L . More pre
isely, we found thatq(s)L�s = (L+ for s even ;K for s odd ; with q(s) = �(s=2 + 1)�(s=2)�(s+ 1) : (5.4)It will be 
onvenient to �x the normalization of ~f(�) by introdu
ing a res
aled f(�) withf(� = 1) = 2�1=s. To implement this, we simply takef(�) = 2� 1s ~f(�)~f(1) = 2� 1s � 2F1 � s2 ; s ; 1 + s2 ;��2�2F1 � s2 ; s ; 1 + s2 ;�1� !1=s : (5.5)7 We reserve the use of f for the map with a di�erent normalization. The map ~f(�) here 
orresponds to f(�)of [5℄. 38



Noting that 2F1 hs2 ; s ; 1 + s2 ;�1i � �(s) = 2�sp� �[1 + s2 ℄�[12 + s2 ℄ ; (5.6)a short 
omputation shows that with the new normalization1s L�s = (L+ for s even ;K for s odd : (5.7)This means that in the z-
oordinate of the proje
tor we have1s 1zs�1 = ( v+(z) for s even ;�(t(z)) v+(z) for s odd ; with z = f(t) ; t = ei� : (5.8)In here we have used the step fun
tion �(t) de�ned in [5℄, eqn. (2.37). By de�nition, the ve
torv 
orresponding to L = L0=s is v = 1s z : (5.9)It now follows from v + v? = v+ thatv?(z) = (1s � 1�zszs�1 for s even ;1s � ��zszs�1 for s odd : (5.10)The hypergeometri
 
onformal frames are proje
tors for all real s � 1: f(i) =1. Moreoverthe midpoint � = i is the only singular point, so the proje
tors are single-split. These propertiesand the pre
ise shape of the 
oordinate 
urve 
an be dedu
ed from the di�erential equation(5.2). A little algebra givesdF (�)d� = i s2s+1 ~f(1)s 1(
os �)s ; F (�) � (f(ei�))s : (5.11)By twist symmetry it is suÆ
ient to 
onsider the part of the 
urve with 0 � � � �=2. Thedi�erential equation (5.11) must be supplemented with the initial 
ondition F (0) = f(1)s = 1=2.Sin
e the right-hand side of (5.11) is purely imaginary we see at on
e that <(F (�)) = 1=2 for0 � � < �=2. It follows also that for s � 1, =(F (�)) is a monotoni
ally in
reasing fun
tion in theinterval 0 � � < �=2 with lim�!�=2� =(F (�)) = +1. We re
ognize F0 = fF (�) j0 � � < �=2gas the verti
al line V +0 = fzS j <(zS) = 1=2)g, the positive part of the sliver's 
oordinate 
urve.We 
on
lude that the reparameterization mapping the hypergeometri
 proje
tor with s > 1 tothe sliver is simply z ! zS = R(z) = zs ; <z > 0 ; (5.12)a fundamental fa
t that we had so far 
laimed without proof.39



It seems to us plausible that the hypergeometri
 
olle
tion 
ontains all the single-split spe
ialproje
tors. It was shown in [5℄ (se
tion 7.2) that for a 
onformal frame to be spe
ial the fun
tionzS = F (�), 0 � � � �=2, needs to be pie
e-wise linear in the zS-plane. On the other hand wealso saw in [5℄ (se
tion 7.3) that 
orners in F0 seem to lead to operators K that fail to kill theidentity, thus violating one of the 
onditions required to have a spe
ial proje
tor. If 
orners arenot allowed anywhere, the interse
tion of F0 with the real line must be orthogonal and thenF0 = V +0 , up to a real s
aling 
onstant. This would imply that all single-split proje
tors are inthe hypergeometri
 
olle
tion.For integer s the hypergeometri
 fun
tion 
an be expressed in terms of elementary fun
tions.For the �rst few integer values one �ndss = 1 : f(�) = 2� ar
tan � ;s = 2 : f(�) = �p1 + �2 ;s = 3 : f(�) = � 2�� 13�ar
tan � � �(1� �2)(1 + �2)2 �1=3 ;s = 4 : f(�) = x� 3 + x2(1 + x2)3 �1=4 ;s = 5 : f(�) = � 2�� 15�ar
tan � � �(1� �2)(3 + 14�2 + 3�4)3(1 + �2)4 �1=5 ;s = 6 : f(�) = x� 10 + 5x2 + x4(1 + x2)5 �1=6 :
(5.13)

For s = 1 we re
over the sliver frame with a s
aling. For s = 2 we re
over the butter
y. Fors = 3 we re
over the proje
tor in (7.56) of [5℄. For s = 4 we have the proje
tor with a = 4=3in (6.3) of [5℄.For arbitrary s, a series expansion gives L = L0=s with a simple analyti
 form:L0 = L0 + 2 1Xk=1 s!!(s� 2k)!! s!!(s + 2k)!!L2k= L0 + 2s2 + s L2 + 2s(s� 2)(2 + s)(4 + s)L4 + 2s(s� 2)(s� 4)(2 + s)(4 + s)(6 + s)L6 + : : : (5.14)For even s the operator L 
ontains a �nite number of terms and therefore so does L+. This is
onsistent with (5.7), sin
e a

ording to (5.1) L�s involves a �nite number of operators for anyinteger s. 40



5.2 The solution in operator formTo obtain the operator representation of the solution we will begin with equation (4.40). Fornotational 
larity it is useful to introdu
e the de�nitionr � R�1(1) ; or R(r) = 1 : (5.15)Moreover, letting n! n� 2, we have that (4.40) givesh�;  n�2 i = � (R0(r))2� 
(�r) f Æ �(0) 
(r) ZC+
 dz2�i b(z)R0(z) �Pn�1 ; (5.16)with 1 < 
 � n � 1. The surfa
e Pn�1 in this 
orrelator is de�ned by the reparameterizationfun
tion R. Our goal is to obtain a formula for the state  n�2 as a string of operators a
ting onthe va
uum. The operators must be normal ordered so that evaluation in the level expansionis possible.In order to in
orporate the reparameterizations that a
t within the family of surfa
e statesasso
iated with a proje
tor we take R to be �-dependent as in (3.9),R�(z) = e�2��R0(z)� 12�+ 12 ; (5.17)where R0 is the \original" fun
tion and R� the fun
tion obtained by reparameterization. Forgeneri
 proje
tors, the state  n�2 
an be evaluated expli
itly only if 
ertain 
onformal mapsare known. For the 
ase of spe
ial proje
tors in the hypergeometri
 
olle
tion, full and expli
itevaluation is possible. Our result is an operator formula for  n�2 that depends on the parameters of the spe
ial proje
tor and the parameter � in (5.17).5.2.1 Reparameterizations within a familyLet us begin with some preparatory results 
on
erning the relations between operators andsurfa
es de�ned by R� and those de�ned by R0. Using (5.17) one 
an readily verify thatR�(z)R0�(z) = R0(z)R00(z) + 12�e2� � 1� 1R00(z) : (5.18)Letting L; L� denote operators de�ned by R and �L; �L? denote operators de�ned by R0, equation(4.48) gives L = ZC+0 dz2�i R(z)R0(z) T (z) + ZC�0 dz2�i R(�z)R0(�z) T (z) ;= �L + 12�e2� � 1�� ZC+0 dz2�i T (z)R00(z) + ZC�0 dz2�i T (z)R00(�z) � : (5.19)41



We have therefore obtained L = �L + 12�e2� � 1�(�L+ �L?) : (5.20)Analogous relations hold for the operators asso
iated with the antighost �eld b(z).It is interesting to examine L for some spe
ial values of �. As � = 0, we get L = �L. As �be
omes arbitrarily large and positive L be
omes proportional to �L+:L ! 12e2�(�L + �L?) ; as � !1 : (5.21)As � be
omes arbitrarily large and negative L approa
hes �L�:L ! 12(�L� �L?) ; as � ! �1 : (5.22)The transition from R0 to R 
an be viewed as a reparameterization, as dis
ussed around equa-tion (3.9). Indeed, a short 
al
ulation givesL = e�(�L��L?) �L e��(�L��L?) ; (5.23)showing that �L� �L? generates the reparameterization that maps the R0-based operators to theR-based operators.Let us 
ompare surfa
es de�ned by R� and surfa
es de�ned by R0. Sin
e R maps C+� toV +� , we �nd z 2 C+� ! <(R�(z)) = 12(1 + �) : (5.24)For su
h z we also have<(R0(z)) = e2��12(1 + �)� 12� + 12 = 12(1 + e2��) : (5.25)Sin
e we are fo
using on a single 
urve in the proje
tor we 
on
lude thatC+� = �C+e2�� ; (5.26)where the bar indi
ates a 
urve de�ned by R0. We thus have the identi�
ation of surfa
esP� = Pe2�� ; (5.27)where the overline indi
ates a surfa
e de�ned by R0. Note that the surfa
e P0 
oin
ides withP0. This means that the fun
tion z = f(�) that de�nes the proje
tor does not depend on �.The last ingredient we 
onsider is the antighost insertion in (5.16). We wish to rewrite it interms of a 
losed 
ontour integral that involves R0. We begin by noting the equalityZC+
 dz2�i b(z)R0(z) = e2� ZC+n�1 dz2�i b(z)R00(z) ; (5.28)42



whi
h follows from (5.17) and 
ontour deformation. To rewrite the right-hand side in terms ofan integral over a 
losed 
ontour we re
all that on the surfa
e Pn�1 the identi�
ation of pointson C+n�1 and C�n�1 is given by (3.17):R�(z+) +R�(�z�) = n ; (5.29)In terms of R0 the identi�
ation readsR0(z+) +R0(�z�) = 1 + (n� 1)e2�: (5.30)We now 
onsider the integralZC+n�1�C�n�1 dz2�i bR0(z)bR00(z) b(z) = ZC+n�1 dz+2�i R0(z+)R00(z+) b(z+) + ZC�n�1 dz�2�i R0(�z�)R00(�z�) b(z�) : (5.31)Using (5.30) and its di�erential form R00(z+)dz+ � R00(�z�)dz� = 0, we 
an write the se
ondintegral above as an integral over C+n�1. We then �nd a 
an
ellation and we are left withZC+n�1�C�n�1 dz2�i bR0(z)bR00(z) b(z) = �1 + (n� 1)e2�� ZC+n�1 dz2�i b(z)R00(z) ; (5.32)or, equivalently, ZC+n�1 dz2�i b(z)R00(z) = 11 + (n� 1)e2� ZC+n�1�C�n�1 dz2�i bR0(z)bR00(z) b(z) : (5.33)Ba
k in (5.28) and using again 
ontour deformation, we �ndZC+
 dz2�i b(z)R0�(z) = e2�1 + (n� 1)e2� ZC+
 �C�
 dz2�i bR0(z)bR00(z) b(z) ; on Pn�1 : (5.34)This is our desired result.5.2.2 Operator formulaWe are now in a position to derive an operator result beginning with (5.16). As a �rst step weuse (5.34) to obtainh�;  n�2 i = � R00(r)2 e�2�1 + (n� 1)e2��ZC+
 �C�
 dz2�i bR0(z)bR00(z) b(z) 
(�r) f Æ �(0) 
(r)�Pe2�(n�1) : (5.35)
43



Note that we have expressed the surfa
e in terms of the fun
tion R0. Moving the antighostinsertion 
ontours inwards we pi
k up 
ontributions from ea
h of the ghost insertions and weremain with an antighost insertion that e�e
tively surrounds the insertion of the test state �:h�;  n�2 i = R00(r)R0(r)e�2�1 + (n� 1)e2� � 
 
(�r) f Æ � �Pe2�(n�1) + 
 f Æ � 
(r) �Pe2�(n�1)�+ R00(r)2 e�2�1 + (n� 1)e2� �
(�r)� ZC+
 �C�
 dz2�i bR0(z)bR00(z) b(z) f Æ �(0)� 
(r)�Pe2�(n�1) : (5.36)Here 0 � 
 < 1. This is the most simpli�ed expression we have obtained for  n�2 when theproje
tor is 
ompletely general.Let us now assume that we have a spe
ial proje
tor with parameter s. We thus takeR0(z) = zs ! R0(z)R00(z) = 1s z ; (5.37)whi
h implies thatZC+
 �C�
 dz2�i bR0(z)bR00(z) b(z) = 1s ZC+
 �C�
 dz2�i z b(z) = 1s I dz2�i z b(z) : (5.38)Noti
e the great simpli�
ation: all that is left of the antighost insertion is a holomorphi
 integralen
ir
ling the origin. We also de�nean � �1 + (n� 1)e2���1=s ; (5.39)and 
on�rm that R0(r) = rs = 12�1 + e2�� : (5.40)Using the above relations (5.36) 
an be written ash�;  n�2 i = sr2s�1(an)se�2� � 
 
(�r) f Æ � �Pe2�(n�1) + 
 f Æ � 
(r) �Pe2�(n�1)�+ s r2s�2(an)s e�2� �
(�r)�I dz2�i z b(z) f Æ �(0)� 
(r)�Pe2�(n�1) : (5.41)To map the 
orrelators to the upper-half plane we �rst s
ale Pe2�(n�1) down to P0. This requiresthe s
aling map z0 = anz ; (5.42)44



with an de�ned in (5.39). We let ~f � an Æ f and perform the s
aling, �ndingh�;  n�2 i = sr2s�1(an)s�1e�2� � 
 
(�anr) ~f Æ � �P0 + 
 ~f Æ � 
(anr) �P0�+ s r2s�2(an)s�2 e�2� �
(�anr)�I dz2�i z b(z) ~f Æ �(0)� 
(anr)�P0 : (5.43)The map g � fI Æ f�1 (5.44)takes P0 to the upper half plane H . Lettingfn�1 � g Æ ~f = fI Æ f�1 Æ an Æ f ; (5.45)we map the 
orrelators by g and �nd, noting that g is an odd fun
tion,h�;  n�2 i = srs(anr)s�1 e�2�g0(anr) � 
 
(�g(anr)) fn�1 Æ � �H + 
 fn�1 Æ � 
(g(anr)) �H �+ srs(anr)s�2 e�2�(g0(anr))2 �
(�g(anr))� bB fn�1 Æ �(0)� 
(g(anr))�H : (5.46)Here all 
orrelators are now on the upper half plane H andbB � I dz2�i g�1(z)(g�1)0(z) b(z) : (5.47)Note that the bB insertion is � independent and n independent.Sin
e the operator I Æ fn�1 Æ �(0) 
orresponds to h�jU?fn�1 in the state-operator 
orrespon-den
e, it is 
onvenient to perform a �nal map by I(z) = �1=z. Noting that the test state �must be Grassman even, the result ish�;  n�2 i = 
 s(anr)s�1g(anr)2g0(anr) " DI Æ fn�1 Æ � 
� 1g(anr)�EH + DI Æ fn�1 Æ � 
�� 1g(anr)�EH+ g(anr)2anrg0(anr)�I Æ fn�1 Æ �(0) bB? 
�� 1g(anr)� 
� 1g(anr)��H # ;(5.48)where we de�ned 
 � e�2�rs = 12(1 + e�2�) : (5.49)
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We 
an now read out the operator expression for  n�2: n�2 = 
 s(anr)s�1 g(anr)2g0(anr) U?fn�1� 
�� 1g(anr)� + 
� 1g(anr)�+ g(anr)2anrg0(anr) bB? 
�� 1g(anr)� 
� 1g(anr)� �j0i : (5.50)
Equation (5.50) is the expe
ted result: a formula for the state  n�2 in whi
h operators a
t onthe SL(2; R)-invariant va
uum. The state depends on both s and �. Moreover, as we will seein the following se
tion, we 
an readily �nd a level expansion of the solution. We re
all thatthe \phantom" pie
e  N of the solution in (1.5) does not 
ontribute in the level expansion, sowe have h�;	 i = 1Xn=2h�;  0n�2 i (5.51)for any state � in the Fo
k spa
e.6 Level and other expansionsIn this se
tion we will expand and analyze the operator form (5.50) of the solution. We set upthe level expansion 
omputation for arbitrary s and � in x6.1. We pro
eed up to level four, butgive the ingredients ne
essary to 
arry the 
omputations to arbitrary order, if so desired.In x6.2 we 
onsider the spe
ial 
ase � = 0 and 
ompute the va
uum expe
tation values of�elds up to level four for arbitrary values of s. This allows us to 
ompute the level zero, two,and four va
uum energies as fun
tions of s. For s � 1 we �nd numeri
al eviden
e 
onsistentwith 
onvergen
e of the va
uum energy to the expe
ted value of minus the D-brane tension.Re
all that for s < 1 the spe
ial frames are not proje
tors. The string �eld 	 whi
h providesa solution for s � 1 is therefore not expe
ted to provide a solution for s < 1. Indeed, for s < 1we �nd numeri
al eviden
e 
onsistent with the energy failing to 
onverge to the expe
ted value.In x6.3 we show that the ta
hyon va
uum solution in the Siegel gauge 
annot be obtainedin the present framework. The framework imposes 
onstraints on expe
tation values that weshow are not satis�ed in the most a

urate version of the Siegel gauge solution known to date.Finally, in x6.4 we 
onsider the limit � !1 of the solution. This limit is of some interestbe
ause the surfa
e states used to build the solution approa
h the surfa
e state of the proje
tor.For large � the solution provides an analyti
 expression 
losely related to the alternative levelexpansion s
heme introdu
ed in [23℄ and explored further in [24℄. In this s
heme, the string46



�eld solution is written in terms of operators of in
reasing level inserted at the midpoint ofa regulated proje
tor. Our solution is given in terms of exponentials of � and has a leadingdivergent term as well as terms that vanish as � !1.6.1 Level expansion preliminariesWe now set up the level expansion of the solution (5.50). We begin by level expanding theoperators U?fn�1 and bB�. We then write out the level four string �eld and 
ompute the expe
-tation values of the various 
omponents. The results are given in terms of in�nite sums thatwe evaluate numeri
ally.The operator U?fn�1 is de�ned by the fun
tion fn�1(�) introdu
ed in (5.45):fn�1 = fI Æ f�1 Æ an Æ f : (6.1)It is most 
onvenient to obtain a fa
torized form in whi
hUfn�1 = e�t0L0 e�t2L2 e�t4L4 e�t6L6 � � � ; (6.2)with 
al
ulable 
oeÆ
ients �tn. The bpz dual is immediately writtenU?fn�1 = � � � e�t6L�6 e�t4L�4 e�t2L�2 e�t0L0 : (6.3)Given an arbitrary fun
tion f(�) that de�nes a surfa
e state and has an expansionf(�) = � + f2�3 + f4�5 + f6�7 + f8�9 + � � � ; (6.4)the �rst few �tn 
oeÆ
ients are obtained following the steps indi
ated in appendix A of [2℄. We�nd that they are given by �t2 = f2 ;�t4 = f4 � 32f 22 ;�t6 = f6 � 3f2f4 + 2f 32 ;�t8 = f8 � 3f2f6 � 52f 24 + 9f 22 f4 � 194 f 42 : (6.5)
Using this result and the power series expansion of fn�1 we 
an readily 
al
ulate the 
oeÆ
ients�tn needed to obtain Ufn�1 to level four:e�t0 = an ; �t2 = �s+ 2a2n(1 + s)2 + s ; �t4 = �(s� 2)s+ 8a4n(1 + s)2(2 + s)(4 + s) : (6.6)47



With these we get U?fn�1 = � � � e�t4L�4 e�t2L�2 (an)L0 : (6.7)The expansion of bB? is easier to obtain. Re
alling (5.47) and the relation g = fI Æ f�1 we �ndbB = 1Xn=0 �n bn = b0 + 4(1 + s)2 + s b2 � 16(1 + s)(2 + s)(4 + s)b4 + � � � : (6.8)Note that both the Virasoro operators and the antighost operators in the above expansions areeven moded.The level expansion of the string is obtained by the a
tion on the va
uum of arbitrary ghostos
illators, even moded Virasoro operators, and even moded antighost os
illators. The string�eld up to level four is thus given by	4 = � � t 
1 j0i+ u 
�1 j0i+ v L�2
1 j0i+ w b�2
0
1 j0i+ AL�4
1 j0i+BL�2L�2
1 j0i+ C 
�3 j0i+ E b�2
�2
1 j0i+ F L�2
�1 j0i+ w2 b�2
�1
0 j0i+ w3 b�4
0
1 j0i+ w4 L�2b�2
0
1 j0i� : (6.9)
The �rst line 
ontains the level-zero ta
hyon, the se
ond line 
ontains the three level-two �elds,and the last two lines 
ontain the eight level-four �elds. In this expansion the Virasoro operatorsin
lude matter and ghost 
ontributions and have zero 
entral 
harge.To des
ribe the solution, assume a general expansion in a basis of Fo
k spa
e states	 =Xi �(i) jOii : (6.10)Up to level four, the states jOii and the expansion 
oeÆ
ients �(i) are those in (6.9). Our goal isto 
ompute those expansion 
oeÆ
ients, sin
e they are the expe
tation values of the 
omponent�elds. Assume now that  n�2, given in (5.50), is also expanded in the same basis: n�2 =Xi �(i)n jOii : (6.11)Using (5.51) we have 	 = 1Xn=2  0n�2 =Xi 1Xn=2(�n�(i)n ) jOii : (6.12)Comparing with (6.10) we �nd that the vevs are given by�(i) = 1Xn=2 �n �(i)n : (6.13)48



We 
an now expand the solution (5.50) to level four. Sin
e the 
ombination anr appearsrepeatedly both by itself and as the argument of g we introdu
e the notation~a � anr ; g � g(~a) : (6.14)Using the expansion (6.7) of U?fn�1 and the expansion (6.8) of bB, together with (6.11), we �ndthat the expansion of (5.50) yieldstn = 2
rs ~as�2 g2g0 �1� g~ag0� ; un = 
r ~a2g2 tn ; vn = 
r�t2 tn ; wn = �2
r s�2 ~as�1 g3g02 ;An = 
r�t4 tn ; Bn = 12 
r�t22 tn ; Cn = 
r3 ~a4g4 tn ; En = �2 
r3 s ~as+1 �2 gg02 ;Fn = 
r ~a2g2 �t2 tn ; (w2)n = � 
r3En ; (w3)n = �2 
r3 s ~as+1 �4 g3g02 ;(w4)n = �2
r s ~as�1 �t2�2 g3g02 :
(6.15)

The powers of r here arise from the fa
tor (an)L0 = (~a=r)L0 in U?fn�1 | see (6.7). In the aboveformulae all appearan
es of an are in the 
ombination ~a. Note, however, that the 
oeÆ
ients �t2and �t4 have an dependen
e. Following (6.13), the expe
tation value of A, for example, wouldbe given by A = 1Xn=2 �nAn : (6.16)For arbitrary � and s, the derivatives with respe
t to n of the 
omponent �elds in (6.15) givelong and 
ompli
ated expressions. Therefore, we do not attempt any further simpli�
ation ofthe string �eld.6.2 Level Expansion for � = 0In this subse
tion we set � = 0 and explore the solution for various values of s. We 
al
ulateexpli
itly the expe
tation values of level four �elds and use them evaluate the approximateenergy of the solution. We �nd numeri
al eviden
e 
onsistent with the energy 
onverging tothe expe
ted value of �1 (in units of the D-brane tension) for s � 1. For s < 1 we 
an still use(5.50) to 
al
ulate a string �eld but given that the s < 1 surfa
e states are not proje
tors, wehave no reason to believe that the 
onstru
ted �eld is a solution. Indeed, a level 
omputationof the energy in those 
ases suggests that it does not 
onverge to minus one.49



For � = 0 we have r = 1 and the solution in (5.50) redu
es to n�2 = s(an)s�1g(an)2g0(an) U?fn�1� 
�� 1g(an)�+ 
� 1g(an)�+ g(an)2ang0(an) bB? 
�� 1g(an)� 
� 1g(an)� �j0i : (6.17)This time we write a � an = n�1=s ; g � g(a) ; g0 � g0(a) ; (6.18)and the results in (6.15) simplify totn = 2s as�2 g2g0 �1� gag0� ; un = a2g2 tn ; vn = �t2 tn ; wn = �2s�2 as�1 g3g02 ;An = �t4 tn ; Bn = 12 �t22 tn ; Cn = a4g4 tn ; En = �2s as+1 �2 gg02 ;Fn = a2g2 �t2 tn ; (w2)n = �En ; (w3)n = �2s as+1 �4 g3g02 ; (w4)n = �2s as�1 �t2�2 g3g02 : (6.19)
These formulae, together with (6.13) allow the evaluation of the level four expe
tation values.As in [2℄, no simple 
losed form seems possible and the 
omputation must be done numeri
ally.The level four string �eld in (6.9) 
an be rewritten using matter Virasoro operators. Ex-panding the Virasoro operators in (6.9) into matter and ghost parts one obtains the string�eld	4 = � � t0 
1 j0i+ u0 
�1 j0i+ v0 Lm�2
1 j0i+ w0 b�2
0
1 j0i+ A0 Lm�4
1 j0i+B0Lm�2Lm�2
1 j0i+ C 0 
�3 j0i+D0 b�3
�1
1 j0i+ E 0 b�2
�2
1 j0i+ F 0 Lm�2
�1 j0i+ w02 b�2
�1
0 j0i+ w03 b�4
0
1 j0i+ w04 Lm�2b�2
0
1 j0i� ; (6.20)
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s = 0:6 s = 0:8 s = 1 s = 1:2 s = 1:4 s = 2:0 s = 3:0t(s) 0:52860 0:53755 0:55347 0:57278 0:59361 0.65779 0:75882u(s) 0:02935 0:03881 0:04367 0:04600 0:04694 0:04634 0:04268v(s) 0:04541 0:09289 0:13765 0:17939 0:21840 0:32231 0:46548w(s) 0:09945 0:11908 0:13108 0:13860 0:14330 0:14857 0:14617Table 1: The expe
tation values of all �elds up to level two 
al
ulated using the exa
t analyti
expressions as a fun
tion of the parameter s.where the primed �elds are given byt0 = t u0 = u+ 3vv0 = v w0 = w � 2vA0 = A B0 = BC 0 = C + 7A+ 15B + 5F D0 = �5A + 3B + F (6.21)E 0 = E � 6A� 8B + 4w4 F 0 = F + 6Bw02 = w2 + 12B + 2F � 3w4 w03 = w3 � 4Aw04 = w4 � 4BNote that in (6.20) we had to introdu
e a �eld D0 to multiply the state b�3
�1
1 j0i. Sin
ebB only has even-moded os
illators, that state arises from (5.50) only after expanding the totalVirasoro operators in U?fn�1 into matter and ghost parts. Note also that the state Lm�3
0j0idoes not arise in the expansion. The expansion in ghost and matter parts 
annot generateodd-moded Virasoro operators, only odd-moded antighost operators.We 
an now 
onsider some numeri
al work. For s = 1 we �nd the expe
tation valuet = 0:553466, u = 0:0436719, v = 0:137646, and w = 0:131082. These imply t0 = 0:553466,u0 = 0:45661, v0 = 0:137646, and w0 = �0:14421 in 
omplete agreement with [2℄. We have also
he
ked that the expe
tation values of the level four �elds for s = 1 agree with those in [2℄. Fors = 2 we �nd t = 0:65779 ; u = 0:04634 ; v = 0:32231 ; w = 0:14857 : (6.22)Va
uum expe
tation values for these and other values of s are listed in Table 1.51



s = 0:6 s = 0:8 s = 1 s = 1:2 s = 1:4 s = 2:0 s = 3:0E0(s) �0:91925 �0:95064 �1:00777 �1:07934 �1:15927 -1.42348 �1:8943E2(s) �0:91495 �0:96663 �1:00782 �1:02736 �1:02271 �0:87438 �0:2896E4(s) �0:91389 �0:97221 �1:0045 �1:00843 �0:99591 �0:98916 �1:4827Table 2: The energy 
al
ulated at levels zero, two, and four, for several values of the parameter s.The energy, normalized to minus one, 
an be 
omputed using the vevs of the �elds and thekineti
 terms in the string �eld theory. To level zero, two, and four we getE0 = 2�23 ��12t2� ;E2 = E0 + 2�23 ��12u2 + 3u(v � w) + 2(v � w)2� ;E4 = E2 + 2�23 � 4A2 + 24AB + 5AC � 6AE + 18AF � 8Aw3 � 24Aw4� 3BC + 8BE � 24Bw2 � 24Bw3 + CF � Cw2 � 5Cw3 + 3Cw4� 32E2 + 6EF + 3Ew2 + 6Ew3 � 8Ew4 � 132 F 2 � 5Fw2 � 18Fw3� 2w22 + 24w2w4 + 4w23 + 24w3w4� :
(6.23)

In Figure 10 we plot energies as a fun
tion of s 2 [0:6; 2:0℄. There are three 
urves: thelevel-zero energy E0(s), the level-two energy E2(s), and the level-four energy E4(s). At ea
hlevel the energy was 
omputed using the exa
t numeri
al values for all the �elds. For s � 1 thevarious 
urves are 
onsistent with an energy that approa
hes the 
orre
t value. For s < 1 theplot suggests that the energy will not approa
h the 
orre
t value. Some parti
ular values arealso tabulated in Table 2. Note how eÆ
ient the 
onvergen
e is for s = 2, while for s = 0:6 itappears that the energy will not move mu
h beyond the value �0:91.6.3 No Siegel gauge in the familyThe solution for the ta
hyon va
uum in the Siegel gauge is a state in the universal subspa
e ofthe total CFT: the ghost number one subspa
e spanned by all states built on the va
uum bya
ting with �nite numbers of ghost and antighost os
illators as well as �nite number of matterVirasoro operators. Apart from an SU(1; 1) symmetry that relates 
ertain expe
tation valuesno additional relations are known. 52



Figure 10: Plot of the energies E0(s); E2(s); and E4(s) 
omputed at levels zero, two, and four,respe
tively. The exa
t value is �1.It is 
lear from the form of  n that the solution 	 belongs to a 
onstrained universalspa
e where states are built a
ting on the va
uum with arbitrary ghost os
illators, even-modedantighost os
illators, and even-moded total Virasoro operators. Before imposing any gauge
ondition, the level four universal subspa
e 
ontains 10 states, while the level four 
onstrainedspa
e has only 8 states.As we show now, at level four the Siegel gauge expe
tation values must satisfy an additionalrelation if it is to lie on the 
onstrained universal spa
e. This 
ondition is not satis�ed.In the Siegel gauge we 
an use the expansion (6.20) of the string �eld. The question iswhether the values of the primed �elds in the Siegel gauge are 
onsistent with expe
tationvalues for the unprimed �elds. Can we solve for the unprimed �elds using (6.21)? There is a
onstraint, however. We readily �nd thatD0 = �5A0 � 3B0 + F 0 : (6.24)This is a 
onstraint that must be satis�ed by the Siegel gauge solution, if it is to have thestru
tural form required by the general s solution. From [25℄ we haveA0 = �0:005049 ;B0 = �0:000681 ;F 0 = 0:001234 : (6.25)This together with (6.24) predi
tsD0 = 0:028522. The value from [25℄, however, isD0 = 0:01976,in 
lear disagreement. We 
on
lude that we 
annot rea
h the Siegel gauge solution for any value53



of the parameter s.6.4 Proje
tor expansionIn [23℄ a variant of level expansion was proposed in whi
h the string �eld solution is written interms of operators of in
reasing level inserted at the midpoint of a regulated proje
tor surfa
estate. The original dis
ussion used the butter
y state but this was extended to large 
lassesof proje
tors in [24℄. In this se
tion we show how to obtain a possibly related expansion usingthe � parameter in the limit of large �.In the solution (5.50) and in its level expansion we noted the repeated appearan
e of anr = ~a,whi
h is given by ~a = anr = h12 � 1 + e2�1 + (n� 1)e2� i1=s : (6.26)For � !1 we get a �nite limit lim�!1 ~a = � 12n� 2 �1=s � �a : (6.27)We also note that for large � r ' 2�1=se2�=s ; an ' 21=s�a e�2�=s : (6.28)Let us separate the fa
tor U?f from U?fn�1 . We re
all (6.1), whi
h implies thatUfn�1 = UfIÆf�1 (an)L0 Uf : (6.29)It follows that U?fn�1 = U?f h(an)L0 U?fIÆf�1 (an)�L0i (an)L0 : (6.30)Sin
e fn�1 is independent of the overall s
ale of f , we 
an assume that f(z) � z + : : : inevaluating UfIÆf�1 . We 
an then write an expansion without an L0 term:U?fIÆf�1 = � � � e �d6L�6 e �d4L�4 e �d2L�2 : (6.31)Here the �dn are 
al
ulable 
oeÆ
ien
ts that are independent of �. We then haveU?fn�1 = U?f � � � � e �d6a6nL�6 e �d4a4nL�4 e �d2a2nL�2 � (an)L0 : (6.32)The string �eld will be an expansion in powers of e2�=s. The leading term in the expansion ofthe string �eld will o

ur when U?fn�1 a
ts on the ta
hyon state, the state with L0 = �1. Inthis 
ase, to leading order in e2�=s, the above fa
tor in parenthesis is equal to one, and we haveU?fn�1
1j0i ' U?f 
1j0i � 1�a 2�1=s e2�=s : (6.33)54



It now follows from (5.50) that n�2 ' 12 s �as�1 g(�a)2g0(�a) 1�a 2�1=s e2�=s U?f 
1j0i � 2�1� g(�a)�ag0(�a)� ; (6.34)or, equivalently,  n�2 ' U?f 
1j0i � 2�1� 1s s e2�=s 2�as�2 g(�a)2g0(�a) �1� g(�a)�ag0(�a)� : (6.35)This means that to leading order in the expansion the string �eld is given byj	i = U?f 
1j0i � 2�1� 1s e2�=s 2 1Xn=2 �n��as�2 g(�a)2g0(�a) �1� g(�a)�ag0(�a)�� : (6.36)This is the general result, valid for all arbitrary s � 1. Note that this term diverges parame-teri
ally with �. For the 
ase of the sliver, the string �eld be
omesj	i = U?f 
1j0i � 14e2� � 2 1Xn=2 �n� g2(�a)�ag0(�a)�1� g(�a)�ag0(�a)�� ; s = 1 ; (6.37)with g(z) = 12 tan(�z). Re
alling the de�nition of �a in (6.27) one 
an easily evaluate the aboveexpression numeri
ally. The result isj	i = U?f 
1j0i � 14e2� � (0:39545107) : (6.38)We will not attempt the 
al
ulation of the subleading terms in the solution. In the work of [23℄the leading term of the solution is a divergent 
oeÆ
ient that multiplies a ghost insertion ona regulated proje
tor. The regulation parameter and the divergent 
oeÆ
ient are related, andthis helps produ
e �nite energy. While the expansion of the solution around the sliver in thissubse
tion is well de�ned in 
al
ulating 
oeÆ
ients in front of states in the Fo
k spa
e, it is notwell de�ned in 
al
ulating the energy of the solution. It would be interesting to �nd a moresystemati
 way to expand the solution for large �, in parti
ular, in the 
ontext of VSFT.7 Con
luding RemarksWe �nd it tantalizing that proje
tors play a signi�
ant role in the 
onstru
tion of solutions ofOSFT. Proje
tors are essentially the solutions of va
uum string �eld theory (VSFT), so thisfa
t should help relate OSFT to VSFT and, with some lu
k, to obtain a regular form of VSFT.In addition to �nding new solutions of OSFT, the development of VSFT may pave the way forfurther progress in this �eld. 55



The role of proje
tors was somewhat hidden in the ta
hyon va
uum solution of S
hnabl [2℄.The L0, L?0 stru
ture asso
iated with the geometry of the wedge states seemed to be the 
entraland ne
essary ingredient. In [5℄ it was found that the L0, L?0 stru
ture is not unique to thewedge states. In
luding other 
onditions required by solvability, one is led to spe
ial proje
tors.In this work we have used reparameterizations to show that any twist-invariant, single-splitproje
tor furnishes a solution. It is not required to have a spe
ial proje
tor, but the form of thesolution simpli�es 
onsiderably for that 
ase. This is a satisfying 
on
lusion: ea
h single-splitproje
tor furnishes a solution in a di�erent gauge, and all single-split proje
tors are allowed.Our methods using reparameterizations do not immediately apply to multiple-split proje
-tors, i.e., 
onformal frames where the 
oordinate 
urve goes to in�nity at other points besidesthe string midpoint. These proje
tors are not related by regular reparameterizations to thesliver. Examples of multiple-split spe
ial proje
tors were given in [5℄. It is not diÆ
ult to
onstru
t formal solutions for a 
ertain 
lass of multiple-split spe
ial proje
tors by inserting op-erators analogous to those in se
tion 4, but it is not obvious if the 
al
ulation of their energiesis well de�ned.While the idea of using reparameterizations is 
ertainly not new, it was generally felt that
on
rete 
omputations would be diÆ
ult sin
e the operators that perform reparameterizationsare extremely diÆ
ult to 
onstru
t. We found a way to implement the ne
essary reparameter-izations without 
onstru
ting the operators.One parti
ularly interesting by-produ
t is the 
onstru
tion of an abelian algebra of statesfor any proje
tor. The surfa
e states interpolate between the identity and the proje
tor. Forthe sliver this is the familiar algebra of wedge states. We believe, although we have not proven,that the wedge states are the unique states that interpolate between the identity and the sliverand star-multiply among themselves. If this is the 
ase, the possibility of reparameterizationsimplies that the interpolating family must be a 
anoni
al unique obje
t for any proje
tor. Inthis sense there is no preferred proje
tor and our use of the sliver is re
ognized to be just ate
hni
al tool.A
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