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ABSTRACT. We determine all the correlators of tf#& model on a disc withddSz-brane bound-
ary conditions in terms of correlators of Liouville theorm a disc with FZZT-brane boundary
conditions. We argue that the Cardy-Lewellen constraintsveeaker in thef/;” model than in
rational conformal field theories due to extra singulasitid the correlators, but strong enough to
uniquely determine the bulk two-point function on a disc. tafirm our results by detailed anal-
yses of the bulk-boundary two-point function and of the tany two-point function. In particular
we find that, although the target space symmetry preservettilSy-branes is the groufL(2, R),

the open string states between two distinct parallébs-branes belong to representations of the
universal covering group.
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1. Introduction and summary

String theory inAdSs plays an important rdle in building string theory modelst#ck holes and
cosmology, and in theldS/CFT correspondence. Th#dSs; space-time is interesting because it
is Lorentzian, non-compact, and curved; the theory is nieglrss expected to be tractable thanks
to thes@ affine symmetry. However, the Lorentzian feature is still @iontechnical hurdle. It
can be avoided by Wick rotation, which makes space-timei@egh while still non-compact and
curved, and relates the theory to tH%+ model, i.e. string theory in the EuclideatiSs, which



still has thes/, symmetry. Solving théZ;” model is therefore a crucial technical step in the study
of string theory inAdSs. By solving the model we mean determining its spectrum abdrary
correlators on arbitrary Riemann surfaces. As was showfl,ig][ the partition function and the
correlators can be defined, and in a few simple cases compwitdn a path integral formula-
tion. TheHz;f model has also been studied using the conformal bootstrapafism [3], which
exploits consistency constraints (like crossing symmairythese correlators. These consistency
constraints were shown to be sufficient for fully determinine correlators of thél;~ model on a
sphere, and explicitly computing the three-point func{i@rf].

The usefulness of the conformal bootstrap formalism forAlje model on a sphere was not
obvious from the start, since the formalism was developeddtional conformal field theories
whereas théZ;” model is a non-rational CFT with a continuous spectrum. H@rehis formalism
also brought about significant progress in the case of Liteutieory on the sphere and on the disc.
Liouville theory is a simpler non-rational CFT which can lnsidered as solved in the sense of
the bootstrap formalism, because some elementary camrgbaere explicitly computed, in terms
of which all the other correlators can in principle be dedlice

Encouraged by these examples, one might expectitfiemodel on a disc to be solvable
by means of the conformal bootstrap formalism. As was firsiced in [8], there is however
a problem due to the presence of singularities in some eborsl These singularities weaken
the Cardy-Lewellen constraintf] [[4, 8], i.e. the conformabtstrap equations on the disc. Such
singularities are a consequence of Is/vlﬂ\@symmetry of the model and are therefore also present in
the H;~ model on the sphere, where they can however be circumvegtaddiytic continuation.

We will show how theH; model on the disc can be solved in spite of these singularifie
main tool which enables us to analyze the singularities ahtethe model is thef; -Liouville
relation, which was first established in the case of the sp[dr In particular, our main result is
a formula [3-IB) for arbitrary correlators of tt&;” model at levelk > 2 on the disc, in terms
of correlators of Liouville theory at parametér = (k — 2)~! on the disc. Schematically, (3]18)
reads:

n m n m n' m/
<H o H 7"”—U’\Ilerb’b'*'l> > <H Va, H Sb—1,b (Bﬁb)sb,b+1 H V_2_1b H B_QL”> D

a=1 b=1 a=1 b=1 a'=1 b'=1
where &7« Tt are Hgf bulk and boundary fields with sping, 4, respectively,V,,,, Bg, corre-
sponding Liouville bulk and boundary fields with correspimgdmomentay,, 5, respectively, and
Vf%,,’Bf%b are extra degenerate Liouville fields. The boundary comulitiare maximally sym-
metric in both theories, they correspondAdsS; branes[[10] inH;~ with parameters and FZZT
branes [T1[]2] in Liouville theory with parameters= 5 + -=. We are able to prove the for-
mula for all correlators which do not involve boundary cdiwti changing operators, leaving the
remaining cases as a strongly supported conjecture. Weedtsonulate our result suitably for its
application to theSL(2,R)/U(1) coset model[(3.32).

Since all Liouville correlators on the disc are known in pipie, oungf-LiouviIIe relation
on the disc amounts to a solution of tﬁfe; model on the disc. For some correlators, the confor-
mal blocks are simple enough that explicit expressions eafotnd. We will write such explicit
expressions in the cases of the boundary two-point fun¢8estion}4) and the bulk-boundary two-
point function (Sectiofi]5). These special cases will all@taiperform some consistency checks:



comparing the boundary two-point function with predictiaof the classical/;” model and with

N=2 Liouville theory, and the bulk-boundary two-point faion with a minisuperspace analysis.
Finding the boundary two-point function amounts to deteing the spectrum of open strings

stretched between twadd S, branes. In the case when these two branes are different, coe  er

a surprise: our results are incompatible with #g(2, R) symmetry which was previously assumed

for this system, and show that the correct symmetry groupeisihiversal covering groﬁL(Q, R).
The Sectiorf]2 and the Appendix provide supporting materiahe ;- model, special func-

tions, and Liouville theory.

2. The H; model: state of theart

Let us review known results about tlﬁéj model on Riemann surfaces without boundaries, or with
boundaries defined bydS; branes.

2.1 Bulk H; model

The spaceHgr is a three-dimensional hyperboloid, or equivalently thacgpof(2 x 2) Hermite
matricesh with unit determinant and positive trace:

2.1)

To+x3 T1 — 1%
ai -t —xi a5 =1, 29>0; hz( .

It +i$2 Tro — I3

The Hi model at levelk on a two-dimensional Riemann surfaEeparametrized by can be
defined by the WZW-like actior{][2] of a matrix fiefd z, Z),
SH[p) L2 / d?2Tx[h~*0hh ™' Oh] +
b

:271'

k
1270 Joo1x,

Tr(htdh)? . (2.2)

The H;™ model is therefore a sigma-model with the manifélg as target space, and a non-trivial
B-field. One often parametrize$; by coordinatesp, v, ¥ as

b 10 e? 0 1y _ e? e®y 2.3)
v 1 0 e ? 01 Py ePyy+e? | ’

In terms of these coordinates the action becomes
m_ k 2 5 26 90 A=
st =5 [ 2, (8¢8¢+e 8787) : (2.4)
™

The symmetry of theH;™ model includes theSL(2,C) isometry group of thefZ;” mani-
fold. The action of anSL(2,C) group elemeny on H; is g - h = ghg', so the element

-1 o o L :
g = —id = 0 01 acts trivially on H; . Thus the non-trivially acting isometry group is

actuallySL(2,C)/Zs ~ SO(1,3). The isometry groupO(1, 3) also follows from the definition
of H; as an hyperboloid.



In the “minisuperspace” limif[43], which involves senditige levelk to infinity, the spectrum
of the model reduces to the space of functions onfifemanifold parametrized b, v, ). This
minisuperspace spectrum is generated by the followingtiomes:

. B 25 . )
7 (x|h) = 2]:1 ([—x 1]k [‘D _ ] (w_mpemew)” . (25)

1 T

where delta-function normalizability requirgs e —% + iR. This number;j is the spin of an
SL(2,C) representation; states belonging to the same represengaie parametrized by the isospin

v

variablex € C. The behaviour of/ under anSL(2, C) transformatiory = g 5 is
. Lii ar — (B
(algh) = yo = [V @ (g alh), g0 = T (2.6)

The spectrum of the quantui;” model [2,[#] can formally be built from the minisuperspace
spectrum by acting with oscillators encoding the worldshegependence, which amounts to ex-
tending the representations of the gratip(2, C) into representations of the corresponding loop
group. The set of physical representations itself does Imange; unless specified otherwise our
integrals on the spin will be over this setj € —% + +R. The conformal weight of the primary
field ® (z|z) built from the classical fiel@’ (z|h) is (using the notatioh? = (k — 2)~!)
jG+1)
k-2 °

Aj=—b%(+1) = — (2.7)

The symmetry algebra of th;” model is (after complexification) the affine Lie alget;f\a X 8/[2
generated by the modes of the curredits= k0hh™',J = kh~'0h. This symmetry results in
the correlators obeying the Knizhnik—Zamolodchikov erat, which we will recall and use in
sectionB. For now, let us write the consequences of the béylnametry groupSL(2, C):

<Hg : {)ja(xa|za)> = <H {)ja(xa|za)> : (2.8)
a=1

a=1

where theSL(2, C) transformation of the quantum field is defined by
g- ¥ (z]2) = |y — 6|V ®I (g - z|2) . (2.9)

Due to this simple transformation law, the isospin variabie very convenient for the study of the
SL(2,C) symmetry. But for the purpose of writinf;” correlators in terms of Liouville correlators
it is more convenient to use the Fourier-transformedasis [P]

. 1 . o
O (ulz) = ;|,u|2]+2/(cd2x ettTHEDI (1]2) . (2.10)

And for the purpose of comparing tH&™ model with N=2 supersymmetric Liouville theory, we
will need them-basis

, d2x . o . d’u o
) (2) = Wx‘“m:i‘“m@(xlz) = Nis, / Wu‘mﬂ‘m@(ulz), (2.11)
z 2



where the physical values of, m and the normalizatiowﬂ;lm are

n +ip —n +1ip

i L(—=j+m)
2 7 2

L(j+1—m)"

, (n,p) €ZXR, Ny = (2.12)

m =

Some basic correlators of tii& model on a sphere can be written explicitly. The bulk twoApoi
function is

<'1)j1 (M1|Z1)'1)j2(ﬂ2|22)> = |22 — 21|_4A‘j1 |M1|25(2) (p2 + p1)
x (6(j2 +j1+ 1) + R (j1)6(j2 — 1)) . (2.13)

where we introduce the bulk reflection coefficigf (j) such that

B(ul2) = RIG)0 T ule), RG) =072 (12 09)) o D

(=b*(2j +1))

The bulk three-point functior{][4] is here written in thebasis in a manifestly reflection-covariant

way [L4]:

5 o
<H @ja(ﬂa|za)> = I (k) DH[‘]I J2 s ]CH(jl,Jé,j?,) ;

212?202 |25 |22 295202 W1 2 3

a=1

2j4

25142 o
M1 g2 | M2 . . n . . . . M3
DH:HWZV;%D — 2F1(j1 — jo — j5. 01+ Jo — ja + 1, —245; —=) ,
|/J’2| 77=ﬂ: 3 /.1:2
o127 —2—%7;
S W Vo 0
2m2b m Tp(—b(j123 + 1))T(—j123 — 1)

Tp(=b(251 + 1)) Tp(=b(242 + 1)) Tp(=b(273 + 1))
Y (=bjio)T(=1s) Yo(—0573)T(—i73) To(—bjg3)T(—ja3)

Ay =N, + A, — Njyy G = g1+ J2— 3, Ji2s =Jj1 + J2 + Js,

(2.15)

Notationsg j© =34, j~ =—j —1, o2Fi(a,b,c;2) = F(a,b,c;2)F(a,b,c; z),

Vgl’jz = D(—j123 — DT(—jg3)(=473) (57, + 1)7(273 + 1).

The special functionsy and Y, are defined in the Appendix. The reflection covariance ofekis
pression follows from the reflection invarianceldf’, and the reflection behavioGt? (j,, jo, j3) =
RY(j3)C" (j1, 2, —j3 — 1).

The four-point function of theé;” model has been shown to be crossing symmeic [5]. This
means that it can be deduced from the three-point strucanstantC” in two different ways:

4
<H @"“(ua|za>> B / djs O (j1, 42,5s) C™ (=ds = 1,73, 4a) G5, (Galitalza) ~ (2.16)
a=1

- / B OV (G140, 31) C™ (=it — Ly dards) G, Galptalza) . (217)

where thes and¢-channel conformal block§? (ja|ual2.) and g;t (Jalpta|zq) are entirely deter-
mined by the affines/é\g symmetry and thus in principle known before solving the nhodehis



crossing symmetry relation should be viewed as a constoairthe three-point structure constant
C*. Exploiting very special cases of this constraint was ehdogunambiguously determin@”
[A]. That this unique solution turned out to satisfy the fuibssing symmetry was an additional
non-trivial check.

2.2 Euclidean AdS, branes

Euclidean4dS; branes preserve &#1.(2, R) subgroup of the bulk symmetry grod.(2, C) [LQ].
The geometry of these D-branes is defined by the equation

Tr Qh = 2sinhr , (2.18)

for r a real parameter, arfda Hermitian matrix which determines the relevatii(2, R) subgroup
01

as the set o6 L(2, C) matrices such that’Qg = Q. For definiteness we chooSe= 1ol in
which case thé& L(2, R) subgroup is the set of matrices
g= a, v ,ad—bc=1, a,b,c,d e R. (2.19)
—ib d

In the minisuperspace limit, the spectrum of open stringamAdS, brane reduces to the space
of functions on the corresponding two-dimensional subfofthof H; . The minisuperspace spec-
trum is generated by the functions:

Ny
W (t]h) = ([z’t 1]k [‘ﬂ) , (2.20)

where the boundary spifibelongs to—% + iR, and the boundary isospin ise R. (For more
details see Appendix A.2 of [IL0].) Undét (2, R) transformations we have
at —b
—ct+d’

Ui(tlg - h) = et — d|*" T (g - t|h) , g -t = (2.21)

The spectrum of the quantum model is generated by corresmpbdundary fieldsi*(|w) with
w a real coordinate on the worldsheet boundary, which tranmsés

g - U (tlw) = |et — d** T(g - tjw) . (2.22)

There also existSL(2,R) representations whose fields would behavey ashé(tjw) = |ct —
d|*sgn(—ct + d)¥*(g - t|w), but such fields do not appear in the minisuperspace speafum
AdS, branes and we assume that they are absent from the exactispastwell. We will naturally
assume that correlators involving boundary fields preséwé (2, R) symmetry:

<Hg -9 (z4]20) [ 9 wzb(tb|wb)> = <H O (34]24) wab(tb|wb>> . (2.29)
a=1 b=1 a=1 b=1

We will also be interested in boundary condition changinlgléie ¥*(¢|w), describing open strings
stretched between twddS, branes with different parametersr’. We will see in Sectiof] 4 that



the symmetry properties of these fields are significantlyaneomplicated. So in the present review
section we focus on the already well-understeegateserving fields.

Thet-basis boundary fields we have considered so far are usefiidstudy of theSL(2, R)
symmetry. When it comes to thé;"-Liouville relation, it is more convenient to use the folliog
v-basis fields:

Tl (vjw) = |v]Ht / dt e (tw) . (2.24)
R

The relation with theSL(2,R)/U(1) coset and N=2 Liouville theory is more naturally expressed
using them-basis fields, which diagonalize thalilatations and/-dilatations:

l _ * —L—1+m V4
T, = / e sen (1) T (1) (2.25)

= Ny [ s )90 (2.26)
where physical values of. are pure imaginary, and we define
nef{0,1} , Nf,=2"T(—L+m)sinZ(—L—1+m—n). (2.27)

The boundary two-point function of open strings living oniggte AdS, brane of parameter is
known to be [Io}

<\w1 (1] ) W™ (t2|w2)>r = wig| 224
1 ~
x o= (60 + b2+ 1)0(t0) + (6 — )R] ()t | (2.28)

or equivalently

(¥ o ¥ ). = sl
X [v116(v1 +v) [6(61 + Lo + 1) + RE(41)5(¢1 — £2)] . (2.29)

The H; boundary “reflection numberR! (¢) is related to the;” boundary reflection coefficient
R (£) by
~ s 1 7

B0 = g T(20 + 1)Rr (£)- (2.30)

The quantityRY (¢) deserves to be called the boundary reflection coefficierausecof its role in
the simple reflection property of thebasis field,

U(v|w) = RE(O)T* " (v|w) . (2.31)

Explicitly, R (¢) can be written in terms of the Liouville boundary reflectiavefficient [A.17),
provided the Liouville parameter is chosenbas (k — 2)~'/2:

1
R*(0) =R". . . i (b(€+1)+2—b> . (2.32)

27b  4b’ 27

'Our formulas agree wittm].O] only up to renormalization of thoundary fields.



This relation between thH;™ and Liouville boundary reflection coefficients is not susig given

the relationR” (j) = R"(b(j + 1) + o) [B] between bulk reflection coefficients; the boundary

relation actually follows from the relation between the bdary states of theldS, brane inH;

and the FZZT brane in Liouville theory JIL5], via the compigatof the annulus amplitude.
Another known useful correlator is the bulk one-point fimetfLQ,[16]

(V1)) = [y [0 o)

X |z + Z|PT(1 4 b2(2] + 1))e 7+ Dsen(@+2) (2 33)

(V1) = s [0 )

X |pld(Rp)T (25 + 1T(L + b*(25 + 1)) cosh(2j + 1)(r — iZsgnSpu) . (2.34)

3. H; correlatorson adisc

Here we will study arbitraryl; correlators on a disc. We will express them in terms of Litkewvi
correlators, which we consider as known quantities. Theofiséouville correlators will become
natural after we recall that the Knizhnik—Zamolodchikoweatipns, which follow from the assump-
tion that ourH;" correlators preserve the affine Lie algebra symmetry of theeh are equivalent
to the Belavin—Polyakov—Zamolodchikov equations satidfig certain Liouville correlators. Due
to the existence of singularities, the KZ equations togettith the usual factorization axioms are
not enough for fully determining th&;" correlators; we will introduce the additional assumption
of continuity at the singularities. Then we will exhibit alstion eq. [3.18) of all these require-
ments in terms of Liouville correlators. In the case of thikliwo-point function on the disc, we
will prove that this solution is unique, even though our aumity assumption is weaker than the
usual assumptions of the conformal bootstrap formalism.

3.1 Axiomsfor H; correlatorson adisc

3.1.1 Symmetry requirements

We have already written the glob&lL(2, R) symmtry condition [(2.33) fodZ;~ correlators on a
disc. Here we concentrate on the KZ equations, which folloymf the Iocals/\fg symmetry. It
was shown in[[15] that the gluing conditions for tHeS, branes are trivial in th@-basis, which
implies that the disc correlators satisfiy the same KZ equnatas the sphere correlators obtained
by the “doubling trick”,

<H & (o)) [ | w(ub|wb>> - <H (@7 (1a]20) @7 (a]2a)) T @fb(ub|wb>> (3.1)
disc

a=1 b=1 a=1 b=1 sphere

The KZ equations for a bulk correlat®)] = ([]r_; ®7= (uq|2q)) are:

ty = Ha
0 2343 — -t — it 3
(k=2)5—+y =ttt | ol = 0§l =g, . (32
Za Za = % = =, 02 Jalatl)
a = Map,? Lia



The power of these equations comes from the fact that thefjrarerder differential equations in
zq. S0 if we know a correlator at some value gfor in some limit sayz; — z9, then theaiz1
KZ equation determines that correlator for all values@fprovided no singularities are met on the
way.

Explicit solutions of the KZ equations are known only in a feases, some of which we will
see in Section§| 4 arfffl 5. For our present purposes, it will hemiee enough to solve the KZ
equations in terms of Liouville correlators and conformilcks. This is possible thanks to the
KZ-BPZ relation [P,[1]7], which relates the KZ equations far d7; disc correlators to the BPZ
equations satisfied by certain Liouville disc correlaté& will denote this as a relaticn between
H; and Liouville disc correlators. (The KZ and BPZ equationsndd depend on the boundary
conditions, which are therefore omitted in the followingrfula.)

n m " . E—2
<H (I)]a (Halza) H b (vp|wp) > ~ 6 (2X =1 Reta + 2opm 1) U] [Onm|

a=1 b=1
<H Vaa za HBﬁb wb HV 1 ya’ HB_%(Z/(;’)> , (3.3)
1

a'=1 =

where theH; model at levek is related to Liouville theory at parameterbackground charg@
and central charge;, with

1 1
b2:m L Q=b+s cr, =1+6Q%. (3.4)

TheHgr spinsj, ¢ are related to Liouville momenta, 5 as

=b(j+1)+ 1 ,ﬁ—b(é—i— 1)+ (3.5)

2

Then' bulk degenerate Liouville fieIdBinlb andm’ boundary fieIdsBizilb are introduced at po-
sitions determined by Sklyanin's change of variables, Wiibanges the isospin variablgg, v,
subject to the conditiog Y, _, Rua + >y~ v = 0 (from globals¢(2) symmetry) into the vari-
ablesy,, yy defined as thén’ + m' = 2n + m — 2 zeroes of the function

n n — m

Ha Ha, Vp
t) = 3.6
o (t) P t—2a+zt—wb’ (3.6)
a=1 a=1 =1
plus one real variable
n m
u=2 Z R(paza) + Z VpWp . (3.7)

a=1 b=1
The prefacto©®,, ,,, is written in terms ofZ, = (z,, Z,, ws) andYy = (ya/, Yo, Yrr) @S
Hc<c’§2n+m(ZC - ZC') Hd<d’§2n+m—2(Yd - Yd')
2 2 -2 .
ch—{—m di—il_m (Zc - Yd)

We just provided enough data to make the relatjon] (3.3) betviZ and BPZ equations explicit.
Let us give more details on some relevant aspects and irtiphsaof this relation.

en,m =

(3.8)



A closer look at Sklyanin’s separation of variables. There is in general no explicit formula for
the degenerate field positiopsas functions of the isospin variablesy. However, the definition
of y as zeroes of a functiop(t) ([8.6) can be reformulated as
22+m—2(t . Yd)
(‘O(t) =u d571+m

Hc:l (t - ZC)
which by taking the limit — z, ort — wj, provides an explicit formula fog,, or v in terms ofy:
Zi—il_m_Z(za - Ya)
(2a — Za) Ha’;éagn(za — 20) (%0 = Zar) [ Tpm (20 — wp)
A (wy — Yy)
[Toz lwe — zal? Hb';ébgm(wb —wy)
Singularities of KZ solutions. The KZ-BPZ relation[(3]3) allows us to easily study the siagu
ities of the KZ solutions, because the Liouville correlaton the right hand-side are singular if and
only if Liouville fields collide with each other or with the badary. If such a collision involves
only the fieldsV,, (z,) and Bg, (wy), then the corresponding singularity &t = z4/, 2z, = Z, Or
wy, = wy is the power-like singularity expected from thE™ model on general grounds.
However, extra singularities occur where degenerate liieuields V_ 1 (y./) (or B_1 (yy))
are involved. If such a degenerate field comes clos€,jdz,) (or Bg, (wbz)), theny(t) loses its
pole att = z, which impliesu, = 0 (respectivelyy, = 0). Such singularities will play no signifi-
cant rble in the following, and should be considered adaute of theu-basis. On the other hand,
singularities arising from collision of two boundary degeate fields to become one bulk degener-

ate fieIdBfibeib — Vf% (or vice versa) will play a crucial réfe in the following we will al-
2 2 2

ways refer to these singularities when writing about siagtiés of ;" correlators. Let us explain
their importance in the case of the bulk two-point functiontbe disc(® (1 |21) @72 (ua|22)).
(This case was already studied [n][15].)

GivenY2_, Ru, = 0, the functiongp(t) = 22 ( fo y Mo ! has two zeroes. If they are

: (3.9)

Mo = U )

vy = u

(3.10)

a=1 \ t—z, Za
both real, they correspond to two Liouville degenerate fields in a correlator
<Va1(zl)Vaz(zg)Bfib(yl)Bfib(y2)>: we call this situation thdoundary regime If they are
2 2
complex conjugate, they define the position of one Liouvdégenerate bulk field in a correlator

<Va1(31)Va2(ZQ)V_Lb(y1)>: we call this thebulk regime The positions of the Liouville fields

2,

involved in the KZ-BPZ relation[(3}3) in the case of thg" bulk two-point function on the disc
can be depicted as:
x X

X X a Xz B ”
21 Z92 d 1
”yl ’y2 - )
: : : : (3.11)
Boundary regime Singularity Bulk regime
: . z = |4=2
1 a1 [+ +00 o
1 +pz|

2Such singularities are presumably equivalent to the=" z” singularity in Fateev and Zamolodchikov's KZ-BPZ
relation ] in thez-basis.
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This singularity is significant because it separates twianreg which are not otherwise connected,
since the cross-ratie takes real values. This is in contrast to the similar singylavhich ap-
pears in thefH;" four-point function on a sphere. The related Liouville eator is in that case
<Ha 1 Vo (2a) V_L(yl)V_L(y2)>, and one can go around the singulanity = y» by moving
Y1, yo in the Riemann sphere.

3.1.2 Factorization axioms

Factorization is a standard axiom of quantum field theorstaltes that in the limit where two of the
fields come close, the correlattf Tl _; ®7¢ (1uq]2q) [Tje; ¥ (v|wp)) reduces to lower correlators
determined by the operator product expansion of the twosfiele of course assume that"
correlators obey such factorization axioms. Note thabfd@ation will only require taking limits
of the worldsheet positions,, w; of the fields, while their isospin variables,, v, are kept fixed
and arbitrary.

Depending on the nature of the two fields which come closegethee three types of fac-
torization, which correspond to inserting the three typeep®rator product expansions into the
correlators :

e Bulk OPE:

W)@ (alz)_~ [ [ k= al
(89 )8 o) ) x (B (ulo) + Oforz)) + (312

e Bulk-boundary OPE:

) v, [t /%m—zﬁm
<<1>J’(M|z)\1ff*1(—y|w)>r X (r\I/Z(y|z)r +O(z - 2)) . (3.13)

e Boundary OPE:

T (1 [w00), T (o)~ / a0 3 oy — a2
w12 —0

||
(" @), U (), 0 (=), ) X (1 W wlwn)y, + O(wz)) - (314)

(Note that the OPEs do not depend on the choice of the ayxikiarldsheet variables, w.)

We can formally write these OPEs without knowing the thresidaorrelators (bulk three-
point, bulk-boundary two-point, boundary three-pointdtions); on the other hand we rely on the
previous knowledge of the bulk and boundary spectra andpwint functions eq. (2.1H,2.79).

Once inserted into a correlator, such an OPE should be amesichs a formal limit, since the
corrections)(z12) to one termy can be dominant with respect to the leading contribudéris|z; )
of another termy’ of higher conformal dimension. This formal limit consistsfocussing on the
contribution of primary fields, and the corrections cormgpto descendants. Such corrections are
in principle determined by the symmetry of the model, in casecthe affine Lie algebra symmetry.

3Although we do not yet know the spectrum of boundary figlds’ (v|w),, whenr; # rs, we assume that such
fields are parametrized by the same valueéarfdv as in the case; = r», and do not have additional indices.
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Factorization and Cardy-L ewellen formalism. We now discuss the crucial issue of the strength
of the factorization constraints, i.e. in which measurg ihetermine the correlators. First note that
if the sum over all descendant contributions converged ignalues of the worldsheet variables,
then the correlators would be fully determined by their v in one given factorization limit.
For example, we would fully know the bulk two-point function the disc thanks to the limit where
it reduces to the known bulk three-point function on a splar bulk one-point function on the
disc:

2
(BT (1] 21) D7 (p2] 22)),, zl;o/dj /%ﬁlz—zllﬂf
(D7 (11]21) @7 (2l 22) @7 (—pul2)) x ((®/(pl21)), + O(212)) (3.15)

We could now study(®7* (141]21)®72(p2|22)) . in the limit z; — z;. Whether it would factorize or
not would be a consistency test on the bulk three-point aslatie-point functions. If the test was
passed, we could then deduce the bulk-boundary two-paietifun. Such constraints and relations
for structure constants were systematically studied bylfCand Lewellen[[7}]8].

The Cardy-Lewellen formalism actually applies in the caskkiouville theory and of the
H; model on the sphere. In the latter case, the sums of desdecadiainibutions however do
not converge for all values of the worldsheet variableas is apparent from the existence of
singularities), but only in neighbourhoods of the varioastérization limits. But the affine Lie
algebra symmetry which in principle determines these suwrhgby yields a more powerful tool:
the KZ equations. These equations can be used to analytaaitinue the correlators in regions
where the sums of descendants do not converge.

On the disc however, thE;" bulk two-point function is not fully determined by its belaur
nearzi, — 0, because as shown in the picture (B.11) it is impossible targand the singularity.
We would need as additional data the behaviour ngar z; — 0, and therefore the (as yet
unknown) bulk-boundary two-point functién In terms of sums of descendants, the situation is
presumably the following: the sum of descendants in the-bolkindary OPE converges near=
z1 and in the vicinity (up to the singularity), and thereforetlie boundary regime. The sum of
descendants in the bulk OPE converges ngat z; and in the vicinity (up to the singularity),
and therefore in the bulk regime. But the strength of the Ghmlvellen constraints relies on the
existence of an overlap between the domains of convergeritceese two OPEs. Such an overlap
is absent in our case, as opposed to the case of the bulk tiwbfpoction on the disc in Liouville
theory, where the sums of descendants in both OPEs convergmy values of:, zo as was
established inJ19] (Section 2.4 therein):

LiOUVi”e Ex XX X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X xa
=+ 5
: it oo z=|uz2

H3 model 5 7 X

“The situation is even worse in the case of the boundary fointfunction(IT,_, ¥ (vs|ws)): even if we knew
the boundary three-point function and therefore the behenn both possible factorization limits,;» — 0, w23 — 0,
we could not deduce the boundary four-point function in #gime where the corresponding Liouville correlator has
one bulk degenerate field.

- 12 —



(Here the triangles denote the factorization limits, areditatches the corresponding regions where
the sums of descendants converge.)

In this sense, the Cardy-Lewellen formalism does not fyligig to the ;- model on the disc
because of the singularities of thg, correlators. Nevertheless, we can recover part of the power
of the Cardy-Lewellen constraints by making a natural aggiem on the behaviour of thél;"
correlators at the singularities.

3.1.3 Continuity assumption

In contrast to the symmetry requirements and factorizatiooms, which are standard assumptions
of conformal field theory in the conformal bootstrap forraali our continuity assumption will be
a novelty of theHgr model on the disc. Such an assumption is made necessary byistence of
extra singularities of the modd (3]11): for the formalismbe of any use, we need some control
over the behaviour of correlators at these singularities.

Continuity assumption: The H, correlators are continuous at the singularities which accu
when degenerate fields in the corresponding Liouville dategs collide.

In order to clarify the meaning of this assumption, let usalebow KZ solutions behave near
such singularities This can easily be deduced from theaste.iouville OPEs, dressed with the
ly12| "5 prefactor from the KZ-BPZ relatiof (3.3),

k=2 1 1 _
|y12] 2 B,le(y1)B,271b(y2) 0 B%(yl)+CL(—%7—%7Q)|Z/12|% Bo(y1) (3.16)
k-2 1 _
ol = V_s ()~ B_%(m)JrBL(—%,Q)M/uI?’C *Bo(yr), (317

where we omit the dependences on the boundary parametédes lobuville boundary three-point
function C*(— %, — 5, @), bulk-boundary two-point functiod” (-3, @), and boundary fields.
(Explicit formulas for the relevant OPE coefficients can berfd in the Appendix, eq[ (A.P2) and
(E-20).)

The leading behaviour of the KZ solutions therefore comsidttwo terms, associated with
the Liouville boundary fields3, and B%. (The corrections to the leading behaviour are due
to descendants of these two fields.) The critical exponenh@fB_% term is zero, so such a
term has a finite limit whether it arises from the bulk regmﬁ@ case) or from the boundary
regime B_ 1 B_ 1 case). The critical exponent of thg, term is2k — 3 > 1, such a term goes
to zero at the smgularlty Therefore, all KZ solutions hdivite limits at the singularity. Our
continuity assumption means that the limit evaluated fromtiulk regime should agree with the
limit evaluated from the boundary regime. This seems to wEra ratural assumption.

Thus, the continuity assumption will be a nontrivial reguirent onH; correlators, although
it of course does not fully determine how KZ solutions behiéweugh the singularity, because the
By term remains unconstrained.

3.2 H; disccorrelators from Liouville theory

It is relatively easy to find an Ansatz for thé; disc correlators which satisfies all our axioms.
The difficulty will be to prove that the solution is unique.tlLes first write our Ansatz for arbitrary
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HJ correlators on the disc:

n ) m
<H(I)]a(l‘a|za H Tp— lb Vb|wb)7"b,b+1>
a=1

k—
- 7r2\/§<—7r>*" 52X Ryt + T 4) [u] @] T
x <H Vo, (2a) Hsbfl,bB/Bb(wb)sb,b+1 H ya’ H B_ yb’ > , (3.18)
a=1

b=1 a'=1 b=1

where most notations were already defined in our study of tAeBRZ relation: the Liouville

parameteb (B.4), the Liouville momenta, 8 (B.5), the quantity: (B-7), the prefacto®,, ,,, (B-8).

The positionsy,, v Of the Liouville degenerate fields were defined as the zerbasfanction
t) (B-8). In addition, we specify the set of boundary condgieg.; ; by

T

= o~ Loamel) (3.19)

That is, the Liouville boundary parameteron a pointt of the boundary is given by thél;"
boundary parameter, shifted by a quantity which depends sgnp(t). (Indeedp(t) is real if

t is real.) Notice thatp(t) changes sign at its zeroes, which are the positions of thadaoy
degenerate fields, and when it is infinite, which happenseaptiints where the generic boundary
fieldss,_, , Bg, (wp) are inserted. So each boundary degenerate I-B'eld (yw) induces a

jump i > of the boundary parametey consistently with the results of Fateev, Zamolodchlkod an
Zamolodchlkov [11]. Then, for a giveddS, brane parameter, there correspond two opposite
values of the Liouville boundary cosmological constant,

=4/ . ,ULb2 cosh 2mbs = £,/ S MLbQ sinhr . (3.20)
inm inm

The formula [3.38) is our main result and the rest of the lerticdevoted to giving evidence for it,
and drawing some consequences.

The first check is the compatibility with the bulk one-poiah€tion, which is explicitly known
(B-34). This check is straighforward and was already peréatin [I}].

Let us check that our formula satisfies the axioms of@ model. By construction, our
Ansatz [3.18) satisfies the KZ equations. It is continuouthatsingularities due to the agree-

ment between the coefficients of the leading terms of theiileu lim B i L (y1)B_ 1 (yg) and
Yyi2—r

lim V_ 1 (z1) OPEs [3:16),[(3:17). The only subtle issues come from theriaatlon axioms:

z1—Z21—0

Sb,b+1

e Bulk factorizationz;s — 0: the polet = z; of the functiony(t) ([B.6) must remain simple,
so that one Liouville bulk degenerate field sb?y i (y1) must come close t&,, (z;) and
Vs (22),1.€.y1 — 21 o 212 — 0. Thus, we should insert into our Ansafz (3.18) the following
Liouville OPE:

Val (zl)VOQ (22)V

)~ / dor |z — 2 |Me

Z2120X21 — y1~>0

< Vaa (2)V_ 1 (11)Vo-a(2)) X (Va(21) + O(212)) , (3.21)

14—



whereA, = a(Q — «) is the conformal dimension of a Liouville field of momentumThis
is the crucial step in proving that our Ansatz indeed satigfie bulk OPE axion{ (3.1L.2), as
was shown in detail i]9] in the case &F;" correlators on the sphere.

¢ Bulk-boundary factorizatiorr; — z; — 0: by a similar reasoning, one Liouville boundary
degenerate field Sa?*% (y1) must come close tW,, (z1). We should insert into our Ansatz
2
(B.18) the following Liouville OPE:

Vi (2)B_i (1)~ / df |w — = P20

1
2b z1—Z1xz1—y1—0

(Var (2)B_ 3, (41)s- Ba-s(w)s, ) X (s Ba(z1)s, +O(z1 = 21)) , (3:22)

with sy = 55 + ibsgn(ul + 1), andr is the H;” boundary parameter at the point where
reaches the boundary. Then one can check that the Liouvilberelator
<Va1 (21)3,% (y1)s_ BQ_g(z1)5+> agrees with the prediction of our Ansafz (3.18) for the
H bulk-boundary two-point function appearing in thg"~ bulk-boundary OPE[(3.13).

e Boundary factorizatioms;, — 0: by a similar reasoning, one Liouville boundary degenerate
field sanyLb (y1) must come close t#3, (w1 ), Bs, (w2). We should insert into our Ansatz
2
(B.18) the following Liouville OPE:

B/BI (wl)Bﬂg (w2)B7

2Lb(yl) wm{y;wﬁo /dﬁ lw — w1|2AB
(B, (w)Bs, (w2)B_ 1 (51)Bas(w) ) x (Ba(wn) + Ofwz)) , (3.23)

where for definiteness we assumed the degenerate field toaothe right onBs, (w;) and
Bg,(w2), while it may also come on the left or in between, dependinghersigns of;, v
andv; + . For simplicity, we omit the Liouville boundary parameterghich can easily
be deduced from our Ansatz. This is the main step in checkiag dur Ansatz[(3.18) is
compatible with thefl;” boundary OPE[(3:14).

There is however a property which we have not checked:Sthe2, R) group symmetry[(2.23),
or equivalently its Lie algebra versioff(2,R). In the absence of boundaries, this symmetry is
necessary for the KZ-BPZ relatiof J1d, 9], and is therefanomatically included in theH -
Liouville relation. However, it is not obvious that our Arisas s/(2,R) symmetric, because the
Liouville boundary parametef (3]19) varies along the baupdin a way which is non-trivially
affected bys/(2, R) transformations. In the case of the bulk-boundary two-pkinction (Section
B). we will explicitly check theSL(2, R) symmetry of our Ansatz.

3.3 Uniqueness of the solution to the axioms

We have easily checked that our formula (B.18) for th¢ disc correlators verifies our axioms
of symmetry, factorization and continuity. We will now aggthat this solution is unique in the
particular case of correlators with no boundary conditibarging operators.
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We will write an explicit argument only in the case of the btlo-point function on the disc.
This will be enough to address the crucial issue of the sargylseparating the bulk and boundary
regimes, as defined ifi (3]11). Let us spell out the formulaetprioved:

k=2
2 - 12 2
4 Zg — 2
(B (111]21) @7 (p2]22))., fé R(p1 + p2)) |ul (' 12 19121 Iy 120 = Zl )

Ha,b |Za - Z/b|2
<Va1 (21)Va2(zQ)V_9_1b (y1)>s if yo = 71 (bulk regime) ,
X - +
<Va1(Zl)Vaz(ZQ)erB_QLb(yl)s, B_%(y2)3+> if y1 < y2 € R (boundary regime) ,
(3.24)
wheresy = 5+ F ﬁsgnu with v = 2R(u121 + poze), and in the bulk regime we have

sgnu = sgn (1 + p2).

The explicit knowledge of théf; bulk one-point function on the disc, and the axiom of bulk
factorization [3.12), are enough to prove the form{ila (Bi@4he limit z;o — 0. Then, the local
8/[2 symmetry requirement and the knowledge that the resultidgeuations are equivalent to
BPZ equations[(3}3) show that the formula is true in the whal& regime.

The continuity assumption will now provide some informatian the bulk two-point function
at thez = M end of the boundary regime. The other end: 1 is constrained by the axiom
of bulk-boundary factorization[ (3.1.3), which is a non-@ivrequirement even though we do not
know the bulk-boundary two-point function. These two liimit regions are connected by the KZ
equations, which hold in the whole boundary regime. We pdirfmoshow that, taken toghether,
these constraints are enough to fully determine the bulkgwiat function in the boundary regime.

The reasoning could now go in two possible directions, ddimgnon which one of the two
limiting regions we consider first. If we first solve the camitity assumption, it is then difficult to
exploit the axiom of bulk-boundary factorization. So wel\iitst solve the latter axiom.

Solving the axiom of bulk-boundary factorization. We will write the general solution of this
axiom in terms of some arbitrary structure constaBis, (7, /), anngr conformal blocks built
from known Liouville theory conformal blocks. The relevasinformal blocks are most easily
defined by decomposing the boundary regime Angatz](3.24),

<Va1 (zl)vaz (32)5+B_2Lb (yl)s, B_Lb (y2)s+> =

> [ a8 BE (0, 8-B)CE Q-+ B~ | 6)B, (cn, i~ BICE, Q=B+~ | B)

N1,m2== -

1
(RsL, s+(5)> G (01, 2l21, 22,91, 12) - (3.25)

A basis of solutions of the Knizhnik-Zamolodchikov equagadn the boundary regime is obtained
by multiplying the conformal block§s ;), 1, (01, 2|21, 22, y1, y2) With the prefactor (first line) of
(B.24), while assuming the relatiop (3.5) betweép spins and Liouville momenta. We will still
denote the resultingZ;” conformal blocks agis ,,, ., (a1, |21, 22, y1,y2), and represent them
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schematically as
a1 a9
) ) ) ) = ) 326
G8.mms (1, 2|21, 22,91, Y2) e (3.26)

aq a2

where the wiggly lines denote degenerate fields of momenturg;, and the discrete indices
n; = =+ indicate the fusion channefs— 7 of these degenerate boundary fie@l§% with another
boundary fieldBg.

The general solution of the bulk-boundary factorizatiomoaxis obtained by replacing the
Liouville structure constant8, C{" in eq. (3.2p) with arbitrary quantities, , (5, £),

. . -1
S= Z /dﬁ By (1, 0) Brogy (G2, ) (RE(0)) ™ Gy o (01, 2|21, 22, 91, 42) - (3.27)
n1,me==

(Recall the relation[(2.82) between the Liouville aflg” boundary reflection coefficients.) We
have indeed chosen our basis of conformal blocks for itofaihg behaviour in the boundary
factorization limit,

a1 a2

o1 a2
li = |w — 2 |??8 >§ §< 3.28
zlflirlnﬂo 1 16 n2 v 1 1 ’8 % ’8 n2 ’ ( )
aq g

a1 a2

where the two factors depend 8011, j1, 21, y1, w and B, ne, jo, 22, y2, w respectively. Herev is
the position of the intermediate channel field of momentiion the boundary of the disc.

The quantitiesB, ,(j,¢) can be interpreted as the bulk-boundary structure comsstirthe
H; model. For given values of the bulk and boundary spiasid/, there arewo such structure
constants labelled by = =+. The reason for this fact, and a detailed analysis offilje bulk-
boundary two-point function, are given in sectign 5.

Therefore, thanks to the bulk-boundary factorization axiour task is now reduced to deter-
mining the structure constanis, , (7, /), i.e. showing that they agree with the Liouville structure
constants in eq[(3.p5). For this, we need the continuityrapsion.

Solving the continuity assumption. We recall that the continuity assumption determines the
terms which involve theu% channel in the fusion product of the two boundary degendielgs
(B-18). In order to exploit this assumption, it is therefooavenient to use a new basis of conformal
blocks (where we omit the dependence(en, as|z1, 22, Y1, Y2)):

Gso = ; Gg_19=

Gp,—1,4 = .(3.29)
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The relation to our previous basis of conformal blocks is

Gonm =Fno(B) Gz o+ Fy_1(B) Gprn 15 5 Gam—n=05_1_,,  (330)

b? b7
for some Liouville fusing matrix eIemenE%O( ) Fn,_% (8) which depend o but not ona, cs.
(These fusing matrix elements are known explicitly, but wendt need their precise form.)
Let us rewrite the solution of the factorization axiom (§.Rvterms of such conformal blocks:

S = / a8 (RI(0) " (Brs (1, OB (j2: 0G5 1 + Br(j1, OBr,s (72,095 1., )

+ Z/dﬁ (RE(0)) ™" Bry(it, €) By o, ©) (Fn,o(ﬁ) Gav g0+ F, 1(B) gﬂ+2ib,7%,0> :
n

(3.31)

The continuity assumption determines the terméAn 1, and therefore the values of the prod-
ucts B, 1 (j1,¢) By, (j2,¢) and B, _(j1,¢) By +(j2,%). All our conformal blocks are indeed lin-
early independent, up to the identity of blocks labelled bgnmenta with identical conformal
weights, for instanc@m_%ﬂr = QQ_ﬁ,_%7_. One should also take into account corresponding
identities among the structure constants, nangly(j, £) = RZ(¢) B, —,(j, —¢ — 1).

The resulting values oB, (j1,¢)B, —(j2,¢) and B, _(j1,£)B; +(j2,£) must be the ones
appearing in the decomposition of our Ansdiz (3.25), bezawesalready know the Ansatz to be a
solution of the continuity constraints. This determidgs.(j,¢) up to aj-independent rescaling,
B, 1(j,0) = f-()*' B, +(j,¢). Anon-trivial rescaling f,(¢) # +1) can however be excluded by
exploiting the terms irgm%ﬁ%’o, which are again determined by the continuity constrairitis T
shows that the Ansatz is the only solution to our axioms.

Therefore, our lack of control overt@%h@byo terms has not prevented us from fully determin-
ing the bulk two-point function, thanks to the bulk-boundéactorization axiom. In the standard
Cardy-Lewellen formalism, the bulk two-point function wdwbe fully determined from the disc
one-point and sphere three-point functions, and the ballkatary factorization axiom would then
come as a consistency check on these quantities. In our tteéseonsistency check is weaker,
because it can involve only the part of the axiom which we douse for determining the bulk
two-point function.

Generalization. This reasoning can be generalized to arbitrHiy bulk correlators on the disc.
Indeed, the existence of a bulk regime where Ehg¢ correlators are known (thanks to the bulk
OPE) gives a nontrivial content to the continuity assumptidvioreover, our determination of
the H3™ bulk two-point function also yields the knowledge of thg" bulk-boundary two-point
function. Therefore, we can in principle apply the bulk-bdary OPE([(3.13) to arbitrarif; bulk
correlators, which proves our main resylt (3.18) for cateis of bulk fields and boundary fields
~ Ut which preserve the boundary condition. Boundary conditizanging operator,slffﬁ, are more
challenging: we leave their case as a conjecture, whichpigated by our check of all the axioms,
and the analysis of the boundary two-point function in Sed.

3.4 Hj -Liouvillerelation in the m-basis

The m-basis relation may be useful for the study of #i&(2,R)/U(1) coset model, which is
formally quite close to théZ, -model in them basis. The relation is obtained by straightforward
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application of the integral transforms (2.11), (2.26) te thbasis result[(3.18):

<I]:®”M7mlz“ II‘Pmmﬂb >
n
Y4
x H Nrjnila;ma N"'Z'jbaﬂb / |U| / 2” +m H |Vb| ngnm’ Vb)
a=1

ml

X |®n,m|§ <H Va, (2a) HBﬂb(wb) IMvoswa) Il B_z_lb(ybf)> . (3.32)
a=1 b=1

a'=1 =1

The non-trivial content of the formula is the fact that thealdian for Sklyanin's separation of
variables|[(3.70) (which gives,, v, as a function of the positiong, , v of the degenerate fields) is
u|2|Onm| TTh— [1al?® [Th%, |v6]- The integral ovey should be understood as spanning the whole
range of complex or real values, and to include the combiiztfactors due to the invariance of
lha, Vp Under permutations af,: or yy; for instance in the case of the bulk two-point functios=
2,m = 0 we have[ d’y = fsy1>0 d*y1 + % [ge dy1 dys. The integral ovetu| can be performed
explicitly knowing thatu,, 1, all have a factotu|, the resultisi(i Y\, (mq +mq) +1 Y ey mp).
(Recall that in thefZ;~ model physical values of, + m, andm,, are pure imaginary.) The sum
oversgnu then affects the Liouville boundary parameters, which &tegiven by eq. [3.1P) but
kept implicit in our formula. The normalization factolxg:a Nf;l;b n, are given in[2.12) [(2.27),
and we do not write thg, £, m-independent normalization factor

A few cases are particularly simple. 2f + m — 2 = 0 the H -Liouville relation does not
involve Liouville degenerate fields. This happens for thi lmme-point function¢ = 1, m = 0)
and the boundary two-point functiom (= 0,m = 2). If 2n + m — 2 = 1 the relation involves
one boundary degenerate field, and therefore no singulaaityoccur from the collision of two
degenerate fields. This happens for the bulk-boundary wiatfunction @ = 1, m = 1) and the

boundary three-point functiom (= 0, m = 3).

4. Boundary two-point function

The boundary two-point function for open strings living osiagle AdS, brane is already known,
eq. {2.2B), and we reproduce it here up to irrelevant factors

<\I/Z1 (t1|w1)\11£2 (t2|w2)>r = (5(61 + 62 + 1)(5(t12) + (5(61 — 62)R§(€1)|t12|%1 . (4.1)

Up to a change of the reflection numbBf’(¢,), this is actually the most general form of the
two-point function which is compatible with th&L(2, R) symmetry [2.28), if the boundary fields
follow the standards (2, R) transformation rule[(2.22). And indeed, the equationg @ {thich
yielded that solution can also be used to derive a boundamyptvint function between different
branes, which is of the same forfnJ20]. The resulting reﬂmnumber}:’fj (¢1) however has
branch cuts as a function of the boundary shikVhile this is not an inconsistency, this is certainly
a strange feature.
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Our relation with Liouville theory[(3.18) however predicts

(P00 (b1 1) 0% (1) )
= 5(61 + s + 1)5(1512) + 5(61 - gQ)Rf’Ir/ (51)|t12|%1 e_%(k_Q)(’"_r')Sgntlz , (4.2)

with thet-basis reflection number

R" . (B) R, . . (B

T EESNL I T EEN N L N
2xb " 46’36 46 3xb _ 4b’3xb ' 46

:F(Qf—{—l) sin(ﬂf—i%) :F(2€+1) Sin(ﬂg—*'irZ_T;,) ,

R77./(0) (4.3)
with g =b(+ 1) + le This reflection number is meromorphic4nwith no hint of a branch cut.
And the factore 2 (k=2)(r—r")sent12 contradicts theS L (2, R) symmetry.

We will argue that[(4]2) is actually the correli” boundary two-point function, and that the
result of [2p] is incorrect because it relies on erroneousragtry assumptions. We will indeed
show that thef;” boundary condition changing operators should not belorrgficesentations of
SL(2,R) but rather to representations of the universal coveringmgyL(2, R).

NB: In this section we omit the dependence of two-point fiorcin the worldsheet coordinates
wy,we. This dependence is always a factor — w2|‘2Af1 .

4.1 SL(2,R) symmetry

Let us investigate how the assumptionﬂi(Q, R) symmetry would constrain the boundary two-
point function. To begin with, we study the possible actiofishat group on the boundary fields
P UL (tw)r .

Consider a timelike coordinafg on SL(2, R) such thatl'(id) = 0 andT(—id) = 1. (As a
manifold, §E(2, R) is identical to the Anti-de Sitter spac&dSs.) Then the set oﬁ(2, R) ele-
ments such that < 7' < 1 can be identified with the groufL(2, R)/{id, —id}. We parametrize
elements oﬁ,(Q, R) asG = (g,[T’]) whereg is an element of the groupL (2, R) /{id, —id}, and
[T] is the integer part df".

The natural action of the gro@L(Q, R) on the parameteris simply (g, [T]) -t =g - t. Itis
however possible to define an actionﬁ(z R) on thet-basis fields¥*(¢) which does not reduce
to the ordinarySL(2, R) action(g, [T]) - U(t) = |ct — d|2*T¢(g - t) as follows: for anSL(2, R)
group elementG = (g, [T]) and a real numbet consider the numbeN of timesg - ¢ crosses
t = 400 whenG continuously varies fronir = id§Z(2,R) = (id,0) to G = (g, [T]). Then for any

fixed numbers the following is an action oﬁ(Q, R) ont-basis fields:
G- Ul(t) = (g, [T]) - OX(t) = |t — d|* NGOG (g 1) . (4.4)

How would invariance under sucﬁi(Q,]R) transformations constrain the boundary two-point
function? UsingN (g, [T, t) = [T] + 3 + 3sgn(t — d/c), we have

(G0 (tafwr)s G (), )
= |ct; — d|2£1|ct2 _ d|2€2e%fi(sgn[tl—d/C]—Sgn[tz—d/C]) <T\I/£1 (g- t1|w1)r/\11é2 (g - t2|w2)r>

= |et) — d|2£1|ct2 _ d|2£2e%lﬁ(sgntlzfsgn[g-tlfg-tz}) <T\I,£1 (g- t1|w1),«/\If£2 (g- t2|w2)r> . (4.5
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The requirement that this equals’t (¢ |w: ), U2 (t5|w,), ) leads to

(P00 (b1 1) 9% (1o ]wn) )

= 6(01 + lo + 1)5(t12) + 0(f1 — L) RE, (01) |1z e 35802 (4.6)

for somet-basis reflection numbdéfr, (¢1). Therefore, the two-point functiofp (4.2) derived from

the H; -Liouville relation is compatible With§f)(2,R) symmetry provided the boundary fields
transform as eq[ (4.4) with

k=(k—-2)(r—r'). 4.7)

We have thus found a nice geometrical interpretation fotweepoint function derived from the

Hj -Liouville relation. This is of course not in itself evideméor the correctness of that relation.
We will look for such evidence in the comparison with N=2 Lville theory, and in the classical

analysis of thel;” sigma model.

4.2 Comparison with N=2 Liouvilletheory

An H; modU(1) coset model can be obtained from tHg"~ model by gauging, and this coset
model is known to be identical to the 2d black hole coset mate(2, R)/U (1) []. It is also
known that the N=2 supersymmetric version of th&(2,R)/U(1) coset is related via mirror
symmetry toN = 2 Liouville theory [21,[2R[23]. The boundary two-point fuizet on maximally
symmetric D-branes in N=2 Liouville theory with central apac = 3 + k—EQ is thus expected to
be related to the boundary two-point function on @S, branes in theHgr model at levek. We
will not try to check this expectation in full detail, rathere will focus on the non-trivial part of
the expected relation, namely the relation between the dayrreflection coefficients in tha ;"
model and N=2 Liouville theory.

The boundary reflection coefficient in N=2 Liouville theoryasvdetermined in[[p4]. The
D-branes which should be compared to théS; branes inf;~ are the B-braneq [lL5]. The re-
lation between the parameterof our AdS; branes and the parametefsof the N=2 Liouville
B-branes can be deduced from the explicit formulas for threesponding one-point functions:
r = —%(2(] + 1). The boundary fields which span the spectrum of open striegsden such

B-branes are caIIer;gs), ABf,ES), XBf,ES), AABA) \wherer andm correspond to thél,” boundary
spin andm-basis momentuns, is a fermionic label which we will ignore because thdependence
of the N=2 Liouville boundary two-point function is trivighnd X, A are boundary fermions such
that A\ + A\ = 1. We will compare the spectrum of open stringgdij with the bosonic sector of
the N=2 Liouville boundary spectrum; for each choice/ah this sector is two-dimensional and
spanned by ABA®) AABLY,

Let us write explicitly the reflection matrix for such N=2 Liwille boundary fields[[34] (sec-
tion 6.2 therein) with our notations and our own field normatiions chosen for later convenience.
(Changing field normalizations amounts to conjugating tlarixn M with a diagonal matrix.)

A\B! 4 . BT
OTmoy — I (=2 O(—¢—m)T(2¢0 + )RY (v oo m 4.8
(MBT(;) - (=€ +m)I( m)I'(2¢ + )Rr,r()xM<MB#_1> , (4.8)
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:F’V‘—T, . . 7'—’7" .
Y. ftem =¥ sinw(m £ ¢) e "Me w2 gin 27/

_T__T, . 7‘—_7-, .
emMme” T sin27l Yy, TFet W sinm(m + 0)

M:

The m-basis boundary field¥/, , of the Hj model were defined i (26). Ouf;" boundary
two-point function [4.p) has the following form in the-basis:

(PWh (W) 02, 0, (w2), ) = 0(i(m1 +ma)) X [5(81 + £ + 1) 26,

4
+ 04 — 62);1‘(—61 +m )T (=4 —my)cos 5 (€1 —my + 1) cos 5 (41 +my +12)

iR (26, + 1) RE (0)) {(—1)"1 sin(ml + %55 ) + (—1)™ sin(rl — z'r;bg’)}] . (4.9)
If we now assume the following identification between the Niifuville fields A\ABE,, AABY, and
the Hg+ model fields¥? . which involves an implicit Wick rotation of the allowed vas ofm,

m’n !

2

o
ABf, = W+ 0 =2 /0 dt t=7 1Mt () (4.10)
0

ABf, = e™(Th, o — WL ) = 2™ / dt [t~ HEmat (e (4.11)
— 00
then theH;" reflection matrix deduced from owt-basis boundary two-point functioh (4.9) agrees
with the N=2 Liouville boundary reflection matrik (4.8).

4.3 Classical analysis

We should be able to study such a basic property of the théayem strings irfl;" as its symmetry
group without solving the full quantum theory. In the caséslosed strings and open strings
which preserve boundary conditions, the minisuperspawi fleduces our conformal field theory
to the quantum mechanics of a point particleH§ and AdS, respectively, and therefore gives
substantial insight into the spectrum and symmetry pra@sertHowever, the theory of open strings
stretched between two differentd.S, branes does not have such a minisuperspace limit, because
such open strings can not shrink to point particles. Howeaverwill be able to gain some insight
from analyzing their classical worldsheet dynamics.

In order to predict the symmetry group, we should derive gexsum of a timelike generator
R of the Lie algebra/2(R). (Such a generator geometrically acts as a rotation ofith#; branes.)
Indeed, such a generator must satisfp 27i R = —id if the symmetry group i$L(2,R). On the
other hand, no such relation exists in the universal cogeghmupﬁ(%ﬂ%). Nevertheless, the
transformation law[(4]4) of the boundary fields suggeststtigavalue okxp 27iR applied to such
fields should bexp 27iR = ek~ 2 ~") The operatoexp 2miR is indeed identified with the
SL(2,R) group elementy = (id, 1), and for any real numberwe haveN(id,1,¢) = 1. The
spectrum of the quantum operatBris therefore expected to be

r—r

Spec(R) = (k —2)

— 4+ 7. (4.12)
21

Of course, we do not expect the classical analysis to fupyaduce this spectrum, and in particular
not theZ quantization. In order to show that the symmetry groufig2, R) and notSL(2, R), it
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is enough to demonstrate that the spectrum is not purely\Waalvill actually even find indications
of an imaginary part proportional to— r'.

In principle one can obtain the full set of classical solnsi®f the H;~ sigma-model, but it
is not easy to extract predictions for the spectrum of thatiant generato?. This is due to the
pure imaginaryB-field in the theory on worldsheets with Lorentzian signaturhich prevents
classical strings from evolving normally in time. On the eatthand, the model on Euclidean
worldsheets has many classical solutions, but it is notaisshow to relate the spectrum &f
evaluated on classical solutions with the quantum spec@fuii®). We will avoid these subtleties
by considering a classical solution which does not depentherworldsheet time and therefore
makes sense for both signatures. Up to simple symmetryftramations, this is actually the unique
time-independent solution:

h = exp (7“ + (- r)g> : (4.13)
s
where(2 = (1) (1) ando is the space-like coordinate on the worldsheet. The conguerdinate

on the upper half-plane worldsheetzis= ¢”+7; our solution corresponds to inserting a boundary
operator at = 0:

3
n
Il
Y

Our solution is easily found to satisfy the following reanrents:

1. Solving the bulk equations of motion. This is becalisgn be factorized into holomorphic
and antiholomorphic factors.

2. Solving the boundary conditions at= z. In terms of the currents
J=kohh™' , J=kh 'Oh=J", (4.14)
these boundary conditions are of the type
Jaf + Q7 =.0. (4.15)

This implies the vanishing of the derivative ©f {24 along the boundary, so that

Tr Qh = (4.16)
z

=z

2sinhr , Rz >0
2sinhr’ , Rz <0’

as required by the definition of the brane parameters(2.18).

3. Corresponding to an affine primary field insertionzat 0. This means that the currents
behave as

k. N
J(z)=—j0+k Zj_nz L (4.17)
Z n=1
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We can now evaluate the values of the conserved momentaatssbios/(R) transformations:

T o
z/ e do (Q*IJTQ n J) —kjo=k— Q. (4.18)
. 2

™

The matrix} () satisfies:xp 2mi(32) = —id and can therefore be identified with tRegenerator of
the compact, timelike direction a?(R). The associated conserved charge of our classical solution
iS

r—r

R =k (4.19)

2ms

This agrees with the imaginary part of the spectrum of thentyua operato? (¢.12), up a term
which is subleading a8 — oo. This is consistent with the classical analysis becomitighie
only in the largek limit, sincek appears as a factor in thé;” action (2.4) and therefore plays the
role of the inverse Planck constant.

5. Bulk-boundary two-point function

Like the boundary two-point function, the case of the bubkibdary two-point function will pro-
vide a nontrivial check of our expression féf; disc correlators in terms of Liouville theory.
We will indeed use a minisuperspace analysis to indepelydergdict the large level limit of the
bulk-boundary two-point function.
According to the formula[(3.18), thE;" bulk-boundary two-point function is
k—2

<@“M”W“”w»r“““+“+”w”%Zizﬁ;jgtizz2

X<WA@

B (W) - o B (), (5.)

T i
27b + b 27b

where the Liouville momenta, 5 are functions ofj, # ([3.5), the positiony = —% of

the Liouville degenerate field is the zero of the functipft) (B.6), we useu = puz + iz + vw
B.1), and we omit the numerical factors. Here is a picturthisfH;"-Liouville relation:

J
« ¥ul2) i Val?)
LV B_1(y)  Bs(w)
7 4 » 7 Z
T T

r i r i r 7
575 — ApS8NYV 57 + 15581 5ap — ApSenV

The Liouville boundary parameter is therefore controllgdih which we spell out explicitly in
terms of the separated variables y) thanks to eq.[(3.10):
w—Yy

v= . (5.2)

w2
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5.1 SL(2,R) symmetry

We first check that our formula for the bulk-boundary tworgdunction obeys thé L (2, R) sym-
metry requirement(2.23). The general solution to this ireguent is

r .
X |z ~l—zt|%|x + g9t L(=2-t-1 ZBri j,0) e'3(2rtl sgnite (5 3)

Like in the case of the bulk one-point function (which is obéal for/ = 0), the SL(2, R) sym-
metry allows an arbitrary dependencesgnRz. Here we choose™ s (2i+{+1)sen®z a5 3 hasis of
functions ofsgnRz, and we introduce thewo H;" bulk-boundary structure constanﬁfi (7,0).
The factor% is chosen for later convenience.

We now transform this bulk-boundary two-point functionanihe ;-basis (defined by equa-
tions (2.1p), [2.24)) for the purpose of the comparison wiith formula predicted by ou; -
Liouville relation. The Fourier integral ovet:, t) can be performed by making the change of
variablesz = z’' — it and then parametrizing’ € C in terms of real variables, 7 such that
z' = o(it — f1). (Then the integral over is of the type [A.T}4).)

(7 (ul2) W () = |z = 222 |z — ] 72

o0
-4 4 0) WPl [ 7 P Bl G10) . (6.4)

—0o0

The remaining integral over converges provideg is not pure imaginary. It can be performed
using the integral formulg (A:12) which yields:

(07 (ul2) ¥ () ) = |2 = 2272 [z — w| 2
_ D(=2j—1-0D(25 +1— .
X 80+ -+ ) 1] L F(_) ZBri 5 OF5(n), (5.5)
where we define
Fi()z lil% é+%F 2'+§_2'_ll_g.l 1Sy (5.6)

The Liouville correlator in[(5]1) can be decomposed intouvitle structure constants, and
conformal blocks which capture all the dependence on thddaloeet coordinates, w,y. The
properties of the relevant blocks have been studield |n %] they are proportional to the functions
Fjﬂfé(u) in (6-8). ° What is however not obvious, but necessary for$tg2, R) symmetry, is that
the coefficients of this decomposition are completely irmaelent ofu, v, in spite of thesgny
dependence of the Liouville boundary parameter.

SAccording to ], the relevant Liouville blocks are indgaalvers oflz — w|, |z — y|, |w —y|, times hypergeometric
functions of the type’ (b~ (2a+8—Q),b~ " (B — 55),2b" " (B — 21b) Z) with z = % =14 £ Therelation
with Fj:f:[(p,) is established thanks to the quadratic transformationyA.1
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In order to write the decomposition explicitly, let us catesi the Liouville factorization limit
y — w when the degenerate boundary fidkd L collides with Bz. This limit corresponds to
v = 0, and thereforg: pure imaginary (using + i + v = 0). The behaviour of our conformal
bIocksFﬁ,( ) in this limit is actually determined b}d_r)r(l) sgnJp = —sgnu. Namely,F' is regular

if sgnu = — andF'~ is regular ifsgnu = +. The Liouville correlator in[(5]1) is then decomposed
into regular blocks, and structure constants where thedamyrparameters can be determined from
the identitysgny = sgnu sgn(w — y). We thus find the following decomposition, where= sgnu:

(7 (ul2) W W) = |z = 2142 |z — | 245+ i+ )

Cr(B | —35,Q—B— 95) B (o, B+ 35)|ul v 'F; £ ()

5

+CH(B | —95,Q— B+ 25)Bi (e, B — 35)lul ‘W F S (w)| . (B.7)

S_e

wheres; = 55 ¥ -, and the Liouville bulk-boundary structure constdift(c, ) (B-1§) and
degenerate boundary three-point structure constafs | —QLb, Q-5+ 2%)) (A-22) are explicitly

known.

The Liouville correlator in[(5]1) is known to have an alteive decomposition[[25], which
leads to equatior] (§.7) being also valid for= —sgnu. (The equality of these decompositions can
be exploited in order to derive % -shift relation for the Liouville bulk-boundary structusen-
stant.) We will now use these two decompositiens +, while rewriting the functlonsF‘EE 1 (1)
in terms of 7, (1) with the help of

v |2 I(—¢+4Hr(—£-1)

. ¢ cosT2j
dp

F¢ = I 5.8
D(—0—2j —1)D(—L+2j+1) »¢1 it cosml 8)

Not forgettingCZ (8 | — &, @ —8+35) = 1, we find that theZ; bulk-boundary two-point function

S
deduced from théZ;" -Liouville relation is indeed of the forn{ (8.5) dictated BY.(2, R) symmetry,
with structure constants

24421 (—20) I

B,1(j,4) = ;
ri(] ) = (—E—%)F(—€+%) 36 T 2

(e, 8= 55) - (5.9)
(We omit numerical factors.)

5.2 Minisuperspace analysis

Let us compute the minisuperspace liit+ oo of our H; bulk-boundary two-point function.
Thanks toSL(2,R) symmetry, this reduces to computing the— oo limit of the structure con-
stantsB/7, (4, ¢) computed in[[25] and reproduced in the Appendix, €q.] (5.9iny the explicit

formula for the Liouville bulk-boundary structure conswi’ (A.1§), we compute their semi-
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classical limitb? = X5 — 0 (assumingr, j, ¢ stay fixed):

im BL. . 1y _ _ —2 2p\—1—j—1L
gg%Bﬁ¥ﬁ(a’ﬁ 55) = 4m(—prmb "e™) 2

/ 4 (ortimp L+ €427+ 2)T(p+ £+ DI (—p — 25 — 1)I'(—p)

= 47((/urb72)717j7%

x {e¢%<2j—e+2> L(=2j lf(f);(fj 2) ei-0r p(g 4 1, ~2j + £,~2j; —e~T)
—4)

+ ei%’(ZjJrZJr?)F(Qj Y/ 2)67(2j+f+2)1“F(g +1,2) +0+2,25 + 25 _6—21")} ,(5.10)

where we make use of the asymptotic behaviour of the spagaiatibns [A.B){(A.1]1) and of the
auxiliary formula

~2rimp _ 2 T sinm(2) + p) — eT sinw(£ +p) (5.11)
sinm(2j — ¢) ' '
Let us now predict the minisuperspace limit of the bulk-kaany structure constan&,ﬂ (7,9)
by an independent calculation. In the minisuperspace, liimit/;~ model path-integral reduces to

the integral over worldsheet-independent eleménd H;'":

e(

<¢j(x|z)\yé(t|w)>fi“i _ /H+ dh ® (z|h) T (HR)S(Tx [hQ] — 2sinhr) . (5.12)

Using the explicit formulas for théZ," elementh (2-3) and the classical fields’ (z|h) (B-3) and
Ut(t|h) (2:20), the minisuperspace computation is performed sl
(7 (al2)w!(tw))
27+1 .
= =L [y ag e205(e (y +7) - 2sinhr) (jz — 92 + e it + y2e? + 77
o 25+1 d*~ydu
T orm w2+
= |z 4z 4 it|*
I'(—47 — 1)(2 cosh )% ++! /°° du
[(=2/)T(=2j — 1) o ult

§(Ry — sinhr)(|u(z +it) — v* + 1)¥ (][> + 1)

(u? — 2u tanh r sgnRx + 1)2j+%, (5.13)

wherey was shiftedy — v — it and rescaled — e~%v, we introduced: = e?, and we reached
the last expression by the rescaling— %u which allowed the integral ovey to be
performed.

The remaining integral over can be performed with the help of the formufa (4.12). The
minisuperspace bulk-boundary two-point function is theanfd to be of the form dictated by the
spacetimeS L (2, R) symmetry [5]3), with the structure constants:

Bf’imini(j, ) = (2cosh )2+t

X {ef5’<2ﬂ"f+2>r(_2‘7 ;(6)5.()2‘7 + 2)6(2j’£)"F(€ +1,-2j +4,-2j;—e ")
—2j

T+ T () 04 2)e BT 4 1,2) 4 042,2] +2-¢ 7)) . (5.14)
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Up to a renormalization of the fields, this agrees with theljoteon (5.10) from ourH; -Liouville
relation.

A. Appendix

A.1 Special functions

The functiony(z) is built from Euler's Gamma function:

V(z) = Ti—-2) (A.1)
We use the special functiong,, T, and S, which usually appear in the study of Liouville theory
at parameteb > 0 and background chargg@ = b + b~. We use the same conventions g3 [26],
where some more details can be found. The following defimstiare valid fol) < Rz < Q:

% 1t i —xt _ ,—Qt/2 Q)2 — )2 B Q/2 —
logT' () :/0 t (l—ee—bt)(i —et/by 2 —e - t SRR
B 00@_ Q 27t_sinh?(%—z)%
g™ _/0 t _(2 x) © 7 “sinhsinhl |’ (A-3)
Coedt| sinn$ -zt (Q —2ux)
1095 = /0 + |2sin(@)sinh(L) ‘ A4

These functions can be extended to a meromorphic functiath@mromplex plane thanks to the
shift equations

P bt
ne+n =06 L D =YE e e
Ty(z +b) = %bl_ml‘b(x) , Yp(z+1/b) = %wa/b—lrb(z) (A.6)
Sp(z +b) = 2sin(wbz)Sy(z) , Sp(z +1/b) = 2sin(mz/b)Sy(x) (A.7)
The three special functions are relatég(x) = % andYy(z) = m

Using the integral representations for the special funstione can study their behaviour for
b — 0 while keeping the quantity fixed:

3(@=3)
Ty(bz) — (206%)2(~ 20 (z) | I‘b(Q—ba:)—>(2£> : (A.8)
Vs
Tolba) - —1— (A.9)
b* 2T ()

Sy(bx) — (272" 3T(z) Sb(%+bx)—>2f’%, (A.10)
HS(ierxiil) L, ((eoshr)T (A.11)

L1709 b V2 ‘ '
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A.2 Useful formulas

The following formula [2}] is used in Secti¢h 5.

Ila+1)I(-28 —a—1)
['(-26)

X (2coshr)*5*%ei’"(5+%)F (—a - B - %,a + 6+

oo
/ dzz®(1 + 2z tanhr + %)% =
0

31 1
— =0 . (A1l2
33~ Pimy) - (A2

The following formulas are useful for transforming someretators in the(z, t) basis into corre-
lators in the(y, v) basis.

/ P |32 = oy 4 1) 222 (A.13)
C

/dt f(sgnt)|t|%e™™ = |v|* ' T(a + 1) [f(sgnu)e_i%(a"rl) + f(—sgny)ei%(a+1)](A.14)
R

The conformal blocks which are relevant for Secfipn 5 inedlypergeometric functions which can
undergo a quadratic transformation:

1-b
F(a,b,2b;2z) = (%—i— i\;%)z (1—2)"2

xF(b—a+§,a—b+§,b+%;%—§ H) . (A.15)

A.3 SomeLiouvilletheory formulas

We mostly follow conventions of [26]. We consider Liouvilleeory with parametel > 0, back-
ground charge&) = b + b~ !, central charge = 1 + 6Q?, and interaction strengtfay,.
One-point function on a disc:

(Va(2)), = |2 = 223 (apry(02) “5°
I'(1—-b(Q —2a))I(1 — b 1Q — 2a))
—12i(2a — Q)

cosh2ms(@Q — 2a) . (A.16)

Boundary reflection coefficient and two-point function:

(sBg, (w1)g Bg, (wa)s) = |w — wl*mﬂl [6(B1+ B2 — Q) + RL . (B1)d(B1 — B2)]

1% Th(28 — Q) .
RE(B) = |mppy(b?)p>2 ”7 [[5 (Q-B+i(xs+s)) . (AL7)
| s I F@Q—2) L )

Bulk-boundary two-point functior[[25]:

(Va(2)Ba(w)), = |2 = 217723 |z — w2 B (o ) ,
-1 _o] T m T _T3(Q = A)TH(2Q — 200 — B)T'y(20 — B)
L — i1 [x 2\ 72—2b b
By (a, f) = i2 [ ury(6)b } T (Q)Ts(8)1(Q — 25)Fb(2a)Fb(Q — 2a)

o0 747rs Sb a+ /B :|:p)
X/ pH mE (A.18)

oo a——i
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From this, one can deduce the bulk-boundary OPE of a bulkdegte field/fzilb which is relevant
for our continuity assumptiol (3J17). There is a subtletye tb the pole structure @~ («, ), the

degenerate limit of the bulk-boundary OPE yields
BE(-4.,Q)= lim Res BE(a,p), (A.19)
B=b—2a

a——op B

?

instead of the incorrect formulB’ (-5, Q) lim Res Bl(a, B) which one might naively

a—— o

have expected. The correct result is

1 D(=1-2b72)

(b2 cosh 2rb ! (A.20)

By (=55, Q) = 2b" % [mury(b*)] 2
Operator product expansion of a degenerate boundary field:

s+B,3(w)s_B,2Lb

s~ fw =yl CICEB | ~55,Q = 5= 55 By 1 (W)

1
Flo =y PO (B ~55,Q =B+ g)e By 1(w)sy, (A2D)
with the degenerate boundary structure constants

CL(B|-%Q-B+3) =1
-2 1

2b _ .
O3 (B~ Q= B=35) = Byl s, (B)Rs 5, (Q = B = gp) = == [mury (b )] "
xT(1 =261 8)T(26 '8 — b Q) cos (b8 — 55 9) cos (b8 — 52 7 2ib 15, )(A.22)
wheres; = s_ + g;. The particular case of the OPE of two degenerate boundadg fie= —

is relevant for our contlnwty assumptidn (3.16).
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