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The electromagnetic form factors provide important hints for the internal structure of the nucleon

and continue to be of major interest for experimentalists. For an intermediate range of momen-

tum transfers the form factors can be calculated on the lattice. However, reliability of the results

is limited by systematic errors due to the required extrapolation to physical quark masses. Chi-

ral effective field theories predict a rather strong quark mass dependence in a range which was

yet unaccessible for lattice simulations. We give an updateon recent results from the QCDSF

collaboration using gauge configurations withNf = 2, non-perturbatively O(a)-improved Wilson

fermions at very small quark masses down to 340 MeV pion mass,where we start to probe the

relevant quark mass region.
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1. Introduction

In recent years the phenomenological interest in the electromagnetic form factors of the nu-
cleon has revived. This was triggered by the Jefferson Lab polarisation experiments [1, 2] measur-
ing the ratio of the proton electric to magnetic form factors, µ(p)G(p)

e (Q2)=G(p)
m (Q2). From these

measurements an unexpected decrease of this ratio has been found, which means that the proton’s
electric form factor falls off faster than the magnetic formfactor.

Many theoretical calculations have been done to investigate possible interpretations of a de-
crease of this ratio (see, e.g., [2] for an overview). Lattice techniques allow the calculation of the
form factors from first principles. Such calculations do notonly yield phenomenologically interest-
ing quantities such as magnetic and electric charge radii and magnetic moments. These techniques
also allow, e.g., the investigationof theQ2 dependence of the nucleon electromagnetic form factors,
which can be compared with experimental results and also helps in understanding the asymptotic
behaviour of these form factors.

In practice, the calculation of these form factors on the lattice remains a challenge. In recent
years progress has been made to improve control on systematic errors which are related to the fact
that the calculations are performed on finite volumes, at finite lattice spacings and at quark masses
which are still relatively large. For making reliable predictions at physical quark masses it turned
out that numerical results at smaller quark masses are crucial. With recent advances in computing
power available to lattice QCD calculations and the speed-up of algorithms for simulating dynam-
ical fermions it is now possible to reach much smaller quark masses with pseudoscalar masses in
the range of 300 MeV.

2. Calculation details

In this talk we present results obtained on configurations with two mass degenerate flavours of
non-perturbativelyO(a)-improved Wilson fermions. We choose Wilson glue for the gauge action.
To scale the lattice results for differentβ andκseawe use the Sommer parameterr0(β ;κsea)=a and
the conversion factorr0 = 0:467 fm to translate our results into physical units.

The form factors are obtained from the standard decomposition of the nucleon electromagnetic
matrix elementshp0;s0jJµ jp;si= u(p0;s0)�γµF1(Q2)+ iσ µν qν

2MN
F2(Q2)�u(p;s); (2.1)

wherep (s) andp0 (s0) denote initial and final momenta (spins),q= p0� p the momentum transfer
(with Q2 = �q2) andMN the nucleon mass. By calculating the matrix elements on the l.h.s. and
the nucleon mass we obtain the Dirac form factorF1(Q2) and Pauli form factorF2(Q2).

The nucleon matrix elements are extracted from ratios of three- and two-point functions:

R(t;τ ;~p0;~p) = C3(t;τ ;~p0;~p)
C2(t;~p0) ��C2(τ ;~p 0)C2(t;~p0)C2(t� τ ;~p)

C2(τ ;~p)C2(t;~p)C2(t� τ ;~p 0) �1=2 : (2.2)

Here t denotes the location of the sink. Assuming the source being located at time slice 0, we
expect an plateau for 0� τ � t (source and sink are separated by a distance of� 1:1 fm). For
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Figure 1: The iso-vector Pauli form factor radius at(β ;κsea) = (5:25;0:13575) (left plot) and the ratio
of the iso-vectord- andu-flavour Dirac form factors (right) as a function ofQ2. In the right plot we show
results for similarmPS' 400 MeV but different lattice spacings.

further details see [3]. We use three different polarisationsΓunpol= 1
2(1+ γ4), Γ1 = 1

2(1+ γ4) iγ5γ1,
Γ2 = 1

2(1+ γ4) iγ5γ2 as well as three different sink momenta~p0 = (0;0;0), ~p1 = (p;0;0), ~p2 =(0; p;0) (wherep= 2π=LS). 17 different choices for the momentum transfer~q have been used.
Due to statistical fluctuations the operand of the square root in Eq. (2.2) may become negative.
Results for which this happens are discarded from the consecutive analysis steps.

We use the local vector current, which needs to be renormalised and improved:

Vµ = ZV(1+bVamq)�q̄γµq+ icVa∂λ (q̄σµλ q)� : (2.3)

The renormalisation coefficientZV and the parameterbV have been determined non-perturbatively
[4]. The improvement coefficientcV is only known perturbatively. However, since this coefficient
is expected to be a small number and because the improvement term was found to be small in the
quenched approximation [5], we will ignore the improvementof the operator.

In the following we will consider the iso-vector, iso-scalar and the proton form factors. The
latter two might receive contributions from quark-line disconnected terms, which are notoriously
hard to calculate on the lattice and will not be considered here.

3. Parameterisation and Q2 dependence

First we will investigate theQ2 dependence of the Dirac and Pauli form factors. Both lattice
and experimental data can be reasonably well parametrised by a pole ansatz

Fi(Q2) = Fi(0)(1+Q2=M2
i )p

: (3.1)

From naive dimensional counting one would expect the Dirac and Pauli form factors to scale
differently, i.e. F1 ∝ Q�4 and F2 ∝ Q�6, which corresponds top = 2 and p = 3, respectively.
Experimental data as well as theoretical calculations indicate deviations from this naive picture.
For instance, the JLab results for

p
Q2F (p)

2 (Q2)=F(p)
1 (Q2) were found to be surprisingly flat. A

perturbative QCD analysis of the Pauli and Dirac form factors predicts the ratio(Q2=log2+8=(9β)Q2=Λ2)F2(Q2)=F1(Q2) (3.2)
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(with β = 11�2Nf=3) to scale as a constant [6]. In an investigation of theQ2 dependence of the
experimental nucleon form factor data using empirical parameterisations, Diehl and collaborators
found indications for the form factor scaling to be flavour dependent [7]. By comparing the Dirac
form factor results for proton and nucleon they found the flavour contributionF (d)

1 (Q2) to decrease

faster withQ2 thanF(u)
1 (Q2).

From a first inspection of the lattice results one finds that the effects from changingp in
Eq. (3.1) are small with respect to the statistical errors. In Fig. 1 (left plot) we show the results of a
fit to F (v)

2 for one particular data set usingp= 2 and 3. It is clear that it is difficult to obtain lattice
data with high enough precision over a large enough range ofQ2 values to distinguish between
a dipole or tripole behaviour. It may, however, be instructive to consider ratios of form factors
in order to reveal significant deviations from the naive scaling hypothesis. In the right plot of
Fig. 1 we show the ratioF(d)

1 =F(u)
1 and find that it does not scale as a constant. This is consistent

with the observation by Diehl et al. We should however emphasize that we are ignoring possible
contributions from disconnected terms.

Based on the above observation we perform fits to the Dirac andPauli form factors for each
flavour separately using the ansatz Eq. (3.1). To eventuallydecide whichp should be used, we
perform these fits for various 1:5 . p . 4 and search for the “optimal”p for which χ2=d:o:f:
becomes minimal. We observe strong variations of the resulting “optimal” p for data sets which
differ in (β ,κsea,κval). However, we nevertheless see clear trends. In case of theu-flavour Dirac
form factorF (u)

1 (Q2) we find for most data setsp to be close to 2. On the other hand, for the other

form factorsF(d)
1 (Q2), F (u)

2 (Q2) andF (d)
2 (Q2) we typically getp' 3.

4. Form factor radii and magnetic moments

From the fits to Eq. (3.1) we obtain the form factors at zero momentum transferFi(0) and the
di- or tripole massesMi. Equivalently, we can use the same fit to obtain the form factor radii r i and
the magnetic momentµ . These quantities are defined as follows:

Fi(Q2) = Fi(0)�1� 1
6

r2
i Q2+O(Q4)� ; (4.1)

µ = F1(0)+F2(0): (4.2)

From the magnetic moment we can calculate the anomalous magnetic moment, e.g.κ (v)= µ(v)�1.
For comparison with phenomenological results we use the normalised anomalous magnetic mo-
ment, e.g.κ (v)norm= κ (v) mN(mπ)=mN(mPS), wheremN(mPS) refers to the nucleon mass calcu-
lated on the lattice at the quark mass corresponding to the pseudoscalar massmPS andmN(mπ) the
experimental value of the nucleon mass.

In Fig. 2 we show results forM(v)
1 andF (v)

2 (0) as a function ofm2
PSwhich have been calculated

for different values of the gauge couplingβ and various sea quark masses. These results seem
to lie on a universal curve, which indicates that discretisation errors are small. In the following
we will consider them as negligible compared to the statistical errors. We furthermore observe
that the iso-vector anomalous magnetic moments and di-/tripole masses show a linear quark mass
dependence for a very large range of quark masses. However, using an ansatz linear in(r0mPS)2
to extrapolate our results to the physical point, we obtain values which differ significantly from
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Figure 2: The iso-vector Dirac form factor dipole mass (left plot) andthe iso-vector Pauli form factor at
zero momentum transfer (right plot) as a function ofm2

PS.

those extracted from experiment. This is consistent with calculations based on a chiral effective
field theory (ChEFT) that includes nucleons, pions and deltaresonances as explicit degrees of
freedom [9, 3, 8]. These calculations predict for the iso-vector form factor radii and the iso-vector
anomalous magnetic moment a strong quark mass dependence inthe small quark mass region. This
region is just starting to become accessible for simulations with dynamical Wilson quarks.

In the left plot of Fig. 3 we compare the lattice results for the iso-vector Dirac form factor ra-
dius with the following result from ChEFT, where we used the same phenomenological parameters
as in [3]:�

r(v)1

�2 = � 1(4πFπ)2 n1+7g2
A+�10g2

A+2
�

log
hmPS

λ

io
(4.3)+ cA

2

54π2F2
π

(
26+30log

hmPS

λ

i+30
∆q

∆2�m2
PS

log

"
∆

mPS
+s ∆2

m2
PS
�1

#):
For the iso-vector Pauli form factor,r(v)2 , and the anomalous magnetic moment,κ (v), we per-

formed a combined fit of the lattice results to the following expressions from ChEFT:�
r(v)2

�2 = gA
2MN

8Fπ
2κ (v)(mPS)πmPS

+ (4.4)

cA
2MN

9F2
π κ (v)(mPS)π2

p
∆2�m2

π
log

"
∆

mPS
+s ∆2

m2
π
�1

#+ 24MN

κ (v)(mPS)Bc2;
κ (v)(mPS) = κ (v)0� gA

2mPSMN

4πFπ
2 + 2cA

2∆MN

9π2F2
π

8<:s1� m2
PS

∆2 logR(mPS)+ log
hmPS

2∆

i9=; (4.5)�8E(r)
1 (λ )MNm2

PS+ 4cAcVgAMNm2
PS

9π2F2
π

log

�
2∆
λ

�+ 4cAcVgAMNm3
PS

27πF2
π ∆�8cAcV gA∆2MN

27π2F2
π

(�
1� m2

PS

∆2

�3=2

logR(mPS)+�1� 3m2
PS

2∆2

�
log
hmPS

2∆

i):
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Figure 3: Lattice results for the Dirac (left) and Pauli (right) radii. The solid lines show the ChEFT results
given in Eqs. (4.3) and (4.4). Note that the left curve is not based on a fit. In the right-hand plot the dashed
line is the result of a fit to the tripole masses linear in(r0mPS)2. The star denotes the experimental value.

Here we keep the chiral limit of the anomalous magnetic moment κ (v)0, the iso-vectorN-∆ coupling
cV and the ChEFT parametersBc2 andE(r)

1 as free parameters. The result of this fit is displayed in

the right plot of Fig. 3 for(r(v)2 )2 and the left plot of Fig. 4 forκ (v) together with the lattice data
and phenomenological results atmPS= mπ .

The lattice data for the Dirac radius do not seem to agree wellwith the ChEFT result. Since it
is not clear up to which quark masses the ChEFT expression is valid, results at even smaller quark
masses will be needed to actually clarify this issue. For both the Pauli radius and the anomalous
magnetic moment the lattice and ChEFT results look consistent. It is somewhat surprising that this
seems to hold also for rather heavy quarks. From our preliminary results at very low quark masses
we see first indications for the Pauli radius to bend towards the phenomenogical value.

Finally, in the right plot of Fig. 4, we show our results for the iso-scalar form factor. From
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Figure 4: Lattice results for the iso-vector (left) and iso-scalar (right) anomalous magnetic moment. The
solid lines in the left plot show the result from a fit to the ChEFT expression in Eq. (4.5). In the right-hand
plot an ansatz linear in(r0mPS)2 has been used to fit the data. The star denotes the phenomenological value.
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ChEFT a linear quark mass dependence is expected, which is fully consistent with our lattice
calculations.

5. Conclusions

We have presented the current status of the calculation of the electromagnetic form factors of
the nucleon by the QCDSF collaboration. At the currently achieved level of statistical errors, still
large uncertainties remain for the parameterisation of theform factor results. However, qualitative
agreement with the experimental data has been found, e.g. the flavour dependence of the Dirac
form factorF1. As new configurations at very small quark masses are starting to become available,
we are improving our control on the extrapolation of the lattice results towards the chiral limit. We
have found first indications for strong effects at small quark masses, which have been predicted
by ChEFT calculations. However, results at even lower quarkmasses with higher statistics will be
required in order to confirm these predictions.
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