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DESY 06-191Gravity and Quantum Fields in DisreteSpae-TimesFlorian BauerDeutshes Elektronen-Synhrotron DESY, Hamburg, GermanyE-mail: florian.bauer�desy.deAbstrat. In a 6D model, where the extra dimensions form a disretised urveddisk, we investigate the mass spetra and pro�les of gravitons and Dira fermions.The disretisation is performed in detail leading to a star-like geometry. Inaddition, we use the urvatureof the disk to obtain the mass sales of this model ina more exible way. We also disuss some appliations of this setup like generatingsmall fermion masses.PACS numbers: 04.50.+h, 11.10.Kk, 14.60.Pq1. IntrodutionWe study a six-dimensional (6D) spae-time onsisting of a at four-dimensional (4D)subspae and a disk of onstant urvature for the extra dimensions. Furthermore, wedisretise the disk in a way that N equidistant lattie sites are situated on the boundaryand a single site in the entre of the disk (setion 2). Suh star-like geometries havebeen proven useful in various ontexts, see for example [1, 2, 3, 4, 5, 6, 7℄. In thiswork we investigate the mass spetra and pro�les of 4D gravitons and fermions in thissetup (setions 3 and 4), whih has some nie appliations. For instane, we disussa possibility to hide extra dimensions similar to [8℄, and we generate small fermionmasses via a disrete version of the wavefuntion suppression mehanism [9℄.2. Curved Disk GeometryWe onsider a 6D model where both extra dimensions form a disretised urved disk(for example a part of a 2-sphere) while the 4D subspae remains ontinuous. Beforethe disretisation the spae-time is desribed by the line elementds2 = g��(xM)dx�dx� � (1� er2)�1dr2 � r2d'2; (1)where x� and xM denote 4D and 6D oordinates, respetively. The position on the diskis �xed by the polar oordinate ' := x6 2 [0; 2�℄ and the radial oordinate r := x5 2[0; L℄ with L being the oordinate radius of the disk. From (1) we read o� the metriomponents g��(xM) of the 4D subspae as well as g55 = �(1�er2)�1 and g66 = �r2.Note that the parameter e ontrols the urvature of the disk. For e > 0 the disk isspherially urved, whereas e < 0 leads to a hyperboli disk, and e = 0 orrespondsto a at disk. Following [1, 10℄ we now deompose the 6D Einstein-Hilbert ationS = M46R d6xpjgjR = S4D + Ssurfae + Smass; (2)



Gravity and Quantum Fields in Disrete Spae-Times 2into three parts, where R, g andM6 denote the 6D urvature salar, the determinant ofthe metri gMN and the 6D Plank sale, respetively. We �nd that the 4D urvaturesalar R4D in S4D := M46 R d6xpjgj (R4D + 2e) ontains only the 4D metri g�� andderivatives with respet to x�. The surfae terms in S4D vanish by hoosing suitableboundary onditions on the disk, and Smass is given bySmass = M46 Z d6xpjgj X=5;6 h� 14gg��;(g��g���g��g��)g��;i:(3)Let us now introdue 4D graviton �elds h�� on a at Minkowski metri ��� =diag(1;�1;�1;�1) by the expansion g�� ! ��� + h��. As in [11℄ we hoose a gauge,where we ignore graviphoton and radion exitations, whih ould result from the g5Mand g6M omponents of the metri. Sine ��� is onstant we have g��;A ! h��;A andby expanding Smass in seond order in h�� we �ndSmass !M46 Z d4x d' dr h+ 14rg66g55�rh��(������ � ������)�rh��+ 14rg55g66�'h��(������ � ������)�'h��i: (4)Next, we disretise the disk by putting N lattie sites on the boundary and asingle site in entre of the disk so that only two points are lying in radial diretion.The oordinate distane between the entre and eah point on the boundary is givenby the radius L of the disk, whih in general di�ers from its proper radius. On theboundary, the graviton �elds are denoted by hi�� with i = 1 : : :N , and the position isgiven by 'i = i ��', where �' = 2�=N is the angular lattie spaing. The graviton�eld h0�� in the entre arries the index 0, and the lattie spaing in radial diretionis just �r = L. Formally, we apply the following disretisation presription to Smass�rh('i)! (hi � h0)�r ; �'h('i)! (hi+1 � hi)�' ;Z dr f(r)! �r � f(L); Z d'f(') ! NXi=1�' � f('i); (5)where the integral R dr is replaed by just one summation interval of length L andthe summand is evaluated at the position r = L, whih avoids problems with thederivative �' at r = 0. Thus we obtain (still non-diagonal) Fierz-Pauli mass terms [12℄for the gravitons on the disretised disk, that read (with hN+1�� � h1��)Smass !M24 Z d4x NXi=1 �m2? � (hi�� � h0��)(������ � ������)(hi�� � h0��)+m2 � (hi+1�� � hi��)(������ � ������)(hi+1�� � hi��)�: (6)Note that the atual graviton mass sale from the radial derivatives, m?, andrespetively from the angular derivatives, m, depend on the 4D Plank mass M4 ofthe observer's site (brane):m2? := M464M24 � 2�p1� eL2N ; m2 := M464M24 � N2�p1� eL2 : (7)However, the ratio of masses is independent of the Plank sales,m2?m2 = (2�)2N2 (1� eL2); (8)



Gravity and Quantum Fields in Disrete Spae-Times 3whih also shows that arbitrarily large hierarhies between m? and m are possible byhoosing the disk parameters eL2 and N appropriately.In order to determine the 4D Plank mass M4 on the sites we need the properarea of the urved disk, whih is given byA := Z 2�0 d' Z L0 drpjg55g66j = 2�e (1�p1� eL2): (9)We now proeed to disretise S4D. Sine the extra-dimensional disk has a onstanturvature it is well motivated that M4 should be onstant and universal on all sites,too. Thus the Einstein-Hilbert terms of all N + 1 sites must have the formM24 NXi=0 Z d4xR4D; (10)whih does not depend on r and ' anymore. By omparing this term with S4D =M46 R d6xpjgjR4D we �nd that the 4D Plank sale on the sites is �xed by M24 =M46A=(N + 1), where we used (9) in S4D and evaluated the sum in (10). However, weremark that M4 is not the (redued) Plank sale MPl = 1=(8�G) � 1018 GeV thatouples gravity to 4D matter. But MPl is determined by integrating out the extradimensions in the ontinuum, whih means M46 R d6xpjgjR4D = M2Pl R d4x R4D andthus M2Pl = M46A = (N + 1)M24 .3. Graviton Mass SpetrumWe omit to show the kineti terms for the 4D gravitons hi��. They just follow fromapplying the graviton expansion to the Einstein-Hilbert terms in (10), see e.g. [13℄. Todetermine the graviton mass spetrum we have to diagonalise Smass in (6) by a unitarytransformation. If we denote the graviton mass eigenstates by Hn��, orresponding tothe masses Mn, we �nd the following relations for the eigenvetors:H0�� = 1pN + 1 NXi=0 hi�� ; (11)Hp�� = 1pN NXi=1 �sin(2� pN ) + os(2� pN )� � hi�� ; (12)HN�� = 1pN (N + 1) "�N � h0�� + NXi=1 hi��# ; (13)where p = 1; : : : ; N � 1. The eigenvalues Mn are respetively given byM20 = 0; M2p = m2? + 4m2sin2�pN ; M2N = (N + 1)m2?: (14)From these results we observe that the zero-mode H0�� has a at pro�le and isequally loated on all sites, whereas the mode HN�� with squared mass (N + 1)m2? ispeaked on the entre site with equal support on the boundary sites. The modes Hp��with p = 1; : : : ; N � 1 are loated only on the boundary with a typial �nite Kaluza-Klein (KK) mass spetrum that has been shifted by m2?. In the limit m � m? themasses of the states Hp�� in (12) beome degenerate, and for N � 1 the mode HN��beomes very heavy. Note that the latter ase an be realised by a suÆiently largenegative urvature of the disk, whih is a lear advantage over a at disk model.



Gravity and Quantum Fields in Disrete Spae-Times 4Finally, we mention that a senario related to ours has been disussed reently inthe ontext of multi-throat geometries [8℄. It was shown that large extra dimensionsan be hidden in the sense that the ourrene of massive KK modes is shifted toenergies muh higher than the ompati�ation sale of the extra dimension, whihhelps evading limits on KK partiles. In our model this behaviour an be observed forthe modes Hn>0�� in the limit m? � m, too.4. Fermions on the DiskLet us now investigate the inorporation of Dira fermions into the disretised diskmodel of setion 2. As for the graviton ase we start with a 6D Dira fermion 	 in theontinuum. Using the vielbein formalism, the orresponding ation S on the urveddisk reads S = Z d6xpjgj�12 i �	GAV MA rM	 �rM	VMA GA	��; (15)where we denote 6D Lorentz indies by A;B; : : : and general oordinate indiesby M;N; : : :, respetively. Moreover, GA are 6D Dira matries, and for the barredspinor 	 we use the abbreviation 	 = 	yG0. The vielbein omponents VMA (xN ) followfrom the relation gMN = VMA V NB �AB , whih onnets the Lorentz oordinate systemwith the general oordinate system. For the diagonal metri (1), we �nd V MA = ÆMAwith the exeptions V M=5A=5 = pjg55j =: V5 and VM=6A=6 = pjg66j =: V6. On a urvedspae-time the ovariant derivative rM = �M +�M for spinors ontains in addition tothe usual partial derivative �M also the spin onnetion �M = 18 [GA; GB℄V NA VBN ;M :To determine the form of the 6D -matries [14℄ let us �rst look at the 4D ase,where the -matries are given by0 = � 0 1212 0 �; k = � 0 �k��k 0 �; 5 = i0123:(16)Here, k = 1 : : :3 and �k denote the Pauli matries. In �ve dimensions the numberof spinor omponents is still four and the orresponding -matries are simply givenby �0 = 0, �k = k and �5 = i5 = �(�5)y. In six dimensions, however, the Diraalgebra is 8-dimensional, where we use the following set of -matriesG0 = � 0 1414 0 �; G6 = � 0 �0��0 0 � = �(G6)y; (17)Gn = � 0 �0�n��0�n 0 � = �(Gn)y; n = 1; 2; 3; 5; (18)whih ful�l the Ci�ord algebra fGA; GBg = 2�AB � 18.From the form of the vielbeins and the -matries it follows that all spinonnetion omponents �M vanish exept for �6 = 14 [G5; G6℄p1� er2. And beauseof �6 = ��y6 the terms involving �6 in (15) anel.Let us now diagonalise the fermion ation by the substitution 	 = G6�. Then thedeomposition of the eight-omponent spinor � = (�a;�b)T into two four-omponentspinors �a, �b yields in (15)i	GAVMA rM	 = i ��a;�b� � �� 0 00 0 ��0 + � �k 00 k ��k+ � �i5 00 +i5 �V5�5 +� 1 00 �1 �V6�6�� � �a�b � (19)



Gravity and Quantum Fields in Disrete Spae-Times 5with �a;b = �ya;b0. From the last line one an read o� that �a orresponds to �b butwith negative energy, therefore we will work only with �b in the following. If we nowdenote the left- and right-handed omponents of �b by �L;R := 12(1� 5)�b, then thefull ation for �b an be written in the formS = Z d6xpjgjh12 i ��b����b � ���b��b�� V5 12 ��L�5�R + �5�R�L�� iV6 12 ��L�6�R � �6�R�L� i; (20)where we have applied the boundary onditions of setion 2 after integration by parts.Sine 6D spinors have mass dimension 52 we have to resale them in order to obtainusual 4D spinors. As in the graviton ase we integrate the kineti terms over the extradimensions and apply a similar disretisation proedure as in setion 2, whih meansZ d6xpjgj12 i�b����b ! NXj=0 AN + 1 Z d4x12i�jb����jb; (21)where A is the proper area given in (9). Finally, we absorb the fator A=(N + 1)into the fermion �elds � := �bpA=(N + 1) and subsequently apply the disretisationpresriptions (5) with h�� replaed by �. As a result we obtain the ation for N + 14D fermions, (�N+1 � �1)S = NXj=0 Z d4x12i��j����j � ���j��j�� NXj=1 Z d4x �m? ��jL(�jR � �0R) + (�jR � �0R)�jL�� NXj=1 Z d4x � im��jL(�j+1R � �jR)� (�j+1R � �jR)�jL� (22)with the mass sales m? := 2�L(N + 1)=(AN ) and m := L(N + 1)=(Ap1� eL2).Hene, the ratio m2?=m2 is the same ratio as in (8) for the gravitons. Next, we applya bi-unitary transformation relating the states � to the mass eigenstates  :�0L =  0L; �jL = 1pN NXn=1 exp(+2�i � j nN ) nL;�0R = 1pN + 1 0R � NpN (N + 1) NR ; (23)�jR = 1pN N�1Xn=1 exp(�2�i � j nN ) nR + 1pN + 1 0R + 1pN (N + 1) NR :The orresponding mass spetrum ontains one massless fermion  0, one heavyfermion  N with mass m?pN + 1 and N � 1 fermions  1; : : : ;  N�1 with squaredabsolute mass values m2?+4m2 sin2(�nN )+2m?m sin(2�nN ). In ontrast to the gravitonmass spetrum (14), here we �nd an additional interferene term / m?m, whih anbe removed by a slightly modi�ed disretisation proedure for the angular diretion.Instead of �6�! (�j+1��j)=�' we use the presription �6�! i(�j+ 12 ��j� 12 )=�'.This does not hange the zero more or the heavy mode, but the transformations in (23)



Gravity and Quantum Fields in Disrete Spae-Times 6lead now to the mass spetrum m2? + 4m2 sin2(�nN ) for the modes  1 : : :  N�1, whihhas exatly the same struture as that of the gravitons in (14).Our results for the fermions on the disretised disk an be applied diretly togenerate small fermion masses. For this purpose we put the standard model ofpartiles (SM) on the entre site of our disk. In this plae the left-handed SM leptondoublet ` may ouple to the 4D omponent �0R of the 6D Dira �eld and to thevauum expetation value hHi of the Higgs doublet via an Yukawa interation termshematially given by `hHi�0R. Now, a large number N � 1024 of lattie sites lets �Ndeouple due to its large mass m?pN + 1, and (23) shows that the right-handedfermion �0R on the entre site essentially onsists only of the zero-mode  0R with a tinyweight fator 1=pN + 1. Thus the Yukawa interation of ` with �0R,`hHi�0R � 1pN + 1�LhHi 0R; (24)leads to a strong suppression of the SM neutrino (�L) mass, representing adisrete version [1℄ of the wave funtion suppression mehanism in ontinuous higherdimensions [9℄.5. ConlusionsOur 6D model with a disretised extra-dimensional urved disk leads to mass spetrathat have the same struture for gravitons and fermions. Moreover, the speialdisretisation of the disk allows that the ratio of mass sales in the spetra an beadjusted in a exible manner by the parameters of the disk. It is thus possible toobtain a gap between the zero mode and the �rst massive mode that is muh largerthan the gap between the other massive modes. We have also disussed the generationof small SM fermion masses in this setup. Finally, we mention that the strong ouplingregime of this model and a more re�ned senario inluding warping were investigatedin [1℄, where some of our results have been applied, too.Referenes[1℄ Bauer F, H�allgren T and Seidl G 2006 Disretized Gravity in 6D Warped Spae Preprint hep-th/0608176[2℄ H�allgren T and Ohlsson T 2006 JCAP 0606(2006)014, hep-ph/0510174; H�allgren T 2006 Kaluza-Klein dark matter from deonstruted universal extra dimensions Preprint hep-ph/0610367[3℄ Seidl G 2006 Disretized gravity on the hyperboli disk Preprint hep-th/0610291[4℄ Bauer F, Lindner M and Seidl G 2004 JHEP 0405(2004)026 (Preprint hep-th/0309200)[5℄ Witten E 2002 Deonstrution, G2 holonomy, and doublet-triplet splitting Preprint hep-ph/0201018[6℄ Fulling S A 2005 Loal Spetral Density and Vauum Energy near a Quantum Graph VertexPreprint math.SP/0508335[7℄ Bellazzini B and Minthev A 2006 J. Phys. A 39 11101 (Preprint hep-th/0605036)[8℄ Kim H D 2006 JHEP 0601(2006)090 (Preprint hep-th/0510229)[9℄ Dienes K R, Dudas E and Gherghetta T 1999 Nul. Phys B 557 25 (Preprint hep-ph/9811428)Arkani-HamedN, Dimopoulos S, Dvali G R and Marh-Russel J 2002Phys. Rev. D 65 024032(Preprint hep-ph/9811448)[10℄ Bauer F 2006 The Cosmologial Constant and Disrete Spae-Times Preprint hep-th/0610178[11℄ Arkani-Hamed N and Shwartz M D 2004 Phys. Rev. D 69 104001 (Preprint hep-th/0302110)Randall L, Shwartz M D and Thambyapillai S 2005 JHEP 0510(2005)110 (Preprint hep-th/0507102)[12℄ Fierz M and Pauli W 1939 Pro. Roy. So. Lond. A 173 211[13℄ 't Hooft G and Veltman M J G 1974 Annales Poinar�e Phys. Theor. A 20 69[14℄ Pilaftsis A 1999 Phys. Rev. D 60 105023 (Preprint hep-ph/9906265)
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