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1 Introdu
tionOne of the topi
s to be examined in a future high energy ele
tron positron 
ollider is thes
attering of ele
troweak ve
tor bosons. Histori
ally it was the high energy behaviour ofthese s
attering pro
esses whi
h has led to the requirement of introdu
ing a s
alar Higgsboson; a 
loser look at the unitarity properties puts bounds on the masses of the Higgsparti
le. With the possibility of performing, at the linear 
ollider, pre
ision experiments ofele
troweak pro
esses, it will be ne
essary to 
onsider ele
troweak higher order 
orre
tions;ve
tor boson s
attering is an important 
lass of pro
esses to be studied with high a

ura
y.Unitarity properties of ve
tor s
attering rea
tions are most stringent near the forwarddire
tion where 
ross se
tions are large. The obje
t of 
entral interest is the total 
rossse
tion, i.e. the nature of the Pomeran
huk singularity. Related to this is the questionwhether the �elds of the ele
troweak se
tor, in parti
ular the gauge bosons of the brokengauge group, reggeize; the property of reggeization provides an indi
ation of a possi-ble 
ompositenes. It is well known that the gauge bosons of nonabelian gauge theoriesreggeize in the leading logarithmi
 approximation (LLA) [1, 2, 3, 4℄; this in
ludes bothunbroken gauge symmetries (e.g. QCD) and spontaneously broken models, su
h as the(pure) SU(2) Higgs model. On the other hand, the gauge boson of the abelian theoryof QED seems to be elementary (i.e. non-reggeizing), at least on that level of a

ura
ywhi
h has been investigated so far. As to the 
ase of the broken SU(2)�U(1), the 
hargedve
tor bosons lie on Regge traje
tories, whereas the situation of the neutral se
tor is more
ompli
ated: several years ago [5, 6℄ strong arguments have been given that there existsa neutral Regge pole, but neither the photon nor the Z boson lie on this traje
tory.The best way of exploring the va
uum ex
hange 
hannel and the reggeization in theele
troweak se
tor is by following the 
al
ulation of the BFKL Pomeron in QCD: be-ginning with the produ
tion amplitudes in the multi-Regge region one derives integralequations whi
h, in the va
uum ex
hange 
hannel, des
ribe the elasti
 s
attering and thetotal 
ross se
tion, and, in the isospin-one 
hannel, the reggeization of the ve
tor parti-
les. In this paper we des
ribe su
h an analysis of the ele
troweak se
tor of the standardmodel. As our main results, we present the integral equation for the s
attering amplitudefor the va
uum ex
hange (`ele
troweak Pomeron'), and we 
onstru
t bootstrap equationsto investigate the reggeization in both the 
harged and neutral ve
tor bosons ex
hange
hannels.This paper is organized as follows. In the following se
tion 2 we de�ne the setup ofour 
al
ulations, and we 
olle
t the lowest order results of ve
tor-ve
tor s
attering. Inse
tion 3 we 
ompute, in the Born approximation, produ
tion amplitudes in the multi-Regge limit. Se
tion 4 
ontains one and two loop results. In se
tion 5 we write down theintegral equations, and we dis
uss the solutions, both for the isospin one ex
hange 
hanneland for the va
uum 
hannel. In the following se
tion we des
ribe, as an appli
ation of ourintegral equations, the two-loop approximation for elasti
 WW s
attering. Con
ludingremarks are 
ontained in a �nal se
tion. 2



2 Setup and Lowest Order Ele
troweak AmplitudesIn this se
tion we de�ne the setup of our 
al
ulations, and we 
olle
t the results forve
tor s
attering in the Born approximation. Sin
e we will be interested on the leading-logarithmi
 approximation (LLA), we will negle
t fermions. Let us begin with the simplemodel, in whi
h the Weinberg angle #W is zero. In this 
ase, the U(1) gauge boson, theB-boson, is a free massless parti
le, and theW -bosons are des
ribed by the isove
tor �eld�!W � with mass M . The B boson de
ouples from the W bosons, and we are dealing witha spontaneously broken SU(2) models. The polarization ve
tors e�� of the W bosons inthe physi
al gauge aree1;2� = e1;2�? ; e3� ' k0MÆ�3 + k3MÆ�0 ; k� e�� = 0 ; (e��)2 = �1 ; (1)where k = (k0; k3; 0; 0) is the momentum of the ve
tor boson moving along the third axis.There is also the Higgs parti
le with the mass Mh. We use Sudakov variables:k = �pA + �pB + k? ; k2? = �k2; (2)where pA and pB are two light-like ve
tors along the 3-dire
tion. In Regge kinemati
s wehave s = (pA + pB)2 = (2E)2 ��t = �(pA0 � pA)2 = �!q 2 �M2 : (3)The Born amplitude for the high energy s
attering A+B ! A0+B0 of the W -bosonshaving de�nite polarizations �r (r = A;B;A0; B 0) is (see Ref. [2℄)A(0)A0B0AB = 2s g a�AÆ�A;�A0T 
A0A 1t�M2 g a�BÆ�B;�B0T 
B0B (4)with a1;2 = �1 ; a3 = �12 : (5)For the produ
tion of a Higgs parti
le in W -boson 
ollisions the amplitude also has thefa
torized form A(0)hB0AB = 2s g a3Æ�A;3 Æ
A 1t�M2 g a�BÆ�B;�B0T 
B0B : (6)The isospin generators T 
A0A in the above expressions belong to the adjoint representationof the SU(2)-group: T 
A0A = �i"
A0A.When generalizing, within the leading logarithmi
 approximation (LLA)g2 ln sM2 � 1 ; g2 � 1 ; (7)the Born amplitudes to higher order, it is known that the W bosons reggeize, and (4)takes the form:ALLA = A(0) 12 �� sM2�!(t) + �� sM2�!(t)� � A(0) � sM2�!(t) ; (8)3



where �w(t) = 1 + !w(t) is the W boson Regge traje
tory, and!w(t) = (t�M2)�(q2) ; �(q2) = g2 Z d2k(2�)3 1�k2 +M2� ((q � k)2 +M2) ; t = �q2: (9)Let us now turn to the uni�ed model of ele
troweak intera
tions. Starting from thenondiagonal mass matrix of the �elds W (3) and BM2 �W (3); B�� 1 � tan #w� tan #w tan2 #w �� W (3)B � ; (10)we introdu
e their linear 
ombinations 
orresponding to the Z boson and photon:Z = 
wW (3) � swBA = swW (3) + 
wB ; (11)where tan #w = g0g ; 
w = 
os #w ; sw = sin#w: (12)In the new basis, the mass matrix be
omes diagonal with the eigenvaluesM2Z = M2
2w ; M2
 = 0 : (13)In the following we will put MW = M and W (�) = 1p2 �W (1) � iW (2)�.With these de�nitions we generalize our previous results of the SU(2) spontaneouslybroken gauge theory to the Weinberg-Salam model. Starting from the (W (3); B) basis,the propagator of the neutral bosons 
an be written in the following operator form:D�� (k) = � 
w�sw � Æ�� � k�k�M2zk2 �M2z � 
w ; �sw �+� sw
w � Æ��k2 � sw ; 
w � ; (14)where we have used the physi
al gauge for the Z-boson and the Feynman gauge for thephoton.The linearized intera
tion of these ve
tor bosons with the Higgs �eld ', in the (W (3); B)-representation, 
ontains the matrixgM � 1 � tan #w� tan #w tan2 #w � ; (15)proportional to the mass matrix (10). In the (Z;A)-representation this matrix be
omesdiagonal with only one non-zero 
oupling 
onstant, gM2z =MW , for the ZZ'-intera
tion.As to the other intera
tion terms, we �rst note that, when working in the leading ln sapproximation, and restri
ting ourselves to s
attering pro
esses of ve
tor bosons and Higgsparti
les, we 
an disregard the fermions. As a result, in the (W (3); B)-representation, the4



Figure 1: Mass assignment in the reggeon - parti
le - parti
le vertexU(1) gauge boson, B, de
ouples and only the W (3)-boson enters in the Yang-Mills a
tion(together withW (�)-bosons). Therefore, all gauge boson intera
tion terms that are neededfor our dis
ussion are obtained by starting from the SU(2) part of the Yang-Mills a
tionand substituting W (3) = 
wZ + swA : (16)We now turn to the 2! 2 s
attering amplitudes, eqs.(4), (6). For the ve
tor ex
hangepropagators we repla
e 1q2 +M2 ! 
2wq2 +M2Z ; s2wq2 : (17)for Z and 
 ex
hanges, respe
tively. For the heli
ity 
onserving 
ouplings, a� , we haveto observe that the masses of external and ex
hanged ve
tor bosons 
an be di�erent fromea
h other. Therefore, repeating and generalizing the algebra outlined in Ref. [2℄ one �ndsfor the heli
ity fa
tor of longitudinally ve
tor bosons:ai;jk3 = M2i �M2j �M2k2MjMk ; (18)where the labels i; j; k refer to ex
hanged, outgoing ve
tor, and in
oming parti
le, respe
-tively (Fig.1). For the transverse polarization the heli
ity fa
tors a� remain the sameas in the pure SU(2) 
ase. As before, ea
h heli
ity fa
tor a� is multiplied by a heli
ity
onserving Krone
ker Æ-fun
tion, e.g. Æ�A;�A0 . Using the labels W , 
, Z, W3, we de�nenew heli
ity fa
tors ai;jk� , whi
h in
lude, in addition to the pure heli
ity part in eq.(18),also the Krone
ker delta fun
tions and the isospin fa
tors, T 
A0A = �i�
A0A. In the basisof the 
harged W bosons, we have TW3W (+)W (�) = �TW3W (�)W (+) = +1 (in the lower indi
es,the �rst one refers to the �nal state, the se
ond one to the initial state; we 
ount all par-ti
les as in
oming); ea
h permutation or 
harge 
onjugation introdu
es a 
hange in sign.Finally, we have to in
lude the 
oeÆ
ients 
w, sw from (16). We summarize the resultsfor these reggeon-parti
le-parti
le 
ouplings in Table 1 (we still use the same letter ai;jk�as in (18)). Here we have listed only those 
on�gurations for whi
h the isospin fa
torsare +1. The other 
on�gurations 
an be obtained by observing the antisymmetry of theisospin fa
tors; for example,aZ;W (�)W (+)� = �aZ;W (+)W (�)� ; aW (�);ZW (+)� = �aW (�);W (+)Z� : (19)5



Figure 2: Two body s
attering pro
esses (bla
k lines denote 
harged bosons, wavy linesstand for neutral bosons): (a) ZZ ! W (+)W (�); (b) W (+)W (�) !W (+)W (�).Note that, for the Z-boson and for the photon, the t-
hannel propagators in
lude addi-tional fa
tors (see (17)).aW (�);ZW (+)� aW (�);
W (+)� aZ;W (+)W (�)� a
;W (+)W (�)� aW3;W (+)W (�)�� = 1; 2 �
w �sw �1 �1 �1� = 3 �12 0 �1 + 12
2w �1 �12aW ;HW� aZ;HZ� a
;H
� aW3;HZ�� = 1; 2 0 0 0 0� = 3 �12 � 12
2w 0 �12Table 1: reggeon - parti
le - parti
le 
ouplingsAs a result, the 2 ! 2 Born amplitude for the pro
ess ii0! kk0 with the ex
hange ofboson j has the general form:A(0) = 2sgaj;i0i�i 1�q2 �M2j gaj;k0k�i0 ; (20)with the substitution (17) for Z and 
 ex
hanges, and the 
ouplings ai;jk�A have to be reado� from the table. This 
ompletes the generalization of eqs.(4) and (6) to the Weinberg-Salam model.A �nal remark on expression (8). In the pure SU(2) 
ase we know that the W bosonsreggeize, whi
h means that the form (8) is valid. For the Weinberg-Salam theory, however,we have to �nd whi
h of the bosons reggeize. It will turn out that in the neutral 
hannelneither the Z-boson nor the photon lie on Regge traje
tories (see also Refs. [5, 6℄). As aresult, the simple expression (8) is valid only for the ex
hange of 
harged ve
tor mesons,but not for the neutral ve
tor ex
hange.It will be useful to introdu
e a 
onvenient diagrammati
 notation. Sin
e neutral and
harged ve
tor bosons are behaving quite di�erently, it will be helpful to distinguishbetween them: solid lines will be used to denote the 
harged W -boson propagators, andwavy lines stand for the neutral parti
le propagators (note, however, that only the Z partof the 
orresponding matrix (15) 
ouples to the Higgs boson). Examples are given inFig.2. 6



A B

t1 t2 tn+1t3

A′ d1 d2 d3 B′dn

Figure 3: Produ
tion pro
ess A+B ! A0 + d1 + d2:::+ dn +B03 Produ
tion AmplitudesLet us now 
onsider produ
tion amplitudes A+B ! A0 +B0 + d1 + d2 + :::+ dn (wherek0 = pA0 ; kn+1 = pB0) in the multiregge region:s� si = (ki�1 + ki)2 � q2r =  pA � r�1Xi=0 ki!2 �M2 �M2h : (21)We again begin with the pure SU(2) 
ase. In the Born approximation the produ
tionamplitude equals: A(0) A0B0d1 :::dnAB =2s g a�AÆ�A;�A0T 
1A0A 1�q21 �M2 gT d1
2
1C�1(q2; q1)e�1(k1) 1�q22 �M2 :::g a�BÆ�B ;�B0T 
n+1B0B ;(22)where the e�e
tive vertex C�(qr+1; qr) ; kr = qr � qr+1 for r = 1 is given by:C(q2; q1) = �q1 ? � q2 ? � pA�q21 +M2k1pA � k1pBpApB�+ pB �q22 +M2k1pB � k1pApApB� : (23)It has the simple Ward identity propertyk�1C�(q2; q1) = 0 ; (24)where k1 = q1 � q2, and we have used the reality 
ondition2 k1pA 2 k1pBs = k21 +M2 (25)for the produ
ed parti
le.In the 
ase where, instead of a W -boson with the momentum kr, a Higgs parti
le withthe momentum kr is produ
ed, we substituteC�r (qr+1; qr) e�r(kr)T dr
r+1
r !M Æ
r+1
r : (26)7



When in LLA higher order 
orre
tions are taken into a

ount, the produ
tion ampli-tude, in the pure SU(2) 
ase, has the multi-Regge form (negle
ting signature fa
tors):ALLA2!2+n = A(0)2!2+n � s1M2�!(t1) � s2M2�!(t2) :::�sn+1M2 �!(tn+1) ; sr = 2kr�1kr ; tr = �q2r :(27)(as we will see below, for the Weinberg-Salam model the generalization of the Born am-plitude will be slightly more 
ompli
ated). To apply the s-
hannel unitarity one needsto know the produ
t of two e�e
tive verti
es C�. Using the mass shell 
ondition (25) weobtain:C�(q2; q1)C�(q � q2; q � q1) =2 (q21 +M2)((q � q2)2 +M2) + (q22 +M2)((q � q1)2 +M2)(q1 � q2)2 +M2 � 2 q2 � 3 M2 : (28)One should also 
al
ulate the produ
t of two isospin matri
es. We de
ompose themin terms of various isospin stru
tures in the t-
hannel:"ABd "A0B0d = XT=0;1;2 r(T )PA0B0AB (T ); r(0;1;2) = (2; 1;�1) : (29)Here PA0B0AB (T ) are the proje
tors to the isospin states with T = 0; 1; 2:PA0B0AB (0) = 13ÆAA0 ÆBB0 ;PA0B0AB (1) = 12"
A0A "
B0B ;PA0B0AB (2) = 12 (ÆAB ÆA0B0 + ÆAB0 ÆA0B )� 13ÆAA0 ÆBB0 : (30)Let us now turn to the realisti
 Weinberg-Salam model. The main task is the gener-alization of the e�e
tive produ
tion vertex (23) to the 
ase where the atta
hed t-
hannelbosons have di�erent masses (MW for the W boson, MZ for the Z boson, or zero massfor the photon). Again, it is needed to return to Ref. [2℄ for 
omputing the 2 ! 3produ
tion amplitudes in the double Regge limit. The result of this analysis whi
h willnot be presented in detail is that the Born approximation is still of the fa
torized form(22), where the 
ouplings to the in
oming parti
les, ai;jk� , are the same as in Table 1. Inthe 
rossing 
hannels we have the propagators 1=(�q2i �M2i ). If we denote the massesof the ex
hanged ve
tor parti
le on the right (left) hand side of a produ
ed ve
tor bosonwith mass M by M2 (M1), the e�e
tive produ
tion vertex be
omesC(q2; q1)M ;M2M1 = �q1 ?�q2 ?�pA�q21 +M21k1pA � k1pBpApB�+pB �q22 +M22k1pB � k1pApApB� (31)(note that the dependen
e uponM is through eq.(25)). If the produ
ed ve
tor parti
le is aZ boson (photon), an additional fa
tor 
w (sw) has to be in
luded. Finally, ea
h ex
hangedZ boson re
eives, in the numerator, a fa
tor 
2w, ea
h photon propagator a fa
tor s2w (see8



Figure 4: Assigment of masses for the produ
t of two e�e
tive verti
es(17)). For the Higgs produ
tion we 
an use (26), where on the rhs M be
omesMW , if theHiggs is produ
ed fromW (�) ex
hange. For Higgs produ
tion from a Z ex
hange, repla
eM !MW =
4w (and retain the fa
tor 
2w for ea
h Z ex
hange propagator). Finally, in (27)the group fa
tors T d1
2
1 have to be rewritten in terms of Z and W (�) (
f. the dis
ussionbefore (19); note that both the Z and the photon 
ouple to the third 
omponent of theisospin generator: TZ
2
1 = T 

2
1 = T 3
2
1).The Ward identity (24) for the produ
tion vertex is repla
ed now by the relationk�1CM ;M2M1� (q2; q1) = M22 �M21 : (32)For the s-
hannel unitarity integration we again need the produ
t of two e�e
tive verti
es.More pre
isely, one should sum over the physi
al heli
ities of the produ
ed boson withmass Mm: X� ���(k1)���(k1) = �g�� + k�1k�1M2m (33)(note that for the produ
tion of a photon with Mm = 0 the se
ond term is absent in ana

ordan
e with the vanishing of (32) for M1 = M2). For the mass assignment illustratedin Fig.4 we obtain (
f.(28)):CMm;MjMi� (qj; qi) (g�� � k�1k�1M2m )CMm;MlMk� (q � qj; q � qi) = (34)�2q2 +M2m �M2i �M2j �M2k �M2l + (M2j �M2i )(M2l �M2k )M2m +2 (q2i +M2i )((q � qj)2 +M2l ) + ((q � qi)2 +M2j )(q2j +M2k )(qi � qj)2 +M2m :This result 
an be obtained with the use of eqs.(25) (31), and (32).4 One and two loop results2! 2 s
attering in one loopWe are now ready to 
arry out the BFKL program. Beginning with one loop amplitudes,we �rst 
onsider the 
harged isospin-1 ex
hange. To be de�nite, let us study the pro
ess9



Figure 5: One loop 
orre
tions to 2! 2 { pro
esses shown in Fig.2ZZ ! W (+)W (�). The Born diagram is shown in Fig.2a, the �rst 
orre
tions 
ome fromthe box diagrams of the type Fig.5a-d. For the energy dis
ontinuities we use the unitarity
onditions, e.g. ImsA(1)ab!a0b0 = 12Xi Z d�2A(0)ab!i(k2)A(0)yi!a0b0((k � q)2) ; (35)where the sum in i extends over all possible intermediate two-parti
le states, and we thenmake use of dispersion relations to 
ompute the s
attering amplitudes. We de�ne thefun
tions �ij(q2): �ij(q2) = g2 Z d2k(2�)3 1k2 +M2i 1(k � q)2 +M2j : (36)We also use their generalizations:�ijk(q2) = g4 Z d2kd2k0(2�)6 1k2 +M2i 1k02 +M2j 1(k + k0 � q)2 +M2k : (37)The subs
ripts indi
ate the type of ve
tor parti
les inside the � fun
tions.The Born amplitude has the formA(0)11 = 2sgaW (+);W (�)Z�A 1�q2 �M2W gaW (�);W (+)Z�B : (38)Next we form signatured amplitudes. In our 
ase, ZZ ! W (+)W (�), they are de�ned bythe 
ombinations 12 (AZZ!W (+)W (�) � AW (�)Z!ZW (�)) : (39)10



Signature des
ribes the symmetry under s!�s. Be
ause of the antisymmetry propertiesof the isospin 
oeÆ
ients, the Born amplitude for our pro
ess belongs to odd signature(in terms of isospin, it is the antisymmetri
 T = 1 representation, T3 = �1). Using theunitarity relations for the pro
esses ZZ ! W (+)W (�) (Fig.5a, b) and for the 
ross pro
essW (�)Z ! ZW (�) (Fig.5
, d), we obtain for the odd-signature amplitude:A(1)11 = [s ln(�s)� u ln(�u)℄ gaW (+);W (�)Z�A n
2w �wz(q2) + s2w �w
(q2)ogaW (�);W (+)Z�B : (40)In the LLA approximation the energy s
ale in the logarithm is arbitrary; it is natural to
hose the s
ale to be of the order of MW . We omit to expli
itly write this s
ale.Comparing the Born approximation with the one loop result, one is lead to interpretboth expressions as being the �rst two terms in the power series expansion of (
f.(8))A11 = �gaW (+);W (�)Z�A (�s)�
(q2) � (�u)�
(q2)�q2 �M2W gaW (�);W (+)Z�B (41)with the traje
tory fun
tion�
(q2) = 1 + (q2 �M2W )h
2w �wz(q2) + s2w �w
(q2)i: (42)This is 
onsistent with the expe
tation that the 
harged W bosons reggeize, in the sameway as theW bosons do in the pure SU(2) theory. The same 
on
lusion holds, if we repla
eexternal ve
tor bosons by Higgs bosons. Later on we will 
on�rm that the reggeizationof the 
harged W bosons is 
orre
t to all orders. It will be 
onvenient to introdu
e!
(q2) = �
(q2)� 1 = (q2 �M2W )h
2w �wz(q2) + s2w �w
(q2)i: (43)Turning next to the neutral ex
hange, we 
onsider the elasti
 s
attering of two 
hargedbosons, the pro
ess W (+)W (�) ! W (+)W (�). The Born diagram is shown in Fig.2b; theamplitude has the form:A(0)10 = 2s�gaZ;W (�)W (+)�A 
2w�q2 �M2Z gaZ;W (+)W (�)�B + ga
;W (�)W (+)�A s2w�q2ga
;W (+)W (�)�B � : (44)It belongs to odd-signature (the T = 1 representation), and it represents the neutral,T3 = 0, 
omponent. For the one-loop odd-signature 
ontribution we obtain (Figs.5e - f):A(1)10 = [s ln(�s)� u ln(�u)℄ gaW3;W (�)W (+)�A �ww(q2) gaW3;W (+)W (�)�B : (45)An analogous result is obtained for the pro
ess ZW (�) ! HW (�), with the substitutionaW3;W (�)W (+)�A ! aW3;HZ�A . At this stage, it seems premature to draw any 
on
lusion aboutthe 
onne
tion of the one loop result with the Born approximation.The one-loop even signature 
ontribution of Fig.5g 
ontributes to both isospin 0 and2. We present the sum of both:A(1)even = 2i�s��12gaW3;W (�)W (+)�A �ww(q2) gaW3;W (+)W (�)�B+ g(aZ;W (�)W (+)�A )2 
4w �zz(q2) g(aZ;W (+)W (�)�B )2 + g(a
;W (�)W (+)�A )2 s4w �

(q2) g(a
;W (+)W (�)�B )2+ 2 gaZ;W (�)W (+)�A a
;W (�)W (+)�A 
2ws2w �
z(q2) gaZ;W (+)W (�)�B a
;W (+)W (�)�B � : (46)11



Two loop results for 2! 2 s
atteringTwo loop 
orre
tions 
onsist of two 
lasses of terms, the two-parti
le intermediate statesand the three-parti
le intermediate states in the s-
hannel [2℄. The former ones areobtained by inserting, into the bilinear unitarity relation, the Born term on one side andone loop amplitudes on the other side. For the 
al
ulation of the three parti
le statewe make use of expression (34); we also in
lude the produ
tion of Higgs s
alars. Let usbegin with the 
harge ex
hange 
hannel. Making use of the verti
es in Table 1 and ofthe one-loop results listed above, and summing over all 2-parti
le intermediate states, weobtain for the pro
ess ZZ ! W (+)W (�):�2s ln2 s gaW (+);W (�)Z�A ��www(q2) + 
4w�wzz(q2) + 2
2ws2w�wz
(q2) + s4w�w

(q2)� gaW (�);W (+)Z�B :(47)For the sum over 3-parti
le intermediate states we �nd, making use of eq.(34), a sum oftwo terms. The �rst one is:(s ln2(�s)2! � u ln2(�u)2! )gaW (+);W (�)Z�A �s2w�w
(q2) + 
2w�wz(q2)���q2 �M2W � �s2w�w
(q2) + 
2w�wz(q2)� gaW (�);W (+)Z�B : (48)The se
ond one 
an be written in the form:2s ln2 s gaW (+);W (�)Z�A ��www(q2) + 
4w�www(q2) + 2
2ws2w�wz
(q2) + s4w�w

(q2)� gaW (�);W (+)Z�B :(49)and 
an
els the entire 2-parti
le intermediate state, eq.(47). Hen
e the two-loop resultfor the negative signature 
harge ex
hange 
hannel 
oin
ides with the se
ond term in theexpansion of �gaW (+);W (�)Z�A (�s)�
(q2) � (�u)�
(q2)�q2 �M2W gaW (�);W (+)Z�B ; (50)
on�rming the reggeization in the one-loop approximation.Turning to the neutral ex
hange 
hannel, we again �rst 
onsider the two-parti
leintermediate states. For the pro
ess W (+)W (�) !W (+)W (�) we obtain, after summationover all possible 2-parti
le intermediate states:�2s ln2 s gaW3;W (�)W (+)�A �s2w�
ww + 
2w�zww� gaW3;W (+)W (�)�B ; (51)where the 
ouplings aW3;W (�)W (+)� are listed in Table 1. The 
al
ulation of the threeparti
le intermediate state, again, makes use of the square of the produ
tion vertex,eq.(34). Summing over all possible 3-parti
le intermediate states we obtain a sum of twoterms. The �rst one is:(s ln2(�s)2! � u ln2(�u)2! ) g aW3;W (�)W (+)�A �ww(q2) (�q2 �M2W )�ww(q2) g aW3;W (+)W (�)�B ; (52)the se
ond one2s ln2 s g aW3;W (�)W (+)�A �s2w�
ww(q2) + 
2w�zww(q2)� g aW3;W (+)W (�)�B : (53)12



Figure 6: 2 ! 3 produ
tion amplitudes (the dot marks the e�e
tive produ
tion vertex(eq.(31)): (a) W (+)W (�) ! ZZZ; (b) W (+)Z ! W (+)W (+)W (�).This se
ond terms 
an
els against the two-parti
le 
ontribution, eq.(51). We have thusonly the �rst term, (52), whi
h 
an be interpreted as the se
ond term in the expansion ofthe expression �gaW3;W (�)W (+)�A (�s)�n(q2) � (�u)�n(q2)�q2 �M2W gaW3;W (+)W (�)�B (54)with �n(q2) = 1 + (q2 �M2W )�ww(q2) : (55)In the following we will also use the notation!n(q2) = �n(q2)� 1 = (q2 �M2W )�ww(q2) : (56)The expression (54) mat
hes the one-loop result, (45), but it does not agree with the Bornapproximation, (44). We therefore make the following ansatz for the neutral ex
hange inthe 2! 2 s
attering pro
ess:A10 = 2s�gaZ;W (�)W (+)�A 
2w�q2 �M2Z gaZ;W (+)W (�)�B + ga
;W (�)W (+)�A s2w�q2ga
;W (+)W (�)�B ��gaW3;W (�)W (+)�A  (�s)�n(q2) � (�u)�n(q2)�q2 �M2W + 2s�q2 �M2W ! gaW3;W (+)W (�)�B ; (57)i.e. we have a Regge pole in the neutral ex
hange 
hannel, whi
h passes through unityat t = M2W : neither the Z boson nor the photon lie on this traje
tory. Note that, in these
ond line of (57), the pole at q2 = M2W 
an
els. For sw = 0, we have MZ = MW , and�n passes through the Z-boson. Later on we shall verify that this result is 
orre
t to allorders.One loop results for 2! 3 produ
tion amplitudesBefore we 
an start to write integral equations we need to 
al
ulate 
orre
tions to theprodu
tion amplitudes: this will be done in the spirit of [7℄. To be de�nite, the pro
essW (+)W (�) ! ZZZ (Fig.6a) will be 
onsidered. In the Born approximation we have:13



Figure 7: Unitarity integral in the s2-sub
hannel.A(0)2!3 = 2sgaW (�);ZW (+)�A 1�q21 �M2W gTZW (�)W (+)C(q2;q1)MZ;MWMW 1�q22 �M2W gaW (+);ZW (�)�B ;(58)where the energy variables si have been de�ned in (21). In order to be able to 
ompute thedis
ontinuity in s2, we make a more general ansatz whi
h exhibits the analyti
 stru
turein all three energy variables:A2!3 = FLs�1s�2��12 ��1t1 �M21 ��2�1�2 � �1 + FRs�2s�1��21 ��2t2 �M22 ��1�2�1 � �2 ; (59)where the signature fa
tors are: ��1 = e�i��1 � 1;��1�2 = e�i�(�1��2) + 1 ; (60)and �i = �(ti) are the 
orresponding Regge traje
tories. The two partial waves FL andFR will be determined from the dis
ontinuities in the s2 and s1 
hannels, resp., and weshall see that the ansatz (59) is 
ompatible with the familiar fa
torized multiregge form.The dis
ontinuity in the s2 
hannel is:dis
s2A2!3 = ��s�1s�2��12 ��1t1 �M21 FL : (61)In the lowest order, we simply put �i ! 1 and ��1 ! �2.When 
omputing the unitarity integral in the s2-
hannel (Fig.7) it is 
onvenient to �rsttransform into the 
enter-of-mass system of the s2-
hannel, to multiply with the 2 ! 2s
attering amplitude having a simple heli
ity stru
ture in the s2 
hannel, to 
ompute thetwo-body phase spa
e integral, and �nally to transform ba
k into the overall 
m-system.Details of this pro
edure have been des
ribed in [7℄; some of the formulae, however,have to be generalized to the 
ase of unequal masses of the ve
tor bosons. A list ofthe relevant expressions is presented in the appendix. After summing over all possibles-
hannel intermediate states and over all t-
hannel ex
hanges we �nd for the partial waveFL: FL = �12sgaW (�);W (+)Z�A �gTZW (�)W (+)C(q2;q1)MZ ;MWMW !
(q22)�q22 �M2W�(q21 +M2W )(
2wKZ;WW + s2wK
;WW )� gaW (+);W (�)Z�B : (62)14



Figure 8: Unitarity integrals (a) in the s2 sub
hannel, (b) in the s1 
hannel.Here we have introdu
ed the short-hand notation:KZ;WW = g2TZW (�)W (+) Z d2k(2�)3 gCMZ ;MWMW (q2 � k;q1 � k)((q1 � k)2 +M2W )((q2 � k)2 +M2W ) 1(k2 +M2Z) : (63)With an analogous result for the dis
ontinuity in s1 and for FR we return to (59). In thesum of both partial waves, the terms 
ontaining KZ;WW and K
;WW 
an
el, and we areleft with the expressionA2!3 = 2saW (�);W (+)Z�A s!
(q21)1�q21 �M2W gTZW (�)W (+)C(q2;q1)MZ ;MWMW s!
(q22)2�q22 �M2W gaW (+);W (�)Z�B ;(64)i.e. the W ex
hanges have started to reggeize. It is straightforward to verify, in lowestorder, the dis
ontinuities in s1 and s2 whi
h led to the partial waves FL and FR.In an analogous way we 
ompute the one loop 
orre
tions to other produ
tion am-plitudes. For the pro
ess W (+)Z ! W (+)W (�)W (+) (see Fig.6b) we have in the Bornapproximation: A2!3 = 2s�gaZ;W (�)W (+)�A 
2w�q21 �M2Z gTW (+)W (�)ZC(q2;q1)MW ;MW ;MZ+ga
;W (�)W (+)�A s2w�q21 gTW (+)W (�)
C(q2;q1)MW ;MWM
� � 1�q22 �M2W gaW (+);W (�)Z�B : (65)For the t2 
hannel we expe
t that, in higher orders, the W -ex
hange will reggeize. Asto the t1 
hannel, our analysis of the 2 ! 2 s
attering pro
ess with neutral ex
hange,eq.(57), suggests that, in higher order, in addition to the elementary z and 
 ex
hangesthe neutral Regge pole, �n, should appear. As we have seen before, Regge pole ex
hanges
ontribute to the dis
ontinuities in s1 and s2, whereas the elementary z and 
 ex
hangesdo not. Therefore, our ansatz (59) with �1 ! �n, �2 ! �
 should be valid for theRegge pole ex
hanges in both 
rossing 
hannels, but we have to add extra terms for theelementary ex
hanges in the t1 
hannel whi
h have a dis
ontinuity in s2 but not in s1, e.g.for Z ex
hange: FZL ss�
�12 �2t1 �M2Z ��
1�
 � 1 : (66)Pro
eeding in the same way as before we 
ompute, from the single dis
ontinuities in s1and s2, the partial waves FL and FR (see Fig.8). From this we infer the following all-order15



expression:A2!3 = 2s gaW3;W (�)W (+)�A s!n(q21)1 � 1�q21 �M2W gTW (+)W (�)W3C(q2;q1)MW ;MWMW+gaZ;W (�)W (+)�A 
2w�q21 �M2Z gTW (+)W (�)ZC(q2;q1)MW ;MWMZ+ga
;W (�)W (+)�A s2w�q21 gTW (+)W (�)
C(q2;q1)MW ;MWM
� � s!
(q22)2�q22 �M2W gaW (+);W (�)Z�B : (67)In the 
harge ex
hange 
hannel (t2-
hannel) we re
ognize the reggeization of theW boson,whereas the neutral ex
hange 
hannel (t1-
hannel) has the same stru
ture as (57). In (67)the new element is the W produ
tion vertex where one of the reggeons belongs to theneutral Regge pole, �n: its parti
le pole lies at MW , and 
onsequently the mass labels ofthe produ
tion vertex are C(q2;q1)MW ;MWMW .As a �nal example, we 
al
ulate the produ
tion pro
ess W (+)W (�) ! W (+)HW (�).Our one-loop 
al
ulation leads to:A2!3 = 2s aZ;W (�)W (+)�A 
2w�q21 �M2Z 1
2w + aW3;W (�)W (+)�A s!n(q21)1 � 1�q21 �M2W !MW�  1
2w 
2w�q22 �M2Z aZ;W (+)W (�)�B + s!n(q22)2 � 1�q22 �M2W aW3;W (+)W (�)�B ! : (68)Note that, following our 
onvention de�ned before, ea
h Z ex
hange 
arries a fa
tor 
2w.As a 
onsequen
e, the produ
tion of the Higgs obtains a fa
tor 1=
2w if, in (68), one ofthe atta
hed neutral ex
hanges is a Z boson, and a fa
tor 1=
4w if we have a Z boson onboth sides of the produ
ed Higgs. In the following we shall verify that these produ
tionamplitudes lead to the 
orre
t bootstrap equations.5 Integral EquationsWe now turn to the derivation of integral equations whi
h represent the sum of dis
ontinu-ities of the s
attering amplitude over an arbitrary number of produ
ed parti
les. The oneand two loop 
al
ulations suggest that the 2 ! n produ
tion amplitudes 
an be writtenin the fa
torized multiregge form, where 
harged and neutral ex
hanges lead to slightlydi�erent expressions. The ex
hange of a 
harged gauge boson requires the usual reggeonpropagator s1+!
i =(q2+M2W ). For the neutral ex
hange we have a sum of three terms, theZ and 
 ex
hange in the Born approximation, and the neutral Regge pole ex
hange. Inthe angular momentum representation, the 
orresponding propagators are
2w! 1q2 +M2Z ; s2w! 1q2 ; � 1! � !
(q2) � 1!� 1q2 +M2W ; (69)resp. When inserting the sum of these three terms into a produ
tion amplitude, ea
h term
omes with its own 
oupling to external and produ
ed parti
les. For example, the 
ou-plings to an externalW boson are aZ;W (�)W (+)� , a
;W (�)W (+)� , and aW3;W (�)W (+)� , respe
tively.16



Figure 9: Ladder diagrams obtained from the square of produ
tion amplitudes: (a)ZZ ! W (+)W (�) (
harge ex
hange); (b) W (+)W (�) ! W (+)W (�) (neutral ex
hange,odd signature).When, inside a multiregge produ
tion amplitude, the ex
hanged neutral boson 
ouplesto a W produ
tion vertex, the e�e
tive produ
tion verti
es are CMW ;MZMW , CMW ;M
MW ,and CMW ;M3MW with M3 = MW , resp. With these rules it will be straightforward to writedown the integral equations for the sum of produ
ts of produ
tion amplitudes (
f. [3℄)).Let us begin with the partial wave representations. For the 2! 2 pro
ess with 
hargedboson ex
hange we again 
onsider the pro
ess ZZ ! W (+)W (�) (eqs.(38) and (41)). Thet-
hannel partial wave de
omposition 
ontains the Born 
ontribution (38) and, from theRegge pole, the integral over ! = j � 1:A11(s; t) = 2s�q2 �M2W gaW (+);W (�)Z�A gaW (�);W (+)Z�A0 �1 + Z a+i1a�i1 d!4i s! 1 + e�i�!�! !
(q2)! � !
(q2)� ;(70)where a > 0. We 
an shift the integration 
ontour to the region <! < 0 by 
an
elling theresult of taking the residue of the pole at ! = 0 with the Born 
ontribution:A11(s; t) = 2s�q2 �M2W Z �a+i1�a�i1 d!4i 1 + e�i�!�! s!gaW (+);W (�)Z�A !
(q2)! � !
(q2)gaW (�);W (+)Z�A0 :(71)With the partial wave F11(!; q2) = !
(q2)(q2 +M2W )(! � !
(q2)) (72)17



we write the partial wave representation in the form:A11(s; t) = 2sZ �a+i1�a�i1 d!4i s! 1 + e�i�!�! gaW (+);W (�)Z�A F11(!; q2)gaW (�);W (+)Z�A0 : (73)An analogous ansatz 
an also be made for produ
tion amplitudes. Note, that the t-
hannelpartial wave for the Born term 
ontains the Krone
ker symbol � Æj;1 non-analyti
 in thej-plane but as a result of summing radiative 
orre
tions the t-
hannel partial wave in LLAbe
omes the analyti
 fun
tion [5℄ � � !
(q2)! � !
(q2) :From the point of view of the t-
hannel unitarity the reggeization of the ve
tor bosonsis related to the existen
e of the nonsense intermediate states for two parti
les with spinsequal to unity [5℄. For these nonsense states the sum of proje
tions of their spins on therelative momentum�!p equals 2, whi
h makes them non-physi
al for the total momentumj = 1. Nevertheless, the t-
hannel partial wave fnnj (t) for the nonsen
e-nonsense transitionexists for 
omplex j and has the pole � g2=(j � 1) in the Born approximation. The t-
hannel unitarity 
ondition together with the dispersion relations allows one to 
onstru
tthis partial wave in LLA: fnnj (t) � g2=(j�1�!(t)), where !(t) is the 
orresponding Reggetraje
tory. The similar 
al
ulation of the amplitudes for sense-nonsense and sense-sensetransitions gives in LLA fnsj � g2pj � 1=(j � 1 � !(t)) and f ssj � �(t)=(j � 1 � !(t)),respe
tively. It leads to the disappearan
e of the singularity � Æj; 1 in the sense-sensepartial wave [5℄.In order to obtain the partial wave amplitude for neutral ex
hange in the 2! 2 pro
essW (+)W (�) ! W (+)W (�), we return to (71). Sin
e, in the Born approximation, we have,instead of the propagator � 1=(q2 +M2W ), the Z and 
 propagators, we repla
e the �rstterm by Z and 
 ex
hanges. Shifting then the ! 
ontour to the left from the point ! = 0,we arrive at the formA10(s; t) = 2sZ �a+i1�a�i1 d!4i s! 1 + e�i�!�! aW3;W (�)W (+)�A F10(!; q2)aW3;W (+)W (�)�A+2s �gaZ;W (�)W (+)�A 
2w�q2 �M2Z gaZ;W (+)W (�)�A + ga
;W (�)W (+)�A s2w�q2 ga
;W (+)W (�)�A�gaW3;W (�)W (+)�A 1�q2 �M2W gaW3;W (+)W (�)�A � : (74)As a result of shifting the 
ontour to the left we have obtained from the residue of thepole 1=! the third 
ontribution � 1=(q2 +M2W ) in the last bra
kets. All terms in thesebra
kets 
ontain the non-analyti
 fa
tors Æj;1 in the j-plane (see the above dis
ussion aftereq. (71)). Thus, for t < 0 the high energy behaviour of s
attering amplitudes A � s forthe neutral t-
hannel is governed by these Krone
ker-symbol singularities (see (57)).For the neutral ex
hange the t-
hannel partial wave in the Born approximation isnot fa
torized [5℄. As a result, the sense-sense amplitudes in LLA have both the Reggepole and the Krone
ker singularities. The nonsense-nonsense partial wave for the neutral
hannel 
ontains the fa
tor (t�M2), whi
h leads (after the use of the t-
hannel unitarity
ondition) to the Regge traje
tory !n(q2) proportional to this fa
tor (see (55)) [5℄.18



5.1 Neutral isospin-1 
hannelLet us now turn to the integral equations. We begin with the odd signature neutral ex-
hange 
hannel and 
onsider the pro
essW (+)W (�) !W (+)W (�). The ansatz is 
ontainedin (74). The t-
hannel partial wave F is des
ribed by the sum of diagrams illustrated inFig.9a: F10(!; q2) =g2 1Xn=0 Z  n+1Yl=1 d2ql(2�)3 1(q2l +M2W )((q � ql)2 +M2W ) [! � !
(q2l )� !
((q � ql)2)℄! g2�K101;2 �K102;3 � ::: �K10n;n+1 : (75)The kernel K10 represents the sum of produ
tions of a Z boson, a photon, and a Higgss
alar. It has the form:K10(q; k; k0) = g2(� (q2 +M2W ) (76)+ h(k2 +M2W )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2W )i� � 
2w(k � k0)2 +M2Z + s2w(k � k0)2�) :It is 
onvenient to remove, in (75), the �rst momentum integral (in Fig.9a the leftmost
ell), and to de�ne the (amputated) amplitude f :F10(!; q2) = g2(2�)3 Z d2k(k2 +M2W )((q � k)2 +M2W )f10(!;k;q � k) : (77)For the amplitude f10(!;k;q � k) we 
an write down the integral equation:[! � !
(k2)� !
((q � k)2)℄f10(!;k;q � k) = g2 (78)+ Z d2k0(2�)3K10(q;k;k0) f10(!;k0;q � k0)(k02 +M2W )((q � k0)2 +M2W ) :The solution is independent of k, and we 
an easily �nd:f10(!; q2) = g2! � (q2 �M2W )�ww(q2)= g2! � !n(q2) ; (79)and therefore F10(!; q2) = g2�ww(g2)! � !n : (80)This bootstrap solution reprodu
es exa
tly the Regge pole in the neutral 
hannel, whi
hshows the self-
onsisten
y of our ansatz. 19



5.2 Charged isospin-1 
hannelFor the 
harged ex
hange 
hannel we 
onsider the pro
ess ZZ !W (+)W (�) (and its s�u
ounterpart W (+)Z ! ZW (+)). The ansatz is 
ontained in (73). The squared produ
tionamplitudes for the pro
ess ZZ ! W (+)W (�) are illustrated in Fig.9b: the left two kernels
ontain the produ
tion of a 
harged ve
tor boson, the next kernel 
ontains the Higgsprodu
tion. The partial wave has the same stru
ture as (75), but, as we said above, forea
h neutral ex
hange we have to sum over three 
ontributions: Z and 
 ex
hanges in theBorn approximation, and the neutral Regge ex
hange (in the latter we have to subtra
tthe parti
le pole).To obtain an integral equation for the partial wave, in analogy to (77), we remove the�rst (leftmost) loop integral; in Fig.9b, the �rst 
ell has a 
harged t-
hannel propagatorbelow, a neutral one above. Denote the sum of the 
ells to the right by ~f
ni (here wein
lude, for the 
oupling to the external parti
les on the rhs, the verti
es from Table1). For the 
rossed pro
ess, W (�)Z ! ZW (�), the �rst 
ell has the neutral t-
hannelpropagator below and the 
harged one above; let the sum of the 
ells to the right be ~fni
.In both 
ases, the subs
ript i reminds that, in the neutral ex
hange 
hannel, we have tosum over several terms (Z, 
, Regge pole minus parti
le pole): it will be 
onvenient to
ount the last term as a sum of two pie
es. The subs
ript i then takes the four values: i =Z, 
, 3 (neutral parti
le pole), n (neutral Regge pole). The last term (neutral Regge pole)has the traje
tory fun
tion !n, whereas for the other three terms the traje
tory is absent.It will be 
onvenient to introdu
e, nevertheless, the vanishing fun
tions !Z = !
 = !3 = 0.Also, ea
h of the four terms has a multipli
ative fa
tor, b2i :b2Z = 
2w; b2
 = s2w; b23 = �1; b2n = 1: (81)With these 
onsiderations the 
oupled integral equations for the fun
tions fni
 and f
ni
an be written in a 
losed form:[! � !
(k2) � !ni((q � k)2)℄� ~f
ni~fni
 �=  g2aZ;HZ�B aW ;WH�B ÆiZg2aW (�);W+)Z�B ani;W (+)W (�)�B ! +� K
ni;
nj K
ni;nk
Kni
;
nj Kni
;nk
 �
� ~f
nj~fnk
 � : (82)The kernels K
ni;nk
 et
. follow from the squares of produ
tion verti
es des
ribed before.The 
onvolution symbol 
ontains parti
le propagators and the fa
tors b2i (81).Finally we de�ne the signatured amplitudes:~f (�)i (k;q � k) = ~f
ni(k;q � k)� ~fni
(q � k;k) : (83)These signatured partial waves satisfy the following integral equations:[!�!
(k2) �!ni((q�k)2)℄ ~f (�)i (k;q�k) = g2aW (�);W (+)Z�B +�Kij 
 ~f (�)j � (k;q�k) : (84)We remove the vertex fa
tor by res
aling the signatured amplitude and obtain[! � !
(k2) � !ni((q � k)2)℄f (�)i (k;q � k) = g2 + �Kij 
 f (�)j � (k;q � k) : (85)20



The kernels 
ontain the sum of W and Higgs produ
tion, and they are of the form:K11ij (q; k; k0) = g2((�q2 �M2W ) (86)+ (k2 +M2W )((q � k0)2 +M2j ) + (k02 +M2W )((q � k)2 +M2i )(k � k0)2 +M2W )with M3 = MW .The bootstrap solution to this equation has the form:0BBB� f (�)Z (k;q � k)f (�)
 (k;q � k)f (�)3 (k;q � k)f (�)n (k;q � k) 1CCCA = g2! � !
(q2)0BB�0BB� 1111 1CCA+ �ww((q � k)2)(! � !
(k2)) 0BB� ((q � k)2 +M2Z)(q � k)2((q � k)2 +M2W )0 1CCA1CCA :(87)When verifying that this solution satis�es the integral equation (85) it is useful to notethe identities b2Z + b2
 + b23 = 0 (88)and b2Z(q2 +M2Z) + b2
q2 + b23(q2 +M2W ) = 0: (89)With the solution (87) the partial wave be
omes:F (�)!;11(q2) = g2 Z d2k(2�)3 Xi b2if (�)i (k;q � k;!)(k2 +M2W )((q � k)2 +M2i )= g2(
2w�wz(q2) + s2w�w
(q2))! � !
(q2)= g2!
(q2)(�q2 �M2W )(! � !
(q2) : (90)When going from the �rst to the se
ond line, we have used the identity (88). Thisbootstrap relation 
ompletes our all-order proof of the reggeization for the weak bosons.5.3 Va
uum 
hannelLet us �nally 
ome to the zero quantum number ex
hange 
hannel whi
h des
ribes the'ele
troweak Pomeron'. We 
onsider, again, the pro
ess W (+)W (�) ! W (+)W (�). Sin
ein the va
uum 
hannel the signature is positive, the Sommerfeld-Watson transform of theamplitude at high energies reads:A00(s; t) = sZ d!2i � sM2W �! �1 + e�i�!�! F!;00(q2) : (91)The lowest-order diagrams to be summed are those of Fig.5e,f; in addition we have to21



Figure 10: Ladder diagrams obtained from the square of produ
tion amplitudes: theva
uum ex
hange 
hannel.in
lude also t-
hannel 
ontributions of two neutral ex
hanges (Fig.5g). The integral equa-tion is illustrated in Fig.10. Using notations whi
h are analogous to those of the previoussubse
tion, we �nd the following set of integral equations:� (! � !ni(k2) � !nj ((q � k)2)) fninj(! � !
(k2) � !
((q � k)2)) f

 � =  g2ani ;W (+)W (�)�B anj ;W (+)W (�)�B� g2p2aW3;W (+)W (�)�B !+ K00ninj ;ni0nj0 p2K00ninj ;

p2K00

;ni0nj0 K00

;

 !
� fni0nj0f

 � : (92)Note that, in order to obtain these equations, one starts from a larger set of 
oupledequations: there are the two separate t-
hannels, W (+)W (�) and W (�)W (+). Introdu
ingeven and odd 
ombinations of them, the odd signature 
hannel de
ouples, and one is leftwith (92). These equations still 
ontain all neutral even signature 
hannels, i.e. both theva
uum 
hannel, T = 0, T3 = 0, and the T = 2, T3 = 0 
on�gurations. The kernels arederived from the produ
tion of ve
tor bosons and of Higgs s
alars, and they are easilyobtained from our rules for produ
tion amplitudes. Beginning with the kernel K00ninj;ni0nj0whi
h has neutral ex
hanges both on the left and on the right hand sides we note that thesekernels are due to the Higgs produ
tion only; whenever (at least) one of the ex
hangeson the lhs or on the rhs is a photon, the matrix element vanishes. All other kernels arefound to have the stru
ture K00ninj;ni0nj0 = g2 M2W2
2mw ; (93)where m is the total number of Z lines (note that the fa
tor 1=2 appears sin
e we havein
luded a fa
tor 2 into the integration phase spa
e). As an example,K00ZZ;ZZ = g2 M2W2
8w ; (94)whereas K00nn;ZZ = g2 M2W2
4w : (95)Next we list the kernels whi
h have neutral ex
hanges on the lhs and 
harged ex
hangeon the rhs, K00ninj ;

. These matrix elements are symmetri
 under the ex
hange of lhs andrhs: K00ninj ;

 = K00

;ninj : (96)22



Their form follows from (34), and the results 
an be summarized by:K00ninj ;

(q; k; k0) =g2 �q2 �M2ij + (k2 +M2i )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2j )(k � k0)2 +M2W ! ;where M2ij = M2i +M2j � M2i M2j2M2W : (97)In parti
ular M2ZZ = 2M2Z � M4Z2M2W ;M2

 = 0;M2nn = 32M2W ;M2Z
 = M2Z ;M2Zn = M2W + 12M2Z ;M2
n = M2W : (98)Finally, the kernel K00

;

 is the same as in (76), i.e.K00

;

(q; k; k0) = g2(� q2 �M2W (99)+ h(k2 +M2W )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2W )i� � 
2w(k � k0)2 +M2Z + s2w(k � k0)2�) :As we have said before, the integral equation (92) still 
ontains both the va
uum
hannel and the T3 = 0 
omponent of the T = 2 
hannel. Nevertheless, we will referto this set of equations as the ele
troweak 'va
uum ex
hange equation'. In order toseparate the T = 0 
hannel from the T = 2 
hannel, we have to diagonalize the matrixequation. This 
annot be done analyti
ally, and in this paper we will dis
uss only a fewapproximations. First, in the 
ase of vanishing Weinberg angle, sw = 0; 
w = 1 in theequation (92), we 
an negle
t the photon 
ontributions and leave only the reggeized bosonZ = W3 substituting ni ! n; nj ! n. In this limit the kernel K is simpli�ed as followsK = � K11 p2K12p2K21 K22 � ; (100)23



where K11 = g2 M22 ; K12 = K21 = (101)g2��q2 � 32M2 + (k2 +M2)((q � k0)2 +M2) + (k02 +M2)((q � k)2 +M2)(k � k0)2 +M2 � ;K22 = g2 ��q2 �M2 + (k2 +M2)((q � k0)2 +M2) + (k02 +M2)((q � k)2 +M2)(k � k0)2 +M2 � :This kernel is SU(2)-invariant, and we 
an sear
h the solution of the 
orresponding equa-tion for the va
uum ex
hange in the form� fnnf

 � = � 1p2 � fWW : (102)For the fun
tion fWW we obtain the known BFKL equation for the Pomeron wave fun
tionin the SU(2) 
ase [3℄ (! � !(k2) � !((q � k)2))fWW (k; q) =g2a0;W (+)W (�)�B + 2Z d2k0(2�)3KBFKL 1(k0)2 +M2 1(q � k0)2 +M2fWW (k0; q) ; (103)where the integral kernel is given by: KBFKL =g2 ��q2 � 54M2 + (k2 +M2)((q � k0)2 +M2) + (k02 +M2)((q � k)2 +M2)(k � k0)2 +M2 � ; (104)and the 
ouplings a0;W (+)W (�)�B have the values 2p3, 34p3 for �B = 1; 2 and �B = 3, resp.In (103), the fa
tor 2 in front of the integral 
orresponds to the SU(2) group fa
tor (
f.r(0) = 2 in (29)).The se
ond solution to the matrix equation (100) belongs to the T3 = 0 
omponent ofthe T = 2 representation. The 
orresponding eigenve
tor, in analogy with (102), is of theform: � fnn;T=2f

;T=2 � = � �p21 � fWW ;T=2 : (105)The integral equation has the same form as (103), where the SU(2) group fa
tor in frontof the integral is �1, and in the expression (104) for the kernel, the mass term �54M2 isrepla
ed by �2M2.As a se
ond approximation, let us return to the investigation of the realisti
 
ase ofthe ele
troweak theory, eqs.(92), and �nd a somewhat simpler form. To begin with, wenote, that the inhomogeneous term does not depend on the momenta k and q � k and24




orresponds to a lo
al intera
tion of the ve
tor parti
les. Similarly, in the kernel K thematrix element K00ninj ;ni0nj0 (93) and the 
ontribution proportional to M2ij in expression(97) des
ribe their 
onta
t intera
tion. We 
an take into a

ount this 
ontributions tothe kernel later restri
ting ourselves initially to the solution of the equation, in whi
h thekernel eK does not 
ontain these terms:eK11 = 0 ; eK12 = ( eK21)k$k0 =g2p2 �q2 + (k2 +M2i )((q � k0)2 +M2W ) + (k02 +M2W )((q � k)2 +M2j )(k � k0)2 +M2W ! ;eK22 = K10(q; k; k0) ;where K10(q; k; k0) is given in (76). It is 
onvenient also to write the equation (92) asfollows� �ninj�

 � = � g2g2 �+ eK11 eK12eK21 eK22 ! 
� �ni0nj0=(! � !i0 � !j0)�

=(! � !
 � !
) � ; (106)where the reggeon propagators in the right hand side of the equation are integrated overk0 (for simpli
ity, we here disregard the heli
ity stru
ture of the 
ouplings to externalparti
les). Looking at the kernel eK, we see, that only the matrix element eK12 dependson i and j, and this dependen
e is simple. It means, that we 
an sear
h a solution of theabove equation in the form� �ninj (k; q)�

(k; q) � = � �0(k; q) +M2i �1(k; q) +M2j �2(k; q)�

 � ; (107)where �2(k; q) = �1(q � k; q) : (108)Putting this ansatz in the equation, we obtain the system of the equations for the fun
tions�i:�0(k; q) = g2p2��q2 + k2((q � k0)2 +M2W ) + (k02 +M2W )(q � k)2(k � k0)2 +M2W �
 �

! � !
 � !
 ;(109)�1(k; q) = g2p2(q � k0)2 +M2W )(k � k0)2 +M2W ) 
 �

! � !
 � !
 (110)�

(k; q) = g2 + eK21 
 �ni0nj0! � !i0 � !j0 + eK22 
 �

! � !
 � !
 : (111)Here the integration over k0 is implied. Returning to the general 
ase (92), we note,that the inhomogeneous terms and the terms K00ninj ;ni0nj0 ; M2ij in the kernel lead to thediagrams, in whi
h the ladders generated by the simpli�ed kernel K are 
ombined ea
hwith other by the lo
al verti
es. Therefore the solution of (92) 
an be obtained from the25



solutions of the simpli�ed equation (106) with modi�ed inhomogeneous terms by summingthe 
orresponding two-point loop diagrams. We 
onsider this pro
edure in details in ourfuture publi
ations.Finally we note that the equations (92) simplify in the region of large transversemomenta k2; (q � k)2 �M2i ; (112)where we 
an negle
t all masses and Higgs 
ontributions. In this region, in ea
h neutralex
hange 
hannel the sum of the non-reggeizing pie
es 
an
els (due to (88)), and we areleft with the Regge pole !n only. Consequently we are ba
k to the massless SU(2) gaugetheory, i.e. the kernels are 
onformal invariant. The leading high energy behaviour in theva
uum 
hannel then follows from the observation that, be
ause of the di�usion in lnk2,the spe
trum of eigenvalues is the same as in the massless 
ase:! = !(�; n) = g2�2 �	(1)�Re	(12 + i� + jnj2 )� ; (113)where � and n are real and integer numbers, resp. The leading singularity of the t-
hannelpartial wave appears at ! = !(0; 0) = 2 g2�2 ln 2 (114)and leads to the power-like behaviour �t � s!(0;0) of the total 
ross-se
tions. Note,however, that the solution of equation (92) 
an 
ontain the Regge poles at ! = !0 >!(0; 0) with the residues tending to zero at k2 !1. Further investigations of the relatedproblems are in progress, in
luding a numeri
al solution to the 
oupled integral equations.6 An appli
ation: WW-s
atteringAt the end of our paper we present, as an appli
ation of the va
uum 
hannel integralequation, the two loop expressions for the pro
ess W (+) +W (�) ! W (+) +W (�). Thiselasti
 s
attering pro
ess has, as 'se
ondary Regge' ex
hange, the odd signature neutralisospin-1 ex
hange, des
ribed in se
tion 5.1. For the even signature part the 
ombinedT = 0 and T = 2 ex
hanges, in the one-loop approximation, are given in (46). Thehigher-loop approximations 
an be derived from (92) whi
h we rewrite in the followingway: !� fninjf

 � =  g2ani;W (+)W (�)�B anj;W (+)W (�)�B� g2p2aW3;W (+)W (�)�B !+ K00ninj ;ni0nj0 + (!ni + !nj )Æii0Æjj0 p2K00ninj ;

p2K00

;ni0nj0 K00

;

 + !
 + !
 !
� fni0nj0f

 � : (115)For the 
ouplings to external parti
les we introdu
e 
olumn ve
tors ('impa
t ve
tors'),�W (+) and �W (�) : for the W (�), �W (�) is given by the inhomogenous term on the rhs of26



(115), whereas for the W (+) we have�W (+) =  g2ani;W (�)W (+)�A anj;W (�)W (+)�Ag2p2aW3;W (�)W (+)�A ! : (116)The two-loop approximation, in a symboli
 notation, is then simply given byA(2)even = �TW (+) 
K 
 �W (�) ; (117)where K denotes the matrix kernel of (115). After some algebra we �nd:A(2)even = 2i�s�(aZA)2�ZZM2W�ZZ(aZB)2 � 12aW3A �WW (�q2 �M2W )�WWaW3B+ 1p2aW3A �WW [(�q2 �M2ZZ)
4w�ZZ(aZB)2 + (�q2 �M2

)s4w�

(a
B)2+2(�q2 �M2
Z)�
Z
2ws2waZBa
B℄ (118)� 1p2[(aZA)2
4w�ZZ(�q2 �M2ZZ) + (a
A)2s4w�

(�q2 �M2

)+2aZAa
A
2ws2w�
Z(�q2 �M2
Z)℄�WWaW3B+2�WWZ
2w[�aW3A aZAaW3B aZB + 1p2aW3A (
2w(aZB)2 + s2waZBa
B)� 1p2(
2w(aZA)2 + s2waZAa
A)aW3B ℄+2�WW
s2w[�W3A a
AaW3B a
B + 1p2aW3A (s2w(a
B)2 + 
2wa
BaZB)� 1p2(s2w(a
A)2 + 
2wa
AaZA)aW3B ℄� :Here we have used the abbreviations aZ;W (�)W (+)�A ! aZA , aZ;W (+)W (�)�B ! aZB et
.7 Con
lusionsIn this paper we have examined, in the leading logarithmi
 approximation, the high energybehavior of the ele
troweak se
tor of the Standard Model. We have derived bootstrapequations whi
h des
ribe the reggeization of the ve
tor bosons. The 
harged W bosonslie on the Regge traje
tory �
(t) whi
h at t = M2W passes through unity. In the neutralse
tor there exists another Regge traje
tory, �n, whi
h also at t = M2W passes through 1,but neither the Z boson nor the photon lie on this traje
tory. For �nite t both traje
toriesdi�er from ea
h other, thus re
e
ting the breaking of the gauge symmetry SU(2)�U(1).As usual, the Reggeization of the ele
troweak gauge bosons hints at some form of 
om-positeness. Note, that in the Grand Uni�ed Theories all parti
les, in
luding the Z-bosonand photon, lie on their Regge traje
tories [5℄.Our main result is the integral equation for the even signature ex
hange in ele
troweaktheory, whi
h 
ontains both the Pomeran
huk singularity and the zero 
omponent of theT = 2 ex
hange. One of the features of this equation is that, in the region of large trans-verse momenta, a 
onformal stru
ture emerges, analogous to the one of the QCD BFKLPomeron. This suggests that, in the 
ombined limit of high energies and small distan
es,not only the strong se
tor but also the ele
troweak se
tor of the Standard Model exhibits27



Figure 11: Notations for the unitarity integral in the (23)-sub
hannel. The dot denotesthe e�e
tive produ
tion vertex.a deeper symmetry pattern whi
h 
ould be related to string theory.A
knowledgements: One of us (L.N.L.) thanks the Alexander von Humboldt-Foundationfor �nan
ial support, and the II.Institut of Theoreti
al Physi
s, University Hamburg, andDESY for the hospitality.AppendixIn this appendix we list a few details of the 
al
ulation of the one loop 
orre
tions to2! 3 produ
tion amplitudes. The produ
tion amplitude in the Born approximation hasthe fa
torized form (22), and we want to 
ompute the two-parti
le intermediate stateunitarity integral in (23) subsystem (Fig.11). Sin
e the the produ
tion amplitude (22)holds in the overall 
m-system, whereas the 2 ! 2 s
attering amplitude (4) refers to the
m-system of the (23) sub
hannel, it is ne
essary to transform from one referen
e frame tothe other. Following the dis
ussion of [7℄, we �rst 
ompute the heli
ity matrix elementsof the e�e
tive produ
tion vertex (23). We de�ne the polarization ve
torse1�(k) = 1jkj �0; k1k3jkj ; k2k3jkj ;�jkj� ;e2�(k) = 1jkj (0;�k2; k1; 0) ;e3�(k) = 1M �jkj; k0k1jkj ; k0k2jkj ; k0k3jkj � ; (A1)where k0 = s1 + s22ps ; k3 = s2 � s12ps : (A2)28



The three heli
ity 
omponents of the produ
tion vertex are:CM ;M2M1(q2; q1) � e1(k) = jkj2psjkj �s2(1 + 2 t1 �M21k2 +M2 ) + s1(1 + 2 t2 �M22k2 +M2 ) ;+ (s2 � s1)t2 � t1k2 � ;CM ;M2M1(q2; q1) � e2(k) = �2jq1j sin(q1;k)CM ;M2M1(q2; q1) � e3(k) = M2psjkj ��s2(1 + 2 t1 �M21k2 +M2 ) + s1(1 + 2 t2 �M22k2 +M2 )+ (s2 + s1)M22 �M21M2 � (A3)with k2 +M2 = s1s2s : (A4)An expli
it 
al
ulation shows that the 2 ! 2 subpro
ess in the s2 
hannel, evaluated asa 3� 3 matrix in the overall 
m-system, 
an be written in the formL23R(k;q02)0� �1 0 00 �1 00 0 �M2+M 022MM 0 + M222MM 0 1ART (k0;q02)L023T ; (A5)where L23 = 0� A 0 �B0 1 0B 0 A 1A (A6)with A = pss2jkj ��M2 + s22s(s1 + s2)� ; B = psjkjMs2jkj : (A7)The matrix L023 is obtained from L23 by repla
ing s1 ! s01 (with s01s2s = k02 +M 02). Oneeasily veri�es unitarity, LLT = 1. The matrix R(k;q02) denotes a rotation in the subspa
eof the transverse heli
ities:R(k;q02) = 0� 
os(k;q02) sin(k;q02) 0� sin(k;q02) 
os(k;q02) 00 0 1 1A : (A8)On the rhs of (A5), the matrix in the middle represents the 2 ! 2 s
attering in the s2
m-system. >From this result we infer that the Lorentz transformation, whi
h takes usfrom the s2 
m-system of the outgoing parti
les 2 and 3 into the overall 
m-system ofthe two in
oming parti
les, 
onsists of a rotation and of a boost. Sin
e in (A5) the tworotations 
ommute with the s
attering matrix in the s2 system, they 
an be 
ombinedinto R(k;q02)RT (k0;q02) = R(k;k0); (A9)29



and, in (A5), this matrix be written either on the lhs or on the rhs of the diagonal2 ! 2 s
attering matrix. We also �nd that, in the double-Regge limit, the parti
le-reggeon-parti
le vertex at the rhs of Fig.11 does not 
hange if we swit
h from the overall
m-system to the s2 
m-system.Multiplying now the ve
tor of heli
ity matrix elements by L�123 = LT23, we obtain forthe e�e
tive produ
tion vertex in the (23) 
m-system:LT230� Ce1Ce2Ce3 1A = � 2jq1jV (q1;k)M (�1 + M22�M21M2 ) �� q21 +M21k2 +M2 � 2jkjV (k;k)�2M � ; (A10)where V (q1;k) = � 
os(q1;k)� sin(q1;k) � : (A11)Now we are ready to multiply with the 2! 2 matrix element in the (23) 
hannel andto 
ompute the unitarity integral, using, in parti
ular, for the longitudinal 
omponent,the heli
ity fa
tors of Table 1. We �rst 
onsider the pro
esses shown in Fig.7 where allwavy lines stand for Z bosons. In the notation of this appendix we have: M1 = M =M 02 = MW , M2 = M 0 = MZ , i.e. we start from the e�e
tive vertex CMWMZMW . On therhs of (A10), the third 
omponent of the �rst ve
tor be
omesMW (�1 + M2Z �M2WM2W ) = 2MW aZ;W (+)W (�)3 = 2MZ
waZ;W (+)W (�)3 : (A12)Multiplying with the W (+)W (�) ! ZZ matrix element and in
luding the Higgs interme-diate state, we obtain, at the produ
tion vertex: 2jq1jaW (�);ZW (+)1 V (q1;k)2MW (aZ;W (+)W (�)3 aW (�);ZW (+)3 + aW ;HW3 aZ;HZ3 ) ! � q21 +M2Wk2 +M2W  2jkjaW (�);ZW (+)1 V (k;k)�2MWaW (�);ZW (+)3 ! ;(A13)whi
h 
an also be written as� 
w"� 2jq1jV (q1;k)�MZ �� q21 +M2Wk2 +M2W � 2jkjV (k;k)�MZ �# : (A14)By subtra
ting and adding a new term, we arrive at the expression:� 
w"� 2jq1jV (q1;k)�MZ �� q21 +M2Wk02 +M2Z � 2jk0jV (k;k0)�2MZ �#+
w q21 +M2Wk2 +M2W "� 2jkjV (k;k)�MZ �� k2 +M2Wk02 +M2Z � 2jk0jV (k;k0)�2MZ �# : (A15)The overall fa
tor �
w = TZW (�)W (+)
w 
ontains, apart from the isospin group fa
tor, thewave fun
tion of the produ
ed Z boson, 
w. The expression in the �rst and in the se
ond30



Figure 12: Transverse momentum stru
ture of eq.(A16)lines 
an then be re
ognized as the result of the Lorentz transform applied to the e�e
tiveprodu
tion vertex CMZ;MWMW ,Combining with the other parts of Fig.11 and adding the 
orresponding expression forthe photon ex
hange we �nd the following results for the dis
ontinuities in s2 (Fig.12):dis
s2A2!3 = 2�s FLt1 �M21 (A16)with FL = �12sgaW (�);W (+)Z�A �gTZW (�)W (+)C(q2;q1)MZ ;MWMW !
(q22)�q22 �M2W�(q21 +M2W )(
2wKZ;WW + s2wK
;WW )� gaW (+);W (�)Z�B (A17)andKZ;WW = g2TZW (�)W (+) Z d2k(2�)3 CMZ ;MWMW (q2 � k;q1 � k)((q1 � k)2 +M2W )((q2 � k)2 +M2W ) 1(k2 +M2Z) : (A18)The same 
al
ulations 
an be done for the other dis
ontinuities illustrated in Figs.7 and8. They lead to the results listed in se
tion 4.Referen
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