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Abstra
tWe study the phase stru
tures of N = 4 U(N) super Yang-Mills theories onR � S3=Zk with large N . The theory has many va
ua labelled by the holonomymatrix along the non-trivial 
y
le on S3=Zk, and for the fermions the periodi
 andthe anti-periodi
 boundary 
onditions 
an be assigned along the 
y
le. We 
omputethe partition fun
tions of the orbifold theories and observe that phase transitionso

ur even in the zero 't Hooft 
oupling limit. With the periodi
 boundary 
ondition,the va
ua of the gauge theory are dual to various arrangements of k NS5-branes.With the anti-periodi
 boundary 
ondition, transitions between the va
ua are dualto lo
alized ta
hyon 
ondensations. In parti
ular, the mass of a deformed geometryis 
ompared with the Casimir energy for the dual va
uum. We also obtain an indexfor the supersymmetri
 orbifold theory.
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tionRe
ently the thermodynami
s of large N gauge theories on 
ompa
t spa
es attra
tmu
h attention. On 
ompa
t spa
es the Gauss 
onstraint restri
ts physi
al states intogauge invariant form, and due to this fa
t the theories are in a 
on�nement phase at lowtemperature, and undergo a de
on�nement transition at a 
riti
al temperature. Moreover,the large N gauge theories may have their dual des
ription in terms of string theory onan asymptoti
 Anti-de Sitter (AdS) spa
e [1℄. For example, the partition fun
tion fora large N gauge theory on R � S3 was 
omputed in [2, 3℄, and it was shown that thepartition fun
tion is of order O(1) at low temperature and of order O(N2) above a 
riti
altemperature. In the dual gravity theory, the phase transition 
orresponds to the Hawking-Page transition [4, 5℄, where the thermal AdS spa
e is dominant at low temperature andthe AdS-S
hwarzs
hild bla
k hole is dominant at high temperature.In this paper, we study the thermodynami
s of N = 4 U(N) super Yang-Mills theoryon R � S3=Zk.1 We 
onstru
t the orbifold theory in the following way. The manifold S31The orbifold theory at zero temperature has been studied in [6℄, see also [7, 8℄.1



has a U(1) symmetry along a 
y
le, and the orbifold is 
onstru
ted by dividing Zk rotationalong the 
y
le. The ba
kground does not in
lude any �xed point, but has a non-trivial
y
le due to the orbifold pro
edure. We 
an introdu
e 
ux along the non-trivial 
y
le,whi
h gives non-trivial holonomies to the �elds. Therefore, the theory admits many va
ualabelled by the 
hoi
e of 
ux, and this makes the phase diagram ri
her. Along the non-trivial 
y
le, we 
an assign periodi
 and anti-periodi
 boundary 
onditions to fermionsalong the non-trivial 
y
le, and this leads to supersymmetri
 and non-supersymmetri
theories at zero temperature. We study the gauge theories perturbatively with respe
t tothe 't Hooft 
oupling � = Ng2Y m.2 In this paper, we 
onsider the zero 't Hooft 
ouplinglimit, where the theories redu
e to free �eld theories. Even in this limit we observe phasetransitions due to the 
ompa
tness of the base manifold.In this orbifold 
ase the dual gravity des
ription is also available, thus the phase di-agram 
an be extended into the strong 
oupling region. For the 
ase with the periodi
boundary 
ondition, the dual geometry is the orbifold of the thermal AdS spa
e or itsdeformation by lo
alized massless states in the low temperature phase. In the high tem-perature phase, the dual geometry is the orbifold of the AdS-S
hwarzs
hild bla
k hole orits deformation. If we perform the T-duality along the non-trivial 
y
le, then we obtaink NS5-brane 
on�guration, whi
h is parametrized by the positions of k NS5-branes [6℄.For the 
ase with the anti-periodi
 boundary 
ondition, there are lo
alized ta
hyons atthe �xed point of the thermal AdS orbifold in the low temperature phase. The 
onden-sation of lo
alized ta
hyon may resolve the orbifold singularity like [9℄ and lead to thedeformed geometry obtained in [10, 11℄ 
alled as Egu
hi-Hanson soliton. In other words,the gauge theory gives the dual pi
ture of the lo
alized ta
hyon 
ondensation dis
ussedin [9℄.3 At enough high temperature, the dual geometry should be the orbifold of theAdS-S
hwarzs
hild bla
k hole, and there are no lo
alized ta
hyons in the geometry.Following the analysis in [2, 3℄, we obtain the partition fun
tions for the gauge theoriesin terms of a matrix integral. At low temperature, we �nd the leading 
ontribution 
omesfrom the Casimir energy of the theories on S3=Zk. For the 
ase with the periodi
 boundary
ondition, the Casimir energy is the same for all the va
ua and the same as the mass ofthe thermal AdS orbifold. For the 
ase with the anti-periodi
 boundary 
ondition, theCasimir energy is smallest for the va
uum dual to the deformed geometry. Interestingly,the Casimir energy is roughly 4=3 times the mass of the Egu
hi-Hanson soliton. In thehigh temperature limit, the partition fun
tion behaves in the same way for all possibleholonomies and spin stru
tures. Near the 
riti
al temperature, we 
an perform an analyti

omputation by using the Gross-Witten ansatz [17℄ as an approximation, and we 
an2 On the 
ompa
t spa
e, we have a tunable dimensionless parameter R�, where R is the radius of S3and � is a 
ut o� s
ale. If we take R� � 1, then the Yang-Mills 
oupling 
an be set small even at lowenergy. Even with this fa
t we set R = 1 for simpli
ity.3Previous attempts to apply the AdS/CFT 
orresponden
e to the lo
alized ta
hyon 
ondensation havebeen given in [12, 13, 14, 15, 16℄. 2



dis
uss the dominant 
ontribution to the total partition fun
tion.The organization of this paper is as follows. In the next se
tion, we de�ne the orbifoldgauge theories on R � S3=Zk with generi
 holonomy by utilizing the standard orbifoldmethod as in [18℄. We 
ompute the partition fun
tion for the orbifold gauge theoriesby following [2, 3℄. In se
tion 3 we analyze the partition fun
tion and dis
uss the phasestru
ture. We observe that the dominant 
ontribution 
omes from the Casimir energy atlow temperature, and we 
ompute the Casimir energy for the 
ase with general holonomy.Near the 
riti
al temperature we solve the partition fun
tion analyti
ally by making useof the analysis in [17℄. At very high temperature, we obtain the partition fun
tion as anexpansion of the temperature T , whi
h does not depend on the 
hoi
e of holonomy. Inse
tion 4 we analyze the large 't Hooft 
oupling limit in the dual gravity des
ription. Wedis
uss the relations to the arrangement of k NS5-branes for the 
ase with the periodi
boundary 
ondition and to the lo
alized ta
hyon 
ondensation for the 
ase with the anti-periodi
 boundary 
ondition. Se
tion 5 is devoted to 
on
lusion and dis
ussions. Inappendix A we 
ompute the partition fun
tion of single s
alar parti
le as an example.In appendix B the index proposed in [19℄ is 
omputed for the supersymmetri
 orbifoldtheory.42 Orbifold gauge theoriesWe 
onsider N = 4 super Yang-Mills theories on R � S3=Zk with large N U(N)gauge symmetry. The 3-sphere S3 has SO(4) ' SU(2)1 � SU(2)2 isometry, and wedivide the gauge theories by 4�=k rotation along the �-
y
le of U(1)� � SU(2)2. Sin
e�1(S3=Zk) = Zk, we 
an assign a non-trivial holonomy matrix V = P exp i H A� alongthe non-trivial 
y
le. Using the U(N) gauge transformation, we 
an set V as a diagonalmatrix V = diag(
1; � � � ;
N ). Be
ause of the 
ondition V k = 1, the element should bea k-th root of unity 
kj = 1. Therefore, we 
an label the va
ua by (n0; � � � ; nk�1) withN = Pk�1I=0 nI , where nI represents the number of j su
h that 
j = !I (! = exp(2�i=k)).Then the orbifold theories are de�ned by proje
ting the Hilbert spa
e into the orbifoldinvariant subspa
e as below. In the following we 
onsider two spe
ial va
ua. One isthe Zk symmetri
 va
uum5 with nI = N=k for all I. Due to the Zk symmetry the dualgeometry 
an be identi�ed as the standard orbifold. The other va
ua do not preserve theZk symmetry, thus the dual geometry should be a deformation of the orbifold. The otherimportant va
uum is with the trivial holonomy V = 1 or equivalently n0 = N . In this
ase the Zk symmetry is maximally broken.4Similar 
omputations were done in [20℄ for quiver gauge theories, whi
h are 
onstru
ted as orbifoldsdi�erent from ours.5In this 
ase N is assumed to be N = kZ. However, for large N and �nite k, the di�eren
e from thegeneral N 
ase should be negligible. 3



2.1 Partition fun
tionWe would like to 
ompute the partition fun
tion of gauge invariant operator in theorbifold theories. In general, the 
ounting of gauge invariant operator is an involved task.Fortunately, it was shown in [2, 3℄ that the partition fun
tion of gauge invariant operator
an be written in terms of single-parti
le partition fun
tions asZ(x) = Z [dU ℄ exp "XR 1Xn=1 1nzR(xn)�R(Un)# : (2.1)At this stage, a gauge group G 
ould be arbitrary, and the sum is taken over all represen-tation R of the gauge group G. We denote �R(U) as the 
hara
ter for representation R,and [dU ℄ as the Haar measure for the group element U . The partition fun
tion of singleparti
le in the representation R is 
omputed byzR(x) =XE xE ; (2.2)where E denotes the energy eigenvalue. The 
ondition of gauge invarian
e 
omes fromthe integral over U , and the variable U will be identi�ed as the holonomy matrix alongthe thermal 
y
le.We 
an adopt any gauge groupG and representationR in the formula (2.1), and severalinteresting examples have their dual gravity des
ription. The most famous one arises fromthe N D3-brane worldvolume theory, whi
h is dual to superstrings on AdS5 � S5. Thetheory isN = 4 super Yang-Mills theory on R�S3 with gauge groupG = U(N), where thestates are in the adjoint representation. Our interest is on the orbifold gauge theories withholonomy along the non-trivial 
y
le, where the existen
e of the holonomy (n0; � � � ; nk�1)breaks the gauge symmetry into G = Qk�1I=0 U(nI).6 With respe
t to the broken gaugegroup, the states are in the adjoint representation for U(nI) or in the bi-fundamentalrepresentation (nI ; �nJ) for U(nI)� U(nJ).The spe
trum of the orbifold theories 
an be obtained by proje
ting the spe
trumon S3 into the orbifold invariant subspa
e. The spe
trum on S3 
an be obtained fromthe spheri
al harmoni
 analysis as in [21℄. The theory in
ludes 6 s
alers, a gauge �eldand 4 Majorana fermions. The s
alars 
an be expanded by the s
alar spheri
al harmon-i
s Sj;m; �m(
), where 
 represents the 
oordinates of S3. The eigenfun
tions of Lapla
eoperator on S3 are given asr2Sj;m; �m(
) = �j(j + 2)Sj;m; �m(
) : (2.3)The labels (m; �m) are eigenvalues of J3 and �J3 for SU(2)1 and SU(2)2, and they run�j=2;�j=2 + 1; � � � ; j=2 � 1; j=2. The proje
tion into the orbifold invariant modes is6The diagonal U(1) parts of ea
h U(nI) may be de
oupled from the rest, but the di�eren
e 
an beignored when nI are very large. See, however, appendix B for the 
ase of an index.4



performed by the proje
tion operator P = 1k Pk�1I=0 �I , where � represents the orbifolda
tion. For a bi-fundamental state (nI ; �nJ) or an adjoint state with I = J , the orbifolda
tion is given by � = e4�i �J3=k!I�J ; (2.4)where ! = exp(2�i=k). The orbifold a
tion 
onsists of two parts. The �rst part is thephase shift due to the Zk rotation along the �-
y
le. The se
ond part is the holonomyfor the bi-fundamental state (nI ; �nJ). We 
an see from (2.4) that the orbifold invariantmodes are restri
ted to 2 �m = J � I mod k. As a notation we de�ne 0 � L < k subje
tto L = J � I mod k. Now we 
an 
ompute the partition fun
tion for the single s
alarparti
le (2.2) aszI;JS (x) = (xL+1 � xL+3 + x�L+1 � x�L+3)kxk(1� x2)2(1� xk)2+ (L + 1)xL+1 � (L� 1)xL+3 � (L� 1)xk�L+1 + (L + 1)xk�L+3(1� x2)2(1� xk) : (2.5)See appendix A for the detail. We have used the fa
t that the energy is given by E = j+1for a s
aler on S3 
onformally 
oupled to gravity.We move to the gauge �eld, whi
h is expanded by the ve
tor spheri
al harmoni
sV �j;m; �m(
).7 We use the notation su
h that the ve
tor index is 
ontra
ted with an auxiliaryunit ve
tor �̂� as V �j;m; �m;��̂�. The ve
tor spheri
al harmoni
s V +j;m; �m and V �j;m; �m belong tothe representations (j1; j2) = ( j+12 ; j�12 ) and ( j�12 ; j+12 ), respe
tively. The eigenvalues ofLapla
e operator on S3 arer2V �j;m; �m(
) = �(j + 1)2V �j;m; �m(
) : (2.6)The orbifold a
tion to the ve
tor spheri
al harmoni
s is the same as in the s
alar 
ase(2.4), sin
e the ve
tor index is 
ontra
ted with an auxiliary unit ve
tor. Therefore, theorbifold proje
tion allows only the modes with 2 �m = J � I mod k for the bi-fundamentalstate with (nI ; �nJ). The partition fun
tion is then given byzI;JV +(x) = (xL+2 � xL+4 + x�L+2 � x�L+4)kxk(1� x2)2(1� xk)2+ (L + 3)xL+2 � (L+ 1)xL+4 � (L� 3)xk�L+2 + (L� 1)xk�L+4(1� x2)2(1� xk) (2.7)7A longitudinal mode is expanded by the s
alar spheri
al harmoni
s as ~rS, and we do not 
onsiderit.
5



for V +j;m; �m andzI;JV �(x) = (xL � xL+2 + x�L � x�L+2)kxk(1� x2)2(1� xk)2+ (L� 1)xL � (L� 3)xL+2 � (L+ 1)xk�L + (L + 3)xk�L+2(1� x2)2(1� xk) (2.8)for V �j;m; �m. We have de�ned L = J � I mod k (0 � L < k) as before.Fermions are expanded by the spheri
al harmoni
s F+j;m; �m(
) and F�j;m; �m(
), whi
hbelong to (j1; j2) = ( j2 ; j�12 ) and ( j�12 ; j2). The spinor index is again 
ontra
ted with anauxiliary spinor �� as F�j;m; �m;���. The eigenvalues of Lapla
e operator on S3 arer2F�j;m; �m(
) = �(j + 12)2F�j;m; �m(
) : (2.9)For fermions we 
an assign two types of boundary 
onditions along the non-trivial 
y
le.The orbifold a
tion depends on the boundary 
ondition as� = �e4�i �J3=k!I�J ; (2.10)where + and � means the periodi
 and the anti-periodi
 boundary 
onditions, respe
-tively. For the periodi
 boundary 
ondition, the orbifold invariant modes are given bythose with 2 �m = J � I mod k. The anti-periodi
 boundary 
ondition 
an be assignedonly for even k, and the restri
tion is shifted by k=2 as 2 �m = J � I + k=2 mod k. For theperiodi
 boundary 
ondition, the partition fun
tion 
an be 
omputed aszI;JF+(x) = (xL+ 32 � xL+ 72 + x�L+ 32 � x�L+ 72 )kxk(1� x2)2(1� xk)2+ (L+ 2)xL+ 32 � LxL+ 72 � (L� 2)xk�L+ 32 + Lxk�L+ 72(1� x2)2(1� xk) (2.11)for F+j;m; �m andzI;JF�(x) = (xL+ 12 � xL+ 52 + x�L+ 12 � x�L+ 52 )kxk(1� x2)2(1� xk)2+ LxL+ 12 � (L� 2)xL+ 52 � Lxk�L+ 12 + (L+ 2)xk�L+ 52(1� x2)2(1� xk) (2.12)for F�j;m; �m. For the anti-periodi
 boundary 
ondition, we should use L = J � I + k=2 modk with 0 � L < k instead of L = J � I mod k.Now we 
an write up expli
itly the partition fun
tion (2.1) for N = 4 super Yang-Mills theories on R � S3=Zk with holonomy (n0; � � � ; nk�1). The total partition fun
tionis given by summing over all the va
ua. It is useful to use the formula for the 
hara
ter6



of bi-fundamental representation as �(nI ;�nJ)(U) = TrUI TrU yJ , where the tra
e is taken inthe fundamental representation. The partition fun
tion is then given byZ(x) = Z [YI dUI ℄ exp 24XI;J 1Xn=1 1nzI;Jn (x) Tr(UnI ) Tr(U ynJ )35 ; (2.13)where the single-parti
le partition fun
tion is summarized aszI;Jn (x) = 6zI;JS (xn) + zI;JV +(xn) + zI;JV �(xn) + (�1)n+14[zI;JF+(xn) + zI;JF�(xn)℄ (2.14)for the 
ase with the periodi
 boundary 
ondition andzI;Jn (x) = 6zI;JS (xn) + zI;JV +(xn) + zI;JV �(xn) + (�1)n+14[zI;J+ k2F+ (xn) + zI;J+ k2F� (xn)℄ (2.15)for the 
ase with the anti-periodi
 boundary 
ondition.Finally let us remark on the di�eren
e from the D-brane worldvolume theories lo
alizedat the �xed point of C n=� with n = 2; 3 [18℄. Sin
e the orbifold a
tion a
ts trivially tothe worldvolume in those 
ases, only bi-fundamental matters with I; I � 1 and adjointgauge �elds (and matters) are left under the orbifold proje
tion. On the other hand, theorbifold a
tion rotates S3 by 4�=k in our 
ase, there is a �m dependent phase in (2.4).Due to this e�e
t, bi-fundamental states with every pairs of I; J (and adjoint states withI = J) survive the proje
tion ea
h for matters, gauge �eld and fermions. The di�eren
ewould be signi�
ant if we 
ompare our 
ase with the duality between superstrings onAdS5 � S5=� and the gauge theory 
oming from D3-branes at the �xed point of orbifolda
tion � [22℄.2.2 Path integral formulationIn the previous subse
tion, we have obtained the partition fun
tion of gauge invari-ant operator (2.13) in terms of integral over the group manifolds. However, we 
annotdetermine the overall pre-fa
tor in the formulation. In this subse
tion, we re-derive thepartition fun
tion in the path integral formulation. In this derivation, we obtain the nor-malization depending on the Casimir energy of the gauge theories on R � S3=Zk. TheCasimir energy will be important when we 
onsider the phase stru
ture at low tempera-ture. Moreover, we 
an identify UI as the holonomy matrix for U(nI) gauge group alongthe thermal 
y
le.The path integral for the partition fun
tion with a �nite temperature T may be 
om-puted on S1 � S3=Zk, where S1 is the thermal 
y
le with periodi
ity � = 1=T . Alongthe thermal 
y
le we assign the anti-periodi
 boundary 
ondition for the fermions.8 We8Due to this boundary 
ondition, supersymmetry is always broken at a �nite temperature even forthe theory supersymmetri
 at zero temperature. 7



start from �xing the gauge symmetry and then introdu
e the Faddeev-Popov determinant
onjugate to the gauge �xing. We adopt the Coulomb gaugeraAa = 0 (2.16)with ra as 
ovariant derivatives along the S3 dire
tion (a = 1; 2; 3). If we do not in
ludea non-trivial holonomy, then there are spatially 
onstant modes of the gauge �eld. Thepresen
e of holonomy (n0; � � � ; nk�1) breaks the gauge group into QI U(nI) and spatially
onstant modes are left only for QI U(nI).9 The time-dependen
e of these modes is not�xed by the Coulomb gauge (2.16), and we �x these degrees by�t�I = 0 ; �I = 1Vol(S3=Zk) Z d
AIt ; (2.17)where the integration is performed over S3=Zk.First we 
onsider the Faddeev-Popov determinant 
onjugate to (2.17), whi
h is givenby �IFP = det 0(�tDIt ) ; DIt = �t � i[�I ; ℄ : (2.18)The determinant is taken over the non-zero modes. Diagonalizing the zero modes as�I = diag(�I1; � � ��InI ), the measure 
an be written asd�I =Yi d�Ii Yi;j j�Ii � �Ij j ; (2.19)where the Van der Monde determinant arises from the integration over the o� diagonalelements. Now that the bosoni
 modes are periodi
 along the thermal 
y
le, they 
anbe expanded by the fun
tion exp(2�int=�) with n 2 Z.10 Thus the determinant 
an bewritten as �IFP =Yi;j Yn 6=0 2�in�  2�in� � i(�Ii � �Ij )! : (2.20)With the help of the formula Q1n=1(1 � x2=n2) = sin�x=(�x), we �nd up to an overallfa
tor [dUI ℄ = d�I�IFP =Yi d�Ii Yi<j sin2  �(�Ii � �Ij )2 ! ; (2.21)whi
h is the Haar measure of UI = exp(i��I).9The proje
tion under the orbifold a
tion (2.4) removes spatially 
onstant modes with �m = 0 forI 6= J se
tors.10For fermioni
 modes, we should repla
e n by n+ 1=2 sin
e we have assigned anti-periodi
 boundary
ondition along the thermal 
y
le. 8



The Faddeev-Popov determinant 
onjugate to (2.16) is given bydetraDa = Z [d
d�
℄ exp(��
raDa
) ; (2.22)whi
h should be added to the a
tion of N = 4 super Yang-Mills theory. Noti
e thatthe ghosts are expanded by the s
alar spheri
al harmoni
s proje
ted into the orbifoldinvariant modes. After integrating over the massive modes in
luding the 
-ghosts, thepartition fun
tion is given in terms of integral over the zero modes asZ(T ) = Z [YI dUI ℄e�S(U) : (2.23)Let us �rst 
ompute the 
ontribution from the gauge �eld and the 
-ghosts. Sin
e thelongitudinal modes ~rS and At (ex
ept the zero modes �I) are expanded by the s
alarspheri
al harmoni
s, the 
ontributions to the path integral from the 
-ghosts and the lon-gitudinal modes 
an
el out. Therefore, the 
ontribution redu
es to the Gaussian integralover the ve
tor spheri
al harmoni
s, whi
h is evaluated asS(U) = 12XI;J XE [nI;JV +(E) + nI;JV �(E)℄ ln det(�D2t + E2) : (2.24)We denote nI;JV �(E) as the degenera
y of eigenstates with E in the representation (nI ; �nJ).Following the 
omputation in [3℄, we �ndS(U) = 12XI;J �nInJ XE [nI;JV +(E) + nI;JV �(E)℄E�XI;J 1Xn=1 1n [zI;JV +(e�n=T ) + zI;JV �(e�n=T )℄ Tr(UnI ) Tr(U ynJ ) : (2.25)In the same way, we 
an 
ompute the 
ontributions from s
alars and fermions and sum-marize all the 
ontributions as11S(U) = �V0 �XI;J 1Xn=1 1nzI;Jn (e�1=T ) Tr(UnI ) Tr(U ynJ ) ; (2.26)where zI;Jn are the single-parti
le partition fun
tions (2.14) or (2.15). The �rst term is theCasimir energyV0 = 12XI;J nInJ XE [6nI;JS (E) + nI;JV +(E) + nI;JV �(E)� 4nI;JF+(E)� 4nI;JF�(E)℄E : (2.27)11In the expression of (2.23) with (2.26), the normalization has been set by dividing holonomy in-dependent fa
tors. Introdu
ing the holonomy (n0; � � � ; nI) along the �-
y
le, the lowest modes inU(N)=QI U(nI) be
ome spa
e-dependent, and hen
e they 
an be �xed by the Coulomb gauge (2.16)instead of (2.17). The normalization of ea
h Faddeev-Popov determinants may depend on the 
hoi
e ofholonomy along the �-
y
le, but the sum of both should not.9



Compared with the expression of (2.13), the integral variables UI are identi�ed with theholonomy matri
es UI = exp(i��I) with respe
t to the gauge group QI U(nI). In this waywe 
an see that the previous expression only in
ludes the �nite temperature 
ontribution.The zero temperature 
ontribution, whi
h 
omes from the Casimir energy, should bein
luded in the partition fun
tion.3 Phase transitions of the gauge theoriesIn the previous se
tion, we have obtained the partition fun
tion of gauge invariantoperator in terms of integral over UI as (2.23) with (2.26). In this se
tion, we performthe UI integral in the large N limit12 and examine the phase stru
ture of the orbifoldtheories. For large N and �xed k, it is natural to assume that nI in the label of holonomy(n0; � � � ; nk�1) are very large. In 
ase that some of nI are very small, then they maybe set zero in this limit. We 
onsider two spe
i�
 va
ua in the following. One is theZk symmetri
 holonomy va
uum with nI = N=k and the other is the trivial holonomyva
uum with n0 = N . In these 
ases our assumption is valid. In the next subse
tion westudy the low temperature phase, and in subse
tion 3.2 we fo
us on the Casimir energy
ontribution. In subse
tion 3.3 we obtain an analyti
 expression under an approximationnear the 
riti
al temperature. In subse
tion 3.4 we take the high temperature limit, wherethe analysis be
omes simpler.3.1 Criti
al temperaturesIt is 
onvenient to diagonalize the eigenvalues of holonomy matrix UI as exp(i�I;i)with �� � �I;i < �.13 For large nI the dis
rete elements may be repla
ed by a 
ontinuousparameter �I with a density �I(�I). The density has to satisfy �I(�I) � 0 and the nor-malization is set as R ��� �I(�I)d�I = 1. In this approximation the e�e
tive a
tion (2.26)be
omesS[�I(�I)℄ = �V0 �XI;J nInJ Z d�Id�0J�I(�I)�J(�0J)�ÆI;J ln �����sin �I � �0J2 !�����+ 1Xn=1 1nzI;Jn (x) 
os(n(�I � �0J))� (3.1)with x = e�1=T . The �rst term in the bra
ket arises from the 
hange of measure [dUI ℄![d�I;i℄. In terms of the Fourier transform �In = R d�I�I(�I) 
os(n�I),14 the e�e
tive a
tion12Finite N e�e
ts may be examined by following the analysis in [23, 24, 25℄.13The eigenvalue �I;i is related with the zero modes in (2.17) as �I;i = ��Ii .14We assume that �I is distributed symmetri
ally around �I = 0.10



(3.1) is given by S[�In℄ = �V0 +XI;J nInJ 1Xn=1 �In��JnV I;Jn (x) ; (3.2)where V I;Jn (x) = 1n(ÆI;J � zI;Jn (x)) : (3.3)At enough low temperature, the repulsive for
e 
oming from the �rst term of (3.3)dominates, and the uniform distribution �In = 0 for n � 1 is the 
lassi
al solution to thee�e
tive a
tion (3.2). Therefore, there are no order O(N2) (nor order O(N)) 
ontribu-tions from the e�e
tive a
tion ex
ept for the Casimir energy term �V0. An order O(1)
ontribution 
omes from the Gaussian integral as1Yn=1 1det �nInJV I;Jn (x)� ; (3.4)where the determinant is over the labels 0 � I; J < k. As the temperature in
reased, these
ond term of (3.3) 
ontributes to the potential, and the determinant would vanish at a
riti
al temperature x
 = exp(�1=T
). Above the 
riti
al temperature, the distributionbe
omes non-uniform and the 
lassi
al 
ontribution is of order O(N2).Let us examine two 
on
rete examples. We start from the trivial holonomy 
ase, wherethe a
tion (3.2) reads S[�0n℄ = �V0 +N2 1Xn=1 j�0nj2 1n(1� z0;0n (x)) : (3.5)At enough low temperature, the 
oeÆ
ients of j�0nj2 are positive, and �0n = 0 for n � 1 isthe saddle point. Now that the 
oeÆ
ients are 1 � 1 matri
es, the determinant (3.4) issimply 1Yn=1 11� z0;0n (x) : (3.6)We have 
hanged the normalization su
h that only the Casimir energy term is left atx = 0. As the temperature in
reased, the 
oeÆ
ients of j�0nj2 be
ome smaller, and ata 
riti
al temperature T = T
, a 
oeÆ
ient vanishes. Sin
e the single-parti
le partitionfun
tion is a monotoni
ally in
reasing fun
tion of x, the �rst zero 
omes from the n = 1part when 1� z0;01 (x) = 0. The 
riti
al temperatures x
 and T
 are summarized for smallk in Table 1. We should note that for k = 1 the 
riti
al temperature redu
es to the onefor R � S3 
ase [2, 3℄ as x
 = 7� 4p3 = 0:071797 or T
 = 0:379663.Another interesting 
ase may be with the Zk symmetri
 holonomy nI = N=k for all I.In this 
ase the a
tion (3.2) is given byS[�In℄ = �V0 + N2k2 XI;J 1Xn=1 �In��Jn 1n(ÆI;J � zI;Jn (x)) : (3.7)11



k x
 (periodi
) T
 (periodi
) x
 (anti-periodi
) T
 (anti-periodi
)2 0.095663 0.426090 0.095663 0.4260904 0.104448 0.442661 0.127999 0.4864456 0.104684 0.443104 0.139545 0.5077778 0.104689 0.443113 0.142528 0.51329010 0.104689 0.443113 0.143136 0.514414Table 1: The 
riti
al temperatures x
 = exp(�1=T
) and T
 for the N = 4 super Yang-Mills theories on R � S3=Zk with the trivial holonomy V = 1. We set k = 2; 4; 6; 8; 10.The periodi
 and anti-periodi
 boundary 
onditions are assigned for the fermions alongthe �-
y
le.Noti
e that the 
oeÆ
ients of �In take the form of a 
ir
ulant matrix sin
e zI;Jn onlydepends on the di�eren
e I � J . Using the formula for a 
ir
ulant determinant (B.11),the determinant (3.4) 
an be written in a 
ompa
t form as1Yn=1 k�1YI=0 11�Pk�1J=0 !IJz0;Jn (x) : (3.8)As before it is enough to fo
us on the n = 1 fa
tors. If we in
rease the temperature, thenthe denominator diverges when PJ z0;J1 (x) = 1. Among the other fa
tors, this fa
tor givesthe divergen
e with smallest x
 sin
e z0;J1 (x) is positive for all J . Remarkably the 
riti
altemperature is the same for all k and for both the spin stru
tures as x
 = 0:071797 orT
 = 0:379663 as in the R � S3 
ase. A
tually this is an expe
ted result sin
e the sum ofall se
tors with weight one PJ z0;J1 (x) is the same as the single-parti
le partition fun
tionfor the R � S3 
ase.3.2 Casimir energiesAt low temperature, the determinant (3.4) is of order O(1) and the 
ontribution fromthe Casimir energy (2.27) is dominant. The Casimir energy is an important quantitysin
e it is supposed to 
orrespond to the mass of the dual geometry. In order to 
omputeCasimir energy, we have to sum over in�nitely many states, and this may lead to adivergent result. Thus we have to 
hoose a regularization, but it is a subtle problemfor quantum �eld theory on a 
urve ba
kground [26℄. Fortunately, we will �nd that theCasimir energies in our 
ase are �nite, thus we do not need to worry about this diÆ
ultissue.In order to regularize the in�nite sum in the Casimir energy (2.27), we �rst introdu
ea 
ut o� fa
tor e�E=� asXE (6nI;JS + nI;JV + + nI;JV � � 4nI;JF+ � 4nI;JF�)Ee�E=� ; (3.9)12



and �nally take the limit � = 1=� ! 0. This regularization may be justi�ed by the fa
tthat no divergent terms are left in the �nal results. The above regularization 
an berealized by using the identity (A = S; V �; F�)XE nI;JA (E)Ee��E = � dd�zI;JA (e��) ; (3.10)so we need the expansion of single-parti
le partition fun
tions by � up to O(�) aszI;JS (e��) � 2�3k � 7�180k + �k36 + �k3360 � �L(k � L)6k � �L2(k � L)212k ; (3.11)zI;JV �(e��) � 2�3k � 1�k � k6 � 13k � L� L2k + �1� 12 � ÆL;0 + 2�45k � 5�k36 + �k3360+ 5�L(k � L)6k � �L2(k � L)212k ; (3.12)zI;JF�(e��) � 2�3k � 14�k � k12 � 112k � L2 � L22k + 83�2880k � �k72 + �k3360+ �L(k � L)12k � �L2(k � L)212k : (3.13)Below we dis
uss the 
ases with the periodi
 and the anti-periodi
 boundary 
onditionsseparately.For the 
ase with the periodi
 boundary 
ondition, we haveXE (6nI;JS + nI;JV + + nI;JV � � 4nI;JF+ � 4nI;JF�)Ee��E = 38k +O(�) : (3.14)As mentioned before, the �nal expression does not depend on the 
ut o� parameter �,whi
h might be due to the large supersymmetry. Moreover, the Casimir energy doesnot depend on the indi
es I; J , and this means that the Casimir energy is the same forall 
hoi
es of holonomy (n0; � � � ; nk�1). This is 
onsistent with the argument in [6℄ thatthe va
ua with di�erent holonomy are degenerated at zero temperature. Noti
e that theCasimir energy V0 = N2 316k (3.15)is pre
isely the same as the mass of AdS5=Zk as we will dis
uss below.For the 
ase with the anti-periodi
 boundary 
ondition, the above 
an
ellation amongI; J dependent terms does not o

ur in general. With L = J � I mod k (0 � L < k) we�nd XE (6nI;JS + nI;JV + + nI;JV � � 4nI;J+ k2F+ � 4nI;J+ k2F� )Ee��E= 38k + k6 � k324 + L2 �k � 23 �2L+ 1L��+O(�) (3.16)
13



for 0 � L � k2 and L is repla
ed by k � L for k2 < L < k. Noti
e that the divergentterms proportional to 1=�4 and 1=�2 
an
el out even in this 
ase. The Casimir energydepends on the 
hoi
e of holonomy due to the L-dependen
e of the zero point energy(3.16). The dominant 
ontribution to the total partition fun
tion 
omes from the va
uumwith smallest zero point energy, whi
h is realized with the trivial holonomy. This isbe
ause the value inside the bra
ket in (3.16) is always positive for all 0 � L � k2 if weset k � 4.15 The Casimir energy for the trivial holonomy 
ase is given byV0 = N2  316k + k12 � k348! ; (3.17)whi
h will be 
ompared with the mass of the dual geometry (4.12). Another interesting
ase may be with the Zk symmetri
 holonomy. In this 
ase, we sum up every L with thesame weight, and hen
e we ex
ept that the 
an
ellation between the se
tors with L andL+ k=2 o

urs. This 
an be 
on�rmed by a dire
t 
omputation, and the Casimir energyis obtained as (3.15).16Before �nishing the arguments on Casimir energy, we would like to make a 
ommenton the validity of regularization adopted here, even though the divergent terms 
an
elout in the �nal expressions. Let us write the radius R of S3 expli
itly su
h as E =(j + 1)=R for the s
alar 
ase. Then the divergent parts are proportional to �4R3 and�2R in ea
h single-parti
le partition fun
tion. For quantum �eld theory on a 
urvedba
kground, the divergent terms of energy momentum tensor should be absorbed by therenormalization of 
oeÆ
ients in the Einstein-Hilbert a
tion. In our 
ase the divergentterms may be absorbed by the 
ounter terms a�4 R pg and b�2 R pgR. See [26℄ for moredetailed dis
ussions.3.3 Just above the 
riti
al temperaturesThe eigenvalues distribute uniformly due to the repulsive potential at low temperature,however the eigenvalues get together due to the attra
tive potential above the 
riti
altemperature. In parti
ular, the densities may be gaped and vanish ex
ept for ��I
 ��I � �I
. The 
ondition that an eigenvalue �I does not feel any for
e is obtained asn2I Z d�0I�I(�0I) 
ot �I � �0I2 ! = 2 k�1XJ=0nInJ 1Xn=1 zI;Jn (x)�Jn sin(n�I) (3.18)from the a
tion (3.1). The general solutions subje
t to the normalization 
ondition �I0 = 1
an be obtained by following [27, 3℄ in prin
iple. However, the analysis is quite 
ompli-
ated generi
ally, so we adopt an approximation by setting zI;Jn (x) = 0 for n > 1. This15For k = 2 the 
ases with the periodi
 and anti-periodi
 boundary 
onditions lead to the identi
alresult.16The Casimir energy in this 
ase was already 
omputed in [10, 11℄ by following the general method of[26℄. 14



approximation may be justi�ed for small x � x
 as in Table 1 by the fa
t that zI;Jn (x)with n > 1 is mu
h smaller than zI;J1 (x). In the following we will expli
itly solve theseequations for the trivial holonomy 
ase with V = 1 and the Zk symmetri
 
ase withnI = N=k.Let us begin with the trivial holonomy 
ase, where the 
ondition (3.18) redu
es toZ d�00�0(�00) 
ot �0 � �002 ! = 2z0;01 (x)�01 sin �0 : (3.19)This 
ase is almost the same as the R � S3 
ase analyzed in [2, 3℄. The solution is givenby the form of the Gross-Witten ansatz [17℄ as�0(�0) = 1� sin2 �
2 ssin2 �
2 � sin2 �02 
os �02 (3.20)for ��
 � �0 � �
 and zero for otherwise. The parameter �
 satis�essin2 �
2 = 1�vuut1� 1z0;01 (x) : (3.21)With this solution we 
an 
ompute the 
lassi
al a
tion and the free energy F = �T lnZ =T hSi as FN2 ' V0 � T  12 sin2 �
2 + 12 ln sin2 �
2 � 12! : (3.22)Near the 
riti
al temperature, it is given asFN2 ' V0 � TH4 (T � T
) ddT z0;01 (e�1=T )jT=T
 +O �(T � T
)2� : (3.23)For the purpose of 
omparison with the Zk symmetri
 
ase, we draw plots of the freeenergies for k = 4; 6 in Figure 1. In the Figure we have shifted the zero point energy by3=(16k).For the Zk symmetri
 
ase, the 
ondition (3.18) be
omesZ d�0I�I(�0I) 
ot �I � �0I2 ! = 2 k�1XJ=0 zI;J1 (x)�Jn sin �I ; (3.24)and the generi
 solutions are quite 
ompli
ated. However we only need the solutionresponsible to the phase transition at the 
riti
al temperature x
 satisfying PJ z0;J1 (x
) =1. With the help of the Zk symmetry, we assign that the densities of eigenvalue take thesame form as �I(�I) = �(�I) for all I. Then the solution 
an be easily found as�(�I) = 1� sin2 �
2 ssin2 �
2 � sin2 �I2 
os �2 (3.25)15
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Figure 1: Free energies F (T )=N2 as fun
tions of T in the 
ases with the periodi
 and theanti-periodi
 boundary 
onditions and with k = 4; 6. The solid lines are for the trivialholonomy 
ase and the dotted lines are for the Zk symmetri
 
ase.for ��
 � � � �
 and zero for otherwise. In this 
ase �
 satis�essin2 �
2 = 1�vuut1� 1Pk�1J=0 z0;J1 (x) : (3.26)This is valid for x satisfying PJ z0;J1 (x) � 1, and the equality holds for the 
riti
al tem-perature x = x
. The free energy isF 2N2 ' V0 � Tk  12 sin2 �
2 + 12 ln sin2 �
2 � 12! ; (3.27)and near the 
riti
al temperatureF 2N2 ' V0 � TH4 (T � T
) ddT 1k k�1XJ=0 z0;J1 (e�1=T )jT=T
 +O �(T � T
)2� : (3.28)See Figures 1 for k = 4; 6.Let us 
ompare the free energies for the above two 
ases. For the 
ase with theperiodi
 boundary 
ondition, the free energy for the Zk symmetri
 
ase is lower near the
riti
al temperature, sin
e the 
riti
al temperature is smaller in this 
ase. Near the 
riti
altemperature, the free energy is proportional to T � T
 as in (3.23) and (3.28), and the
oeÆ
ients in (3.28) behaves like 1=k.17 From this reason the free energy for the trivial17This is 
he
ked for small k by a numeri
al 
omputation.16



holonomy 
ase is lower at slightly higher temperature for large k as in Figure 1. For the
ase with the anti-periodi
 boundary 
ondition, the free energy for the trivial holonomy
ase is lower than for the Zk symmetri
 
ase due to the Casimir energy V0. Sin
e theCasimir energy behaves like k3, the di�eren
e of free energy be
omes bigger for larger k.3.4 High temperature behaviorsAt higher temperature the approximation in the previous subse
tion is not valid anymore, and the 
ontribution from n > 1 terms in (3.18) should be taken into a

ount.Fortunately, the analysis be
omes simpler when we take the high temperature limit T � 1.This limit is the same as the limit of large radius R of S3, where we 
an use the 
atspa
e approximation. In this limit, the densities of eigenvalue may be given by the deltafun
tion, thus we set �In = 1 for all n. From (3.3) we �nd1Xn=1V Ln = ��(4)T 3 �16k + �1� 123� 16k �� �(2)T ��2k + �1� 12���2k��+O � 1T � ;(3.29)whi
h may be read o� from the expansion of zI;JA (e��) by �. The 
oeÆ
ients of T 3 terms
an be given by the degrees of freedom in the 
at spa
e limit, where the volume should bedivided by k. Sin
e the above expression does not depend on L, the free energy behavesin the same way for all the va
ua and for both the spin stru
tures in the high temperatureexpansion. This is quite natural sin
e the high energy ex
itations should not depend onthe va
uum stru
ture. In summary, the free energy F = �T lnZ and the expe
tationvalue of energy E = � ��� lnZ are given byF = �N2k  �43 T 4 � �22 T 2!+O(1) ; E = N2k  �4T 4 � �22 T 2!+O(1) (3.30)for every 
hoi
e of holonomy and for both the spin stru
tures. This energy was already
omputed in [28℄ in a di�erent way.4 Dual gravity des
riptionIn the limit of large 't Hooft 
oupling the dual gravity des
ription is more appropriateto dis
uss the phase stru
ture of the gauge theories. In the dual pi
ture the 
on�ne-ment/de
on�nement phase transition is des
ribed by the Hawking-Page transition [4, 5℄.In this se
tion we investigate the Hawking-Page transition in the dual geometries and tryto see whether the phase stru
ture 
ontinues from the one at zero 't Hooft 
oupling. In thenext subse
tion we review the Hawking-Page transition between the thermal AdS spa
eand the AdS-S
hwarzs
hild bla
k hole. In subse
tion 4.2 we move to our orbifold 
ases.With the periodi
 boundary 
ondition, the geometries are given by various arrangements17



of k NS5-branes in a T-dual pi
ture. With the anti-periodi
 boundary 
ondition, thereare lo
alized ta
hyons at the �xed point of the thermal AdS orbifold. The 
ondensationof the lo
alized ta
hyon is dis
ussed in subse
tion 4.3.4.1 Hawking-Page transitionThe boundary gauge theory at �nite temperature may be de�ned on S1 � S3 with athermal 
y
le, and we have to in
lude all geometries with the same boundary 
ondition to
ompute a path integral in gravity theory. The geometries are obtained by extending theboundary S1�S3 into the bulk, whi
h 
an be done in two ways. One of the geometry hasthe topology of S1�B4, where the 4 dimensional ball B4 is obtained by �lling the insideof S3. This geometry is the thermal AdS spa
e, where the thermal 
y
le has a periodi
ity.The other geometry has the topology B2 � S3, whi
h is the AdS-S
hwarzs
hild bla
khole. We will see that the thermal AdS spa
e is dominant at low temperature and theAdS-S
hwarzs
hild bla
k hole is dominant at high temperature.The metri
 of the thermal AdS5 is given byds2 = g(r)dt2 + dr2g(r) + r2ds2S3 ; g(r) = r2l2 + 1 ; (4.1)where ds2S3 is the metri
 of S3 and the Eu
lidean time is periodi
 t � t+ �l. The mass ofthe thermal AdS5 was 
omputed in [29℄ asM = 3�l232G5 (4.2)by utilizing the boundary stress tensor method. This is pre
isely the same as the Casimirenergy of N = 4 U(N) super Yang-Mills theory on R � S3 given in (3.15) with k = 1.The 5 dimensional Newton 
onstant G5 is written as G5 = �l3=(2N) in terms of the dualgauge theory. For simpli
ity we set the AdS radius as l = 1.The metri
 of the AdS-S
hwarzs
hild bla
k hole isds2 = h(r)dt2 + dr2h(r) + r2ds2S3 ; h(r) = r2 + 1� r20r2 ; (4.3)where the period of the Eu
lidean time is given by �h = 2�r+=(2r2+ + 1). We denoter+ as the horizon satisfying h(r+) = 0 or equivalently r20 = r2+ + r4+.18 The Mass of theAdS-S
hwarzs
hild bla
k hole is [29℄M = 3�r208G5 + 3�32G5 ; (4.4)18There are two solutions r� to this equation, whi
h implies that there are two types of bla
k holes.The bigger and smaller ones r+; r� are the radii of horizons of big and small bla
k holes, respe
tively.We only 
onsider the big bla
k hole sin
e the small bla
k hole has a negative spe
i�
 heat and hen
e itis unstable. However the unstable saddle point may be important to understand the phase stru
ture aspointed out in [3, 24, 25℄. 18



where the se
ond term is the 
onstant AdS5 
ontribution. This mass 
an be expanded byT = 1=�h at high temperature as [28℄M = 3�8G5 (�4T 4 � �2T 2) +O(1) ; (4.5)whi
h is about 3/4 times the energy given in (3.30) with k = 1.19Now we 
an 
ompute the partition fun
tion in the gravity des
ription. In the 
lassi
alapproximation, the partition fun
tion is obtained from the 
lassi
al a
tions for the geome-tries, whi
h are proportional to the volume as S = V=(2�G5). Sin
e the volume divergesfor both 
ases, we introdu
e a 
ut o� rm and examine the di�eren
e. The Eu
lidean timeperiods are set equal at rm as �lqg(rm) = �hqh(rm). Then the di�eren
e of the 
lassi
ala
tion is 
omputed as [4, 5℄limrm!1 VBH(rm)� VTAdS(rm)2�G5 = �2(r3+ � r5+)4G5(2r2+ + 1) : (4.6)For small r+ (low temperature) the above quantity is positive, whi
h means that thethermal AdS spa
e dominates the partition fun
tion. The phase transition o

urs atr+ = 1 or T = 3=(2�), and above the 
riti
al temperature the AdS-S
hwarzs
hild bla
khole dominates.In the dual gauge theory, the Polyakov loop hTrUi = hTrP exp i H Ati is an importantorder parameter. In the 
on�nement phase, the ZN symmetry of the theory is unbroken,and hen
e the Polyakov loop vanishes, whi
h is realized by uniformly distributed eigen-values �i. In the de
on�nement phase, sin
e the ZN symmetry is broken, the Polyakovloop may have a non-trivial value and the eigenvalues are distributed non-trivially.20The Polyakov (Wilson) loop along the path C may be 
omputed in the gravity side asexp(�A), where A represents the minimum area of the worldsheet with boundary C sub-je
t to a regularization [31, 32℄. For the thermal AdS spa
e, the thermal 
y
le is not
ontra
tible, so the area is in�nite and this leads to the vanishing Polyakov loop. For theAdS-S
hwarzs
hild bla
k hole, the thermal 
y
le shrinks at the horizon, so the area 
ouldbe �nite and hen
e the Polyakov loop 
an take a non-zero value. See [5℄ for more detail.4.2 Phase transitions of the orbifoldsDue to the Zk symmetry the va
uum with the holonomy nI = N=k for all I is supposedto be dual to the standard orbifold. At low temperature, the dual geometry is given bythe orbifold of the thermal AdS spa
e, whose metri
 is (4.1) with ds2S3 repla
ed byds2orb = 14[(d�+ 
os �d�)2 + d�2 + sin2 �d�2℄ ; (4.7)19It was argued in [28℄ that the origin of the 3=4 di�eren
e is the same as the one of [30℄, where theentropy of bla
k 3-branes is 
ompared with the state 
ounting on D3-brane.20Be
ause the eigenvalues 
ollapse in the ZN symmetri
 way, the Polyakov loop may vanish after takingthe average. We may use hjTrU ji or hTrU2i to avoid this subtlety.19



where the variables run 0 � � � �, 0 � � � 2� and 0 � � � 4�=k due to the orbifoldidenti�
ation. This metri
 of S3=Zk may be useful sin
e we 
an easily see that the orbifolda
tion a
ts on the �-
y
le as �! �+4�=k and that there is no �xed point on this spa
e.The mass of the thermal AdS orbifold isM = 3�32kG5 ; (4.8)whi
h is 1=k times the mass of the thermal AdS spa
e (4.2). This should be 
omparedwith the Casimir energy with the Zk symmetri
 holonomy. The Casimir energy is givenby (3.15) for both the spin stru
tures and it is pre
isely the same as (4.8). The geometryof AdS5 is believed to be stable under �0 
orre
tion and the stability seems to 
ontinueto the standard orbifold.The thermal AdS orbifold has a �xed point at r = 0 and there are 
losed stringsin twisted se
tors lo
alized at the �xed point. With the periodi
 boundary 
onditionfor the fermions along the �-
y
le, there are massless states lo
alized at the �xed point,and the di�erent va
ua are dual to di�erent ex
itations of these massless states. Theex
itation of lo
alized massless states does not 
hange the global geometry, thus all thegeometries 
ontribute equally to the partition fun
tion. In parti
ular, the mass of theevery geometries should be the same as (4.8), whi
h is also the same as the Casimir en-ergy for the every va
ua. Therefore, we 
an say that the phase stru
ture does not 
hangeeven at the large 't Hooft 
oupling.21 For large k, the T-dual pi
ture along the �-
y
leis relevant, where the k NS5-branes are arranged in the dual ~�-
y
le [33℄. In the T-dualpi
ture, the di�erent ex
itations of massless states 
orrespond to di�erent 
on�gurationsof k NS5-branes.22 In parti
ular the va
uum with the trivial holonomy 
orresponds tothe 
on�guration of k 
oin
ident NS5-branes. With the anti-periodi
 boundary 
ondition,there are lo
alized ta
hyons at the �xed point as in [9℄. The di�erent va
ua are dual to dif-ferent 
ondensations of these lo
alized ta
hyons, whi
h deform the geometry signi�
antlyfrom the thermal AdS orbifold. Sin
e the 
on�gurations with ta
hyon are unstable, therelevant geometry should be the one without ta
hyon, whi
h will be dis
ussed in the nextsubse
tion.At high temperature, the dual geometry is the orbifold of the AdS-S
hwarzs
hild bla
khole (4.3) with ds2S3 repla
ed by (4.7). The mass of the bla
k hole may be given by theexpansion of the temperature asM = 3�8kG5 (�4T 4 � �2T 2) +O(1) ; (4.9)21We are not sure whether the phase stru
ture is the same in a middle value of the 't Hooft 
oupling,but we guess that this is indeed the 
ase.22It was shown in [6℄ that the dual geometries are also labelled by the integers (n0; � � � ; nk�1) at zerotemperature. They dis
ussed how to 
onstru
t these geometries, where the NS5-branes are repla
ed by
ux and the ba
k-rea
tion of the 
ux is taken into a

ount.20



whi
h is 3=4 times the energy given in (3.30) as dis
ussed in [28℄. Sin
e the geometry doesnot have any �xed point, there are no light lo
alized modes generi
ally. Due to this fa
t,the orbifold of the bla
k hole seems to be the most relevant one, even though the everyva
ua are degenerated at the zero 't Hooft 
oupling. At relatively small temperature or forlarge k, there may be nearly massless modes or ta
hyoni
 modes near the horizon. Withthe periodi
 boundary 
ondition, the T-dual pi
ture is more relevant for large k, wherethe shift of NS5-branes is given by the nearly massless modes. With the anti-periodi
boundary 
ondition, the orbifold of the AdS-S
hwarzs
hild bla
k hole may de
ay into aresolved AdS orbifold through the ta
hyon 
ondensation. This type of geometry de
ayhas been dis
ussed in [34, 35℄. A

ording to them, a kind of bla
k hole de
ays into abubble of noting by a winding ta
hyon 
ondensation.4.3 Lo
alized ta
hyon 
ondensationIf the anti-periodi
 boundary 
ondition is assigned for the fermions along the �-
y
le,then there are ta
hyoni
 modes at the �x point of the thermal AdS orbifold at low tem-perature. The geometry deformed by a ta
hyon 
ondensation was proposed by [10, 11℄as23 ds2 = g(r)dt2 + dr2g(r)f(r) + r24 [f(r)(d�+ 
os �d�)2 + d�2 + sin2 �d�2℄ ; (4.10)with g(r) = r2 + 1 ; f(r) = 1� a4r4 ; a2 =  k24 � 1! : (4.11)They 
all this geometry as Egu
hi-Hanson soliton. We set k even in order to assign theanti-periodi
 boundary 
ondition for the fermions and also k > 2 for a2 > 0. Be
ause ofthe boundary 
ondition for the fermions, the non-trivial �-
y
le 
an be pin
hed o�. Theboundary metri
 at r !1 is given by (4.7) with � � � + 4�=k as supposed to be. Thesolution is regular everywhere in
luding r = a, and there are no ta
hyoni
 modes. Thereis no geometry for r < a, and this region may be repla
ed by the ta
hyon state or thenothing state in the sense of [35℄.The 
onserved mass of the deformed geometry was 
omputed in [10, 11℄ asM = �(3� 4a2)32kG5 = ��(k4 � 8k2 + 4)128kG5 ; (4.12)where G5 = �=(2N2) in the gauge theory terminology. Sin
e the non-trivial �-
y
le ispin
hed o� at r = a, the Wilson loop along the �-
y
le 
an take non-trivial value a

ordingto the previous dis
ussion on the Polyakov loop. This means that the Zk symmetry isbroken in this ba
kground, and this is 
onsistent with the fa
t that the dual va
uum has23See also [36℄. 21



the trivial holonomy. It is amusing to noti
e that the mass of the Egu
hi-Hanson soliton(4.12) is about 3=4 times the Casimir energy of the gauge theory on the trivial holonomyva
uum (3.17) for large k. This reminds us of the famous 3=4 di�eren
e in the 
ontext of[30℄ mentioned above, but their origins are not dire
tly related to ea
h other. It is worthto study this issue furthermore.At enough high temperature, only the relevant geometry seems to be the orbifold ofthe AdS-S
hwarzs
hild bla
k hole. Therefore we may observe the phase transition betweenthe Egu
hi-Hanson soliton and the orbifold of the AdS-S
hwarzs
hild bla
k hole. As inthe previous 
ase the partition fun
tion may be obtained from the 
lassi
al a
tions forthese geometries in the 
lassi
al approximation. The di�eren
e of these a
tions is givenby limrm!1 VBH(rm)� VEH(rm)2�G5 = �2r+(r2+ � r4+ � 2a2)4kG5(2r2+ + 1) ; (4.13)where the region of r < a is removed in the Egu
hi-Hanson soliton. The 
riti
al temper-ature is24 T
 = 2 +p1 + 8a2q2�2(1 +p1 + 8a2) : (4.14)We 
an see from (4.13) that the Egu
hi-Hanson soliton is dominant at lower temperatureand the orbifold of AdS-S
hwarzs
hild bla
k hole is dominant at higher temperature.5 Con
lusion and dis
ussionsWe have studied the thermodynami
s of N = 4 U(N) super Yang-Mills theories onR � S3=Zk with large N . The base manifold S3=Zk has a non-trivial 
y
le along the�-dire
tion of (4.7), and a non-trivial holonomy 
an be assigned along the non-trivial
y
le. The theory has multi-va
ua asso
iated with the 
hoi
e of holonomy labelled by kinteger numbers (n0; � � � ; nk�1). We 
an assign the periodi
 and anti-periodi
 boundary
onditions for the fermions along the non-trivial 
y
le. On a 
ompa
t manifold, the Gauss
onstraint only allows gauge invariant operators, and due to this fa
t a phase transitiono

urs even in the zero 't Hooft 
oupling limit for largeN . We have 
omputed the partitionfun
tion for the large N gauge theories with di�erent holonomies by following the analysisin [2, 3℄, and examined the phase stru
ture with a spe
ial 
are on the di�eren
e betweenthe va
ua.At low temperature, the most relevant 
ontribution to the free energy 
omes form theCasimir energy. For the 
ase with the periodi
 boundary 
ondition, the Casimir energy24Noti
e that the 
riti
al temperature of the Hawking-Page transition T
 = 3=(2�) is reprodu
ed fora = 0. 22



does not depend on the 
hoi
e of holonomy, and hen
e the va
ua are degenerated. Forthe 
ase with the anti-periodi
 boundary 
ondition, the Casimir energy depends on the
hoi
e of holonomy, and the dominant 
ontribution 
omes from the va
uum with thetrivial holonomy V = 1. Near the 
riti
al temperature, we 
an obtain an approximateanalyti
 expression of free energy by utilizing the Gross-Witten ansatz [17℄. See Figure1. For enough large k the 
ase with the trivial holonomy seems to dominate for both thespin stru
tures. At high temperature, the free energy is universal as in (3.30), thus theva
ua are degenerated for both the spin stru
tures.25In the limit of large 't Hooft 
oupling, the dual gravity des
ription is more appropriate.In the low temperature phase, the dual geometry is the orbifold of the thermal AdS spa
eor its deformation. The orbifold of the thermal AdS spa
e has the �xed point at r = 0,and there are 
losed string states lo
alized at the �xed point. With the periodi
 boundary
ondition, the lo
alized states are massless, and the ex
itation of these massless statesleads to degenerated di�erent geometries. In a T-dual pi
ture, the di�erent ex
itations
orrespond to di�erent arrangements of k NS5-branes along the dual ~�-
y
le. With theanti-periodi
 boundary 
ondition, the lo
alized states are ta
hyoni
 and a 
ondensation ofthe ta
hyoni
 modes leads to the de
ay of geometry into the regularized geometry (4.10)
alled as the Egu
hi-Hanson soliton [10, 11℄. In the viewpoint of the dual gauge theory,the lo
alized ta
hyon 
ondensation is realized as the transition between di�erent va
ua.In parti
ular, we have found that the mass of the Egu
hi-Hanson soliton is about 3=4times the Casimir energy for the dual va
uum with the trivial holonomy. I would like tostudy the relation between the va
uum transition of the gauge theory and the RG-
owor time-dependent pro
ess among the geometries as in [9℄. At enough high temperature,the dual geometry is the orbifold of the AdS-S
hwarzs
hild bla
k hole. Sin
e there is no�xed point in this geometry, the orbifold seems to be the most relevant geometry. Thisimplies that the phase stru
ture would vary as the 't Hooft 
oupling is 
hanged at hightemperature.There are several theories similar to our orbifold gauge theories in the sense that thegauge theory has many va
ua and its dual gravity des
ription. One of them is (1+1) di-mensional large N gauge theories on a torus [37, 38℄, where non-trivial holonomy matri
es
an be assigned along the two 
y
les. For the 
ase with the periodi
 boundary 
onditionof the fermions along the spatial 
y
le, the eigenvalues of spatial holonomy matrix 
orre-spond to the positions of N D0-branes along the T-dual spatial 
y
le [37, 38℄. In the hightemperature phase the eigenvalues are distributed uniformly, but in the low temperaturephase the eigenvalues get together. This is related to the Gregory-La
amme transition25The masses of lightest twisted string modes are proportional to the horizon radius r+, and thesemodes be
ome massless (or ta
hyoni
) in the zero 't Hooft 
oupling limit sin
e the radius behaves liker+ � �0p�T . From this reason we 
an assign non-trivial expe
tation values to the lightest modes andthe va
ua 
an be degenerated in the gauge theory des
ription.23



from a bla
k string wrapped on a spatial 
y
le into a lo
alized bla
k hole [39℄. For the 
asewith the anti-periodi
 boundary 
ondition, the spatial 
y
le 
an shrink, and indeed thethermal AdS3 is dominant in the low temperature phase. In this phase, the ZN symmetryof the holonomy matrix along the spatial 
y
le has to be broken. In the high temperaturephase, the BTZ bla
k hole dominates, and the ZN symmetry is preserved. The relationto our 
ases may be examined for large k limit, where the ba
k-rea
tion of NS5-branesshould be taken into a

ount. I would like to study this relation, for instan
e, by takinga large N; k limit with keeping a ratio N=k �nite.26Other interesting theories are the plane wave matrix model [41℄ and (2+1) dimensionalsuper Yang-Mills theory on R � S2, whi
h are obtained by trun
ating the N = 4 Yang-Mills theory on R � S3 like our orbifold theory. These models share the same symmetrySU(2j4) at zero temperature, and the gravity dual of these models was studied in [6℄. Thethermodynami
s of plane wave matrix model has been studied in [42, 43, 44, 45, 46℄, and,in parti
ular, the di�erent va
ua was 
ompared in [46℄. The thermodynami
s of large Ngauge theory on R � S2 should be also interesting. The relation among these models atzero temperature has been dis
ussed in [6, 47, 48, 8℄, and it is worth while investigatingthe relation among their thermodynami
s.In this paper, we have taken the zero 't Hooft 
oupling limit � = 0, namely, the freetheory limit, thus a next task is to study the e�e
ts of non-zero 't Hooft 
oupling. In thefree theory limit, the phase transition is of the �rst order, but the in
lusion of small �may 
hange the order of phase transition as dis
ussed in [3, 49℄. Moreover, we may beable to examine how the phase stru
ture in the zero 't Hooft 
oupling limit 
ontinues tothe one in the large 't Hooft 
oupling limit.27 For example, the Casimir energy on thetrivial va
uum with the anti-periodi
 boundary 
ondition (3.17) is about 4=3 times themass of the Egu
hi-Hanson soliton (4.12), thus one may wonder what would happen if wein
lude � 
orre
tion. In the high temperature phase, we have observed that the relevantgeometry is the orbifold of the AdS-S
hwarzs
hild bla
k hole, whi
h is dual to the Zksymmetri
 va
uum. Sin
e the va
ua are degenerated in the zero 't Hooft 
oupling limit,the va
uum stru
ture should depend on the 't Hooft 
oupling. We would like to studythis issue as a future work.A
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h Abroad H18-143.26 A similar limit was taken in [40℄ for the 
ase in
luding Nf fundamental matters with a �nite Nf=N ,where they observed a third order phase transition just like the Gross-Witten transition [17℄.27It might be useful to make use of the Penrose limit [41℄ to examine the intermediate regime. See[50, 51℄ for the 
omparison of the Hagedorn temperature.24



A The partition fun
tion of single s
alar parti
leAs an example we 
ompute here the partition fun
tion of single s
alar parti
le. Letus de�ne the following fun
tion on S3 asf(x; y) = Tr xEy2j2 : (A.1)Sin
e a s
alar is expanded by the s
alar spheri
al harmoni
s Sj;m; �m(
), the above fun
tion
an be easily evaluated asf(x; y) = x + 2x2(y + 1=y) + 3x3(y2 + 1 + 1=y2) + � � � : (A.2)The orbifold 
ase is given by restri
ting the modes into the ones invariant under theorbifold a
tion (2.4).In the 
ase of the trivial holonomy V = 1, we have to proje
t the modes into the oneswith 2 �m = kZ. The proje
tion leads tof(x; y) = x+ 3x3 + � � �+ 1Xn=1(ynk + 1=ynk)[(nk + 1)xnk+1 + (nk + 3)xnk+3 + � � � ℄ ; (A.3)where only terms proportional to ykZ are kept. Using a formulaLxL + (L+ 2)xL+2 + � � � = LxL � (L� 2)xL+2(1� x2)2 ; (A.4)the fun
tion 
an be written asf(x; y) = x+ x3(1� x)2 + 1Xn=1(ynk + 1=ynk)(nk + 1)xnk+1 � (nk � 1)xnk+3(1� x2)2 : (A.5)With P1n=1 xn = x=(1� x) and P1n=1 nxn = x=(1� x)2, we �nally �nd for y = 1f(x; 1) = (x + x3)(1� x2k) + 2kxk(x� x3)(1� x)2(1� xk)2 : (A.6)This gives the expression in (2.5) with I = J .The 
ase with non-trivial holonomy 
an be analyzed in a similar way. For a bi-fundamental s
alar (nI ; �nJ), the orbifold a
tion is given by (2.4). In this 
ase we keep theterms proportional to ykZ+L, and we �ndf(x; y) = 1Xn=0 ynk+L[(nk + L+ 1)xnk+L+1 + (nk + L + 3)xnk+L+3 + � � � ℄+ 1Xn=1 ynk�L[(nk � L + 1)xnk�L+1 + (nk � L + 3)xnk�L+3 + � � � ℄ : (A.7)Making use of the formula (A.4), we 
an redu
e the above sum into the more simpli�edform in (2.5). 25



B An index for the supersymmetri
 orbifold theoryIn this appendix the index proposed in [19℄ is 
omputed for N = 4 U(N) super Yang-Mills theory on R � S3=Zk with the periodi
 boundary 
ondition for the fermions alongthe �-
y
le.28 The index in our 
ase is de�ned asI = Tr(�1)Fe���t2(E+j1)vR2wR3 ; � = E � 2j1 � 32R1 � R2 � 12R3 : (B.1)Sin
e only states satisfying � = 0 
ontribute the index [19℄, we 
an set � !1. As beforeE is the energy and (j1; j2) are spins with respe
t to SU(2)1�SU(2)2 isometry on S3. Thesymmetry of the theory is SU(2j4) and R1; R2; R3 are R-
harges. With generi
 holonomy(n0; � � � ; nk�1), the U(N) gauge symmetry is redu
ed to QI U(nI), and the states are inadjoint or bi-fundamental representation of the gauge group. As in [19, 20℄ or in (2.13)the index 
an be written by an integral of unitary matri
es asI = Z [YI dUI ℄ exp 24XI;J 1Xn=1 1nf I;J(tn; vn; wn) Tr(UnI ) Tr(U ynJ )35 ; (B.2)where the 
oeÆ
ients f I;J are the indi
es for the single parti
les with representation(nI ; �nJ). Noti
e that the index does not re
eive any 
orre
tions of 't Hooft 
oupling, sin
ewe are 
ounting the modes prote
ted by supersymmetry [19℄.Let us 
ompute the indi
es for single parti
les. We start from the s
alar 
ontribution.The theory in
ludes three 
omplex s
alars X,Y ,Z with (R1; R2; R2) = (0; 1; 0), (1;�1; 1),(1; 0;�1). The s
alars are expanded by Sj;m; �m(
), and the 
ondition � = 0 is satis�ed bythe modes Sj;j=2; �m. The orbifold proje
tion means 2 �m 2 L + kZ for the L = J � I + kZ(0 � L < k) se
tor, and the 
ontribution 
an be 
omputed ast2(t3L + t3(k�L))(v + 1=w + w=v)(1� t6)(1� t3k) : (B.3)Sin
e the gauge �eld does not have any R-
harges, the 
ondition � = 0 is satis�ed by themodes V +j;(j+1)=2; �m with 2 �m 2 L + kZ. Thus the 
ontribution from the gauge �eld ist6(t3L + t3(k�L))(1� t6)(1� t3k) : (B.4)For the fermions, the 
ondition � = 0 
an be satis�ed by the modes F+j;j=2; �m with 2 �m 2L + kZ and (R1; R2; R2) = (1;�1; 0), (0; 1;�1), (0; 0;�1). The 
ontribution from thesefermions is �t4(t3L + t3(k�L))(1=v + w + v=w)(1� t6)(1� t3k) : (B.5)28See also [52, 20, 53℄. 26



The other 
ontribution 
omes from the modes F�j;(j�1)=2; �m with 2 �m 2 L+kZ and (R1; R2; R2) =(1; 0; 0) as ÆL;0 � (t3L + t3(k�L))(1� t6)(1� t3k) : (B.6)Interestingly the sum of all 
ontributions 
an be fa
torized asf I;J(t; v; w) = ÆL;0 � (t3L + t3(k�L))(1� t2v)(1� t2=w)(1� t2w=v)(1� t6)(1� t3k) : (B.7)For the indi
es to 
onverge, we have to assign t2 < 1, t2v < 1, t2=w < 1, t2w=v < 1, whi
himplies ÆI;J � f I;J(t; v; w) > 0.In order to perform the integral (B.2), we assume that nI is very large or zero. Then we
an repla
e the dis
rete eigenvalues by 
ontinuous ones with the densities �I(�I) satisfyingR d�I�I(�I) = 1. In this term, the e�e
tive a
tion is given byS(�In) =XI;J nInJ Xn=1 �In��JnV I;Jn ; V I;Jn = 1n(ÆI;J � f I;J(tn; vn; wn)) ; (B.8)where we denote the Fourier transform of �I(�I) as �In. The saddle point of the a
tion is�In = 0 for n 6= 0 as V I;Jn > 0, and the index is given by the determinantI =Yn 1det(PI;J nInJV I;Jn ) : (B.9)The determinant is 
ompli
ated in general, but it 
ould be written in a simpler form forseveral 
ases.One 
ase is with the trivial holonomy V = 1. In this 
ase, we have just 1�1 matri
es,so the determinant is simplyI =Yn (1� t6n)(1� t3kn)(1 + t3kn)(1� t2nvn)(1� t2n=wn)(1� t2nwn=vn) : (B.10)The N dependent fa
tor is removed by 
hanging the normalization. Another interesting
ase may be with the Zk symmetri
 holonomy nI = N=k for all I. In this 
ase, it is usefulto utilize a formula for a 
ir
ulant determinant as in [20℄���������������
f1 f2 f3 � � � fkfk f1 f2 � � � fk�1fk�1 fk f1 � � � fk�2... ... ... . . . ...f2 f3 f4 � � � f1

��������������� = k�1YI=0(f1 + !If2 + !2If3 + � � �+ !(k�1)Ifk) (B.11)
with ! = exp(2�i=k). Using the identityk�1YI=0[k�1XL=0(t3L + t3(k�L))!LI℄ = (1� t3k)k(1� t6)k(1� t3k)2 ; (B.12)27



the index is 
omputed asI =Yn (1� t3kn)2(1� t2nvn)k(1� t2n=wn)k(1� t2nwn=vn)k : (B.13)We would like to 
ompare these indi
es with the one from the gravity 
omputation.However there is a subtle problem whether we should remove the 
ontribution from thediagonal U(1)k�1 part. In the 
ase of AdS5 � S5=Zk, the U(1)k�1 part of the dual Yang-Mills theory is removed to 
ompare the indi
es with those from the gravity 
omputation[20℄. Suppose that the similar U(1) de
oupling should be taken into a

ount even in our
ase. The 
ontribution from U(1) part is just the same as that of V = 1 
ase (B.10), soafter the subtra
tion we haveI =Yn (1� t3kn)2(1 + t3kn)k�1(1� t6n)k�1(1� t3kn)k�1(1� t2nvn)(1� t2n=wn)(1� t2nwn=vn) : (B.14)We would like to study the U(1) problem furthermore to examine whether this is indeedthe 
ase.The dual geometry is the orbifold AdS5=Zk�S5 with the ex
itation of lo
alized stringstates at the �xed point, and the di�erent ex
itations 
orrespond to di�erent va
ua of thegauge theory. The index for the supergravity on AdS5=Zk�S5 
an be 
omputed by a
tingthe orbifold proje
tion to the index in the 
overing spa
e 
ase [19, 20℄. The single-parti
leindex 
an be 
omputed asI 0(t; v; w) = 1k kXI=1 " t2v1� t2v + t2=w1� t2=w + t2w=v1� t2w=v � t3!I1� t3!I � t3=!I1� t3=!I #= t2v1� t2v + t2=w1� t2=w + t2w=v1� t2w=v � 2t3k1� t3k ; (B.15)and the index in
luding the multi-parti
le 
ontribution is given asI = exp 1Xn=1 1nI 0(tn; vn; wn) = 1Yn=1 (1� t3kn)2(1� t2nvn)(1� t2n=wn)(1� t2nwn=vn) : (B.16)The index is a slightly di�erent form the both of (B.10) and (B.14), and the di�eren
eshould be interpreted as the 
ontribution from the lo
alized string states. It is desirableto in
lude these stringy 
ontributions to the index from the AdS side and 
ompare it withthe index of the gauge theory on the 
orresponding va
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