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The urvature of F p2 (x;Q2) as a probe of the range ofvalidity of perturbative QCD evolutions in thesmall-x region

M. Gl�uka, C. Pisanob, E. ReyaaaUniversit�at Dortmund, Institut f�ur PhysikD-44221 Dortmund, GermanybUniversit�at Hamburg, II. Institut f�ur Theoretishe PhysikLuruper Chaussee 149, D-22761 Hamburg, Germany
AbstratPerturbative NLO and NNLO QCD evolutions of parton distributions are studied,in partiular in the (very) small-x region, where they are in very good agreementwith all reent preision measurements of F p2 (x;Q2). These preditions turn out tobe also rather insensitive to the spei� hoie of the fatorization sheme (MS orDIS). A harateristi feature of perturbative QCD evolutions is a positive urvatureof F p2 whih inreases as x dereases. This perturbatively stable predition providesa sensitive test of the range of validity of perturbative QCD.



1 IntrodutionThe urvature of DIS struture funtions like F p2 (x;Q2), i.e., its seond derivative withrespet to the photon's virtuality Q2 at �xed values of x, plays a deisive role in probingthe range of validity of perturbative QCD evolutions of parton distributions in the small-xregion. This has been observed reently [1, 2℄ and it was demonstrated that NLO(MS)evolutions imply a positive urvature whih inreases as x dereases. However, in ontrastto [1℄ where this positive urvature was shown to disagree with the data, the onventionalfull NLO analysis performed in [2℄ led to the onlusion that no suh disagreement prevails.It was therefore onluded [2℄ that the NLO small-x parton evolution equations are nothallenged by the small-x data on F p2 . These rather unique preditions provide a hek ofthe range of validity of perturbative QCD evolutions. However, the urvature is a rathersubtle mathematial quantity whih a priori may sensitively depend on the theoretial(non)perturbative assumptions made for alulating it. The main purpose of the presentartile is to study the dependene and stability of the predited urvature with respetto a di�erent hoie of the fatorization sheme (DIS versus MS) and to the perturbativeorder of the evolutions by extending the ommon NLO (2-loop) evolution [2℄ to the next-to-next-to-leading 3-loop order (NNLO).2 Theoretial formalismIn the ommon MS fatorization sheme the relevant F p2 struture funtion as extratedfrom the DIS ep proess an be, up to NNLO, written as [3, 4, 5℄F p2 (x;Q2) = F+2;NS(x;Q2) + F2;S(x;Q2) + F 2 (x;Q2; m2) (1)with the non{singlet ontribution for three ative (light) avors being given by1x F+2;NS(x;Q2) = hC(0)2;q + aC(1)2;NS + a2C(2)+2;NSi
 � 118 q+8 + 16 q+3 � (x;Q2) (2)1



where a = a(Q2) � �s(Q2)=4�, C(0)2;q (z) = Æ(1� z), C(1)2;NS is the ommon NLO oeÆientfuntion (see, for example, [6℄) and a onvenient expression for the relevant NNLO 2-loop Wilson oeÆient C(2)+2;NS an be found in [3℄. The NNLO Q2-evolution of the avornon-singlet ombinations q+3 = u+�u�(d+ �d) = uv�dv and q+8 = u+�u+d+ �d�2(s+�s) =uv+dv+4�q�4�s, where �q � �u = �d and s = �s, is related to the 3-loop splitting funtion [7℄P (2)+NS , besides the usual LO (1-loop) and NLO (2-loop) ones, P (0)NS and P (1)+NS , respetively[3, 8℄. Notie that we do not onsider sea breaking e�ets (�u 6= �d; s 6= �s) sine the HERAdata used, and thus our analysis, are not sensitive to suh orretions. The avor singletontribution in (1) reads1x F2;S(x;Q2) = 29 nhC(0)2;q + aC(1)2;q + a2C(2)2;qi
 � + haC(1)2;g + a2C(2)2;gi
 go (x;Q2) (3)with �(x;Q2) � �q=u;d;s(q+�q) = uv+dv+4�q+2�s, C(1)2;q = C(1)2;NS and the additional ommonNLO gluoni oeÆient funtion C(1)2;g an be again found in [6℄, for example. Convenientexpressions for the NNLO C(2)2;q and C(2)2;g have been given in [4℄ and the relevant 3-loopsplitting funtions P (2)ij , required for the evolution of �(x;Q2) and g(x;Q2), have beenderived in [9℄. We have performed all Q2-evolutions in Mellin n-moment spae and usedthe QCD-PEGASUS program [10℄ for the NNLO evolutions. In NNLO the strong ouplingevolves aording to da=d lnQ2 = ��2̀=0 �` a`+2 where �0 = 11� 2f=3, �1 = 102� 38f=3and �2 = 2857=2� 5033f=18+325f 2=54 and the running a(Q2) is appropriately mathedat Q = m = 1:4 GeV and Q = mb = 4:5 GeV. The heavy avor (harm) ontributionF 2 in (1) is taken as in [2℄ as given by the �xed-order NLO perturbation theory [11℄.The small bottom ontribution turns out to be negligible for our purposes. Notie thata NNLO alulation of heavy quark prodution is not yet available. For de�niteness wework in the �xed avor fatorization sheme, given in (1)-(3), rather than in the variable(massless quark) sheme sine the results for F p2 and its urvature remain essentiallyunhanged [2℄.The hoie of a fatorization sheme in NLO, other than the MS sheme used thus far,might imply similar e�ets as the additional NNLO ontributions in the MS sheme. For2



example, in the deep inelasti sattering (DIS) fatorization sheme [12, 5, 6℄ the WilsonoeÆients in (2) and (3) are absorbed into the parton distributions, or more preisely intotheir evolutions, i.e., into the splitting funtions. Disregarding for simpliity all NNLOontributions, this transformation to the DIS sheme in NLO is ahieved via [4, 5℄P (1)NS ! P (1)NS;DIS = P (1)NS + �0�C(1)2;NS (4)P̂ (1) ! P̂ (1)DIS = P̂ (1) + �0�Ĉ(1)2 � h�Ĉ(1)2 
 P̂ (0) � P̂ (0) 
�Ĉ(1)2 i (5)where �C(1)2;NS = �C(1)2;NS ; �Ĉ(1)2 = �0� C(1)2;q ; C(1)2;g�C(1)2;q ; �C(1)2;g 1A : (6)Instead of (2) and (3), the light u; d; s quark ontributions to F p2 in the NLO(DIS)fatorization sheme now simply beomeF p2 (x;Q2) = x Xq=u;d;s e2q �q(x;Q2) + �q(x;Q2)�DIS + F 2= x � 118 q+8 (x;Q2) + 16 q+3 (x;Q2)�DIS + 29x�(x;Q2)DIS + F 2 : (7)The quantitative di�erene between the NLO(MS) and NLO(DIS) results will turn outto be rather small. Therefore we do not onsider any further the DIS sheme in NNLO.Having obtained the parton distributions (�)q (x;Q2)DIS and g(x;Q2)DIS from an expliitNLO analysis of F2(x;Q2) in the DIS fatorization sheme, one an transform them tothe MS sheme via (see [13℄, for example)(�)q (x;Q2) = (�)q (x;Q2)DIS � a �C(1)2;q
 (�)q DIS + 12f C(1)2;g 
 gDIS�(x;Q2) +O(a2) (8)g(x;Q2) = g(x;Q2)DIS + a hC(1)2;q 
 �DIS + C(1)2;g 
 gDISi(x;Q2) +O(a2) (9)where C(1)2;q (z) = 243 �1 + z21� z �ln 1� zz � 34�+ 14 (9 + 5z)�+ (10)C(1)2;g (z) = 4f 12 �(z2 + (1� z)2) ln 1� zz � 1 + 8z(1� z)� (11)3



with f = 3. This transformation to the MS sheme then allows for a onsistent omparisonof our NLO(DIS) results with the higher-order results obtained in the MS fatorizationsheme.3 Quantitative resultsFor the present analysis the valene qv = uv; dv and sea w = �q; g distributions areparametrized at an input sale Q20 = 1:5 GeV2 as follows:x qv(x;Q20) = Nqvxaqv (1� x)bqv (1 + qvpx+ dqvx+ eqvx1:5) (12)xw(x;Q20) = Nwxaw(1� x)bw(1 + wpx+ dwx) (13)and without loss of generality the strange sea is taken to be s = �s = 0:5 �q. The normal-izations Nuv and Ndv are �xed by R 10 uvdx = 2 and R 10 dvdx = 1, respetively, and Ng is�xed via R 10 x(� + g)dx = 1. We have somewhat extended the set of DIS data used in [2℄in order to determine the remaining parameters at larger values of x and of the valenedistributions. The following data sets have been used: the small-x [14℄ and large-x [15℄H1 F p2 data; the �xed target BCDMS data [16℄ for F p2 and F n2 using Q2 � 20 GeV2 andW 2 = Q2( 1x � 1) + m2p � 10 GeV2 uts, and the proton and deuteron NMC data [17℄for Q2 � 4 GeV2 and W 2 � 10 GeV2. This amounts to a total of 740 data points. Therequired overall normalization fator of the data turned out to be 0.98 for BCDMS and1.0 for NMC. The resulting parameters of the various �ts are summarized in Table 1.The relevant small-x preditions are ompared with the H1 data [14℄ in Fig. 1, whih arealso onsistent with the ZEUS data [18℄ with partly lower statistis. The present moredetailed NLO(MS) analysis orresponds to �2=dof = 715:3=720 and the results are om-parable to our previous ones [2℄. Our new NLO(DIS) and NNLO(3-loop) �ts are also verysimilar, orresponding to �2=dof = 714:2=720 and 712:0=720, respetively, although theyfall slightly below the ommon NLO(MS) preditions at smaller values of Q2. It should beemphasized that the perturbatively stable QCD preditions are in perfet agreement with4



all reent high-statistis measurements of the Q2-dependene of F p2 (x;Q2) in the (very)small-x region. Therefore additional model assumptions onerning further resummationsof subleading small-x logarithms (see, for example, [19℄) are not required [7, 9℄.In Figs. 2 and 3 we show our gluon and sea input distributions in (13) and Table 1as obtained in our three di�erent �ts, as well as their evolved shapes at Q2 = 4:5 GeV2in partiular in the small-x region. In order to allow for a onsistent omparison in theMS sheme, our NLO(DIS) results have been transformed to the MS fatorization shemeusing (8) and (9). Note, however, that the gluon distribution in the DIS sheme is verysimilar to the one obtained in NLO(MS) shown in Fig. 2 whih holds in partiular in thesmall-x region. This agreement beomes even better for inreasing values of Q2. Thisagreement is similar for the sea distributions in the small-x region shown in Fig. 3. Onlyfor x >� 0.1 the NLO(DIS) sea density beomes sizeably smaller than the NLO(MS) oneshown in Fig. 3. The NLO results are rather similar but distintively di�erent from theNNLO ones in the very small-x region at Q2 > Q20. In partiular the strong inrease ofthe gluon distribution xg(x;Q2) as x ! 0 at NLO is somewhat tamed by NNLO 3-loope�ets [9℄.Turning now to the urvature of F p2 we �rst present in Fig. 4 our results for F p2 (x;Q2)at x = 10�4, together with a global �t MRST01 NLO result [20℄, as a funtion of [1℄q = log10�1 + Q20:5 GeV2� : (14)This variable has the advantage that most measurements lie along a straight line [1℄ asindiated by the dotted line in Fig. 4. All our three NLO and NNLO �ts give almostthe same results whih are also very similar [2℄ to the global CTEQ6M NLO �t [21℄. Inontrast to all other �ts shown in Fig. 4, only the MRST01 parametrization results in asizeable urvature for F p2 [2℄. More expliitly the urvature an be diretly extrated fromF p2 (x;Q2) = a0(x) + a1(x)q + a2(x)q2 : (15)5



The urvature a2(x) = 12 �2q F p2 (x;Q2) is evaluated by �tting this expression to the predi-tions for F p2 (x;Q2) at �xed values of x to a (kinematially) given interval of q. In Fig. 5awe present a2(x) whih results from experimentally seleted q-intervals [1, 2℄:0:7 � q � 1:4 for 2� 10�4 < x < 10�20:7 � q � 1:2 for 5� 10�5 < x � 2� 10�4 : (16)It should be notied that the average value of q dereases with dereasing x due to thekinematially more restrited Q2 range aessible experimentally. (We deliberately donot show the results at the smallest available x = 5 � 10�5 where the q-interval is toosmall, 0:6 � q � 0:8, for �xing a2(x) in (15) uniquely and where moreover presentmeasurements are not yet suÆiently aurate [1, 2℄). For omparison we also show inFig. 5b the urvature a2(x) for an x-independent �xed q-interval0:6 � q � 1:4 (1:5 � Q2 � 12 GeV2) : (17)Apart from the rather large values of a2(x) spei� [2℄ for the MRST01 �t, our NLO andNNLO results agree well with the experimental urvatures as alulated and presented in[1℄ using the H1 data [14℄. Our preditions do not sensitively depend on the fatorizationsheme hosen (MS or DIS) and are, moreover, perturbative stable with the NNLO 3-loop results lying typially below the NLO ones, i.e. loser to present data. It should beemphasized that the perturbative stable evolutions always result in a positive urvaturewhih inreases as x dereases. Suh unique preditions provide a sensitive test of therange of validity of perturbative QCD! This feature is supported by the data shown inFig. 5a. Future analyses of present preision measurements in this very small-x region(typially 10�5 <� x <� 10�3) should provide additional tests of the theoretial preditionsonerning the range of validity of perturbative QCD evolutions.Finally, the question arises whether the seond derivative of F p2 with respet to thevariable q in (15) is indeed dominated by the urvature �F p2 � �2F p2 =�(lnQ2)2 whih is6



diretly related to the evolution equations and to experiment, sine �2qF p2 � �2F p2 =�q2 isa linear ombination of _F p2 � �F p2 =� lnQ2 = O(�s) and �F p2 = O(�2s):�2qF p2 = �Q2 + 0:5GeV2Q2 ln 10�2 h�� _F p2 + �F p2 i (18)with � = 0:5 GeV2=(Q2 + 0:5 GeV2). In Fig. 6 we show the two ontributions in squarebrakets separately taking � = 0:1 whih orresponds to hoosing Q2 = 4:5 GeV2, i.e.q = 1 as an average of our onsidered �xed q-interval in (17). The ontribution from theslope (�rst derivative) term _F p2 is indeed strongly suppressed and the urvature �F p2 is thedominant ontribution in (18) in the small-x region in NLO as well as in NNLO. Sinethe suppression depends of ourse on the hosen value for Q2 in � we show in Table 2the separate ontributions in square brakets in (18) alulated for three typial values ofQ2 in (17) at a �xed value of x = 10�4 in NLO and NNLO. Even at Q2 = 1:5 GeV2 �F p2dominates over � _F p2 and therefore (18) represents a rather lean test of the urvature ofa struture funtion.4 ConlusionsPerturbative NLO and NNLO QCD evolutions of parton distributions in the (very) small-x region are fully ompatible with all reent high-statistis measurements of the Q2-dependene of F p2 (x;Q2) in that region. The results are perturbatively stable and, fur-thermore, are rather insensitive to the fatorization sheme hosen (MS or DIS). Thereforeadditional model assumptions onerning further resummations of subleading small-x log-arithms are not required. A harateristi feature of perturbative QCD evolutions is apositive urvature a2(x) whih inreases as x dereases (f. Fig. 5). This rather uniqueand perturbatively stable predition plays a deisive role in probing the range of validityof perturbative QCD evolutions. Although present data are indiative for suh a behav-ior, they are statistially insigni�ant for x < 10�4. Future analyses of present preisionmeasurements in the very small-x region should provide a sensitive test of the range of7



validity of perturbative QCD and further information onerning the detailed shapes ofthe gluon and sea distributions as well.AknowledgementsThis work has been supported in part by the Bundesministerium f�ur Bildung undForshung, Berlin/Bonn.
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Table 1: Parameter values of the NLO and NNLO QCD �ts with the parameters of the inputdistributions referring to (12) and (13). Here �2 was evaluated by adding in quadrature thestatistial and systemati errors.NNLO(MS) NLO(MS) NLO(DIS)uv dv �q g uv dv �q g uv dv �q gN 0.2503 3.6204 0.1196 2.1961 0.4302 0.3959 0.0546 2.3780 0.6885 0.4476 0.0702 2.3445a 0.2518 0.9249 -0.1490 -0.0121 0.2859 0.5375 -0.2178 -0.0121 0.3319 0.5215 -0.1960 -0.0121b 3.6287 6.7111 3.7281 6.5144 3.5503 5.7967 3.3107 5.6392 2.6511 2.290 5.5480 6.8581 4.7636 6.7231 0.6210 2.0917 1.1120 22.495 5.3095 0.8792 -1.6163 10.398 3.7277 1.8732d 24.180 -24.238 -1.1350 -3.0894 15.611 -52.702 -5.9049 -1.7714 15.197 -16.466 -4.7067 -2.4302e 9.0492 30.106 | | 4.2409 69.763 | | -7.6056 5.6364 | |�2=dof 0.989 0.993 0.992�s(M2Z) 0.112 0.114 0.114
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Table 2: The separate slope _F p2 � �F p2 =� lnQ2 and urvature �F p2 ontributions to (18) inthe MS fatorization sheme at x = 10�4 and for the �xed q-interval in (17) with � = 0:5GeV2=(Q2 + 0:5 GeV2). The results are shown for three representative values of Q2 of thisinterval. Notie that similarly to (15) we used F p2 (x;Q2) = A0(x) +A1(x) lnQ2 +A2(x) ln2Q2,i.e. _F p2 = A1 + 2A2 lnQ2 and �F p2 = 2A2.NLO NNLOQ2=GeV2 _F2 � _F2 �F2 _F2 � _F2 �F21.5 0.3530 0.0883 0.1479 0.3732 0.0933 0.12046 0.5580 0.0429 0.1479 0.5401 0.0415 0.120412 0.6605 0.0264 0.1479 0.6235 0.0249 0.1204
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Figure 1: Comparison of our various perturbative �ts with the H1 data [14℄ at very small-x. Our 3-loop NNLO results always refer to the MS fatorization sheme. To ease thegraphial representation, the results and data for the lowest two bins in Q2 have beenmultiplied by the numbers as indiated.
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Figure 2: The gluon distributions at the input sale Q20 = 1:5 GeV2, orresponding to (13)with the parameters given in Table 1, and at Q2 = 4:5 GeV2. For a onsistent omparisonwith the NNLO and NLO results in the MS fatorization sheme, we have transformedour NLO-DIS results to the MS sheme using (9) whih are denoted by NLO-DISjMS .
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Figure 3: As in Fig. 2 but for the sea distribution x�q(x;Q2) where �q � �u = �d. TheNLO-DIS results have been transformed to the MS fatorization sheme using (8) whihare denoted by NLO-DISjMS .
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Figure 4: Preditions for F p2 (x;Q2) at x = 10�4 plotted versus q de�ned in (14). Foromparison the global �t NLO result of MRST01 [20℄ is shown as well. The globalCTEQ6M NLO �t [21℄ is very similar to our NLO and NNLO results as an be deduedfrom [2℄, and the same holds true for the H1 �t [15℄. Most small-x data lie along thestraight dotted line [1℄.
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Figure 5: The urvature a2(x) as de�ned in (15) for (a) the variable q-intervals in (16)and (b) the �xed q-interval in (17). Also shown are the orresponding MRST01 NLOresults [20℄. The data in (a) are taken from [1℄. The NNLO predition at the lowestx-value oinides with the data (full square).17
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Figure 6: The predited slope _F p2 � �F p2 =� lnQ2 and urvature �F p2 appearing in (18)for the �xed q-interval in (17), with the suppression fator � = 0:1 orresponding to anaverage Q2 = 4:5 GeV2 (q = 1). At smallest values of x, the individual upper urvesalways refer to NLO(MS) and the lower ones to NNLO(MS).
18


