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Due to improvements in computer performance and algorithms, the rapidly increasing cost for

unquenched Wilson-type fermions with lighter quarks has been ameliorated and new simulations

are now possible. Here we present results using two flavours of O(a)-improved Wilson fermions

for meson decay constants at pseudoscalar masses down to 320MeV. Results are at several lattice

spacings down to about 0.07 fm and include a non-perturbative determination of the renormali-

sation constant. This enables us to attempt contact with (partially quenched) chiral perturbation

theory.
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1. Introduction

Chiral extrapolations of lattice data to the physical pion mass and the continuum ora! 0 limit
remain major sources of systematic uncertainty in the determination of hadron masses and matrix
elements. A test that lattice QCD must successfully pass before predictions can be fully trusted
is to reproduce known experimental results. One such indicator is the determination of meson
decay constants, such asfπ+ and fK+ , with phenomenological values of 92:42�0:07�0:25MeV
and 113:0� 1:0� 0:3MeV, [1] respectively. The problem is that simulations forsmaller quark
masses rapidly become very costly in computer time. Recent advances have been on two fronts:
firstly faster machines have become available, with speeds in the Tflop range and secondly the
hybrid Monte Carlo algorithm used in the simulations has been improved. In particular in the
new simulations reported here, we have used trajectory length one with three time scales in the
molecular dynamic step (one for the glue term [2] and now two [3] for the fermion term in the
action) which allowed the computationally expensive pieces to be updated less frequently. This
was coupled with the use of an auxiliary fermion mass, [4].

The results reported here use Wilson glue (plaquette) and two mass degenerateO(a)-improved
Wilson quarks (so effectively we are simulating 2-flavour QCD). As emphasised by Lüscher [5],
these ‘clover’ fermions are well understood: in particularthe addition of certain irrelevant terms,
both in the action and operators, and the non-perturbative determination of their coefficients allow
discretisation errors to be reduced toO(a2). For example adding the ‘clover’ term together with
the appropriate coefficientcsw is sufficient to determine theO(a)-improved masses, such as the
pseudoscalar massmps while to determine the decay constant, given byh0jA4jpsi= fpsp

2
mps; (1.1)

the axial currentAµ must also beO(a)-improved, which can be achieved by settingAµ = ZAA IMP
µ ; A IMP

µ = �1+ 1
2bA(amq1 +amq2)��Aµ +cAa∂µP

� ; (1.2)

whereAµ = q1γµγ5q2 andP= q1γ5q2.

Several years ago we started simulations at fourβ values and reached pseudoscalar masses of� 600MeV. We have started new simulations atβ = 5:29 andβ = 5:40 at lower quark masses.
Our present status of the lower quark mass runs used in this report is given in table 1. This has
enabled us to reach pseudoscalar masses of 350MeV or less. The force-scale was the unit used to
set the scale, together with a reference valuer0 = 0:5fm. Our results forrS

0=a are shown in fig. 1.
In our extrapolations we presently include results for heavier pseudoscalar masses; hopefully the
situation will improve with more smaller quark mass resultsbeing generated so that a linear fit for
the lighter quark masses will suffice. The extrapolated values ofrS

0=a in the chiral limit(r0=a)c are
used to determine the scale.

2. Chiral perturbation theory

While the sea quark masses (S) are given (implicitly) in table 1, valence quarks (V) do not
have to be chosen to have the same mass. Chiral Perturbation Theory,χPT, has been extended to
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β κS Volume Trajs mSS
ps=mSS

vec mSS
psL a[fm℄ L[fm℄ mSS

ps[MeV℄
5.25 0.13575 243�48 6000 0.60 6.1 0.085 2.05 590

5.29 0.1359 243�48 4900 0.61 5.8 0.081 1.95 580
5.29 0.1362 243�48 3400 0.42 3.7 0.081 1.95 380
5.29 0.13632 323�64 1200 0.42 4.2 0.081 2.60 320
5.40 0.1361 243�48 3600 0.63 5.3 0.072 1.73 610
5.40 0.1364 243�48 2800 0.51 3.6 0.072 1.73 410

Table 1: Present data sets. The new runs are at(β ;κS) = (5:29;0:1362), (5:29;0:13632)and(5:40;0:1364),
where ‘S’ means sea quark.mSS

ps, mSS
vec are the pseudoscalar and vector particle masses respectively. L is the

box size. For comparison, experimentallymπ+=mρ+ � 0:18 andmπ+ � 140MeV.

0.00 0.05 0.10 0.15
(amps

SS
)

2

5.0
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r 0S
/a

mπ √2mK

Figure 1: Results forrS
0=a versus(amSS

ps)2 for β = 5:25 (squares), 5:29 (diamonds) and 5:40 (triangles).
The new runs are shown in red. Linear fits have been used to extrapolaterS

0=a to the chiral limit, the results
being denoted by open symbols. The vertical dashed lines (left to right) represent the chiral limit, and using
LO χPT approximate positions of āll , and fictitious ¯sspseudoscalar particle computed fromπ+ andK+
respectively.

Partially Quenched Chiral Perturbation Theory,PQχPT, [6, 7]. While it is expensive to generate
dynamical configurations, it is computationally cheaper toevaluate correlation functions on these
configurations, so that a range of valence quark masses can beused. Using the Leading Order, LO,
and Next to Leading Order, NLO, results [7] for the pseudoscalar masses and decay constants in
terms of the quark mass, we eliminate (iteratively) the quark mass from these equations to give for
degenerate mass valence quarks

FVV
ps = fa+ fb(MSS

ps)2+ fc(MVV
ps )2+ fd

�(MSS
ps)2+(MVV

ps )2
�

ln
�(MSS

ps)2+(MVV
ps )2

� ; (2.1)

where we have also rescaled the pseudoscalar mass,mAB
ps , and decay constant,f AB

ps with sayr0c, ie

MAB
ps = r0cmAB

ps ; FAB
ps = r0c f AB

ps ; (2.2)
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with A;B 2 fV;Sg. fa (the LO result) andfi, i = b;c;d are given in terms of the low energy
constants, LECs,α4 � �0:76,α5 � 0:5 (evaluated at a scaleµ = Λχ = 4π f0) and f0 � 86:2MeV
(the decay constant in the chiral limit) [8] by1

fa = r0c f0

fb = 1(4π)2r0c f0

�
1
2

nf α4+ 1
4

nf ln
�
2(4πr0c f0)2��

fc = 1(4π)2r0c f0

�
1
2

α5+ 1
4

nf ln
�
2(4πr0c f0)2��

fd = � 1(4π)2r0c f0

1
4

nf : (2.3)

WhenV = S, eq. (2.1) further simplifies to

FSS
ps = fa+( fb+ fc+2 fd ln2)(MSS

ps)2+2 fd(MSS
ps)2 ln(MSS

ps)2 : (2.4)

From eq. (2.1) the pion and kaon decay constants can be found.We have two mass degenerate
sea quarks which we associate with the light quark (l whereml = (mu+md)=2), together with two
valence quarks, which we associate with either the light,l , quark or the strange,s, quark. Again
manipulating the structural form of the LO and NLO equationsgives the result

Fπ+ = fa+( fb+ fc+2 fd ln2)M2
π++2 fdM2

π+ lnM2
π+ (2.5)

FK+ = fa+ fb+ fd

 
ln2+ 2

n2
f

!!
M2

π+ + fc+ fd

 
ln2� 2

n2
f

!!
M2

K++ fd

 
1� 1

n2
f

!
M2

π+ lnM2
π++ fd

n2
f

M2
π+ ln

�
2M2

K+�M2
π+�+ fdM2

K+ lnM2
K+ : (2.6)

Determining thefa and fi, i = b;c;d coefficients means that the pion and kaon decay constants can
be found. While degenerate quark masses are sufficient, see eq. (2.1), for both pion and kaon decay
constants, only the pion decay constant is possible with just sea quarks, eq. (2.4).

Detecting chiral logarithms is a notorious problem, but is necessary as it shows that we are
entering a regime whereχPT is valid. This is particularly difficult for decay constants, as can be
seen from eq. (2.1) that this term is∝

�(MSS
ps)2+(MVV

ps )2
�

ln
�(MSS

ps)2+(MVV
ps )2

�
which for fixed(MSS

ps)2 does not vary much with(MVV
ps )2. We wish for a term∝ (MSS

ps)2 ln(MVV
ps )2. As suggested in

[7] considering the ratio

R� FVS
psq

FVV
ps FSS

ps

�1 = fd
n2

f fa

 (MSS
ps)2 ln

(MVV
ps )2(MSS
ps)2 +(MSS

ps)2� (MVV
ps )2

! ; (2.7)

(with fd=(n2
f fa) =�1=(4nf (4πr0c f0)2) enhances these chiral logarithms. The disadvantage is that

mixed quark mass correlators (V 6= S) must be computed. Note also that eqs. (2.1), (2.7) probe
different parts of theχPT expression; as can be seen from eqs. (19) and (20) of [7], eq. (2.7) sees
only theO(1=nf ) terms, while eq. (2.1) probes the remainingO(1), O(nf ) terms.

1If we had rescaled the pseudoscalar mass and decay constant with rS
0=a (rather than(r0=a)c as here)rS

0=a =(r0=a)c�1� rm(MSS
ps)2+ : : :� would just give an additional term�(4π f0r0c)2rm in eq. (2.3) in the square brackets for

fb.
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3. Results

We use the well-established procedure outlined in [9] to compute decay constants. We only
note here that in eq. (1.2), the improvement coefficient,cA, has been computed non-perturbatively,
[10], while bA is only known perturbatively (we use a tadpole improved version here, [11]). We
expect, however, that as the quark masses used here are quitesmall this leads to negligible cor-
rections. The renormalisation constant has also been non-perturbatively computed, [10, 11] (the
differences between these results appear to beO(a2) and hence vanish in the continuum limit).

We first investigate to see if we are entering a region where chiral logarithms are becoming
visible. In fig. 2 we showRdefined in eq. (2.7) forβ = 5:29 andκ = 0:1359 and 0:1362, together

0.0 1.0 2.0 3.0
(r0cmps

VV
)

2

0.000

0.005

0.010

0.015

β=5.29,κq

S
=0.1359

0.0 1.0 2.0 3.0

0.000

0.005

0.010

0.015

β=5.29,κq

S
=0.1362

mπ √2mK

Figure 2: Results forR, eq. (2.7) for(β ;κS) = (5:29;0:1359) (circles) and(5:29;0:1362) (squares), against(MVV
ps )2 � (r0cmVV

ps )2. The opaque symbols represent the points whereV � S whenR� 0 identically. The
dash-dotted curves are also defined in eq. (2.7) and are plotted withc=�0:01659 (usingr0 f0� 0:218). The
dashed curve is a fit, yieldingc� �0:0227 orr0c f0� 0:187. Other notation as fig. 1.

with the curve also given in eq. (2.7). While we do not expect much influence from the chiral
logarithm, the curves track the data quite well, indeed out to reasonably large quark masses. So it
would appear the chiral logarithms are visible of about the expected size. (But note they-axis scale
– we have subtracted 1, so really this is a very small effect ofO(1%).)

To determine the decay constants we must first take the continuum limit of the data, and then
determinefa and fi, i = b;c;d. But asχPT is an infra-red expansion, while thea2 ! 0 limit
is ultra-violet and as we are usingO(a)-improved fermions then we expect that there will be no
problems with the order of the limits, ie first chiral and thencontinuum. More drastically we shall
presently assume that we can ignore anyO(a2) error. This assumption must however be checked
in the future.

We now turn to a consideration of the partially quenched results. In fig. 3 we show the results
together with a fit from eq. (2.1). This is a global fit giving one parameter setfa and fi, i = b;c;d
with values 0:190(16), 0:017(13), 0:030(12), �0:0015(59) respectively. (The fit is reasonably
good given the fact that the data has three varying parameters: β , κS andκV .) We first note the

5



Simulating at Realistic Quark Masses: : : Roger Horsley
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Figure 3: Results forFVV
ps � r0c fVV

ps for the data sets given in table 1. The fit curves are given by eq. (2.1),
for a common parameter set. The opaque symbols represent thepoints whereV � S. Other notation as fig. 1.

the value of fa � r0c f0 is in good agreement with the value determined fromR. However using
this value to determinefd (see eq. (2.3)) gives� �0:017, indicating that we should be seeing a
much stronger logarithmic dependence (indeed the curves are almost linear). Furthermore usingfa
and fb, fc gives from eq. (2.3) the valuesα4 ��0:71,α5� �0:63. α4 is in reasonable agreement
with other phenomenological estimates; butα5 is not. So at the moment there is no unambiguous
confirmation ofχPT.

Consider now the sea quarks alone. In fig. 4 we show these results. The curve joining the

0.0 1.0 2.0 3.0
(r0cmps

SS
)

2

0.15

0.20

0.25

0.30

0.35

r 0c
f psS

S

r0=0.500fm
r0=0.467fm
β=5.25
β=5.29
β=5.40

mπ √2mK

Figure 4: Results forFSS
ps � r0cmSS

ps for the data sets in table 1. The fit curve (dashed-dotted line) is taken
from eq. (2.4) using the parameters that have been determined from fig. 3. The dashed curves are possible
phenomenological curves, using eqs. (2.3) and (2.4). The experimental value ofFπ+ � r0 fπ+ is indicated by
a star and cross forr0 = 0:5 fm and 0:467 fm respectively. Other notation as fig. 1.

points uses the previously determinedfa, fi, i = b;c;d coefficients. Consistency is seen. The

6



Simulating at Realistic Quark Masses: : : Roger Horsley

position of the new results is perhaps surprising because they have dropped to almost below where
the phenomenological value might lie. Also shown is a possible phenomenological curve from
eq. (2.3) forr0 = 0:5fm. As previously found here there is little agreement withthe lattice results.
Reducing ther0 scale helps somewhat, the second curve shows the phenomenological results using
r0 = 0:467fm, a result we estimated previously, see eg [11]. (This,of course, has the effect of
making our pseudoscalar masses larger and box size smaller in table 1.) It would seem that the
strict applicability ofχPT is restricted to a rather narrow regionr0cmSS

ps �< 1; the choice of the
scale is also rather delicate. Another issue are possible finite-size effects, which we are planning to
investigate later.

Finally we note values offπ+ = 77(4)MeV, fK+ = 93(1)MeV for r0 = 0:5fm and fπ+ =
82(5)MeV, fK+ = 98(2)MeV for r0 = 0:467fm. Clearly usingfK+ to set the scale would, at
present, make the lattice finer. The dimensionless ratiofK+= fπ+ is � 1:21, 1:19 for r0 = 0:5fm,
0:467fm respectively, to be compared with( fK+= fπ+)expt� 1:223.
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