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1 IntrodutionGeneralized parton distributions (GPDs) provide a uni�ed parameterization of many di�erent aspetsof hadron physis [1, 2, 3, 4℄. Understanding GPDs in detail is therefore tantamount to understandingin large parts the internal struture of hadrons. This motivates extensive experimental programsas well as theoretial work. Details an be found in the reviews [5, 6, 7℄, whih emphasize thedi�erent types of physis enoded in these quantities. More reently it has been shown that interestinginformation about the distribution of transversely polarized quarks in a hadron is ontained in GPDsassoiated with hiral-odd quark operators [8, 9℄, for whih there have been relatively few studies sofar.The extration of GPDs from experiment is a highly non-trivial task, sine in observables thedistributions appear only within onvolutions. These are relatively simple at leading order in thestrong oupling but beome inreasingly omplex at higher orders, see e.g. [10℄. In pratie onetherefore has to use parameterizations of GPDs whih are on one hand suÆiently exible to aththe physis and on the other hand ontain only few parameters. In this ontext, the alulation ofmoments of GPDs in lattie QCD is expeted to beome highly important in the future.The lattie evaluation of these moments, parameterized by the form fators of loal matrix ele-ments, is very similar to the ase of the usual eletromagneti form fators [11℄. The main limitationat present is that lattie alulations with dynamial quarks an only be done for unphysially heavyquarks and thus pions. The mass of the pion a�ets however the spatial extent of the nuleon andhene its form fators. Therefore, their extrapolation to the physial limit an be fairly non-trivial,and simple linear extrapolations with respet to m� or m2� ould be quite inadequate. Progress inthis respet requires an analysis within hiral perturbation theory (ChPT). We have presented suhan analysis for the pion GPDs in [12℄ and for nuleon GPDs in the hiral-even isosinglet setor in [13℄.In the present paper we extend this work to the hiral-even isotriplet setor and the hiral-odd setor,giving omplete orretions at one-loop auray. Calulations of a similar sope have reently beenreported in [14℄, and we will ompare our results in detail. There already exists a number of lattieresults for moments of GPDs, see [15, 16℄ and referenes therein. We do not inlude any ChPT �tsto these in the present paper, but leave them to future lattie studies.Our paper is organized as follows. In Setions 2, 3 and 6 we ollet details about GPD parameter-izations, the operator produt expansion, and heavy-baryon ChPT that are needed in our analysis.We proeed in eah ase by onstruting the operators within ChPT that math the relevant twist-twooperators in QCD, and by identifying the loop orretions whih ontribute to a given form fatorat relative order O(q2) in the hiral expansion (Setions 4, 5.1 and 7). Results of the orrespondingalulations are given for the vetor form fators in Setion 5.2, for the axial form fators in Setion5.3, and for the hiral-odd form fators in Setion 8. In Setion 9 all results are olleted and rewrittenin terms of the usual parameterization of GPDs. We summarize our main �ndings in Setion 10.2 Chiral-even generalized parton distributionsTo begin with let us reall the de�nitions of generalized parton distributions assoiated with hiral-even quark operators. For the distributions with de�nite isospin I in a nuleon one an writeZ d�4� eix�(aP )
Ni(p0)�� �q(�12�a) =a�Aq(12�a) ��Nj(p)�= �Aij 12aP �u(p0) �=aHI(x; �; t) + i���a���2M EI(x; �; t) � u(p) ;2



Z d�4� eix�(aP )
Ni(p0)�� �q(�12�a) =a5�Aq(12�a) ��Nj(p)�= �Aij 12aP �u(p0) �=a5 eHI(x; �; t) + a�2M5 eEI(x; �; t)� u(p) ; (1)where a is a light-like auxiliary vetor, M is the nuleon mass, and we use the standard kinematialvariables P = 12 (p + p0), � = p0 � p, t = �2 and 2� = �(�a)=(Pa). Wilson lines must be insertedbetween the quark �elds if one is not working in the light-one gauge (aA) = 0. We ombine thetwo-dimensional unit matrix �0 and the triplet of Pauli matries ~� in a four-vetor �A = (�0; ~� ),with the matries ating on the isodoublet of quark �elds q or of nuleon states N . The isosingletdistributions orrespond to A = 0 and the isotriplet ones to A = 1; 2; 3. In terms of individual quarkavors in the proton one has HI=0 = Hu +Hd and HI=1 = Hu �Hd, with analogous relations forthe other distributions.The Mellin moments of the GPDs in (1) are related to the matrix elements of the hiral-even loaltwist-two operators OA�1�2:::�n = T�1:::�n S�1:::�n �q�1iD$�2 : : : iD$�n�Aq ;eOA�1�2:::�n = T�1:::�n S�1:::�n �q�15 iD$�2 : : : iD$�n�Aq (2)with D$� = 12(D!� � D �). Here T denotes the subtration of trae terms in the indiated Lorentzindies and S denotes symmetrization, normalized as S�1�2 t�1�2 = 12(t�1�2 + t�2�1). Both operationsare onveniently implemented by ontration with the auxiliary vetor a,OAn (a) = a�1 : : : a�n OA�1:::�n ; eOAn (a) = a�1 : : : a�n eOA�1 :::�n : (3)The loal matrix elements an be parameterized ashNi(p0) j OAn (a) jNj(p)i = �Aij n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=aAIn;k(t) + i���a���2M BIn;k(t)� u(p)+ �Aij mod (n+ 1; 2) (a�)n 1M �u(p0)u(p)CIn(t) ;hNi(p0) j eOAn (a) jNj(p)i = �Aij n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=a5 eAIn;k(t) + a�2M5 eBIn;k(t)�u(p) ; (4)and the moments of the GPDs are given byZ 1�1 dxxn�1H(x; �; t) = n�1Xk=0even(2�)k An;k(t) +mod(n+ 1; 2) (2�)nCn(t) ;Z 1�1 dxxn�1E(x; �; t) = n�1Xk=0even(2�)k Bn;k(t)�mod(n+ 1; 2) (2�)nCn(t) ;Z 1�1 dxxn�1 eH(x; �; t) = n�1Xk=0even(2�)k eAn;k(t) ;Z 1�1 dxxn�1 eE(x; �; t) = n�1Xk=0even(2�)k eBn;k(t) ; (5)3



where here and in the following we omit the isospin label I when it is not required. The restritionto even k in (4) and (5) is a onsequene of time reversal invariane.To alulate the hiral orretions to the nuleon form fators in heavy-baryon hiral perturbationtheory we work in the Breit frame, where P = 0. The inoming and outgoing nuleons then haveopposite spatial momenta p0 = �p =�=2 and equal energies, p00 = p0 =M with =p1��2=4M2 : (6)In terms of the veloity vetor v, given by v = (1; 0; 0; 0) in the Breit frame, the inoming and outgoingnuleon momenta are given by p = Mv ��=2 and p0 = Mv +�=2. Note that (v�) = (vS) = 0.Dira bilinears an be expressed in terms of the veloity v� and the spin operator S� = 12 i���5 v� .Introduing the spinorsuv(p) = N�1 1 + =v2 u(p); uv(p0) = N�1 1 + =v2 u(p0) (7)with N =p(1 + )=2, the matrix elements in (4) an be rewritten as [13℄hNi(p0) j OAn (a) jNj(p)i = �Aij n�1Xk=�1(M)n�k�2 (av)n�k�1 (a�)k� �uv(p0) h(a�)EIn;k+1(t) +  [(aS); (S�)℄M In;k(t)i uv(p) ;hNi(p0) j eOAn (a) jNj(p)i = �Aij n�1Xk=0(M)n�k�1 (av)n�k�1 (a�)k� �uv(p0) �2 (aS) eEIn;k(t) + (a�)(S�)2M2 fM In;k(t)�uv(p) ; (8)where due to time reversal invariane the terms with En;k+1 are only nonzero for odd k, whereasthose with Mn;k, eEn;k and fMn;k are only nonzero for even k. The relation between the form fatorsin (4) and those in (8) isEn;k(t) = An;k(t) + �24M2Bn;k(t) for k < n ; En;n(t) = 2Cn(t) ;Mn;k(t) = An;k(t) +Bn;k(t) ;eEn;k(t) = eAn;k(t) ;fMn;k(t) = (1 + )�1 eAn;k(t) + eBn;k ; (9)whih is readily inverted toAn;k(t) = 12 �En;k(t)� �24M2Mn;k(t)� ; Bn;k(t) = 12 hMn;k(t)�En;k(t)i ;eBn;k(t) = fMn;k(t)� (1 + )�1 eEn;k(t) : (10)3 Heavy-baryon ChPTTo set our notation, let us briey review the main ingredients of hiral perturbation theory for heavybaryons, whih is an e�etive theory for the limit q;m� � M , where q is a generi momentum.4



To desribe pions we use the nonlinear representation U(x) = �u(x)�2 = exp�i�a(x)�a=F �, whereF � 92 MeV is the pion deay onstant in the hiral limit.1 The expliit breaking of hiral symmetryby the quark masses is implemented by the �eld �(x). We assume the isospin limit, where one anreplae �(x) ! m2�0 with the bare pion mass m. We will not use external vetor or axial vetor�elds here. The nuleon is desribed by the heavy-baryon �eld Nv(x) = 12(1 + =v) eiM0(vx)N(x), whereM0 is the bare nuleon mass and v the veloity vetor. The Fourier transform of Nv(x) depends onthe residual nuleon momentum, given by the original nuleon momentum minus M0v. Importantderived quantities are the axial vetor �eldu� = i�uy��u� u��uy� = � 1F ���a�a +O(�3) ; (11)the onnetion �� = 12 �uy��u+ u��uy� = i4F 2 �ab �a ���b�  +O(�4) ; (12)and �� = uy�uy � u�yu : (13)Under global hiral transformations, desribed by unitary matries VL and VR, the di�erent �eldstransform as U ! VRU V yL ; �! VR�V yL ;u! VRuHy = HuV yL ; Nv ! HNv ;�� ! H��Hy +H��Hy ; (14)and u� and �� transform homogeneously asu� ! Hu�Hy ; �� ! H��Hy : (15)The unitary matrix H depends on VL, VR and on U(x) and therefore has an x dependene. Withthe onnetion �� one an onstrut the ovariant derivative r�. It ats as r�X = ��X + ��X onquantities like Nv, whih transform with a fator H on their left, and as [r�; Y ℄ = ��Y + [��; Y ℄on quantities like u�, whih transform with H on the left and with Hy on the right. Correspondingderivatives ating to the left are Zr = Z� � Z�� and [Y;r ℄ = Y � � [Y;��℄, where Z transformswith a fator Hy on its right.The e�etive Lagrangian for the theory ontains a pure pion piee and a piee desribing thenuleon and its interation with pions, Le� = L� + L�N . Expanding in powers of q one hasL� = L(2)� + L(4)� + : : : ; L�N = L(1)�N + L(2)�N + : : : (16)with [17, 18℄ L(2)� = F 24 Tr�u�u� + �+� ;L(4)� = l316 �Tr�+�2 + l416 n2Tr�+Tr(u�u�) + 2Tr(�2�)� �Tr���2o+ : : : ; (17)1Our onvention is that upperase indies of � as in (1) run from 0 to 3, whereas lowerase ones run from 1 to 3.5



and [19℄ L(1)�N = Nv ni(vr) + g0 (Su)oNv ;L(2)�N = Nv �(vr)2 �r22M0 � ig02M0 �(rS); (vu)	 + 1 Tr�++ �2 � g208M0�(vu)2 + 3 u�u� + �4 + 14M0�[S�; S� ℄u�u��Nv ; (18)where g0 is the nuleon axial-vetor oupling in the hiral limit and the li and i are further low-energyonstants. The terms not displayed in L(4)� ouple to at least four pion �elds and will not be neededin our alulations.For alulating nuleon matrix elements in the Breit frame we need the residual momenta of theinoming and outgoing nuleon,r = p�M0v = wv ��=2 ; r0 = p0 �M0v = wv +�=2 (19)with w =M( � 1) + ÆM = � �28M � 41m2 +O(q3) ; (20)where ÆM = M �M0 is the nuleon mass shift. Using the spinors (7) one obtains a matrix elementas [20℄ hp0jOjpi = N 2ZN uv(p0)GO(r0; r)uv(p) ; (21)where GO(r0; r) is the trunated Green funtion for external heavy-baryon �elds Nv, Nv and theoperator O in the e�etive theory. ZN is the heavy-baryon �eld renormalization onstant,ZN = 1� 3m2g202(4�F )2 � 9m2g204(4�F )2 log m2�2 � 8m2dr28(�) +O(q3) ; (22)where dr28(�) is a low-energy onstant in the Lagrangian L(3)�N given in [21℄.4 Chiral even isotriplet operators4.1 Constrution of e�etive operatorsTo �nd the operators in the e�etive theory whih math the quark-gluon operators (2) in QCD wegeneralize the onstrution of [13℄ to the isotriplet setor. The relevant e�etive operators ontain apart O� whih involves only pion �elds (and ouples to the nuleon via interations from L�N) anda part O�N that is bilinear in the nuleon �eld. We thus haveOAn (a) �= OAn;�(a) +OAn;�N (a) ; eOAn (a) �= eOAn;�(a) + eOAn;�N (a) ; (23)where for the pure pion operators OAn;�(a) and eOAn;�(a) we will use the form given in [12℄. Thepion-nuleon operators OAn;�N(a) and eOAn;�N (a) are onveniently onstruted by �rst mathing theoperators�ORn (a)�ij = �qj =a 1 + 52 (iaD$)n�1 qi ; �OLn (a)�ij = �qj =a 1� 52 (iaD$)n�1 qi ; (24)6



where i and j are isospin indies. They involve quarks of de�nite hirality and transform asORn (a)! VRORn (a)V yR OLn (a)! VLOLn (a)V yL (25)unter hiral rotations. Parity transforms ORn (a) and OLn (a) into eah other. The orrespondinge�etive operators that are bilinear in the nuleon �eld an be written in the form�QRn (a)�ij = �NvO1uy�j �uO2Nv�i ; �QLn(a)�ij = �NvO01u�j �uyO02Nv�i ; (26)where O1, O2 transform like u� under hiral rotations and O01, O02 are related to them by parity. Thevetor and axial vetor operators are then readily obtained asOAn;�N (a) = Tr �A�QRn (a) +QLn(a)	 eOAn;�N (a) = Tr �A�QRn (a)�QLn(a)	 (27)and will involve the ombinations �Ae� = uy�Au� u�Auy ; (28)where the subsript e indiates that they our in hiral even operators. In the isosinglet ase onehas simply �0e+ = 2�0 and �0e� = 0, whereas the isotriplet ombinations�ae+ = 2�a + 1F 2 �b��a� b � �b�a�+O(�4) �ae� = � 2F �ab�b�  +O(�3) (29)involve an even or odd number of pion �elds, respetively. The operators O1, O2 an be onstrutedfrom the �elds u� and ��, and from the ovariant derivatives introdued in Setion 3. One anrearrange the ovariant derivatives in QRn (a) and QLn(a) to at either as total derivatives �� on theprodut of all �elds or in the antisymmetri form r$� = 12 (r!� �r �), where r!� = �!� + �� ats onthe produt of all �elds to the right and r � = � � � �� on the produt of all �elds to the left. Theoperators QRn (a) and QLn(a) are tensors having n indies ontrated with the auxiliary vetor a. Otherthan ��, r$� and u� these tensors an ontain the vetors v� and S� and the totally antisymmetritensor. The number of spin vetors an be hanged using the identitiesfS�; S�g = 12(v�v� � g��) ; [S�; S�℄ = i����� v�S� S� = � i2 ����� v�[S� ; S�℄ (30)where our onvention for the totally antisymmetri tensor is �0123 = 1. For the operators underdisussion we hose a basis where S� appears at most linearly, or quadratially as the ommutator[S�; S�℄. For ounting powers of q one assoiates hiral dimension 1 to ��, r$�, u� and hiral dimension2 to ��.We now make all fators of (av) expliit and writeOAn;�N (a) = nXk=0Mn�k�1 (av)n�k OAn;k(a) ; (31)where OAn;k(a) is free of fators (av). For ontrating the k vetors a� in OAn;k(a) one an use S�only one, so that this operator ontains at least k � 1 vetors ��, r$� or u�. Thus we an furtherdeompose OAn;k(a) = 1Xi=�1M�iOAn;k;i(a) ; (32)where OAn;k;i(a) has hiral dimension k + i. For eOAn;�N (a) one has a deomposition in full analogy to(31) and (32). 7



Table 1: Overview of ontributions to the hiral even form fators. The restrition in the seondolumn is due to time reversal invariane. N� is the number of fators (a�) and (S�) in thedeomposition (8). The indies of the operators must satisfy l � k and i � 0, and the orrespondinggraphs ontribute to the form fator at order O(qd) with d � Dl+1;i�1 �N� and Dl+1;i�1 from (33).form fator k N� operatorsEn;k+1 odd k + 1 On;l+1;i�1Mn;k even k + 1 On;l+1;i�1eEn;k even k eOn;l+1;i�1fMn;k even k + 2 eOn;l+1;i�14.2 Power ounting for tree and loop graphsAs shown in [13℄ the hiral dimension of a graph with two external nuleon legs and insertion of theoperator OAn;k;i(a) or eOAn;k;i(a) isDk;i = 2L+ k + i+ N�Xj=1 �dimV�(j) � 2�+ N�NXj=1 �dimV�N (j) � 1� ; (33)where L is the number of loops (with L = 0 for tree graphs). V�(j) and V�N (j) respetively denotethe jth vertex from L� and L�N in the graph, N� and N�N are the orresponding total numbers ofverties, and I� and IN are the numbers of pion and nuleon propagators. Corretions to the nuleonpropagator from higher orders of L�N are ounted as a nuleon-nuleon vertex and are aompaniedby two (leading-order) nuleon propagators on either side. Notie that r� + r0� = 2wv� is of orderO(q2) and thus one order higher than the generi power assoiated with a residual nuleon momentum.A graph with hiral dimension Dk;i an thus generate ontributions to a nuleon matrix element oforder O(qd) with d � Dk;i. Sine OAn;k;i(a) is aompanied by a fator (av)n�k in (31) it an onlyontribute to form fators with at least n� k powers of (av) in the deomposition (8) of the nuleonmatrix element. Taking into aount the number N� of fators (a�) and (S�) in that deomposition,one an establish the order in the hiral expansion to whih a given operator an ontribute to a formfator. The result is given in Table 1.Throughout this paper we refer to orders O(qd) in the hiral expansion of a given form fatorrather than the expansion of the orresponding matrix element. This is most onvenient for theproblem at hand, sine the hiral order of matrix elements inreases with the order n of the operator,whereas the hiral order of the form fators has as a natural point of referene the order O(q0) fromtree-level insertions of operators with the lowest hiral dimension at given n.The ontributions of the operators OAn;k;i(a) and eOAn;k;i(a) at tree level are readily evaluated. Thetree level graphs do not ontain pions, so that one an replaeu� ! 0; �� ! i��; r$� ! �iwv�;�Ae+ ! 2�A; �Ae� ! 0; �+ ! 2m2�0; �� ! 0: (34)Operators with r$� do not ontribute to the form fators at leading order sine w is of order O(q2).The di�erent types of higher-order ontributions to the form fators are disussed in Setion 3.2 of[13℄. In the results we give for the form fators, we lump them all into oeÆients desribing the m28
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wv � �2 wv � �2wv � �2 wv + �2wv + �2 wv + �2l + wv � �2l + wv � �2 l + wv + �2a b Figure 1: One-loop graphs with the insertion of a pion-nuleon operator On;�N (a) or eOn;�N (a), whihis denoted by a blak blob. Not shown is the analog of graph  with residual momentum l+wv+�=2of the intermediate nuleon line.and t orretions from tree graphs, exept for the terms proportional to g20 in the expression (22) ofthe wave funtion renormalization onstant ZN , whih we ombine with the terms due to loop graphs.The one-loop graphs with pion-nuleon operator insertions are shown in Fig. 1. The onstrutionof operators detailed in Setion 4.1 allows one to easily trak the origin of fators �� whih arise froma graph and must math the fators in the form fator deomposition (8). For this we use that thedenominators of the pion and nuleon propagators are (l2 �m2 + i0) and (lv+w+ i0), respetively,so that the loop integration turns tensors l�1 : : : l�j into tensors onstruted from v� and g��. We �ndthat with the leading-order (LO) interations from L(1)�N and the next-to-leading (NLO) interationsfrom L(2)�N a fator �� whih is not ontrated to �2 (and hene an be ontrated with a� or S�)an only originate from [13℄1. a total derivative �� in the operator insertion,2. a term (lv)(S�) due to an NLO pion-nuleon vertex,3. or a term (l�) due to an NLO nuleon propagator orretion.We further �nd that two fators of �� whih are not ontrated to �2 an originate as (l�)(�S)from the NNLO pion-nuleon vertex generated by the term� g04M20 Nv n(r S)(ur!) + (r u)(Sr!)oNv (35)of the Lagrangian L(3)�N given in [21℄.In the next setion we will see that OAn;l+1;i�1(a) and eOAn;l+1;i�1(a) with i = 0; 1; 2 have at mostl + i total derivatives ��. A one-loop graph with insertion of suh an operator and pion-nuleoninterations up to NNLO must therefore satisfyl + i+ N�NXj=1 �dimV�N (j)� 1� � N� (36)in order to produe the number N� of fators �� required to ontribute to the form fators in Table 1.For i > 2 and for pion-nuleon interations higher than NNLO this inequality is trivially ful�lled.With the power ounting established in the table, one then �nds that the one-loop ontributions frompion-nuleon operators for all form fators start at order O(q2).9
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a b Figure 2: a and b: One-loop graphs with the insertion of the pion operator On;�(a). : Tree graphwith the insertion of the pion operator eOn;�(a). The operator insertions are denoted by blak blobs.Let us �nally return to the ontributions to the nuleon matrix elements from the pure pionoperators OAn;�(a) and eOAn;�(a). Their hiral dimension is [13℄D� = 2L� 1 + d� + N�Xj=1 �dimV�(j) � 2�+ N�NXj=1 �dimV�N (j) � 1� (37)where d� � n is the hiral dimension of the pion operator. Beause of parity invariane the vetoroperators On;� ouple to 2 or more pions, whereas the axial vetor operators eOAn;�(a) ouple to 1 butnot 2 pions. Starting at order O(qn�k) the form fators En;k+1 and Mn;k thus reeive orretionsfrom the one-loop graphs shown in Fig. 2a and b. For isotriplet pion operators n is odd due to hargeonjugation invariane. Together with the time reversal invariane onstraints on the nuleon formfators, one thus �nds that the orretions to EI=1n;n�1 start at O(q2) and those to M I=1n;n�1 at orderO(q), whereas for all other form fators EI=1n;k+1 and M I=1n;k they are at least of order O(q3).The axial vetor operator eOAn;�(a) ontributes to nuleon matrix elements starting with the treelevel graph in Fig 2. The n vetors a� in the operator are all ontrated with derivatives ating onthe pion �eld and hene with �� after evaluation of the graph. The same is true for the orrespondingone-loop graphs. One thus obtains only ontributions to the form fator fMn;n�1, starting at orderO(q�2) for the tree graph. With two loops one has graphs where three pions ouple to the operatoron one side and to the nuleon line on the other. Suh graphs an ontribute to other form fators,but only starting at order O(q4).5 Results for hiral-even isotriplet form fators5.1 Relevant operators and graphsWith the method outlined in Setion 4.1 one �nds vetor operatorsOAn;k+1;�1 = eE I (0)n;k (ia�)k Nv (aS) �Ae�Nv + : : : ;OAn;k+1;0 = 12E I (0)n;k+1 (ia�)k+1Nv �Ae+Nv � 12M I (0)n;k (ia�)k i��Nv [(aS); S�℄�Ae+Nv + : : : ;OAn;k+1;1 = 14fM I (0)n;k (ia�)k+1 i��Nv S��Ae�Nv + : : : ; (38)where the : : : stand for operators whih have fewer total derivatives and as in Setion 2 the isospinindex I = 0 belongs to A = 0 and I = 1 to A = 1; 2; 3. The axial vetor operators are simply obtained10



by interhanging �Ae+ and �Ae�,eOAn;k+1;�1 = eE I (0)n;k (ia�)k Nv (aS) �Ae+Nv + : : : ;eOAn;k+1;0 = 12E I (0)n;k+1 (ia�)k+1Nv �Ae�Nv � 12M I (0)n;k (ia�)k i��Nv [(aS); S�℄�Ae�Nv + : : : ;eOAn;k+1;1 = 14fM I (0)n;k (ia�)k+1 i��Nv S��Ae+Nv + : : : : (39)Using the rules (34) and the deomposition (8) the oeÆients in (38) and (39) are easily identi�edas the tree-level ontributions to the form fators eEIn;k(t), EIn;k+1(t), M In;k and fM In;k at order O(q0).Time reversal invariane implies that EI (0)n;k+1 is only nonzero for odd k, whereas the other oeÆientsM I (0)n;k , eEI (0)n;k , fM I (0)n;k are only nonzero for even k. For A = 0 we reover the isosinglet operatorsonstruted in [13℄.Aording to (29) insertions of an isotriplet operator with �ae� require at least one pion line in thegraph and hene do not ontribute to nuleon matrix elements at tree level. They appear however inthe one-loop graph shown in Fig. 1. When the pion-nuleon vertex in this graph is taken at LO one�nds zero, beause the loop integral is of the formZ d4�2�l (Sl)(lv + w + i0) (l2 �m2 + i0) ; (40)whose numerator is proportional to (Sv) = 0 after the integration. Calulating the same graph tothe next order, one �nds that the ontribution from the NLO pion-nuleon vertex anels the onewith the LO pion-nuleon vertex and an NLO nuleon propagator orretion. This holds true forall operators with �ae� in (38) and (39) and only requires that the operators does not introdue anydependene on the loop momentum l� via r$� or u�.The operators with �ae+ ontribute at tree level and via the loop graphs in Fig. 1a and b. Theyare onstruted suh that after the replaement �� ! i�� they math the struture of the terms inthe form fator deomposition (8). That struture an be hanged in loop graphs only when the spinvetors in the operator insertion are multiplied by spin vetors from pion-nuleon verties. This isnot the ase for the graph in Fig. 1b, whih originates from the two-pion term in the expansion (29)of �ae+ and thus reprodues the spin struture of the operator. Let us show that it is not the aseeither for the graph in Fig. 1a with LO pion-nuleon verties. The numerator of the orrespondingloop integral has the form (Sl)O(Sl), where O ontains zero, one or two vetors S� and representsthe spin struture of the operator. The loop integration turns a tensor l�1 : : : l�j into a ombinationof v� and g�� and thus (Sl)O(Sl) into S�OS�. This preserves the spin struture of O beauseS�S� = 14(1� d) ; S�S�S� = 14(d� 3)S� ; S� [S�; S�℄S� = 14(5� d) [S�; S� ℄ (41)in d dimensions. We also need graphs with one LO and one NLO pion-nuleon vertex, or with twoLO verties and an NLO nuleon propagator orretion. Restriting ourselves to the terms produingthe required fators of �� as disussed in Setion 4.2, we obtain numerators (lv)(S�)O (Sl) or(l�)(Sl)O (Sl), whih give zero after loop integration.In summary, the insertion of an operator from (38) or (39) into the graphs disussed so far eithergives zero or ontributes only to the same form fator for whih it already provides the leading-ordertree-level result. This is however not true for the graph in Fig 1a with one NNLO or two NLOpion-nuleon interations. In this ase one obtains terms (S�)O(S�) after loop integration, whihdo hange the spin struture of O. 11



5.2 Vetor form fatorsFrom Table 1 it follows that EIn;k+1 and M In;k an reeive ontributions from one-loop graphs withinsertion of operators On;l+1;i�1 with l � k and i � 0. With the additional ondition (36) requiredto produe enough fators of ��, we �nd that the form fators reeive orretions of order O(q2)from graphs with LO pion-nuleon verties and insertion of the operator On;k+1;0, whih alreadygives the tree-level ontributions at order O(q0). By power ounting one ould also have order O(q2)ontributions from graphs with insertion of On;k+2;�1 or On;k+1;�1 and pion-nuleon interationsat LO or NLO, respetively, but these vanish beause the relevant operators ome with �Ae�. Theone-loop orretions from pion-nuleon operators to EI=1n;k (t) and M I=1n;k (t) are then found to beEI=1(0)n;k �1� m2(4�F )2 �(3g2A + 1) log m2�2 + 2g2A��+O(q3) ;M I=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + 2g2A��+O(q3) ; (42)respetively, where we have replaed the bare axial oupling g0 by its physial value gA as is permissiblewithin the preision of our result. Likewise, we ould replae the bare pion deay onstant F andbare pion mass m by their physial values F� and m� (we refrain from doing so for ease of notation).The ontributions with g2A in (42) are due to the graph in Fig. 1a and the nuleon wave funtionrenormalization, and the ontributions without g2A ome from the tadpole graph in Fig. 1b. As in[13℄ we use the renormalization sheme of [22℄, subtrating 1=�+ log(4�) +  (2) for eah 1=� pole in4� 2� dimensions.The form fators EIn;k+1(t) and M In;k also reeive hiral orretions from loop graphs with pionoperator insertions. In the notation of [12℄ the isotriplet operators with lowest hiral dimension are2Oan;�(a) = 2~bn;n�1 (ia�)n�1(aV a)+ 2iF 2�ab n�3Xk=0even~bn;k (ia�)k h(aLb) (2ia�$)n�k�2(aL) + (aRb) (2ia�$)n�k�2(aR)i ; (43)where V a� = �12 iF 2�La� +Ra�� ; La� �a = U y��U ; Ra� �a = U ��U y : (44)To extrat the terms oupling to two pions we use the expansion La� = i���a=F + i�ab�b���=F 2 +O(�3) and its analog for Ra�, obtained by hanging the sign of the pion �eld,3 and obtainOan;�(a) = �2i�ab(~bn;n�1 (ia�)n�1�b(ia��)� 2 n�3Xk=0even~bn;k (ia�)kh(ia��b) (2ia�$)n�k�2 (ia��)i)+O(�4) : (45)Using the relations4(ia��b) (ia��) = (ia�)2�b� � �b (2ia�$)2 � ; 2�ab�b (ia��) = �ab�b (2ia�$)� (46)2The normalization of the twist-two operators (2) used here agrees with the one in [13℄ and di�ers from that in [12℄by a fator of 2. The oeÆients ~bn;k have the same normalization here and in [12℄.3We note that the sign of the term with �ab in eq. (32) of [12℄ is inorret.12



we an rewrite this asOan;�(a) = �i�ab n�1Xk=0evenA�(0)n;k (ia�)kh�b (ia�$)n�k �i+O(�4) ; (47)where A�(0)n;k = 2n�k�~bn;k � ~bn;k�2� with ~bn;�2 = 0. The oeÆients A�(0)n;k represent the hiral limit ofthe form fators A�n;k(t) whih parameterize the moments of the pion GPD as [12℄Z 1�1 dxxn�1HI�(x; �; t) = nXk=0even(2�)kA�n;k(t) ; (48)where in terms of quark avors in a �+ one has HI=0� = Hu� +Hd� and HI=1� = Hu� �Hd�. Beause ofisospin and harge onjugation symmetry one has I = 1 for odd n and I = 0 for even n and thereforean omit the isospin index I in A�n;k.As disussed after (37), the graphs in Fig. 2a and b with insertion of Oan;�(a) give rise to orretionswhih start at order O(q2) for EI=1n;n�1 and at order O(q) for M I=1n;n�1. Together with (42) and withterms due to tree level operator insertions, the omplete results to order O(q2) readEI=1n;k (t) = EI=1(0)n;k �1� m2(4�F )2 �(3g2A + 1) log m2�2 + 2g2A��+ Æk;n�1EI=1(2;�)n;n�1 (t) +EI=1(2;m)n;k m2 +EI=1(2;t)n;k t+O(q3) ;M I=1n;k (t) =M I=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + 2g2A��+ Æk;n�1 hM I=1(1;�)n;n�1 (t) +M I=1(2;�)n;n�1 (t)i+M I=1(2;m)n;k m2 +M I=1(2;t)n;k t+O(q3) ; (49)where the ontributionsEI=1(2;�)n;n�1 (t) = 12(4�F )2 nXj=1odd 2�jj A�(0)n;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A (2m2 � t)�log m2(�)�2 + 1�� (g2A � 1)m2(�) log m2(�)�2 �) ;M I=1(1;�)n;n�1 (t) = �2�Mg2A(4�F )2 nXj=1odd 2�jj A�(0)n;n�j Z 1�1 d� �j�1m(�) (50)with m2(�) = m2 � t4 (1� �2) (51)are due to graphs with pion operator insertions and LO pion-nuleon verties. The order O(q2)orretionM I=1(2;�)n;n�1 (t) = � 12(4�F )2 nXj=1odd 2�jj A�(0)n;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A �2m2 � t��log m2(�)�2 + 1�+ �g2A � 1� 4M4�m2(�) log m2(�)�2 �) (52)13



is due to graphs with one NLO pion-nuleon vertex or nuleon propagator orretion, as well as graphswith LO verties and the subleading part wv� of the residual nuleon momenta, f. the disussionafter (33). The terms proportional to g2A in (50) and (52) are due to the graph in Fig. 2a, and theother terms to the graph in Fig. 2b. Our expressions (49) and (50) agree with the results in [14℄,where the order O(q2) orretions to EI=1n;n�1 and the order O(q) orretions to M I=1n;n�1 are given.5.3 Axial form fatorsUsing Table 1 and the ondition (36), one readily �nds that the hiral orretions of order O(q2) to theform fator ~EIn;k are obtained from graphs with LO verties and insertion of the operator eOn;k+1;�1,whih already gives the tree-level ontributions at order O(q0). Together with higher-order tree levelinsertions we get eEI=1n;k (t) = eEI=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + g2A��+ eEI=1(2;m)n;k m2 + eEI=1(2;t)n;k t+O(q3) ; (53)in agreement with [14℄. The disussion of ontributions to fM In;k is more involved; for the isotripletase it proeeds in lose analogy to the isosinglet ase analyzed in [13℄. Aording to Table 1 and theondition (36), one obtains order O(q2) orretions from graphs with insertion of eOn;k+1;1 and LOverties. Further orretions are due to graphs with insertion of eOn;k+1;�1 and two NLO pion-nuleonverties or nuleon propagator orretions, or with one NNLO pion-nuleon vertex generated by (35).Graphs with the same operator insertion and two loops or one loop and a pion propagator orretionfrom L(4)� ould ontribute by power ounting but do not produe the required fators of �� (see[13℄). Graphs with insertion of eOn;k+2;0 or eOn;k+1;0 and pion-nuleon interations at LO or NLO givezero beause these operators involve �ae�, as disussed after (40). Graphs involving eOn;k+2;�1 andNLO pion-nuleon interations do not ontribute to fM In;k due to time reversal invariane, sine theoperator is only nonzero for odd k and the form fator only for even k. Finally, graphs with insertionof eOn;k+3;�1 and LO pion-nuleon verties ontribute to eEIn;k+2 but not to fM In;k as disussed at theend of Setion 5.1.Together with higher-order tree-level insertions, the one-loop graphs with eOn;k+1;1 or eOn;k+1;�1thus give the full result at order O(q2) for the form fators with k < n� 1,fM I=1n;k (t) = fM I=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + g2A��+ eEI=1(0)n;k m2g2A3(4�F )2 log m2�2 + fM I=1(2;m)n;k m2 + fM I=1(2;t)n;k t+O(q3) : (54)The form fators fM I=1n;n�1 require a separate disussion beause they reeive a ontribution startingat order O(q�2) from the one-pion exhange graph in Fig. 2, as disussed at the end of Setion 4.2.The relevant operator is given byeOan;�(a) = 2~bn;n�1 (ia�)n�1(aAa) � 1 +� lr42F 2 + ~n�Tr�+ �+O�qn+4� (55)with odd n and Aa� = �12 iF 2�Ra� � La�� ; (56)14



where ~bn;n�1 is the same as in (43) beause of parity invariane. lr4 is the renormalized low-energyonstant from the pion Lagrangian (17) and appears in the expression of the axial urrent,12 �q�5�aq �= Aa� � 1 + lr42F 2 Tr�+ �+O(q5) ; (57)so that ~b1;0 = 1 and ~1 = 0. One an readily derive (57) by oupling the Lagrangian to an externalisovetor axial �eld a� as usual [19℄, whih implies u� = i�uy��u � u�uy� + uya�u + ua�uy. As anaside we note that the orretion with lr4 in the axial urrent (57) would be di�erent if one used thepion Lagrangian from [22℄, where the term involving this low-energy onstant readsl44 Trh(���y)(��U) + (���)(��U y)i = l48 nTr�+Tr(u�u�) + 2iTr�r�; ���u�o : (58)In the present work we follow Ref. [18℄ and use the Lagrangian (17) from [17℄. It di�ers from (58)by total derivative terms and terms that vanish by the equation of motion. With the full Lagrangiangiven by L� + L�N the equation of motion for the pion �eld involves terms bilinear in the nuleon�eld,4 so that a hange of L� using the equation of motion indues a orresponding hange in L�N .We also refer to the disussion in [23℄.The oeÆients ~bn;n�1 and ~n in (55) appear in the moments of the twist-two pion distributionamplitude ��(x), whih are de�ned byZ d�2� eix�(ap)
�b(p)�� �q(��a) =a5 �aq(�a) ��0� = �iÆabF���(x) (59)and B�n = 2�n Z 1�1 dxxn�1��(x) ; (60)so that h�b(p)j eOan;�(a)j0i = �2iÆab(ap)nF�B�n : (61)Calulating the leading hiral orretion to this matrix element one �nds that lr4 only appears in theexpression of the pion deay onstant,F� = F �1� m2(4�F )2 log m2�2 + m2F 2 lr4(�) +O(m4)� ; (62)and ~n only in the orretion to the momentsB�n = ~bn;n�1 �1 + 4m2~n�+O(m4) : (63)The de�nition of the pion deay onstant implies B�1 = 1 to all orders in the hiral expansion.Returning to the nuleon form fators fM I=1n;n�1, one readily �nds their lowest-order ontribution tobe fM I=1(�2)n;n�1 (t) = B�(0)n 4M2g0m2 � t (64)with B�(0)n = ~bn;n�1. The leading orretions to this ome from a number of higher-order operatorinsertions and loop graphs. A tadpole insertion in the pion line of the graph in Fig. 2 and the4With an arbitrary matrix X in isospin spae and eX = X � 12 TrX, the leading-order equation of motion reads2iTr�r�; u��X +Tr�� eX = F�2 Nv �(vu) + 4ig0 (Sr); eX �Nv � 4ig0F�2 �� �NvS� eXNv� :15



propagator orretion from the l3 term in the pion Lagrangian (17) result in a shift m2 ! m2� in (64),where m2� = m2�1 + m22(4�F )2 log m2�2 + 2m2F 2 lr3(�) +O(m4)� : (65)The pion propagator orretion from the l4 term in (17) anels against the l4 term from the operator(55). A tadpole insertion at the operator vertex gives a hiral logarithm as in (62). Further orretionsare due to loop orretions to the pion-nuleon vertex, to tree-level insertions from L(3)�N , and to thefators N 2 and ZN in the mathing formula (21). Together with the tree-level insertion of the pion-nuleon operator eOan;n;1 from (39) we obtainfM I=1n;n�1(t) = B�(0)n 4M2g0m2� � t �1� m2(4�F )2 �(2g20 + 1) log m2�2 + g20 �+ 2m2g�10 �2dr16 � d18�� 8m2dr28 + 4m2~n�+ fM I=1(0)n;n�1 +O(q) (66)with the low-energy onstants dr16(�), d18 and dr28(�) from [21℄. To make the pion mass dependenefully expliit, one should replae M2 = M20 � 8m2M01 + O(m3). Conversely, we an use (63) andthe one-loop expressiongA = g0�1� m2(4�F )2 �(2g20 + 1) log m2�2 + g20 �+ 4m2g�10 dr16 � 8m2dr28�+O(m3) (67)of the axial oupling (see e.g. [24℄) to rewrite the result asfM I=1n;n�1(t) = B�n 4M2gAm2� � t �1� 2m2� g�1A d18�+ fM I=1(0)n;n�1 +O(q) (68)in terms of the physial quantities B�n , gA, M , m� and the low-energy onstants d18 and fM I=1(0)n;n�1 .With the transformation (10) and the de�nitions (5) and (60) of moments one �ndseEI=1(x; �; t) = �(jxj < �)2� ���x� � 4M2gAm2� � t �1� 2m2� g�1A d18�+ eEI=1(0)(x; �) +O(q) ; (69)whih generalizes the well-known relation from [25, 26℄ to next-to-leading order in the hiral expansion.For n = 1 our result (68) is onsistent with the one for the pseudosalar form fator in [18, 27℄. Wealso agree with the result of Ref. [14℄ if in their eq. (66) one adds a term Æm;2k 23 gAM2hr2Ai hz2ki�Æ22k.6 Chiral-odd generalized parton distributionsIn this setion we onsider the general parton distributions assoiated with hiral-odd operators. As inthe previous setions we restrit ourselves to the twist-two setor. The relevant GPDs of the nuleonare de�ned by5Z d�4� eix�(aP )
Ni(p0)�� �q(�12�a) b�a� i��� �Aq(12�a) ��Nj(p)�= �Aij 12aP b�a� �u(p0)"i���HIT + ��� ����2M EIT� i������� � i�������2M2 eHIT + �P � � P ��M eEIT#u(p) : (70)5We have traded the distribution ET in the original deomposition [28℄ for the ombination ET = ET +2 eHT , whihnaturally appears when representing the distributions at � = 0 in terms of densities in the impat parameter plane [8℄.16



In addition to the light-like vetor a we have introdued a vetor b satisfying ab = 0, and for brevitywe have suppressed the arguments x, �, t of the distributions.6 Their Mellin moments are related tothe matrix elements of the hiral-odd twist-two operatorsOAT ��1�2:::�n = T��1:::�n A��1 S�1:::�n �q���1iD$�2 : : : iD$�n�Aq ; (71)where T and S are de�ned as in Setion 2 and where A denotes antisymmetrization, A�� t�� =12(t���t��). These operations are onveniently implemented by ontration with the auxiliary vetorsa and b, given that for any tensor t��1:::�n satisfying t��1�2:::�n = �t�1��2:::�n one hasb�a�1a�2 : : : a�n T��1:::�n A��1 S�1:::�n t��1:::�n= b�a�1a�2 : : : a�n 12n �t��1�2:::�n + nXi=2 t��2:::�i�1�i+1:::�n � t�1��2:::�n � nXi=2 t�1�2:::�i��i+1:::�n�= n+ 12n b�a�1a�2 : : : a�n t��1:::�n : (72)where symmetrization in �2 : : : �n is guaranteed by ontration with idential vetors, and where traesubtration terms are removed by the onditions a2 = ab = 0. The (n� 1) terms of the seond sumgive zero due to the antisymmetry of t in its �rst two indies. We therefore de�ne the ontratedoperator OATn(a; b) = 2nn+ 1 b�a�1a�2 : : : a�n OAT ��1�2:::�n = �q b�a� i��� (iaD$)n�1�Aq ; (73)whose nuleon matrix elements are parameterized by
Ni(p0)��OATn(a; b) ��Nj(p)� = �Aij n�1Xk=0(aP )n�k�1 (a�)k b�a� �u(p0)"i���AITn;k + ��� ����2M BITn;k� i������� � i�������2M2 eAITn;k + �P � � P ��M eBITn;k#u(p) : (74)The moments of the hiral-odd GPDs are then expressed as [29℄Z 1�1 dxxn�1HT (x; �; t) = n�1Xk=0even(�2�)k ATn;k(t) ; Z 1�1 dxxn�1ET (x; �; t) = n�1Xk=0even(�2�)k BTn;k(t) ;Z 1�1 dxxn�1 eHT (x; �; t) = n�1Xk=0even(�2�)k eATn;k(t) ; Z 1�1 dxxn�1 eET (x; �; t) = n�1Xk=1odd(�2�)k eBTn;k(t) ; (75)where we have omitted isospin indies I in the distributions and form fators for ease of writing. Therestritions to even or odd k for the form fators reet that HT , ET and eHT are even in � and eETis odd in � due of time reversal invariane [28℄.Using the relations (9) in [13℄ and�u(p0)i���u(p) = �uv(p0)"2 [S�; S�℄ + v��� � v���2M + [S�; (S�)℄�� � [S�; (S�)℄��2M2(1 + ) #uv(p) (76)6Instead of ontrating ��� with auxiliary vetors one often takes de�nite indies �i+, where i = 1; 2 denotes atransverse omponent and + the plus-omponent in light-one oordinates, i.e. �i+ = (�i0 + �i3)=p2.17



one an rewrite the deomposition (74) in terms of the heavy-baryon spinors (7) and obtains
Ni(p0)��OATn(a; b) ��Nj(p)� = �Aij n�1Xk=0(M)n�k�1(av)n�k�1 (a�)k b�a�� �uv(p0)"2 [S�; S�℄ eEITn;k + [S�; (S�)℄�� � [S�; (S�)℄��2M2 fM ITn;k+  [S�; (S�)℄v� � [S�; (S�)℄v�M EITn;k + v��� � v���2M M ITn;k# uv(p) (77)with new form fators given byeETn;k = ATn;k ; fMTn;k = (1 + )�1ATn;k +BTn;k � 2 eATn;k :ETn;k = eBTn;k ; MTn;k = ATn;k +BTn;k � �22M2 eATn;k ; (78)or equivalently BTn;k = 12 �MTn;k � �24M2 fMTn;k �  eETn;k� ;eATn;k = 122 �MTn;k � fMTn;k � 1 +  eETn;k� : (79)We �nish this setion by de�ning hiral-odd GPDs in the pion,Z d�4� eix�(aP )
�(p0)�� �q(�12�a) b�a� i��� �Aq(12�a) ���b(p)�= 12 Tr(�A� b� ) 12aP b�a� P ��� ���P �m� EIT�(x; �; t) ; (80)where as in the nuleon ase, isospin I = 0 orresponds to A = 0 and I = 1 to A = 1; 2; 3. In termsof quark avors in a �+ one has EI=0T� = EuT� +EdT;� and EI=1T� = EuT� �EdT�, with the de�nitionZ d�4� eix�(aP )
�+(p0)�� �u(�12�a) b�a� i���u(12�a) ���+(p)�= 12aP b�a� P ��� ���P �m� EuT�(x; �; t) (81)and its analog for d quarks. For the loal twist-two operators one has
�(p0)��OATn(a; b) ���b(p)� = 12 Tr(�A� b� ) b�a� P ��� ���P �m� n�1Xk=0even(aP )n�k�1 (a�)k B�Tn;k(t) (82)with Z 1�1 dxxn�1EIT�(x; �; t) = n�1Xk=0even(2�)k B�Tn;k(t) ; (83)where the restrition to even k is a onsequene of time reversal symmetry. Due to isospin and hargeonjugation invariane, n is even for I = 0 and odd for I = 1, so that we do not need an isospin labelfor BT�n;k. 18



7 Chiral-odd e�etive operatorsIn this setion we explain how to onstrut the operators in the e�etive theory that math the hiral-odd quark operators (71), losely following the strategy used in Setion 4. To this end we �rst maththe operators�O��RL;n(a)�ij = �qj i��� 1 + 52 (iaD$)n�1 qi ; �O��LR;n(a)�ij = �qj i��� 1� 52 (iaD$)n�1 qi (84)with open isospin indies i, j, whih involve quarks of de�nite hirality. The orresponding unon-trated operators 12 �qj i���1(1 � 5) iD$�2 : : : iD$�n qi do not have de�nite twist, but aording to (72)their twist-two part is readily projeted out in b�a�O��RL;n(a) and b�a�O��LR;n(a). The operators (84)transform as O��RL;n(a)! VRO��RL;n(a)V yL O��LR;n(a)! VLO��LR;n(a)V yR (85)unter hiral rotations and are transformed into eah other by parity. Beause ���5 = �12 i����� ���they obey the duality relationsO��RL;n(a) = � i2 ����� O��RL;n(a) O��LR;n(a) = i2 ����� O��LR;n(a) (86)The operators OATn(a; b) from (73), whih orrespond to twist-two and to de�nite isospin, are obtainedas OATn(a; b) = b�a�QA;��n (a) ; QA;��n (a) = Tr �A�O��RL;n(a) +O��LR;n(a)	 : (87)They will involve the ombinations �Ao� = uy�Auy � u�Au ; (88)whose expansion in pion �elds reads�0o+ = 2� 1F 2 �a�a +O(�4) ; �0o� = �2iF �a�a +O(�3) ;�ao+ = 2�a � 1F 2 �a�b� b +O(�4) ; �ao� = �2iF �a +O(�3) : (89)As for the hiral-even ase disussed in Setion 4.1, the operators whih math (84) in the e�etivetheory and ontribute to nuleon matrix elements are either bilinear in the nuleon �eld or ontainonly pion operators. We treat the two ases in the following two subsetions.7.1 Pion-nuleon operatorsThe e�etive operators whih are bilinear in the nuleon �eld and transform as (85) an be writtenin the form�O��RL;n(a)�ij = �NvO1u�j �uO2Nv�i ; �O��LR;n(a)�ij = �NvO01uy�j �uyO02Nv�i ; (90)where O1, O2 involve the �elds u�, �� and ovariant derivatives and transform like u� under hiralrotations. O01 and O02 are related to O1 and O2 by parity. One an rearrange the ovariant derivativesin O��RL;n and O��LR;n suh that they at either as total derivatives �� or in the antisymmetri formr$� = 12 (r!� �r �). 19



Table 2: Overview of ontributions to the hiral-odd form fators. As in Table 1 the restrition in theseond olumn is due to time reversal invariane. N� is the number of fators (a�), (b�) and (S�)in the deomposition (77). One must have l � k � 1 for ETn;k, MTn;k and l � k for eETn;k, fMTn;k,and i � 0 for all ases. The orresponding graphs ontribute to the form fator at order O(qd) withd � Dl;i �N� and Dl;i from (33).form fator k N� operatorsETn;k odd k + 1 Q��n;l;iMTn;k even k + 1 Q��n;l;ieETn;k even k Q��n;l;ifMTn;k even k + 2 Q��n;l;iTo obtain the general form of O��RL;n and O��LR;n it is suÆient to onstrut orresponding operatorsO�� that involve no � tensor and either no spin vetor or two spin vetors in the form [S�; S�℄.Operators with one � tensor and one spin vetor an be brought into this form by using the thirdrelation in (30) and rewriting the resulting produt of two � tensors in terms of produts of metritensors. Terms in O��RL;n and O��LR;n with an odd total number of � tensors and spin vetors arethen readily obtained by adding the dual operators 12 i����� O�� with oeÆients determined by therelations (86), using that 12 i����� 12 i���Æ tÆ = t�� for any antisymmetri tensor t��.Following the proedure of Setion 4.1 we deompose the pion-nuleon part of the operatorsQA;��n (a) as Q��n;�N (a) = n�1Xk=0Mn�k�1(av)n�k�1Q��n;k(a) ; (91)where we have omitted supersripts A for ease of writing. The operator Q��n;k(a) is the ontrationof a tensor of rank k + 2 with k vetors a and may not ontain any fators (av). The minimalnumber of vetors ��, r$�, u� in Q��n;k(a) is k � 1 and must be aompanied either by the tensorv�[S�; (aS)℄�v�[S�; (aS)℄ or by its dual i����� v�[S�; (aS)℄. In the �rst ase one obtains however thestruture (av)[(bS); (aS)℄ after ontration with b�a�, whih also appears in b�a� (av)n�k Q��n;k�1(a).An analogous statement holds of ourse in the ase of the dual tensor. We an therefore restritourselves to operators Q��n;k(a) with at least k vetors ��, r$�, u�, and thus further deomposeQ��n;k(a) = 1Xi=0M�iQ��n;k;i(a) ; (92)where Q��n;k;i(a) has hiral dimension k + i. The power ounting for graphs with a ertain operatorinsertion proeeds in lose analogy to Setion 4.2 and is summarized in Table 2. Comparing thenumber of fators (av) in (91) and in the deomposition (77), one obtains the restrition l � k forthe operators Q��n;l;i(a) that an ontribute to eETn;k and fMTn;k. For ETn;k and MTn;k the restritionis l � k � 1, where the ase l = k � 1 requires that the graphs with insertion of Q��n;l;i(a) produe nofators of v� or v�. 20



7.2 Pure pion operatorsPioni operators whih transform aording to (85) an be written asO��RL;n(a) = uOu ; O��LR;n(a) = uyO0uy ; (93)where O and O0 are related by a parity transformation, transform like u� under hiral rotations, andare onstruted from the �elds u�, �� and ovariant derivatives. We an restrit the derivatives toat only on �elds inside O and O0.7 With the duality relations (86) one �nds that the pure pion partof the operator QA;��n (a) an be brought into the formTrh�Ao+V ��(a)i+ i2 ����� Trh�Ao�V��(a)i or Trh�Ao�A��(a)i+ i2 ����� Trh�Ao+A��(a)i ; (94)where V�� and A�� respetively behave as a tensor or a pseudotensor under parity and are onstrutedfrom u�, r� and �� without the � tensor. One readily �nds that the terms without � in (94) oupleto an even number and the terms with � to an odd number of pion �elds. V��(a) and A��(a) aretensors of rank n + 1 ontrated with n � 1 vetors a. In the following we onsider the terms withthe lowest hiral dimension in the pure pion part of OATn(a; b). These terms ontain no �elds �� andhave the vetor indies of all n+ 1 fators u� or r� ontrated with either a or b.To alulate matrix elements of these operators between two nuleons or two pions at one-loopauray, we only need terms that ouple to at most four pions. Terms oupling to three or four pionsan appear in tadpole graphs. Suh graphs are only nonzero if the pion �elds in the operator whihouple to the loop have no derivatives ating on them. This is beause the orresponding loop integralhas a numerator of the form l�1 : : : l�m , where l is the loop momentum. After the loop integration,one obtains zero for odd m and for even m one obtains a ombination of metri tensors, whih giveszero when the vetor indies are ontrated with a or b.Sine the derivatives with indies � and � in the antisymmetri tensor QA;��n (a) annot at onthe same pion �eld, one readily �nds that operators oupling to one or three pions do not ontributeto matrix elements between two nuleons or two pions. For the same reason suh operators deouplefrom matrix elements between the vauum and a single pion, whih reets the fat that there are nohiral-odd pion distribution amplitudes of twist two.It remains to onstrut operators V��(a) and A��(a) from u� and r�, whih must have at leastone fator u� beause the ovariant derivatives must at on some �eld to give nonzero, and less thanthree suh fators beause of the restrition just disussed. The operators with one fator of u� areof the form8(ar)k1 r� (ar)k2 u� � (�$ �) or (ar)k1 r� (ar)k2 r� (ar)k3 (au)� (�$ �) : (95)In both ases we an use the ommutator identity [r�;r�℄O = 14�[u�; u�℄O � O [u�; u�℄� to bringthe vetors with indies � and � next to eah other. The ommutator terms do not ontribute to thematrix element in question sine they involve three or more vetors u�. The remaining term involveseither r�u� �r�u� = 0 or [r�;r�℄ : : : (au) and thus do not ontribute either.The only relevant operators ontain hene two vetors u�. Aording to our above disussion, the�� part of any fator r� does not ontribute in this ase, and the derivative must at on the pion�elds in u� whih already arry a derivative. For the matrix elements in question, r� (au) is heneequivalent to (ar)u�. The same holds of ourse for the index �. We thus �nd that the operators of7Other terms an be brought into this form using identities suh as �� (uOu) = u� [r�;O ℄� i2fu�;Og�u.8For simpliity we write from now on r�O instead of [r�;O ℄ if O transforms like u� under hiral rotations.21



lowest hiral dimension an be written asQA;��n;� (a) = F 28 n�1Xk=0even bTn;k Tr �Ao+ (iar)k V ��n;k + : : : (96)with V ��n;k = u� (2iar$)n�k�1 u� � u� (2iar$)n�k�1 u� ; (97)where the : : : denote terms not ontributing to two-nuleon or two-pion matrix elements at tree levelor one loop. We note that the oeÆients bTn;k have nonzero mass dimension and are of order (4�F )�1in the sense of hiral power ounting. They give the tree-level ontribution at order O(q0) to the pionform fators B�Tn;k(t) de�ned in (82),B�(0)Tn;k = (�1)n+1 2n�k�1m� bTn;k; (98)where n is even in the isosinglet and odd in the isotriplet ase. The restrition to even k in (96)orresponds to the one in (82).We an now apply the power ounting formula (37) with d� = n + 1 to the operators just on-struted. Taking into aount the restritions of even or odd n or k for the di�erent form fators, we�nd that the orretions from pion operator insertions start at order O(q) for fM I=1Tn;n�1 and at orderO(q2) for M I=1Tn;n�1, EI=0Tn;n�1 and fM I=0Tn;n�2. For all other form fators they start at order O(q3) orhigher.8 Results for hiral-odd form fatorsUsing the onstrution desribed in Setion 7, we �nd pion-nuleon operatorsQA;��n;k;0 = eEI (0)Tn;k (ia�)k �Nv[S�; S�℄�Ao+Nv +Nv�v�S� � v�S���Ao�Nv�+ : : : ;QA;��n;k;1 = � i4M I (0)Tn;k (ia�)k ��v��� � v����Nv�Ao+Nv + i�����v���Nv�Ao�Nv�+ : : : ;+ i2EI (0)Tn;k (ia�)k ���v�Nv[S�; S�℄�Ao+Nv � v�Nv[S�; S�℄�Ao+Nv + �terms with �Ao�	�+ : : : ;QA;��n;k;2 = �14 fM I (0)Tn;k (ia�)k �����Nv[S�; S�℄�Ao+Nv � ��Nv[S�; S�℄�Ao+Nv + �terms with �Ao�	�+ : : : ;(99)where the : : : denote terms with a smaller number of total derivatives. The oeÆients in (99) are thetree-level ontributions at order O(q0) to the respetive form fators and therefore only nonzero foreven or odd k as given in Table 2. The terms with �Ao� in the last two lines of (99) are rather lengthyand not given here. Indeed, one �nds that none of the operators with �Ao� in (99) ontributes in one-loop graphs with pion-nuleon interations at LO or at NLO. Suh graphs have the form of Fig. 1 andgive zero for the same reasons disussed after (40) for the ase of operators with �Ae�. The disussionat the end of Setion 5.1 also applies to the operators with �Ao+ in (99), so that their insertion intographs with LO pion-nuleon verties or with one NLO pion-nuleon interation ontributes only tothose form fators for whih they already provide the tree-level result at order O(q0).An operator Q��n;l;i in (99) has at most l + i partial derivatives, so that the ondition (36) holdsalso in the hiral-odd ase. Together with the power ounting following from Table 2, one again �nds22



that one-loop orretions to all form fators start at order O(q2). One �nds that the order O(q2)orretions toMTn;k and ETn;k ome from Qn;k;1, whereas those to eETn;k and fMTn;k ome from Qn;k;0and Qn;k;2, respetively, with pion-nuleon interations taken at LO in all ases. Additional orderO(q2) ontributions to fMTn;k ome from graphs with Qn;k;0 and two pion-nuleon interations at NLOor one pion-nuleon interation at NNLO (only the �Ao+ part of the operator is found to ontribute).Contributions from the same graphs to ETn;k+1 or MTn;k+1 are possible by power ounting but turnout to be zero. Other ontributions at order O(q2) whih are possible by power ounting involveat most one pion-nuleon interation at NLO and do not appear for the reason given at the end ofthe preeding paragraph: there is no orretion to MTn;k or ETn;k from Qn;k+1;0, Qn;k;0, Qn;k�1;1 orQn;k�1;2 and no orretion to fMTn;k from Qn;k+1;0, Qn;k+2;0, Qn;k;1 or Qn;k+1;1.Taking into aount the graphs with pion operator insertions shown in Fig. 2a and b, we �nally�nd M I=0Tn;k =M I=0(0)Tn;k �1� 3m22(4�F )2 log m2�2 �+ : : : ;M I=1Tn;k =M I=1(0)Tn;k �1� m22(4�F )2 ��6g2A + 1� log m2�2 + 4g2A��+ Æk;n�1M I=1(2;�)Tn;n�1 (t) + : : : ;EI=0Tn;k = EI=0(0)Tn;k �1� 3m22(4�F )2 �2g2A + 1� log m2�2 �+ Æk;n�1EI=0(2;�)Tn;n�1 (t) + : : : ;EI=1Tn;k = EI=1(0)Tn;k �1� m22(4�F )2 ��4g2A + 1� log m2�2 + 4g2A��+ : : : ;eEI=0Tn;k = eEI=0(0)Tn;k �1� 3m22(4�F )2 �2g2A + 1� log m2�2 �+ : : : ;eEI=1Tn;k = eEI=1(0)Tn;k �1� m22(4�F )2 ��4g2A + 1� log m2�2 + 4g2A��+ : : : (100)and fM I=0Tn;k = fM I=0(0)Tn;k �1� 3m22(4�F )2 �2g2A + 1� log m2�2 �+ eEI=0(0)Tn;k m2g2A(4�F )2 log m2�2+ Æk;n�2 fM I=0(2;�)Tn;n�2 (t) + : : : ;fM I=1Tn;k = fM I=1(0)Tn;k �1� m22(4�F )2 ��4g2A + 1� log m2�2 + 4g2A��� eEI=1(0)n;k m2g2A3(4�F )2 log m2�2+ Æk;n�1 hfM I=1(1;�)Tn;n�1 (t) + fM I=1(2;�)Tn;n�1 (t)i+ : : : ; (101)where for brevity we have written : : : to denote analyti terms proportional to m2 or t and orretionsof order O(q3). The analyti terms are due to higher-order tree-level insertions as spei�ed below(34). The ontributions from pion operator insertions readEI=0(2;�)Tn;n�1 (t) = �14 fM I=0(2;�)Tn;n�2 (t)fM I=0(2;�)Tn;n�2 (t) = � 3g2A(4�F )2 nXj=2even(j � 1)MbTn;n�j Z 1�1 d� �j�2m2(�) log m2(�)�2 (102)23



with n even in the isosinglet ase andM I=1(2;�)Tn;n�1 (t) = 14(4�F )2 nXj=1oddMbTn;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A �2m2 � t��log m2(�)�2 + 1�� (g2A � 1)m2(�) log m2(�)�2 �) ;fM I=1(1;�)Tn;n�1 (t) = � �Mg2A(4�F )2 nXj=1oddMbTn;n�j Z 1�1 d� �j�1m(�) ;fM I=1(2;�)Tn;n�1 (t) = � 14(4�F )2 nXj=1oddMbTn;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A �2m2 � t��log m2(�)�2 + 1�+ �g2A � 1� 4M4�m2(�) log m2(�)�2 �) (103)with n odd in the isotriplet setor. As remarked in [14℄, the orretions from pion operator insertionsare very similar for the hiral-odd and hiral-even form fators. We �nd a orrespondenefM I=0Tn;n�2 $ �M I=0n;n�2 ; fM I=1Tn;n�1 $ 12M I=1n;n�1 ; M I=1Tn;n�1 $ 12EI=1n;n�1 (104)for the terms in (102) and (103) when interhanging MbTn;n�j $ 2�jjA�(0)n;n�j.Let us ompare our results (100) to (103) to those in Ref. [14℄, whih gives the orretions of orderO(q) for fM I=1Tn;k and of order O(q2) for all other form fators.9 We agree with the expressions giventhere, exept for the orretions from nuleon operator insertions without a fator g2A in the isosingletform fators, whih are absent in [14℄, and for the orresponding term in M I=1Tn;k, where we have adi�erent oeÆient. These orretions are due to the tadpole graph in Fig. 1b, with the pion-nuleonvertex generated by the two-pion terms in the expansion (89) of �0o+ and �ao+. Sine this vertex hasno spin or momentum struture, the orresponding orretions must be the same for all form fatorswith a given isospin.Let us �nally give the orretions of order O(q2) to the hiral-odd GPDs of the pion. They aregiven by the one-loop graphs shown in Figure 3 with insertion of the pion operators (96) and fromtree-level insertions of operators with hiral dimension n+ 3. For the form fators (82) we �ndB�Tn;k(t) = B�(0)Tn;k �1� 3m22(2�F )2 log m2�2 �+ : : : (105)for even n, andB�Tn;k(t) = B�(0)Tn;k �1� m22(4�F )2 log m2�2 �+ Æk;n�1 1(4�F )2 nXj=1odd 2�j B�(0)Tn;n�j Z 1�1 d� �j�1m2(�) log m2(�)�2 + : : : (106)9The tensor form fators in [14℄ are related to those introdued here by MT ' eET , ET ' MT =2, W T ' �4fMT (allup to terms suppressed by fators of order �2=M2) and by CT = ET .24
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a bFigure 3: One-loop graphs ontributing to two-pion matrix elements of the pion operator QA;��n;� (a)in (96). The operator insertion is denoted by a blak blob.for odd n, where the : : : stand for analyti terms from tree-level graphs and for orretions of orderO(q4). The orretions going with logm2=�2 are due to the tadpole graph in Fig. 3a and are inde-pendent of k. The term involving an integral over � is due to the graph of Fig. 3b and an only ourfor k = n�1 (and thus only in the isotriplet ase). This is beause the operator insertion on the pionline annot produe any fator (aP ) and the four-pion vertex an only produe one suh fator afterthe loop integration.9 Results for moments of nuleon and pion GPDsIn this setion, we rewrite our results in terms of the form fators An;k, Bn;k, Cn, eAn;k, eBn;k and ATn;k,BTn;k, eATn;k, eBTn;k, whih desribe the moments of GPDs in ommonly used parameterizations. Wegive expressions for the value and the �rst derivative of eah form fator at t = 0, whih shouldbe useful for appliations in lattie QCD. The orretions obtained from graphs with pion-nuleonoperator insertions are ompletely spei�ed in this way, beause they are independent of t. In thefollowing we will use the abbreviation �� = 4�F .For a onvenient overview of results we also reprodue the expressions for isosinglet distributionsfrom [13℄ here. Together with (9), (10) and the expressions in Setion 5, we �nd that up to orretionsof order O(m3) the hiral-even vetor form fators at t = 0 have the formAI=0n;k (0) = AI=0(0)n;k +AI=0(2;m)n;k m2;BI=0n;k (0) = BI=0(0)n;k � �AI=0(0)n;k +BI=0(0)n;k � 3m2g2A�2� log m2�2 +BI=0(2;m)n;k m2 + Æk;n�2BI=0(2;�)n;n�2 (0) ;CI=0n (0) = CI=0(0)n + CI=0(2;m)n m2 + CI=0(1;�)n (0) + CI=0(2;�)n (0) ;AI=1n;k (0) = AI=1(0)n;k �1� m2�2� �(3g2A + 1) log m2�2 + 2g2A��+AI=1(2;m)n;k m2 + Æk;n�1AI=1(2;�)n;n�1 (0) ;BI=1n;k (0) = BI=1(0)n;k �1� m2�2� �(3g2A + 1) log m2�2 + 2g2A��+ �AI=1(0)n;k +BI=1(0)n;k � m2g2A�2� log m2�2+BI=1(2;m)n;k m2 + Æk;n�1hBI=1(1;�)n;n�1 (0) +BI=1(2;�)n;n�1 (0)i ;CI=1n (0) = CI=1(0)n �1� m2�2� �(3g2A + 1) log m2�2 + 2g2A��+ CI=1(2;m)n m2: (107)25



The labeling of oeÆients with supersripts (0), (2;m), (1; �) and (2; �) follows the same pattern asin Setions 5 and 8. The ontributions from pion operator insertions readBI=0(2;�)n;n�2 (0) = 6m2g2A�2� log m2�2 nXj=2even 2�jj A�(0)n;n�j ;CI=0(1;�)n (0) = 3�mMg2A2�2� nXj=2even 2�j jj + 1 A�(0)n;n�j ;CI=0(2;�)n (0) = � 3m2g2A2�2� log m2�2 nXj=2even 2�jj A�(0)n;n�j + 12m2�2� " g2A8 �M1�log m2�2 + 1�+ 34M2 log m2�2 +M3�log m2�2 + 12�# nXj=2even 2�j jj + 1 A�(0)n;n�j ; (108)where n is even, andAI=1(2;�)n;n�1 (0) = 2m2g2A�2� log m2�2 nXj=1odd 2�jj A�(0)n;n�j + m2�2� �(g2A + 1) log m2�2 + 2g2A� nXj=1odd 2�jA�(0)n;n�j ;BI=1(1;�)n;n�1 (0) = �4�mMg2A�2� nXj=1odd 2�jA�(0)n;n�j ;BI=1(2;�)n;n�1 (0) = �4m2g2A�2� log m2�2 nXj=1odd 2�jj A�(0)n;n�j� 4m2�2� " g2A�log m2�2 + 1��M4 log m2�2 # nXj=1odd 2�jA�(0)n;n�j ; (109)where n is odd. The A�(0)n;n�j are the leading terms in the hiral expansion of the pion form fators in(48) and ful�ll the relations [12℄nXj=2even 2�jA�(0)n;n�j = �A�(0)n;n for even n, nXj=1odd 2�jA�(0)n;n�j = B�(0)n for odd n, (110)where B�(0)n is the n-th moment of the pion distribution amplitude to leading order in the hiralexpansion, as introdued in Setion 5.3. Estimates for the values of the low-energy onstants iappearing in (108) and (109) an be found in [30℄.For the axial form fators we haveeAI=0n;k (0) = eAI=0(0)n;k �1� 3m2g2A�2� �log m2�2 + 1��+ eAI=0(2;m)n;k m2;eBI=0n;k (0) = eBI=0(0)n;k �1� 3m2g2A�2� �log m2�2 + 1��� eAI=0(0)n;k m2g2A�2� log m2�2 + eBI=0(2;m)n;k m2;26



eAI=1n;k (0) = eAI=1(0)n;k �1� m2�2� �(2g2A + 1) log m2�2 + g2A��+ eAI=1(2;m)n;k m2;eBI=1n;k (0) = eBI=1(0)n;k �1� m2�2� �(2g2A + 1) log m2�2 + g2A��+ eAI=1(0)n;k m2g2A3�2� log m2�2 + eBI=1(2;m)n;k m2 for k < n� 1 (111)with orretions of order O(m3), andeBI=1n;n�1(0) = B�n 4M2gAm2� �1� 2m2� g�1A d18�+ eBI=1(0)n;n�1 +O(m) for odd n. (112)Note that the impliit pion mass dependene from B�n , M , gA and m� is relevant within the aurayof this expression. Numerial estimates of the low-energy onstant d18 are given in [31℄. The derivativeof eBI=1n;n�1(t) at t = 0 reads�t eBI=1n;n�1(0) = B�n 4M2gAm4� �1� 2m2� g�1A d18�+O(m�1) ; (113)where the order O(m�1) orretions are due to terms of the form O(q3)=(m2� � t) in eBI=1n;n�1(t). UsingB�1 = 1, we obtain a ratio �t eBI=1n;n�1(0)�t eBI=11;0 (0) = B�n +O(m3) (114)whih involves only physial matrix elements and is independent of any low-energy onstants. Itwould be interesting to test this relation in lattie QCD alulations, as this would indiate how wellthe hiral expansion works at a given pion mass.The derivatives at t = 0 of the remaining hiral-even form fators have nonanalyti ontributionsin the pion mass only for�tBI=0n;n�2(0) = BI=0(2;t)n;n�2 + �tBI=0(2;�)n;n�2 (0) ;�tCI=0n (0) = CI=0(2;t)n + �tCI=0(1;�)n (0) + �tCI=0(2;�)n (0)�tAI=1n;n�1(0) = AI=1(2;t)n;n�1 + �tAI=1(2;�)n;n�1 (0) ;�tBI=1n;n�1(0) = BI=1(2;t)n;n�1 + �tBI=1(1;�)n;n�1 (0) + �tBI=1(2;�)n;n�1 (0) ; (115)with orretions of order O(m), where�tBI=0(2;�)n;n�2 (0) = � 3g2A�2� �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j ;�tCI=0(1;�)n (0) = � Mm �g2A8�2� nXj=2even 2�j j (5j + 14)(j + 1)(j + 3) A�(0)n;n�j ;
27



�tCI=0(2;�)n (0) = � 3g2A4�2� �log m2�2 + 3� nXj=2even 2�j jj + 1 A�(0)n;n�j + 2�2� " g2A8 +M1� 34M2�log m2�2 + 1��M3�log m2�2 + 32�# nXj=2even 2�j j (j + 4)(j + 1)(j + 3) A�(0)n;n�j (116)with n even, and�tAI=1(2;�)n;n�1 (0) = � g2A�2� �log m2�2 + 1� nXj=1odd 2�jA�(0)n;n�j+ 12�2� �(g2A � 1) log m2�2 � (g2A + 1)� nXj=1odd 2�j 1j + 2 A�(0)n;n�j ;�tBI=1(1;�)n;n�1 (0) = Mm �g2A�2� nXj=1odd 2�j 1j + 2 A�(0)n;n�j ;�tBI=1(2;�)n;n�1 (0) = 2g2A�2� �log m2�2 + 1� nXj=1odd 2�jA�(0)n;n�j+ 2�2�" g2A �M4�log m2�2 + 1�# nXj=1odd 2�j 1j + 2 A�(0)n;n�j : (117)with n odd. All other hiral-even nuleon form fators reeive only orretions from pion-nuleonoperators, so that their derivatives at t = 0 are given by the appropriate oeÆients with supersript(2; t), whih are due to tree-level ontributions.For the hiral-odd nuleon form fators at t = 0 we �ndAI=0Tn;k (0) = AI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+AI=0(2;m)Tn;k m2;BI=0Tn;k (0) = BI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+ �AI=0(0)Tn;k +BI=0(0)Tn;k � 3m2g2A�2� log m2�2 +BI=0(2;m)Tn;k m2;eAI=0Tn;k (0) = eAI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+�AI=0(0)Tn;k + 32BI=0(0)Tn;k � m2g2A�2� log m2�2+ eAI=0(2;m)Tn;k m2 + Æk;n�2 eAI=0(2;�)Tn;n�2 (0) ;eBI=0Tn;k (0) = eBI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+ eBI=0(2;m)Tn;k m2 + Æk;n�1 eBI=0(2;�)Tn;n�1 (0) ;
28



AI=1Tn;k (0) = AI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A��+AI=1(2;m)Tn;k m2;BI=1Tn;k (0) = BI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A��� �AI=1(0)Tn;k +BI=1(0)Tn;k � m2g2A�2� log m2�2 +BI=1(2;m)Tn;k m2 + Æk;n�1BI=1(2;�)Tn;n�1 (0) ;eAI=1Tn;k (0) = eAI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A����AI=1(0)Tn;k + 32BI=1(0)Tn;k � m2g2A3�2� log m2�2+ eAI=1(2;m)Tn;k m2 + Æk;n�1h eAI=1(1;�)Tn;n�1 (0) + eAI=1(2;�)Tn;n�1 (0)i ;eBI=1Tn;k (0) = eBI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A��+ eBI=1(2;m)Tn;k m2 (118)with orretions of order O(m3), whereeAI=0(2;�)Tn;n�2 (0) = 3m2g2A�2� log m2�2 nXj=2evenMbTn;n�j ;eBI=0(2;�)Tn;n�1 (0) = 12 eAI=0(2;�)Tn;n�2 (0) (119)with n even, andBI=1(2;�)Tn;n�1 (0) = m2g2A�2� log m2�2 nXj=1oddMbTn;n�j + m22�2� ��g2A + 1� log m2�2 + 2g2A� nXj=1odd 1j MbTn;n�j ;eAI=1(1;�)Tn;n�1 (0) = �mMg2A�2� nXj=1odd 1j MbTn;n�j ;eAI=1(2;�)Tn;n�1 (0) = m2g2A�2� log m2�2 nXj=1oddMbTn;n�j+ m2�2� " g2A�log m2�2 + 1��M4 log m2�2 # nXj=1odd 1j MbTn;n�j (120)with n odd. Our results for AI=1n;0 (0), eAI=1n;0 (0) and AI=1Tn;0(0) reprodue the expressions in [32℄ for thedistributions of unpolarized, longitudinally and transversely polarized quarks and antiquarks in thenuleon. The derivatives at t = 0 of the following form fators have nonanalyti ontributions in thepion mass: �t eAI=0Tn;n�2(0) = eAI=0(2;t)Tn;n�2 + �t eAI=0(2;�)Tn;n�2 (0) ;�t eBI=0Tn;n�1(0) = eBI=0(2;t)Tn;n�1 + �t eBI=0(2;�)Tn;n�1 (0) ;�tBI=1Tn;n�1(0) = BI=1(2;t)Tn;n�1 + �tBI=1(2;�)Tn;n�1 (0) ;�t eAI=1Tn;n�1(0) = eAI=1(2;t)Tn;n�1 + �t eAI=1(1;�)Tn;n�1 (0) + �t eAI=1(2;�)Tn;n�1 (0) ; (121)29



where orretions are of order O(m) and�t eAI=0(2;�)Tn;n�2 (0) = � 3g2A2�2� �log m2�2 + 1� nXj=2even 1j + 1MbTn;n�j ;�t eBI=0(2;�)Tn;n�1 (0) = 12 �t eAI=0(2;�)Tn;n�2 (0) (122)with even n and�tBI=1(2;�)Tn;n�1 (0) = � g2A2�2� �log m2�2 + 1� nXj=1odd 1j MbTn;n�j+ 14�2� �(g2A � 1) log m2�2 � (g2A + 1)� nXj=1odd 1j(j + 2)MbTn;n�j ;�t eAI=1(1;�)Tn;n�1 (0) = �Mm �g2A4�2� nXj=1odd 1j(j + 2)MbTn;n�j ;�t eAI=1(2;�)Tn;n�1 (0) = � g2A2�2� �log m2�2 + 1� nXj=1odd 1j MbTn;n�j� 12�2�" g2A �M4 �log m2�2 + 1�# nXj=1odd 1j(j + 2)MbTn;n�j (123)with odd n. As a onsequene of the relations (104), we �nd the following orrespondene betweenthe orretions (119), (120), (122), (123) from pion loop insertions to hiral-odd form fators andtheir hiral-even ounterparts (108), (109), (116), (117):eAI=0Tn;n�2 $ 12BI=0n;n�2 eAI=1Tn;n�1 $ �14BI=1n;n�1 B I=1Tn;n�1 $ 12AI=1n;n�1 (124)when the low-energy onstants are interhanged as MbTn;n�j $ 2�jjA�(0)n;n�j.Let us also give the expressions of form fators and their derivatives at t = 0 for the moments ofpion GPDs. For the hiral-even moments, the expressions given in [12℄ result inA�n;k(0) = 8>><>>:A�(0)n;k +A�(2;m)n;k m2 + Æk;nA�(l;2)n;n for even n,A�(0)n;k �1� m2�2� log m2�2 �+A�(2;m)n;k m2 + Æk;n�1A�(l;2)n;n�1 for odd n, (125)with orretions of order O(m4) andA�(l;2)n;n = � m22�2� �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j ;A�(l;2)n;n�1 = 2m2�2� log m2�2 nXj=1odd 2�jA�(0)n;n�j : (126)30



Using the relation (110) one thus hasA�n;n�1(0) = A�(0)n;n�1 + m2�2� log m2�2 h2B�(0)n �A�(0)n;n�1i+A�(2;m)n;n�1 m2 +O(m4) (127)with n odd. For the hiral-odd moments we have with (105) and (106)B�Tn;k(0) = 8>>><>>>:B�(0)Tn;k�1� 3m22�2� log m2�2 �+B�(2;m)Tn;k m2 for even n,B�(0)Tn;k�1� m22�2� log m2�2 �+B�(2;m)Tn;k m2 + Æk;n�1B�(l;2)Tn;n�1 for odd n, (128)where orretions are again of order O(m4) andB�(l;2)Tn;n�1 = 2m2�2� log m2�2 nXj=1odd 2�j 1j B�(0)Tn;n�j : (129)The only nonanalyti ontributions in the pion mass for the derivatives of form fators are�tA�n;n(0) = A�(2;t)n;n + 1�2� �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j + 112�2� nXj=2even 2�j j (j + 4)(j + 1)(j + 3) A�(0)n;n�j�tA�n;n�1(0) = A�(2;t)n;n�1 � 1�2� �log m2�2 + 1� nXj=1odd 2�j 1j + 2 A�(0)n;n�j ;�tB�Tn;n�1(0) = B�(2;t)Tn;n�1 � 1�2� �log m2�2 + 1� nXj=1odd 2�j 1j(j + 2) B�(0)Tn;n�j ; (130)where the seond index is always even and orretions are of order O(m2).Let us �nally take a look at moments of parton distributions whose values are �xed by quantumnumbers for arbitrary values of the pion mass, see e.g. [32, 33℄. For A�1;0(0) one readily �nds thatthe expliit hiral logarithm in (125) anels against the one in (126). This is required to ensure thequark number sum rule A�1;0(0) = Z 10 dx �u� � �u� � d� + �d�� = 2 (131)in the pion, whih also implies A�(0)1;0 = 2 and A�(2;m)1;0 = 0. With this one also �nds that our result(107) is onsistent with the quark number sum rulesAI=01;0 (0) = Z 10 dx �u� �u+ d� �d � = 3 ; AI=11;0 (0) = Z 10 dx �u� �u� d+ �d � = 1 ; (132)in the proton, provided that AI=0(0)1;0 = 3, AI=1(0)1;0 = 1 and AI=0(2;m)1;0 = AI=1(2;m)1;0 = 0.10 SummaryIn this paper and its ompanion [13℄ we have alulated the hiral orretions to the full set of twist-two generalized parton distributions in the nuleon, using heavy-baryon hiral perturbation theory.31



For eah form fator parameterizing the moments of these distributions, our results inlude the orderO(q2) relative to its lowest-order expression. We have presented a detailed aount of the powerounting and of the operators that an ontribute to the hiral order we onsider. We �nd that theoperator struture is relatively simple in the basis of form fators spei�ed by (9) and (78). Withthe exeption of fMn;k and fMTn;k only those pion-nuleon operator insertions ontribute to the looporretions of a given form fator whih already provide its lowest-order expression at tree-level.Furthermore, only operators with �Ae+ or �Ao+ from (28) and (88) ontribute, but not those with �Ae�or �Ao�. Our analysis also shows that these simpli�ations will no longer hold at higher orders in thehiral expansion.Expressing our results in the basis of form fators parameterizing the moments of the usual nuleonGPDs, we �nd that with the exeption of AI=0n;k and CI=0n all form fators reeive hiral orretionsfrom loop graphs with nuleon operator insertions (see Fig. 1). They are of relative order O(q2) andontain logarithmi terms m2 log(m2=�2), but are independent of t and of the indies n; k. In severalases these orretions involve a mixing between di�erent form fators: Bn;k reeives orretionsinvolving not only its own lowest-order expression but also the one of An;k, as seen in (107). Likewise,there are orretions to eBn;k from eAn;k, to BTn;k from ATn;k, and to eATn;k from ATn;k+ 32BTn;k. Wenote that no suh mixing ours for the linear ombinations An;k +Bn;k and ATn;k +BTn;k.Further orretions are due to loop graphs with pion operator insertions (see Fig. 2a and b). Theyonly our for form fators whih are aompanied by the maximal number of vetors �� in thedeomposition of the assoiated matrix element, or by one fator less. Due to the quantum numberrestritions for pion operators, they only our for even n in the isosinglet and for odd n in theisotriplet setor. Corretions starting at order O(q) are obtained for CI=0n , BI=1n;n�1 and eAI=1Tn;n�1, andorretions starting at order O(q2) for BI=0n;n�2, eAI=0Tn;n�2, eBI=0Tn;n�1, AI=1n;n�1 and B I=1Tn;n�1. To order O(q2),the orretions for CI=0n involve the low-energy onstants 1, 2, 3 from the pion-nuleon Lagrangian(18), whereas those for BI=1n;n�1 and eAI=1Tn;n�1 involve 4. The orretions from pion operator insertionsdepend on t. They are responsible for a nonanalyti pion mass dependene of the derivatives ofform fators at t = 0, namely a 1=m behavior for �tCI=0n (0), �tBI=1n;n�1(0) and �t eAI=1Tn;n�1(0) and alog(m2=�2) behavior in the other ases. We note that these orretions also determine the onset ofthe two-pion ut at timelike t for the form fators in question.The pseudosalar form fators eBI=1n;n�1 reeive orretions from one-pion exhange (see Fig. 2).They take the very simple form (68) when expressed in terms of physial quantities. In partiular,we �nd that the ratio �t eBI=1n;n�1(0)Æ�t eBI=11;0 (0) of derivatives is given by the moment B�n of the piondistribution amplitude, with orretions of order m3. It would be interesting to test this preditionof hiral symmetry in lattie QCD alulations.We have �nally evaluated the orretions to the hiral-odd pion GPDs at order O(q2), thus om-plementing the alulation [12℄ for the hiral-even setor. A ompilation of our results for the valuesand derivatives at t = 0 of all moments of nuleon and pion GPDs is given in Setion 9.AknowledgmentsWe are grateful to U.-G. Mei�ner for larifying disussions. This work is supported by the HelmholtzAssoiation, ontrat number VH-NG-004.
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