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Abstra
tWe 
omplete the analysis of twist-two generalized parton distributions of the nu
leon inone-loop order of heavy-baryon 
hiral perturbation theory. Extending our previous studyof the 
hiral-even isosinglet se
tor, we give results for 
hiral-even isotriplet distributionsand for the 
hiral-odd se
tor. We also 
al
ulate the one-loop 
orre
tions for the 
hiral-oddgeneralized parton distributions of the pion.
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1 Introdu
tionGeneralized parton distributions (GPDs) provide a uni�ed parameterization of many di�erent aspe
tsof hadron physi
s [1, 2, 3, 4℄. Understanding GPDs in detail is therefore tantamount to understandingin large parts the internal stru
ture of hadrons. This motivates extensive experimental programsas well as theoreti
al work. Details 
an be found in the reviews [5, 6, 7℄, whi
h emphasize thedi�erent types of physi
s en
oded in these quantities. More re
ently it has been shown that interestinginformation about the distribution of transversely polarized quarks in a hadron is 
ontained in GPDsasso
iated with 
hiral-odd quark operators [8, 9℄, for whi
h there have been relatively few studies sofar.The extra
tion of GPDs from experiment is a highly non-trivial task, sin
e in observables thedistributions appear only within 
onvolutions. These are relatively simple at leading order in thestrong 
oupling but be
ome in
reasingly 
omplex at higher orders, see e.g. [10℄. In pra
ti
e onetherefore has to use parameterizations of GPDs whi
h are on one hand suÆ
iently 
exible to 
at
hthe physi
s and on the other hand 
ontain only few parameters. In this 
ontext, the 
al
ulation ofmoments of GPDs in latti
e QCD is expe
ted to be
ome highly important in the future.The latti
e evaluation of these moments, parameterized by the form fa
tors of lo
al matrix ele-ments, is very similar to the 
ase of the usual ele
tromagneti
 form fa
tors [11℄. The main limitationat present is that latti
e 
al
ulations with dynami
al quarks 
an only be done for unphysi
ally heavyquarks and thus pions. The mass of the pion a�e
ts however the spatial extent of the nu
leon andhen
e its form fa
tors. Therefore, their extrapolation to the physi
al limit 
an be fairly non-trivial,and simple linear extrapolations with respe
t to m� or m2� 
ould be quite inadequate. Progress inthis respe
t requires an analysis within 
hiral perturbation theory (ChPT). We have presented su
han analysis for the pion GPDs in [12℄ and for nu
leon GPDs in the 
hiral-even isosinglet se
tor in [13℄.In the present paper we extend this work to the 
hiral-even isotriplet se
tor and the 
hiral-odd se
tor,giving 
omplete 
orre
tions at one-loop a

ura
y. Cal
ulations of a similar s
ope have re
ently beenreported in [14℄, and we will 
ompare our results in detail. There already exists a number of latti
eresults for moments of GPDs, see [15, 16℄ and referen
es therein. We do not in
lude any ChPT �tsto these in the present paper, but leave them to future latti
e studies.Our paper is organized as follows. In Se
tions 2, 3 and 6 we 
olle
t details about GPD parameter-izations, the operator produ
t expansion, and heavy-baryon ChPT that are needed in our analysis.We pro
eed in ea
h 
ase by 
onstru
ting the operators within ChPT that mat
h the relevant twist-twooperators in QCD, and by identifying the loop 
orre
tions whi
h 
ontribute to a given form fa
torat relative order O(q2) in the 
hiral expansion (Se
tions 4, 5.1 and 7). Results of the 
orresponding
al
ulations are given for the ve
tor form fa
tors in Se
tion 5.2, for the axial form fa
tors in Se
tion5.3, and for the 
hiral-odd form fa
tors in Se
tion 8. In Se
tion 9 all results are 
olle
ted and rewrittenin terms of the usual parameterization of GPDs. We summarize our main �ndings in Se
tion 10.2 Chiral-even generalized parton distributionsTo begin with let us re
all the de�nitions of generalized parton distributions asso
iated with 
hiral-even quark operators. For the distributions with de�nite isospin I in a nu
leon one 
an writeZ d�4� eix�(aP )
Ni(p0)�� �q(�12�a) =a�Aq(12�a) ��Nj(p)�= �Aij 12aP �u(p0) �=aHI(x; �; t) + i���a���2M EI(x; �; t) � u(p) ;2



Z d�4� eix�(aP )
Ni(p0)�� �q(�12�a) =a
5�Aq(12�a) ��Nj(p)�= �Aij 12aP �u(p0) �=a
5 eHI(x; �; t) + a�2M
5 eEI(x; �; t)� u(p) ; (1)where a is a light-like auxiliary ve
tor, M is the nu
leon mass, and we use the standard kinemati
alvariables P = 12 (p + p0), � = p0 � p, t = �2 and 2� = �(�a)=(Pa). Wilson lines must be insertedbetween the quark �elds if one is not working in the light-
one gauge (aA) = 0. We 
ombine thetwo-dimensional unit matrix �0 and the triplet of Pauli matri
es ~� in a four-ve
tor �A = (�0; ~� ),with the matri
es a
ting on the isodoublet of quark �elds q or of nu
leon states N . The isosingletdistributions 
orrespond to A = 0 and the isotriplet ones to A = 1; 2; 3. In terms of individual quark
avors in the proton one has HI=0 = Hu +Hd and HI=1 = Hu �Hd, with analogous relations forthe other distributions.The Mellin moments of the GPDs in (1) are related to the matrix elements of the 
hiral-even lo
altwist-two operators OA�1�2:::�n = T�1:::�n S�1:::�n �q
�1iD$�2 : : : iD$�n�Aq ;eOA�1�2:::�n = T�1:::�n S�1:::�n �q
�1
5 iD$�2 : : : iD$�n�Aq (2)with D$� = 12(D!� � D �). Here T denotes the subtra
tion of tra
e terms in the indi
ated Lorentzindi
es and S denotes symmetrization, normalized as S�1�2 t�1�2 = 12(t�1�2 + t�2�1). Both operationsare 
onveniently implemented by 
ontra
tion with the auxiliary ve
tor a,OAn (a) = a�1 : : : a�n OA�1:::�n ; eOAn (a) = a�1 : : : a�n eOA�1 :::�n : (3)The lo
al matrix elements 
an be parameterized ashNi(p0) j OAn (a) jNj(p)i = �Aij n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=aAIn;k(t) + i���a���2M BIn;k(t)� u(p)+ �Aij mod (n+ 1; 2) (a�)n 1M �u(p0)u(p)CIn(t) ;hNi(p0) j eOAn (a) jNj(p)i = �Aij n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=a
5 eAIn;k(t) + a�2M
5 eBIn;k(t)�u(p) ; (4)and the moments of the GPDs are given byZ 1�1 dxxn�1H(x; �; t) = n�1Xk=0even(2�)k An;k(t) +mod(n+ 1; 2) (2�)nCn(t) ;Z 1�1 dxxn�1E(x; �; t) = n�1Xk=0even(2�)k Bn;k(t)�mod(n+ 1; 2) (2�)nCn(t) ;Z 1�1 dxxn�1 eH(x; �; t) = n�1Xk=0even(2�)k eAn;k(t) ;Z 1�1 dxxn�1 eE(x; �; t) = n�1Xk=0even(2�)k eBn;k(t) ; (5)3



where here and in the following we omit the isospin label I when it is not required. The restri
tionto even k in (4) and (5) is a 
onsequen
e of time reversal invarian
e.To 
al
ulate the 
hiral 
orre
tions to the nu
leon form fa
tors in heavy-baryon 
hiral perturbationtheory we work in the Breit frame, where P = 0. The in
oming and outgoing nu
leons then haveopposite spatial momenta p0 = �p =�=2 and equal energies, p00 = p0 =M
 with
 =p1��2=4M2 : (6)In terms of the velo
ity ve
tor v, given by v = (1; 0; 0; 0) in the Breit frame, the in
oming and outgoingnu
leon momenta are given by p = M
v ��=2 and p0 = M
v +�=2. Note that (v�) = (vS) = 0.Dira
 bilinears 
an be expressed in terms of the velo
ity v� and the spin operator S� = 12 i���
5 v� .Introdu
ing the spinorsuv(p) = N�1 1 + =v2 u(p); uv(p0) = N�1 1 + =v2 u(p0) (7)with N =p(1 + 
)=2, the matrix elements in (4) 
an be rewritten as [13℄hNi(p0) j OAn (a) jNj(p)i = �Aij n�1Xk=�1(M
)n�k�2 (av)n�k�1 (a�)k� �uv(p0) h(a�)EIn;k+1(t) + 
 [(aS); (S�)℄M In;k(t)i uv(p) ;hNi(p0) j eOAn (a) jNj(p)i = �Aij n�1Xk=0(M
)n�k�1 (av)n�k�1 (a�)k� �uv(p0) �2
 (aS) eEIn;k(t) + (a�)(S�)2M2 fM In;k(t)�uv(p) ; (8)where due to time reversal invarian
e the terms with En;k+1 are only nonzero for odd k, whereasthose with Mn;k, eEn;k and fMn;k are only nonzero for even k. The relation between the form fa
torsin (4) and those in (8) isEn;k(t) = An;k(t) + �24M2Bn;k(t) for k < n ; En;n(t) = 
2Cn(t) ;Mn;k(t) = An;k(t) +Bn;k(t) ;eEn;k(t) = eAn;k(t) ;fMn;k(t) = (1 + 
)�1 eAn;k(t) + eBn;k ; (9)whi
h is readily inverted toAn;k(t) = 1
2 �En;k(t)� �24M2Mn;k(t)� ; Bn;k(t) = 1
2 hMn;k(t)�En;k(t)i ;eBn;k(t) = fMn;k(t)� (1 + 
)�1 eEn;k(t) : (10)3 Heavy-baryon ChPTTo set our notation, let us brie
y review the main ingredients of 
hiral perturbation theory for heavybaryons, whi
h is an e�e
tive theory for the limit q;m� � M , where q is a generi
 momentum.4



To des
ribe pions we use the nonlinear representation U(x) = �u(x)�2 = exp�i�a(x)�a=F �, whereF � 92 MeV is the pion de
ay 
onstant in the 
hiral limit.1 The expli
it breaking of 
hiral symmetryby the quark masses is implemented by the �eld �(x). We assume the isospin limit, where one 
anrepla
e �(x) ! m2�0 with the bare pion mass m. We will not use external ve
tor or axial ve
tor�elds here. The nu
leon is des
ribed by the heavy-baryon �eld Nv(x) = 12(1 + =v) eiM0(vx)N(x), whereM0 is the bare nu
leon mass and v the velo
ity ve
tor. The Fourier transform of Nv(x) depends onthe residual nu
leon momentum, given by the original nu
leon momentum minus M0v. Importantderived quantities are the axial ve
tor �eldu� = i�uy��u� u��uy� = � 1F ���a�a +O(�3) ; (11)the 
onne
tion �� = 12 �uy��u+ u��uy� = i4F 2 �ab
 �a ���b� 
 +O(�4) ; (12)and �� = uy�uy � u�yu : (13)Under global 
hiral transformations, des
ribed by unitary matri
es VL and VR, the di�erent �eldstransform as U ! VRU V yL ; �! VR�V yL ;u! VRuHy = HuV yL ; Nv ! HNv ;�� ! H��Hy +H��Hy ; (14)and u� and �� transform homogeneously asu� ! Hu�Hy ; �� ! H��Hy : (15)The unitary matrix H depends on VL, VR and on U(x) and therefore has an x dependen
e. Withthe 
onne
tion �� one 
an 
onstru
t the 
ovariant derivative r�. It a
ts as r�X = ��X + ��X onquantities like Nv, whi
h transform with a fa
tor H on their left, and as [r�; Y ℄ = ��Y + [��; Y ℄on quantities like u�, whi
h transform with H on the left and with Hy on the right. Correspondingderivatives a
ting to the left are Zr = Z� � Z�� and [Y;r ℄ = Y � � [Y;��℄, where Z transformswith a fa
tor Hy on its right.The e�e
tive Lagrangian for the theory 
ontains a pure pion pie
e and a pie
e des
ribing thenu
leon and its intera
tion with pions, Le� = L� + L�N . Expanding in powers of q one hasL� = L(2)� + L(4)� + : : : ; L�N = L(1)�N + L(2)�N + : : : (16)with [17, 18℄ L(2)� = F 24 Tr�u�u� + �+� ;L(4)� = l316 �Tr�+�2 + l416 n2Tr�+Tr(u�u�) + 2Tr(�2�)� �Tr���2o+ : : : ; (17)1Our 
onvention is that upper
ase indi
es of � as in (1) run from 0 to 3, whereas lower
ase ones run from 1 to 3.5



and [19℄ L(1)�N = Nv ni(vr) + g0 (Su)oNv ;L(2)�N = Nv �(vr)2 �r22M0 � ig02M0 �(rS); (vu)	 + 
1 Tr�++ �
2 � g208M0�(vu)2 + 
3 u�u� + �
4 + 14M0�[S�; S� ℄u�u��Nv ; (18)where g0 is the nu
leon axial-ve
tor 
oupling in the 
hiral limit and the li and 
i are further low-energy
onstants. The terms not displayed in L(4)� 
ouple to at least four pion �elds and will not be neededin our 
al
ulations.For 
al
ulating nu
leon matrix elements in the Breit frame we need the residual momenta of thein
oming and outgoing nu
leon,r = p�M0v = wv ��=2 ; r0 = p0 �M0v = wv +�=2 (19)with w =M(
 � 1) + ÆM = � �28M � 4
1m2 +O(q3) ; (20)where ÆM = M �M0 is the nu
leon mass shift. Using the spinors (7) one obtains a matrix elementas [20℄ hp0jOjpi = N 2ZN uv(p0)GO(r0; r)uv(p) ; (21)where GO(r0; r) is the trun
ated Green fun
tion for external heavy-baryon �elds Nv, Nv and theoperator O in the e�e
tive theory. ZN is the heavy-baryon �eld renormalization 
onstant,ZN = 1� 3m2g202(4�F )2 � 9m2g204(4�F )2 log m2�2 � 8m2dr28(�) +O(q3) ; (22)where dr28(�) is a low-energy 
onstant in the Lagrangian L(3)�N given in [21℄.4 Chiral even isotriplet operators4.1 Constru
tion of e�e
tive operatorsTo �nd the operators in the e�e
tive theory whi
h mat
h the quark-gluon operators (2) in QCD wegeneralize the 
onstru
tion of [13℄ to the isotriplet se
tor. The relevant e�e
tive operators 
ontain apart O� whi
h involves only pion �elds (and 
ouples to the nu
leon via intera
tions from L�N) anda part O�N that is bilinear in the nu
leon �eld. We thus haveOAn (a) �= OAn;�(a) +OAn;�N (a) ; eOAn (a) �= eOAn;�(a) + eOAn;�N (a) ; (23)where for the pure pion operators OAn;�(a) and eOAn;�(a) we will use the form given in [12℄. Thepion-nu
leon operators OAn;�N(a) and eOAn;�N (a) are 
onveniently 
onstru
ted by �rst mat
hing theoperators�ORn (a)�ij = �qj =a 1 + 
52 (iaD$)n�1 qi ; �OLn (a)�ij = �qj =a 1� 
52 (iaD$)n�1 qi ; (24)6



where i and j are isospin indi
es. They involve quarks of de�nite 
hirality and transform asORn (a)! VRORn (a)V yR OLn (a)! VLOLn (a)V yL (25)unter 
hiral rotations. Parity transforms ORn (a) and OLn (a) into ea
h other. The 
orrespondinge�e
tive operators that are bilinear in the nu
leon �eld 
an be written in the form�QRn (a)�ij = �NvO1uy�j �uO2Nv�i ; �QLn(a)�ij = �NvO01u�j �uyO02Nv�i ; (26)where O1, O2 transform like u� under 
hiral rotations and O01, O02 are related to them by parity. Theve
tor and axial ve
tor operators are then readily obtained asOAn;�N (a) = Tr �A�QRn (a) +QLn(a)	 eOAn;�N (a) = Tr �A�QRn (a)�QLn(a)	 (27)and will involve the 
ombinations �Ae� = uy�Au� u�Auy ; (28)where the subs
ript e indi
ates that they o

ur in 
hiral even operators. In the isosinglet 
ase onehas simply �0e+ = 2�0 and �0e� = 0, whereas the isotriplet 
ombinations�ae+ = 2�a + 1F 2 �b��a� b � �b�a�+O(�4) �ae� = � 2F �ab
�b� 
 +O(�3) (29)involve an even or odd number of pion �elds, respe
tively. The operators O1, O2 
an be 
onstru
tedfrom the �elds u� and ��, and from the 
ovariant derivatives introdu
ed in Se
tion 3. One 
anrearrange the 
ovariant derivatives in QRn (a) and QLn(a) to a
t either as total derivatives �� on theprodu
t of all �elds or in the antisymmetri
 form r$� = 12 (r!� �r �), where r!� = �!� + �� a
ts onthe produ
t of all �elds to the right and r � = � � � �� on the produ
t of all �elds to the left. Theoperators QRn (a) and QLn(a) are tensors having n indi
es 
ontra
ted with the auxiliary ve
tor a. Otherthan ��, r$� and u� these tensors 
an 
ontain the ve
tors v� and S� and the totally antisymmetri
tensor. The number of spin ve
tors 
an be 
hanged using the identitiesfS�; S�g = 12(v�v� � g��) ; [S�; S�℄ = i����� v�S� S� = � i2 ����� v�[S� ; S�℄ (30)where our 
onvention for the totally antisymmetri
 tensor is �0123 = 1. For the operators underdis
ussion we 
hose a basis where S� appears at most linearly, or quadrati
ally as the 
ommutator[S�; S�℄. For 
ounting powers of q one asso
iates 
hiral dimension 1 to ��, r$�, u� and 
hiral dimension2 to ��.We now make all fa
tors of (av) expli
it and writeOAn;�N (a) = nXk=0Mn�k�1 (av)n�k OAn;k(a) ; (31)where OAn;k(a) is free of fa
tors (av). For 
ontra
ting the k ve
tors a� in OAn;k(a) one 
an use S�only on
e, so that this operator 
ontains at least k � 1 ve
tors ��, r$� or u�. Thus we 
an furtherde
ompose OAn;k(a) = 1Xi=�1M�iOAn;k;i(a) ; (32)where OAn;k;i(a) has 
hiral dimension k + i. For eOAn;�N (a) one has a de
omposition in full analogy to(31) and (32). 7



Table 1: Overview of 
ontributions to the 
hiral even form fa
tors. The restri
tion in the se
ond
olumn is due to time reversal invarian
e. N� is the number of fa
tors (a�) and (S�) in thede
omposition (8). The indi
es of the operators must satisfy l � k and i � 0, and the 
orrespondinggraphs 
ontribute to the form fa
tor at order O(qd) with d � Dl+1;i�1 �N� and Dl+1;i�1 from (33).form fa
tor k N� operatorsEn;k+1 odd k + 1 On;l+1;i�1Mn;k even k + 1 On;l+1;i�1eEn;k even k eOn;l+1;i�1fMn;k even k + 2 eOn;l+1;i�14.2 Power 
ounting for tree and loop graphsAs shown in [13℄ the 
hiral dimension of a graph with two external nu
leon legs and insertion of theoperator OAn;k;i(a) or eOAn;k;i(a) isDk;i = 2L+ k + i+ N�Xj=1 �dimV�(j) � 2�+ N�NXj=1 �dimV�N (j) � 1� ; (33)where L is the number of loops (with L = 0 for tree graphs). V�(j) and V�N (j) respe
tively denotethe jth vertex from L� and L�N in the graph, N� and N�N are the 
orresponding total numbers ofverti
es, and I� and IN are the numbers of pion and nu
leon propagators. Corre
tions to the nu
leonpropagator from higher orders of L�N are 
ounted as a nu
leon-nu
leon vertex and are a

ompaniedby two (leading-order) nu
leon propagators on either side. Noti
e that r� + r0� = 2wv� is of orderO(q2) and thus one order higher than the generi
 power asso
iated with a residual nu
leon momentum.A graph with 
hiral dimension Dk;i 
an thus generate 
ontributions to a nu
leon matrix element oforder O(qd) with d � Dk;i. Sin
e OAn;k;i(a) is a

ompanied by a fa
tor (av)n�k in (31) it 
an only
ontribute to form fa
tors with at least n� k powers of (av) in the de
omposition (8) of the nu
leonmatrix element. Taking into a

ount the number N� of fa
tors (a�) and (S�) in that de
omposition,one 
an establish the order in the 
hiral expansion to whi
h a given operator 
an 
ontribute to a formfa
tor. The result is given in Table 1.Throughout this paper we refer to orders O(qd) in the 
hiral expansion of a given form fa
torrather than the expansion of the 
orresponding matrix element. This is most 
onvenient for theproblem at hand, sin
e the 
hiral order of matrix elements in
reases with the order n of the operator,whereas the 
hiral order of the form fa
tors has as a natural point of referen
e the order O(q0) fromtree-level insertions of operators with the lowest 
hiral dimension at given n.The 
ontributions of the operators OAn;k;i(a) and eOAn;k;i(a) at tree level are readily evaluated. Thetree level graphs do not 
ontain pions, so that one 
an repla
eu� ! 0; �� ! i��; r$� ! �iwv�;�Ae+ ! 2�A; �Ae� ! 0; �+ ! 2m2�0; �� ! 0: (34)Operators with r$� do not 
ontribute to the form fa
tors at leading order sin
e w is of order O(q2).The di�erent types of higher-order 
ontributions to the form fa
tors are dis
ussed in Se
tion 3.2 of[13℄. In the results we give for the form fa
tors, we lump them all into 
oeÆ
ients des
ribing the m28
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Figure 1: One-loop graphs with the insertion of a pion-nu
leon operator On;�N (a) or eOn;�N (a), whi
his denoted by a bla
k blob. Not shown is the analog of graph 
 with residual momentum l+wv+�=2of the intermediate nu
leon line.and t 
orre
tions from tree graphs, ex
ept for the terms proportional to g20 in the expression (22) ofthe wave fun
tion renormalization 
onstant ZN , whi
h we 
ombine with the terms due to loop graphs.The one-loop graphs with pion-nu
leon operator insertions are shown in Fig. 1. The 
onstru
tionof operators detailed in Se
tion 4.1 allows one to easily tra
k the origin of fa
tors �� whi
h arise froma graph and must mat
h the fa
tors in the form fa
tor de
omposition (8). For this we use that thedenominators of the pion and nu
leon propagators are (l2 �m2 + i0) and (lv+w+ i0), respe
tively,so that the loop integration turns tensors l�1 : : : l�j into tensors 
onstru
ted from v� and g��. We �ndthat with the leading-order (LO) intera
tions from L(1)�N and the next-to-leading (NLO) intera
tionsfrom L(2)�N a fa
tor �� whi
h is not 
ontra
ted to �2 (and hen
e 
an be 
ontra
ted with a� or S�)
an only originate from [13℄1. a total derivative �� in the operator insertion,2. a term (lv)(S�) due to an NLO pion-nu
leon vertex,3. or a term (l�) due to an NLO nu
leon propagator 
orre
tion.We further �nd that two fa
tors of �� whi
h are not 
ontra
ted to �2 
an originate as (l�)(�S)from the NNLO pion-nu
leon vertex generated by the term� g04M20 Nv n(r S)(ur!) + (r u)(Sr!)oNv (35)of the Lagrangian L(3)�N given in [21℄.In the next se
tion we will see that OAn;l+1;i�1(a) and eOAn;l+1;i�1(a) with i = 0; 1; 2 have at mostl + i total derivatives ��. A one-loop graph with insertion of su
h an operator and pion-nu
leonintera
tions up to NNLO must therefore satisfyl + i+ N�NXj=1 �dimV�N (j)� 1� � N� (36)in order to produ
e the number N� of fa
tors �� required to 
ontribute to the form fa
tors in Table 1.For i > 2 and for pion-nu
leon intera
tions higher than NNLO this inequality is trivially ful�lled.With the power 
ounting established in the table, one then �nds that the one-loop 
ontributions frompion-nu
leon operators for all form fa
tors start at order O(q2).9
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Figure 2: a and b: One-loop graphs with the insertion of the pion operator On;�(a). 
: Tree graphwith the insertion of the pion operator eOn;�(a). The operator insertions are denoted by bla
k blobs.Let us �nally return to the 
ontributions to the nu
leon matrix elements from the pure pionoperators OAn;�(a) and eOAn;�(a). Their 
hiral dimension is [13℄D� = 2L� 1 + d� + N�Xj=1 �dimV�(j) � 2�+ N�NXj=1 �dimV�N (j) � 1� (37)where d� � n is the 
hiral dimension of the pion operator. Be
ause of parity invarian
e the ve
toroperators On;� 
ouple to 2 or more pions, whereas the axial ve
tor operators eOAn;�(a) 
ouple to 1 butnot 2 pions. Starting at order O(qn�k) the form fa
tors En;k+1 and Mn;k thus re
eive 
orre
tionsfrom the one-loop graphs shown in Fig. 2a and b. For isotriplet pion operators n is odd due to 
harge
onjugation invarian
e. Together with the time reversal invarian
e 
onstraints on the nu
leon formfa
tors, one thus �nds that the 
orre
tions to EI=1n;n�1 start at O(q2) and those to M I=1n;n�1 at orderO(q), whereas for all other form fa
tors EI=1n;k+1 and M I=1n;k they are at least of order O(q3).The axial ve
tor operator eOAn;�(a) 
ontributes to nu
leon matrix elements starting with the treelevel graph in Fig 2
. The n ve
tors a� in the operator are all 
ontra
ted with derivatives a
ting onthe pion �eld and hen
e with �� after evaluation of the graph. The same is true for the 
orrespondingone-loop graphs. One thus obtains only 
ontributions to the form fa
tor fMn;n�1, starting at orderO(q�2) for the tree graph. With two loops one has graphs where three pions 
ouple to the operatoron one side and to the nu
leon line on the other. Su
h graphs 
an 
ontribute to other form fa
tors,but only starting at order O(q4).5 Results for 
hiral-even isotriplet form fa
tors5.1 Relevant operators and graphsWith the method outlined in Se
tion 4.1 one �nds ve
tor operatorsOAn;k+1;�1 = eE I (0)n;k (ia�)k Nv (aS) �Ae�Nv + : : : ;OAn;k+1;0 = 12E I (0)n;k+1 (ia�)k+1Nv �Ae+Nv � 12M I (0)n;k (ia�)k i��Nv [(aS); S�℄�Ae+Nv + : : : ;OAn;k+1;1 = 14fM I (0)n;k (ia�)k+1 i��Nv S��Ae�Nv + : : : ; (38)where the : : : stand for operators whi
h have fewer total derivatives and as in Se
tion 2 the isospinindex I = 0 belongs to A = 0 and I = 1 to A = 1; 2; 3. The axial ve
tor operators are simply obtained10



by inter
hanging �Ae+ and �Ae�,eOAn;k+1;�1 = eE I (0)n;k (ia�)k Nv (aS) �Ae+Nv + : : : ;eOAn;k+1;0 = 12E I (0)n;k+1 (ia�)k+1Nv �Ae�Nv � 12M I (0)n;k (ia�)k i��Nv [(aS); S�℄�Ae�Nv + : : : ;eOAn;k+1;1 = 14fM I (0)n;k (ia�)k+1 i��Nv S��Ae+Nv + : : : : (39)Using the rules (34) and the de
omposition (8) the 
oeÆ
ients in (38) and (39) are easily identi�edas the tree-level 
ontributions to the form fa
tors eEIn;k(t), EIn;k+1(t), M In;k and fM In;k at order O(q0).Time reversal invarian
e implies that EI (0)n;k+1 is only nonzero for odd k, whereas the other 
oeÆ
ientsM I (0)n;k , eEI (0)n;k , fM I (0)n;k are only nonzero for even k. For A = 0 we re
over the isosinglet operators
onstru
ted in [13℄.A

ording to (29) insertions of an isotriplet operator with �ae� require at least one pion line in thegraph and hen
e do not 
ontribute to nu
leon matrix elements at tree level. They appear however inthe one-loop graph shown in Fig. 1
. When the pion-nu
leon vertex in this graph is taken at LO one�nds zero, be
ause the loop integral is of the formZ d4�2�l (Sl)(lv + w + i0) (l2 �m2 + i0) ; (40)whose numerator is proportional to (Sv) = 0 after the integration. Cal
ulating the same graph tothe next order, one �nds that the 
ontribution from the NLO pion-nu
leon vertex 
an
els the onewith the LO pion-nu
leon vertex and an NLO nu
leon propagator 
orre
tion. This holds true forall operators with �ae� in (38) and (39) and only requires that the operators does not introdu
e anydependen
e on the loop momentum l� via r$� or u�.The operators with �ae+ 
ontribute at tree level and via the loop graphs in Fig. 1a and b. Theyare 
onstru
ted su
h that after the repla
ement �� ! i�� they mat
h the stru
ture of the terms inthe form fa
tor de
omposition (8). That stru
ture 
an be 
hanged in loop graphs only when the spinve
tors in the operator insertion are multiplied by spin ve
tors from pion-nu
leon verti
es. This isnot the 
ase for the graph in Fig. 1b, whi
h originates from the two-pion term in the expansion (29)of �ae+ and thus reprodu
es the spin stru
ture of the operator. Let us show that it is not the 
aseeither for the graph in Fig. 1a with LO pion-nu
leon verti
es. The numerator of the 
orrespondingloop integral has the form (Sl)O(Sl), where O 
ontains zero, one or two ve
tors S� and representsthe spin stru
ture of the operator. The loop integration turns a tensor l�1 : : : l�j into a 
ombinationof v� and g�� and thus (Sl)O(Sl) into S�OS�. This preserves the spin stru
ture of O be
auseS�S� = 14(1� d) ; S�S�S� = 14(d� 3)S� ; S� [S�; S�℄S� = 14(5� d) [S�; S� ℄ (41)in d dimensions. We also need graphs with one LO and one NLO pion-nu
leon vertex, or with twoLO verti
es and an NLO nu
leon propagator 
orre
tion. Restri
ting ourselves to the terms produ
ingthe required fa
tors of �� as dis
ussed in Se
tion 4.2, we obtain numerators (lv)(S�)O (Sl) or(l�)(Sl)O (Sl), whi
h give zero after loop integration.In summary, the insertion of an operator from (38) or (39) into the graphs dis
ussed so far eithergives zero or 
ontributes only to the same form fa
tor for whi
h it already provides the leading-ordertree-level result. This is however not true for the graph in Fig 1a with one NNLO or two NLOpion-nu
leon intera
tions. In this 
ase one obtains terms (S�)O(S�) after loop integration, whi
hdo 
hange the spin stru
ture of O. 11



5.2 Ve
tor form fa
torsFrom Table 1 it follows that EIn;k+1 and M In;k 
an re
eive 
ontributions from one-loop graphs withinsertion of operators On;l+1;i�1 with l � k and i � 0. With the additional 
ondition (36) requiredto produ
e enough fa
tors of ��, we �nd that the form fa
tors re
eive 
orre
tions of order O(q2)from graphs with LO pion-nu
leon verti
es and insertion of the operator On;k+1;0, whi
h alreadygives the tree-level 
ontributions at order O(q0). By power 
ounting one 
ould also have order O(q2)
ontributions from graphs with insertion of On;k+2;�1 or On;k+1;�1 and pion-nu
leon intera
tionsat LO or NLO, respe
tively, but these vanish be
ause the relevant operators 
ome with �Ae�. Theone-loop 
orre
tions from pion-nu
leon operators to EI=1n;k (t) and M I=1n;k (t) are then found to beEI=1(0)n;k �1� m2(4�F )2 �(3g2A + 1) log m2�2 + 2g2A��+O(q3) ;M I=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + 2g2A��+O(q3) ; (42)respe
tively, where we have repla
ed the bare axial 
oupling g0 by its physi
al value gA as is permissiblewithin the pre
ision of our result. Likewise, we 
ould repla
e the bare pion de
ay 
onstant F andbare pion mass m by their physi
al values F� and m� (we refrain from doing so for ease of notation).The 
ontributions with g2A in (42) are due to the graph in Fig. 1a and the nu
leon wave fun
tionrenormalization, and the 
ontributions without g2A 
ome from the tadpole graph in Fig. 1b. As in[13℄ we use the renormalization s
heme of [22℄, subtra
ting 1=�+ log(4�) +  (2) for ea
h 1=� pole in4� 2� dimensions.The form fa
tors EIn;k+1(t) and M In;k also re
eive 
hiral 
orre
tions from loop graphs with pionoperator insertions. In the notation of [12℄ the isotriplet operators with lowest 
hiral dimension are2Oan;�(a) = 2~bn;n�1 (ia�)n�1(aV a)+ 2iF 2�ab
 n�3Xk=0even~bn;k (ia�)k h(aLb) (2ia�$)n�k�2(aL
) + (aRb) (2ia�$)n�k�2(aR
)i ; (43)where V a� = �12 iF 2�La� +Ra�� ; La� �a = U y��U ; Ra� �a = U ��U y : (44)To extra
t the terms 
oupling to two pions we use the expansion La� = i���a=F + i�ab
�b���
=F 2 +O(�3) and its analog for Ra�, obtained by 
hanging the sign of the pion �eld,3 and obtainOan;�(a) = �2i�ab
(~bn;n�1 (ia�)n�1�b(ia��
)� 2 n�3Xk=0even~bn;k (ia�)kh(ia��b) (2ia�$)n�k�2 (ia��
)i)+O(�4) : (45)Using the relations4(ia��b) (ia��
) = (ia�)2�b�
 � �b (2ia�$)2 �
 ; 2�ab
�b (ia��
) = �ab
�b (2ia�$)�
 (46)2The normalization of the twist-two operators (2) used here agrees with the one in [13℄ and di�ers from that in [12℄by a fa
tor of 2. The 
oeÆ
ients ~bn;k have the same normalization here and in [12℄.3We note that the sign of the term with �ab
 in eq. (32) of [12℄ is in
orre
t.12



we 
an rewrite this asOan;�(a) = �i�ab
 n�1Xk=0evenA�(0)n;k (ia�)kh�b (ia�$)n�k �
i+O(�4) ; (47)where A�(0)n;k = 2n�k�~bn;k � ~bn;k�2� with ~bn;�2 = 0. The 
oeÆ
ients A�(0)n;k represent the 
hiral limit ofthe form fa
tors A�n;k(t) whi
h parameterize the moments of the pion GPD as [12℄Z 1�1 dxxn�1HI�(x; �; t) = nXk=0even(2�)kA�n;k(t) ; (48)where in terms of quark 
avors in a �+ one has HI=0� = Hu� +Hd� and HI=1� = Hu� �Hd�. Be
ause ofisospin and 
harge 
onjugation symmetry one has I = 1 for odd n and I = 0 for even n and therefore
an omit the isospin index I in A�n;k.As dis
ussed after (37), the graphs in Fig. 2a and b with insertion of Oan;�(a) give rise to 
orre
tionswhi
h start at order O(q2) for EI=1n;n�1 and at order O(q) for M I=1n;n�1. Together with (42) and withterms due to tree level operator insertions, the 
omplete results to order O(q2) readEI=1n;k (t) = EI=1(0)n;k �1� m2(4�F )2 �(3g2A + 1) log m2�2 + 2g2A��+ Æk;n�1EI=1(2;�)n;n�1 (t) +EI=1(2;m)n;k m2 +EI=1(2;t)n;k t+O(q3) ;M I=1n;k (t) =M I=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + 2g2A��+ Æk;n�1 hM I=1(1;�)n;n�1 (t) +M I=1(2;�)n;n�1 (t)i+M I=1(2;m)n;k m2 +M I=1(2;t)n;k t+O(q3) ; (49)where the 
ontributionsEI=1(2;�)n;n�1 (t) = 12(4�F )2 nXj=1odd 2�jj A�(0)n;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A (2m2 � t)�log m2(�)�2 + 1�� (g2A � 1)m2(�) log m2(�)�2 �) ;M I=1(1;�)n;n�1 (t) = �2�Mg2A(4�F )2 nXj=1odd 2�jj A�(0)n;n�j Z 1�1 d� �j�1m(�) (50)with m2(�) = m2 � t4 (1� �2) (51)are due to graphs with pion operator insertions and LO pion-nu
leon verti
es. The order O(q2)
orre
tionM I=1(2;�)n;n�1 (t) = � 12(4�F )2 nXj=1odd 2�jj A�(0)n;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A �2m2 � t��log m2(�)�2 + 1�+ �g2A � 1� 4M
4�m2(�) log m2(�)�2 �) (52)13



is due to graphs with one NLO pion-nu
leon vertex or nu
leon propagator 
orre
tion, as well as graphswith LO verti
es and the subleading part wv� of the residual nu
leon momenta, 
f. the dis
ussionafter (33). The terms proportional to g2A in (50) and (52) are due to the graph in Fig. 2a, and theother terms to the graph in Fig. 2b. Our expressions (49) and (50) agree with the results in [14℄,where the order O(q2) 
orre
tions to EI=1n;n�1 and the order O(q) 
orre
tions to M I=1n;n�1 are given.5.3 Axial form fa
torsUsing Table 1 and the 
ondition (36), one readily �nds that the 
hiral 
orre
tions of order O(q2) to theform fa
tor ~EIn;k are obtained from graphs with LO verti
es and insertion of the operator eOn;k+1;�1,whi
h already gives the tree-level 
ontributions at order O(q0). Together with higher-order tree levelinsertions we get eEI=1n;k (t) = eEI=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + g2A��+ eEI=1(2;m)n;k m2 + eEI=1(2;t)n;k t+O(q3) ; (53)in agreement with [14℄. The dis
ussion of 
ontributions to fM In;k is more involved; for the isotriplet
ase it pro
eeds in 
lose analogy to the isosinglet 
ase analyzed in [13℄. A

ording to Table 1 and the
ondition (36), one obtains order O(q2) 
orre
tions from graphs with insertion of eOn;k+1;1 and LOverti
es. Further 
orre
tions are due to graphs with insertion of eOn;k+1;�1 and two NLO pion-nu
leonverti
es or nu
leon propagator 
orre
tions, or with one NNLO pion-nu
leon vertex generated by (35).Graphs with the same operator insertion and two loops or one loop and a pion propagator 
orre
tionfrom L(4)� 
ould 
ontribute by power 
ounting but do not produ
e the required fa
tors of �� (see[13℄). Graphs with insertion of eOn;k+2;0 or eOn;k+1;0 and pion-nu
leon intera
tions at LO or NLO givezero be
ause these operators involve �ae�, as dis
ussed after (40). Graphs involving eOn;k+2;�1 andNLO pion-nu
leon intera
tions do not 
ontribute to fM In;k due to time reversal invarian
e, sin
e theoperator is only nonzero for odd k and the form fa
tor only for even k. Finally, graphs with insertionof eOn;k+3;�1 and LO pion-nu
leon verti
es 
ontribute to eEIn;k+2 but not to fM In;k as dis
ussed at theend of Se
tion 5.1.Together with higher-order tree-level insertions, the one-loop graphs with eOn;k+1;1 or eOn;k+1;�1thus give the full result at order O(q2) for the form fa
tors with k < n� 1,fM I=1n;k (t) = fM I=1(0)n;k �1� m2(4�F )2 �(2g2A + 1) log m2�2 + g2A��+ eEI=1(0)n;k m2g2A3(4�F )2 log m2�2 + fM I=1(2;m)n;k m2 + fM I=1(2;t)n;k t+O(q3) : (54)The form fa
tors fM I=1n;n�1 require a separate dis
ussion be
ause they re
eive a 
ontribution startingat order O(q�2) from the one-pion ex
hange graph in Fig. 2
, as dis
ussed at the end of Se
tion 4.2.The relevant operator is given byeOan;�(a) = 2~bn;n�1 (ia�)n�1(aAa) � 1 +� lr42F 2 + ~
n�Tr�+ �+O�qn+4� (55)with odd n and Aa� = �12 iF 2�Ra� � La�� ; (56)14



where ~bn;n�1 is the same as in (43) be
ause of parity invarian
e. lr4 is the renormalized low-energy
onstant from the pion Lagrangian (17) and appears in the expression of the axial 
urrent,12 �q
�
5�aq �= Aa� � 1 + lr42F 2 Tr�+ �+O(q5) ; (57)so that ~b1;0 = 1 and ~
1 = 0. One 
an readily derive (57) by 
oupling the Lagrangian to an externalisove
tor axial �eld a� as usual [19℄, whi
h implies u� = i�uy��u � u�uy� + uya�u + ua�uy. As anaside we note that the 
orre
tion with lr4 in the axial 
urrent (57) would be di�erent if one used thepion Lagrangian from [22℄, where the term involving this low-energy 
onstant readsl44 Trh(���y)(��U) + (���)(��U y)i = l48 nTr�+Tr(u�u�) + 2iTr�r�; ���u�o : (58)In the present work we follow Ref. [18℄ and use the Lagrangian (17) from [17℄. It di�ers from (58)by total derivative terms and terms that vanish by the equation of motion. With the full Lagrangiangiven by L� + L�N the equation of motion for the pion �eld involves terms bilinear in the nu
leon�eld,4 so that a 
hange of L� using the equation of motion indu
es a 
orresponding 
hange in L�N .We also refer to the dis
ussion in [23℄.The 
oeÆ
ients ~bn;n�1 and ~
n in (55) appear in the moments of the twist-two pion distributionamplitude ��(x), whi
h are de�ned byZ d�2� eix�(ap)
�b(p)�� �q(��a) =a
5 �aq(�a) ��0� = �iÆabF���(x) (59)and B�n = 2�n Z 1�1 dxxn�1��(x) ; (60)so that h�b(p)j eOan;�(a)j0i = �2iÆab(ap)nF�B�n : (61)Cal
ulating the leading 
hiral 
orre
tion to this matrix element one �nds that lr4 only appears in theexpression of the pion de
ay 
onstant,F� = F �1� m2(4�F )2 log m2�2 + m2F 2 lr4(�) +O(m4)� ; (62)and ~
n only in the 
orre
tion to the momentsB�n = ~bn;n�1 �1 + 4m2~
n�+O(m4) : (63)The de�nition of the pion de
ay 
onstant implies B�1 = 1 to all orders in the 
hiral expansion.Returning to the nu
leon form fa
tors fM I=1n;n�1, one readily �nds their lowest-order 
ontribution tobe fM I=1(�2)n;n�1 (t) = B�(0)n 4M2g0m2 � t (64)with B�(0)n = ~bn;n�1. The leading 
orre
tions to this 
ome from a number of higher-order operatorinsertions and loop graphs. A tadpole insertion in the pion line of the graph in Fig. 2
 and the4With an arbitrary matrix X in isospin spa
e and eX = X � 12 TrX, the leading-order equation of motion reads2iTr�r�; u��X +Tr�� eX = F�2 Nv �(vu) + 4ig0 (Sr); eX �Nv � 4ig0F�2 �� �NvS� eXNv� :15



propagator 
orre
tion from the l3 term in the pion Lagrangian (17) result in a shift m2 ! m2� in (64),where m2� = m2�1 + m22(4�F )2 log m2�2 + 2m2F 2 lr3(�) +O(m4)� : (65)The pion propagator 
orre
tion from the l4 term in (17) 
an
els against the l4 term from the operator(55). A tadpole insertion at the operator vertex gives a 
hiral logarithm as in (62). Further 
orre
tionsare due to loop 
orre
tions to the pion-nu
leon vertex, to tree-level insertions from L(3)�N , and to thefa
tors N 2 and ZN in the mat
hing formula (21). Together with the tree-level insertion of the pion-nu
leon operator eOan;n;1 from (39) we obtainfM I=1n;n�1(t) = B�(0)n 4M2g0m2� � t �1� m2(4�F )2 �(2g20 + 1) log m2�2 + g20 �+ 2m2g�10 �2dr16 � d18�� 8m2dr28 + 4m2~
n�+ fM I=1(0)n;n�1 +O(q) (66)with the low-energy 
onstants dr16(�), d18 and dr28(�) from [21℄. To make the pion mass dependen
efully expli
it, one should repla
e M2 = M20 � 8m2M0
1 + O(m3). Conversely, we 
an use (63) andthe one-loop expressiongA = g0�1� m2(4�F )2 �(2g20 + 1) log m2�2 + g20 �+ 4m2g�10 dr16 � 8m2dr28�+O(m3) (67)of the axial 
oupling (see e.g. [24℄) to rewrite the result asfM I=1n;n�1(t) = B�n 4M2gAm2� � t �1� 2m2� g�1A d18�+ fM I=1(0)n;n�1 +O(q) (68)in terms of the physi
al quantities B�n , gA, M , m� and the low-energy 
onstants d18 and fM I=1(0)n;n�1 .With the transformation (10) and the de�nitions (5) and (60) of moments one �ndseEI=1(x; �; t) = �(jxj < �)2� ���x� � 4M2gAm2� � t �1� 2m2� g�1A d18�+ eEI=1(0)(x; �) +O(q) ; (69)whi
h generalizes the well-known relation from [25, 26℄ to next-to-leading order in the 
hiral expansion.For n = 1 our result (68) is 
onsistent with the one for the pseudos
alar form fa
tor in [18, 27℄. Wealso agree with the result of Ref. [14℄ if in their eq. (66) one adds a term Æm;2k 23 gAM2hr2Ai hz2ki�Æ22k.6 Chiral-odd generalized parton distributionsIn this se
tion we 
onsider the general parton distributions asso
iated with 
hiral-odd operators. As inthe previous se
tions we restri
t ourselves to the twist-two se
tor. The relevant GPDs of the nu
leonare de�ned by5Z d�4� eix�(aP )
Ni(p0)�� �q(�12�a) b�a� i��� �Aq(12�a) ��Nj(p)�= �Aij 12aP b�a� �u(p0)"i���HIT + 
��� ���
�2M EIT� i������� � i�������2M2 eHIT + 
�P � � P �
�M eEIT#u(p) : (70)5We have traded the distribution ET in the original de
omposition [28℄ for the 
ombination ET = ET +2 eHT , whi
hnaturally appears when representing the distributions at � = 0 in terms of densities in the impa
t parameter plane [8℄.16



In addition to the light-like ve
tor a we have introdu
ed a ve
tor b satisfying ab = 0, and for brevitywe have suppressed the arguments x, �, t of the distributions.6 Their Mellin moments are related tothe matrix elements of the 
hiral-odd twist-two operatorsOAT ��1�2:::�n = T��1:::�n A��1 S�1:::�n �q���1iD$�2 : : : iD$�n�Aq ; (71)where T and S are de�ned as in Se
tion 2 and where A denotes antisymmetrization, A�� t�� =12(t���t��). These operations are 
onveniently implemented by 
ontra
tion with the auxiliary ve
torsa and b, given that for any tensor t��1:::�n satisfying t��1�2:::�n = �t�1��2:::�n one hasb�a�1a�2 : : : a�n T��1:::�n A��1 S�1:::�n t��1:::�n= b�a�1a�2 : : : a�n 12n �t��1�2:::�n + nXi=2 t��2:::�i�1�i+1:::�n � t�1��2:::�n � nXi=2 t�1�2:::�i��i+1:::�n�= n+ 12n b�a�1a�2 : : : a�n t��1:::�n : (72)where symmetrization in �2 : : : �n is guaranteed by 
ontra
tion with identi
al ve
tors, and where tra
esubtra
tion terms are removed by the 
onditions a2 = ab = 0. The (n� 1) terms of the se
ond sumgive zero due to the antisymmetry of t in its �rst two indi
es. We therefore de�ne the 
ontra
tedoperator OATn(a; b) = 2nn+ 1 b�a�1a�2 : : : a�n OAT ��1�2:::�n = �q b�a� i��� (iaD$)n�1�Aq ; (73)whose nu
leon matrix elements are parameterized by
Ni(p0)��OATn(a; b) ��Nj(p)� = �Aij n�1Xk=0(aP )n�k�1 (a�)k b�a� �u(p0)"i���AITn;k + 
��� ���
�2M BITn;k� i������� � i�������2M2 eAITn;k + 
�P � � P �
�M eBITn;k#u(p) : (74)The moments of the 
hiral-odd GPDs are then expressed as [29℄Z 1�1 dxxn�1HT (x; �; t) = n�1Xk=0even(�2�)k ATn;k(t) ; Z 1�1 dxxn�1ET (x; �; t) = n�1Xk=0even(�2�)k BTn;k(t) ;Z 1�1 dxxn�1 eHT (x; �; t) = n�1Xk=0even(�2�)k eATn;k(t) ; Z 1�1 dxxn�1 eET (x; �; t) = n�1Xk=1odd(�2�)k eBTn;k(t) ; (75)where we have omitted isospin indi
es I in the distributions and form fa
tors for ease of writing. Therestri
tions to even or odd k for the form fa
tors re
e
t that HT , ET and eHT are even in � and eETis odd in � due of time reversal invarian
e [28℄.Using the relations (9) in [13℄ and�u(p0)i���u(p) = �uv(p0)"2
 [S�; S�℄ + v��� � v���2M + [S�; (S�)℄�� � [S�; (S�)℄��2M2(1 + 
) #uv(p) (76)6Instead of 
ontra
ting ��� with auxiliary ve
tors one often takes de�nite indi
es �i+, where i = 1; 2 denotes atransverse 
omponent and + the plus-
omponent in light-
one 
oordinates, i.e. �i+ = (�i0 + �i3)=p2.17



one 
an rewrite the de
omposition (74) in terms of the heavy-baryon spinors (7) and obtains
Ni(p0)��OATn(a; b) ��Nj(p)� = �Aij n�1Xk=0(M
)n�k�1(av)n�k�1 (a�)k b�a�� �uv(p0)"2
 [S�; S�℄ eEITn;k + [S�; (S�)℄�� � [S�; (S�)℄��2M2 fM ITn;k+ 
 [S�; (S�)℄v� � [S�; (S�)℄v�M EITn;k + v��� � v���2M M ITn;k# uv(p) (77)with new form fa
tors given byeETn;k = ATn;k ; fMTn;k = (1 + 
)�1ATn;k +BTn;k � 2 eATn;k :ETn;k = eBTn;k ; MTn;k = ATn;k +BTn;k � �22M2 eATn;k ; (78)or equivalently BTn;k = 1
2 �MTn;k � �24M2 fMTn;k � 
 eETn;k� ;eATn;k = 12
2 �MTn;k � fMTn;k � 
1 + 
 eETn;k� : (79)We �nish this se
tion by de�ning 
hiral-odd GPDs in the pion,Z d�4� eix�(aP )
�
(p0)�� �q(�12�a) b�a� i��� �Aq(12�a) ���b(p)�= 12 Tr(�A� b� 
) 12aP b�a� P ��� ���P �m� EIT�(x; �; t) ; (80)where as in the nu
leon 
ase, isospin I = 0 
orresponds to A = 0 and I = 1 to A = 1; 2; 3. In termsof quark 
avors in a �+ one has EI=0T� = EuT� +EdT;� and EI=1T� = EuT� �EdT�, with the de�nitionZ d�4� eix�(aP )
�+(p0)�� �u(�12�a) b�a� i���u(12�a) ���+(p)�= 12aP b�a� P ��� ���P �m� EuT�(x; �; t) (81)and its analog for d quarks. For the lo
al twist-two operators one has
�
(p0)��OATn(a; b) ���b(p)� = 12 Tr(�A� b� 
) b�a� P ��� ���P �m� n�1Xk=0even(aP )n�k�1 (a�)k B�Tn;k(t) (82)with Z 1�1 dxxn�1EIT�(x; �; t) = n�1Xk=0even(2�)k B�Tn;k(t) ; (83)where the restri
tion to even k is a 
onsequen
e of time reversal symmetry. Due to isospin and 
harge
onjugation invarian
e, n is even for I = 0 and odd for I = 1, so that we do not need an isospin labelfor BT�n;k. 18



7 Chiral-odd e�e
tive operatorsIn this se
tion we explain how to 
onstru
t the operators in the e�e
tive theory that mat
h the 
hiral-odd quark operators (71), 
losely following the strategy used in Se
tion 4. To this end we �rst mat
hthe operators�O��RL;n(a)�ij = �qj i��� 1 + 
52 (iaD$)n�1 qi ; �O��LR;n(a)�ij = �qj i��� 1� 
52 (iaD$)n�1 qi (84)with open isospin indi
es i, j, whi
h involve quarks of de�nite 
hirality. The 
orresponding un
on-tra
ted operators 12 �qj i���1(1 � 
5) iD$�2 : : : iD$�n qi do not have de�nite twist, but a

ording to (72)their twist-two part is readily proje
ted out in b�a�O��RL;n(a) and b�a�O��LR;n(a). The operators (84)transform as O��RL;n(a)! VRO��RL;n(a)V yL O��LR;n(a)! VLO��LR;n(a)V yR (85)unter 
hiral rotations and are transformed into ea
h other by parity. Be
ause ���
5 = �12 i����� ���they obey the duality relationsO��RL;n(a) = � i2 ����� O��RL;n(a) O��LR;n(a) = i2 ����� O��LR;n(a) (86)The operators OATn(a; b) from (73), whi
h 
orrespond to twist-two and to de�nite isospin, are obtainedas OATn(a; b) = b�a�QA;��n (a) ; QA;��n (a) = Tr �A�O��RL;n(a) +O��LR;n(a)	 : (87)They will involve the 
ombinations �Ao� = uy�Auy � u�Au ; (88)whose expansion in pion �elds reads�0o+ = 2� 1F 2 �a�a +O(�4) ; �0o� = �2iF �a�a +O(�3) ;�ao+ = 2�a � 1F 2 �a�b� b +O(�4) ; �ao� = �2iF �a +O(�3) : (89)As for the 
hiral-even 
ase dis
ussed in Se
tion 4.1, the operators whi
h mat
h (84) in the e�e
tivetheory and 
ontribute to nu
leon matrix elements are either bilinear in the nu
leon �eld or 
ontainonly pion operators. We treat the two 
ases in the following two subse
tions.7.1 Pion-nu
leon operatorsThe e�e
tive operators whi
h are bilinear in the nu
leon �eld and transform as (85) 
an be writtenin the form�O��RL;n(a)�ij = �NvO1u�j �uO2Nv�i ; �O��LR;n(a)�ij = �NvO01uy�j �uyO02Nv�i ; (90)where O1, O2 involve the �elds u�, �� and 
ovariant derivatives and transform like u� under 
hiralrotations. O01 and O02 are related to O1 and O2 by parity. One 
an rearrange the 
ovariant derivativesin O��RL;n and O��LR;n su
h that they a
t either as total derivatives �� or in the antisymmetri
 formr$� = 12 (r!� �r �). 19



Table 2: Overview of 
ontributions to the 
hiral-odd form fa
tors. As in Table 1 the restri
tion in these
ond 
olumn is due to time reversal invarian
e. N� is the number of fa
tors (a�), (b�) and (S�)in the de
omposition (77). One must have l � k � 1 for ETn;k, MTn;k and l � k for eETn;k, fMTn;k,and i � 0 for all 
ases. The 
orresponding graphs 
ontribute to the form fa
tor at order O(qd) withd � Dl;i �N� and Dl;i from (33).form fa
tor k N� operatorsETn;k odd k + 1 Q��n;l;iMTn;k even k + 1 Q��n;l;ieETn;k even k Q��n;l;ifMTn;k even k + 2 Q��n;l;iTo obtain the general form of O��RL;n and O��LR;n it is suÆ
ient to 
onstru
t 
orresponding operatorsO�� that involve no � tensor and either no spin ve
tor or two spin ve
tors in the form [S�; S�℄.Operators with one � tensor and one spin ve
tor 
an be brought into this form by using the thirdrelation in (30) and rewriting the resulting produ
t of two � tensors in terms of produ
ts of metri
tensors. Terms in O��RL;n and O��LR;n with an odd total number of � tensors and spin ve
tors arethen readily obtained by adding the dual operators 12 i����� O�� with 
oeÆ
ients determined by therelations (86), using that 12 i����� 12 i���
Æ t
Æ = t�� for any antisymmetri
 tensor t��.Following the pro
edure of Se
tion 4.1 we de
ompose the pion-nu
leon part of the operatorsQA;��n (a) as Q��n;�N (a) = n�1Xk=0Mn�k�1(av)n�k�1Q��n;k(a) ; (91)where we have omitted supers
ripts A for ease of writing. The operator Q��n;k(a) is the 
ontra
tionof a tensor of rank k + 2 with k ve
tors a and may not 
ontain any fa
tors (av). The minimalnumber of ve
tors ��, r$�, u� in Q��n;k(a) is k � 1 and must be a

ompanied either by the tensorv�[S�; (aS)℄�v�[S�; (aS)℄ or by its dual i����� v�[S�; (aS)℄. In the �rst 
ase one obtains however thestru
ture (av)[(bS); (aS)℄ after 
ontra
tion with b�a�, whi
h also appears in b�a� (av)n�k Q��n;k�1(a).An analogous statement holds of 
ourse in the 
ase of the dual tensor. We 
an therefore restri
tourselves to operators Q��n;k(a) with at least k ve
tors ��, r$�, u�, and thus further de
omposeQ��n;k(a) = 1Xi=0M�iQ��n;k;i(a) ; (92)where Q��n;k;i(a) has 
hiral dimension k + i. The power 
ounting for graphs with a 
ertain operatorinsertion pro
eeds in 
lose analogy to Se
tion 4.2 and is summarized in Table 2. Comparing thenumber of fa
tors (av) in (91) and in the de
omposition (77), one obtains the restri
tion l � k forthe operators Q��n;l;i(a) that 
an 
ontribute to eETn;k and fMTn;k. For ETn;k and MTn;k the restri
tionis l � k � 1, where the 
ase l = k � 1 requires that the graphs with insertion of Q��n;l;i(a) produ
e nofa
tors of v� or v�. 20



7.2 Pure pion operatorsPioni
 operators whi
h transform a

ording to (85) 
an be written asO��RL;n(a) = uOu ; O��LR;n(a) = uyO0uy ; (93)where O and O0 are related by a parity transformation, transform like u� under 
hiral rotations, andare 
onstru
ted from the �elds u�, �� and 
ovariant derivatives. We 
an restri
t the derivatives toa
t only on �elds inside O and O0.7 With the duality relations (86) one �nds that the pure pion partof the operator QA;��n (a) 
an be brought into the formTrh�Ao+V ��(a)i+ i2 ����� Trh�Ao�V��(a)i or Trh�Ao�A��(a)i+ i2 ����� Trh�Ao+A��(a)i ; (94)where V�� and A�� respe
tively behave as a tensor or a pseudotensor under parity and are 
onstru
tedfrom u�, r� and �� without the � tensor. One readily �nds that the terms without � in (94) 
oupleto an even number and the terms with � to an odd number of pion �elds. V��(a) and A��(a) aretensors of rank n + 1 
ontra
ted with n � 1 ve
tors a. In the following we 
onsider the terms withthe lowest 
hiral dimension in the pure pion part of OATn(a; b). These terms 
ontain no �elds �� andhave the ve
tor indi
es of all n+ 1 fa
tors u� or r� 
ontra
ted with either a or b.To 
al
ulate matrix elements of these operators between two nu
leons or two pions at one-loopa

ura
y, we only need terms that 
ouple to at most four pions. Terms 
oupling to three or four pions
an appear in tadpole graphs. Su
h graphs are only nonzero if the pion �elds in the operator whi
h
ouple to the loop have no derivatives a
ting on them. This is be
ause the 
orresponding loop integralhas a numerator of the form l�1 : : : l�m , where l is the loop momentum. After the loop integration,one obtains zero for odd m and for even m one obtains a 
ombination of metri
 tensors, whi
h giveszero when the ve
tor indi
es are 
ontra
ted with a or b.Sin
e the derivatives with indi
es � and � in the antisymmetri
 tensor QA;��n (a) 
annot a
t onthe same pion �eld, one readily �nds that operators 
oupling to one or three pions do not 
ontributeto matrix elements between two nu
leons or two pions. For the same reason su
h operators de
ouplefrom matrix elements between the va
uum and a single pion, whi
h re
e
ts the fa
t that there are no
hiral-odd pion distribution amplitudes of twist two.It remains to 
onstru
t operators V��(a) and A��(a) from u� and r�, whi
h must have at leastone fa
tor u� be
ause the 
ovariant derivatives must a
t on some �eld to give nonzero, and less thanthree su
h fa
tors be
ause of the restri
tion just dis
ussed. The operators with one fa
tor of u� areof the form8(ar)k1 r� (ar)k2 u� � (�$ �) or (ar)k1 r� (ar)k2 r� (ar)k3 (au)� (�$ �) : (95)In both 
ases we 
an use the 
ommutator identity [r�;r�℄O = 14�[u�; u�℄O � O [u�; u�℄� to bringthe ve
tors with indi
es � and � next to ea
h other. The 
ommutator terms do not 
ontribute to thematrix element in question sin
e they involve three or more ve
tors u�. The remaining term involveseither r�u� �r�u� = 0 or [r�;r�℄ : : : (au) and thus do not 
ontribute either.The only relevant operators 
ontain hen
e two ve
tors u�. A

ording to our above dis
ussion, the�� part of any fa
tor r� does not 
ontribute in this 
ase, and the derivative must a
t on the pion�elds in u� whi
h already 
arry a derivative. For the matrix elements in question, r� (au) is hen
eequivalent to (ar)u�. The same holds of 
ourse for the index �. We thus �nd that the operators of7Other terms 
an be brought into this form using identities su
h as �� (uOu) = u� [r�;O ℄� i2fu�;Og�u.8For simpli
ity we write from now on r�O instead of [r�;O ℄ if O transforms like u� under 
hiral rotations.21



lowest 
hiral dimension 
an be written asQA;��n;� (a) = F 28 n�1Xk=0even bTn;k Tr �Ao+ (iar)k V ��n;k + : : : (96)with V ��n;k = u� (2iar$)n�k�1 u� � u� (2iar$)n�k�1 u� ; (97)where the : : : denote terms not 
ontributing to two-nu
leon or two-pion matrix elements at tree levelor one loop. We note that the 
oeÆ
ients bTn;k have nonzero mass dimension and are of order (4�F )�1in the sense of 
hiral power 
ounting. They give the tree-level 
ontribution at order O(q0) to the pionform fa
tors B�Tn;k(t) de�ned in (82),B�(0)Tn;k = (�1)n+1 2n�k�1m� bTn;k; (98)where n is even in the isosinglet and odd in the isotriplet 
ase. The restri
tion to even k in (96)
orresponds to the one in (82).We 
an now apply the power 
ounting formula (37) with d� = n + 1 to the operators just 
on-stru
ted. Taking into a

ount the restri
tions of even or odd n or k for the di�erent form fa
tors, we�nd that the 
orre
tions from pion operator insertions start at order O(q) for fM I=1Tn;n�1 and at orderO(q2) for M I=1Tn;n�1, EI=0Tn;n�1 and fM I=0Tn;n�2. For all other form fa
tors they start at order O(q3) orhigher.8 Results for 
hiral-odd form fa
torsUsing the 
onstru
tion des
ribed in Se
tion 7, we �nd pion-nu
leon operatorsQA;��n;k;0 = eEI (0)Tn;k (ia�)k �Nv[S�; S�℄�Ao+Nv +Nv�v�S� � v�S���Ao�Nv�+ : : : ;QA;��n;k;1 = � i4M I (0)Tn;k (ia�)k ��v��� � v����Nv�Ao+Nv + i�����v���Nv�Ao�Nv�+ : : : ;+ i2EI (0)Tn;k (ia�)k ���v�Nv[S�; S�℄�Ao+Nv � v�Nv[S�; S�℄�Ao+Nv + �terms with �Ao�	�+ : : : ;QA;��n;k;2 = �14 fM I (0)Tn;k (ia�)k �����Nv[S�; S�℄�Ao+Nv � ��Nv[S�; S�℄�Ao+Nv + �terms with �Ao�	�+ : : : ;(99)where the : : : denote terms with a smaller number of total derivatives. The 
oeÆ
ients in (99) are thetree-level 
ontributions at order O(q0) to the respe
tive form fa
tors and therefore only nonzero foreven or odd k as given in Table 2. The terms with �Ao� in the last two lines of (99) are rather lengthyand not given here. Indeed, one �nds that none of the operators with �Ao� in (99) 
ontributes in one-loop graphs with pion-nu
leon intera
tions at LO or at NLO. Su
h graphs have the form of Fig. 1
 andgive zero for the same reasons dis
ussed after (40) for the 
ase of operators with �Ae�. The dis
ussionat the end of Se
tion 5.1 also applies to the operators with �Ao+ in (99), so that their insertion intographs with LO pion-nu
leon verti
es or with one NLO pion-nu
leon intera
tion 
ontributes only tothose form fa
tors for whi
h they already provide the tree-level result at order O(q0).An operator Q��n;l;i in (99) has at most l + i partial derivatives, so that the 
ondition (36) holdsalso in the 
hiral-odd 
ase. Together with the power 
ounting following from Table 2, one again �nds22



that one-loop 
orre
tions to all form fa
tors start at order O(q2). One �nds that the order O(q2)
orre
tions toMTn;k and ETn;k 
ome from Qn;k;1, whereas those to eETn;k and fMTn;k 
ome from Qn;k;0and Qn;k;2, respe
tively, with pion-nu
leon intera
tions taken at LO in all 
ases. Additional orderO(q2) 
ontributions to fMTn;k 
ome from graphs with Qn;k;0 and two pion-nu
leon intera
tions at NLOor one pion-nu
leon intera
tion at NNLO (only the �Ao+ part of the operator is found to 
ontribute).Contributions from the same graphs to ETn;k+1 or MTn;k+1 are possible by power 
ounting but turnout to be zero. Other 
ontributions at order O(q2) whi
h are possible by power 
ounting involveat most one pion-nu
leon intera
tion at NLO and do not appear for the reason given at the end ofthe pre
eding paragraph: there is no 
orre
tion to MTn;k or ETn;k from Qn;k+1;0, Qn;k;0, Qn;k�1;1 orQn;k�1;2 and no 
orre
tion to fMTn;k from Qn;k+1;0, Qn;k+2;0, Qn;k;1 or Qn;k+1;1.Taking into a

ount the graphs with pion operator insertions shown in Fig. 2a and b, we �nally�nd M I=0Tn;k =M I=0(0)Tn;k �1� 3m22(4�F )2 log m2�2 �+ : : : ;M I=1Tn;k =M I=1(0)Tn;k �1� m22(4�F )2 ��6g2A + 1� log m2�2 + 4g2A��+ Æk;n�1M I=1(2;�)Tn;n�1 (t) + : : : ;EI=0Tn;k = EI=0(0)Tn;k �1� 3m22(4�F )2 �2g2A + 1� log m2�2 �+ Æk;n�1EI=0(2;�)Tn;n�1 (t) + : : : ;EI=1Tn;k = EI=1(0)Tn;k �1� m22(4�F )2 ��4g2A + 1� log m2�2 + 4g2A��+ : : : ;eEI=0Tn;k = eEI=0(0)Tn;k �1� 3m22(4�F )2 �2g2A + 1� log m2�2 �+ : : : ;eEI=1Tn;k = eEI=1(0)Tn;k �1� m22(4�F )2 ��4g2A + 1� log m2�2 + 4g2A��+ : : : (100)and fM I=0Tn;k = fM I=0(0)Tn;k �1� 3m22(4�F )2 �2g2A + 1� log m2�2 �+ eEI=0(0)Tn;k m2g2A(4�F )2 log m2�2+ Æk;n�2 fM I=0(2;�)Tn;n�2 (t) + : : : ;fM I=1Tn;k = fM I=1(0)Tn;k �1� m22(4�F )2 ��4g2A + 1� log m2�2 + 4g2A��� eEI=1(0)n;k m2g2A3(4�F )2 log m2�2+ Æk;n�1 hfM I=1(1;�)Tn;n�1 (t) + fM I=1(2;�)Tn;n�1 (t)i+ : : : ; (101)where for brevity we have written : : : to denote analyti
 terms proportional to m2 or t and 
orre
tionsof order O(q3). The analyti
 terms are due to higher-order tree-level insertions as spe
i�ed below(34). The 
ontributions from pion operator insertions readEI=0(2;�)Tn;n�1 (t) = �14 fM I=0(2;�)Tn;n�2 (t)fM I=0(2;�)Tn;n�2 (t) = � 3g2A(4�F )2 nXj=2even(j � 1)MbTn;n�j Z 1�1 d� �j�2m2(�) log m2(�)�2 (102)23



with n even in the isosinglet 
ase andM I=1(2;�)Tn;n�1 (t) = 14(4�F )2 nXj=1oddMbTn;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A �2m2 � t��log m2(�)�2 + 1�� (g2A � 1)m2(�) log m2(�)�2 �) ;fM I=1(1;�)Tn;n�1 (t) = � �Mg2A(4�F )2 nXj=1oddMbTn;n�j Z 1�1 d� �j�1m(�) ;fM I=1(2;�)Tn;n�1 (t) = � 14(4�F )2 nXj=1oddMbTn;n�j (4g2Am2 log m2�2+ Z 1�1 d� �j�1 �g2A �2m2 � t��log m2(�)�2 + 1�+ �g2A � 1� 4M
4�m2(�) log m2(�)�2 �) (103)with n odd in the isotriplet se
tor. As remarked in [14℄, the 
orre
tions from pion operator insertionsare very similar for the 
hiral-odd and 
hiral-even form fa
tors. We �nd a 
orresponden
efM I=0Tn;n�2 $ �M I=0n;n�2 ; fM I=1Tn;n�1 $ 12M I=1n;n�1 ; M I=1Tn;n�1 $ 12EI=1n;n�1 (104)for the terms in (102) and (103) when inter
hanging MbTn;n�j $ 2�jjA�(0)n;n�j.Let us 
ompare our results (100) to (103) to those in Ref. [14℄, whi
h gives the 
orre
tions of orderO(q) for fM I=1Tn;k and of order O(q2) for all other form fa
tors.9 We agree with the expressions giventhere, ex
ept for the 
orre
tions from nu
leon operator insertions without a fa
tor g2A in the isosingletform fa
tors, whi
h are absent in [14℄, and for the 
orresponding term in M I=1Tn;k, where we have adi�erent 
oeÆ
ient. These 
orre
tions are due to the tadpole graph in Fig. 1b, with the pion-nu
leonvertex generated by the two-pion terms in the expansion (89) of �0o+ and �ao+. Sin
e this vertex hasno spin or momentum stru
ture, the 
orresponding 
orre
tions must be the same for all form fa
torswith a given isospin.Let us �nally give the 
orre
tions of order O(q2) to the 
hiral-odd GPDs of the pion. They aregiven by the one-loop graphs shown in Figure 3 with insertion of the pion operators (96) and fromtree-level insertions of operators with 
hiral dimension n+ 3. For the form fa
tors (82) we �ndB�Tn;k(t) = B�(0)Tn;k �1� 3m22(2�F )2 log m2�2 �+ : : : (105)for even n, andB�Tn;k(t) = B�(0)Tn;k �1� m22(4�F )2 log m2�2 �+ Æk;n�1 1(4�F )2 nXj=1odd 2�j B�(0)Tn;n�j Z 1�1 d� �j�1m2(�) log m2(�)�2 + : : : (106)9The tensor form fa
tors in [14℄ are related to those introdu
ed here by MT ' eET , ET ' MT =2, W T ' �4fMT (allup to terms suppressed by fa
tors of order �2=M2) and by CT = ET .24
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a bFigure 3: One-loop graphs 
ontributing to two-pion matrix elements of the pion operator QA;��n;� (a)in (96). The operator insertion is denoted by a bla
k blob.for odd n, where the : : : stand for analyti
 terms from tree-level graphs and for 
orre
tions of orderO(q4). The 
orre
tions going with logm2=�2 are due to the tadpole graph in Fig. 3a and are inde-pendent of k. The term involving an integral over � is due to the graph of Fig. 3b and 
an only o

urfor k = n�1 (and thus only in the isotriplet 
ase). This is be
ause the operator insertion on the pionline 
annot produ
e any fa
tor (aP ) and the four-pion vertex 
an only produ
e one su
h fa
tor afterthe loop integration.9 Results for moments of nu
leon and pion GPDsIn this se
tion, we rewrite our results in terms of the form fa
tors An;k, Bn;k, Cn, eAn;k, eBn;k and ATn;k,BTn;k, eATn;k, eBTn;k, whi
h des
ribe the moments of GPDs in 
ommonly used parameterizations. Wegive expressions for the value and the �rst derivative of ea
h form fa
tor at t = 0, whi
h shouldbe useful for appli
ations in latti
e QCD. The 
orre
tions obtained from graphs with pion-nu
leonoperator insertions are 
ompletely spe
i�ed in this way, be
ause they are independent of t. In thefollowing we will use the abbreviation �� = 4�F .For a 
onvenient overview of results we also reprodu
e the expressions for isosinglet distributionsfrom [13℄ here. Together with (9), (10) and the expressions in Se
tion 5, we �nd that up to 
orre
tionsof order O(m3) the 
hiral-even ve
tor form fa
tors at t = 0 have the formAI=0n;k (0) = AI=0(0)n;k +AI=0(2;m)n;k m2;BI=0n;k (0) = BI=0(0)n;k � �AI=0(0)n;k +BI=0(0)n;k � 3m2g2A�2� log m2�2 +BI=0(2;m)n;k m2 + Æk;n�2BI=0(2;�)n;n�2 (0) ;CI=0n (0) = CI=0(0)n + CI=0(2;m)n m2 + CI=0(1;�)n (0) + CI=0(2;�)n (0) ;AI=1n;k (0) = AI=1(0)n;k �1� m2�2� �(3g2A + 1) log m2�2 + 2g2A��+AI=1(2;m)n;k m2 + Æk;n�1AI=1(2;�)n;n�1 (0) ;BI=1n;k (0) = BI=1(0)n;k �1� m2�2� �(3g2A + 1) log m2�2 + 2g2A��+ �AI=1(0)n;k +BI=1(0)n;k � m2g2A�2� log m2�2+BI=1(2;m)n;k m2 + Æk;n�1hBI=1(1;�)n;n�1 (0) +BI=1(2;�)n;n�1 (0)i ;CI=1n (0) = CI=1(0)n �1� m2�2� �(3g2A + 1) log m2�2 + 2g2A��+ CI=1(2;m)n m2: (107)25



The labeling of 
oeÆ
ients with supers
ripts (0), (2;m), (1; �) and (2; �) follows the same pattern asin Se
tions 5 and 8. The 
ontributions from pion operator insertions readBI=0(2;�)n;n�2 (0) = 6m2g2A�2� log m2�2 nXj=2even 2�jj A�(0)n;n�j ;CI=0(1;�)n (0) = 3�mMg2A2�2� nXj=2even 2�j jj + 1 A�(0)n;n�j ;CI=0(2;�)n (0) = � 3m2g2A2�2� log m2�2 nXj=2even 2�jj A�(0)n;n�j + 12m2�2� " g2A8 �M
1�log m2�2 + 1�+ 34M
2 log m2�2 +M
3�log m2�2 + 12�# nXj=2even 2�j jj + 1 A�(0)n;n�j ; (108)where n is even, andAI=1(2;�)n;n�1 (0) = 2m2g2A�2� log m2�2 nXj=1odd 2�jj A�(0)n;n�j + m2�2� �(g2A + 1) log m2�2 + 2g2A� nXj=1odd 2�jA�(0)n;n�j ;BI=1(1;�)n;n�1 (0) = �4�mMg2A�2� nXj=1odd 2�jA�(0)n;n�j ;BI=1(2;�)n;n�1 (0) = �4m2g2A�2� log m2�2 nXj=1odd 2�jj A�(0)n;n�j� 4m2�2� " g2A�log m2�2 + 1��M
4 log m2�2 # nXj=1odd 2�jA�(0)n;n�j ; (109)where n is odd. The A�(0)n;n�j are the leading terms in the 
hiral expansion of the pion form fa
tors in(48) and ful�ll the relations [12℄nXj=2even 2�jA�(0)n;n�j = �A�(0)n;n for even n, nXj=1odd 2�jA�(0)n;n�j = B�(0)n for odd n, (110)where B�(0)n is the n-th moment of the pion distribution amplitude to leading order in the 
hiralexpansion, as introdu
ed in Se
tion 5.3. Estimates for the values of the low-energy 
onstants 
iappearing in (108) and (109) 
an be found in [30℄.For the axial form fa
tors we haveeAI=0n;k (0) = eAI=0(0)n;k �1� 3m2g2A�2� �log m2�2 + 1��+ eAI=0(2;m)n;k m2;eBI=0n;k (0) = eBI=0(0)n;k �1� 3m2g2A�2� �log m2�2 + 1��� eAI=0(0)n;k m2g2A�2� log m2�2 + eBI=0(2;m)n;k m2;26



eAI=1n;k (0) = eAI=1(0)n;k �1� m2�2� �(2g2A + 1) log m2�2 + g2A��+ eAI=1(2;m)n;k m2;eBI=1n;k (0) = eBI=1(0)n;k �1� m2�2� �(2g2A + 1) log m2�2 + g2A��+ eAI=1(0)n;k m2g2A3�2� log m2�2 + eBI=1(2;m)n;k m2 for k < n� 1 (111)with 
orre
tions of order O(m3), andeBI=1n;n�1(0) = B�n 4M2gAm2� �1� 2m2� g�1A d18�+ eBI=1(0)n;n�1 +O(m) for odd n. (112)Note that the impli
it pion mass dependen
e from B�n , M , gA and m� is relevant within the a

ura
yof this expression. Numeri
al estimates of the low-energy 
onstant d18 are given in [31℄. The derivativeof eBI=1n;n�1(t) at t = 0 reads�t eBI=1n;n�1(0) = B�n 4M2gAm4� �1� 2m2� g�1A d18�+O(m�1) ; (113)where the order O(m�1) 
orre
tions are due to terms of the form O(q3)=(m2� � t) in eBI=1n;n�1(t). UsingB�1 = 1, we obtain a ratio �t eBI=1n;n�1(0)�t eBI=11;0 (0) = B�n +O(m3) (114)whi
h involves only physi
al matrix elements and is independent of any low-energy 
onstants. Itwould be interesting to test this relation in latti
e QCD 
al
ulations, as this would indi
ate how wellthe 
hiral expansion works at a given pion mass.The derivatives at t = 0 of the remaining 
hiral-even form fa
tors have nonanalyti
 
ontributionsin the pion mass only for�tBI=0n;n�2(0) = BI=0(2;t)n;n�2 + �tBI=0(2;�)n;n�2 (0) ;�tCI=0n (0) = CI=0(2;t)n + �tCI=0(1;�)n (0) + �tCI=0(2;�)n (0)�tAI=1n;n�1(0) = AI=1(2;t)n;n�1 + �tAI=1(2;�)n;n�1 (0) ;�tBI=1n;n�1(0) = BI=1(2;t)n;n�1 + �tBI=1(1;�)n;n�1 (0) + �tBI=1(2;�)n;n�1 (0) ; (115)with 
orre
tions of order O(m), where�tBI=0(2;�)n;n�2 (0) = � 3g2A�2� �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j ;�tCI=0(1;�)n (0) = � Mm �g2A8�2� nXj=2even 2�j j (5j + 14)(j + 1)(j + 3) A�(0)n;n�j ;
27



�tCI=0(2;�)n (0) = � 3g2A4�2� �log m2�2 + 3� nXj=2even 2�j jj + 1 A�(0)n;n�j + 2�2� " g2A8 +M
1� 34M
2�log m2�2 + 1��M
3�log m2�2 + 32�# nXj=2even 2�j j (j + 4)(j + 1)(j + 3) A�(0)n;n�j (116)with n even, and�tAI=1(2;�)n;n�1 (0) = � g2A�2� �log m2�2 + 1� nXj=1odd 2�jA�(0)n;n�j+ 12�2� �(g2A � 1) log m2�2 � (g2A + 1)� nXj=1odd 2�j 1j + 2 A�(0)n;n�j ;�tBI=1(1;�)n;n�1 (0) = Mm �g2A�2� nXj=1odd 2�j 1j + 2 A�(0)n;n�j ;�tBI=1(2;�)n;n�1 (0) = 2g2A�2� �log m2�2 + 1� nXj=1odd 2�jA�(0)n;n�j+ 2�2�" g2A �M
4�log m2�2 + 1�# nXj=1odd 2�j 1j + 2 A�(0)n;n�j : (117)with n odd. All other 
hiral-even nu
leon form fa
tors re
eive only 
orre
tions from pion-nu
leonoperators, so that their derivatives at t = 0 are given by the appropriate 
oeÆ
ients with supers
ript(2; t), whi
h are due to tree-level 
ontributions.For the 
hiral-odd nu
leon form fa
tors at t = 0 we �ndAI=0Tn;k (0) = AI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+AI=0(2;m)Tn;k m2;BI=0Tn;k (0) = BI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+ �AI=0(0)Tn;k +BI=0(0)Tn;k � 3m2g2A�2� log m2�2 +BI=0(2;m)Tn;k m2;eAI=0Tn;k (0) = eAI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+�AI=0(0)Tn;k + 32BI=0(0)Tn;k � m2g2A�2� log m2�2+ eAI=0(2;m)Tn;k m2 + Æk;n�2 eAI=0(2;�)Tn;n�2 (0) ;eBI=0Tn;k (0) = eBI=0(0)Tn;k �1� 3m22�2� �2g2A + 1� log m2�2 �+ eBI=0(2;m)Tn;k m2 + Æk;n�1 eBI=0(2;�)Tn;n�1 (0) ;
28



AI=1Tn;k (0) = AI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A��+AI=1(2;m)Tn;k m2;BI=1Tn;k (0) = BI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A��� �AI=1(0)Tn;k +BI=1(0)Tn;k � m2g2A�2� log m2�2 +BI=1(2;m)Tn;k m2 + Æk;n�1BI=1(2;�)Tn;n�1 (0) ;eAI=1Tn;k (0) = eAI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A����AI=1(0)Tn;k + 32BI=1(0)Tn;k � m2g2A3�2� log m2�2+ eAI=1(2;m)Tn;k m2 + Æk;n�1h eAI=1(1;�)Tn;n�1 (0) + eAI=1(2;�)Tn;n�1 (0)i ;eBI=1Tn;k (0) = eBI=1(0)Tn;k �1� m22�2� ��4g2A + 1� log m2�2 + 4g2A��+ eBI=1(2;m)Tn;k m2 (118)with 
orre
tions of order O(m3), whereeAI=0(2;�)Tn;n�2 (0) = 3m2g2A�2� log m2�2 nXj=2evenMbTn;n�j ;eBI=0(2;�)Tn;n�1 (0) = 12 eAI=0(2;�)Tn;n�2 (0) (119)with n even, andBI=1(2;�)Tn;n�1 (0) = m2g2A�2� log m2�2 nXj=1oddMbTn;n�j + m22�2� ��g2A + 1� log m2�2 + 2g2A� nXj=1odd 1j MbTn;n�j ;eAI=1(1;�)Tn;n�1 (0) = �mMg2A�2� nXj=1odd 1j MbTn;n�j ;eAI=1(2;�)Tn;n�1 (0) = m2g2A�2� log m2�2 nXj=1oddMbTn;n�j+ m2�2� " g2A�log m2�2 + 1��M
4 log m2�2 # nXj=1odd 1j MbTn;n�j (120)with n odd. Our results for AI=1n;0 (0), eAI=1n;0 (0) and AI=1Tn;0(0) reprodu
e the expressions in [32℄ for thedistributions of unpolarized, longitudinally and transversely polarized quarks and antiquarks in thenu
leon. The derivatives at t = 0 of the following form fa
tors have nonanalyti
 
ontributions in thepion mass: �t eAI=0Tn;n�2(0) = eAI=0(2;t)Tn;n�2 + �t eAI=0(2;�)Tn;n�2 (0) ;�t eBI=0Tn;n�1(0) = eBI=0(2;t)Tn;n�1 + �t eBI=0(2;�)Tn;n�1 (0) ;�tBI=1Tn;n�1(0) = BI=1(2;t)Tn;n�1 + �tBI=1(2;�)Tn;n�1 (0) ;�t eAI=1Tn;n�1(0) = eAI=1(2;t)Tn;n�1 + �t eAI=1(1;�)Tn;n�1 (0) + �t eAI=1(2;�)Tn;n�1 (0) ; (121)29



where 
orre
tions are of order O(m) and�t eAI=0(2;�)Tn;n�2 (0) = � 3g2A2�2� �log m2�2 + 1� nXj=2even 1j + 1MbTn;n�j ;�t eBI=0(2;�)Tn;n�1 (0) = 12 �t eAI=0(2;�)Tn;n�2 (0) (122)with even n and�tBI=1(2;�)Tn;n�1 (0) = � g2A2�2� �log m2�2 + 1� nXj=1odd 1j MbTn;n�j+ 14�2� �(g2A � 1) log m2�2 � (g2A + 1)� nXj=1odd 1j(j + 2)MbTn;n�j ;�t eAI=1(1;�)Tn;n�1 (0) = �Mm �g2A4�2� nXj=1odd 1j(j + 2)MbTn;n�j ;�t eAI=1(2;�)Tn;n�1 (0) = � g2A2�2� �log m2�2 + 1� nXj=1odd 1j MbTn;n�j� 12�2�" g2A �M
4 �log m2�2 + 1�# nXj=1odd 1j(j + 2)MbTn;n�j (123)with odd n. As a 
onsequen
e of the relations (104), we �nd the following 
orresponden
e betweenthe 
orre
tions (119), (120), (122), (123) from pion loop insertions to 
hiral-odd form fa
tors andtheir 
hiral-even 
ounterparts (108), (109), (116), (117):eAI=0Tn;n�2 $ 12BI=0n;n�2 eAI=1Tn;n�1 $ �14BI=1n;n�1 B I=1Tn;n�1 $ 12AI=1n;n�1 (124)when the low-energy 
onstants are inter
hanged as MbTn;n�j $ 2�jjA�(0)n;n�j.Let us also give the expressions of form fa
tors and their derivatives at t = 0 for the moments ofpion GPDs. For the 
hiral-even moments, the expressions given in [12℄ result inA�n;k(0) = 8>><>>:A�(0)n;k +A�(2;m)n;k m2 + Æk;nA�(l;2)n;n for even n,A�(0)n;k �1� m2�2� log m2�2 �+A�(2;m)n;k m2 + Æk;n�1A�(l;2)n;n�1 for odd n, (125)with 
orre
tions of order O(m4) andA�(l;2)n;n = � m22�2� �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j ;A�(l;2)n;n�1 = 2m2�2� log m2�2 nXj=1odd 2�jA�(0)n;n�j : (126)30



Using the relation (110) one thus hasA�n;n�1(0) = A�(0)n;n�1 + m2�2� log m2�2 h2B�(0)n �A�(0)n;n�1i+A�(2;m)n;n�1 m2 +O(m4) (127)with n odd. For the 
hiral-odd moments we have with (105) and (106)B�Tn;k(0) = 8>>><>>>:B�(0)Tn;k�1� 3m22�2� log m2�2 �+B�(2;m)Tn;k m2 for even n,B�(0)Tn;k�1� m22�2� log m2�2 �+B�(2;m)Tn;k m2 + Æk;n�1B�(l;2)Tn;n�1 for odd n, (128)where 
orre
tions are again of order O(m4) andB�(l;2)Tn;n�1 = 2m2�2� log m2�2 nXj=1odd 2�j 1j B�(0)Tn;n�j : (129)The only nonanalyti
 
ontributions in the pion mass for the derivatives of form fa
tors are�tA�n;n(0) = A�(2;t)n;n + 1�2� �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j + 112�2� nXj=2even 2�j j (j + 4)(j + 1)(j + 3) A�(0)n;n�j�tA�n;n�1(0) = A�(2;t)n;n�1 � 1�2� �log m2�2 + 1� nXj=1odd 2�j 1j + 2 A�(0)n;n�j ;�tB�Tn;n�1(0) = B�(2;t)Tn;n�1 � 1�2� �log m2�2 + 1� nXj=1odd 2�j 1j(j + 2) B�(0)Tn;n�j ; (130)where the se
ond index is always even and 
orre
tions are of order O(m2).Let us �nally take a look at moments of parton distributions whose values are �xed by quantumnumbers for arbitrary values of the pion mass, see e.g. [32, 33℄. For A�1;0(0) one readily �nds thatthe expli
it 
hiral logarithm in (125) 
an
els against the one in (126). This is required to ensure thequark number sum rule A�1;0(0) = Z 10 dx �u� � �u� � d� + �d�� = 2 (131)in the pion, whi
h also implies A�(0)1;0 = 2 and A�(2;m)1;0 = 0. With this one also �nds that our result(107) is 
onsistent with the quark number sum rulesAI=01;0 (0) = Z 10 dx �u� �u+ d� �d � = 3 ; AI=11;0 (0) = Z 10 dx �u� �u� d+ �d � = 1 ; (132)in the proton, provided that AI=0(0)1;0 = 3, AI=1(0)1;0 = 1 and AI=0(2;m)1;0 = AI=1(2;m)1;0 = 0.10 SummaryIn this paper and its 
ompanion [13℄ we have 
al
ulated the 
hiral 
orre
tions to the full set of twist-two generalized parton distributions in the nu
leon, using heavy-baryon 
hiral perturbation theory.31



For ea
h form fa
tor parameterizing the moments of these distributions, our results in
lude the orderO(q2) relative to its lowest-order expression. We have presented a detailed a

ount of the power
ounting and of the operators that 
an 
ontribute to the 
hiral order we 
onsider. We �nd that theoperator stru
ture is relatively simple in the basis of form fa
tors spe
i�ed by (9) and (78). Withthe ex
eption of fMn;k and fMTn;k only those pion-nu
leon operator insertions 
ontribute to the loop
orre
tions of a given form fa
tor whi
h already provide its lowest-order expression at tree-level.Furthermore, only operators with �Ae+ or �Ao+ from (28) and (88) 
ontribute, but not those with �Ae�or �Ao�. Our analysis also shows that these simpli�
ations will no longer hold at higher orders in the
hiral expansion.Expressing our results in the basis of form fa
tors parameterizing the moments of the usual nu
leonGPDs, we �nd that with the ex
eption of AI=0n;k and CI=0n all form fa
tors re
eive 
hiral 
orre
tionsfrom loop graphs with nu
leon operator insertions (see Fig. 1). They are of relative order O(q2) and
ontain logarithmi
 terms m2 log(m2=�2), but are independent of t and of the indi
es n; k. In several
ases these 
orre
tions involve a mixing between di�erent form fa
tors: Bn;k re
eives 
orre
tionsinvolving not only its own lowest-order expression but also the one of An;k, as seen in (107). Likewise,there are 
orre
tions to eBn;k from eAn;k, to BTn;k from ATn;k, and to eATn;k from ATn;k+ 32BTn;k. Wenote that no su
h mixing o

urs for the linear 
ombinations An;k +Bn;k and ATn;k +BTn;k.Further 
orre
tions are due to loop graphs with pion operator insertions (see Fig. 2a and b). Theyonly o

ur for form fa
tors whi
h are a

ompanied by the maximal number of ve
tors �� in thede
omposition of the asso
iated matrix element, or by one fa
tor less. Due to the quantum numberrestri
tions for pion operators, they only o

ur for even n in the isosinglet and for odd n in theisotriplet se
tor. Corre
tions starting at order O(q) are obtained for CI=0n , BI=1n;n�1 and eAI=1Tn;n�1, and
orre
tions starting at order O(q2) for BI=0n;n�2, eAI=0Tn;n�2, eBI=0Tn;n�1, AI=1n;n�1 and B I=1Tn;n�1. To order O(q2),the 
orre
tions for CI=0n involve the low-energy 
onstants 
1, 
2, 
3 from the pion-nu
leon Lagrangian(18), whereas those for BI=1n;n�1 and eAI=1Tn;n�1 involve 
4. The 
orre
tions from pion operator insertionsdepend on t. They are responsible for a nonanalyti
 pion mass dependen
e of the derivatives ofform fa
tors at t = 0, namely a 1=m behavior for �tCI=0n (0), �tBI=1n;n�1(0) and �t eAI=1Tn;n�1(0) and alog(m2=�2) behavior in the other 
ases. We note that these 
orre
tions also determine the onset ofthe two-pion 
ut at timelike t for the form fa
tors in question.The pseudos
alar form fa
tors eBI=1n;n�1 re
eive 
orre
tions from one-pion ex
hange (see Fig. 2
).They take the very simple form (68) when expressed in terms of physi
al quantities. In parti
ular,we �nd that the ratio �t eBI=1n;n�1(0)Æ�t eBI=11;0 (0) of derivatives is given by the moment B�n of the piondistribution amplitude, with 
orre
tions of order m3. It would be interesting to test this predi
tionof 
hiral symmetry in latti
e QCD 
al
ulations.We have �nally evaluated the 
orre
tions to the 
hiral-odd pion GPDs at order O(q2), thus 
om-plementing the 
al
ulation [12℄ for the 
hiral-even se
tor. A 
ompilation of our results for the valuesand derivatives at t = 0 of all moments of nu
leon and pion GPDs is given in Se
tion 9.A
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