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DESY 06-191Gravity and Quantum Fields in Dis
reteSpa
e-TimesFlorian BauerDeuts
hes Elektronen-Syn
hrotron DESY, Hamburg, GermanyE-mail: florian.bauer�desy.deAbstra
t. In a 6D model, where the extra dimensions form a dis
retised 
urveddisk, we investigate the mass spe
tra and pro�les of gravitons and Dira
 fermions.The dis
retisation is performed in detail leading to a star-like geometry. Inaddition, we use the 
urvatureof the disk to obtain the mass s
ales of this model ina more 
exible way. We also dis
uss some appli
ations of this setup like generatingsmall fermion masses.PACS numbers: 04.50.+h, 11.10.Kk, 14.60.Pq1. Introdu
tionWe study a six-dimensional (6D) spa
e-time 
onsisting of a 
at four-dimensional (4D)subspa
e and a disk of 
onstant 
urvature for the extra dimensions. Furthermore, wedis
retise the disk in a way that N equidistant latti
e sites are situated on the boundaryand a single site in the 
entre of the disk (se
tion 2). Su
h star-like geometries havebeen proven useful in various 
ontexts, see for example [1, 2, 3, 4, 5, 6, 7℄. In thiswork we investigate the mass spe
tra and pro�les of 4D gravitons and fermions in thissetup (se
tions 3 and 4), whi
h has some ni
e appli
ations. For instan
e, we dis
ussa possibility to hide extra dimensions similar to [8℄, and we generate small fermionmasses via a dis
rete version of the wavefun
tion suppression me
hanism [9℄.2. Curved Disk GeometryWe 
onsider a 6D model where both extra dimensions form a dis
retised 
urved disk(for example a part of a 2-sphere) while the 4D subspa
e remains 
ontinuous. Beforethe dis
retisation the spa
e-time is des
ribed by the line elementds2 = g��(xM)dx�dx� � (1� er2)�1dr2 � r2d'2; (1)where x� and xM denote 4D and 6D 
oordinates, respe
tively. The position on the diskis �xed by the polar 
oordinate ' := x6 2 [0; 2�℄ and the radial 
oordinate r := x5 2[0; L℄ with L being the 
oordinate radius of the disk. From (1) we read o� the metri

omponents g��(xM) of the 4D subspa
e as well as g55 = �(1�er2)�1 and g66 = �r2.Note that the parameter e 
ontrols the 
urvature of the disk. For e > 0 the disk isspheri
ally 
urved, whereas e < 0 leads to a hyperboli
 disk, and e = 0 
orrespondsto a 
at disk. Following [1, 10℄ we now de
ompose the 6D Einstein-Hilbert a
tionS = M46R d6xpjgjR = S4D + Ssurfa
e + Smass; (2)



Gravity and Quantum Fields in Dis
rete Spa
e-Times 2into three parts, where R, g andM6 denote the 6D 
urvature s
alar, the determinant ofthe metri
 gMN and the 6D Plan
k s
ale, respe
tively. We �nd that the 4D 
urvatures
alar R4D in S4D := M46 R d6xpjgj (R4D + 2e) 
ontains only the 4D metri
 g�� andderivatives with respe
t to x�. The surfa
e terms in S4D vanish by 
hoosing suitableboundary 
onditions on the disk, and Smass is given bySmass = M46 Z d6xpjgj X
=5;6 h� 14g

g��;
(g��g���g��g��)g��;
i:(3)Let us now introdu
e 4D graviton �elds h�� on a 
at Minkowski metri
 ��� =diag(1;�1;�1;�1) by the expansion g�� ! ��� + h��. As in [11℄ we 
hoose a gauge,where we ignore graviphoton and radion ex
itations, whi
h 
ould result from the g5Mand g6M 
omponents of the metri
. Sin
e ��� is 
onstant we have g��;A ! h��;A andby expanding Smass in se
ond order in h�� we �ndSmass !M46 Z d4x d' dr h+ 14rg66g55�rh��(������ � ������)�rh��+ 14rg55g66�'h��(������ � ������)�'h��i: (4)Next, we dis
retise the disk by putting N latti
e sites on the boundary and asingle site in 
entre of the disk so that only two points are lying in radial dire
tion.The 
oordinate distan
e between the 
entre and ea
h point on the boundary is givenby the radius L of the disk, whi
h in general di�ers from its proper radius. On theboundary, the graviton �elds are denoted by hi�� with i = 1 : : :N , and the position isgiven by 'i = i ��', where �' = 2�=N is the angular latti
e spa
ing. The graviton�eld h0�� in the 
entre 
arries the index 0, and the latti
e spa
ing in radial dire
tionis just �r = L. Formally, we apply the following dis
retisation pres
ription to Smass�rh('i)! (hi � h0)�r ; �'h('i)! (hi+1 � hi)�' ;Z dr f(r)! �r � f(L); Z d'f(') ! NXi=1�' � f('i); (5)where the integral R dr is repla
ed by just one summation interval of length L andthe summand is evaluated at the position r = L, whi
h avoids problems with thederivative �' at r = 0. Thus we obtain (still non-diagonal) Fierz-Pauli mass terms [12℄for the gravitons on the dis
retised disk, that read (with hN+1�� � h1��)Smass !M24 Z d4x NXi=1 �m2? � (hi�� � h0��)(������ � ������)(hi�� � h0��)+m2 � (hi+1�� � hi��)(������ � ������)(hi+1�� � hi��)�: (6)Note that the a
tual graviton mass s
ale from the radial derivatives, m?, andrespe
tively from the angular derivatives, m, depend on the 4D Plan
k mass M4 ofthe observer's site (brane):m2? := M464M24 � 2�p1� eL2N ; m2 := M464M24 � N2�p1� eL2 : (7)However, the ratio of masses is independent of the Plan
k s
ales,m2?m2 = (2�)2N2 (1� eL2); (8)
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rete Spa
e-Times 3whi
h also shows that arbitrarily large hierar
hies between m? and m are possible by
hoosing the disk parameters eL2 and N appropriately.In order to determine the 4D Plan
k mass M4 on the sites we need the properarea of the 
urved disk, whi
h is given byA := Z 2�0 d' Z L0 drpjg55g66j = 2�e (1�p1� eL2): (9)We now pro
eed to dis
retise S4D. Sin
e the extra-dimensional disk has a 
onstant
urvature it is well motivated that M4 should be 
onstant and universal on all sites,too. Thus the Einstein-Hilbert terms of all N + 1 sites must have the formM24 NXi=0 Z d4xR4D; (10)whi
h does not depend on r and ' anymore. By 
omparing this term with S4D =M46 R d6xpjgjR4D we �nd that the 4D Plan
k s
ale on the sites is �xed by M24 =M46A=(N + 1), where we used (9) in S4D and evaluated the sum in (10). However, weremark that M4 is not the (redu
ed) Plan
k s
ale MPl = 1=(8�G) � 1018 GeV that
ouples gravity to 4D matter. But MPl is determined by integrating out the extradimensions in the 
ontinuum, whi
h means M46 R d6xpjgjR4D = M2Pl R d4x R4D andthus M2Pl = M46A = (N + 1)M24 .3. Graviton Mass Spe
trumWe omit to show the kineti
 terms for the 4D gravitons hi��. They just follow fromapplying the graviton expansion to the Einstein-Hilbert terms in (10), see e.g. [13℄. Todetermine the graviton mass spe
trum we have to diagonalise Smass in (6) by a unitarytransformation. If we denote the graviton mass eigenstates by Hn��, 
orresponding tothe masses Mn, we �nd the following relations for the eigenve
tors:H0�� = 1pN + 1 NXi=0 hi�� ; (11)Hp�� = 1pN NXi=1 �sin(2� pN ) + 
os(2� pN )� � hi�� ; (12)HN�� = 1pN (N + 1) "�N � h0�� + NXi=1 hi��# ; (13)where p = 1; : : : ; N � 1. The eigenvalues Mn are respe
tively given byM20 = 0; M2p = m2? + 4m2sin2�pN ; M2N = (N + 1)m2?: (14)From these results we observe that the zero-mode H0�� has a 
at pro�le and isequally lo
ated on all sites, whereas the mode HN�� with squared mass (N + 1)m2? ispeaked on the 
entre site with equal support on the boundary sites. The modes Hp��with p = 1; : : : ; N � 1 are lo
ated only on the boundary with a typi
al �nite Kaluza-Klein (KK) mass spe
trum that has been shifted by m2?. In the limit m � m? themasses of the states Hp�� in (12) be
ome degenerate, and for N � 1 the mode HN��be
omes very heavy. Note that the latter 
ase 
an be realised by a suÆ
iently largenegative 
urvature of the disk, whi
h is a 
lear advantage over a 
at disk model.
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rete Spa
e-Times 4Finally, we mention that a s
enario related to ours has been dis
ussed re
ently inthe 
ontext of multi-throat geometries [8℄. It was shown that large extra dimensions
an be hidden in the sense that the o

urren
e of massive KK modes is shifted toenergies mu
h higher than the 
ompa
ti�
ation s
ale of the extra dimension, whi
hhelps evading limits on KK parti
les. In our model this behaviour 
an be observed forthe modes Hn>0�� in the limit m? � m, too.4. Fermions on the DiskLet us now investigate the in
orporation of Dira
 fermions into the dis
retised diskmodel of se
tion 2. As for the graviton 
ase we start with a 6D Dira
 fermion 	 in the
ontinuum. Using the vielbein formalism, the 
orresponding a
tion S on the 
urveddisk reads S = Z d6xpjgj�12 i �	GAV MA rM	 �rM	VMA GA	��; (15)where we denote 6D Lorentz indi
es by A;B; : : : and general 
oordinate indi
esby M;N; : : :, respe
tively. Moreover, GA are 6D Dira
 matri
es, and for the barredspinor 	 we use the abbreviation 	 = 	yG0. The vielbein 
omponents VMA (xN ) followfrom the relation gMN = VMA V NB �AB , whi
h 
onne
ts the Lorentz 
oordinate systemwith the general 
oordinate system. For the diagonal metri
 (1), we �nd V MA = ÆMAwith the ex
eptions V M=5A=5 = pjg55j =: V5 and VM=6A=6 = pjg66j =: V6. On a 
urvedspa
e-time the 
ovariant derivative rM = �M +�M for spinors 
ontains in addition tothe usual partial derivative �M also the spin 
onne
tion �M = 18 [GA; GB℄V NA VBN ;M :To determine the form of the 6D 
-matri
es [14℄ let us �rst look at the 4D 
ase,where the 
-matri
es are given by
0 = � 0 1212 0 �; 
k = � 0 �k��k 0 �; 
5 = i
0
1
2
3:(16)Here, k = 1 : : :3 and �k denote the Pauli matri
es. In �ve dimensions the numberof spinor 
omponents is still four and the 
orresponding 
-matri
es are simply givenby �0 = 
0, �k = 
k and �5 = i
5 = �(�5)y. In six dimensions, however, the Dira
algebra is 8-dimensional, where we use the following set of 
-matri
esG0 = � 0 1414 0 �; G6 = � 0 �0��0 0 � = �(G6)y; (17)Gn = � 0 �0�n��0�n 0 � = �(Gn)y; n = 1; 2; 3; 5; (18)whi
h ful�l the Ci�ord algebra fGA; GBg = 2�AB � 18.From the form of the vielbeins and the 
-matri
es it follows that all spin
onne
tion 
omponents �M vanish ex
ept for �6 = 14 [G5; G6℄p1� er2. And be
auseof �6 = ��y6 the terms involving �6 in (15) 
an
el.Let us now diagonalise the fermion a
tion by the substitution 	 = G6�. Then thede
omposition of the eight-
omponent spinor � = (�a;�b)T into two four-
omponentspinors �a, �b yields in (15)i	GAVMA rM	 = i ��a;�b� � �� 
0 00 
0 ��0 + � �
k 00 
k ��k+ � �i
5 00 +i
5 �V5�5 +� 1 00 �1 �V6�6�� � �a�b � (19)
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rete Spa
e-Times 5with �a;b = �ya;b
0. From the last line one 
an read o� that �a 
orresponds to �b butwith negative energy, therefore we will work only with �b in the following. If we nowdenote the left- and right-handed 
omponents of �b by �L;R := 12(1� 
5)�b, then thefull a
tion for �b 
an be written in the formS = Z d6xpjgjh12 i ��b
����b � ���b
��b�� V5 12 ��L�5�R + �5�R�L�� iV6 12 ��L�6�R � �6�R�L� i; (20)where we have applied the boundary 
onditions of se
tion 2 after integration by parts.Sin
e 6D spinors have mass dimension 52 we have to res
ale them in order to obtainusual 4D spinors. As in the graviton 
ase we integrate the kineti
 terms over the extradimensions and apply a similar dis
retisation pro
edure as in se
tion 2, whi
h meansZ d6xpjgj12 i�b
����b ! NXj=0 AN + 1 Z d4x12i�jb
����jb; (21)where A is the proper area given in (9). Finally, we absorb the fa
tor A=(N + 1)into the fermion �elds � := �bpA=(N + 1) and subsequently apply the dis
retisationpres
riptions (5) with h�� repla
ed by �. As a result we obtain the a
tion for N + 14D fermions, (�N+1 � �1)S = NXj=0 Z d4x12i��j
����j � ���j
��j�� NXj=1 Z d4x �m? ��jL(�jR � �0R) + (�jR � �0R)�jL�� NXj=1 Z d4x � im��jL(�j+1R � �jR)� (�j+1R � �jR)�jL� (22)with the mass s
ales m? := 2�L(N + 1)=(AN ) and m := L(N + 1)=(Ap1� eL2).Hen
e, the ratio m2?=m2 is the same ratio as in (8) for the gravitons. Next, we applya bi-unitary transformation relating the states � to the mass eigenstates  :�0L =  0L; �jL = 1pN NXn=1 exp(+2�i � j nN ) nL;�0R = 1pN + 1 0R � NpN (N + 1) NR ; (23)�jR = 1pN N�1Xn=1 exp(�2�i � j nN ) nR + 1pN + 1 0R + 1pN (N + 1) NR :The 
orresponding mass spe
trum 
ontains one massless fermion  0, one heavyfermion  N with mass m?pN + 1 and N � 1 fermions  1; : : : ;  N�1 with squaredabsolute mass values m2?+4m2 sin2(�nN )+2m?m sin(2�nN ). In 
ontrast to the gravitonmass spe
trum (14), here we �nd an additional interferen
e term / m?m, whi
h 
anbe removed by a slightly modi�ed dis
retisation pro
edure for the angular dire
tion.Instead of �6�! (�j+1��j)=�' we use the pres
ription �6�! i(�j+ 12 ��j� 12 )=�'.This does not 
hange the zero more or the heavy mode, but the transformations in (23)
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rete Spa
e-Times 6lead now to the mass spe
trum m2? + 4m2 sin2(�nN ) for the modes  1 : : :  N�1, whi
hhas exa
tly the same stru
ture as that of the gravitons in (14).Our results for the fermions on the dis
retised disk 
an be applied dire
tly togenerate small fermion masses. For this purpose we put the standard model ofparti
les (SM) on the 
entre site of our disk. In this pla
e the left-handed SM leptondoublet ` may 
ouple to the 4D 
omponent �0R of the 6D Dira
 �eld and to theva
uum expe
tation value hHi of the Higgs doublet via an Yukawa intera
tion terms
hemati
ally given by `hHi�0R. Now, a large number N � 1024 of latti
e sites lets �Nde
ouple due to its large mass m?pN + 1, and (23) shows that the right-handedfermion �0R on the 
entre site essentially 
onsists only of the zero-mode  0R with a tinyweight fa
tor 1=pN + 1. Thus the Yukawa intera
tion of ` with �0R,`hHi�0R � 1pN + 1�LhHi 0R; (24)leads to a strong suppression of the SM neutrino (�L) mass, representing adis
rete version [1℄ of the wave fun
tion suppression me
hanism in 
ontinuous higherdimensions [9℄.5. Con
lusionsOur 6D model with a dis
retised extra-dimensional 
urved disk leads to mass spe
trathat have the same stru
ture for gravitons and fermions. Moreover, the spe
ialdis
retisation of the disk allows that the ratio of mass s
ales in the spe
tra 
an beadjusted in a 
exible manner by the parameters of the disk. It is thus possible toobtain a gap between the zero mode and the �rst massive mode that is mu
h largerthan the gap between the other massive modes. We have also dis
ussed the generationof small SM fermion masses in this setup. Finally, we mention that the strong 
ouplingregime of this model and a more re�ned s
enario in
luding warping were investigatedin [1℄, where some of our results have been applied, too.Referen
es[1℄ Bauer F, H�allgren T and Seidl G 2006 Dis
retized Gravity in 6D Warped Spa
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