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Abstract

We present a fully non-perturbative computation of the mass of the b-quark in the
quenched approximation. Our strategy starts from the matching of HQET to QCD in
a finite volume and finally relates the quark mass to the spin averaged mass of the By
meson in HQET. All steps include the terms of order A%/m;. Expanding on [1], we
discuss the computation and renormalization of correlation functions at order 1/my,.
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With the strange quark mass fixed from the Kaon mass and the QCD scale set through
ro = 0.5 fm, we obtain a renormalization group invariant mass M, = 6.758(86) GeV or
() = 4.347(48)GeV in the MS scheme. The uncertainty in the computed A?/m;,
terms contributes little to the total error and A3/ m% terms are negligible. The strategy
is promising for full QCD as well as for other B-physics observables.
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1 Introduction

The mass of the b-quark, My, is a relevant input parameter for phenomenology analysis
based on perturbation theory. Let us just mention the extraction of V,, from inclusive
b-decays [2,3]. M)} is a fundamental parameter of the Standard Model of particle
physics. Thus it should be determined precisely. One may of course turn the very first
observation around. For instance, applying high order perturbation theory to sufficiently
well integrated cross sections, the quark mass can be determined [4-15]. Still, the
achievable precision is limited by the intrinsic uncertainty of perturbation theory and
maybe more by experimental difficulties. On the other hand, the use of lattice QCD
offers a strategy to compute the fundamental renormalization group invariant (RGI)
parameters of QCD with very precisely known experimental input, e.g. Ny (= number
of quarks flavours) meson masses as well as the nucleon mass; see [16] for a basic
introduction. However, for the b-quark mass, such a computation is more involved than
for the light quarks because the achievable inverse lattice spacings are below the mass of
the quark. Effective theories have to be employed in a numerical treatment of the bound
states. The most serious problem that arises is that a power law divergent (~ g2/a)
additive renormalization of the mass is present due to the absence of a chiral symmetry
in the effective theories (even in the continuum). Although at the lowest order in Heavy
Quark Effective Theory (HQET) the subtraction is known to order g$/a [17-19], an (in
the continuum limit) divergent remainder is unavoidable and the total uncertainty is
difficult to estimate as long as the renormalization is carried out perturbatively.

In [1] a general strategy was described which allows HQET at zero velocity to be
implemented non-perturbatively on the lattice, including all renormalizations.

‘ Lattice with amq < 1 ‘

mp = 5.4GeV @y (Ly, My,), ®2(Ly, My,)
1 Lo =21 l
om(u
BIPT (1), AT (1) Tl GHAET () ARt )

o™ (uy), o5™ (uy)

The basic idea is illustrated in the above diagram. It is founded on the knowledge
of the relation between the RGI mass and the bare mass in QCD [20,21]. In a finite
volume of extent L; ~ 0.4fm, one chooses lattice spacings a sufficiently smaller than
1/my, such that the b-quark propagates correctly up to controllable discretization errors
of order a?. Finite volume observables ®;(L;, M},) may then be computed as a function
of the RGI mass M}, including an extrapolation to the continuum limit. The resulting
values are equated to their representation in HQET — a step called matching, indicated
by the r.h.s. of the diagram. Choosing now L;/a = O(10), with the same physical value
of L1, one uses the knowledge of ®;(L;, M) to determine the bare parameters in the
effective theory for a-values of about 0.025 fm to 0.05 fm. At these lattice spacings one
then computes the same observables in a larger volume Lo = 211. Again these observ-



ables can be extrapolated to the continuum limit. Next, the knowledge of ®;(Lsy, M},)
and the choice La/a = O(10) yields the bare parameters of the effective theory for a
around 0.05fm to 0.1 fm. One then has full control over the effective theory at lattice
spacings where large volume observables, such as the B-meson mass, can be computed.
Perturbation theory is completely avoided with the power divergent subtractions being
taken care of non-perturbatively.

We return to the specific application of computing M},. The whole chain allows to
express mp in terms of ®;( Ly, M}) and thus as a function of My,. This function naturally
splits into various pieces which may be computed individually as they separately have a
continuum limit. In particular, the step scaling functions o relate ®;(L1) to ®;(Ls). As
we will see below, at first order in 1/my,, two matching observables @, &5 are sufficient
if we consider the spin averaged B-meson mass.

The strategy requires all considered observables to be accurately described by the

. . . . 2
1/my, expansion. Naive counting estimates the accuracy of the quark mass as A x %
b

and A x L2—1m2 For a typical QCD scale A = 400 MeV both these terms yield the
17"b

same, very small, estimate. In [22] the 1/m}, expansion was tested for an even smaller
L = Ly = L1/2 and found to be well behaved, as it is also the case in perturbation
theory [23]. Here we will have additional cross checks by choosing different quantities
®; in the matching step.

In Sect. 2] we will go through the definition of the effective theory in order to fix
some notations and give rules how the 1/my, expansion is implemented in practice. We
also discuss correlation functions in the Schrodinger functional [24,25], which defines
our finite volume geometry. These correlation functions are then used in Sect. 3 to form
suitable dimensionless observables ®;, followed by a section which lists the step scaling
functions. Sect. @] discusses the final formula for the RGI b-quark mass M},. Numerical
results for all quantities in the quenched approximation are discussed in Sect. Bl This
includes also results from an alternative strategy as a check on the smallness of the
1/m? terms.

2 Heavy quark effective theory on the lattice

We start from the Eichten Hill static quark Lagrangian [26], using the notation of
[27], but setting the mass counter term dm to zero. Its effect is taken into account
in the overall energy shift my,.. between the effective theory and QCD. Thus mypare is
regularization dependent with a ~ g2/a divergence. For the sake of a light notation,
we also drop the superscript W [27] for the different lattice discretizations of the static
Lagrangian, but in the numerical computations these different versions will be used and
referred to exactly as in that reference. We remind the reader that they differ only by
the choice of the covariant derivative Dy.

The terms of first order in 1/my}, are introduced exactly as in [1], but we use a
slightly different notation which is convenient when one does not go beyond that order.



2.1 Formulation

The lowest order (static) Lagrangian,

Lstat(x) = Py () Do 9u(z) (2.1)

is written in terms of the backward covariant derivative Dy as in [27] and the 4-
component heavy quark field subject to the constraints Py, = 1y, ¥, Py = 4, with
P, = (1+p)/2. At the first order we write the HQET Lagrangian

Luqer(z) = Lsas(z) + LD (2), (2.2)
ﬁ(l) (:E) = _wspinospin ("L') — WkinOkin (:E) ’ :
Ospin(x) = Eh(m)anh(x) Okin = Eh(x)DQT/)h(x) ) (24)

such that the classical values for the coefficients are wyin = wspin = 1/(2myp,). We use
the discretized version o-B =} akjﬁkj/(%) , with oy; and the lattice field tensor F
defined in [28]. The kinetic term D? is represented by the nearest neighbor covariant
3-d Laplacian. The effective theory is expected to be renormalizable at each (fixed)
order in 1/my, if (and only if) path integral expectation values are defined by expanding
the path integral weight as [1]

exp(—a* Y "[Luqer(r) + Lign(z)]) = exp(—a* D [Lstar () + Liignt (7)) (2.5)

T T

(1 +a* Z[wspinospin(l“) + wkinokin(x)]) .

X

For correlation functions of some multilocal fields © this means

<O> = <O>stat + Wkina'4 Z(Ookin($)>stat + wspina'4 Z(Oospin(m'))stat (2-6)

= <O>stat + Wkin<0>kin + wspin<0>spin , (27)

where (O)stat denotes the static expectation value with Lagrangian Lgiaq (2) + Liight ().
All terms composed of just the relativistic quarks and the gauge fields are summarized
in Liight(z). Note that as one performs the Wick contractions of the heavy quark field,
the 1/my, terms Okin (2), Ospin () leave behind insertions in the static heavy quark prop-
agators. From the point of view of renormalization all terms in eq. (Z.0]) are correlation
functions in the static effective theory, which is power counting renormalizable.

The above form assumes that O contains all 1/my, terms needed to represent the
local fields in the effective theory. A relevant example is the time component of the
heavy light axial current. In the effective theory it is represented as

A (@) = ZRT[AT () + R TTOAT (2)], (2.8)
A (z) = Pi(z)y0vs¢n(z),
543 w) = i@y (Vit Tiyosn(e). (2.10)
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Later we will also use the space components of the vector current represented by

Ve ¥ @) = ZyT () + PV ()], (211)
Vet (z) = Pi(a)mn(a) (2.12)
SV (z) = —El(:ﬁ)%(%ﬁ%f)%%wh(ﬁ)- (2.13)

We have chosen V2 §V5%% such that they are exactly related to A§*, A5 by a spin

rotation.
The coefficients wyin, Wspin, ZEQET, CEQET, Z\}/IQET, CEQET
coupling go and of the heavy quark mass in lattice units. They represent bare parameters

of the effective theory, which are to be fixed by matching to QCD. Just like wyin, Wspin,

the coefficients CEQET, CSQET

are functions of the bare

are of order 1/my,, while we may write

Zy ¥ =zt 4z with 28 = O(1/my), (2.14)
and similarly for Z\}/IQET . Note that in the expansion to first order, terms such as
HQET 2
WiinC x 1/mj are to be dropped.

Below we will consider an example and discuss that indeed the bare parameters

HQET HQET ~HQET HQET
Wkin» Wspin, ZA yCA ) ZV y Oy

gences in the effective theory at this order in 1/my,.

and mypae are sufficient to absorb all diver-

2.2 1/my expansion in a geometry without boundaries

In order to illustrate further how the expansion works, we consider a two-point function
of a composite field in a space-time without boundaries, i.e. with periodic boundary
conditions or in infinite volume. We choose the example

Canlao) = Z3a* Y (Ao(w)(40)1(0) ) (2.15)

X

with the heavy-light axial current in QCD, A, = Emwpb, and Z ensuring the nat-
ural normalization of the current consistent with current algebra [29,30]. The 1/my,
expansion reads

Canloo) = om0 (Z{ )20 7 [(AT (2) (A5 (0))1) i (2.16)

ot (A5 () (A5 (0) i+ wpin (A5 () (A5 (0)) epin
+ ey BT (AS (@) (AT (0))star + a2 (FAF™ () (A5 (0))T)stat

e~ Mbareo (7 1QETY2 [Citzt(ﬁﬁo) + WkinCAA (20) + Wepin CA" ()

ex " [C5RA (w0) + CR3A (w0)] (2.17)

L If O(a) improvement is desired in the static approximation, there are also a J A3, a V%" cor-
rections to the currents. They are not relevant in the present discussion but will be taken into account
when necessary.



up to terms of order 1/ m%. As mentioned in the introduction, the mass shift mp,.e =
O(my,) includes an additive mass renormalization. It is also split up as

1 . 1
Mhare = Miare + ml(:)a)re , with m‘E)a)re = O(1/my), (2.18)
and the expansion e "bare 70 = g~ Miare ¥0 (] — mgm&)re) is understood.
For illustration we check the self consistency of eq. (ZI7). The relevant question
3 3 . “ b HQET .
concerns renormalization, namely: are the “free” parameters mpare ... cy sufficient

to absorb all divergences on the r.h.s.? We consider the most difficult term, CX% (o).
According to the standard rules of renormalization of composite operators, it is renor-

malized as
(CKR) (o) = ™55 70 (2377 3 (45" &) (45 ) (Ouin)y ()} +CT-,
sta

X,z

(2.19)

where C.T. denotes contact terms to be discussed shortly. The renormalized operator
((’)kin)R(z) involves a subtraction of lower dimensional ones,

(Oin) 5 (2) = Z04, (Oin () + = B () Dotpn(2) + 5 B (D)), (2:20)

written here in terms of dimensionless ¢;. Since we are interested in on-shell observables
(o > 0 in eq.(2.19)), we may use the equation of motion Dy (z) = 0 to eliminate the
second term. The third one, Z—%_h(z)wh(z), is equivalent to a mass shift and only changes
mga)re, which is hence quadratically divergent . Thus all terms which are needed for the
renormalization of Oy, are present in eq. (2.17)). It remains to consider the contact terms
in eq. (219). They originate from singularities in the operator products O (2) A3 (z)
as z — ¢ (and O (2) (A%tat)T(O) as z — 0). Using the operator product expansion
they can be represented as linear combinations of A" (z) and §A3**(z). Such terms
are contained in eq. (ZIT7) in the form of C{3", C§5% and O34 )

We conclude that all terms which are needed for the renormalization of CX}(zg)
are present in eq. (ZI7); the parameters may thus be adjusted to absorb all infinities
and with properly chosen coefficients the continuum limit of the r.h.s. is expected to
exist. The basic assumption of the effective field theory is that once the finite parts of
the coefficients have been determined by matching a set of observables to QCD, these
coefficients are applicable to any other observables.

*Using the explicit form of the static propagator, eq. (2.4) of reference [27], one can check that indeed
0" 5, (AR (@) (A5(0)a* . B (2)n(2)) = 2oCRR (20).

8 A3t (z) and §A™(z) are the only ope;zta,attors of dimension 3 and 4 with the correct quantum
numbers. Higher dimensional operators contribute only terms of order a. Note that the A5 (z) term is
power divergent ~ 1/(ams,). This divergence is absorbed by a power divergent contribution to ZEQET
(at order 1/my,).



The B-meson mass is given by Caa(zp) in large volume via

do + O}
mp = — lim 0—; 2 log Caa(o) (2.21)

with
00 (w0) = ~[f (w0 +0) — f@l, 05f(w0) = ~[f(ro) ~ flmo—a)].  (222)

Inserting the HQET expansion we derive

stat (1)

g = e+ D) (2.23)
with
. Oy + O
m%‘cafc = m%t;;te + Estat » Fstar = — x%l—r>noo 2 0 log Cicgt (:E()) 5 (2'24)
m](gl ) = m&’re + wkin Ekin + WspinLspin (2.25)
. a0 + 83 kin stat
Exn = - xgl_f)ﬂoo 5 [CRR (z0)/CRR (0)] (2.26)
. O+ O ;
Boin = = lim === O3\ (20)/CRR (20)] - (2.27)

Here the terms o CEQET of eq. (2I7) do not contribute. They are proportional to
the derivative of ratios C (z9)/C43"(z9). At large z( these ratios approach a con-
stant since 6 A3 has the same quantum numbers as A§®'. Using the transfer matrix

formalism (with normalization (B|B) = 1), one further observes that

Byin = —(B|a® Y Ouin(0,2)|B)siar,  Bepin = —(Bla® > Ospin(0,2)| B)siar - (2.28)

As expected, only the parameters of the action are relevant in the expansion of a hadron

stat

mass. In the above relations m{;,

absorbs a linear divergence of Fgn: and mga)re a
quadratic divergence of Fy;p,.
Going through the same steps in the vector channel and using the spin symmetry

of the static action is one way to see that the combination

1
my = Z[mB + 3mp+] = Mpare + Fstat + Wkin Fkin (2.29)

is independent of wgpiy. It is instructive to represent this equation in a different way,
subtracting the 1/a (and 1/a?) divergences of Eg,; (and Ey,). In this way we have

e U (DS T S () (2.30)
mg)a) — mpe ESEIabm (2.31)
ml(gob) = Egstat — E:Fabt ’ (2.32)
m{® = m&’re + wiin By (2.33)
m](31 V= gl Bun — BB, (2.34)



with finite terms mg)a), mgb),mga),mgb). Our strategy, described in the introduction

can be seen as a way of determining the coefficient wy;, as well as the subtractions
ESfabt,Eﬁ?f from finite volume computations in QCD and HQET. Finite parts in the
subtraction terms do of course depend on the detailed choice of kinematical parameters
such as the matching volume, but the end result is unique up to terms of order 1/ m%.
Note that by the same logics, the order 1/my, term, mga) + mgb), is not unique but
depends on the details of the strategy.

Since the prediction eq. ([Z.29) requires only the knowledge of two parameters, we
also need only two finite volume observables to perform the matching with QCD. The
Schrodinger functional is particularly useful to find suitable observables [1,22,31]. We

proceed to discuss the 1/my, expansion in this situation.

2.3 Schrodinger functional correlation functions

The pure gauge Schrodinger functional has thoroughly been discussed in [24], relativistic
and static quarks were introduced in [25] and [28]. In particular in the last reference
also Symanzik O(a)-improvement was discussed. The improvement of the Schrédinger
functional requires the addition of dimension four local composite fields localized at
the boundaries [32]. However, it turns out that there are no dimension four composite
fields which involve static quarks fields and which are compatible with the symmetries
of the static action and the Schrédinger functional boundary conditions and which do
not vanish by the equations of motion. Thus there are no O(a) boundary counter terms
with static quark fields. For the same reason there are also no O(1/my,) boundary terms
in HQET. This then means the HQET expansion of the boundary quark fields ¢, is
trivial up to and including 1/my, terms.

For details of the boundary conditions as well as the definition of the fields ¢, ¢
we refer to [28], where also our notation is explained. For a general understanding it
is, however, sufficient to note a few facts. In space the fermion fields are taken to be
periodic up to a phase,

Gz + kL) = e’y(x), Pz + kL) =e (), (2.35)

with the same phase 0 for all quark fields, whether relativistic or described by HQET.
In time we take homogeneous Dirichlet boundary conditions at zp = 0 and z¢ = T' [28].
Correlation functions can be formed from composite fields in the bulk, 0 < 2y < T,
and boundary quark fields ¢, ¢. In QCD, correlation functions in the pseudoscalar and
vector channel are

ab -
falwo,0) = =53 ((A)o(@) G(¥)%0(2)) (2:36)
Y,z
ab =
kv(zo,0) = % (M) () i(z)) - (2.37)
v,z,k



The O(a) improved currents Ap, V1 can be found in [1]. Furthermore we consider bound-
ary to boundary correlation functions

HO) = —555 - Y @M Tmmsa) (2:38)
u,v,y.,z
al? _ _
W) = —c5 D (G @) GEna) - (2:39)
u,v,y,z,k

Their renormalization is standard [33], for example

[falg (0,0) = ZaZE fa(x0.0) . [filg (8) = Z( f1(6), (2.40)

with Z; a renormalization factor of the relativistic boundary quark fields.
In complete analogy to the case of a manifold without boundary we can write down
the expansions to first order in 1/my. They read

[falg = ZNYTZ¢, Zee Mvareto { Fitat 4 e PTat 1 n FA + wepin fspm} (2.41)
kvl = 2y Zg, Zge Mvared0 {k@m + oy TR 4wkl +wspink§}’i“} ,(2.42)
_ ZHQETZQ Z e MbareT0 { it e HQET Sty g £ — Lo Zpin} ’
[filg = 22 Z%e MrexeT {fftat+wkinf{‘ +wspmf5p‘“}, (2.43)
[kilg = Z¢Z¢e ™" {f“at + wiin 1 — § spmfs"‘“} : (2.44)
Apart from
5 (@0.0) = =5 3 (345 @) Gy (¥)7561(2) (245
vz

the labeling of the different terms follows directly the one introduced in eq. [2.7). We

have used identities such as fx" = —k&in me = 3kSpm

the spin symmetry of the static action, these are vahd at any lattice spacing.

As a simple consequence of

3 Finite volume observables and step scaling functions

3.1 Observables

We concentrate on a strategy based on the correlation functions fq,k; alone. This is
advantageous, since the additional coefficients ¢ AQET gQET in eq. (241)), eq. (2:42)) ar
avoided. Apart from the b-quark, we set the masses of all quarks to zero.

In terms of the spin-averaged combination,

Fy(L,0) = i og f1(60) + 3log kv (0)] (3.1)

8



we form

RI(L,01,92) = FI(L,OI) —Fl(L,eg) atT:L/2 (32)
Ty (L,6y) — —@F@,eo) at T = L)2. (3.3)

Note that the boundary quark wave function renormalization cancels in Ry and in I';.
They are thus finite after renormalization of the parameters of the Lagrangian.
The dimensionless observables,

q)l(LaMb) = RI(L791792) - Ritat(IﬁglaoZ) ) (34)
Oy(L, M) = LI'v(L,00), .
RS(L,0,,0,) = log [f54(L,0,)/f5* (L,05)] at T = L/2 (3.6)

are parametrized in terms of the RGI mass of the b-quark, M. They have a particularly
simple 1/my, expansion

(L, My) = wiinRY™(L,01,605), (3.7)
®y(L, My) = L [mpare + [5(L, 00) + wiin DY (L, 60p)]

which involves

(L, 00) L 0)

kin J— — =
L0002 = pm ) T ey T )
5% (L, 0)) = —Mlog £5%%4(0) at T = L2, (3.10)
2
in 8T+8* in
DL, 00) = —=——F[A™(00)/f7™ (00)] at T = L/2. (3.11)

The 6y, 01,02 dependence of ®; is not explicitly written, but will of course be relevant
in the numerical results. For the reader familiar with [1,34], we point out that I'y
differs from I which was used in those references. Note that in eq. ([3.4)) we subtract
the static term. This simplifies subsequent formulae. In fact, whenever such a lowest
order contribution is universal (in the sense of having a universal continuum limit) and
independent of an HQET parameter, it will be convenient to subtract it. Despite this
subtraction, we refer to ®; as an observable in QCD.

The reader may be surprised that we introduce the quantity I'y which contains a
(discretized) derivative with respect to the time extent, T'. Its MC evaluation requires
two separate simulations H However, obviously a quantity of order my, is needed and
this is obtained from some logarithmic derivative of a correlation function. Boundary-
to-boundary correlation functions are then very convenient since one does not have to
deal with the 1/my, corrections to the currents. It is a useful feature of the Schrodinger
functional that such gauge invariant correlation functions are available.

* In App.[Clwe discuss a different strategy, which is based on the zo-derivative of fa and thus requires
less simulations. Note, however, that these additional simulations do not represent a significant effort.



3.2 Step scaling functions

We turn to the relations between ®;(L, M}) and ®;(2L, My) in the effective theory.
The dimensionful variable L is replaced by the Schrodinger functional renormalized
coupling g?(L) [35] over which we have good control in numerical computations [20].
Straightforward substitution yields

(2L, My,) = O-ll(in(u) @y (L, My) , (3.12)
Dy(2L, My) = 2Bo(L, My) + o (1) + o5®(u) &1 (L, M), (3.13)

where always u = g2(L). Our continuum step scaling functions o (with any subscripts
or superscripts) are defined in terms of those at finite lattice spacing as

o(u) = a/liLrg0 Y(u,a/L). (3.14)

At finite lattice spacing we have

. kin
S(wa/n) = TLERILR) (3.15)
R1 (L301302) u:§2(L)
. kin _ 1kin
ng(u, a/L) _ 2L [Fl (2k11’r; 00) Fl (Lv 90)] : (316)
R1 (La 011 92) u:§2(L)
Sm(u,a/L) = 2L[T™(2L,6) — I{™ (L,eo)]u:§2(L) : (3.17)

The above equations are easily derived. In a first step, just from the 1/my, expansions of
®,, one obtains them at a given resolution a/L or equivalently at fixed bare coupling, gj.
One then uses that ®;(L, M},) are dimensionless physical observables with a continuum
limit. Since the self energy of a static quark cancels in oy, also that quantity has a
finite continuum limit. Thus the continuum limit of the step scaling functions >, Z%‘in
exists and eqgs.(BI2B.13)) can be written in terms of continuum quantities, as we have
done.

4 M, including 1/m,, corrections

Before giving the equation for M), we recall the overall strategy. For L; =~ 0.4fm
we compute @1 (L, My), ®o(Ly, M) for a few quark masses around the physical one in
quenched QCD. It is understood that the continuum limit is reached by an extrapolation
and with a suitable interpolation of ®; in M), these quantities can be considered to be
known as a function of M. With the step scaling functions described in the previous
section and computed in the effective theory, we then arrive at ®;(Lq, M), @o(Lo, My),
where Ly = 2L;. It remains to express the spin averaged B-meson mass mf in terms
of @1([;2, Mb), @Q(LQ, Mb)

10



To this end, we straightforwardly combine eqs. (B7B.8) with eq. (2.29) and obtain

LE'" — TY"(L, 6))]

. o (L, M) .
R{n(L, 01, 0,) 1 My)

Lm{ = ®(L, My) + LIE*** —T{*(L, )] +
(4.1)

We now set L = Lo in this equation and insert eq. (3:13]). In the form of eq. (Z30) we
then have

Lom$® (My) = owm(ur) +2@a(L1, M) (4.2)

L2m1(30b) — LQ[EStat _ Fitat(LQ, 90)] : (43)

LZml(gla) (My) = o5™(ur) ®1(L1, My), (4.4)
Ekin _ Fkin L ’9 .

L2mgb)(Mb) = Lo 1" (L2, bo) alf‘“(ul)i)l(Ll,Mb), (4.5)

REN (L, 61,65)
where
Uy = g2(L1) , Lo =2L. (46)

The subtraction of power divergences in eq. (Z32), eq. (Z34) are ESi2 = TS5t (Ly, ),
B> = TN (L5 6p) and 0¥ (uy) @1 (L1, My)/RY™(La,01,602) is a representation of the
bare parameter wyi, in eq. (2.34]). The other parts, m](30 @) , mg a), are computable entirely
in finite volume.

The step scaling functions o have been discussed before. They can be computed
with lattice spacings such that a/L; is reasonably small, say below 1/6. Of course they
should be extrapolated to the continuum. We work with lattice spacings a < 0.07 fm
in this step. The relativistic observables ®;(Ly, M), i = 1,2 are computed for a <
0.02fm, where a relativistic b-quark can be described by the O(a)-improved Wilson

action with controlled a?-effects. Finally, the combinations Lo[E5%at — I'§*3%( Ly, 6y)] and
Ekinir‘ll(in(LQ’eo)

2T RE (Ly,01,02)
effects in Fg,y and Fyi, are negligible on lattices with an affordable number of points.

The mass of the b-quark is obtained from eq. (2.30) by expanding

are computed for lattice spacings of ¢ < 0.1 fm such that finite size

My = MO + MV, (4.7)
where Méo) is the solution of the static equation
md = my? (M) + m§” (M) (4.8)
and the 1/my, correction is

M = P ) + mD (0)] (4.9)
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Figure 1: Continuum extrapolation of ®»(Li, My), for z =10.4, 12.1, 13.3 from bottom to top. The
errors in the relation between bare quark mass mq and the RGI mass M are translated into errors in
®,. The go-independent part of that error is included after [31] the continuum extrapolation (left side
error bar). On the right, the equivalent in the alternative strategy is shown for o = 1/2 (see App. [C).

with

S = g S 08) +mfOR)] = ST mP ). @)
We finish the discussion of the strategy with a remark on the dependence on the
mass of the light quarks. This is relevant because it is of course better to consider the
spin-averaged By quark mass in eq. (2.29)); the necessary large volume computations are
easier than for the By meson. In the quenched approximation the parameters in the ac-
tion Mmpare, Wikin are independent of the light quark massﬁ Since our strategy determines
them through finite volume computations, it follows that in all these computations the
light quark mass may be set to zero, a convenient choice. Only Ey;, and Fg,t are then
to be computed at the mass of the light quark of the meson who’s (spin averaged) mass
is considered.

5 Results

We have performed a numerical computation in the quenched approximation, using the
O(a) improved Wilson action [32,41,42]. The box size Ly is chosen as Lo = 1.4367,

® In general, dm (and hence also Mpare) will contain a term like b(go)mi, where for simplicity the light
quarks are assumed to be degenerate with mass m;. Obviously, b(go) = O(gd) does, however, vanish for
N¢ = 0. As a renormalization term odd in my, it is also absent for twisted mass lattice QCD [36] and
QCD with exact chiral symmetry [37-40].
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Figure 2: Continuum extrapolation of ®;(L1, M), separately for Ry(L1,1/2,1) in QCD (left) and
for R5***(L1,1/2,1) in the static approximation (right). Circles denote results with action HYP1 and
squares, displaced slightly for visibility, are from action HYP2. The corresponding continuum extrapo-
lation lines are slightly displaced as well.

where r(, defined in terms of the static quark potential [43], has a phenomenological
value of rg =~ 0.5 fm. From [20] we know the Schrédinger functional coupling §2(L;) =
g%(La/2) = 3.48. Given the knowledge of ry/a as a function of gy of Ref. [44] and that
of the renormalized coupling [20], it is then convenient to fix gy in different ways for
the different steps of the calculation. The differences are of course only a-effects which
disappear in the continuum extrapolations. We give more details below. We will take
the uncertainties in the relations g?(L;) ~ 3.48 and g?(L1/4) ~ 1.8811 (which we need
later) into account in the very end.

In order to complete our definitions, we further choose 6y = 0 and 0y, 60, € {0,1/2,1}.
The different values of 67,6 offer the possibility to check whether our final results are
independent of these arbitrary parameters as they should be up to small 1/ m% terms.
Simulation parameters as well as raw results are listed in tables in App. [Al and [Bl

5.1 QCD observables

For this part of the computation, we determined the bare parameters as in [31]: go is
fixed by requiring g%(L;/4) = 1.8811 for given resolutions a/L. The PCAC mass of the
light quark, defined exactly as in that reference, is set to zero. Our heavy quark masses
are chosen such that z = My, L; = 10 — 13. The bare parameters are listed in Table [3l

We focus our attention directly on the continuum extrapolations. As an example
we show ®(My, L;) and ®o(M,, L1) in Fig. @ and Fig. [l Note that for the static
subtraction R$**(Ly,1/2,1), displayed on the right of Fig. 2 our lattice spacings are
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roughly a factor three larger, since in the effective theory we only have to respect
a/Ly < 1, not aMy < 1 (for details see App. [A). Data have been obtained for two
static actions, HYP1 and HYP2 [27]. In fitting them to the expected a-dependence,
their continuum limit value is constrained to be independent of the action, but the a?
slopes are of course different. The data for the different actions are highly correlated. As
in all such cases, the errors of the continuum limit are computed from jacknife samples.

For values of 8; which differ from the choice made in the figures, the a-dependence

2 using all four

is very similar. In all these cases we find that extrapolations linear in a
available lattice spacings are compatible with the ones where the data point at largest
lattice spacing is ignored. We take the extrapolations with three points as our results
for further analysis, since they have the more conservative error bars. The continuum
limits are listed together with the raw numbers in Tables [0l and @l From a fit of the

continuum ®,(z) to a linear function, we then extract the slope
d
S=—b;,=0.61(5 5.1
<3, =0.61(5) (5.1

and we are done with the matching. The rest of the numerical computations is carried
out in the effective theory.

5.2 HQET step scaling functions

Next we discuss the connection of ®;(Li, My) to ®;(Ls, My), Ly = 2Ly. Tt is given by
the step scaling functions of Sect. The bare parameters used in their computation
are described in App. [A] and the values at finite resolution a/L; are given in Tables
Birafi.

At lowest order in 1/my, only oy, contributes. In its continuum extrapolation
(Fig. Bl Table B) we allow for a slope in a?, although the data are compatible with a
vanishing slope. Note that the absolute error of oy, is negligible in comparison to twice
the one of @y (see Fig. [Il) to which it is added in eq. ([£2). In fact the uncertainty in
om corresponds to an error of only 5 MeV in the b-quark mass, illustrating the possible
precision in the static effective theory with these actions [27,45].

A relevant question is how the precision deteriorates when one includes the first
order corrections in 1/my. Then two more step scaling functions contribute. In Fig. [
we illustrate how the continuum limit of Ulfin is obtained. Here we have to allow for a
linear dependence on the lattice spacing, since the theory is not O(a) improved at the
level of the 1/my, contributions [1]. Taking the more conservative fit with only three
points, we arrive at the continuum limit listed in Table [@ for all combinations 6y, 65.
In eq. (EF), of™ is multiplied by small numbers (of order 1/my,). This means that its
error will be negligible in the overall error budget.

Instead of o¥™ we show directly the continuum extrapolation of mg a), eq. (44).
As for ¥y, the data shows no significant a—dependence. Nevertheless, in order to have

® For %, D5 the coarsest resolution considered is a/L; = 8. Due to the derivative dr at T = L/2,
smaller values of L;/a would involve a very short time separation.
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Figure 3: Continuum extrapolation of ¥, and im.

a realistic error estimate, we allow for a linear slope in a (Fig. Bl). In Table [I0 we list
the raw numbers for ¥ as well as the extracted continuum limit for further analysis.

5.3 Large volume matrix elements and M),

The last missing pieces in eq. (2.30) are the large volume static energy Fgiat, eq. (2.24)),
and the matrix element of the kinetic operator Eyi,, eq. (Z28). Here, in contrast to the
rest of our numerical evaluations, the light quark mass is set to the mass of the strange
quark in order to avoid a chiral extrapolation. The spin averaged mass of the By system
is then to be inserted into eq. (2.29)).

Although FEgat and Eyi, can be computed with periodic boundary conditions we
here follow [46] and evaluate also these quantities with Schrédinger functional boundary
conditions in a large volume of about 7' x (1.5fm)?, with 1.5fm < 7' < 3fm (also a check
for finite size effects is carried out). The extraction is fairly standard, but still care
has to be taken to make sure that the ground state contribution is obtained. This is
a particularly relevant issue for B-physics, because the gap to the first excited state
is rather small. We relegate details to App. [Bl and discuss immediately the universal

combinations L2m1(30 b), L2m](31 %) which enter in eq. (230). The static contribution, shown
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Figure 5: Lattice spacing dependence of LomG® for My, = M”. On the left we show m§™ as

introduced in Sect. @ with 6, = 1/2, 6, = 1. We insert ®; in the continuum limit, such that the
lattice spacing dependence is just due to X%5". On the right the corresponding quantity is shown for
the alternative strategy of App.[C] again with continuum values for ®;. There we set §y = 1/2 ,0; =
1/2,6> =1.

16



2.5 - 2.5+ -
(0b) % (0b)
LZmB 1 LZmB
21 N 21 % N
L | L L |
0 0.01 0 0.01
(alL)’ (alL)’

Figure 6: Lattice spacing dependence of Lgmg)b), details as in Fig. Bl

(1b)

in Fig. [0l is known with very good precision EI In contrast, the 1/my, correction Lomy,
does have a noticeable total uncertainty (Fig. [7l Table[T). Still, this error is only about
50% of the one on 2®,. Note also that this error is almost entirely due to Ey;, which
may possibly be computed more precisely by other techniques [47].

We now have all pieces necessary to solve the equations for M}. The static one,
eq. (£3)), is illustrated in Fig. Bl The horizontal error band is given by subtracting the

static pieces o, + L2m](30 ") from the experimental number

m¥ = 5.405 GeV . (5.2)

The figure demonstrates again that the main source of error is contained in the QCD

computation of ®5. Finally, by interpolating ®;(Lq, My) to My = Méo) we obtain
(61 =1/2,60=1)
ro M” = 17.25(20), M{”) = 6.806(79) GeV for ry = 0.5fm (5.3)
ro MY = —0.12(9), MY = —0.049(39) GeV  for ro = 0.5fm (5.4)

ro My = 17.12(22), My = 6.758(86) GeV for ro = 0.5fm.

Here the small difference g2(L;/4) — 1.8811 as well as the statistical uncertainties in
g%(L1) and Ly /rp have been taken into account, as explained in App. Moreover,
one can see in Table [I] that the 6; dependence of the 1/my, contribution is absorbed.
With Aggro = 0.602(48) [35,48], the 4-loop 8 function and the mass anomalous dimen-

sion [49-52], we translate My, = Méo) + Mél) to the mass in the MS scheme at its own

T We show the results given for the static action HYP2. The continuum extrapolation with action
HYP1 looks very similar, but the fit has a smaller x?.
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Figure 7: Lattice spacing dependence of Lgmgb), details as in Fig. Bl

91 92 ToMéla) T'()Mélb)
0 1/2 -0.06(3) -0.06(8)
/2 1 -0.06(3)  -0.06(8)
1 0 -0.06(3)  -0.06(8)

Table 1: RGI results of 1/my, correction of the b-quark mass, in units of ro.

scale,
My (M) = 4.347(48)GeV ; (5.6)

the associated perturbative uncertainty can safely be neglected. For completeness we
note that in the MS scheme the 1/my, term amounts to —27(22)MeV.

5.4 Comparison to results from an alternative strategy

As mentioned earlier, at first sight it appears more natural to base the computation
of My on the logarithmic derivative of the spin average of fa and ky as the prime
finite volume quantity. We have not chosen this option as our standard strategy since
then three observables are needed for matching. However, it is useful to consider also
that alternative strategy in order to perform an explicit check that 1/ m% terms are as
small as expected. The results can be appreciated without detailed definitions of the
observables and step scaling functions, the interested reader can find them in App.
Here we note that within this alternative strategy we actually have nine different sets
of {(51, (52, 53} Only one observable, P, = ®4, is in common to the two strategies. For
our graphs we have selected (arbitrarily) one choice of parameters.
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error band is LomyE — om — Lz[EStat — Tstat (L2,60)]. On the right hand side, the analogous terms are
shown for the alternative strategy (6o = 1/2, see Sect. [1.4).

9 6, ro (M + M 4+ M)
Main strategy Alternative strategy
6o =0 Oo=1/2 O =1
0 1/2 17.12(22) 17.25(28) 17.23(28) 17.17(32)
1/2 1 17.12(22) 17.23(27) 17.21(27) 17.14(30)
1 0 17.12(22) 17.24(27) 17.22(28) 17.15(30)

Table 2: RGI results of My, inlcuding the 1/my, correction, and comparison of the two strategies.

First, let us summarize what kind of differences one expects in such a comparison
apart from g-effects. In the order of magnitude counting, we take L1_1 ~ A~ 0.5GeV
and of course Lo = 2L;. The matching observables I';, I'*" are constructed to be equal to
the quark mass at the leading order in the HQET expansion. They start to differ at the
next to leading order, which means by terms of order A. Also their dependence on 6; is
of that magnitude. Since ®5(L1, M},) and &>3(L1, M) have been made dimensionless by
multiplication with L; and L; happens to be around A, the differences of ®o(Ly, My,)
and ég(Ll, M) are order one. The step scaling functions oy, o, as well as Lgmg) %) are
added to @5 (or &)3) to obtain Lemp in static approximation. Thus they depend on
the details at the same level, apart from a trivial Ly/L; = 2 factor. Of course, in the

total static estimate TOMIEO) this dependence is reduced to ro M}, x (A/my)? ~ 1/5. In
the same way, the 1/my, corrections L2m](31 a), L2m§31 Y) themselves have a dependence on

the matching conditions which is Ly x A2 /my, ~ 1/5 but the final result ro M, including
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these terms is accurate and unique up to ro x (A3/my,)? ~ 1/50 corrections.

We leave it to the reader to check in Fig. [l to [7 that these expectations are fully
satisfied by our results . In fact it appears that our estimate for the expansion pa-
rameter, A/my, ~ 1/10 is quite realistic. Of course, to find this out requires an explicit
computation of the correction terms as presented here. In some cases, such as mg b),
our precision is not good enough to resolve a dependence on the matching conditions.

In the b-quark mass in the static approximation, TOMéO) (eq. (53) and Table [12)),
the maximum difference is 0.5(2), which is of the predicted order of magnitude. Finally,
when we add all contributions together, the results from the alternative strategy, Table[2]
are fully in agreement with eq. (5.5). As expected 1/m? terms are not visible with our
precision. They can safely be neglected.

6 Conclusions

The main conclusion of this work is that fully non-perturbative computations in lattice
HQET, as they have been suggested in [1], are possible in practice. In particular, the
uncertainties in the 1/my, corrections are smaller than those in the static approximation,
despite the fact that we numerically cancel large a=2 divergences in the 1/my terms.
The final error in the mass of the b-quark is dominated by the uncertainty in the
renormalization in QCD. Errors due to simulations in the effective theory can almost
be neglected in comparison.

A very nice result is the independence of the final numbers for My, of the matching
condition: Table 2] shows that within our reasonably small uncertainties, we get the
same results for the quark mass for altogether twelve different matching conditions.
This is expected up to very small terms of order ro My, x (A/my,)? ~ 0.02, which should
be compared to our result 7o My, = 17.12(22) — 17.25(28). Here the quoted range is due
to the different matching conditions. In the order of magnitude estimates we have made
a guess for the typical scale of A ~ 0.5GeV. In the static approximation, some of the
matching conditions yield slightly differing results for the quark mass in agreement with
the expectation for such variations of ro My, x (A/my)? ~ 0.2.

Both this explicit test of the magnitude of the different orders in the expansion
and the naive order of magnitude estimate say that 1 /m% corrections are completely
negligible.

Still, in aspects of the computation, considerable improvement can be envisaged.
For example, return to the 1/my, contribution to the B-meson mass Fig. [[l The statis-
tical errors grow rapidly as one decreases the lattice spacing. The by far dominating
uncertainty in the shown combination is the one of the large volume matrix Fy,. It ap-
pears worth while to look for improvements, maybe along the line of [53]. Due to these
errors, and of course the missing O(a)-improvement of the theory at order 1/my, [1],

® We note in passing that flm, in contrast to ¥m, does in principle require an improvement coefficient,

ci@t 28], for O(a)-improvement. It has been set to the 1-loop values from [27], but the results are rather

insensitive to c¥**, so its uncertainty can be neglected.
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the continuum extrapolation is not easy. Fortunately it is still precise enough for the
present case. It will be very interesting to see cases where the 1/my, corrections are
larger, as it is expected, for example, for Fg.

Let us now turn to the computed value of My, eq. (2.6). Starting from a precisely
specified input, namely ro, mk and (mg, + 3mp:)/4, the value of Mj, is unambiguous
in the quenched approximation, because these inputs fix the bare coupling, strange
and beauty quark masses. We have used the experimental meson masses and ro =
0.5fm. Our numbers for M}, or my, may then be used as a benchmark result for other
methods. Indeed, a comparison shows agreement with [54] and the recent extension of
that work [55] mp = 4.42(7) GeV.

Earlier, the review [56] quoted my, = 4.30(5)(5) GeV and my, = 4.34(3)(6) GeV,
based on static computations [57] and an extrapolation of NRQCD results to the static
limit [58] respectively. A perturbative subtraction [18,59,60] of the linear divergence
dm was carried out in these static estimates and, of course, a continuum extrapolation
could not be done.

However, if other inputs are used, the result may change because ry is only ap-
proximately known and because the quenched approximation is not real QCD. A rough
idea on the possible changes can be obtained by varying rq by £0.05fm. This changes
mp,(Mp) by roughly £80MeV.

These remarks just serve to stress the obvious necessity of performing computations
with Ny > 0. The ALPHA-collaboration is presently starting with Ny = 2, where
the renormalization of the quark mass in QCD is known [21]. The necessary HQET
computations are not expected to be a big numerical challenge, apart from the large
volume B-meson matrix elements: simulations of the Schrodinger functional for L < 1fm
are not very demanding with nowadays computing capabilities [61]. Altogether the
extension of the present work to full QCD is feasible and should be carried out, since
presently no better method is known to compute the b-quark mass from lattice QCD.

Acknowledgements. We thank Stephan Diirr for collaboration in the early stages
of this work [62]. We thank NIC for allocating computer time on the APEmille com-
puters at DESY Zeuthen to this project and the APE group for its help. This work is
supported by the Deutsche Forschungsgemeinschaft in the SFB/TR 09.

A Finite volume simulations

For the matching in a finite volume, we performed one set of simulations of (quenched)
QCD and one of HQET. In the case of the relativistic theory, we used L = L, defined
by g2(L,/4) = 1.8811 H. The parameters of these simulations have been taken from [31]
(see Table[3). The difference is that here L = L1 = 2 Lo (and T = L/2 and T = L/2+a
in addition to T = L) compared to L = Lg in [31].

°L, differs slightly from L; defined in the main text by L; = 0.718r¢. This mismatch is however
corrected, as explained later in this appendix and in App.
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L B K1 g’ (%) Zr(g0, %) b Z Kh

20 7.2611 0.134145 1.8811(19) 0.6826(3) —0.621 1.0955 0.124195
0.122119
0.120483
24 7.4082 0.133961 1.8811(22) 0.6764(6) —0.622 1.0941 0.126055
0.124528
0.123383
32 7.6547 0.133632 1.8811(28) 0.6713(8) —0.622 1.0916 0.127991
0.126967
0.126222
40 7.8439 0.133373 1.8811(22) 0.6679(8) —0.623 1.0900 0.128989
0.128214
0.127656

Table 3: Bare parameters used in the computation of the QCD observables for L = L;.

The parameters for the resolution Li/a = 20 cannot be found in the mentioned
reference. For that point, the gauge coupling 5 has been chosen such that §2(f/1 /4) =
1.8811 for Li/4a = 5, see [20]. The renormalization constant Zp and x; = k. have
been computed here, while b, and Z have been extrapolated from the values in Table 2
of [31]. These factors are put into the relationship between the bare mass mqn and the
RGI mass [20,63],

M =hZymgn (14 bnamgp) , (A.1)
where
7. — szA ;o amg = 2 (Kih - %) | (A2)
The renormalization constant Zx (g2) is known non-perturbatively from [30], while
h= _M = 1.544(14) , po=2/L , (A.3)
(o)

relates the running quark mass in the Schrédinger functional scheme [20] at the scale
140, to the renormalization group invariant quark mass M .
For all values of L, /a three hopping parameters x, have then been fixed in order
to achieve
z=IL M = 10.4, 12.1, 13.3. (A.4)

We collect these parameters in Table[3] whereas the results for the quantities needed
in the matching step are summarized in Tables[@andBl The errors there include system-
atics due to the uncertainties in the Z-factors, in particular, the error on the universal
factor h has been propagated only after performing the continuum limit extrapolations.

19 In h = M/m(po) we take the small difference between the above defined Lo and the value Lo = L1 /2
into account. It causes a change of less than 1% of the value of h used in [31].
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L/a 2 R, ,
=0 0. =1/2 =1 80 = 0
6, = 1/2 6, =1 6, =0

20 104 0.09795(13) 0.27426(30) —0.37221(42) _ 7.847(40)
20 121 0.09512(12) 0.26588(30) —0.36100(43)  9.108(46)
20 133 0.09336(12) 0.26068(30) —0.35404(43)  10.068(50)
24 104 0.09958(18) 0.27904(37) —0.37862(52)  7.697(44)
24 121 0.09689(17) 0.27110(37) —0.36799(52)  8.866(50)
24 133 0.09528(17) 0.26632(36) —0.36159(50)  9.716(54)
32 104 0.10157(30) 0.28481(71) —0.38638(93)  7.512(53)
32 121 0.09897(30) 0.27717(71)  —0.37614(92)  8.623(58)
32 13.3  0.09744(30) 0.27265(71) —0.37008(92) 9.411(62)
40 104 0.10283(30) 0.28806(52) —0.39089(76)  7.484(51)
40 121 0.10027(30) 0.28052(52)  —0.38079(75)  8.575(56)
40 133 0.09876(29) 0.27608(52)  —0.37484(74)  9.344(60)
CL 104 0.10450(44) 0.20297(89) —0.39748(125)  7.341(96)
CL 121 0.10202(44) 0.28567(90) —0.38769(124) 8.386(102)
CL 133 0.10058(44) 0.28143(91) —0.38202(124) 9.106(107)

Table 4: Simulation results of the finite volume (L = L) relativistic observables needed

in our main strategy. The continuum limits, obtained by linear extrapolation in (a/L)?
of the results for L/a > 24, are indicated by CL.

L/a z Rav Py
=0 9, =1/2 B =1 =0 9, =1/2 o =1
0y =1/2 fr=1 B2 =0

20 104 0.1699(9) 0.4299(12)  —0.5998(20)  8.059(37)  8.293(37) _ 8.993(37)
20 121 0.1668(9) 0.4198(11) —0.5867(20)  9.315(37)  9.545(37)  10.234(37)
20 13.3  0.1649(9) 0.4137(11) —0.5787(19) 10.271(37) 10.500(37) 11.180(37)
24 104 0.1739(23) 0.4391(31) —0.6130(54)  7.864(39)  8.102(38)  8.822(39)
24 121 0.1710(23) 0.4295(30) —0.6005(52)  9.027(39)  9.263(38)  9.971(39)
24 13.3  0.1693(22) 0.4239(29) —0.5931(51)  9.874(39)  10.109(38)  10.809(38)
32 104 0.1760(41) 0.4494(48)  —0.6254(90)  7.713(43)  7.941(41)  8.661(42)
32 121 0.1733(40) 0.4403(46) —0.6135(87)  8.818(42)  9.045(41)  9.753(42)
32 133 0.1717(40) 0.4349(45) —0.6066(85)  9.603(42)  9.828(41)  10.531(42)
40 104 0.1790(70) 0.4493(72) —0.6283(142)  T7.656(45)  7.804(42)  8.624(44)
40 121 0.1763(68) 0.4403(70) —0.6166(138) 8.743(45)  8.979(42)  9.698(44)
40 133 0.1747(67) 0.4352(68) —0.6099(136)  9.509(45)  9.744(42)  10.456(44)
CL 104 0.1801(75) 0.4587(84) —0.6392(159) 7.533(89)  7.765(86)  8.496(88)
CL 121 0.1776(73) 0.4502(81) —0.6280(154) 8.573(91)  8.805(88)  9.524(89)
CL 133 0.1761(72) 0.4452(79) —0.6218(151)  9.289(93) 9.519(91)  10.234(92)

Table 5: Same as Table [ in the case of the alternative strategy.
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L/a RS
6. =0 0 =1/2 0 =1
0y =1/2 6y =1 6> =0
HYP1 HYP?2 HYP1 HYP?2 HYP1 HYP?2
6  0.06936(5) 0.06939(4) 0.18583(7)  0.18591(7) -0.25519(12) -0.25530(11)
8 0.07572(6)  0.07574(6) 0.20452(11)  0.20457(11) -0.28024(17)  -0.28031(17)
10 0.07821(5) 0.07822(5) 0.21246(8)  0.21249(8) -0.29067(13)  -0.29071(13)
12 0.07934(8)  0.07935(8) 0.21622(13)  0.21625(13) -0.29556(21)  -0.29559(20)
CL 0.08238(12) 0.22596(21) -0.30835(32)

Table 6: Lattice results of R5*" for L = L;. The continuum limits are obtained by a
linear extrapolation in (a/L)? of the results for L/a > 8.

L/a RSt
6, =0 6, =1/2 =1
By =1/2 By =1 6 =0
HYP1 HYP2 HYP1 HYP?2 HYP1 HYP2
6  0.1502(3) 0.1543(3) 0.3562(3)  0.3683(3) 0.5231(6)  -0.5231(6)
8 0.1544(4)  0.1575(4) 0.3672(4)  0.3765(4) -0.5216(7)  -0.5340(8)
10 0.1571(5) 0.1595(5) 0.3724(6)  0.3710(6) -0.5295(10)  -0.5391(10)
12 0.1561(8) 0.1579(8) 0.3729(8)  0.3786(9) -0.5289(15)  -0.5365(16)
CL 0.1606(6) 0.3827(6) -0.5432(11)

Table 7: Lattice results of RS!2*. The details are the same as in Table [6

Ensembles of roughly 2000 (for Li/a = 20) to few hundreds (for L;/a = 40) gauge con-
figurations have been generated for this part of the computation. The lattice L, Ja =20
is not used in the extrapolations but rather to check for the smallness of higher order
cutoff effects for fjl/a > 24,

Concerning the simulation of HQET, we have computed the various quantities in
the two required volumes. The first one, where we match the effective theory with
QCD, has a space extent L;. The second one is such that Ly = 2L;. The value of the
Schrédinger functional renormalized coupling is fixed at g?(L;) = 3.48, and we have
used the resolutions Lq/a = 6,8,10,12. The corresponding values of 3 as well as k = k.
can be found in Table A.1 of [1]. All these quantities are computed with two different
actions, HYP1 and HYP2. The continuum values are then obtained by constraining the
fits to give the same values for these actions. We note that the results for HYP1 and
HYP2 are statistically correlated.

For the computation of the step scaling functions one uses the same 3, s and Ly /a =
2L1/a. All these computations are done with several thousand gauge configurations.
Note that, even if Ly is the same in QCD and in HQET, the typical lattice spacings
are much larger in the effective theory. The results of R and R,, can be found in
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L/a S (3.48,a/L)
HYP1 HYP2
8  0431(11) 0.411(11)
10 0.437(11)  0.424(10)
12 0.422(16) 0.418(16)
CL 0.430(25)

Table 8: Lattice results of the step scaling function X,. The bare parameters are
described in the text. The continuum limit is obtained by a linear extrapolation in
(a/L)? of the results for L/a > 8.

L/a »§i"(3.48,a/L)
61 =0 01 =1/2 61 =1
9221/2 =1 6> =0
HYP1 HYP?2 HYP1 HYP?2 HYP1 HYP2
6  0.6241(17) 0.6245(11) 0.6219(60)  0.6223(5) 0.6225(8)  0.6228(6)
8  0.5790(20) 0.5797(13) 0.5789(65)  0.5793(5) 0.5789(10)  0.5794(7)
10 0.5587(47)  0.5586(22) 0.5585(14)  0.5588(9) 0.5586(22)  0.5590(14)
12 0.5364(66) 0.5342(39) 0.5424(19)  0.5417(12) 0.5409(30)  0.5398(18)
CL 0.457(10) 0.471(3) 0.467(5)

Table 9: Lattice results of the step scaling function ¥X". The continuum limits are
obtained by a linear extrapolation in a/L of the results for L/a > 8.

L/a ¥5(3.48,a/L)
01 =0 0, =1/2 6 =1
0> =1/2 9, =1 6> =0
HYP1  HYP2 HYP1  HYP2 HYP1 HYP?2
8  4.81(44) 4.72(32) 1.58(15)  1.55(10) -1.19(11)  -1.17(8)
10 4.34(58)  4.20(39) 1.43(19) 1.39(13) -1.08(15)  -1.04(10)
12 4.79(86) 3.98(58) 1.58(28) 1.31(19) -1.19(21)  -0.99(14)
CL 2.9(1.5) 0.96(50) -0.71(38)

Table 10: Same as Table [d for 212<in‘

Tables [6] and [l The values of the step scaling functions are collected in Tables [§]
and [I0l

Finally there are simulations in small volume to obtain the subtractions ['§**(Ly)
and Flfin(Lg). These are done with Ly = 1.436 vy and 8 determined from the knowledge
of ro/a [48]. The parameters, including k = k., are listed in Table 6 of [27]. The values
of B do of course agree with the ones employed in the large volume, which we describe
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,3 Ks L3 x T aFEstat a2Ekin

HYP1 HYP2 HYP1 HYP2
6.0219 0.133849  16° x 24 [32] 0.4345(21) 0.4029(32) 0.750(4)  0.774(3)
6.0219  0.133849 24% x 32 0.4378(25) 0.4034(20)  0.746(7)  0.776(5)
6.2885 0.1349798  24% x 48  0.3295(21) 0.3034(29)  0.643(7)  0.676(5)
6.4956 0.13502909  32° x 64 0.2724(20) 0.2461(14) 0.599(10) 0.620(11)

Table 11: Parameters of the large volume simulations. Where present, the numbers in
brackets refer to a second dataset at the same (3, k) values.

in the next appendix.

B Large volume simulations and extraction of matrix elements

The parameters for the simulations in large volume are collected in Table [I1] together
with the results for Fg, and Fiyi,. The lattice extension L/a and § are such that
L = 4L, =~ 3/2fm except for the second lattice where we have L = 6L; =~ 2fm. This
lattice is used only to check for the absence of finite size effects. We see from Table [T
that finite size effects are indeed very small, the difference between the results from
the L/a = 16 and the L/a = 24 lattices at § = 6.0219 is consistent with zero within
at most one standard deviation (aFgia; from HYP1). The number of configurations
generated ranges from 4300 at 5 = 6.0219 to 2200 at 8 = 6.4956 (for the larger volume
at 8 = 6.0219 we had 1300 configurations). Since our phenomenological input is the
mass of the (spin averaged) By meson, we set k to kg in order to reproduce the quenched
value of the strange quark mass from Ref. [64], i.e.

Mgrg = 0.35(1) , (B.1)

with M the renormalization group invariant strange quark mass defined as in Ap-
pendix [A] after replacing xy, by Ks.

The numbers for Fg,; and Fy;, have been obtained by applying two different fitting
procedures to two independent datasets (where available). The quoted errors are such
that both the results are covered and they therefore provide a reasonable estimate of
the systematics associated with the fits. We now sketch these procedures.

Let us consider in QCD the effective “mass” I'(zg) obtained from the correlation
function Fuy(zo) in eq. (CJ) and its quantum-mechanical decomposition

_ht% g,
av

['(zg) = = By 4 Ae 270 4 (B.2)

where Fj is the energy of the ground state, A is the gap between the ground and the
first excited states and the dots refer to contributions from higher states. The 1/my,
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expansion reads

T(20) = Fsiat + WiinPrin + (A% + wpgn A e 270 (1 — wgnzo AS™) + ...
% (20) + wiin " (o) + . .. (B.3)

where I'**2* and K" are defined in analogy to eqs. (310, B-IT)) in terms of the correlators
F3(20) and £ (aq).

In the correlation function fsa(zo) the same states contribute as in fa(zg). Per-
forming again first the quantum-mechanical decomposition and then the 1/m;, expansion
of these correlators, it is easy to see that the ratios

stat kin kin
Pstat z0) = A (]70) and Pkin z0) = Pstat o A (xU) _ fﬁA ((L‘g) B.4
A ( 0) fgzat ($0) A ( 0) A ( 0) f/s\tat ($0) gzit ($0) ( )

have the following form

Pt = by 4 bye A0 (B.5)
Pkin = b+ b4€7AStatIO — bQAkinmoefAsmtmo . (B.G)

They can therefore be used to further constrain AS*** and AKX, We are thus lead to
perform a combined fit

Tstat = by 4 hee 2700 (B.7)

Fkin — b7 + bSG—AStatCEO _ bﬁAkiner—AStatCEO , (B8)

together with eq. (B.5) and (B.6), with non-linear parameters a; = A% and a, = AK?
and the linear parameters b;, which contain the desired b5 = Fg,t and b7 = Fyp,.-

Since the correction terms are nevertheless not so easy to compute at the smaller
lattice spacings, we perform the above fit first at 8 = 6.0219 and extract aAS*®' and
a?AX" We then use that these quantities scale roughly (i.e. ro AS*™ =constant and
r2 AK" ~constant). To implement this, we input the scaled means as priors [65] in a
second step where we add

(a_ . aprior)
L 1
X[Q)rior = Z T < priorny (Bg)

i (6a£)rior)2

to the standard x?. The uncertainty (5afri0r is taken from the fit result at § = 6.0219.
However, in order to remain on the safe side, it is not scaled but kept constant at the
smaller lattice spacing. Thus 6a$ri°r/ agrior o 1/a? for example. The constraint due to
the priors becomes weaker as we approach the continuum.

Here and in the following procedure the fit range is chosen to keep a minimum
physical distance from the boundaries, namely xy > tnin =~ 2r9. The stability of the

results is checked by varying tmin t0 tmin — r0/2. As an example we show in figure

27



3.7 ] 2.6
3.6/ ] 2.4
3.4/ ] 2 I
33 , 1.8 ] }
3.2L ‘ ‘ ] 1.6t ‘ ‘ ]
10 15 20 25 10 15 20 25
xola X /a
0.3~ """ ] 0.69¢
0.29 ] 0.68}
g £
T 0.28 | T 067!
0.27 ] 0.66}
0.26 1 0.65} 1
10 15 20 25 10 15 20 25
xo/a xola

Figure 9: Results for P§tat, Pyin Tstat and TKin at 8 = 6.2885 (HYP2) with the corre-
sponding functions obtained by the fit.

the results for P§!at, pkin Tstat and Kin at B = 6.2885. One observes that P§tat, Tstat
provide very good constraints of the parameters AS'3', by, bg. The remaining ones are
then effectively linear fit parameters. Nevertheless, the error band of Fy;, (dashed line)
resulting from the fit is not that small.

An alternative strategy is used to get a second estimate of Fgiat at the two coarser
lattice spacings, where we have two independent datasets. Exploiting again the remark
before eq. (B.4) we construct an effective mass I'sy from the correlator fsa(zp) in the
very same way as % is obtained from f$?(z¢). The idea is to combine the two
effective masses in order to eliminate the contribution from the first excited state and
then perform a fit to a constant (in the mentioned fit range). In practice we minimize
the quantity

tmax

Q= Y [I™*(x0) +alsa(zo) — B]” | (B.10)

T0=tmin

with respect to o, B. Finally the weighted average of [I''%(z0) 4+ al'sa(z0)] /(1 + «)
yields the estimate of E5'. The quality of the result is comparable to that obtained in
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the first approach.

C Alternative strategy

We briefly introduce an alternative strategy, based on the correlation functions fa, kv
in addition to fi,k;. With

Furl0,60) = ;108 (= [l (20,0) x vk (20,0)) (1)

we introduce
Ray(L,01,02) = Fay(wo,01) — Fay(w0,02) at 2o = L/2, T =L (C.2)
r(L,0) = -2 JQF X B (o, 00) at 50 = L/2, T = L. (C.3)

Keeping @1, from the standard strategy, we define the set of observables

(51(LaMb) = (I)I(LaMb)a (C4)
©y(L, M) = Ray(L,601,02) — RS (L,6:,65), (C.5)
&3(L, My) = LI*(L,6), (C.6)

with the 1/m}, expansion

&)2(L,Mb) = wkinRA (L 91,92) +CHQETR5A(L 91,92) (C?)
®3(L, My) = L [mpare + T (L, 00) + wign (L, 0p) + cQFTT54 (L, 65)] ,(C.8)

where due to the spin average the combination

1
HQET _ 4[ JMQET | g, HQET] (C.9)

is present. The so far undefined terms R;E,at,ka rkin Rsa,Tsa are straightforwardly

obtained from our definitions.
The alternative observables change from L to 2L via

®;(2L, My) = > 0ij(u) D;(L, My) + i3 om(u), (C.10)
1<t
oij(u) = a/erLlOE”(u ,a/L) (C.11)

with the step scaling functions (we drop arguments 61,6 and v = (L) is understood)
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90 ToMéO) ToMéla) ToMélb)
6.=0 6,=1/2 6 =1 =0 6,=1/2 6,=1
o =1/2 =1 6,=0 f=1/2 =1  6,=0
0 17.05(25) 0.17(6)  0.17(6)  0.17(6) 0.02(9)  0.02(8)  0.02(9)
1/2  17.01(22) 0.20(7)  0.18(6)  0.19(7) 0.02(10)  0.02(9)  0.02(9)
1 16.78(28) 0.34(11)  0.30(7)  0.32(8) 0.06(12)  0.06(9)  0.06(10)

Table 12: RGI results of My, in the static approximation and of the 1/my, correction

for the alternative strategy.

Y1 (u,a/L) = REM(2L)/R¥Y(L) = 25 (u,a/L) (C.12)
Yor(u,a/L) = kii {RX"(2L) — RX™(L) Z95(u, a/L)} (C.13)
Ry™(L)
Yos(u,a/L) = Rsa(2L)/Rsa(L) (C.14)
2L Fkin 2L) — Fkin L Rkin L
Sr(wa/I) = { (R 11dr)l(L) (L)} 232(u,a/L)leAinEL; (C.15)
o7 T5a(20) —Tsa(L)
Y39(u,a/L) = 2L Ron (D) (C.16)
233(’(1,,&/[/) = 2 (017)
om(u) = a/liLrgo 2L [[%2(2L) — T5***(L)] . (C.18)
The final relation for the B-meson mass is eq. (2.30]) with
Lom (My) = &mn(uy) +283(Ly, M), (C.19)
Lom{™ (My) = Lo[ES™ — I (Ly)], (C.20)
Lom§” (My) = o31(ur) @1 (L1, M) + 032 (u1) B2(Ly, M) , (C.21)
(1b) _ EN0 TN (L) Tsa(Le) RE"(L2) | yin, | &
Lomy ™ (M) = 2[ RN (L) R(;A(LQ)R%H(LQ)] o™ (uy) @4 (L1, My,)
_L2722i((§22)) [a21(u1)51(L1,Mb) +022(U1)‘52(L1,Mb)] - (C.22)

Although the results have been already given in Table 2] the reader will find more

details in Table

D Propagating uncertainties in L;/ry and g*(L;)

In our simulations we have fixed L; by g>(L;/4) = 1.8811, because the corresponding
bare parameters (3, k are available in the literature. We here give the estimate of the
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small effect caused by L, # L, in the static approximation. From the polynomial
interpolations of the step scaling function of the coupling, o(u) [20], we estimate the
corresponding mismatch in couplings as

i —u=g>(L) — g (L) = o(c(1.8811)) — 3.48 = —0.17(5).. (D.1)

Let us write
My,

=p(U,2)[1+ K(u)] at a=u (D.2)
mp
with
Fstat L - B
K = ) Z B -y 2 (D.3)
mp Dy (u, 2)
The relation %%—g = 0 gives
1+ K(u) d , 1 d
_ sl St el - K — _— _ rstat D.4
p(’U,,Z) dup(uﬂz) (U’) mp du 1 ( )

Denoting by A M), the correction we have to add to M}, when it is computed with @ # u
(as we did), we get from the above equations

LAMb = [ —u] x p(u)K'(u), (D.5)

mp

where K'(u) is easily estimated by taking a numerical derivative of ['{"®. From the
difference of L/a = 12 and L/a = 10 at fixed g§ (with g?|,/,=1> = 3.48) and with
p(u, z) = 1.44 we arrive at the small shift

roAM, = —0.055(17). (D.6)

A similar error is be taken into account due to the 2% uncertainty in the relation
Ly = 1.4367( [48]. In the same way it leads to a statistical error of

roAM, = 0.016. (D.7)
The two contributions eq. (D.6), eq. (D.1) are combined to
roAMy, = —0.055(23), (D.8)

which we have taken into account in Sect. 5.3l Because of the smallnes of these effects,
they can be neglected in the 1/my,-corrections.

In the case of our alternative strategy, the shift depdends on the value of 6. We
find

90 =0 ’I"()AMb = —0.042(20) y (D.g)
Op = 1/2 roAM;, = 0.009(11), (D.10)
O =1 roAM,, = 0.150(45) . (D.11)
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