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1 IntrodutionOne of the topis to be examined in a future high energy eletron positron ollider is thesattering of eletroweak vetor bosons. Historially it was the high energy behaviour ofthese sattering proesses whih has led to the requirement of introduing a salar Higgsboson; a loser look at the unitarity properties puts bounds on the masses of the Higgspartile. With the possibility of performing, at the linear ollider, preision experiments ofeletroweak proesses, it will be neessary to onsider eletroweak higher order orretions;vetor boson sattering is an important lass of proesses to be studied with high auray.Unitarity properties of vetor sattering reations are most stringent near the forwarddiretion where ross setions are large. The objet of entral interest is the total rosssetion, i.e. the nature of the Pomeranhuk singularity. Related to this is the questionwhether the �elds of the eletroweak setor, in partiular the gauge bosons of the brokengauge group, reggeize; the property of reggeization provides an indiation of a possi-ble ompositenes. It is well known that the gauge bosons of nonabelian gauge theoriesreggeize in the leading logarithmi approximation (LLA) [1, 2, 3, 4℄; this inludes bothunbroken gauge symmetries (e.g. QCD) and spontaneously broken models, suh as the(pure) SU(2) Higgs model. On the other hand, the gauge boson of the abelian theoryof QED seems to be elementary (i.e. non-reggeizing), at least on that level of auraywhih has been investigated so far. As to the ase of the broken SU(2)�U(1), the hargedvetor bosons lie on Regge trajetories, whereas the situation of the neutral setor is moreompliated: several years ago [5, 6℄ strong arguments have been given that there existsa neutral Regge pole, but neither the photon nor the Z boson lie on this trajetory.The best way of exploring the vauum exhange hannel and the reggeization in theeletroweak setor is by following the alulation of the BFKL Pomeron in QCD: be-ginning with the prodution amplitudes in the multi-Regge region one derives integralequations whih, in the vauum exhange hannel, desribe the elasti sattering and thetotal ross setion, and, in the isospin-one hannel, the reggeization of the vetor parti-les. In this paper we desribe suh an analysis of the eletroweak setor of the standardmodel. As our main results, we present the integral equation for the sattering amplitudefor the vauum exhange (`eletroweak Pomeron'), and we onstrut bootstrap equationsto investigate the reggeization in both the harged and neutral vetor bosons exhangehannels.This paper is organized as follows. In the following setion 2 we de�ne the setup ofour alulations, and we ollet the lowest order results of vetor-vetor sattering. Insetion 3 we ompute, in the Born approximation, prodution amplitudes in the multi-Regge limit. Setion 4 ontains one and two loop results. In setion 5 we write down theintegral equations, and we disuss the solutions, both for the isospin one exhange hanneland for the vauum hannel. In the following setion we desribe, as an appliation of ourintegral equations, the two-loop approximation for elasti WW sattering. Conludingremarks are ontained in a �nal setion. 2



2 Setup and Lowest Order Eletroweak AmplitudesIn this setion we de�ne the setup of our alulations, and we ollet the results forvetor sattering in the Born approximation. Sine we will be interested on the leading-logarithmi approximation (LLA), we will neglet fermions. Let us begin with the simplemodel, in whih the Weinberg angle #W is zero. In this ase, the U(1) gauge boson, theB-boson, is a free massless partile, and theW -bosons are desribed by the isovetor �eld�!W � with mass M . The B boson deouples from the W bosons, and we are dealing witha spontaneously broken SU(2) models. The polarization vetors e�� of the W bosons inthe physial gauge aree1;2� = e1;2�? ; e3� ' k0MÆ�3 + k3MÆ�0 ; k� e�� = 0 ; (e��)2 = �1 ; (1)where k = (k0; k3; 0; 0) is the momentum of the vetor boson moving along the third axis.There is also the Higgs partile with the mass Mh. We use Sudakov variables:k = �pA + �pB + k? ; k2? = �k2; (2)where pA and pB are two light-like vetors along the 3-diretion. In Regge kinematis wehave s = (pA + pB)2 = (2E)2 ��t = �(pA0 � pA)2 = �!q 2 �M2 : (3)The Born amplitude for the high energy sattering A+B ! A0+B0 of the W -bosonshaving de�nite polarizations �r (r = A;B;A0; B 0) is (see Ref. [2℄)A(0)A0B0AB = 2s g a�AÆ�A;�A0T A0A 1t�M2 g a�BÆ�B;�B0T B0B (4)with a1;2 = �1 ; a3 = �12 : (5)For the prodution of a Higgs partile in W -boson ollisions the amplitude also has thefatorized form A(0)hB0AB = 2s g a3Æ�A;3 ÆA 1t�M2 g a�BÆ�B;�B0T B0B : (6)The isospin generators T A0A in the above expressions belong to the adjoint representationof the SU(2)-group: T A0A = �i"A0A.When generalizing, within the leading logarithmi approximation (LLA)g2 ln sM2 � 1 ; g2 � 1 ; (7)the Born amplitudes to higher order, it is known that the W bosons reggeize, and (4)takes the form:ALLA = A(0) 12 �� sM2�!(t) + �� sM2�!(t)� � A(0) � sM2�!(t) ; (8)3



where �w(t) = 1 + !w(t) is the W boson Regge trajetory, and!w(t) = (t�M2)�(q2) ; �(q2) = g2 Z d2k(2�)3 1�k2 +M2� ((q � k)2 +M2) ; t = �q2: (9)Let us now turn to the uni�ed model of eletroweak interations. Starting from thenondiagonal mass matrix of the �elds W (3) and BM2 �W (3); B�� 1 � tan #w� tan #w tan2 #w �� W (3)B � ; (10)we introdue their linear ombinations orresponding to the Z boson and photon:Z = wW (3) � swBA = swW (3) + wB ; (11)where tan #w = g0g ; w = os #w ; sw = sin#w: (12)In the new basis, the mass matrix beomes diagonal with the eigenvaluesM2Z = M22w ; M2 = 0 : (13)In the following we will put MW = M and W (�) = 1p2 �W (1) � iW (2)�.With these de�nitions we generalize our previous results of the SU(2) spontaneouslybroken gauge theory to the Weinberg-Salam model. Starting from the (W (3); B) basis,the propagator of the neutral bosons an be written in the following operator form:D�� (k) = � w�sw � Æ�� � k�k�M2zk2 �M2z � w ; �sw �+� sww � Æ��k2 � sw ; w � ; (14)where we have used the physial gauge for the Z-boson and the Feynman gauge for thephoton.The linearized interation of these vetor bosons with the Higgs �eld ', in the (W (3); B)-representation, ontains the matrixgM � 1 � tan #w� tan #w tan2 #w � ; (15)proportional to the mass matrix (10). In the (Z;A)-representation this matrix beomesdiagonal with only one non-zero oupling onstant, gM2z =MW , for the ZZ'-interation.As to the other interation terms, we �rst note that, when working in the leading ln sapproximation, and restriting ourselves to sattering proesses of vetor bosons and Higgspartiles, we an disregard the fermions. As a result, in the (W (3); B)-representation, the4



Figure 1: Mass assignment in the reggeon - partile - partile vertexU(1) gauge boson, B, deouples and only the W (3)-boson enters in the Yang-Mills ation(together withW (�)-bosons). Therefore, all gauge boson interation terms that are neededfor our disussion are obtained by starting from the SU(2) part of the Yang-Mills ationand substituting W (3) = wZ + swA : (16)We now turn to the 2! 2 sattering amplitudes, eqs.(4), (6). For the vetor exhangepropagators we replae 1q2 +M2 ! 2wq2 +M2Z ; s2wq2 : (17)for Z and  exhanges, respetively. For the heliity onserving ouplings, a� , we haveto observe that the masses of external and exhanged vetor bosons an be di�erent fromeah other. Therefore, repeating and generalizing the algebra outlined in Ref. [2℄ one �ndsfor the heliity fator of longitudinally vetor bosons:ai;jk3 = M2i �M2j �M2k2MjMk ; (18)where the labels i; j; k refer to exhanged, outgoing vetor, and inoming partile, respe-tively (Fig.1). For the transverse polarization the heliity fators a� remain the sameas in the pure SU(2) ase. As before, eah heliity fator a� is multiplied by a heliityonserving Kroneker Æ-funtion, e.g. Æ�A;�A0 . Using the labels W , , Z, W3, we de�nenew heliity fators ai;jk� , whih inlude, in addition to the pure heliity part in eq.(18),also the Kroneker delta funtions and the isospin fators, T A0A = �i�A0A. In the basisof the harged W bosons, we have TW3W (+)W (�) = �TW3W (�)W (+) = +1 (in the lower indies,the �rst one refers to the �nal state, the seond one to the initial state; we ount all par-tiles as inoming); eah permutation or harge onjugation introdues a hange in sign.Finally, we have to inlude the oeÆients w, sw from (16). We summarize the resultsfor these reggeon-partile-partile ouplings in Table 1 (we still use the same letter ai;jk�as in (18)). Here we have listed only those on�gurations for whih the isospin fatorsare +1. The other on�gurations an be obtained by observing the antisymmetry of theisospin fators; for example,aZ;W (�)W (+)� = �aZ;W (+)W (�)� ; aW (�);ZW (+)� = �aW (�);W (+)Z� : (19)5



Figure 2: Two body sattering proesses (blak lines denote harged bosons, wavy linesstand for neutral bosons): (a) ZZ ! W (+)W (�); (b) W (+)W (�) !W (+)W (�).Note that, for the Z-boson and for the photon, the t-hannel propagators inlude addi-tional fators (see (17)).aW (�);ZW (+)� aW (�);W (+)� aZ;W (+)W (�)� a;W (+)W (�)� aW3;W (+)W (�)�� = 1; 2 �w �sw �1 �1 �1� = 3 �12 0 �1 + 122w �1 �12aW ;HW� aZ;HZ� a;H� aW3;HZ�� = 1; 2 0 0 0 0� = 3 �12 � 122w 0 �12Table 1: reggeon - partile - partile ouplingsAs a result, the 2 ! 2 Born amplitude for the proess ii0! kk0 with the exhange ofboson j has the general form:A(0) = 2sgaj;i0i�i 1�q2 �M2j gaj;k0k�i0 ; (20)with the substitution (17) for Z and  exhanges, and the ouplings ai;jk�A have to be reado� from the table. This ompletes the generalization of eqs.(4) and (6) to the Weinberg-Salam model.A �nal remark on expression (8). In the pure SU(2) ase we know that the W bosonsreggeize, whih means that the form (8) is valid. For the Weinberg-Salam theory, however,we have to �nd whih of the bosons reggeize. It will turn out that in the neutral hannelneither the Z-boson nor the photon lie on Regge trajetories (see also Refs. [5, 6℄). As aresult, the simple expression (8) is valid only for the exhange of harged vetor mesons,but not for the neutral vetor exhange.It will be useful to introdue a onvenient diagrammati notation. Sine neutral andharged vetor bosons are behaving quite di�erently, it will be helpful to distinguishbetween them: solid lines will be used to denote the harged W -boson propagators, andwavy lines stand for the neutral partile propagators (note, however, that only the Z partof the orresponding matrix (15) ouples to the Higgs boson). Examples are given inFig.2. 6
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Figure 3: Prodution proess A+B ! A0 + d1 + d2:::+ dn +B03 Prodution AmplitudesLet us now onsider prodution amplitudes A+B ! A0 +B0 + d1 + d2 + :::+ dn (wherek0 = pA0 ; kn+1 = pB0) in the multiregge region:s� si = (ki�1 + ki)2 � q2r =  pA � r�1Xi=0 ki!2 �M2 �M2h : (21)We again begin with the pure SU(2) ase. In the Born approximation the produtionamplitude equals: A(0) A0B0d1 :::dnAB =2s g a�AÆ�A;�A0T 1A0A 1�q21 �M2 gT d121C�1(q2; q1)e�1(k1) 1�q22 �M2 :::g a�BÆ�B ;�B0T n+1B0B ;(22)where the e�etive vertex C�(qr+1; qr) ; kr = qr � qr+1 for r = 1 is given by:C(q2; q1) = �q1 ? � q2 ? � pA�q21 +M2k1pA � k1pBpApB�+ pB �q22 +M2k1pB � k1pApApB� : (23)It has the simple Ward identity propertyk�1C�(q2; q1) = 0 ; (24)where k1 = q1 � q2, and we have used the reality ondition2 k1pA 2 k1pBs = k21 +M2 (25)for the produed partile.In the ase where, instead of a W -boson with the momentum kr, a Higgs partile withthe momentum kr is produed, we substituteC�r (qr+1; qr) e�r(kr)T drr+1r !M Ær+1r : (26)7



When in LLA higher order orretions are taken into aount, the prodution ampli-tude, in the pure SU(2) ase, has the multi-Regge form (negleting signature fators):ALLA2!2+n = A(0)2!2+n � s1M2�!(t1) � s2M2�!(t2) :::�sn+1M2 �!(tn+1) ; sr = 2kr�1kr ; tr = �q2r :(27)(as we will see below, for the Weinberg-Salam model the generalization of the Born am-plitude will be slightly more ompliated). To apply the s-hannel unitarity one needsto know the produt of two e�etive verties C�. Using the mass shell ondition (25) weobtain:C�(q2; q1)C�(q � q2; q � q1) =2 (q21 +M2)((q � q2)2 +M2) + (q22 +M2)((q � q1)2 +M2)(q1 � q2)2 +M2 � 2 q2 � 3 M2 : (28)One should also alulate the produt of two isospin matries. We deompose themin terms of various isospin strutures in the t-hannel:"ABd "A0B0d = XT=0;1;2 r(T )PA0B0AB (T ); r(0;1;2) = (2; 1;�1) : (29)Here PA0B0AB (T ) are the projetors to the isospin states with T = 0; 1; 2:PA0B0AB (0) = 13ÆAA0 ÆBB0 ;PA0B0AB (1) = 12"A0A "B0B ;PA0B0AB (2) = 12 (ÆAB ÆA0B0 + ÆAB0 ÆA0B )� 13ÆAA0 ÆBB0 : (30)Let us now turn to the realisti Weinberg-Salam model. The main task is the gener-alization of the e�etive prodution vertex (23) to the ase where the attahed t-hannelbosons have di�erent masses (MW for the W boson, MZ for the Z boson, or zero massfor the photon). Again, it is needed to return to Ref. [2℄ for omputing the 2 ! 3prodution amplitudes in the double Regge limit. The result of this analysis whih willnot be presented in detail is that the Born approximation is still of the fatorized form(22), where the ouplings to the inoming partiles, ai;jk� , are the same as in Table 1. Inthe rossing hannels we have the propagators 1=(�q2i �M2i ). If we denote the massesof the exhanged vetor partile on the right (left) hand side of a produed vetor bosonwith mass M by M2 (M1), the e�etive prodution vertex beomesC(q2; q1)M ;M2M1 = �q1 ?�q2 ?�pA�q21 +M21k1pA � k1pBpApB�+pB �q22 +M22k1pB � k1pApApB� (31)(note that the dependene uponM is through eq.(25)). If the produed vetor partile is aZ boson (photon), an additional fator w (sw) has to be inluded. Finally, eah exhangedZ boson reeives, in the numerator, a fator 2w, eah photon propagator a fator s2w (see8



Figure 4: Assigment of masses for the produt of two e�etive verties(17)). For the Higgs prodution we an use (26), where on the rhs M beomesMW , if theHiggs is produed fromW (�) exhange. For Higgs prodution from a Z exhange, replaeM !MW =4w (and retain the fator 2w for eah Z exhange propagator). Finally, in (27)the group fators T d121 have to be rewritten in terms of Z and W (�) (f. the disussionbefore (19); note that both the Z and the photon ouple to the third omponent of theisospin generator: TZ21 = T 21 = T 321).The Ward identity (24) for the prodution vertex is replaed now by the relationk�1CM ;M2M1� (q2; q1) = M22 �M21 : (32)For the s-hannel unitarity integration we again need the produt of two e�etive verties.More preisely, one should sum over the physial heliities of the produed boson withmass Mm: X� ���(k1)���(k1) = �g�� + k�1k�1M2m (33)(note that for the prodution of a photon with Mm = 0 the seond term is absent in anaordane with the vanishing of (32) for M1 = M2). For the mass assignment illustratedin Fig.4 we obtain (f.(28)):CMm;MjMi� (qj; qi) (g�� � k�1k�1M2m )CMm;MlMk� (q � qj; q � qi) = (34)�2q2 +M2m �M2i �M2j �M2k �M2l + (M2j �M2i )(M2l �M2k )M2m +2 (q2i +M2i )((q � qj)2 +M2l ) + ((q � qi)2 +M2j )(q2j +M2k )(qi � qj)2 +M2m :This result an be obtained with the use of eqs.(25) (31), and (32).4 One and two loop results2! 2 sattering in one loopWe are now ready to arry out the BFKL program. Beginning with one loop amplitudes,we �rst onsider the harged isospin-1 exhange. To be de�nite, let us study the proess9



Figure 5: One loop orretions to 2! 2 { proesses shown in Fig.2ZZ ! W (+)W (�). The Born diagram is shown in Fig.2a, the �rst orretions ome fromthe box diagrams of the type Fig.5a-d. For the energy disontinuities we use the unitarityonditions, e.g. ImsA(1)ab!a0b0 = 12Xi Z d�2A(0)ab!i(k2)A(0)yi!a0b0((k � q)2) ; (35)where the sum in i extends over all possible intermediate two-partile states, and we thenmake use of dispersion relations to ompute the sattering amplitudes. We de�ne thefuntions �ij(q2): �ij(q2) = g2 Z d2k(2�)3 1k2 +M2i 1(k � q)2 +M2j : (36)We also use their generalizations:�ijk(q2) = g4 Z d2kd2k0(2�)6 1k2 +M2i 1k02 +M2j 1(k + k0 � q)2 +M2k : (37)The subsripts indiate the type of vetor partiles inside the � funtions.The Born amplitude has the formA(0)11 = 2sgaW (+);W (�)Z�A 1�q2 �M2W gaW (�);W (+)Z�B : (38)Next we form signatured amplitudes. In our ase, ZZ ! W (+)W (�), they are de�ned bythe ombinations 12 (AZZ!W (+)W (�) � AW (�)Z!ZW (�)) : (39)10



Signature desribes the symmetry under s!�s. Beause of the antisymmetry propertiesof the isospin oeÆients, the Born amplitude for our proess belongs to odd signature(in terms of isospin, it is the antisymmetri T = 1 representation, T3 = �1). Using theunitarity relations for the proesses ZZ ! W (+)W (�) (Fig.5a, b) and for the ross proessW (�)Z ! ZW (�) (Fig.5, d), we obtain for the odd-signature amplitude:A(1)11 = [s ln(�s)� u ln(�u)℄ gaW (+);W (�)Z�A n2w �wz(q2) + s2w �w(q2)ogaW (�);W (+)Z�B : (40)In the LLA approximation the energy sale in the logarithm is arbitrary; it is natural tohose the sale to be of the order of MW . We omit to expliitly write this sale.Comparing the Born approximation with the one loop result, one is lead to interpretboth expressions as being the �rst two terms in the power series expansion of (f.(8))A11 = �gaW (+);W (�)Z�A (�s)�(q2) � (�u)�(q2)�q2 �M2W gaW (�);W (+)Z�B (41)with the trajetory funtion�(q2) = 1 + (q2 �M2W )h2w �wz(q2) + s2w �w(q2)i: (42)This is onsistent with the expetation that the harged W bosons reggeize, in the sameway as theW bosons do in the pure SU(2) theory. The same onlusion holds, if we replaeexternal vetor bosons by Higgs bosons. Later on we will on�rm that the reggeizationof the harged W bosons is orret to all orders. It will be onvenient to introdue!(q2) = �(q2)� 1 = (q2 �M2W )h2w �wz(q2) + s2w �w(q2)i: (43)Turning next to the neutral exhange, we onsider the elasti sattering of two hargedbosons, the proess W (+)W (�) ! W (+)W (�). The Born diagram is shown in Fig.2b; theamplitude has the form:A(0)10 = 2s�gaZ;W (�)W (+)�A 2w�q2 �M2Z gaZ;W (+)W (�)�B + ga;W (�)W (+)�A s2w�q2ga;W (+)W (�)�B � : (44)It belongs to odd-signature (the T = 1 representation), and it represents the neutral,T3 = 0, omponent. For the one-loop odd-signature ontribution we obtain (Figs.5e - f):A(1)10 = [s ln(�s)� u ln(�u)℄ gaW3;W (�)W (+)�A �ww(q2) gaW3;W (+)W (�)�B : (45)An analogous result is obtained for the proess ZW (�) ! HW (�), with the substitutionaW3;W (�)W (+)�A ! aW3;HZ�A . At this stage, it seems premature to draw any onlusion aboutthe onnetion of the one loop result with the Born approximation.The one-loop even signature ontribution of Fig.5g ontributes to both isospin 0 and2. We present the sum of both:A(1)even = 2i�s��12gaW3;W (�)W (+)�A �ww(q2) gaW3;W (+)W (�)�B+ g(aZ;W (�)W (+)�A )2 4w �zz(q2) g(aZ;W (+)W (�)�B )2 + g(a;W (�)W (+)�A )2 s4w �(q2) g(a;W (+)W (�)�B )2+ 2 gaZ;W (�)W (+)�A a;W (�)W (+)�A 2ws2w �z(q2) gaZ;W (+)W (�)�B a;W (+)W (�)�B � : (46)11



Two loop results for 2! 2 satteringTwo loop orretions onsist of two lasses of terms, the two-partile intermediate statesand the three-partile intermediate states in the s-hannel [2℄. The former ones areobtained by inserting, into the bilinear unitarity relation, the Born term on one side andone loop amplitudes on the other side. For the alulation of the three partile statewe make use of expression (34); we also inlude the prodution of Higgs salars. Let usbegin with the harge exhange hannel. Making use of the verties in Table 1 and ofthe one-loop results listed above, and summing over all 2-partile intermediate states, weobtain for the proess ZZ ! W (+)W (�):�2s ln2 s gaW (+);W (�)Z�A ��www(q2) + 4w�wzz(q2) + 22ws2w�wz(q2) + s4w�w(q2)� gaW (�);W (+)Z�B :(47)For the sum over 3-partile intermediate states we �nd, making use of eq.(34), a sum oftwo terms. The �rst one is:(s ln2(�s)2! � u ln2(�u)2! )gaW (+);W (�)Z�A �s2w�w(q2) + 2w�wz(q2)���q2 �M2W � �s2w�w(q2) + 2w�wz(q2)� gaW (�);W (+)Z�B : (48)The seond one an be written in the form:2s ln2 s gaW (+);W (�)Z�A ��www(q2) + 4w�www(q2) + 22ws2w�wz(q2) + s4w�w(q2)� gaW (�);W (+)Z�B :(49)and anels the entire 2-partile intermediate state, eq.(47). Hene the two-loop resultfor the negative signature harge exhange hannel oinides with the seond term in theexpansion of �gaW (+);W (�)Z�A (�s)�(q2) � (�u)�(q2)�q2 �M2W gaW (�);W (+)Z�B ; (50)on�rming the reggeization in the one-loop approximation.Turning to the neutral exhange hannel, we again �rst onsider the two-partileintermediate states. For the proess W (+)W (�) !W (+)W (�) we obtain, after summationover all possible 2-partile intermediate states:�2s ln2 s gaW3;W (�)W (+)�A �s2w�ww + 2w�zww� gaW3;W (+)W (�)�B ; (51)where the ouplings aW3;W (�)W (+)� are listed in Table 1. The alulation of the threepartile intermediate state, again, makes use of the square of the prodution vertex,eq.(34). Summing over all possible 3-partile intermediate states we obtain a sum of twoterms. The �rst one is:(s ln2(�s)2! � u ln2(�u)2! ) g aW3;W (�)W (+)�A �ww(q2) (�q2 �M2W )�ww(q2) g aW3;W (+)W (�)�B ; (52)the seond one2s ln2 s g aW3;W (�)W (+)�A �s2w�ww(q2) + 2w�zww(q2)� g aW3;W (+)W (�)�B : (53)12



Figure 6: 2 ! 3 prodution amplitudes (the dot marks the e�etive prodution vertex(eq.(31)): (a) W (+)W (�) ! ZZZ; (b) W (+)Z ! W (+)W (+)W (�).This seond terms anels against the two-partile ontribution, eq.(51). We have thusonly the �rst term, (52), whih an be interpreted as the seond term in the expansion ofthe expression �gaW3;W (�)W (+)�A (�s)�n(q2) � (�u)�n(q2)�q2 �M2W gaW3;W (+)W (�)�B (54)with �n(q2) = 1 + (q2 �M2W )�ww(q2) : (55)In the following we will also use the notation!n(q2) = �n(q2)� 1 = (q2 �M2W )�ww(q2) : (56)The expression (54) mathes the one-loop result, (45), but it does not agree with the Bornapproximation, (44). We therefore make the following ansatz for the neutral exhange inthe 2! 2 sattering proess:A10 = 2s�gaZ;W (�)W (+)�A 2w�q2 �M2Z gaZ;W (+)W (�)�B + ga;W (�)W (+)�A s2w�q2ga;W (+)W (�)�B ��gaW3;W (�)W (+)�A  (�s)�n(q2) � (�u)�n(q2)�q2 �M2W + 2s�q2 �M2W ! gaW3;W (+)W (�)�B ; (57)i.e. we have a Regge pole in the neutral exhange hannel, whih passes through unityat t = M2W : neither the Z boson nor the photon lie on this trajetory. Note that, in theseond line of (57), the pole at q2 = M2W anels. For sw = 0, we have MZ = MW , and�n passes through the Z-boson. Later on we shall verify that this result is orret to allorders.One loop results for 2! 3 prodution amplitudesBefore we an start to write integral equations we need to alulate orretions to theprodution amplitudes: this will be done in the spirit of [7℄. To be de�nite, the proessW (+)W (�) ! ZZZ (Fig.6a) will be onsidered. In the Born approximation we have:13



Figure 7: Unitarity integral in the s2-subhannel.A(0)2!3 = 2sgaW (�);ZW (+)�A 1�q21 �M2W gTZW (�)W (+)C(q2;q1)MZ;MWMW 1�q22 �M2W gaW (+);ZW (�)�B ;(58)where the energy variables si have been de�ned in (21). In order to be able to ompute thedisontinuity in s2, we make a more general ansatz whih exhibits the analyti struturein all three energy variables:A2!3 = FLs�1s�2��12 ��1t1 �M21 ��2�1�2 � �1 + FRs�2s�1��21 ��2t2 �M22 ��1�2�1 � �2 ; (59)where the signature fators are: ��1 = e�i��1 � 1;��1�2 = e�i�(�1��2) + 1 ; (60)and �i = �(ti) are the orresponding Regge trajetories. The two partial waves FL andFR will be determined from the disontinuities in the s2 and s1 hannels, resp., and weshall see that the ansatz (59) is ompatible with the familiar fatorized multiregge form.The disontinuity in the s2 hannel is:diss2A2!3 = ��s�1s�2��12 ��1t1 �M21 FL : (61)In the lowest order, we simply put �i ! 1 and ��1 ! �2.When omputing the unitarity integral in the s2-hannel (Fig.7) it is onvenient to �rsttransform into the enter-of-mass system of the s2-hannel, to multiply with the 2 ! 2sattering amplitude having a simple heliity struture in the s2 hannel, to ompute thetwo-body phase spae integral, and �nally to transform bak into the overall m-system.Details of this proedure have been desribed in [7℄; some of the formulae, however,have to be generalized to the ase of unequal masses of the vetor bosons. A list ofthe relevant expressions is presented in the appendix. After summing over all possibles-hannel intermediate states and over all t-hannel exhanges we �nd for the partial waveFL: FL = �12sgaW (�);W (+)Z�A �gTZW (�)W (+)C(q2;q1)MZ ;MWMW !(q22)�q22 �M2W�(q21 +M2W )(2wKZ;WW + s2wK;WW )� gaW (+);W (�)Z�B : (62)14



Figure 8: Unitarity integrals (a) in the s2 subhannel, (b) in the s1 hannel.Here we have introdued the short-hand notation:KZ;WW = g2TZW (�)W (+) Z d2k(2�)3 gCMZ ;MWMW (q2 � k;q1 � k)((q1 � k)2 +M2W )((q2 � k)2 +M2W ) 1(k2 +M2Z) : (63)With an analogous result for the disontinuity in s1 and for FR we return to (59). In thesum of both partial waves, the terms ontaining KZ;WW and K;WW anel, and we areleft with the expressionA2!3 = 2saW (�);W (+)Z�A s!(q21)1�q21 �M2W gTZW (�)W (+)C(q2;q1)MZ ;MWMW s!(q22)2�q22 �M2W gaW (+);W (�)Z�B ;(64)i.e. the W exhanges have started to reggeize. It is straightforward to verify, in lowestorder, the disontinuities in s1 and s2 whih led to the partial waves FL and FR.In an analogous way we ompute the one loop orretions to other prodution am-plitudes. For the proess W (+)Z ! W (+)W (�)W (+) (see Fig.6b) we have in the Bornapproximation: A2!3 = 2s�gaZ;W (�)W (+)�A 2w�q21 �M2Z gTW (+)W (�)ZC(q2;q1)MW ;MW ;MZ+ga;W (�)W (+)�A s2w�q21 gTW (+)W (�)C(q2;q1)MW ;MWM� � 1�q22 �M2W gaW (+);W (�)Z�B : (65)For the t2 hannel we expet that, in higher orders, the W -exhange will reggeize. Asto the t1 hannel, our analysis of the 2 ! 2 sattering proess with neutral exhange,eq.(57), suggests that, in higher order, in addition to the elementary z and  exhangesthe neutral Regge pole, �n, should appear. As we have seen before, Regge pole exhangesontribute to the disontinuities in s1 and s2, whereas the elementary z and  exhangesdo not. Therefore, our ansatz (59) with �1 ! �n, �2 ! � should be valid for theRegge pole exhanges in both rossing hannels, but we have to add extra terms for theelementary exhanges in the t1 hannel whih have a disontinuity in s2 but not in s1, e.g.for Z exhange: FZL ss��12 �2t1 �M2Z ��1� � 1 : (66)Proeeding in the same way as before we ompute, from the single disontinuities in s1and s2, the partial waves FL and FR (see Fig.8). From this we infer the following all-order15



expression:A2!3 = 2s gaW3;W (�)W (+)�A s!n(q21)1 � 1�q21 �M2W gTW (+)W (�)W3C(q2;q1)MW ;MWMW+gaZ;W (�)W (+)�A 2w�q21 �M2Z gTW (+)W (�)ZC(q2;q1)MW ;MWMZ+ga;W (�)W (+)�A s2w�q21 gTW (+)W (�)C(q2;q1)MW ;MWM� � s!(q22)2�q22 �M2W gaW (+);W (�)Z�B : (67)In the harge exhange hannel (t2-hannel) we reognize the reggeization of theW boson,whereas the neutral exhange hannel (t1-hannel) has the same struture as (57). In (67)the new element is the W prodution vertex where one of the reggeons belongs to theneutral Regge pole, �n: its partile pole lies at MW , and onsequently the mass labels ofthe prodution vertex are C(q2;q1)MW ;MWMW .As a �nal example, we alulate the prodution proess W (+)W (�) ! W (+)HW (�).Our one-loop alulation leads to:A2!3 = 2s aZ;W (�)W (+)�A 2w�q21 �M2Z 12w + aW3;W (�)W (+)�A s!n(q21)1 � 1�q21 �M2W !MW�  12w 2w�q22 �M2Z aZ;W (+)W (�)�B + s!n(q22)2 � 1�q22 �M2W aW3;W (+)W (�)�B ! : (68)Note that, following our onvention de�ned before, eah Z exhange arries a fator 2w.As a onsequene, the prodution of the Higgs obtains a fator 1=2w if, in (68), one ofthe attahed neutral exhanges is a Z boson, and a fator 1=4w if we have a Z boson onboth sides of the produed Higgs. In the following we shall verify that these produtionamplitudes lead to the orret bootstrap equations.5 Integral EquationsWe now turn to the derivation of integral equations whih represent the sum of disontinu-ities of the sattering amplitude over an arbitrary number of produed partiles. The oneand two loop alulations suggest that the 2 ! n prodution amplitudes an be writtenin the fatorized multiregge form, where harged and neutral exhanges lead to slightlydi�erent expressions. The exhange of a harged gauge boson requires the usual reggeonpropagator s1+!i =(q2+M2W ). For the neutral exhange we have a sum of three terms, theZ and  exhange in the Born approximation, and the neutral Regge pole exhange. Inthe angular momentum representation, the orresponding propagators are2w! 1q2 +M2Z ; s2w! 1q2 ; � 1! � !(q2) � 1!� 1q2 +M2W ; (69)resp. When inserting the sum of these three terms into a prodution amplitude, eah termomes with its own oupling to external and produed partiles. For example, the ou-plings to an externalW boson are aZ;W (�)W (+)� , a;W (�)W (+)� , and aW3;W (�)W (+)� , respetively.16



Figure 9: Ladder diagrams obtained from the square of prodution amplitudes: (a)ZZ ! W (+)W (�) (harge exhange); (b) W (+)W (�) ! W (+)W (�) (neutral exhange,odd signature).When, inside a multiregge prodution amplitude, the exhanged neutral boson ouplesto a W prodution vertex, the e�etive prodution verties are CMW ;MZMW , CMW ;MMW ,and CMW ;M3MW with M3 = MW , resp. With these rules it will be straightforward to writedown the integral equations for the sum of produts of prodution amplitudes (f. [3℄)).Let us begin with the partial wave representations. For the 2! 2 proess with hargedboson exhange we again onsider the proess ZZ ! W (+)W (�) (eqs.(38) and (41)). Thet-hannel partial wave deomposition ontains the Born ontribution (38) and, from theRegge pole, the integral over ! = j � 1:A11(s; t) = 2s�q2 �M2W gaW (+);W (�)Z�A gaW (�);W (+)Z�A0 �1 + Z a+i1a�i1 d!4i s! 1 + e�i�!�! !(q2)! � !(q2)� ;(70)where a > 0. We an shift the integration ontour to the region <! < 0 by anelling theresult of taking the residue of the pole at ! = 0 with the Born ontribution:A11(s; t) = 2s�q2 �M2W Z �a+i1�a�i1 d!4i 1 + e�i�!�! s!gaW (+);W (�)Z�A !(q2)! � !(q2)gaW (�);W (+)Z�A0 :(71)With the partial wave F11(!; q2) = !(q2)(q2 +M2W )(! � !(q2)) (72)17



we write the partial wave representation in the form:A11(s; t) = 2sZ �a+i1�a�i1 d!4i s! 1 + e�i�!�! gaW (+);W (�)Z�A F11(!; q2)gaW (�);W (+)Z�A0 : (73)An analogous ansatz an also be made for prodution amplitudes. Note, that the t-hannelpartial wave for the Born term ontains the Kroneker symbol � Æj;1 non-analyti in thej-plane but as a result of summing radiative orretions the t-hannel partial wave in LLAbeomes the analyti funtion [5℄ � � !(q2)! � !(q2) :From the point of view of the t-hannel unitarity the reggeization of the vetor bosonsis related to the existene of the nonsense intermediate states for two partiles with spinsequal to unity [5℄. For these nonsense states the sum of projetions of their spins on therelative momentum�!p equals 2, whih makes them non-physial for the total momentumj = 1. Nevertheless, the t-hannel partial wave fnnj (t) for the nonsene-nonsense transitionexists for omplex j and has the pole � g2=(j � 1) in the Born approximation. The t-hannel unitarity ondition together with the dispersion relations allows one to onstrutthis partial wave in LLA: fnnj (t) � g2=(j�1�!(t)), where !(t) is the orresponding Reggetrajetory. The similar alulation of the amplitudes for sense-nonsense and sense-sensetransitions gives in LLA fnsj � g2pj � 1=(j � 1 � !(t)) and f ssj � �(t)=(j � 1 � !(t)),respetively. It leads to the disappearane of the singularity � Æj; 1 in the sense-sensepartial wave [5℄.In order to obtain the partial wave amplitude for neutral exhange in the 2! 2 proessW (+)W (�) ! W (+)W (�), we return to (71). Sine, in the Born approximation, we have,instead of the propagator � 1=(q2 +M2W ), the Z and  propagators, we replae the �rstterm by Z and  exhanges. Shifting then the ! ontour to the left from the point ! = 0,we arrive at the formA10(s; t) = 2sZ �a+i1�a�i1 d!4i s! 1 + e�i�!�! aW3;W (�)W (+)�A F10(!; q2)aW3;W (+)W (�)�A+2s �gaZ;W (�)W (+)�A 2w�q2 �M2Z gaZ;W (+)W (�)�A + ga;W (�)W (+)�A s2w�q2 ga;W (+)W (�)�A�gaW3;W (�)W (+)�A 1�q2 �M2W gaW3;W (+)W (�)�A � : (74)As a result of shifting the ontour to the left we have obtained from the residue of thepole 1=! the third ontribution � 1=(q2 +M2W ) in the last brakets. All terms in thesebrakets ontain the non-analyti fators Æj;1 in the j-plane (see the above disussion aftereq. (71)). Thus, for t < 0 the high energy behaviour of sattering amplitudes A � s forthe neutral t-hannel is governed by these Kroneker-symbol singularities (see (57)).For the neutral exhange the t-hannel partial wave in the Born approximation isnot fatorized [5℄. As a result, the sense-sense amplitudes in LLA have both the Reggepole and the Kroneker singularities. The nonsense-nonsense partial wave for the neutralhannel ontains the fator (t�M2), whih leads (after the use of the t-hannel unitarityondition) to the Regge trajetory !n(q2) proportional to this fator (see (55)) [5℄.18



5.1 Neutral isospin-1 hannelLet us now turn to the integral equations. We begin with the odd signature neutral ex-hange hannel and onsider the proessW (+)W (�) !W (+)W (�). The ansatz is ontainedin (74). The t-hannel partial wave F is desribed by the sum of diagrams illustrated inFig.9a: F10(!; q2) =g2 1Xn=0 Z  n+1Yl=1 d2ql(2�)3 1(q2l +M2W )((q � ql)2 +M2W ) [! � !(q2l )� !((q � ql)2)℄! g2�K101;2 �K102;3 � ::: �K10n;n+1 : (75)The kernel K10 represents the sum of produtions of a Z boson, a photon, and a Higgssalar. It has the form:K10(q; k; k0) = g2(� (q2 +M2W ) (76)+ h(k2 +M2W )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2W )i� � 2w(k � k0)2 +M2Z + s2w(k � k0)2�) :It is onvenient to remove, in (75), the �rst momentum integral (in Fig.9a the leftmostell), and to de�ne the (amputated) amplitude f :F10(!; q2) = g2(2�)3 Z d2k(k2 +M2W )((q � k)2 +M2W )f10(!;k;q � k) : (77)For the amplitude f10(!;k;q � k) we an write down the integral equation:[! � !(k2)� !((q � k)2)℄f10(!;k;q � k) = g2 (78)+ Z d2k0(2�)3K10(q;k;k0) f10(!;k0;q � k0)(k02 +M2W )((q � k0)2 +M2W ) :The solution is independent of k, and we an easily �nd:f10(!; q2) = g2! � (q2 �M2W )�ww(q2)= g2! � !n(q2) ; (79)and therefore F10(!; q2) = g2�ww(g2)! � !n : (80)This bootstrap solution reprodues exatly the Regge pole in the neutral hannel, whihshows the self-onsisteny of our ansatz. 19



5.2 Charged isospin-1 hannelFor the harged exhange hannel we onsider the proess ZZ !W (+)W (�) (and its s�uounterpart W (+)Z ! ZW (+)). The ansatz is ontained in (73). The squared produtionamplitudes for the proess ZZ ! W (+)W (�) are illustrated in Fig.9b: the left two kernelsontain the prodution of a harged vetor boson, the next kernel ontains the Higgsprodution. The partial wave has the same struture as (75), but, as we said above, foreah neutral exhange we have to sum over three ontributions: Z and  exhanges in theBorn approximation, and the neutral Regge exhange (in the latter we have to subtratthe partile pole).To obtain an integral equation for the partial wave, in analogy to (77), we remove the�rst (leftmost) loop integral; in Fig.9b, the �rst ell has a harged t-hannel propagatorbelow, a neutral one above. Denote the sum of the ells to the right by ~fni (here weinlude, for the oupling to the external partiles on the rhs, the verties from Table1). For the rossed proess, W (�)Z ! ZW (�), the �rst ell has the neutral t-hannelpropagator below and the harged one above; let the sum of the ells to the right be ~fni.In both ases, the subsript i reminds that, in the neutral exhange hannel, we have tosum over several terms (Z, , Regge pole minus partile pole): it will be onvenient toount the last term as a sum of two piees. The subsript i then takes the four values: i =Z, , 3 (neutral partile pole), n (neutral Regge pole). The last term (neutral Regge pole)has the trajetory funtion !n, whereas for the other three terms the trajetory is absent.It will be onvenient to introdue, nevertheless, the vanishing funtions !Z = ! = !3 = 0.Also, eah of the four terms has a multipliative fator, b2i :b2Z = 2w; b2 = s2w; b23 = �1; b2n = 1: (81)With these onsiderations the oupled integral equations for the funtions fni and fnian be written in a losed form:[! � !(k2) � !ni((q � k)2)℄� ~fni~fni �=  g2aZ;HZ�B aW ;WH�B ÆiZg2aW (�);W+)Z�B ani;W (+)W (�)�B ! +� Kni;nj Kni;nkKni;nj Kni;nk �
� ~fnj~fnk � : (82)The kernels Kni;nk et. follow from the squares of prodution verties desribed before.The onvolution symbol ontains partile propagators and the fators b2i (81).Finally we de�ne the signatured amplitudes:~f (�)i (k;q � k) = ~fni(k;q � k)� ~fni(q � k;k) : (83)These signatured partial waves satisfy the following integral equations:[!�!(k2) �!ni((q�k)2)℄ ~f (�)i (k;q�k) = g2aW (�);W (+)Z�B +�Kij 
 ~f (�)j � (k;q�k) : (84)We remove the vertex fator by resaling the signatured amplitude and obtain[! � !(k2) � !ni((q � k)2)℄f (�)i (k;q � k) = g2 + �Kij 
 f (�)j � (k;q � k) : (85)20



The kernels ontain the sum of W and Higgs prodution, and they are of the form:K11ij (q; k; k0) = g2((�q2 �M2W ) (86)+ (k2 +M2W )((q � k0)2 +M2j ) + (k02 +M2W )((q � k)2 +M2i )(k � k0)2 +M2W )with M3 = MW .The bootstrap solution to this equation has the form:0BBB� f (�)Z (k;q � k)f (�) (k;q � k)f (�)3 (k;q � k)f (�)n (k;q � k) 1CCCA = g2! � !(q2)0BB�0BB� 1111 1CCA+ �ww((q � k)2)(! � !(k2)) 0BB� ((q � k)2 +M2Z)(q � k)2((q � k)2 +M2W )0 1CCA1CCA :(87)When verifying that this solution satis�es the integral equation (85) it is useful to notethe identities b2Z + b2 + b23 = 0 (88)and b2Z(q2 +M2Z) + b2q2 + b23(q2 +M2W ) = 0: (89)With the solution (87) the partial wave beomes:F (�)!;11(q2) = g2 Z d2k(2�)3 Xi b2if (�)i (k;q � k;!)(k2 +M2W )((q � k)2 +M2i )= g2(2w�wz(q2) + s2w�w(q2))! � !(q2)= g2!(q2)(�q2 �M2W )(! � !(q2) : (90)When going from the �rst to the seond line, we have used the identity (88). Thisbootstrap relation ompletes our all-order proof of the reggeization for the weak bosons.5.3 Vauum hannelLet us �nally ome to the zero quantum number exhange hannel whih desribes the'eletroweak Pomeron'. We onsider, again, the proess W (+)W (�) ! W (+)W (�). Sinein the vauum hannel the signature is positive, the Sommerfeld-Watson transform of theamplitude at high energies reads:A00(s; t) = sZ d!2i � sM2W �! �1 + e�i�!�! F!;00(q2) : (91)The lowest-order diagrams to be summed are those of Fig.5e,f; in addition we have to21



Figure 10: Ladder diagrams obtained from the square of prodution amplitudes: thevauum exhange hannel.inlude also t-hannel ontributions of two neutral exhanges (Fig.5g). The integral equa-tion is illustrated in Fig.10. Using notations whih are analogous to those of the previoussubsetion, we �nd the following set of integral equations:� (! � !ni(k2) � !nj ((q � k)2)) fninj(! � !(k2) � !((q � k)2)) f � =  g2ani ;W (+)W (�)�B anj ;W (+)W (�)�B� g2p2aW3;W (+)W (�)�B !+ K00ninj ;ni0nj0 p2K00ninj ;p2K00;ni0nj0 K00; !
� fni0nj0f � : (92)Note that, in order to obtain these equations, one starts from a larger set of oupledequations: there are the two separate t-hannels, W (+)W (�) and W (�)W (+). Introduingeven and odd ombinations of them, the odd signature hannel deouples, and one is leftwith (92). These equations still ontain all neutral even signature hannels, i.e. both thevauum hannel, T = 0, T3 = 0, and the T = 2, T3 = 0 on�gurations. The kernels arederived from the prodution of vetor bosons and of Higgs salars, and they are easilyobtained from our rules for prodution amplitudes. Beginning with the kernel K00ninj;ni0nj0whih has neutral exhanges both on the left and on the right hand sides we note that thesekernels are due to the Higgs prodution only; whenever (at least) one of the exhangeson the lhs or on the rhs is a photon, the matrix element vanishes. All other kernels arefound to have the struture K00ninj;ni0nj0 = g2 M2W22mw ; (93)where m is the total number of Z lines (note that the fator 1=2 appears sine we haveinluded a fator 2 into the integration phase spae). As an example,K00ZZ;ZZ = g2 M2W28w ; (94)whereas K00nn;ZZ = g2 M2W24w : (95)Next we list the kernels whih have neutral exhanges on the lhs and harged exhangeon the rhs, K00ninj ;. These matrix elements are symmetri under the exhange of lhs andrhs: K00ninj ; = K00;ninj : (96)22



Their form follows from (34), and the results an be summarized by:K00ninj ;(q; k; k0) =g2 �q2 �M2ij + (k2 +M2i )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2j )(k � k0)2 +M2W ! ;where M2ij = M2i +M2j � M2i M2j2M2W : (97)In partiular M2ZZ = 2M2Z � M4Z2M2W ;M2 = 0;M2nn = 32M2W ;M2Z = M2Z ;M2Zn = M2W + 12M2Z ;M2n = M2W : (98)Finally, the kernel K00; is the same as in (76), i.e.K00;(q; k; k0) = g2(� q2 �M2W (99)+ h(k2 +M2W )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2W )i� � 2w(k � k0)2 +M2Z + s2w(k � k0)2�) :As we have said before, the integral equation (92) still ontains both the vauumhannel and the T3 = 0 omponent of the T = 2 hannel. Nevertheless, we will referto this set of equations as the eletroweak 'vauum exhange equation'. In order toseparate the T = 0 hannel from the T = 2 hannel, we have to diagonalize the matrixequation. This annot be done analytially, and in this paper we will disuss only a fewapproximations. First, in the ase of vanishing Weinberg angle, sw = 0; w = 1 in theequation (92), we an neglet the photon ontributions and leave only the reggeized bosonZ = W3 substituting ni ! n; nj ! n. In this limit the kernel K is simpli�ed as followsK = � K11 p2K12p2K21 K22 � ; (100)23



where K11 = g2 M22 ; K12 = K21 = (101)g2��q2 � 32M2 + (k2 +M2)((q � k0)2 +M2) + (k02 +M2)((q � k)2 +M2)(k � k0)2 +M2 � ;K22 = g2 ��q2 �M2 + (k2 +M2)((q � k0)2 +M2) + (k02 +M2)((q � k)2 +M2)(k � k0)2 +M2 � :This kernel is SU(2)-invariant, and we an searh the solution of the orresponding equa-tion for the vauum exhange in the form� fnnf � = � 1p2 � fWW : (102)For the funtion fWW we obtain the known BFKL equation for the Pomeron wave funtionin the SU(2) ase [3℄ (! � !(k2) � !((q � k)2))fWW (k; q) =g2a0;W (+)W (�)�B + 2Z d2k0(2�)3KBFKL 1(k0)2 +M2 1(q � k0)2 +M2fWW (k0; q) ; (103)where the integral kernel is given by: KBFKL =g2 ��q2 � 54M2 + (k2 +M2)((q � k0)2 +M2) + (k02 +M2)((q � k)2 +M2)(k � k0)2 +M2 � ; (104)and the ouplings a0;W (+)W (�)�B have the values 2p3, 34p3 for �B = 1; 2 and �B = 3, resp.In (103), the fator 2 in front of the integral orresponds to the SU(2) group fator (f.r(0) = 2 in (29)).The seond solution to the matrix equation (100) belongs to the T3 = 0 omponent ofthe T = 2 representation. The orresponding eigenvetor, in analogy with (102), is of theform: � fnn;T=2f;T=2 � = � �p21 � fWW ;T=2 : (105)The integral equation has the same form as (103), where the SU(2) group fator in frontof the integral is �1, and in the expression (104) for the kernel, the mass term �54M2 isreplaed by �2M2.As a seond approximation, let us return to the investigation of the realisti ase ofthe eletroweak theory, eqs.(92), and �nd a somewhat simpler form. To begin with, wenote, that the inhomogeneous term does not depend on the momenta k and q � k and24



orresponds to a loal interation of the vetor partiles. Similarly, in the kernel K thematrix element K00ninj ;ni0nj0 (93) and the ontribution proportional to M2ij in expression(97) desribe their ontat interation. We an take into aount this ontributions tothe kernel later restriting ourselves initially to the solution of the equation, in whih thekernel eK does not ontain these terms:eK11 = 0 ; eK12 = ( eK21)k$k0 =g2p2 �q2 + (k2 +M2i )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2j )(k � k0)2 +M2W ! ;eK22 = K10(q; k; k0) ;where K10(q; k; k0) is given in (76). It is onvenient also to write the equation (92) asfollows� �ninj� � = � g2g2 �+ eK11 eK12eK21 eK22 ! 
� �ni0nj0=(! � !i0 � !j0)�=(! � ! � !) � ; (106)where the reggeon propagators in the right hand side of the equation are integrated overk0 (for simpliity, we here disregard the heliity struture of the ouplings to externalpartiles). Looking at the kernel eK, we see, that only the matrix element eK12 dependson i and j, and this dependene is simple. It means, that we an searh a solution of theabove equation in the form� �ninj (k; q)�(k; q) � = � �0(k; q) +M2i �1(k; q) +M2j �2(k; q)� � ; (107)where �2(k; q) = �1(q � k; q) : (108)Putting this ansatz in the equation, we obtain the system of the equations for the funtions�i:�0(k; q) = g2p2��q2 + k2((q � k0)2 +M2W ) + (k02 +M2W )(q � k)2(k � k0)2 +M2W �
 �! � ! � ! ;(109)�1(k; q) = g2p2(q � k0)2 +M2W )(k � k0)2 +M2W ) 
 �! � ! � ! (110)�(k; q) = g2 + eK21 
 �ni0nj0! � !i0 � !j0 + eK22 
 �! � ! � ! : (111)Here the integration over k0 is implied. Returning to the general ase (92), we note,that the inhomogeneous terms and the terms K00ninj ;ni0nj0 ; M2ij in the kernel lead to thediagrams, in whih the ladders generated by the simpli�ed kernel K are ombined eahwith other by the loal verties. Therefore the solution of (92) an be obtained from the25



solutions of the simpli�ed equation (106) with modi�ed inhomogeneous terms by summingthe orresponding two-point loop diagrams. We onsider this proedure in details in ourfuture publiations.Finally we note that the equations (92) simplify in the region of large transversemomenta k2; (q � k)2 �M2i ; (112)where we an neglet all masses and Higgs ontributions. In this region, in eah neutralexhange hannel the sum of the non-reggeizing piees anels (due to (88)), and we areleft with the Regge pole !n only. Consequently we are bak to the massless SU(2) gaugetheory, i.e. the kernels are onformal invariant. The leading high energy behaviour in thevauum hannel then follows from the observation that, beause of the di�usion in lnk2,the spetrum of eigenvalues is the same as in the massless ase:! = !(�; n) = g2�2 �	(1)�Re	(12 + i� + jnj2 )� ; (113)where � and n are real and integer numbers, resp. The leading singularity of the t-hannelpartial wave appears at ! = !(0; 0) = 2 g2�2 ln 2 (114)and leads to the power-like behaviour �t � s!(0;0) of the total ross-setions. Note,however, that the solution of equation (92) an ontain the Regge poles at ! = !0 >!(0; 0) with the residues tending to zero at k2 !1. Further investigations of the relatedproblems are in progress, inluding a numerial solution to the oupled integral equations.6 An appliation: WW-satteringAt the end of our paper we present, as an appliation of the vauum hannel integralequation, the two loop expressions for the proess W (+) +W (�) ! W (+) +W (�). Thiselasti sattering proess has, as 'seondary Regge' exhange, the odd signature neutralisospin-1 exhange, desribed in setion 5.1. For the even signature part the ombinedT = 0 and T = 2 exhanges, in the one-loop approximation, are given in (46). Thehigher-loop approximations an be derived from (92) whih we rewrite in the followingway: !� fninjf � =  g2ani;W (+)W (�)�B anj;W (+)W (�)�B� g2p2aW3;W (+)W (�)�B !+ K00ninj ;ni0nj0 + (!ni + !nj )Æii0Æjj0 p2K00ninj ;p2K00;ni0nj0 K00; + ! + ! !
� fni0nj0f � : (115)For the ouplings to external partiles we introdue olumn vetors ('impat vetors'),�W (+) and �W (�) : for the W (�), �W (�) is given by the inhomogenous term on the rhs of26



(115), whereas for the W (+) we have�W (+) =  g2ani;W (�)W (+)�A anj;W (�)W (+)�Ag2p2aW3;W (�)W (+)�A ! : (116)The two-loop approximation, in a symboli notation, is then simply given byA(2)even = �TW (+) 
K 
 �W (�) ; (117)where K denotes the matrix kernel of (115). After some algebra we �nd:A(2)even = 2i�s�(aZA)2�ZZM2W�ZZ(aZB)2 � 12aW3A �WW (�q2 �M2W )�WWaW3B+ 1p2aW3A �WW [(�q2 �M2ZZ)4w�ZZ(aZB)2 + (�q2 �M2)s4w�(aB)2+2(�q2 �M2Z)�Z2ws2waZBaB℄ (118)� 1p2[(aZA)24w�ZZ(�q2 �M2ZZ) + (aA)2s4w�(�q2 �M2)+2aZAaA2ws2w�Z(�q2 �M2Z)℄�WWaW3B+2�WWZ2w[�aW3A aZAaW3B aZB + 1p2aW3A (2w(aZB)2 + s2waZBaB)� 1p2(2w(aZA)2 + s2waZAaA)aW3B ℄+2�WWs2w[�W3A aAaW3B aB + 1p2aW3A (s2w(aB)2 + 2waBaZB)� 1p2(s2w(aA)2 + 2waAaZA)aW3B ℄� :Here we have used the abbreviations aZ;W (�)W (+)�A ! aZA , aZ;W (+)W (�)�B ! aZB et.7 ConlusionsIn this paper we have examined, in the leading logarithmi approximation, the high energybehavior of the eletroweak setor of the Standard Model. We have derived bootstrapequations whih desribe the reggeization of the vetor bosons. The harged W bosonslie on the Regge trajetory �(t) whih at t = M2W passes through unity. In the neutralsetor there exists another Regge trajetory, �n, whih also at t = M2W passes through 1,but neither the Z boson nor the photon lie on this trajetory. For �nite t both trajetoriesdi�er from eah other, thus reeting the breaking of the gauge symmetry SU(2)�U(1).As usual, the Reggeization of the eletroweak gauge bosons hints at some form of om-positeness. Note, that in the Grand Uni�ed Theories all partiles, inluding the Z-bosonand photon, lie on their Regge trajetories [5℄.Our main result is the integral equation for the even signature exhange in eletroweaktheory, whih ontains both the Pomeranhuk singularity and the zero omponent of theT = 2 exhange. One of the features of this equation is that, in the region of large trans-verse momenta, a onformal struture emerges, analogous to the one of the QCD BFKLPomeron. This suggests that, in the ombined limit of high energies and small distanes,not only the strong setor but also the eletroweak setor of the Standard Model exhibits27



Figure 11: Notations for the unitarity integral in the (23)-subhannel. The dot denotesthe e�etive prodution vertex.a deeper symmetry pattern whih ould be related to string theory.Aknowledgements: One of us (L.N.L.) thanks the Alexander von Humboldt-Foundationfor �nanial support, and the II.Institut of Theoretial Physis, University Hamburg, andDESY for the hospitality.AppendixIn this appendix we list a few details of the alulation of the one loop orretions to2! 3 prodution amplitudes. The prodution amplitude in the Born approximation hasthe fatorized form (22), and we want to ompute the two-partile intermediate stateunitarity integral in (23) subsystem (Fig.11). Sine the the prodution amplitude (22)holds in the overall m-system, whereas the 2 ! 2 sattering amplitude (4) refers to them-system of the (23) subhannel, it is neessary to transform from one referene frame tothe other. Following the disussion of [7℄, we �rst ompute the heliity matrix elementsof the e�etive prodution vertex (23). We de�ne the polarization vetorse1�(k) = 1jkj �0; k1k3jkj ; k2k3jkj ;�jkj� ;e2�(k) = 1jkj (0;�k2; k1; 0) ;e3�(k) = 1M �jkj; k0k1jkj ; k0k2jkj ; k0k3jkj � ; (A1)where k0 = s1 + s22ps ; k3 = s2 � s12ps : (A2)28



The three heliity omponents of the prodution vertex are:CM ;M2M1(q2; q1) � e1(k) = jkj2psjkj �s2(1 + 2 t1 �M21k2 +M2 ) + s1(1 + 2 t2 �M22k2 +M2 ) ;+ (s2 � s1)t2 � t1k2 � ;CM ;M2M1(q2; q1) � e2(k) = �2jq1j sin(q1;k)CM ;M2M1(q2; q1) � e3(k) = M2psjkj ��s2(1 + 2 t1 �M21k2 +M2 ) + s1(1 + 2 t2 �M22k2 +M2 )+ (s2 + s1)M22 �M21M2 � (A3)with k2 +M2 = s1s2s : (A4)An expliit alulation shows that the 2 ! 2 subproess in the s2 hannel, evaluated asa 3� 3 matrix in the overall m-system, an be written in the formL23R(k;q02)0� �1 0 00 �1 00 0 �M2+M 022MM 0 + M222MM 0 1ART (k0;q02)L023T ; (A5)where L23 = 0� A 0 �B0 1 0B 0 A 1A (A6)with A = pss2jkj ��M2 + s22s(s1 + s2)� ; B = psjkjMs2jkj : (A7)The matrix L023 is obtained from L23 by replaing s1 ! s01 (with s01s2s = k02 +M 02). Oneeasily veri�es unitarity, LLT = 1. The matrix R(k;q02) denotes a rotation in the subspaeof the transverse heliities:R(k;q02) = 0� os(k;q02) sin(k;q02) 0� sin(k;q02) os(k;q02) 00 0 1 1A : (A8)On the rhs of (A5), the matrix in the middle represents the 2 ! 2 sattering in the s2m-system. >From this result we infer that the Lorentz transformation, whih takes usfrom the s2 m-system of the outgoing partiles 2 and 3 into the overall m-system ofthe two inoming partiles, onsists of a rotation and of a boost. Sine in (A5) the tworotations ommute with the sattering matrix in the s2 system, they an be ombinedinto R(k;q02)RT (k0;q02) = R(k;k0); (A9)29



and, in (A5), this matrix be written either on the lhs or on the rhs of the diagonal2 ! 2 sattering matrix. We also �nd that, in the double-Regge limit, the partile-reggeon-partile vertex at the rhs of Fig.11 does not hange if we swith from the overallm-system to the s2 m-system.Multiplying now the vetor of heliity matrix elements by L�123 = LT23, we obtain forthe e�etive prodution vertex in the (23) m-system:LT230� Ce1Ce2Ce3 1A = � 2jq1jV (q1;k)M (�1 + M22�M21M2 ) �� q21 +M21k2 +M2 � 2jkjV (k;k)�2M � ; (A10)where V (q1;k) = � os(q1;k)� sin(q1;k) � : (A11)Now we are ready to multiply with the 2! 2 matrix element in the (23) hannel andto ompute the unitarity integral, using, in partiular, for the longitudinal omponent,the heliity fators of Table 1. We �rst onsider the proesses shown in Fig.7 where allwavy lines stand for Z bosons. In the notation of this appendix we have: M1 = M =M 02 = MW , M2 = M 0 = MZ , i.e. we start from the e�etive vertex CMWMZMW . On therhs of (A10), the third omponent of the �rst vetor beomesMW (�1 + M2Z �M2WM2W ) = 2MW aZ;W (+)W (�)3 = 2MZwaZ;W (+)W (�)3 : (A12)Multiplying with the W (+)W (�) ! ZZ matrix element and inluding the Higgs interme-diate state, we obtain, at the prodution vertex: 2jq1jaW (�);ZW (+)1 V (q1;k)2MW (aZ;W (+)W (�)3 aW (�);ZW (+)3 + aW ;HW3 aZ;HZ3 ) ! � q21 +M2Wk2 +M2W  2jkjaW (�);ZW (+)1 V (k;k)�2MWaW (�);ZW (+)3 ! ;(A13)whih an also be written as� w"� 2jq1jV (q1;k)�MZ �� q21 +M2Wk2 +M2W � 2jkjV (k;k)�MZ �# : (A14)By subtrating and adding a new term, we arrive at the expression:� w"� 2jq1jV (q1;k)�MZ �� q21 +M2Wk02 +M2Z � 2jk0jV (k;k0)�2MZ �#+w q21 +M2Wk2 +M2W "� 2jkjV (k;k)�MZ �� k2 +M2Wk02 +M2Z � 2jk0jV (k;k0)�2MZ �# : (A15)The overall fator �w = TZW (�)W (+)w ontains, apart from the isospin group fator, thewave funtion of the produed Z boson, w. The expression in the �rst and in the seond30



Figure 12: Transverse momentum struture of eq.(A16)lines an then be reognized as the result of the Lorentz transform applied to the e�etiveprodution vertex CMZ;MWMW ,Combining with the other parts of Fig.11 and adding the orresponding expression forthe photon exhange we �nd the following results for the disontinuities in s2 (Fig.12):diss2A2!3 = 2�s FLt1 �M21 (A16)with FL = �12sgaW (�);W (+)Z�A �gTZW (�)W (+)C(q2;q1)MZ ;MWMW !(q22)�q22 �M2W�(q21 +M2W )(2wKZ;WW + s2wK;WW )� gaW (+);W (�)Z�B (A17)andKZ;WW = g2TZW (�)W (+) Z d2k(2�)3 CMZ ;MWMW (q2 � k;q1 � k)((q1 � k)2 +M2W )((q2 � k)2 +M2W ) 1(k2 +M2Z) : (A18)The same alulations an be done for the other disontinuities illustrated in Figs.7 and8. They lead to the results listed in setion 4.Referenes[1℄ M.T. Grisaru, H. J. Shnitzer,H. S. Tsao, Phys. Rev. Lett.. 30, 811 (1973).[2℄ L.N. Lipatov, Sov. J. Nul. Phys. 23, 338 (1976).[3℄ V. S. Fadin, E.A. Kuraev and L.N. Lipatov, Phys. Lett. B 60, 50 (1975); Sov. Phys.JETP . 44, 443 (1976); Sov. Phys. JETP . 45, 99 (1977);[4℄ I. I. Balitsky and L.N. Lipatov, Sov. J. Nul. Phys. 28, 822 (1978); JETP Lett. 30,355 (1979).[5℄ M.T. Grisaru, H. J. Shnitzer, Phys.Rev. D 20, 784 (1979).[6℄ L.Lukaszuk and L.Szymanowski, Nul.Phys. B 159, 316 (1979).[7℄ J.Bartels, Nul.Phys. B 151, 293 (1979).31
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