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1. Introduction

Symmetries play a crucial role in our understanding of giromieractions physics. Of par-
ticular interest is theJ (Nf) x SJ(N¢) chiral symmetry of the massless QCD Lagrangian. Its
spontaneous and explicit symmetry breaking pattern is tdméirsg point for a large part of low-
energy phenomenology. Furthermore, an index theorem Hotdse continuum Dirac operator
which is believed to have significant consequences for Ioergy physics too. This theorem states
that the index of the Dirac operator is equal to the topological cha@gg of the gauge field

1
V=n_—hr= EtrygD(O) = Quop (1.1)

with n_ andng respectively the number of left and right handed zero-mad#se massless Dirac
operatorD(0). Since these properties are important in the continuura,anily natural to respect
chiral symmetry when formulating QCD on the lattice.

The correct form of chiral symmetry at finite lattice spacifipis the Ginsparg—Wilson (GW)
relation [2]

D(0)5+ y5D(0) = —D(0)y&D(0) (1.2)

Ro D
with a the lattice spacing anBy a parameter. For operators which fulfill the GW equation the
index theorem([[3] works at finite lattice spacing just liketie continuum. Moreover, the theory
is automatically’ (a) improved, additive mass renormalization is absent andrnealization pat-
terns can be greatly simplifief] [4]. The fermion determiriargtrictly positive if the quark mass
is greater than zero. Prominent solutions of the GinspailseWequation include domain wall
fermions at large extent of the fifth dimensidh [b, 6], thertse operator[[[7] and the fixed point
Dirac operator([[8[]9]. Unfortunately, the application ofsle operators is significantly more expen-
sive than standard operators like the Wilson or staggereaciperator. This prevented so far a
more wide-spread use.

In recent years simulations of QCD on large lattices and allsgnark masses have become
possible. This is not only due to increased computer regsusat rather because of algorithmic
advances, see the reviews given at this confer@ncE[10;Théke improvements apply to the sim-
ulation of dynamical chiral fermions too. In one respectwieer, chiral fermions are different.
Because of the index theorem Eq.]1.1, any chiral Dirac opertanges discontinuously where
its index changes. This has to be accounted for in the equsatibmotion which are at the heart
of most current algorithms. The different approaches hodel with the change of topological
sector algorithmically are the main subject of this wrife-u

This proceedings contribution is about dynamical simalagiusing Neuberger’s overlap Dirac
operator. However, also domain wall fermions at finite timeest, the parameterized fixed point
operator [1R] and chirally improved fermior{sJ13], whichiatplement chiral symmetry to a high
degree, have been used in dynamical simulations. Theioappate symmetry leads to an ap-
proximation of the discontinuity encountered for actiorithvexact chiral symmetry. As we are
going to discuss, this can cause large forces in the moledyl@amics evolution while changing
topological sector. The issue of changing topology hastoes received considerable attention in
all those simulations too.
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This paper is organized as follows. First we review the dediniof the overlap operator and
the fermionic action with a focus on the discontinuity whtre index changes. Three methods to
deal with the discontinuity in the context of Hybrid Monteraare discussed: modified molec-
ular dynamics evolution in Sef. B.2, approximation of thecdntinuity in Sec| 3]3 and topology
conserving actions in Sefc. B.4 . The write-up closes withnansary.

2. The action

Let us start by reviewing the action whose simulation is tigect of this paper. The overlap
Dirac operator([7] is given by
m

Dou(m) = (Ro- 5

with mthe bare quark mass. Itis constructed from a Hermitiarcef@irac operaton = ysd which
is typically the standard Wilson operator. It is taken atriegative mass-Ry at the cut-off scale.
Ro can be tuned to achieve optimal locality of the resultinglayeoperator[[14]. In the following
h(—Ro) is referred to as the kernel operatag(h) is the matrix sign function. For Hermitian,
non-singular matrices it can be defined by

) [14 yse(h(—Ro))] +m (2.1)

e(h) = == ¥ sty @22)

with the sum running over all eigenvalugsof the kernel operatdn and ¢ the associated eigen-
modes. The numerical constructiongih) usually uses a combination of the two definitions in
Eq.[2.2. The lowest modes bf—Ry) are computed explicitly and the spectral representation ca
be used. For the rest of the spectrum a polynomial or rati@maloximation to 1@ implements
the sign function to very high accuracy.

For simulations of two flavors one is also interestecHih= D'D, with H = ysD. (Here
and in the following we denote the overlap Dirac operator &yital lettersdD andH whereas the
Hermitian kernel operator is denoted by snfa)l Because of the Ginsparg—Wilson equation and
ys-Hermiticity, H2 commutes withs and is therefore block-diagonal in the chiralities with

H2 = PUH2P0:2(R%—§)PU[1—I- og(h(—Ro))] Py + nPPRs (2.3)

whereP; = 2(1+ o) projects to chiralityy = £1.

Obviously, the overlap operator is discontinuous wheredjitlee eigenvaluesg of the kernel
operator changes sign. This is precisely where the topcddgharge as defined by the index of the
Dirac operator changes. Evaluating the lattice versionepfIE] for the overlap operatdi [3] gives

V= %T%D(m: 0) = %Trs(h(—Ro)) = % Zsigmi (2.4)
with the sum running over all eigenvalugf the kernel operator. The direction of the sign change
determines whether the topological charge decreasesraeaises by one unit.

On the surfaces which separate the topological sectorspbetrum of the overlap operator
changes: One zero-mode is created or vanishes and alscstlt# tke spectrum moves. Interest-
ingly, the ratio of the fermion determinants on the two sidethe step can be computed without
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the explicit computation of the determinant itself: Beaatise eigenmodes of the kernel are con-
tinuous functions of the gauge fields, the change of the sigme of the eigenvalues amounts to
the following change in the overlap operator

B(m) = D(m) — (2R, — m) sign(Ao) ys oy (2.5)

with sigmg the sign of the eigenvalue before the crossing gndhe associated eigenfunction.
This translates to a discontinuity of the fermion determirfa3]

detD(m) = [1— (2Ro — m) sign(Ao) (Y wo)] detD(m) (2.6)

1
ysD(m)
which can be computed by just one inversion of the overlapaipeon the crossing mode. How-

ever, most of the time we do not deal with the determinantctliydut introduce it into the func-
tional integral by pseudo-fermion fields

detH? O /d(pd(pJr g @0 /d(pd(pJr e SilU.9l (2.7)

with S¢[¢,U] the effective fermion action. The discontinuity 83[¢,U] can be computed using
the Sherman—Morrison formula
1— osign(Ao) (4R8 — m?) YoH5 (M) Yo~ Ho (M)

5 Yol

(2.8)
which again can be evaluated by inverting the (squared)aw@perator on the crossing mode of
the kernel operator.

In summary, the overlap operator is constructed via theirsifgn function of a doubler free
lattice Dirac operator. This makes its application roudt@y200 times more expensive than a stan-
dard Wilson operator. The fermion determinant and the effective action for therlaypeoperator
are non-zero and finite everywhere. However, it has disoaities where the topological charge
(the index) changes. They have their origin in one eigemvafuhe kernel operator changing sign.
The height of these steps can be computed by one inversibfidbn the crossing mode.

1 .
ASt = A; rp*H—gfp: > losu.;n(Ao>

o==+

3. Hybrid Monte Carlo

The most popular exact algorithm used in dynamical fermiomukations is Hybrid Monte
Carlo [IT]. It is a combination of Molecular Dynamics (MO)glwith a Metropolis accept/reject
step that makes it exact. Like in all MD based simulationgugate momentar are introduced
which drive the evolution of the generalized coordinaties gauge fields in our case. The Hamilto-
nianH[U, 1, @] from which the equations of motion are derived is composetekinetic term for
the momenta and the potential given by the action of the thebich we actually want to simulate

HU.m o= T+ U, 01+ S1U]. @)

1A recent comparisome] finds the cost of computing the pgagpar with the overlap operator to be 30-120 times
larger than with twisted mass fermions.
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St{U, ¢] is the effective fermion action at fixed pseudo-fermion SedhdS;[U | the gauge action.

The elementary update step in the HMC algorithm is callechgdtory. At the beginning,
a heat bath for the pseudo-fermion field and the momenta ferpeed. Then the equations of
motion, which derive from H/dt = 0 are solved numerically for some (fictitious) tinme The
simplest integrator is the leap frog which repeats

U—Ty(d1/2U , m— Tp(d1)m, U — Ty(31/2)U] (3.2)

T/01 times; Ty andT, are the gauge field and momentum updates. At the end of tleetivay, an
accept/reject step is performed which corrects for ermmr®duced by the numerical integration.
The new gauge configuration is accepted with probati#jty= min{exp(—AH[U, 11, ¢]), 1}.

The leap-frog integrator provides us with an approximatetsm to the equations of motion
with an error that vanishes witté1)? as 61t — 0. Decreasing the step-size can therefore bring
the acceptance rate arbitrarily close to 1. This is not tise ¢ar the overlap action because the
leap-frog (almost) never hits the discontinuity and iteeffis therefore not taken into account in
the numerical integration. Without a special treatmentefgtep in the action, the acceptance rate
is therefore smaller than 1; typically far too small for amggiical purpose. How to deal with this
discontinuity is the subject of the rest of this write-up.Sac.[3]2, we discuss the modification of
the MD evolution proposed by Fodor, Katz and Szabo (FKS) B9, The subject of Se¢. 3.3 are
algorithms which approximate the step in the action andetiyemake the evolution accessible to
standard methods. This approximation has the to be coddotdo get the exact overlap action.
Topology conserving actions, which solve the problem byiding the discontinuity completely,
are described in Sef. B.4. First, however, we discuss \v@gdossibilities to introduce the fermion
determinant into the simulation.

3.1 Multiple pseudo fermions

In recent years, the quality of the estimator used to intcedhe fermion determinant into
the functional integral has turned out to be of crucial intance to the performance of standard
algorithms. The pseudo-fermion field in Hqg.]2.7 is such atsistic estimator for the change in
the fermion determinant over an update: At the starting gondition a pseudo-fermion heat-bath
is performed @ = D(m)Rwith R a Gaussian random field. The change in the determinant can be
computed by the average over the random field

detH? ASI[
— u (P,U]
JoiZ (e ). (3.3)
Using just one pseudo-fermion field for this estimate is knoavbe very noisy[[41] which in the
context of Hybrid Monte Carlo can cause large forces.
A successful way of improvement is to replace the originainfen matrix by a product of
matrices

detQ = detD'D = detM; detM, - - -detMy. (3.4)

Each of these determinants is then introduced by a pseuduefe field. If the matricedv; are
suitably chosen, it can be easier to estimate the (changledim)determinant stochastically and the
fluctuations are greatly reduced.
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The initial idea by Hasenbusch was to u¢e= 2, M1 = Q(m)/Q(M) andM; = Q(M) with
Q(M) the fermion matrix at a larger quark ma$s|[£2, 23]. Anothaiahis to use th&\-th root
of Q for all M; [R4, [2%]. So far neither of these two methods has proved superthe other. The
former, however, is easier to implement. As we will see inftiilowing, the improved estimator
not only reduces the fermionic forces but it can also dralificeduce the auto-correlation time of
the topological chargé [26].

3.2 Modified evolution

Most of the experience with dynamical overlap fermions isdshon the algorithm proposed
by Fodor, Katz and Szabo (FK$) [19], which is used—sometimeariants—in Refs [[36, 27, P8,
M3.[293P[31 34, 33]. So far the simulations have beendiirtio small volume, lattices up to 40
sites albeit at a coarse lattice spacing.

The FKS algorithm is the standard Hybrid Monte Carlo unlediseontinuity is encountered.
This can only happen—an eigenvalue of the kernel opetgtoRy) changes sign—during the
gauge field updatd, (61/2). The corresponding update step is the split in two: one wheze
trajectory is advanced right to the point where the indexgdea byTy (611), i.e. where the eigen-
value of the kernel operator gets zero. There a discretetedahe momenta is performed. It
depends on whether there is enough momentnperpendicular to the surface which separates
the two topological sectors to get across the step in therad®. In this case, the momentum is
reduced such that energy is (approximately) conservedrantbpological sector changes. If there
is not enough momentuny, is reversed, the trajectory is reflected off the surface aagssin
the same topological sector. To be precise, the momenturp@oentrr, is changed tat) in the
following way

—TT if 2AS> |7TJ_|2
m./1 2AS 20AS < |7TJ_|2

TP

= (3.5)
After that, the gauge fields are advanced to the end of thetestep byTy (67/2— d11). This
update is obviously reversible and was proved to be arezecaging too [1P]. Combined with the
standard Metropolis step at the end of the trajectory, thaltiag algorithm is exact. Improvements
of the original update are discussed][in|[30].

Here are a few more details: The component of the momentupepdicular to thet =0
surface is computed using the Feynman—Hellmann thedemou = wg(éh/éu)wo with o the
crossing eigenmode of the kernel operdtandAy its eigenvalue. Thus

A= [(4’3%)®U4’0] . (36)
is perpendicular to the surface separating the topologieetiors. TA denotes the traceless, anti-
hermitian component of the vector. Witth= A/|A| the normalized vector perpendicular to the
surface separating the two topological sectors, the mameperpendicular to the surface is simply
. = N(m-N). The height of the stefiSis computed using E{. 2.8 which requires one inversion
of the overlap operator on the crossing mode, independehttpw many pseudo-fermion fields
are used.
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Figure 1: The history of the topological charge as a function of sirtiatetime. The data is from simulations
on a & lattice at lattice spacing~ 0.15 fm [@].

How does this algorithm perform at changing topologicat@et A time history of the topo-
logical charge from a simulation on & Bittice at three values of the bare quark mass is shown in
Fig.[l. Whereas the charge changes frequently for the laqgesk mass, the simulation tends to
get stuck in one sector once the quark mass is lowered. As Weegibelow (Fig[]3) the reason
is not a lack of attempts to change topology. Rather, theodigstuity is too high to get across.

It turns out that the distribution oft, is not changed from the beginning to the point where the
trajectory reaches the discontinuity. As shown in ffjg. 2he lbwer right panel, it still has the
exponential shape exp|m2/2) given by the initial heat bath. This makes value$mf|? above 8
very unlikely independent of the quark mass. This data, hadhe used in the following discus-
sion comes from a‘6lattice witha a2 0.15 fm andm s 100 MeV. This quark mass is rather large
and the problems described aggravate once the quark masgeise.

The distribution of the height of the step depends on thelguass. We expect this because
a smaller quark mass suppresses configurations of highelopp However, as it turns out, it
depends even more on how well the fermion determinant isdiniced into the functional integral.
Fig. R(top) shows the distribution of the height of the disimouity changing fromv = 0to |v| =
1 for one, two and three pseudo-fermion fields. One field gieldvery wide distribution and
most entries have a value above 10 such that tunneling isaliytimpossible. Additional pseudo-
fermions improve the situation; the distribution narrowBhat the poor tunneling rate is not a
problem of physics is shown in the lower left panel of ig. 2enénthe discontinuity in trlog'D
is plotted. If we could compute the fermion determinant dadlérivative exactly—without taking
resort to pseudo-fermions— this is the step we had to ovegcdtrdoes not exceed 10 such that
tunneling is quite likely. The large auto-correlation tifmethe topological charge is largely (if
not entirely) due to the poor approximation of the determiray pseudo-fermions—at least as
long as the gauge action does not suppress those changeB. déimonstrates that the improved
estimate indeed helps with the tunneling rate. It showsnheibn of trajectories where the final
topological charge is different from the initial one as adtion of the number of pseudo-fermion
fields. A roughly linear increase is observed. Note that th& of a few additional fermions is
more than recouped by the larger overall step size. Thatisedson this improvement method has
received wide attention in conventional simulations withsébh type fermions.

Smaller quark masses make the pseudo-fermion estimateedetmion determinant even
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Figure 2: The distribution of the height of the discontinuity in théeetive action changing from the=0
sector tov = +1 (upper three plots). The lower left plot shows the changelagD'D, without recourse
to pseudo-fermions. The right panel contains the momentmponent perpendicular to the surface which
separates the two topological sectors. The topology isgéthif 2AS > |, |2. The data is from a HMC
simulation on 8 lattices,a ~ 0.15fm andam = 0.1.

more noisy, essentially because the conditioning numbéreofermion matrix increases. As the
previous discussion has shown, this leads to even highps sted lower tunneling rates. This
explains why the simulation shown in Fig. 1—particularly fight quarks—gets stuck for many
trajectories in sectors of non-zero topology.

The dependence of the rate of change on the approximatidmeald@terminant might seem
to interfere with detailed balance. However, detailed hedaonly makes a statement about the
ratio of the probability to change from (a configuration imeaopological sector to the other as
compared to the change in the opposite direction. A betteénate of the determinant, however,
improves the tunneling rate in both directions and we stll gn exact algorithm. The optimal
tunneling rate is given by the exact determinant which caneflore serve as a guideline on the
quality of the approximation. We also note that these finglifayobably) do not depend on the
particular algorithm used. Any exact algorithm has the sproblems as long as the determinant
is introduced just by pseudo-fermions. However, as we hheevs, different ways to introduce
the determinant can lead to very different algorithmic perfance.

A particular issue with this algorithm is the scaling witle tyolume. Each time an eigenmode
of the kernel operator changes sign, the height of the digsugity has to be computed. For that the
overlap operator has to be inverted once on the crossing.midaecost of this inversion scales at
least with the volume. Furthermore, the number of attemptessings turns out to be proportional
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Figure 3: Left: The dependence of the tunneling rate on the number of pskeumdhion fields. (data set
asin Fig[IZ)Right: Number of attempted tunnelings per trajectory as a funaticthe volume. The lattice
spacing in aboud ~ 0.15fm, the quark massy; ~ 100MeV.

to the volume, see Fid] 3 on the right. This is no surpriseesthe number of eigenvalues is
proportional to the volume too. The total cost of the parhefalgorithm which deals with changing
topological sector therefore scales at least With

Whether this scaling law constitutes a problem dependseadtual number of kernel eigen-
value crossings per trajectory at the target volume. Thisaily a function of the density of
eigenvalues near the origin which can be reduced by variethods. Gauge actions like the
Iwasaki action or DBW2 are known to suppress the occurrefisenall eigenmodes. This is the
method of choice in the context of domain wall fermion sintigias. It turns out, however, that in
particular DBW2 has a negative impact on the auto-coriatetme of the topological chargf [34].

Another strategy is to use fat links in the definition of theried operator. Particularly popular
are stout links[[35] because they are differentiable andharefore be used in molecular dynamics
simulations. So far no impact of the smearing on the numbechfal changes of topology has
been observed. It is believed that the effect of the smeaaitiger reduces the noise in the motion
of the eigenmodes and makes it more directed.

To summarize: The modification of the leap-frog integratoatcount for the discontinuity
due to changing topological sector leads to an exact algurifThis has been used successfully in
small volume simulations of QCD. The auto-correlation tiofighe topological charge is large but
can be reduced by reducing the noise in the estimator of thréda determinant. The problematic
pointis that each attempt to change topological sectoiiresjane inversion of the overlap operator.
The frequency of these attempts scales with the volume whintiers this component of the total
update expensive when the lattice size is increased.

3.3 Approximate evolution

In the previous section, we discussed a maodification of tap-feog in the HMC algorithm to
deal with the step in the action. The discontinuity comemfthe sign function in the definition of
the overlap operator. If instead one uses a continuous gippation to the sign function, the re-
sulting approximate overlap operag,,is a continuous function of the gauge fields and standard
HMC can be used. As long as the approximation is close enautjtetexact overlap operator, it is
possible to correct for the difference betwdgp, andD,y at the end.
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There are two different but related approaches to implerttestidea [3p]: The first is to
rewrite the fermion determinant as

One then simulates the theory with the determinanDgf, and reweights at the end to the ex-
act overlap operator. A variant of this approach is to used#étterminant ratio in an additional
Metropolis step at the end of each trajectory. The secotatesbpossibility is to perform the ini-
tial heat-bath and the Metropolis step at the end of thedrafg with the exact overlap operator
whereas the approximation is only used in the computatigheforce during the MD evolution.

To understand the issues involved in this kind of simulatlehus start with the second ap-
proach put forward by Bode et aJ. |37] (for a more extensivelgtsee[[36] 38]). They use a fixed
rational approximation in the definition of the sign functiduring the evolution. This leads to the
situation depicted in Fig] 4 where the Zolotarov approxiorabf the sign function is shown such
that the difference for the part of the spectrum of the keopelrator with|A| > Acytis very small.
As long as there are not too many eigenmodes With< A¢y;, the discontinuity in the overlap
action is approximated by a steep sectiorgig which interpolates between the two levels. The
width of this section is roughly proportional #g, the height proportional tAS, the discontinuity
in the overlap effective action.

This poses a tuning problem. On the one hébgh, has to be close to the overlap operator
(Acut has to be small) to easily correct for the difference. On tivewohand, a smallc;leads to a
large derivative of the effective action and to large folicate molecular dynamics evolution while
changing topological sector. Therefore a small step-sizequired which makes the simulation
expensive. The analysis in the context of the FKS algorith®ez.[3.R helps here. The height of
the discontinuity and thereby the forces in the approxiraaten can be reduced by improving the
estimator of the fermion determinant. This leads to smédleres and an increased probability to
accept a trajectory during which the topology changed.

So far the method relies on a stochastic estimate betweedetieeminant of the exact and
approximate overlap operator. With the specific choic®gf, however, the determinant ratio
in Eq.[3.Y can be computed exactly. It is set up such that tifiereince between the exact sign
function and the approximation is zero (or negligible) fefr> Acy. From the definition of the
overlap operator Eq. 2.1, the following relation is obtaine

N
Dagp=Dovt (Ro—5) 5 e(hysthy’ (3.8)

with the sum running over alN eigenmodesy of the kernel operatoh with an eigenvalue of
modulus smaller thai.,.. The difference between the approximate sign function aedekact
one is denoted bye(x). The ratio between the respective determinant is then diyen

1
¥sDov
The construction of thBl x N matrix R needsN inversions of the overlap operator. This method is

feasible as long aN is small and the fluctuations iR are moderate. Tests ort 8nd 1¢ lattices
are encouraging and subject of an upcoming pgpér [39].

. m
detDapp= detDoy detR  with R =1+ (Ro— E)as(m)wﬁ W . (3.9)

10
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Figure 4: Approximation to the sign function and the effect on the effe= action.

There have been extensive tests using approximate guiddaitdtonians to simulate the
overlap operator in the Schwinger model. Christian ef&] f8iggested to use a hypercubic Dirac
operator in the guidance Hamiltonian. Because the hyperagerator is already an approximate
solution of the GW equation, the overlap operator constaidtom it is similar to the kernel.

It turns out that it is not similar enough and the authors fincaaceptance rate which vanishes
with the inverse of the volume. It becomes unacceptably Isomatheir large 32 lattices. They
conclude that a better approximation to the sign functisitbde used and discuss possible forms
in Ref. [38]. Ref. [4D] extends this approach by using in thenputation of the force a low order
polynomial of the hypercubic operator which better appmadies the sign function. The volume
dependence of this approach was not studied.

Overall, simulating the overlap action using an approxioraseems an interesting alterna-
tive to the modified evolution discussed in the previousisactor differentiable approximations,
standard methods apply which makes it easier to implemest #e costly determination of the
height of the discontinuity where the topology changes taweoessary. However, large forces are
encountered while changing topological sectors. Thisireq@some tuning to balance ease of sim-
ulation (small forces) and a small difference between thedperators such that the reweighting is
possible. How these methods scale with the volume is difftoulhinswer and needs further study.
The increased density of modes due to the larger volume phpbequires a better approximation
of the overlap action which in turn is more expensive to satell

3.4 Topology conserving actions

As discussed in the previous sections, dealing with theodisauity in the fermionic action
at the interface of topological sectors is expensive andieat to av? scaling. An alternative
approach is to fix the topological charge during the simatatiThis eliminates the cost of de-
termining the height of the step in the FKS algorithm. Thedixepology can be an advantage,
e.g. in the epsilon regime where predictions are made fod figpological charge. In particular
configurations with large charge are virtually impossilbl@btain in an algorithm with tunneling
because they are suppressed by the fermion determinardartUmdtely, it is unknown whether the
individual topological sectors are connected. In the feifay, we will assume that this is the case
and one can get from any configuration of topol@@yo any other by continuous deformation of
the gauge fields without leaving this particular sector.

11
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Still, most physical observables are defined as averagedtoyéull 6-vacuum. With no ad-
ditional knowledge about the relative weights of the togatal sectors the different sets cannot
sensibly be combined. Therefore some physics, which iscpdatly sensitive to the topological
sampling, cannot be addressed with this method. Howewabagtopology is a boundary condi-
tion. Thus for most observables, its effect will become igtgle for very large volume vanishing
with 1/V [B1]. This is not as rapid as finite volume effects which coneerf pions winding around
the torus and exponentially vanish with €xpn,L). By comparing the results from simulations
fixed in different topological sectors one can get a handl¢hese finite volume effects. A re-
cent quenched studjy J42], e.g., found a rather strong degperedof the pseudo-scalar mass on the
topological charge.

The obvious way to fix the topology is to eliminate the pod#ibio tunnel in the FKS al-
gorithm. One is still left with the reflections but the expeesdetermination of the height of the
discontinuity is no longer necessary. An interesting esiemof this method[43] is to compute the
exact determinant ratios between the two sides of the aterising Eq[_ 2}6. From this one can
infer the relative weight of the two topological sectorshwitit need of a stochastic estimate. This
again requires inversions of the overlap, but the hope isthigarelative weights can be measured
more precisely than from the stochastic estimates by ps&rduon fields.

Another approach which has received considerable atteigito choose an action such that
the topological sector cannot be changed during molecylaamics evolution, at least with an
exact integration of the equations of motion. (The différ@pological sectors are separated by
regions of zero weight.) In Ref[ [lL4] it was established thit is the case if all plaquette variables

are forced to satisfy
1

SUj<e= 30 (3.10)
with S the plaquette gauge action. Later a looser bozundﬁ could be proved[[44]. Unfortu-
nately, it turned out that the simulation of these gaugeoastis difficult [45[4F] in particular at
relevant lattice spacings.

In a similar spiritis a method suggested by Vranas in theedmf domain wall fermiong[47].
The idea is to introduce the determinant of the kernel opeti{h(—Ry)) into the functional inte-
gral. This determinant is zero where one of the eigenmode§-dRy) changes sign, i.e. where the
topology as seen by the overlap operator changes. The degetherefore introduces a repulsive
potential against the change of the topological sector éindraates these changes completely if
one integrates the equations of motion precisely enougé.effiect of deth(—Ry)) is expected to
vanish in the continuum limit since it corresponds to a femmrat large negative mass at the cut-off
scale, essentially acting like a modification of the gaudi®ac

JLQCD has started to use a variant of this trick in their lagge simulations with dynamical
overlap fermions. They use the following ratio of determitsato prevent the trajectories from
changing topology

deth?(—Ry)
det(h*(—Ro) + 1?)

with tunable (twisted) mass parameter This term still is zero only wherl(—Rp) has a zero
mode, however, the effect of the higher modes largely cancthis cancellation is complete if

(3.11)
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u = 0 but then the effect which suppresses the changing of tggolanishes too. The advan-
tage of fixing the topology in this way is that it proved fedsito simulate (without the overlap
determinant) in the targeted range of lattice spacings ahdnes [4B].

At this conference, first results with this method were pngset. The simulations were done on
16° x 32 lattices at a lattice spacing around 0.10fm with varicalaes for the sea quark mags][49].

4. Summary

For chiral fermions, the index theorem already holds atditdttice spacing. This causes the
fermionic action to be discontinuous where the topologiterge defined by the index changes.
The preferred way to deal with this situation depends onrtipoirtance of the topological charge
in the observable under investigation. Three distinctapgines have been discussed, all based on
the HMC algorithm.

The most radical solution is the one discussed last. Theraigimodified in such a way that
a continuous modification of the gauge fields does not leadcttaage in the topological charge.
This is achieved by introducing the determinant of the kleshthe overlap operator. Therefore no
discontinuity is encountered and standard methods candietossimulate the theory. For most
observables, the effect of fixed topology is expected toshalike 1/V for V — . How large a
volume is needed for this to be under control will have to hegtigated in explicit simulations.
Such simulations are currently under way and the JLQCD loottation has already presented first
results at this conference.

The other two approaches to dynamical overlap fermionsvaito topology to change. The
first is to modify the molecular dynamics evolution and thgrategrate the discontinuity exactly.
Each time an eigenmode of the kernel operator changes s$igrhdight of the step has to be
determined which costs one inversion of the overlap operatus leads td/? scaling of that part
of the algorithm because its cost scales with the volume anttbss its frequency. The advantage
is that no large forces occur because of changing topolbggeaor. Also the topological charge
history is very well under control.

An alternative approach is to approximate the discontyrauiid then correct for this either by
reweighting or a Metropolis step. This works if one can findapproximate action which on the
one hand is close enough to the overlap action for the casretérm to be small. On the other
hand, the forces encountered while changing topologicabse have to be small enough to be
able to integrate the equations of motion to good accuraty avieasonable step size. This poses
a tuning problem and again simulations have to show how va&l method works in practice.
Studies in the Schwinger model are encouraging.

The history of the topological charge is of particular ie&in dynamical simulations of chiral
fermions. We were able to demonstrate that the tunnelirggdapends crucially on the way the
fermion determinant is introduced into the functional gred. Large noise in its estimator leads to
long auto-correlation times in the topology. So far, onlyskiabusch’s mass preconditioning was
studied and found to be very effective. Other methods miginder even better results.

Dynamical overlap simulations are still very expensivewdaer, computer power will grow
and there certainly will be better algorithms too. The bemdfihese efforts is a theoretically clean
description of QCD with chiral symmetry at finite lattice spay.
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