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AbstratWe study the phase strutures of N = 4 U(N) super Yang-Mills theories onR � S3=Zk with large N . The theory has many vaua labelled by the holonomymatrix along the non-trivial yle on S3=Zk, and for the fermions the periodi andthe anti-periodi boundary onditions an be assigned along the yle. We omputethe partition funtions of the orbifold theories and observe that phase transitionsour even in the zero 't Hooft oupling limit. With the periodi boundary ondition,the vaua of the gauge theory are dual to various arrangements of k NS5-branes.With the anti-periodi boundary ondition, transitions between the vaua are dualto loalized tahyon ondensations. In partiular, the mass of a deformed geometryis ompared with the Casimir energy for the dual vauum. We also obtain an indexfor the supersymmetri orbifold theory.
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Contents1 Introdution 12 Orbifold gauge theories 32.1 Partition funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Path integral formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Phase transitions of the gauge theories 103.1 Critial temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.2 Casimir energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3 Just above the ritial temperatures . . . . . . . . . . . . . . . . . . . . . . 143.4 High temperature behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Dual gravity desription 174.1 Hawking-Page transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.2 Phase transitions of the orbifolds . . . . . . . . . . . . . . . . . . . . . . . 194.3 Loalized tahyon ondensation . . . . . . . . . . . . . . . . . . . . . . . . 215 Conlusion and disussions 22A The partition funtion of single salar partile 25B An index for the supersymmetri orbifold theory 261 IntrodutionReently the thermodynamis of large N gauge theories on ompat spaes attratmuh attention. On ompat spaes the Gauss onstraint restrits physial states intogauge invariant form, and due to this fat the theories are in a on�nement phase at lowtemperature, and undergo a deon�nement transition at a ritial temperature. Moreover,the large N gauge theories may have their dual desription in terms of string theory onan asymptoti Anti-de Sitter (AdS) spae [1℄. For example, the partition funtion fora large N gauge theory on R � S3 was omputed in [2, 3℄, and it was shown that thepartition funtion is of order O(1) at low temperature and of order O(N2) above a ritialtemperature. In the dual gravity theory, the phase transition orresponds to the Hawking-Page transition [4, 5℄, where the thermal AdS spae is dominant at low temperature andthe AdS-Shwarzshild blak hole is dominant at high temperature.In this paper, we study the thermodynamis of N = 4 U(N) super Yang-Mills theoryon R � S3=Zk.1 We onstrut the orbifold theory in the following way. The manifold S31The orbifold theory at zero temperature has been studied in [6℄, see also [7, 8℄.1



has a U(1) symmetry along a yle, and the orbifold is onstruted by dividing Zk rotationalong the yle. The bakground does not inlude any �xed point, but has a non-trivialyle due to the orbifold proedure. We an introdue ux along the non-trivial yle,whih gives non-trivial holonomies to the �elds. Therefore, the theory admits many vaualabelled by the hoie of ux, and this makes the phase diagram riher. Along the non-trivial yle, we an assign periodi and anti-periodi boundary onditions to fermionsalong the non-trivial yle, and this leads to supersymmetri and non-supersymmetritheories at zero temperature. We study the gauge theories perturbatively with respet tothe 't Hooft oupling � = Ng2Y m.2 In this paper, we onsider the zero 't Hooft ouplinglimit, where the theories redue to free �eld theories. Even in this limit we observe phasetransitions due to the ompatness of the base manifold.In this orbifold ase the dual gravity desription is also available, thus the phase di-agram an be extended into the strong oupling region. For the ase with the periodiboundary ondition, the dual geometry is the orbifold of the thermal AdS spae or itsdeformation by loalized massless states in the low temperature phase. In the high tem-perature phase, the dual geometry is the orbifold of the AdS-Shwarzshild blak hole orits deformation. If we perform the T-duality along the non-trivial yle, then we obtaink NS5-brane on�guration, whih is parametrized by the positions of k NS5-branes [6℄.For the ase with the anti-periodi boundary ondition, there are loalized tahyons atthe �xed point of the thermal AdS orbifold in the low temperature phase. The onden-sation of loalized tahyon may resolve the orbifold singularity like [9℄ and lead to thedeformed geometry obtained in [10, 11℄ alled as Eguhi-Hanson soliton. In other words,the gauge theory gives the dual piture of the loalized tahyon ondensation disussedin [9℄.3 At enough high temperature, the dual geometry should be the orbifold of theAdS-Shwarzshild blak hole, and there are no loalized tahyons in the geometry.Following the analysis in [2, 3℄, we obtain the partition funtions for the gauge theoriesin terms of a matrix integral. At low temperature, we �nd the leading ontribution omesfrom the Casimir energy of the theories on S3=Zk. For the ase with the periodi boundaryondition, the Casimir energy is the same for all the vaua and the same as the mass ofthe thermal AdS orbifold. For the ase with the anti-periodi boundary ondition, theCasimir energy is smallest for the vauum dual to the deformed geometry. Interestingly,the Casimir energy is roughly 4=3 times the mass of the Eguhi-Hanson soliton. In thehigh temperature limit, the partition funtion behaves in the same way for all possibleholonomies and spin strutures. Near the ritial temperature, we an perform an analytiomputation by using the Gross-Witten ansatz [17℄ as an approximation, and we an2 On the ompat spae, we have a tunable dimensionless parameter R�, where R is the radius of S3and � is a ut o� sale. If we take R� � 1, then the Yang-Mills oupling an be set small even at lowenergy. Even with this fat we set R = 1 for simpliity.3Previous attempts to apply the AdS/CFT orrespondene to the loalized tahyon ondensation havebeen given in [12, 13, 14, 15, 16℄. 2



disuss the dominant ontribution to the total partition funtion.The organization of this paper is as follows. In the next setion, we de�ne the orbifoldgauge theories on R � S3=Zk with generi holonomy by utilizing the standard orbifoldmethod as in [18℄. We ompute the partition funtion for the orbifold gauge theoriesby following [2, 3℄. In setion 3 we analyze the partition funtion and disuss the phasestruture. We observe that the dominant ontribution omes from the Casimir energy atlow temperature, and we ompute the Casimir energy for the ase with general holonomy.Near the ritial temperature we solve the partition funtion analytially by making useof the analysis in [17℄. At very high temperature, we obtain the partition funtion as anexpansion of the temperature T , whih does not depend on the hoie of holonomy. Insetion 4 we analyze the large 't Hooft oupling limit in the dual gravity desription. Wedisuss the relations to the arrangement of k NS5-branes for the ase with the periodiboundary ondition and to the loalized tahyon ondensation for the ase with the anti-periodi boundary ondition. Setion 5 is devoted to onlusion and disussions. Inappendix A we ompute the partition funtion of single salar partile as an example.In appendix B the index proposed in [19℄ is omputed for the supersymmetri orbifoldtheory.42 Orbifold gauge theoriesWe onsider N = 4 super Yang-Mills theories on R � S3=Zk with large N U(N)gauge symmetry. The 3-sphere S3 has SO(4) ' SU(2)1 � SU(2)2 isometry, and wedivide the gauge theories by 4�=k rotation along the �-yle of U(1)� � SU(2)2. Sine�1(S3=Zk) = Zk, we an assign a non-trivial holonomy matrix V = P exp i H A� alongthe non-trivial yle. Using the U(N) gauge transformation, we an set V as a diagonalmatrix V = diag(
1; � � � ;
N ). Beause of the ondition V k = 1, the element should bea k-th root of unity 
kj = 1. Therefore, we an label the vaua by (n0; � � � ; nk�1) withN = Pk�1I=0 nI , where nI represents the number of j suh that 
j = !I (! = exp(2�i=k)).Then the orbifold theories are de�ned by projeting the Hilbert spae into the orbifoldinvariant subspae as below. In the following we onsider two speial vaua. One isthe Zk symmetri vauum5 with nI = N=k for all I. Due to the Zk symmetry the dualgeometry an be identi�ed as the standard orbifold. The other vaua do not preserve theZk symmetry, thus the dual geometry should be a deformation of the orbifold. The otherimportant vauum is with the trivial holonomy V = 1 or equivalently n0 = N . In thisase the Zk symmetry is maximally broken.4Similar omputations were done in [20℄ for quiver gauge theories, whih are onstruted as orbifoldsdi�erent from ours.5In this ase N is assumed to be N = kZ. However, for large N and �nite k, the di�erene from thegeneral N ase should be negligible. 3



2.1 Partition funtionWe would like to ompute the partition funtion of gauge invariant operator in theorbifold theories. In general, the ounting of gauge invariant operator is an involved task.Fortunately, it was shown in [2, 3℄ that the partition funtion of gauge invariant operatoran be written in terms of single-partile partition funtions asZ(x) = Z [dU ℄ exp "XR 1Xn=1 1nzR(xn)�R(Un)# : (2.1)At this stage, a gauge group G ould be arbitrary, and the sum is taken over all represen-tation R of the gauge group G. We denote �R(U) as the harater for representation R,and [dU ℄ as the Haar measure for the group element U . The partition funtion of singlepartile in the representation R is omputed byzR(x) =XE xE ; (2.2)where E denotes the energy eigenvalue. The ondition of gauge invariane omes fromthe integral over U , and the variable U will be identi�ed as the holonomy matrix alongthe thermal yle.We an adopt any gauge groupG and representationR in the formula (2.1), and severalinteresting examples have their dual gravity desription. The most famous one arises fromthe N D3-brane worldvolume theory, whih is dual to superstrings on AdS5 � S5. Thetheory isN = 4 super Yang-Mills theory on R�S3 with gauge groupG = U(N), where thestates are in the adjoint representation. Our interest is on the orbifold gauge theories withholonomy along the non-trivial yle, where the existene of the holonomy (n0; � � � ; nk�1)breaks the gauge symmetry into G = Qk�1I=0 U(nI).6 With respet to the broken gaugegroup, the states are in the adjoint representation for U(nI) or in the bi-fundamentalrepresentation (nI ; �nJ) for U(nI)� U(nJ).The spetrum of the orbifold theories an be obtained by projeting the spetrumon S3 into the orbifold invariant subspae. The spetrum on S3 an be obtained fromthe spherial harmoni analysis as in [21℄. The theory inludes 6 salers, a gauge �eldand 4 Majorana fermions. The salars an be expanded by the salar spherial harmon-is Sj;m; �m(
), where 
 represents the oordinates of S3. The eigenfuntions of Laplaeoperator on S3 are given asr2Sj;m; �m(
) = �j(j + 2)Sj;m; �m(
) : (2.3)The labels (m; �m) are eigenvalues of J3 and �J3 for SU(2)1 and SU(2)2, and they run�j=2;�j=2 + 1; � � � ; j=2 � 1; j=2. The projetion into the orbifold invariant modes is6The diagonal U(1) parts of eah U(nI) may be deoupled from the rest, but the di�erene an beignored when nI are very large. See, however, appendix B for the ase of an index.4



performed by the projetion operator P = 1k Pk�1I=0 �I , where � represents the orbifoldation. For a bi-fundamental state (nI ; �nJ) or an adjoint state with I = J , the orbifoldation is given by � = e4�i �J3=k!I�J ; (2.4)where ! = exp(2�i=k). The orbifold ation onsists of two parts. The �rst part is thephase shift due to the Zk rotation along the �-yle. The seond part is the holonomyfor the bi-fundamental state (nI ; �nJ). We an see from (2.4) that the orbifold invariantmodes are restrited to 2 �m = J � I mod k. As a notation we de�ne 0 � L < k subjetto L = J � I mod k. Now we an ompute the partition funtion for the single salarpartile (2.2) aszI;JS (x) = (xL+1 � xL+3 + x�L+1 � x�L+3)kxk(1� x2)2(1� xk)2+ (L + 1)xL+1 � (L� 1)xL+3 � (L� 1)xk�L+1 + (L + 1)xk�L+3(1� x2)2(1� xk) : (2.5)See appendix A for the detail. We have used the fat that the energy is given by E = j+1for a saler on S3 onformally oupled to gravity.We move to the gauge �eld, whih is expanded by the vetor spherial harmonisV �j;m; �m(
).7 We use the notation suh that the vetor index is ontrated with an auxiliaryunit vetor �̂� as V �j;m; �m;��̂�. The vetor spherial harmonis V +j;m; �m and V �j;m; �m belong tothe representations (j1; j2) = ( j+12 ; j�12 ) and ( j�12 ; j+12 ), respetively. The eigenvalues ofLaplae operator on S3 arer2V �j;m; �m(
) = �(j + 1)2V �j;m; �m(
) : (2.6)The orbifold ation to the vetor spherial harmonis is the same as in the salar ase(2.4), sine the vetor index is ontrated with an auxiliary unit vetor. Therefore, theorbifold projetion allows only the modes with 2 �m = J � I mod k for the bi-fundamentalstate with (nI ; �nJ). The partition funtion is then given byzI;JV +(x) = (xL+2 � xL+4 + x�L+2 � x�L+4)kxk(1� x2)2(1� xk)2+ (L + 3)xL+2 � (L+ 1)xL+4 � (L� 3)xk�L+2 + (L� 1)xk�L+4(1� x2)2(1� xk) (2.7)7A longitudinal mode is expanded by the salar spherial harmonis as ~rS, and we do not onsiderit.
5



for V +j;m; �m andzI;JV �(x) = (xL � xL+2 + x�L � x�L+2)kxk(1� x2)2(1� xk)2+ (L� 1)xL � (L� 3)xL+2 � (L+ 1)xk�L + (L + 3)xk�L+2(1� x2)2(1� xk) (2.8)for V �j;m; �m. We have de�ned L = J � I mod k (0 � L < k) as before.Fermions are expanded by the spherial harmonis F+j;m; �m(
) and F�j;m; �m(
), whihbelong to (j1; j2) = ( j2 ; j�12 ) and ( j�12 ; j2). The spinor index is again ontrated with anauxiliary spinor �� as F�j;m; �m;���. The eigenvalues of Laplae operator on S3 arer2F�j;m; �m(
) = �(j + 12)2F�j;m; �m(
) : (2.9)For fermions we an assign two types of boundary onditions along the non-trivial yle.The orbifold ation depends on the boundary ondition as� = �e4�i �J3=k!I�J ; (2.10)where + and � means the periodi and the anti-periodi boundary onditions, respe-tively. For the periodi boundary ondition, the orbifold invariant modes are given bythose with 2 �m = J � I mod k. The anti-periodi boundary ondition an be assignedonly for even k, and the restrition is shifted by k=2 as 2 �m = J � I + k=2 mod k. For theperiodi boundary ondition, the partition funtion an be omputed aszI;JF+(x) = (xL+ 32 � xL+ 72 + x�L+ 32 � x�L+ 72 )kxk(1� x2)2(1� xk)2+ (L+ 2)xL+ 32 � LxL+ 72 � (L� 2)xk�L+ 32 + Lxk�L+ 72(1� x2)2(1� xk) (2.11)for F+j;m; �m andzI;JF�(x) = (xL+ 12 � xL+ 52 + x�L+ 12 � x�L+ 52 )kxk(1� x2)2(1� xk)2+ LxL+ 12 � (L� 2)xL+ 52 � Lxk�L+ 12 + (L+ 2)xk�L+ 52(1� x2)2(1� xk) (2.12)for F�j;m; �m. For the anti-periodi boundary ondition, we should use L = J � I + k=2 modk with 0 � L < k instead of L = J � I mod k.Now we an write up expliitly the partition funtion (2.1) for N = 4 super Yang-Mills theories on R � S3=Zk with holonomy (n0; � � � ; nk�1). The total partition funtionis given by summing over all the vaua. It is useful to use the formula for the harater6



of bi-fundamental representation as �(nI ;�nJ)(U) = TrUI TrU yJ , where the trae is taken inthe fundamental representation. The partition funtion is then given byZ(x) = Z [YI dUI ℄ exp 24XI;J 1Xn=1 1nzI;Jn (x) Tr(UnI ) Tr(U ynJ )35 ; (2.13)where the single-partile partition funtion is summarized aszI;Jn (x) = 6zI;JS (xn) + zI;JV +(xn) + zI;JV �(xn) + (�1)n+14[zI;JF+(xn) + zI;JF�(xn)℄ (2.14)for the ase with the periodi boundary ondition andzI;Jn (x) = 6zI;JS (xn) + zI;JV +(xn) + zI;JV �(xn) + (�1)n+14[zI;J+ k2F+ (xn) + zI;J+ k2F� (xn)℄ (2.15)for the ase with the anti-periodi boundary ondition.Finally let us remark on the di�erene from the D-brane worldvolume theories loalizedat the �xed point of C n=� with n = 2; 3 [18℄. Sine the orbifold ation ats trivially tothe worldvolume in those ases, only bi-fundamental matters with I; I � 1 and adjointgauge �elds (and matters) are left under the orbifold projetion. On the other hand, theorbifold ation rotates S3 by 4�=k in our ase, there is a �m dependent phase in (2.4).Due to this e�et, bi-fundamental states with every pairs of I; J (and adjoint states withI = J) survive the projetion eah for matters, gauge �eld and fermions. The di�erenewould be signi�ant if we ompare our ase with the duality between superstrings onAdS5 � S5=� and the gauge theory oming from D3-branes at the �xed point of orbifoldation � [22℄.2.2 Path integral formulationIn the previous subsetion, we have obtained the partition funtion of gauge invari-ant operator (2.13) in terms of integral over the group manifolds. However, we annotdetermine the overall pre-fator in the formulation. In this subsetion, we re-derive thepartition funtion in the path integral formulation. In this derivation, we obtain the nor-malization depending on the Casimir energy of the gauge theories on R � S3=Zk. TheCasimir energy will be important when we onsider the phase struture at low tempera-ture. Moreover, we an identify UI as the holonomy matrix for U(nI) gauge group alongthe thermal yle.The path integral for the partition funtion with a �nite temperature T may be om-puted on S1 � S3=Zk, where S1 is the thermal yle with periodiity � = 1=T . Alongthe thermal yle we assign the anti-periodi boundary ondition for the fermions.8 We8Due to this boundary ondition, supersymmetry is always broken at a �nite temperature even forthe theory supersymmetri at zero temperature. 7



start from �xing the gauge symmetry and then introdue the Faddeev-Popov determinantonjugate to the gauge �xing. We adopt the Coulomb gaugeraAa = 0 (2.16)with ra as ovariant derivatives along the S3 diretion (a = 1; 2; 3). If we do not inludea non-trivial holonomy, then there are spatially onstant modes of the gauge �eld. Thepresene of holonomy (n0; � � � ; nk�1) breaks the gauge group into QI U(nI) and spatiallyonstant modes are left only for QI U(nI).9 The time-dependene of these modes is not�xed by the Coulomb gauge (2.16), and we �x these degrees by�t�I = 0 ; �I = 1Vol(S3=Zk) Z d
AIt ; (2.17)where the integration is performed over S3=Zk.First we onsider the Faddeev-Popov determinant onjugate to (2.17), whih is givenby �IFP = det 0(�tDIt ) ; DIt = �t � i[�I ; ℄ : (2.18)The determinant is taken over the non-zero modes. Diagonalizing the zero modes as�I = diag(�I1; � � ��InI ), the measure an be written asd�I =Yi d�Ii Yi;j j�Ii � �Ij j ; (2.19)where the Van der Monde determinant arises from the integration over the o� diagonalelements. Now that the bosoni modes are periodi along the thermal yle, they anbe expanded by the funtion exp(2�int=�) with n 2 Z.10 Thus the determinant an bewritten as �IFP =Yi;j Yn 6=0 2�in�  2�in� � i(�Ii � �Ij )! : (2.20)With the help of the formula Q1n=1(1 � x2=n2) = sin�x=(�x), we �nd up to an overallfator [dUI ℄ = d�I�IFP =Yi d�Ii Yi<j sin2  �(�Ii � �Ij )2 ! ; (2.21)whih is the Haar measure of UI = exp(i��I).9The projetion under the orbifold ation (2.4) removes spatially onstant modes with �m = 0 forI 6= J setors.10For fermioni modes, we should replae n by n+ 1=2 sine we have assigned anti-periodi boundaryondition along the thermal yle. 8



The Faddeev-Popov determinant onjugate to (2.16) is given bydetraDa = Z [dd�℄ exp(��raDa) ; (2.22)whih should be added to the ation of N = 4 super Yang-Mills theory. Notie thatthe ghosts are expanded by the salar spherial harmonis projeted into the orbifoldinvariant modes. After integrating over the massive modes inluding the -ghosts, thepartition funtion is given in terms of integral over the zero modes asZ(T ) = Z [YI dUI ℄e�S(U) : (2.23)Let us �rst ompute the ontribution from the gauge �eld and the -ghosts. Sine thelongitudinal modes ~rS and At (exept the zero modes �I) are expanded by the salarspherial harmonis, the ontributions to the path integral from the -ghosts and the lon-gitudinal modes anel out. Therefore, the ontribution redues to the Gaussian integralover the vetor spherial harmonis, whih is evaluated asS(U) = 12XI;J XE [nI;JV +(E) + nI;JV �(E)℄ ln det(�D2t + E2) : (2.24)We denote nI;JV �(E) as the degeneray of eigenstates with E in the representation (nI ; �nJ).Following the omputation in [3℄, we �ndS(U) = 12XI;J �nInJ XE [nI;JV +(E) + nI;JV �(E)℄E�XI;J 1Xn=1 1n [zI;JV +(e�n=T ) + zI;JV �(e�n=T )℄ Tr(UnI ) Tr(U ynJ ) : (2.25)In the same way, we an ompute the ontributions from salars and fermions and sum-marize all the ontributions as11S(U) = �V0 �XI;J 1Xn=1 1nzI;Jn (e�1=T ) Tr(UnI ) Tr(U ynJ ) ; (2.26)where zI;Jn are the single-partile partition funtions (2.14) or (2.15). The �rst term is theCasimir energyV0 = 12XI;J nInJ XE [6nI;JS (E) + nI;JV +(E) + nI;JV �(E)� 4nI;JF+(E)� 4nI;JF�(E)℄E : (2.27)11In the expression of (2.23) with (2.26), the normalization has been set by dividing holonomy in-dependent fators. Introduing the holonomy (n0; � � � ; nI) along the �-yle, the lowest modes inU(N)=QI U(nI) beome spae-dependent, and hene they an be �xed by the Coulomb gauge (2.16)instead of (2.17). The normalization of eah Faddeev-Popov determinants may depend on the hoie ofholonomy along the �-yle, but the sum of both should not.9



Compared with the expression of (2.13), the integral variables UI are identi�ed with theholonomy matries UI = exp(i��I) with respet to the gauge group QI U(nI). In this waywe an see that the previous expression only inludes the �nite temperature ontribution.The zero temperature ontribution, whih omes from the Casimir energy, should beinluded in the partition funtion.3 Phase transitions of the gauge theoriesIn the previous setion, we have obtained the partition funtion of gauge invariantoperator in terms of integral over UI as (2.23) with (2.26). In this setion, we performthe UI integral in the large N limit12 and examine the phase struture of the orbifoldtheories. For large N and �xed k, it is natural to assume that nI in the label of holonomy(n0; � � � ; nk�1) are very large. In ase that some of nI are very small, then they maybe set zero in this limit. We onsider two spei� vaua in the following. One is theZk symmetri holonomy vauum with nI = N=k and the other is the trivial holonomyvauum with n0 = N . In these ases our assumption is valid. In the next subsetion westudy the low temperature phase, and in subsetion 3.2 we fous on the Casimir energyontribution. In subsetion 3.3 we obtain an analyti expression under an approximationnear the ritial temperature. In subsetion 3.4 we take the high temperature limit, wherethe analysis beomes simpler.3.1 Critial temperaturesIt is onvenient to diagonalize the eigenvalues of holonomy matrix UI as exp(i�I;i)with �� � �I;i < �.13 For large nI the disrete elements may be replaed by a ontinuousparameter �I with a density �I(�I). The density has to satisfy �I(�I) � 0 and the nor-malization is set as R ��� �I(�I)d�I = 1. In this approximation the e�etive ation (2.26)beomesS[�I(�I)℄ = �V0 �XI;J nInJ Z d�Id�0J�I(�I)�J(�0J)�ÆI;J ln �����sin �I � �0J2 !�����+ 1Xn=1 1nzI;Jn (x) os(n(�I � �0J))� (3.1)with x = e�1=T . The �rst term in the braket arises from the hange of measure [dUI ℄![d�I;i℄. In terms of the Fourier transform �In = R d�I�I(�I) os(n�I),14 the e�etive ation12Finite N e�ets may be examined by following the analysis in [23, 24, 25℄.13The eigenvalue �I;i is related with the zero modes in (2.17) as �I;i = ��Ii .14We assume that �I is distributed symmetrially around �I = 0.10



(3.1) is given by S[�In℄ = �V0 +XI;J nInJ 1Xn=1 �In��JnV I;Jn (x) ; (3.2)where V I;Jn (x) = 1n(ÆI;J � zI;Jn (x)) : (3.3)At enough low temperature, the repulsive fore oming from the �rst term of (3.3)dominates, and the uniform distribution �In = 0 for n � 1 is the lassial solution to thee�etive ation (3.2). Therefore, there are no order O(N2) (nor order O(N)) ontribu-tions from the e�etive ation exept for the Casimir energy term �V0. An order O(1)ontribution omes from the Gaussian integral as1Yn=1 1det �nInJV I;Jn (x)� ; (3.4)where the determinant is over the labels 0 � I; J < k. As the temperature inreased, theseond term of (3.3) ontributes to the potential, and the determinant would vanish at aritial temperature x = exp(�1=T). Above the ritial temperature, the distributionbeomes non-uniform and the lassial ontribution is of order O(N2).Let us examine two onrete examples. We start from the trivial holonomy ase, wherethe ation (3.2) reads S[�0n℄ = �V0 +N2 1Xn=1 j�0nj2 1n(1� z0;0n (x)) : (3.5)At enough low temperature, the oeÆients of j�0nj2 are positive, and �0n = 0 for n � 1 isthe saddle point. Now that the oeÆients are 1 � 1 matries, the determinant (3.4) issimply 1Yn=1 11� z0;0n (x) : (3.6)We have hanged the normalization suh that only the Casimir energy term is left atx = 0. As the temperature inreased, the oeÆients of j�0nj2 beome smaller, and ata ritial temperature T = T, a oeÆient vanishes. Sine the single-partile partitionfuntion is a monotonially inreasing funtion of x, the �rst zero omes from the n = 1part when 1� z0;01 (x) = 0. The ritial temperatures x and T are summarized for smallk in Table 1. We should note that for k = 1 the ritial temperature redues to the onefor R � S3 ase [2, 3℄ as x = 7� 4p3 = 0:071797 or T = 0:379663.Another interesting ase may be with the Zk symmetri holonomy nI = N=k for all I.In this ase the ation (3.2) is given byS[�In℄ = �V0 + N2k2 XI;J 1Xn=1 �In��Jn 1n(ÆI;J � zI;Jn (x)) : (3.7)11



k x (periodi) T (periodi) x (anti-periodi) T (anti-periodi)2 0.095663 0.426090 0.095663 0.4260904 0.104448 0.442661 0.127999 0.4864456 0.104684 0.443104 0.139545 0.5077778 0.104689 0.443113 0.142528 0.51329010 0.104689 0.443113 0.143136 0.514414Table 1: The ritial temperatures x = exp(�1=T) and T for the N = 4 super Yang-Mills theories on R � S3=Zk with the trivial holonomy V = 1. We set k = 2; 4; 6; 8; 10.The periodi and anti-periodi boundary onditions are assigned for the fermions alongthe �-yle.Notie that the oeÆients of �In take the form of a irulant matrix sine zI;Jn onlydepends on the di�erene I � J . Using the formula for a irulant determinant (B.11),the determinant (3.4) an be written in a ompat form as1Yn=1 k�1YI=0 11�Pk�1J=0 !IJz0;Jn (x) : (3.8)As before it is enough to fous on the n = 1 fators. If we inrease the temperature, thenthe denominator diverges when PJ z0;J1 (x) = 1. Among the other fators, this fator givesthe divergene with smallest x sine z0;J1 (x) is positive for all J . Remarkably the ritialtemperature is the same for all k and for both the spin strutures as x = 0:071797 orT = 0:379663 as in the R � S3 ase. Atually this is an expeted result sine the sum ofall setors with weight one PJ z0;J1 (x) is the same as the single-partile partition funtionfor the R � S3 ase.3.2 Casimir energiesAt low temperature, the determinant (3.4) is of order O(1) and the ontribution fromthe Casimir energy (2.27) is dominant. The Casimir energy is an important quantitysine it is supposed to orrespond to the mass of the dual geometry. In order to omputeCasimir energy, we have to sum over in�nitely many states, and this may lead to adivergent result. Thus we have to hoose a regularization, but it is a subtle problemfor quantum �eld theory on a urve bakground [26℄. Fortunately, we will �nd that theCasimir energies in our ase are �nite, thus we do not need to worry about this diÆultissue.In order to regularize the in�nite sum in the Casimir energy (2.27), we �rst introduea ut o� fator e�E=� asXE (6nI;JS + nI;JV + + nI;JV � � 4nI;JF+ � 4nI;JF�)Ee�E=� ; (3.9)12



and �nally take the limit � = 1=� ! 0. This regularization may be justi�ed by the fatthat no divergent terms are left in the �nal results. The above regularization an berealized by using the identity (A = S; V �; F�)XE nI;JA (E)Ee��E = � dd�zI;JA (e��) ; (3.10)so we need the expansion of single-partile partition funtions by � up to O(�) aszI;JS (e��) � 2�3k � 7�180k + �k36 + �k3360 � �L(k � L)6k � �L2(k � L)212k ; (3.11)zI;JV �(e��) � 2�3k � 1�k � k6 � 13k � L� L2k + �1� 12 � ÆL;0 + 2�45k � 5�k36 + �k3360+ 5�L(k � L)6k � �L2(k � L)212k ; (3.12)zI;JF�(e��) � 2�3k � 14�k � k12 � 112k � L2 � L22k + 83�2880k � �k72 + �k3360+ �L(k � L)12k � �L2(k � L)212k : (3.13)Below we disuss the ases with the periodi and the anti-periodi boundary onditionsseparately.For the ase with the periodi boundary ondition, we haveXE (6nI;JS + nI;JV + + nI;JV � � 4nI;JF+ � 4nI;JF�)Ee��E = 38k +O(�) : (3.14)As mentioned before, the �nal expression does not depend on the ut o� parameter �,whih might be due to the large supersymmetry. Moreover, the Casimir energy doesnot depend on the indies I; J , and this means that the Casimir energy is the same forall hoies of holonomy (n0; � � � ; nk�1). This is onsistent with the argument in [6℄ thatthe vaua with di�erent holonomy are degenerated at zero temperature. Notie that theCasimir energy V0 = N2 316k (3.15)is preisely the same as the mass of AdS5=Zk as we will disuss below.For the ase with the anti-periodi boundary ondition, the above anellation amongI; J dependent terms does not our in general. With L = J � I mod k (0 � L < k) we�nd XE (6nI;JS + nI;JV + + nI;JV � � 4nI;J+ k2F+ � 4nI;J+ k2F� )Ee��E= 38k + k6 � k324 + L2 �k � 23 �2L+ 1L��+O(�) (3.16)
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for 0 � L � k2 and L is replaed by k � L for k2 < L < k. Notie that the divergentterms proportional to 1=�4 and 1=�2 anel out even in this ase. The Casimir energydepends on the hoie of holonomy due to the L-dependene of the zero point energy(3.16). The dominant ontribution to the total partition funtion omes from the vauumwith smallest zero point energy, whih is realized with the trivial holonomy. This isbeause the value inside the braket in (3.16) is always positive for all 0 � L � k2 if weset k � 4.15 The Casimir energy for the trivial holonomy ase is given byV0 = N2  316k + k12 � k348! ; (3.17)whih will be ompared with the mass of the dual geometry (4.12). Another interestingase may be with the Zk symmetri holonomy. In this ase, we sum up every L with thesame weight, and hene we exept that the anellation between the setors with L andL+ k=2 ours. This an be on�rmed by a diret omputation, and the Casimir energyis obtained as (3.15).16Before �nishing the arguments on Casimir energy, we would like to make a ommenton the validity of regularization adopted here, even though the divergent terms anelout in the �nal expressions. Let us write the radius R of S3 expliitly suh as E =(j + 1)=R for the salar ase. Then the divergent parts are proportional to �4R3 and�2R in eah single-partile partition funtion. For quantum �eld theory on a urvedbakground, the divergent terms of energy momentum tensor should be absorbed by therenormalization of oeÆients in the Einstein-Hilbert ation. In our ase the divergentterms may be absorbed by the ounter terms a�4 R pg and b�2 R pgR. See [26℄ for moredetailed disussions.3.3 Just above the ritial temperaturesThe eigenvalues distribute uniformly due to the repulsive potential at low temperature,however the eigenvalues get together due to the attrative potential above the ritialtemperature. In partiular, the densities may be gaped and vanish exept for ��I ��I � �I. The ondition that an eigenvalue �I does not feel any fore is obtained asn2I Z d�0I�I(�0I) ot �I � �0I2 ! = 2 k�1XJ=0nInJ 1Xn=1 zI;Jn (x)�Jn sin(n�I) (3.18)from the ation (3.1). The general solutions subjet to the normalization ondition �I0 = 1an be obtained by following [27, 3℄ in priniple. However, the analysis is quite ompli-ated generially, so we adopt an approximation by setting zI;Jn (x) = 0 for n > 1. This15For k = 2 the ases with the periodi and anti-periodi boundary onditions lead to the identialresult.16The Casimir energy in this ase was already omputed in [10, 11℄ by following the general method of[26℄. 14



approximation may be justi�ed for small x � x as in Table 1 by the fat that zI;Jn (x)with n > 1 is muh smaller than zI;J1 (x). In the following we will expliitly solve theseequations for the trivial holonomy ase with V = 1 and the Zk symmetri ase withnI = N=k.Let us begin with the trivial holonomy ase, where the ondition (3.18) redues toZ d�00�0(�00) ot �0 � �002 ! = 2z0;01 (x)�01 sin �0 : (3.19)This ase is almost the same as the R � S3 ase analyzed in [2, 3℄. The solution is givenby the form of the Gross-Witten ansatz [17℄ as�0(�0) = 1� sin2 �2 ssin2 �2 � sin2 �02 os �02 (3.20)for �� � �0 � � and zero for otherwise. The parameter � satis�essin2 �2 = 1�vuut1� 1z0;01 (x) : (3.21)With this solution we an ompute the lassial ation and the free energy F = �T lnZ =T hSi as FN2 ' V0 � T  12 sin2 �2 + 12 ln sin2 �2 � 12! : (3.22)Near the ritial temperature, it is given asFN2 ' V0 � TH4 (T � T) ddT z0;01 (e�1=T )jT=T +O �(T � T)2� : (3.23)For the purpose of omparison with the Zk symmetri ase, we draw plots of the freeenergies for k = 4; 6 in Figure 1. In the Figure we have shifted the zero point energy by3=(16k).For the Zk symmetri ase, the ondition (3.18) beomesZ d�0I�I(�0I) ot �I � �0I2 ! = 2 k�1XJ=0 zI;J1 (x)�Jn sin �I ; (3.24)and the generi solutions are quite ompliated. However we only need the solutionresponsible to the phase transition at the ritial temperature x satisfying PJ z0;J1 (x) =1. With the help of the Zk symmetry, we assign that the densities of eigenvalue take thesame form as �I(�I) = �(�I) for all I. Then the solution an be easily found as�(�I) = 1� sin2 �2 ssin2 �2 � sin2 �I2 os �2 (3.25)15
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Figure 1: Free energies F (T )=N2 as funtions of T in the ases with the periodi and theanti-periodi boundary onditions and with k = 4; 6. The solid lines are for the trivialholonomy ase and the dotted lines are for the Zk symmetri ase.for �� � � � � and zero for otherwise. In this ase � satis�essin2 �2 = 1�vuut1� 1Pk�1J=0 z0;J1 (x) : (3.26)This is valid for x satisfying PJ z0;J1 (x) � 1, and the equality holds for the ritial tem-perature x = x. The free energy isF 2N2 ' V0 � Tk  12 sin2 �2 + 12 ln sin2 �2 � 12! ; (3.27)and near the ritial temperatureF 2N2 ' V0 � TH4 (T � T) ddT 1k k�1XJ=0 z0;J1 (e�1=T )jT=T +O �(T � T)2� : (3.28)See Figures 1 for k = 4; 6.Let us ompare the free energies for the above two ases. For the ase with theperiodi boundary ondition, the free energy for the Zk symmetri ase is lower near theritial temperature, sine the ritial temperature is smaller in this ase. Near the ritialtemperature, the free energy is proportional to T � T as in (3.23) and (3.28), and theoeÆients in (3.28) behaves like 1=k.17 From this reason the free energy for the trivial17This is heked for small k by a numerial omputation.16



holonomy ase is lower at slightly higher temperature for large k as in Figure 1. For thease with the anti-periodi boundary ondition, the free energy for the trivial holonomyase is lower than for the Zk symmetri ase due to the Casimir energy V0. Sine theCasimir energy behaves like k3, the di�erene of free energy beomes bigger for larger k.3.4 High temperature behaviorsAt higher temperature the approximation in the previous subsetion is not valid anymore, and the ontribution from n > 1 terms in (3.18) should be taken into aount.Fortunately, the analysis beomes simpler when we take the high temperature limit T � 1.This limit is the same as the limit of large radius R of S3, where we an use the atspae approximation. In this limit, the densities of eigenvalue may be given by the deltafuntion, thus we set �In = 1 for all n. From (3.3) we �nd1Xn=1V Ln = ��(4)T 3 �16k + �1� 123� 16k �� �(2)T ��2k + �1� 12���2k��+O � 1T � ;(3.29)whih may be read o� from the expansion of zI;JA (e��) by �. The oeÆients of T 3 termsan be given by the degrees of freedom in the at spae limit, where the volume should bedivided by k. Sine the above expression does not depend on L, the free energy behavesin the same way for all the vaua and for both the spin strutures in the high temperatureexpansion. This is quite natural sine the high energy exitations should not depend onthe vauum struture. In summary, the free energy F = �T lnZ and the expetationvalue of energy E = � ��� lnZ are given byF = �N2k  �43 T 4 � �22 T 2!+O(1) ; E = N2k  �4T 4 � �22 T 2!+O(1) (3.30)for every hoie of holonomy and for both the spin strutures. This energy was alreadyomputed in [28℄ in a di�erent way.4 Dual gravity desriptionIn the limit of large 't Hooft oupling the dual gravity desription is more appropriateto disuss the phase struture of the gauge theories. In the dual piture the on�ne-ment/deon�nement phase transition is desribed by the Hawking-Page transition [4, 5℄.In this setion we investigate the Hawking-Page transition in the dual geometries and tryto see whether the phase struture ontinues from the one at zero 't Hooft oupling. In thenext subsetion we review the Hawking-Page transition between the thermal AdS spaeand the AdS-Shwarzshild blak hole. In subsetion 4.2 we move to our orbifold ases.With the periodi boundary ondition, the geometries are given by various arrangements17



of k NS5-branes in a T-dual piture. With the anti-periodi boundary ondition, thereare loalized tahyons at the �xed point of the thermal AdS orbifold. The ondensationof the loalized tahyon is disussed in subsetion 4.3.4.1 Hawking-Page transitionThe boundary gauge theory at �nite temperature may be de�ned on S1 � S3 with athermal yle, and we have to inlude all geometries with the same boundary ondition toompute a path integral in gravity theory. The geometries are obtained by extending theboundary S1�S3 into the bulk, whih an be done in two ways. One of the geometry hasthe topology of S1�B4, where the 4 dimensional ball B4 is obtained by �lling the insideof S3. This geometry is the thermal AdS spae, where the thermal yle has a periodiity.The other geometry has the topology B2 � S3, whih is the AdS-Shwarzshild blakhole. We will see that the thermal AdS spae is dominant at low temperature and theAdS-Shwarzshild blak hole is dominant at high temperature.The metri of the thermal AdS5 is given byds2 = g(r)dt2 + dr2g(r) + r2ds2S3 ; g(r) = r2l2 + 1 ; (4.1)where ds2S3 is the metri of S3 and the Eulidean time is periodi t � t+ �l. The mass ofthe thermal AdS5 was omputed in [29℄ asM = 3�l232G5 (4.2)by utilizing the boundary stress tensor method. This is preisely the same as the Casimirenergy of N = 4 U(N) super Yang-Mills theory on R � S3 given in (3.15) with k = 1.The 5 dimensional Newton onstant G5 is written as G5 = �l3=(2N) in terms of the dualgauge theory. For simpliity we set the AdS radius as l = 1.The metri of the AdS-Shwarzshild blak hole isds2 = h(r)dt2 + dr2h(r) + r2ds2S3 ; h(r) = r2 + 1� r20r2 ; (4.3)where the period of the Eulidean time is given by �h = 2�r+=(2r2+ + 1). We denoter+ as the horizon satisfying h(r+) = 0 or equivalently r20 = r2+ + r4+.18 The Mass of theAdS-Shwarzshild blak hole is [29℄M = 3�r208G5 + 3�32G5 ; (4.4)18There are two solutions r� to this equation, whih implies that there are two types of blak holes.The bigger and smaller ones r+; r� are the radii of horizons of big and small blak holes, respetively.We only onsider the big blak hole sine the small blak hole has a negative spei� heat and hene itis unstable. However the unstable saddle point may be important to understand the phase struture aspointed out in [3, 24, 25℄. 18



where the seond term is the onstant AdS5 ontribution. This mass an be expanded byT = 1=�h at high temperature as [28℄M = 3�8G5 (�4T 4 � �2T 2) +O(1) ; (4.5)whih is about 3/4 times the energy given in (3.30) with k = 1.19Now we an ompute the partition funtion in the gravity desription. In the lassialapproximation, the partition funtion is obtained from the lassial ations for the geome-tries, whih are proportional to the volume as S = V=(2�G5). Sine the volume divergesfor both ases, we introdue a ut o� rm and examine the di�erene. The Eulidean timeperiods are set equal at rm as �lqg(rm) = �hqh(rm). Then the di�erene of the lassialation is omputed as [4, 5℄limrm!1 VBH(rm)� VTAdS(rm)2�G5 = �2(r3+ � r5+)4G5(2r2+ + 1) : (4.6)For small r+ (low temperature) the above quantity is positive, whih means that thethermal AdS spae dominates the partition funtion. The phase transition ours atr+ = 1 or T = 3=(2�), and above the ritial temperature the AdS-Shwarzshild blakhole dominates.In the dual gauge theory, the Polyakov loop hTrUi = hTrP exp i H Ati is an importantorder parameter. In the on�nement phase, the ZN symmetry of the theory is unbroken,and hene the Polyakov loop vanishes, whih is realized by uniformly distributed eigen-values �i. In the deon�nement phase, sine the ZN symmetry is broken, the Polyakovloop may have a non-trivial value and the eigenvalues are distributed non-trivially.20The Polyakov (Wilson) loop along the path C may be omputed in the gravity side asexp(�A), where A represents the minimum area of the worldsheet with boundary C sub-jet to a regularization [31, 32℄. For the thermal AdS spae, the thermal yle is notontratible, so the area is in�nite and this leads to the vanishing Polyakov loop. For theAdS-Shwarzshild blak hole, the thermal yle shrinks at the horizon, so the area ouldbe �nite and hene the Polyakov loop an take a non-zero value. See [5℄ for more detail.4.2 Phase transitions of the orbifoldsDue to the Zk symmetry the vauum with the holonomy nI = N=k for all I is supposedto be dual to the standard orbifold. At low temperature, the dual geometry is given bythe orbifold of the thermal AdS spae, whose metri is (4.1) with ds2S3 replaed byds2orb = 14[(d�+ os �d�)2 + d�2 + sin2 �d�2℄ ; (4.7)19It was argued in [28℄ that the origin of the 3=4 di�erene is the same as the one of [30℄, where theentropy of blak 3-branes is ompared with the state ounting on D3-brane.20Beause the eigenvalues ollapse in the ZN symmetri way, the Polyakov loop may vanish after takingthe average. We may use hjTrU ji or hTrU2i to avoid this subtlety.19



where the variables run 0 � � � �, 0 � � � 2� and 0 � � � 4�=k due to the orbifoldidenti�ation. This metri of S3=Zk may be useful sine we an easily see that the orbifoldation ats on the �-yle as �! �+4�=k and that there is no �xed point on this spae.The mass of the thermal AdS orbifold isM = 3�32kG5 ; (4.8)whih is 1=k times the mass of the thermal AdS spae (4.2). This should be omparedwith the Casimir energy with the Zk symmetri holonomy. The Casimir energy is givenby (3.15) for both the spin strutures and it is preisely the same as (4.8). The geometryof AdS5 is believed to be stable under �0 orretion and the stability seems to ontinueto the standard orbifold.The thermal AdS orbifold has a �xed point at r = 0 and there are losed stringsin twisted setors loalized at the �xed point. With the periodi boundary onditionfor the fermions along the �-yle, there are massless states loalized at the �xed point,and the di�erent vaua are dual to di�erent exitations of these massless states. Theexitation of loalized massless states does not hange the global geometry, thus all thegeometries ontribute equally to the partition funtion. In partiular, the mass of theevery geometries should be the same as (4.8), whih is also the same as the Casimir en-ergy for the every vaua. Therefore, we an say that the phase struture does not hangeeven at the large 't Hooft oupling.21 For large k, the T-dual piture along the �-yleis relevant, where the k NS5-branes are arranged in the dual ~�-yle [33℄. In the T-dualpiture, the di�erent exitations of massless states orrespond to di�erent on�gurationsof k NS5-branes.22 In partiular the vauum with the trivial holonomy orresponds tothe on�guration of k oinident NS5-branes. With the anti-periodi boundary ondition,there are loalized tahyons at the �xed point as in [9℄. The di�erent vaua are dual to dif-ferent ondensations of these loalized tahyons, whih deform the geometry signi�antlyfrom the thermal AdS orbifold. Sine the on�gurations with tahyon are unstable, therelevant geometry should be the one without tahyon, whih will be disussed in the nextsubsetion.At high temperature, the dual geometry is the orbifold of the AdS-Shwarzshild blakhole (4.3) with ds2S3 replaed by (4.7). The mass of the blak hole may be given by theexpansion of the temperature asM = 3�8kG5 (�4T 4 � �2T 2) +O(1) ; (4.9)21We are not sure whether the phase struture is the same in a middle value of the 't Hooft oupling,but we guess that this is indeed the ase.22It was shown in [6℄ that the dual geometries are also labelled by the integers (n0; � � � ; nk�1) at zerotemperature. They disussed how to onstrut these geometries, where the NS5-branes are replaed byux and the bak-reation of the ux is taken into aount.20



whih is 3=4 times the energy given in (3.30) as disussed in [28℄. Sine the geometry doesnot have any �xed point, there are no light loalized modes generially. Due to this fat,the orbifold of the blak hole seems to be the most relevant one, even though the everyvaua are degenerated at the zero 't Hooft oupling. At relatively small temperature or forlarge k, there may be nearly massless modes or tahyoni modes near the horizon. Withthe periodi boundary ondition, the T-dual piture is more relevant for large k, wherethe shift of NS5-branes is given by the nearly massless modes. With the anti-periodiboundary ondition, the orbifold of the AdS-Shwarzshild blak hole may deay into aresolved AdS orbifold through the tahyon ondensation. This type of geometry deayhas been disussed in [34, 35℄. Aording to them, a kind of blak hole deays into abubble of noting by a winding tahyon ondensation.4.3 Loalized tahyon ondensationIf the anti-periodi boundary ondition is assigned for the fermions along the �-yle,then there are tahyoni modes at the �x point of the thermal AdS orbifold at low tem-perature. The geometry deformed by a tahyon ondensation was proposed by [10, 11℄as23 ds2 = g(r)dt2 + dr2g(r)f(r) + r24 [f(r)(d�+ os �d�)2 + d�2 + sin2 �d�2℄ ; (4.10)with g(r) = r2 + 1 ; f(r) = 1� a4r4 ; a2 =  k24 � 1! : (4.11)They all this geometry as Eguhi-Hanson soliton. We set k even in order to assign theanti-periodi boundary ondition for the fermions and also k > 2 for a2 > 0. Beause ofthe boundary ondition for the fermions, the non-trivial �-yle an be pinhed o�. Theboundary metri at r !1 is given by (4.7) with � � � + 4�=k as supposed to be. Thesolution is regular everywhere inluding r = a, and there are no tahyoni modes. Thereis no geometry for r < a, and this region may be replaed by the tahyon state or thenothing state in the sense of [35℄.The onserved mass of the deformed geometry was omputed in [10, 11℄ asM = �(3� 4a2)32kG5 = ��(k4 � 8k2 + 4)128kG5 ; (4.12)where G5 = �=(2N2) in the gauge theory terminology. Sine the non-trivial �-yle ispinhed o� at r = a, the Wilson loop along the �-yle an take non-trivial value aordingto the previous disussion on the Polyakov loop. This means that the Zk symmetry isbroken in this bakground, and this is onsistent with the fat that the dual vauum has23See also [36℄. 21



the trivial holonomy. It is amusing to notie that the mass of the Eguhi-Hanson soliton(4.12) is about 3=4 times the Casimir energy of the gauge theory on the trivial holonomyvauum (3.17) for large k. This reminds us of the famous 3=4 di�erene in the ontext of[30℄ mentioned above, but their origins are not diretly related to eah other. It is worthto study this issue furthermore.At enough high temperature, only the relevant geometry seems to be the orbifold ofthe AdS-Shwarzshild blak hole. Therefore we may observe the phase transition betweenthe Eguhi-Hanson soliton and the orbifold of the AdS-Shwarzshild blak hole. As inthe previous ase the partition funtion may be obtained from the lassial ations forthese geometries in the lassial approximation. The di�erene of these ations is givenby limrm!1 VBH(rm)� VEH(rm)2�G5 = �2r+(r2+ � r4+ � 2a2)4kG5(2r2+ + 1) ; (4.13)where the region of r < a is removed in the Eguhi-Hanson soliton. The ritial temper-ature is24 T = 2 +p1 + 8a2q2�2(1 +p1 + 8a2) : (4.14)We an see from (4.13) that the Eguhi-Hanson soliton is dominant at lower temperatureand the orbifold of AdS-Shwarzshild blak hole is dominant at higher temperature.5 Conlusion and disussionsWe have studied the thermodynamis of N = 4 U(N) super Yang-Mills theories onR � S3=Zk with large N . The base manifold S3=Zk has a non-trivial yle along the�-diretion of (4.7), and a non-trivial holonomy an be assigned along the non-trivialyle. The theory has multi-vaua assoiated with the hoie of holonomy labelled by kinteger numbers (n0; � � � ; nk�1). We an assign the periodi and anti-periodi boundaryonditions for the fermions along the non-trivial yle. On a ompat manifold, the Gaussonstraint only allows gauge invariant operators, and due to this fat a phase transitionours even in the zero 't Hooft oupling limit for largeN . We have omputed the partitionfuntion for the large N gauge theories with di�erent holonomies by following the analysisin [2, 3℄, and examined the phase struture with a speial are on the di�erene betweenthe vaua.At low temperature, the most relevant ontribution to the free energy omes form theCasimir energy. For the ase with the periodi boundary ondition, the Casimir energy24Notie that the ritial temperature of the Hawking-Page transition T = 3=(2�) is reprodued fora = 0. 22



does not depend on the hoie of holonomy, and hene the vaua are degenerated. Forthe ase with the anti-periodi boundary ondition, the Casimir energy depends on thehoie of holonomy, and the dominant ontribution omes from the vauum with thetrivial holonomy V = 1. Near the ritial temperature, we an obtain an approximateanalyti expression of free energy by utilizing the Gross-Witten ansatz [17℄. See Figure1. For enough large k the ase with the trivial holonomy seems to dominate for both thespin strutures. At high temperature, the free energy is universal as in (3.30), thus thevaua are degenerated for both the spin strutures.25In the limit of large 't Hooft oupling, the dual gravity desription is more appropriate.In the low temperature phase, the dual geometry is the orbifold of the thermal AdS spaeor its deformation. The orbifold of the thermal AdS spae has the �xed point at r = 0,and there are losed string states loalized at the �xed point. With the periodi boundaryondition, the loalized states are massless, and the exitation of these massless statesleads to degenerated di�erent geometries. In a T-dual piture, the di�erent exitationsorrespond to di�erent arrangements of k NS5-branes along the dual ~�-yle. With theanti-periodi boundary ondition, the loalized states are tahyoni and a ondensation ofthe tahyoni modes leads to the deay of geometry into the regularized geometry (4.10)alled as the Eguhi-Hanson soliton [10, 11℄. In the viewpoint of the dual gauge theory,the loalized tahyon ondensation is realized as the transition between di�erent vaua.In partiular, we have found that the mass of the Eguhi-Hanson soliton is about 3=4times the Casimir energy for the dual vauum with the trivial holonomy. I would like tostudy the relation between the vauum transition of the gauge theory and the RG-owor time-dependent proess among the geometries as in [9℄. At enough high temperature,the dual geometry is the orbifold of the AdS-Shwarzshild blak hole. Sine there is no�xed point in this geometry, the orbifold seems to be the most relevant geometry. Thisimplies that the phase struture would vary as the 't Hooft oupling is hanged at hightemperature.There are several theories similar to our orbifold gauge theories in the sense that thegauge theory has many vaua and its dual gravity desription. One of them is (1+1) di-mensional large N gauge theories on a torus [37, 38℄, where non-trivial holonomy matriesan be assigned along the two yles. For the ase with the periodi boundary onditionof the fermions along the spatial yle, the eigenvalues of spatial holonomy matrix orre-spond to the positions of N D0-branes along the T-dual spatial yle [37, 38℄. In the hightemperature phase the eigenvalues are distributed uniformly, but in the low temperaturephase the eigenvalues get together. This is related to the Gregory-Laamme transition25The masses of lightest twisted string modes are proportional to the horizon radius r+, and thesemodes beome massless (or tahyoni) in the zero 't Hooft oupling limit sine the radius behaves liker+ � �0p�T . From this reason we an assign non-trivial expetation values to the lightest modes andthe vaua an be degenerated in the gauge theory desription.23



from a blak string wrapped on a spatial yle into a loalized blak hole [39℄. For the asewith the anti-periodi boundary ondition, the spatial yle an shrink, and indeed thethermal AdS3 is dominant in the low temperature phase. In this phase, the ZN symmetryof the holonomy matrix along the spatial yle has to be broken. In the high temperaturephase, the BTZ blak hole dominates, and the ZN symmetry is preserved. The relationto our ases may be examined for large k limit, where the bak-reation of NS5-branesshould be taken into aount. I would like to study this relation, for instane, by takinga large N; k limit with keeping a ratio N=k �nite.26Other interesting theories are the plane wave matrix model [41℄ and (2+1) dimensionalsuper Yang-Mills theory on R � S2, whih are obtained by trunating the N = 4 Yang-Mills theory on R � S3 like our orbifold theory. These models share the same symmetrySU(2j4) at zero temperature, and the gravity dual of these models was studied in [6℄. Thethermodynamis of plane wave matrix model has been studied in [42, 43, 44, 45, 46℄, and,in partiular, the di�erent vaua was ompared in [46℄. The thermodynamis of large Ngauge theory on R � S2 should be also interesting. The relation among these models atzero temperature has been disussed in [6, 47, 48, 8℄, and it is worth while investigatingthe relation among their thermodynamis.In this paper, we have taken the zero 't Hooft oupling limit � = 0, namely, the freetheory limit, thus a next task is to study the e�ets of non-zero 't Hooft oupling. In thefree theory limit, the phase transition is of the �rst order, but the inlusion of small �may hange the order of phase transition as disussed in [3, 49℄. Moreover, we may beable to examine how the phase struture in the zero 't Hooft oupling limit ontinues tothe one in the large 't Hooft oupling limit.27 For example, the Casimir energy on thetrivial vauum with the anti-periodi boundary ondition (3.17) is about 4=3 times themass of the Eguhi-Hanson soliton (4.12), thus one may wonder what would happen if weinlude � orretion. In the high temperature phase, we have observed that the relevantgeometry is the orbifold of the AdS-Shwarzshild blak hole, whih is dual to the Zksymmetri vauum. Sine the vaua are degenerated in the zero 't Hooft oupling limit,the vauum struture should depend on the 't Hooft oupling. We would like to studythis issue as a future work.AknowledgementWe would like to thank Y. Nakayama, I. Papadimitriou, S.-J. Rey, V. Shomerus andK. Yoshida for useful disussions and Albert Einstein Institute for hospitality. This workis supported by JSPS Postdotoral Fellowships for Researh Abroad H18-143.26 A similar limit was taken in [40℄ for the ase inluding Nf fundamental matters with a �nite Nf=N ,where they observed a third order phase transition just like the Gross-Witten transition [17℄.27It might be useful to make use of the Penrose limit [41℄ to examine the intermediate regime. See[50, 51℄ for the omparison of the Hagedorn temperature.24



A The partition funtion of single salar partileAs an example we ompute here the partition funtion of single salar partile. Letus de�ne the following funtion on S3 asf(x; y) = Tr xEy2j2 : (A.1)Sine a salar is expanded by the salar spherial harmonis Sj;m; �m(
), the above funtionan be easily evaluated asf(x; y) = x + 2x2(y + 1=y) + 3x3(y2 + 1 + 1=y2) + � � � : (A.2)The orbifold ase is given by restriting the modes into the ones invariant under theorbifold ation (2.4).In the ase of the trivial holonomy V = 1, we have to projet the modes into the oneswith 2 �m = kZ. The projetion leads tof(x; y) = x+ 3x3 + � � �+ 1Xn=1(ynk + 1=ynk)[(nk + 1)xnk+1 + (nk + 3)xnk+3 + � � � ℄ ; (A.3)where only terms proportional to ykZ are kept. Using a formulaLxL + (L+ 2)xL+2 + � � � = LxL � (L� 2)xL+2(1� x2)2 ; (A.4)the funtion an be written asf(x; y) = x+ x3(1� x)2 + 1Xn=1(ynk + 1=ynk)(nk + 1)xnk+1 � (nk � 1)xnk+3(1� x2)2 : (A.5)With P1n=1 xn = x=(1� x) and P1n=1 nxn = x=(1� x)2, we �nally �nd for y = 1f(x; 1) = (x + x3)(1� x2k) + 2kxk(x� x3)(1� x)2(1� xk)2 : (A.6)This gives the expression in (2.5) with I = J .The ase with non-trivial holonomy an be analyzed in a similar way. For a bi-fundamental salar (nI ; �nJ), the orbifold ation is given by (2.4). In this ase we keep theterms proportional to ykZ+L, and we �ndf(x; y) = 1Xn=0 ynk+L[(nk + L+ 1)xnk+L+1 + (nk + L + 3)xnk+L+3 + � � � ℄+ 1Xn=1 ynk�L[(nk � L + 1)xnk�L+1 + (nk � L + 3)xnk�L+3 + � � � ℄ : (A.7)Making use of the formula (A.4), we an redue the above sum into the more simpli�edform in (2.5). 25



B An index for the supersymmetri orbifold theoryIn this appendix the index proposed in [19℄ is omputed for N = 4 U(N) super Yang-Mills theory on R � S3=Zk with the periodi boundary ondition for the fermions alongthe �-yle.28 The index in our ase is de�ned asI = Tr(�1)Fe���t2(E+j1)vR2wR3 ; � = E � 2j1 � 32R1 � R2 � 12R3 : (B.1)Sine only states satisfying � = 0 ontribute the index [19℄, we an set � !1. As beforeE is the energy and (j1; j2) are spins with respet to SU(2)1�SU(2)2 isometry on S3. Thesymmetry of the theory is SU(2j4) and R1; R2; R3 are R-harges. With generi holonomy(n0; � � � ; nk�1), the U(N) gauge symmetry is redued to QI U(nI), and the states are inadjoint or bi-fundamental representation of the gauge group. As in [19, 20℄ or in (2.13)the index an be written by an integral of unitary matries asI = Z [YI dUI ℄ exp 24XI;J 1Xn=1 1nf I;J(tn; vn; wn) Tr(UnI ) Tr(U ynJ )35 ; (B.2)where the oeÆients f I;J are the indies for the single partiles with representation(nI ; �nJ). Notie that the index does not reeive any orretions of 't Hooft oupling, sinewe are ounting the modes proteted by supersymmetry [19℄.Let us ompute the indies for single partiles. We start from the salar ontribution.The theory inludes three omplex salars X,Y ,Z with (R1; R2; R2) = (0; 1; 0), (1;�1; 1),(1; 0;�1). The salars are expanded by Sj;m; �m(
), and the ondition � = 0 is satis�ed bythe modes Sj;j=2; �m. The orbifold projetion means 2 �m 2 L + kZ for the L = J � I + kZ(0 � L < k) setor, and the ontribution an be omputed ast2(t3L + t3(k�L))(v + 1=w + w=v)(1� t6)(1� t3k) : (B.3)Sine the gauge �eld does not have any R-harges, the ondition � = 0 is satis�ed by themodes V +j;(j+1)=2; �m with 2 �m 2 L + kZ. Thus the ontribution from the gauge �eld ist6(t3L + t3(k�L))(1� t6)(1� t3k) : (B.4)For the fermions, the ondition � = 0 an be satis�ed by the modes F+j;j=2; �m with 2 �m 2L + kZ and (R1; R2; R2) = (1;�1; 0), (0; 1;�1), (0; 0;�1). The ontribution from thesefermions is �t4(t3L + t3(k�L))(1=v + w + v=w)(1� t6)(1� t3k) : (B.5)28See also [52, 20, 53℄. 26



The other ontribution omes from the modes F�j;(j�1)=2; �m with 2 �m 2 L+kZ and (R1; R2; R2) =(1; 0; 0) as ÆL;0 � (t3L + t3(k�L))(1� t6)(1� t3k) : (B.6)Interestingly the sum of all ontributions an be fatorized asf I;J(t; v; w) = ÆL;0 � (t3L + t3(k�L))(1� t2v)(1� t2=w)(1� t2w=v)(1� t6)(1� t3k) : (B.7)For the indies to onverge, we have to assign t2 < 1, t2v < 1, t2=w < 1, t2w=v < 1, whihimplies ÆI;J � f I;J(t; v; w) > 0.In order to perform the integral (B.2), we assume that nI is very large or zero. Then wean replae the disrete eigenvalues by ontinuous ones with the densities �I(�I) satisfyingR d�I�I(�I) = 1. In this term, the e�etive ation is given byS(�In) =XI;J nInJ Xn=1 �In��JnV I;Jn ; V I;Jn = 1n(ÆI;J � f I;J(tn; vn; wn)) ; (B.8)where we denote the Fourier transform of �I(�I) as �In. The saddle point of the ation is�In = 0 for n 6= 0 as V I;Jn > 0, and the index is given by the determinantI =Yn 1det(PI;J nInJV I;Jn ) : (B.9)The determinant is ompliated in general, but it ould be written in a simpler form forseveral ases.One ase is with the trivial holonomy V = 1. In this ase, we have just 1�1 matries,so the determinant is simplyI =Yn (1� t6n)(1� t3kn)(1 + t3kn)(1� t2nvn)(1� t2n=wn)(1� t2nwn=vn) : (B.10)The N dependent fator is removed by hanging the normalization. Another interestingase may be with the Zk symmetri holonomy nI = N=k for all I. In this ase, it is usefulto utilize a formula for a irulant determinant as in [20℄���������������
f1 f2 f3 � � � fkfk f1 f2 � � � fk�1fk�1 fk f1 � � � fk�2... ... ... . . . ...f2 f3 f4 � � � f1

��������������� = k�1YI=0(f1 + !If2 + !2If3 + � � �+ !(k�1)Ifk) (B.11)
with ! = exp(2�i=k). Using the identityk�1YI=0[k�1XL=0(t3L + t3(k�L))!LI℄ = (1� t3k)k(1� t6)k(1� t3k)2 ; (B.12)27



the index is omputed asI =Yn (1� t3kn)2(1� t2nvn)k(1� t2n=wn)k(1� t2nwn=vn)k : (B.13)We would like to ompare these indies with the one from the gravity omputation.However there is a subtle problem whether we should remove the ontribution from thediagonal U(1)k�1 part. In the ase of AdS5 � S5=Zk, the U(1)k�1 part of the dual Yang-Mills theory is removed to ompare the indies with those from the gravity omputation[20℄. Suppose that the similar U(1) deoupling should be taken into aount even in ourase. The ontribution from U(1) part is just the same as that of V = 1 ase (B.10), soafter the subtration we haveI =Yn (1� t3kn)2(1 + t3kn)k�1(1� t6n)k�1(1� t3kn)k�1(1� t2nvn)(1� t2n=wn)(1� t2nwn=vn) : (B.14)We would like to study the U(1) problem furthermore to examine whether this is indeedthe ase.The dual geometry is the orbifold AdS5=Zk�S5 with the exitation of loalized stringstates at the �xed point, and the di�erent exitations orrespond to di�erent vaua of thegauge theory. The index for the supergravity on AdS5=Zk�S5 an be omputed by atingthe orbifold projetion to the index in the overing spae ase [19, 20℄. The single-partileindex an be omputed asI 0(t; v; w) = 1k kXI=1 " t2v1� t2v + t2=w1� t2=w + t2w=v1� t2w=v � t3!I1� t3!I � t3=!I1� t3=!I #= t2v1� t2v + t2=w1� t2=w + t2w=v1� t2w=v � 2t3k1� t3k ; (B.15)and the index inluding the multi-partile ontribution is given asI = exp 1Xn=1 1nI 0(tn; vn; wn) = 1Yn=1 (1� t3kn)2(1� t2nvn)(1� t2n=wn)(1� t2nwn=vn) : (B.16)The index is a slightly di�erent form the both of (B.10) and (B.14), and the di�ereneshould be interpreted as the ontribution from the loalized string states. It is desirableto inlude these stringy ontributions to the index from the AdS side and ompare it withthe index of the gauge theory on the orresponding vauum.Referenes[1℄ J. M. Maldaena, \The large N limit of superonformal �eld theories andsupergravity," Adv. Theor. Math. Phys. 2 (1998) 231{252, hep-th/9711200.[2℄ B. Sundborg, \The Hagedorn transition, deon�nement and N = 4 SYM theory,"Nul. Phys. B573 (2000) 349{363, hep-th/9908001.28
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