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DESY 06-190; IPPP/06/69; DCPT/06/138Otober 2006Entropy Growth and the Dark EnergyEquation of State�W. Buhm�ulleray, J. Jaekela;bza Deutshes Elektronen SynhrotronNotkestrasse 85, 22607 Hamburg, Germanyb Center for Partile Theory, Durham UniversityDurham DH1 3LE, United KingdomAbstratWe revisit the onjeture of a generalized seond law of thermodynamis whih states thatthe ombined entropy of matter and horizons must grow. In an expanding universe ageneralized seond law restrits the equation of state. In partiular, it onits with longphases of a phantom, w < �1, equation of state.1 IntrodutionObservations indiate that our universe is in a phase of aelerated expansion [1; 2; 3℄. Somemysterious dark energy appears to drive this aeleration. There exist various attempts toexplain this phenomenon, most notably the (in)famous osmologial onstant [4; 5℄ and a salar�eld dubbed \quintessene" [6; 7; 8℄. Both ontribute a \dark energy" omponent to the osmienergy density whih an be desribed by a perfet uid with an equation of state w = p� = T�VT+V .Aelerated expansion requires w < �13 . It is readily seen that for a positive potential Vand positive kineti energy T , one has �1 � w � 1. The osmologial onstant, having nokineti energy, has w = �1. Reently, however, also the ase w < �1 has attrated a lot ofattention, beause it appears slightly favored by supernovae data [9℄. A typial realization ofw < �1 is provided by a salar �eld with an inverted sign for the kineti term [10℄1.In this note we onsider restritions on the dark energy equation of state suggested by thegeneralized seond law of thermodynamis (GSL) [12; 13; 14; 15; 16; 17; 18℄,dS = dSmat + 2�dAH � 0 ; (1)where Smat is the entropy of matter and AH is the horizon area (we use units with ~ =  = 8�G =1). For vanishing dAH, Eq. (1) is the well known seond law of ordinary thermodynamis.�Based on a talk given by J. Jaekel at the QUARKS 2006 onferene.ye-mail: wilfried.buhmueller�desy.deze-mail: jjaekel�mail.desy.de1This leads to instabilities whih may be ameliorated for low energy e�etive theories with a suÆiently lowuto� [11℄. 1



How an one understand the need for the additional ontribution from horizons? This has�rst been disussed by Bekenstein for the ase of a blak hole [12℄. If matter arrying entropyfalls into a blak hole it is hidden from the outside observer by its horizon, the surfae thatseparates the regions from whih light rays an/annot reah an in�nitely distant observer.Classially, the blak hole appears as a very well ordered objet, fully haraterized by its mass,harge and angular momentum. Naively, this should orrespond to a state of very low entropy.The outside observer would therefore onlude that the observable entropy dereases, dSmat < 0,seemingly in violation of the seond law of thermodynamis. It is very intriguing, however, thatthe horizon of a blak hole grows when matter is added. Hene, one may onjeture that ageneralized seond law, Eq. (1), holds. Indeed, the ignorane of the observer, and thereforethe entropy he aÆliates with the system, inreases beause he annot see what is behind thehorizon.Horizons, similar to the one of a blak hole, also appear in osmology in ase of aeleratedexpansion, most notably for de Sitter spae [19℄. Shortly after the work of Bekenstein, Gibbonsand Hawking suggested that also the future horizon of de Sitter spae ontributes to the totalentropy in the same way as the blak hole event horizon [14℄, whih naturally leads to a general-ized seond law, Eq. (1), also for de Sitter spae [17; 18℄. Now the observer is inside the horizonand the horizon entropy represents the lak of information about the outside region whih heannot see. This onjeture has been examined in a variety of ases [17; 20; 21; 22℄. However,the osmologial situations are more deliate than the ase of a blak hole. Exept for de Sitterspae, the horizon is not stationary, whih implies a departure from thermal equilibrium. Thisis related to an apparent ambiguity in the hoie of the \horizon" for whih the GSL may hold.Consider the following three possibilities, whih all have idential area for de Sitter spae (wealways assume spherial symmetry):� The future or event horizon, whih separates the regions from where light rays an/annotreah an observer loated at the enter.� The Hubble or apparent horizon, whih is the surfae moving away from a entrally loatedobserver with the speed of light.� The boundary of the ausal region, with whih an observer an ommuniate by sendinga light ray and reeiving the returned signal2.All of these surfaes have appealing and less appealing features. The future horizon, for example,is a true horizon whih separates regions from whih a entral observer an/annot reeiveinformation. However, it is not loal in time and requires knowledge of the omplete futureevolution of the universe. In partiular, one needs to know the equation of state until the in�nitefuture to alulate the future horizon. The Hubble horizon, on the other hand, depends onlyon the urrent state of the universe. Yet, it is not a true horizon; in many situations one anreeive light rays from outside the urrent Hubble horizon.A related ambiguity onerns the volume used to alulate the matter entropy appearing inEq. (1). Possible hoies inlude (f. [19; 23℄)� The spae-like volume \inside" the horizon.� The light-like hypersurfae de�ned by light rays starting from the horizon going \in"3.� The light-like hypersurfae given by light rays originating in the enter.2Here, we measure the area of the surfae at whih the last light rays that asymptotially return to the oberverare reeted. This surfae is the future horizon at a later time. Sine in de Sitter spae the area of the futurehorizon is onstant the areas of the di�erent horizons are equal.3If one wants to ensure that the light rays reah the entrally loated observer one may have to start a tinybit away from the horizon. 2



Fortunately, the results for the di�erent types of volumes do not di�er, as long as we assumethat no matter entropy is generated, as we will in this note.From the above disussion it is lear that for general osmologial situations the status ofthe GSL is that of a onjeture baked up by some examples, where essential aspets remain tobe lari�ed. Nevertheless, in the following we will go ahead, apply the GSL and see what it antell us about the dark energy equation of state. To be expliit we will disuss two versions of theGSL, with the future horizon and the Hubble horizon, respetively (for more details see [22℄).Furthermore, we will restrit the disussion to a at universe as suggested by observations.As antiipated in [18; 24; 25℄, and shown in some detail later on, superaelerated expansionresulting from w < �1 typially is in onit with Eq. (1). The basi reason is very simple.Consider the ase where the entropy of the horizon is the dominating ontribution to the totalentropy4. During a phase of aelerated expansion the distane to the horizon is � 1H (futurehorizon and Hubble horizon are roughly of the same size) and its area is AH � 1H2 . Sine thesuperaelerated expansion is haraterized by _H > 0, it implies _A < 0. With dSmat � 0 thisis in ontradition with (1). In the following we will illustrate this point and render it morepreise.We start in the next setion by giving an example whih demonstrates the validity of theGSL for \ordinary" matter. In setion 3 we then study models with di�erent equations of state.Finally, we summarize and onlude in setion 4.2 An example for the GSL at workTo gain some on�dene in the generalized seond law let us briey review a simple example:a at universe �lled with radiation and a osmologial onstant. For the metrids2 = dt2 � a(t)2 �dr2 + r2d
2� ; (2)the proper distane to the future horizon is given byDFH(t) = a(t) Z 1t dt0a(t0) ; (3)whih leads to the horizon entropy (area)SFH = 2�AFH(t) = 8�2D2FH(t) : (4)The Hubble horizon is simply given byDHub(t) = 1H(t) ; (5)and the orresponding entropy would beSHub = 2�AHub(t) = 8�2 1H2(t) : (6)The evolution of the sale fator a(t) is determined by the Friedmann equations3H2 = � ; _�+ 3H(�+ p) = 0 : (7)In our simple example the energy density is the sum � = �R + ��. Here, radiation and osmo-logial onstant orrespond to perfet uids with the equations of statepR = wR�R = 13�R ; and p� = w��� = ��� = �� ; (8)4We will see that this is a reasonable assumption for the late universe, but violating this assumption is alsoone possibility to get a phantom osmology in agreement with Eq. (1) (f. [22℄).3
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Figure 1: Time evolution of the entropy for a universe �lled with radiation and a osmologialonstant (� = 1). Matter entropy inside the horizon (red) and horizon entropy (green) add upto the total entropy (blue). Solid lines are for the future horizon, dashed lines for the Hubblehorizon.for the radiation and the osmologial onstant omponent, respetively. For radiation (pho-tons), energy and entropy density are determined by the temperature,�R = �T 4 ; sR = 43�T 3 ; � = �215 : (9)The total entropy inside the horizon5 is then given bySR = 4�3 D3H(t)sR(t) = 16�9 �T 30 D3H(t)a3(t) : (10)For the last equality we have used that for a gas of massless partiles T = T0a(t) , with T0 = T (t0)and a(t0) � 1.As shown in [21℄, the Friedmann equations an be solved analytially in this ase, yieldinga(t) = ��T 40� �14  sinh(2r�3 t)! 12 : (11)Inserting this result for the sale fator into Eqs. (4), (10) we obtainSFH = 6�2� sinh(x)J2(x) ; (12)SFHR = 2�p3� 14�� 34 J3(x) ;x = 2r�3 t; J(x) = Z 1x dx(sinh(x)) 12 ;if we take the future horizon, andSHub = 24�2� (tanh(x))2 ; (13)SHubR = 16p3�� 14�� 34 (tanh(x)) 32 (osh(x))� 32for the Hubble horizon. We note that the entropies are independent of the initial temperatureT0 due to our hoie of the initial time t0. The results are plotted in Fig. 1.5We take a spae-like volume and the equal-time is spei�ed by an observer resting with respet to the uid.4
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(b)Figure 2: Left panel, total entropy for very early times (parameters as in Fig. 1) using thefuture horizon. In the right panel the total matter entropy inside a Hubble volume (red) isompared to the maximal entropy allowed by the Bousso bound [23℄ (green).Independent of our hoie for the horizon, i.e. for future horizon as well as Hubble horizon,the GSL, Eq. (1), appears to work. The blue urves, whih represent the sum of matter entropyinside the horizon and horizon entropy, both seem to inrease with time monotonously. However,with the help of a \magnifying glass" one an spot a small derease in the total entropy at veryearly and very late times for the future horizon, Fig. 2(a) and Fig. 3(a). In ase of the Hubblehorizon there is no derease at early times.Consider �rst the small drop in the total entropy at early times, Fig. 2(a). We don't haveto worry about this derease for two reasons. First, one an easily hek that at these earlytimes the temperature is well above the Plank sale, so that we annot expet the formula Eq.(10) for the matter entropy to hold. Seond, the ovariant entropy bound [23℄ is not ful�lledat these early times. This is depited in Fig. 2(b) where the total matter entropy inside aHubble volume is ompared with the maximally allowed entropy inside this volume [23℄. Inthe region where the entropy dereases the ovariant entropy bound is learly violated, and theused expression for the entropy is therefore inappliable.Let us now turn to the drop in entropy at very late times, Fig. 3(a)6. At the orrespondingtemperatures the typial wavelength of photons ontributing to the matter entropy, � � 1=T ,is bigger that the horizon size at this time. Sine the wavelength doesn't �t into the horizonanymore, the at spae relation Eq. (10) is no longer appliable. In Fig. 3(b) the radiationtemperature T = T0=a(t) is ompared to the \horizon temperature" 1=(2�DH(t)), whih anroughly be thought of as the smallest possible temperature in an expanding universe. Again,the drop in entropy ours when Eq. (10) is no longer appliable.In summary, we �nd that the GSL works independent of our hoie of horizon (futurehorizon or Hubble horizon). Indeed, apparent violations of the GSL an be easily understoodas onsequene of the inappliability of the at spae expression Eq. (10) for the radiationentropy.3 Dereasing horizon entropy in phantom modelsHaving gained some on�dene in the GSL by studying the example in the previous setion, letus now move on to a more interesting situation. Consider the following simple model for theequation of state, w(�DE) = �1 + �w�(�max� �DE): (14)6Note that the time between Plank sale and Hubble sale temperatures, where the GSL is valid, is rathersmall due to the large value hosen for the osmologial onstant, � = 1 in Plank units.5



4 6 8 10 12

236.855

236.86

236.865

236.87 tS
(a) 4 6 8 10 12

0

0.025

0.05

0.075

0.1

0.125

0.15 tT
(b)Figure 3: Left panel: evolution of the total entropy for future horizon at late times; for theHubble horizon the piture is very similar (parameters as in Fig. 1). Right panel: omparison ofthe radiation temperature T = T0=a(t) (red) with the horizon temperature 1=(2�DH(t)) (blue).For �w < 0, the dark energy has phantom behaviour at early times. From the Friedmannequations one �nds that the energy density �DE grows until it reahes the maximal density�max whih ats like a osmologial onstant. In this way the \big rip" singularity is avoidedwhih ours for a onstant equation of state w(�DE) < �1. �w = 0 is the ase of a osmologialonstant. For �w > 0 one obtains a quintessene-like model with onstant equation of stateat late times. At early times the maximal density �max is not exeeded, avoiding the initialsingularity. For �w < 23 one has an aelerated expansion of the universe whih is assoiatedwith the formation of a future horizon.In Fig. 4 the evolution of the total entropy S = Srad + SH is shown for a quintessenemodel, a osmologial onstant and a phantom model, respetively. In addition to the darkenergy, desribed by the equation of state given in Eq. (14), we have added a omponent ofdark matter (w = 0, SDM = 0) and a radiation omponent (w = 13). � is the onformaltime (d� = dt=a(t)), with �(t0) = 0. The energy densities are �xed by their urrent values,Trad = 2:7K, H0 = 70 km=(sMp) � 6� 10�61MP and 
DE=
DM = 0:7=0:3, where 
DE and
DM are the frations of the total energy density ontributed by dark energy and dark matter,respetively. The total entropies of the three models are plotted in Fig. 4(a). The entropyinreases both for quintessene and for the osmologial onstant. In the quintessene modelthe entropy inreases without bound, as the horizon ontinues to grow with time. In bothmodels the GSL is ful�lled. On the ontrary, for the phantom model the total entropy �rstinreases but then dereases in violation of the GSL. In partiular today, at � = 0, the phantommodel is inonsistent with the GSL.In Fig. 4(b) the horizon entropy for the phantom model is ompared with the radiationentropy inside the horizon. Most of the time the horizon entropy is larger than the matterentropy by many orders of magnitude. One easily veri�es that this holds for all three models.Moreover, the matter entropy inside the horizon dereases with time. In fat, one an inferfrom the Friedmann equations that aelerated expansion leads to a derease in entropy insidethe horizon for all omponents whih expand adiabatially suh as radiation. Hene, as long aswe onsider only adiabati expansion where no matter entropy is generated for any omponent,the GSL is always violated as soon as the horizon and therefore the horizon entropy begins toshrink.What an we learn from this? If �max is suÆiently large, �max > �0, where �0 is theurrent total energy density of the universe, then the GSL is violated for all �w < 0. The moreonservative requirement �max = �DE0 , where �DE0 is the urrent dark energy density, wouldallow �w < 0 only in the past, with a osmologial onstant in the future making the urrentera very speial. In our simple model one then �nds that onsisteny with the GSL requires�w > �1:8 if we use the future horizon and �w > �0:43 for the Hubble horizon.6
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(b)Figure 4: Left panel: evolution of the total entropy S = Srad + SH with (onformal) time� (resaled by �end, the onformal time at t = 1). Parameters: 
mat = 0:3, 
DE = 0:7,Trad = 2:7K. The green urve represents a quintessene universe (�w = 0:25), the blueone a osmologial onstant (�w = 0) and the red one a phantom universe (�w = �0:25);�max = 100�today. Right panel: omparison of horizon entropy (blue) and radiation entropy(red) for the phantom model. The radiation entropy is negligible at late times. In all ases thefuture horizon has been hosen; the results for the Hubble horizon are qualitatively similar.4 Summary and ConlusionsGenerially, gravity leads to the formation of horizons whih separate ausally disonnetedregions. The seond law of thermodynamis, whih applies to losed systems, then has tobe modi�ed. The onjeture of a generalized seond law (GSL), whih applies to the sum ofordinary matter entropy and horizon entropy, is well established for blak holes whih representstationary systems. For non-stationary systems, as they appear in osmology, the status ofthe GSL is muh more speulative and several questions, like the proper hoie of the horizon,remain to be lari�ed. Yet, as demonstrated by our simple example of a universe made ofradiation and a osmologial onstant, the GSL appears to work in osmologial situations,too.Keeping the above aveats in mind it is nevertheless interesting to apply the GSL andask what it an tell us about the dark energy equation of state. In general, both quintessene,wDE > �1, and a osmologial onstant, wDE = �1, are onsistent with a GSL. On the ontrary,long phases of a phantom equation of state, wDE < �1, typially lead to a derease of the totalentropy. Short phases with a phantom equation of state might be allowed.In onlusion, further studies on the validity of a generalized seond law of thermodynamisare an important theoretial hallenge. Our simple example of the dark energy equation of statealready illustrates its potential as a tool for osmology.AknowledgementsThe authors would like to thank the organizers of the QUARKS 2006 for a wonderful onferenein the stimulating environment of St. Petersburg.
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