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1 IntrodutionThe mass of the b-quark,Mb, is a relevant input parameter for phenomenology analysisbased on perturbation theory. Let us just mention the extration of Vub from inlusiveb-deays [2, 3℄. Mb is a fundamental parameter of the Standard Model of partilephysis. Thus it should be determined preisely. One may of ourse turn the very �rstobservation around. For instane, applying high order perturbation theory to suÆientlywell integrated ross setions, the quark mass an be determined [4{15℄. Still, theahievable preision is limited by the intrinsi unertainty of perturbation theory andmaybe more by experimental diÆulties. On the other hand, the use of lattie QCDo�ers a strategy to ompute the fundamental renormalization group invariant (RGI)parameters of QCD with very preisely known experimental input, e.g. Nf (= numberof quarks avours) meson masses as well as the nuleon mass; see [16℄ for a basiintrodution. However, for the b-quark mass, suh a omputation is more involved thanfor the light quarks beause the ahievable inverse lattie spaings are below the mass ofthe quark. E�etive theories have to be employed in a numerial treatment of the boundstates. The most serious problem that arises is that a power law divergent (� g20=a)additive renormalization of the mass is present due to the absene of a hiral symmetryin the e�etive theories (even in the ontinuum). Although at the lowest order in HeavyQuark E�etive Theory (HQET) the subtration is known to order g60=a [17{19℄, an (inthe ontinuum limit) divergent remainder is unavoidable and the total unertainty isdiÆult to estimate as long as the renormalization is arried out perturbatively.In [1℄ a general strategy was desribed whih allows HQET at zero veloity to beimplemented non-perturbatively on the lattie, inluding all renormalizations.experiment Lattie with amq � 1mB = 5:4GeV �1(L1;Mb);�2(L1;Mb)? ?�HQET1 (L2);�HQET2 (L2) �HQET1 (L1);�HQET2 (L1)��m(u1)�kin1 (u1); �kin2 (u1)L2 = 2L1The basi idea is illustrated in the above diagram. It is founded on the knowledgeof the relation between the RGI mass and the bare mass in QCD [20, 21℄. In a �nitevolume of extent L1 � 0:4 fm, one hooses lattie spaings a suÆiently smaller than1=mb, suh that the b-quark propagates orretly up to ontrollable disretization errorsof order a2. Finite volume observables �i(L1;Mb) may then be omputed as a funtionof the RGI mass Mb inluding an extrapolation to the ontinuum limit. The resultingvalues are equated to their representation in HQET { a step alled mathing, indiatedby the r.h.s. of the diagram. Choosing now L1=a = O(10), with the same physial valueof L1, one uses the knowledge of �i(L1;Mb) to determine the bare parameters in thee�etive theory for a-values of about 0:025 fm to 0:05 fm. At these lattie spaings onethen omputes the same observables in a larger volume L2 = 2L1. Again these observ-1



ables an be extrapolated to the ontinuum limit. Next, the knowledge of �i(L2;Mb)and the hoie L2=a = O(10) yields the bare parameters of the e�etive theory for aaround 0:05 fm to 0:1 fm. One then has full ontrol over the e�etive theory at lattiespaings where large volume observables, suh as the B-meson mass, an be omputed.Perturbation theory is ompletely avoided with the power divergent subtrations beingtaken are of non-perturbatively.We return to the spei� appliation of omputing Mb. The whole hain allows toexpressmB in terms of �i(L1;Mb) and thus as a funtion ofMb. This funtion naturallysplits into various piees whih may be omputed individually as they separately have aontinuum limit. In partiular, the step saling funtions � relate �i(L1) to �i(L2). Aswe will see below, at �rst order in 1=mb, two mathing observables �1;�2 are suÆientif we onsider the spin averaged B-meson mass.The strategy requires all onsidered observables to be aurately desribed by the1=mb expansion. Naive ounting estimates the auray of the quark mass as � � �2m2band � � 1L21m2b . For a typial QCD sale � � 400MeV both these terms yield thesame, very small, estimate. In [22℄ the 1=mb expansion was tested for an even smallerL = L0 = L1=2 and found to be well behaved, as it is also the ase in perturbationtheory [23℄. Here we will have additional ross heks by hoosing di�erent quantities�i in the mathing step.In Set. 2 we will go through the de�nition of the e�etive theory in order to �xsome notations and give rules how the 1=mb expansion is implemented in pratie. Wealso disuss orrelation funtions in the Shr�odinger funtional [24, 25℄, whih de�nesour �nite volume geometry. These orrelation funtions are then used in Set. 3 to formsuitable dimensionless observables �i, followed by a setion whih lists the step salingfuntions. Set. 4 disusses the �nal formula for the RGI b-quark mass Mb. Numerialresults for all quantities in the quenhed approximation are disussed in Set. 5. Thisinludes also results from an alternative strategy as a hek on the smallness of the1=m2b terms.2 Heavy quark e�etive theory on the lattieWe start from the Eihten Hill stati quark Lagrangian [26℄, using the notation of[27℄, but setting the mass ounter term Æm to zero. Its e�et is taken into aountin the overall energy shift mbare between the e�etive theory and QCD. Thus mbare isregularization dependent with a � g20=a divergene. For the sake of a light notation,we also drop the supersript W [27℄ for the di�erent lattie disretizations of the statiLagrangian, but in the numerial omputations these di�erent versions will be used andreferred to exatly as in that referene. We remind the reader that they di�er only bythe hoie of the ovariant derivative D0.The terms of �rst order in 1=mb are introdued exatly as in [1℄, but we use aslightly di�erent notation whih is onvenient when one does not go beyond that order.2



2.1 FormulationThe lowest order (stati) Lagrangian,Lstat(x) =  h(x)D0  h(x) ; (2.1)is written in terms of the bakward ovariant derivative D0 as in [27℄ and the 4-omponent heavy quark �eld subjet to the onstraints P+ h =  h ;  hP+ =  h withP+ = (1 + 0)=2. At the �rst order we write the HQET LagrangianLHQET(x) = Lstat(x) + L(1)(x) ; (2.2)L(1)(x) = �!spinOspin(x)� !kinOkin(x) ; (2.3)Ospin(x) =  h(x)� �B h(x) Okin =  h(x)D2 h(x) ; (2.4)suh that the lassial values for the oeÆients are !kin = !spin = 1=(2mb). We usethe disretized version ��B =Pk;j �kj bFkj=(2i) ; with �kj and the lattie �eld tensor bFde�ned in [28℄. The kineti term D2 is represented by the nearest neighbor ovariant3-d Laplaian. The e�etive theory is expeted to be renormalizable at eah (�xed)order in 1=mb if (and only if) path integral expetation values are de�ned by expandingthe path integral weight as [1℄exp(�a4Xx [LHQET(x) + Llight(x)℄) = exp(�a4Xx [Lstat(x) + Llight(x)℄) (2.5)� �1 + a4Xx [!spinOspin(x) + !kinOkin(x)℄� :For orrelation funtions of some multiloal �elds O this meanshOi = hOistat + !kina4Xx hOOkin(x)istat + !spina4Xx hOOspin(x)istat (2.6)� hOistat + !kinhOikin + !spinhOispin ; (2.7)where hOistat denotes the stati expetation value with Lagrangian Lstat(x) +Llight(x).All terms omposed of just the relativisti quarks and the gauge �elds are summarizedin Llight(x). Note that as one performs the Wik ontrations of the heavy quark �eld,the 1=mb terms Okin(x);Ospin(x) leave behind insertions in the stati heavy quark prop-agators. From the point of view of renormalization all terms in eq. (2.6) are orrelationfuntions in the stati e�etive theory, whih is power ounting renormalizable.The above form assumes that O ontains all 1=mb terms needed to represent theloal �elds in the e�etive theory. A relevant example is the time omponent of theheavy light axial urrent. In the e�etive theory it is represented asAHQET0 (x) = ZHQETA [Astat0 (x) + HQETA ÆAstat0 (x)℄ ; (2.8)Astat0 (x) =  l(x)05 h(x) ; (2.9)ÆAstat0 (x) =  l(x)12( �ri+ �r�i)i5 h(x) : (2.10)3



Later we will also use the spae omponents of the vetor urrent represented byV HQETk (x) = ZHQETV [V statk (x) + HQETV ÆV statk (x)℄ ; (2.11)V statk (x) =  l(x)k h(x) ; (2.12)ÆV statk (x) = � l(x)12( �r i+ �r�i)ik h(x) : (2.13)We have hosen V statk ; ÆV statk suh that they are exatly related to Astat0 ; ÆAstat0 by a spinrotation.The oeÆients !kin; !spin; ZHQETA ; HQETA ; ZHQETV ; HQETV are funtions of the bareoupling g0 and of the heavy quark mass in lattie units. They represent bare parametersof the e�etive theory, whih are to be �xed by mathing to QCD. Just like !kin; !spin,the oeÆients HQETA ; HQETV are of order 1=mb, while we may writeZHQETA = ZstatA + Z(1)A ; with Z(1)A = O(1=mb) ; (2.14)and similarly for ZHQETV 1. Note that in the expansion to �rst order, terms suh as!kinHQETA / 1=m2b are to be dropped.Below we will onsider an example and disuss that indeed the bare parameters!kin; !spin; ZHQETA ; HQETA ; ZHQETV ; HQETV and mbare are suÆient to absorb all diver-genes in the e�etive theory at this order in 1=mb.2.2 1=mb expansion in a geometry without boundariesIn order to illustrate further how the expansion works, we onsider a two-point funtionof a omposite �eld in a spae-time without boundaries, i.e. with periodi boundaryonditions or in in�nite volume. We hoose the exampleCAA(x0) = Z2Aa3Xx DA0(x)(A0)y(0)E (2.15)with the heavy-light axial urrent in QCD, A� =  l�5 b, and ZA ensuring the nat-ural normalization of the urrent onsistent with urrent algebra [29, 30℄. The 1=mbexpansion readsCAA(x0) = e�mbarex0(ZHQETA )2a3Xx hhAstat0 (x)(Astat0 (0))yistat (2.16)+!kin hAstat0 (x)(Astat0 (0))yikin + !spinhAstat0 (x)(Astat0 (0))yispin+ HQETA hAstat0 (x)(ÆAstat0 (0))yistat + HQETA hÆAstat0 (x)(Astat0 (0))yistati� e�mbarex0(ZHQETA )2 hCstatAA (x0) + !kinCkinAA(x0) + !spinCspinAA (x0)+HQETA [CstatÆAA(x0) + CstatAÆA(x0)℄i (2.17)1 If O(a) improvement is desired in the stati approximation, there are also a ÆAstat0 , a ÆV statk or-retions to the urrents. They are not relevant in the present disussion but will be taken into aountwhen neessary. 4



up to terms of order 1=m2b. As mentioned in the introdution, the mass shift mbare =O(mb) inludes an additive mass renormalization. It is also split up asmbare = mstatbare +m(1)bare ; withm(1)bare = O(1=mb) ; (2.18)and the expansion e�mbare x0 � e�mstatbare x0(1� x0m(1)bare) is understood.For illustration we hek the self onsisteny of eq. (2.17). The relevant questiononerns renormalization, namely: are the \free" parameters mbare : : : HQETA suÆientto absorb all divergenes on the r.h.s.? We onsider the most diÆult term, CkinAA(x0).Aording to the standard rules of renormalization of omposite operators, it is renor-malized as�CkinAA�R(x0) = e�mstatbare x0�ZstatA �2a7Xx; z DAstat0 (x) (Astat0 (0))y �Okin�R(z)Estat +C.T. ;(2.19)where C.T. denotes ontat terms to be disussed shortly. The renormalized operator�Okin�R(z) involves a subtration of lower dimensional ones,�Okin�R(z) = ZOkin�Okin(z) + 1a  h(z)D0 h(z) + 2a2  h(z) h(z)� ; (2.20)written here in terms of dimensionless i. Sine we are interested in on-shell observables(x0 > 0 in eq.(2.19)), we may use the equation of motion D0 h(z) = 0 to eliminate theseond term. The third one, 2a2 h(z) h(z), is equivalent to a mass shift and only hangesm(1)bare, whih is hene quadratially divergent 2. Thus all terms whih are needed for therenormalization ofOkin are present in eq. (2.17). It remains to onsider the ontat termsin eq. (2.19). They originate from singularities in the operator produts Okin(z)Astat0 (x)as z ! x (and Okin(z)�Astat0 �y(0) as z ! 0). Using the operator produt expansionthey an be represented as linear ombinations of Astat0 (x) and ÆAstat0 (x). Suh termsare ontained in eq. (2.17) in the form of CstatAA ; CstatÆAA and CstatAÆA 3.We onlude that all terms whih are needed for the renormalization of CkinAA(x0)are present in eq. (2.17); the parameters may thus be adjusted to absorb all in�nitiesand with properly hosen oeÆients the ontinuum limit of the r.h.s. is expeted toexist. The basi assumption of the e�etive �eld theory is that one the �nite parts ofthe oeÆients have been determined by mathing a set of observables to QCD, theseoeÆients are appliable to any other observables.2Using the expliit form of the stati propagator, eq. (2.4) of referene [27℄, one an hek that indeeda3Px DAstat0 (x) (Astat0 (0))ya4Pz  h(z) h(z)Estat = x0CstatAA (x0).3 Astat0 (x) and ÆAstat0 (x) are the only operators of dimension 3 and 4 with the orret quantumnumbers. Higher dimensional operators ontribute only terms of order a. Note that the Astat0 (x) term ispower divergent � 1=(amb). This divergene is absorbed by a power divergent ontribution to ZHQETA(at order 1=mb). 5



The B-meson mass is given by CAA(x0) in large volume viamB = � limx0!1 �0 + ��02 logCAA(x0) ; (2.21)with �0f(x0) = 1a [f(x0 + a)� f(x0)℄ ; ��0f(x0) = 1a [f(x0)� f(x0 � a)℄ : (2.22)Inserting the HQET expansion we derivemB = mstatB +m(1)B ; (2.23)with mstatB = mstatbare +Estat ; Estat = � limx0!1 �0 + ��02 logCstatAA (x0) ; (2.24)m(1)B = m(1)bare + !kinEkin + !spinEspin ; (2.25)Ekin = � limx0!1 �0 + ��02 �CkinAA(x0)=CstatAA (x0)� ; (2.26)Espin = � limx0!1 �0 + ��02 �CspinAA (x0)=CstatAA (x0)� : (2.27)Here the terms / HQETA of eq. (2.17) do not ontribute. They are proportional tothe derivative of ratios CstatÆAA(x0)=CstatAA (x0). At large x0 these ratios approah a on-stant sine ÆAstat0 has the same quantum numbers as Astat0 . Using the transfer matrixformalism (with normalization hBjBi = 1), one further observes thatEkin = �hBja3Xz Okin(0; z)jBistat ; Espin = �hBja3Xz Ospin(0; z)jBistat : (2.28)As expeted, only the parameters of the ation are relevant in the expansion of a hadronmass. In the above relations mstatbare absorbs a linear divergene of Estat and m(1)bare aquadrati divergene of Ekin.Going through the same steps in the vetor hannel and using the spin symmetryof the stati ation is one way to see that the ombinationmavB � 14[mB + 3mB� ℄ = mbare +Estat + !kinEkin (2.29)is independent of !spin. It is instrutive to represent this equation in a di�erent way,subtrating the 1=a (and 1=a2) divergenes of Estat (and Ekin). In this way we havemavB = m(0a)B +m(0b)B +m(1a)B +m(1b)B ; (2.30)m(0a)B = mstatbare +Esubstat ; (2.31)m(0b)B = Estat �Esubstat ; (2.32)m(1a)B = m(1)bare + !kinEsubkin ; (2.33)m(1b)B = !kin[Ekin �Esubkin ℄ ; (2.34)6



with �nite terms m(0a)B ;m(0b)B ;m(1a)B ;m(1b)B . Our strategy, desribed in the introdutionan be seen as a way of determining the oeÆient !kin as well as the subtrationsEsubstat; Esubkin from �nite volume omputations in QCD and HQET. Finite parts in thesubtration terms do of ourse depend on the detailed hoie of kinematial parameterssuh as the mathing volume, but the end result is unique up to terms of order 1=m2b.Note that by the same logis, the order 1=mb term, m(1a)B +m(1b)B , is not unique butdepends on the details of the strategy.Sine the predition eq. (2.29) requires only the knowledge of two parameters, wealso need only two �nite volume observables to perform the mathing with QCD. TheShr�odinger funtional is partiularly useful to �nd suitable observables [1, 22, 31℄. Weproeed to disuss the 1=mb expansion in this situation.2.3 Shr�odinger funtional orrelation funtionsThe pure gauge Shr�odinger funtional has thoroughly been disussed in [24℄, relativistiand stati quarks were introdued in [25℄ and [28℄. In partiular in the last referenealso Symanzik O(a)-improvement was disussed. The improvement of the Shr�odingerfuntional requires the addition of dimension four loal omposite �elds loalized atthe boundaries [32℄. However, it turns out that there are no dimension four omposite�elds whih involve stati quarks �elds and whih are ompatible with the symmetriesof the stati ation and the Shr�odinger funtional boundary onditions and whih donot vanish by the equations of motion. Thus there are no O(a) boundary ounter termswith stati quark �elds. For the same reason there are also no O(1=mb) boundary termsin HQET. This then means the HQET expansion of the boundary quark �elds �; �� istrivial up to and inluding 1=mb terms.For details of the boundary onditions as well as the de�nition of the �elds �; ��we refer to [28℄, where also our notation is explained. For a general understanding itis, however, suÆient to note a few fats. In spae the fermion �elds are taken to beperiodi up to a phase, (x+ k̂L) = ei� (x) ;  (x+ k̂L) = e�i� (x) ; (2.35)with the same phase � for all quark �elds, whether relativisti or desribed by HQET.In time we take homogeneous Dirihlet boundary onditions at x0 = 0 and x0 = T [28℄.Correlation funtions an be formed from omposite �elds in the bulk, 0 < x0 < T ,and boundary quark �elds � ; ��. In QCD, orrelation funtions in the pseudosalar andvetor hannel are fA(x0; �) = �a62 Xy;z 
(AI)0(x) �b(y)5�l(z)� ; (2.36)kV(x0; �) = �a66 Xy;z;k 
(VI)k(x) �b(y)k�l(z)� : (2.37)7



The O(a) improved urrents AI; VI an be found in [1℄. Furthermore we onsider bound-ary to boundary orrelation funtionsf1(�) = � a122L6 Xu;v;y;z 
� l 0(u)5� 0b(v) �b(y)5�l(z)� ; (2.38)k1(�) = � a126L6 Xu;v;y;z;k 
� l 0(u)k� 0b(v) �b(y)k�l(z)� : (2.39)Their renormalization is standard [33℄, for example[fA℄R (x0; �) = ZAZ2� fA(x0; �) ; [f1℄R (�) = Z4� f1(�) ; (2.40)with Z� a renormalization fator of the relativisti boundary quark �elds.In omplete analogy to the ase of a manifold without boundary we an write downthe expansions to �rst order in 1=mb. They read[fA℄R = ZHQETA Z�hZ�e�mbarex0 nf statA + HQETA f statÆA + !kinfkinA + !spinf spinA o ;(2.41)[kV℄R = ZHQETV Z�hZ�e�mbarex0 nkstatV + HQETV kstatÆV + !kinkkinV + !spinkspinV o ;(2.42)= �ZHQETV Z�hZ�e�mbarex0 nf statA + HQETV f statÆA + !kinfkinA � 13!spinf spinA o ;[f1℄R = Z2�hZ2� e�mbareT nf stat1 + !kinfkin1 + !spinf spin1 o ; (2.43)[k1℄R = Z2�hZ2� e�mbareT nf stat1 + !kinfkin1 � 13!spinf spin1 o : (2.44)Apart from f statÆA (x0; �) = �a62 Xy;z 
ÆAstat0 (x) �h(y)5�l(z)� (2.45)the labeling of the di�erent terms follows diretly the one introdued in eq. (2.7). Wehave used identities suh as fkinA = �kkinV ; f spinA = 3kspinV . As a simple onsequene ofthe spin symmetry of the stati ation, these are valid at any lattie spaing.3 Finite volume observables and step saling funtions3.1 ObservablesWe onentrate on a strategy based on the orrelation funtions f1; k1 alone. This isadvantageous, sine the additional oeÆients HQETA ; HQETV in eq. (2.41), eq. (2.42) areavoided. Apart from the b-quark, we set the masses of all quarks to zero.In terms of the spin-averaged ombination,F1(L; �) = 14� log f1(�) + 3 log k1(�)� ; (3.1)8



we form R1(L; �1; �2) = F1(L; �1)� F1(L; �2) at T = L=2 (3.2)�1(L; �0) = ��T + ��T2 F1(L; �0) at T = L=2 : (3.3)Note that the boundary quark wave funtion renormalization anels in R1 and in �1.They are thus �nite after renormalization of the parameters of the Lagrangian.The dimensionless observables,�1(L;Mb) = R1(L; �1; �2)�Rstat1 (L; �1; �2) ; (3.4)�2(L;Mb) = L�1(L; �0) ; (3.5)Rstat1 (L; �1; �2) = log �f stat1 (L; �1)=f stat1 (L; �2)� at T = L=2 (3.6)are parametrized in terms of the RGI mass of the b-quark,Mb. They have a partiularlysimple 1=mb expansion�1(L;Mb) = !kinRkin1 (L; �1; �2) ; (3.7)�2(L;Mb) = L �mbare + �stat1 (L; �0) + !kin�kin1 (L; �0)� ; (3.8)whih involvesRkin1 (L; �1; �2) = fkin1 (L; �1)f stat1 (L; �1) � fkin1 (L; �2)f stat1 (L; �2) at T = L=2 ; (3.9)�stat1 (L; �0) = ��T + ��T2 log f stat1 (�0) at T = L=2 ; (3.10)�kin1 (L; �0) = ��T + ��T2 [fkin1 (�0)=f stat1 (�0)℄ at T = L=2 : (3.11)The �0; �1; �2 dependene of �i is not expliitly written, but will of ourse be relevantin the numerial results. For the reader familiar with [1, 34℄, we point out that �1di�ers from � whih was used in those referenes. Note that in eq. (3.4) we subtratthe stati term. This simpli�es subsequent formulae. In fat, whenever suh a lowestorder ontribution is universal (in the sense of having a universal ontinuum limit) andindependent of an HQET parameter, it will be onvenient to subtrat it. Despite thissubtration, we refer to �1 as an observable in QCD.The reader may be surprised that we introdue the quantity �1 whih ontains a(disretized) derivative with respet to the time extent, T . Its MC evaluation requirestwo separate simulations 4. However, obviously a quantity of order mb is needed andthis is obtained from some logarithmi derivative of a orrelation funtion. Boundary-to-boundary orrelation funtions are then very onvenient sine one does not have todeal with the 1=mb orretions to the urrents. It is a useful feature of the Shr�odingerfuntional that suh gauge invariant orrelation funtions are available.4 In App. C we disuss a di�erent strategy, whih is based on the x0-derivative of fA and thus requiresless simulations. Note, however, that these additional simulations do not represent a signi�ant e�ort.9



3.2 Step saling funtionsWe turn to the relations between �i(L;Mb) and �i(2L;Mb) in the e�etive theory.The dimensionful variable L is replaed by the Shr�odinger funtional renormalizedoupling �g2(L) [35℄ over whih we have good ontrol in numerial omputations [20℄.Straightforward substitution yields�1(2L;Mb) = �kin1 (u)�1(L;Mb) ; (3.12)�2(2L;Mb) = 2�2(L;Mb) + �m(u) + �kin2 (u)�1(L;Mb) ; (3.13)where always u = �g2(L). Our ontinuum step saling funtions � (with any subsriptsor supersripts) are de�ned in terms of those at �nite lattie spaing as�(u) = lima=L!0�(u; a=L) : (3.14)At �nite lattie spaing we have�kin1 (u; a=L) = Rkin1 (2L; �1; �2)Rkin1 (L; �1; �2) ����u=�g2(L) ; (3.15)�kin2 (u; a=L) = 2L [�kin1 (2L; �0)� �kin1 (L; �0)℄Rkin1 (L; �1; �2) ����u=�g2(L) ; (3.16)�m(u; a=L) = 2L ��stat1 (2L; �0)� �stat1 (L; �0)�u=�g2(L) : (3.17)The above equations are easily derived. In a �rst step, just from the 1=mb expansions of�i, one obtains them at a given resolution a=L or equivalently at �xed bare oupling, g0.One then uses that �i(L;Mb) are dimensionless physial observables with a ontinuumlimit. Sine the self energy of a stati quark anels in �m, also that quantity has a�nite ontinuum limit. Thus the ontinuum limit of the step saling funtions �m;�kiniexists and eqs.(3.12,3.13) an be written in terms of ontinuum quantities, as we havedone.4 Mb inluding 1=mb orretionsBefore giving the equation for Mb, we reall the overall strategy. For L1 � 0:4 fmwe ompute �1(L1;Mb);�2(L1;Mb) for a few quark masses around the physial one inquenhed QCD. It is understood that the ontinuum limit is reahed by an extrapolationand with a suitable interpolation of �i in Mb, these quantities an be onsidered to beknown as a funtion of Mb. With the step saling funtions desribed in the previoussetion and omputed in the e�etive theory, we then arrive at �1(L2;Mb);�2(L2;Mb),where L2 = 2L1. It remains to express the spin averaged B-meson mass mavB in termsof �1(L2;Mb);�2(L2;Mb). 10



To this end, we straightforwardly ombine eqs. (3.7,3.8) with eq. (2.29) and obtainLmavB = �2(L;Mb) + L[Estat � �stat1 (L; �0)℄ + L[Ekin � �kin1 (L; �0)℄Rkin1 (L; �1; �2) �1(L;Mb) :(4.1)We now set L = L2 in this equation and insert eq. (3.13). In the form of eq. (2.30) wethen have L2m(0a)B (Mb) = �m(u1) + 2�2(L1;Mb) (4.2)L2m(0b)B = L2[Estat � �stat1 (L2; �0)℄ ; (4.3)L2m(1a)B (Mb) = �kin2 (u1)�1(L1;Mb) ; (4.4)L2m(1b)B (Mb) = L2Ekin � �kin1 (L2; �0)Rkin1 (L2; �1; �2) �kin1 (u1)�1(L1;Mb) ; (4.5)where u1 = �g2(L1) ; L2 = 2L1 : (4.6)The subtration of power divergenes in eq. (2.32), eq. (2.34) are Esubstat = �stat1 (L2; �0),Esubkin = �kin1 (L2; �0) and �kin1 (u1)�1(L1;Mb)=Rkin1 (L2; �1; �2) is a representation of thebare parameter !kin in eq. (2.34). The other parts, m(0a)B ;m(1a)B , are omputable entirelyin �nite volume.The step saling funtions � have been disussed before. They an be omputedwith lattie spaings suh that a=L1 is reasonably small, say below 1=6. Of ourse theyshould be extrapolated to the ontinuum. We work with lattie spaings a � 0:07 fmin this step. The relativisti observables �i(L1;Mb) ; i = 1; 2 are omputed for a �0:02 fm, where a relativisti b-quark an be desribed by the O(a)-improved Wilsonation with ontrolled a2-e�ets. Finally, the ombinations L2[Estat��stat1 (L2; �0)℄ andL2Ekin��kin1 (L2;�0)Rkin1 (L2;�1;�2) are omputed for lattie spaings of a � 0:1 fm suh that �nite sizee�ets in Estat and Ekin are negligible on latties with an a�ordable number of points.The mass of the b-quark is obtained from eq. (2.30) by expandingMb =M (0)b +M (1)b ; (4.7)where M (0)b is the solution of the stati equationmavB = m(0a)B (M (0)b ) +m(0b)B (M (0)b ) (4.8)and the 1=mb orretion isM (1)b = � 1S �m(1a)B (M (0)b ) +m(1b)B (M (0)b )� (4.9)11
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Figure 1: Continuum extrapolation of �2(L1;Mb), for z = 10:4 ; 12:1 ; 13:3 from bottom to top. Theerrors in the relation between bare quark mass emq and the RGI mass M are translated into errors in�2. The g0{independent part of that error is inluded after [31℄ the ontinuum extrapolation (left sideerror bar). On the right, the equivalent in the alternative strategy is shown for �0 = 1=2 (see App. C).with S = ddMb �m(0a)B (Mb) +m(0b)B (Mb)� = ddMb [m(0a)B (Mb)� : (4.10)We �nish the disussion of the strategy with a remark on the dependene on themass of the light quarks. This is relevant beause it is of ourse better to onsider thespin-averaged Bs quark mass in eq. (2.29); the neessary large volume omputations areeasier than for the Bd meson. In the quenhed approximation the parameters in the a-tion mbare; !kin are independent of the light quark mass.5 Sine our strategy determinesthem through �nite volume omputations, it follows that in all these omputations thelight quark mass may be set to zero, a onvenient hoie. Only Ekin and Estat are thento be omputed at the mass of the light quark of the meson who's (spin averaged) massis onsidered.5 ResultsWe have performed a numerial omputation in the quenhed approximation, using theO(a) improved Wilson ation [32, 41, 42℄. The box size L2 is hosen as L2 = 1:436r0,5 In general, Æm (and hene also mbare) will ontain a term like b(g0)ml, where for simpliity the lightquarks are assumed to be degenerate with mass ml. Obviously, b(g0) = O(g40) does, however, vanish forNf = 0. As a renormalization term odd in ml, it is also absent for twisted mass lattie QCD [36℄ andQCD with exat hiral symmetry [37{40℄. 12
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Figure 2: Continuum extrapolation of �1(L1;Mb), separately for R1(L1; 1=2; 1) in QCD (left) andfor Rstat1 (L1; 1=2; 1) in the stati approximation (right). Cirles denote results with ation HYP1 andsquares, displaed slightly for visibility, are from ation HYP2. The orresponding ontinuum extrapo-lation lines are slightly displaed as well.where r0, de�ned in terms of the stati quark potential [43℄, has a phenomenologialvalue of r0 � 0:5 fm. From [20℄ we know the Shr�odinger funtional oupling �g2(L1) =�g2(L2=2) � 3:48. Given the knowledge of r0=a as a funtion of g0 of Ref. [44℄ and thatof the renormalized oupling [20℄, it is then onvenient to �x g0 in di�erent ways forthe di�erent steps of the alulation. The di�erenes are of ourse only a-e�ets whihdisappear in the ontinuum extrapolations. We give more details below. We will takethe unertainties in the relations �g2(L1) � 3:48 and �g2(L1=4) � 1:8811 (whih we needlater) into aount in the very end.In order to omplete our de�nitions, we further hoose �0 = 0 and �1; �2 2 f0; 1=2; 1g.The di�erent values of �1; �2 o�er the possibility to hek whether our �nal results areindependent of these arbitrary parameters as they should be up to small 1=m2b terms.Simulation parameters as well as raw results are listed in tables in App. A and B.5.1 QCD observablesFor this part of the omputation, we determined the bare parameters as in [31℄: g0 is�xed by requiring �g2(L1=4) = 1:8811 for given resolutions a=L. The PCAC mass of thelight quark, de�ned exatly as in that referene, is set to zero. Our heavy quark massesare hosen suh that z =Mb L1 � 10� 13 . The bare parameters are listed in Table 3.We fous our attention diretly on the ontinuum extrapolations. As an examplewe show �1(Mb; L1) and �2(Mb; L1) in Fig. 2 and Fig. 1. Note that for the statisubtration Rstat1 (L1; 1=2; 1), displayed on the right of Fig. 2, our lattie spaings are13



roughly a fator three larger, sine in the e�etive theory we only have to respeta=L1 � 1, not aMb � 1 (for details see App. A). Data have been obtained for twostati ations, HYP1 and HYP2 [27℄. In �tting them to the expeted a-dependene,their ontinuum limit value is onstrained to be independent of the ation, but the a2slopes are of ourse di�erent. The data for the di�erent ations are highly orrelated. Asin all suh ases, the errors of the ontinuum limit are omputed from jaknife samples.For values of �i whih di�er from the hoie made in the �gures, the a-dependeneis very similar. In all these ases we �nd that extrapolations linear in a2 using all fouravailable lattie spaings are ompatible with the ones where the data point at largestlattie spaing is ignored. We take the extrapolations with three points as our resultsfor further analysis, sine they have the more onservative error bars. The ontinuumlimits are listed together with the raw numbers in Tables 6 and 4. From a �t of theontinuum �2(z) to a linear funtion, we then extrat the slopeS = ddz�2 = 0:61(5) (5.1)and we are done with the mathing. The rest of the numerial omputations is arriedout in the e�etive theory.5.2 HQET step saling funtionsNext we disuss the onnetion of �i(L1;Mb) to �i(L2;Mb), L2 = 2L1. It is given bythe step saling funtions of Set. 3.2. The bare parameters used in their omputationare desribed in App. A, and the values at �nite resolution a=L1 are given in Tables8-10 6.At lowest order in 1=mb, only �m ontributes. In its ontinuum extrapolation(Fig. 3, Table 8) we allow for a slope in a2, although the data are ompatible with avanishing slope. Note that the absolute error of �m is negligible in omparison to twiethe one of �2 (see Fig. 1) to whih it is added in eq. (4.2). In fat the unertainty in�m orresponds to an error of only 5MeV in the b-quark mass, illustrating the possiblepreision in the stati e�etive theory with these ations [27, 45℄.A relevant question is how the preision deteriorates when one inludes the �rstorder orretions in 1=mb. Then two more step saling funtions ontribute. In Fig. 4,we illustrate how the ontinuum limit of �kin1 is obtained. Here we have to allow for alinear dependene on the lattie spaing, sine the theory is not O(a) improved at thelevel of the 1=mb ontributions [1℄. Taking the more onservative �t with only threepoints, we arrive at the ontinuum limit listed in Table 9 for all ombinations �1; �2.In eq. (4.5), �kin1 is multiplied by small numbers (of order 1=mb). This means that itserror will be negligible in the overall error budget.Instead of �kin2 we show diretly the ontinuum extrapolation of m(1a)B , eq. (4.4).As for �m, the data shows no signi�ant a{dependene. Nevertheless, in order to have6 For �m;�kin2 the oarsest resolution onsidered is a=L1 = 8. Due to the derivative �T at T = L=2,smaller values of L1=a would involve a very short time separation.14
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these terms is aurate and unique up to r0 � (�3=mb)2 � 1=50 orretions.We leave it to the reader to hek in Fig. 1 to 7 that these expetations are fullysatis�ed by our results 8. In fat it appears that our estimate for the expansion pa-rameter, �=mb � 1=10 is quite realisti. Of ourse, to �nd this out requires an expliitomputation of the orretion terms as presented here. In some ases, suh as m(1b)B ,our preision is not good enough to resolve a dependene on the mathing onditions.In the b-quark mass in the stati approximation, r0M (0)b (eq. (5.3) and Table 12),the maximum di�erene is 0:5(2), whih is of the predited order of magnitude. Finally,when we add all ontributions together, the results from the alternative strategy, Table 2,are fully in agreement with eq. (5.5). As expeted 1=m2b terms are not visible with ourpreision. They an safely be negleted.6 ConlusionsThe main onlusion of this work is that fully non-perturbative omputations in lattieHQET, as they have been suggested in [1℄, are possible in pratie. In partiular, theunertainties in the 1=mb orretions are smaller than those in the stati approximation,despite the fat that we numerially anel large a�2 divergenes in the 1=mb terms.The �nal error in the mass of the b-quark is dominated by the unertainty in therenormalization in QCD. Errors due to simulations in the e�etive theory an almostbe negleted in omparison.A very nie result is the independene of the �nal numbers for Mb of the mathingondition: Table 2 shows that within our reasonably small unertainties, we get thesame results for the quark mass for altogether twelve di�erent mathing onditions.This is expeted up to very small terms of order r0Mb � (�=mb)3 � 0:02, whih shouldbe ompared to our result r0Mb = 17:12(22) � 17:25(28). Here the quoted range is dueto the di�erent mathing onditions. In the order of magnitude estimates we have madea guess for the typial sale of � � 0:5GeV. In the stati approximation, some of themathing onditions yield slightly di�ering results for the quark mass in agreement withthe expetation for suh variations of r0Mb � (�=mb)2 � 0:2.Both this expliit test of the magnitude of the di�erent orders in the expansionand the naive order of magnitude estimate say that 1=m2b orretions are ompletelynegligible.Still, in aspets of the omputation, onsiderable improvement an be envisaged.For example, return to the 1=mb ontribution to the B-meson mass Fig. 7. The statis-tial errors grow rapidly as one dereases the lattie spaing. The by far dominatingunertainty in the shown ombination is the one of the large volume matrix Ekin. It ap-pears worth while to look for improvements, maybe along the line of [53℄. Due to theseerrors, and of ourse the missing O(a)-improvement of the theory at order 1=mb [1℄,8 We note in passing that e�m, in ontrast to �m, does in priniple require an improvement oeÆient,statA [28℄, for O(a)-improvement. It has been set to the 1-loop values from [27℄, but the results are ratherinsensitive to statA , so its unertainty an be negleted.20



the ontinuum extrapolation is not easy. Fortunately it is still preise enough for thepresent ase. It will be very interesting to see ases where the 1=mb orretions arelarger, as it is expeted, for example, for FB.Let us now turn to the omputed value of mb, eq. (5.6). Starting from a preiselyspei�ed input, namely r0, mK and (mBs + 3mB�s )=4, the value of Mb is unambiguousin the quenhed approximation, beause these inputs �x the bare oupling, strangeand beauty quark masses. We have used the experimental meson masses and r0 =0:5 fm. Our numbers for Mb or mb may then be used as a benhmark result for othermethods. Indeed, a omparison shows agreement with [54℄ and the reent extension ofthat work [55℄ mb = 4:42(7)GeV.Earlier, the review [56℄ quoted mb = 4:30(5)(5)GeV and mb = 4:34(3)(6)GeV,based on stati omputations [57℄ and an extrapolation of NRQCD results to the statilimit [58℄ respetively. A perturbative subtration [18, 59, 60℄ of the linear divergeneÆm was arried out in these stati estimates and, of ourse, a ontinuum extrapolationould not be done.However, if other inputs are used, the result may hange beause r0 is only ap-proximately known and beause the quenhed approximation is not real QCD. A roughidea on the possible hanges an be obtained by varying r0 by �0:05 fm. This hangesmb(mb) by roughly �80MeV.These remarks just serve to stress the obvious neessity of performing omputationswith Nf > 0. The ALPHA-ollaboration is presently starting with Nf = 2, wherethe renormalization of the quark mass in QCD is known [21℄. The neessary HQETomputations are not expeted to be a big numerial hallenge, apart from the largevolume B-meson matrix elements: simulations of the Shr�odinger funtional for L � 1 fmare not very demanding with nowadays omputing apabilities [61℄. Altogether theextension of the present work to full QCD is feasible and should be arried out, sinepresently no better method is known to ompute the b-quark mass from lattie QCD.Aknowledgements. We thank Stephan D�urr for ollaboration in the early stagesof this work [62℄. We thank NIC for alloating omputer time on the APEmille om-puters at DESY Zeuthen to this projet and the APE group for its help. This work issupported by the Deutshe Forshungsgemeinshaft in the SFB/TR 09.A Finite volume simulationsFor the mathing in a �nite volume, we performed one set of simulations of (quenhed)QCD and one of HQET. In the ase of the relativisti theory, we used L = ~L1, de�nedby �g2(~L1=4) = 1:8811 9. The parameters of these simulations have been taken from [31℄(see Table 3). The di�erene is that here L = ~L1 = 2 ~L0 (and T = L=2 and T = L=2�ain addition to T = L) ompared to L = ~L0 in [31℄.9 ~L1 di�ers slightly from L1 de�ned in the main text by L1 = 0:718r0 . This mismath is howeverorreted, as explained later in this appendix and in App. D.21



La � �l �g2(L4 ) ZP(g0; L2 ) bm Z �h20 7:2611 0:134145 1:8811(19) 0:6826(3) �0:621 1:0955 0:1241950:1221190:12048324 7:4082 0:133961 1:8811(22) 0:6764(6) �0:622 1:0941 0:1260550:1245280:12338332 7:6547 0:133632 1:8811(28) 0:6713(8) �0:622 1:0916 0:1279910:1269670:12622240 7:8439 0:133373 1:8811(22) 0:6679(8) �0:623 1:0900 0:1289890:1282140:127656Table 3: Bare parameters used in the omputation of the QCD observables for L = ~L1.The parameters for the resolution ~L1=a = 20 annot be found in the mentionedreferene. For that point, the gauge oupling � has been hosen suh that �g2(~L1=4) =1:8811 for ~L1=4a = 5, see [20℄. The renormalization onstant ZP and �l = � havebeen omputed here, while bm and Z have been extrapolated from the values in Table 2of [31℄. These fators are put into the relationship between the bare mass mq;h and theRGI mass [20, 63℄, M = hZmmq;h (1 + bmamq;h) ; (A.1)where Zm = Z ZAZP ; and amq;h = 12 � 1�h � 1�� : (A.2)The renormalization onstant ZA(g20) is known non-perturbatively from [30℄, whileh = Mm(�0) = 1:544(14) ; �0 = 2=~L1 ; (A.3)relates the running quark mass in the Shr�odinger funtional sheme [20℄ at the sale�0, to the renormalization group invariant quark mass M 10.For all values of ~L1=a three hopping parameters �h have then been �xed in orderto ahieve z = ~L1M = 10:4; 12:1; 13:3 : (A.4)We ollet these parameters in Table 3, whereas the results for the quantities neededin the mathing step are summarized in Tables 4 and 5. The errors there inlude system-atis due to the unertainties in the Z-fators, in partiular, the error on the universalfator h has been propagated only after performing the ontinuum limit extrapolations.10 In h =M=m(�0) we take the small di�erene between the above de�ned ~L0 and the value L0 = L1=2into aount. It auses a hange of less than 1% of the value of h used in [31℄.22



L=a z R1 �2�1 = 0 �1 = 1=2 �1 = 1 �0 = 0�2 = 1=2 �2 = 1 �2 = 020 10:4 0:09795(13) 0:27426(30) �0:37221(42) 7:847(40)20 12:1 0:09512(12) 0:26588(30) �0:36100(43) 9:108(46)20 13:3 0:09336(12) 0:26068(30) �0:35404(43) 10:068(50)24 10:4 0:09958(18) 0:27904(37) �0:37862(52) 7:697(44)24 12:1 0:09689(17) 0:27110(37) �0:36799(52) 8:866(50)24 13:3 0:09528(17) 0:26632(36) �0:36159(50) 9:716(54)32 10:4 0:10157(30) 0:28481(71) �0:38638(93) 7:512(53)32 12:1 0:09897(30) 0:27717(71) �0:37614(92) 8:623(58)32 13:3 0:09744(30) 0:27265(71) �0:37008(92) 9:411(62)40 10:4 0:10283(30) 0:28806(52) �0:39089(76) 7:484(51)40 12:1 0:10027(30) 0:28052(52) �0:38079(75) 8:575(56)40 13:3 0:09876(29) 0:27608(52) �0:37484(74) 9:344(60)CL 10:4 0:10450(44) 0:29297(89) �0:39748(125) 7:341(96)CL 12:1 0:10202(44) 0:28567(90) �0:38769(124) 8:386(102)CL 13:3 0:10058(44) 0:28143(91) �0:38202(124) 9:106(107)Table 4: Simulation results of the �nite volume (L = ~L1) relativisti observables neededin our main strategy. The ontinuum limits, obtained by linear extrapolation in (a=L)2of the results for L=a � 24, are indiated by CL.
L=a z Rav ~�3�1 = 0 �1 = 1=2 �1 = 1 �1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 020 10:4 0:1699(9) 0:4299(12) �0:5998(20) 8:059(37) 8:293(37) 8:993(37)20 12:1 0:1668(9) 0:4198(11) �0:5867(20) 9:315(37) 9:545(37) 10:234(37)20 13:3 0:1649(9) 0:4137(11) �0:5787(19) 10:271(37) 10:500(37) 11:180(37)24 10:4 0:1739(23) 0:4391(31) �0:6130(54) 7:864(39) 8:102(38) 8:822(39)24 12:1 0:1710(23) 0:4295(30) �0:6005(52) 9:027(39) 9:263(38) 9:971(39)24 13:3 0:1693(22) 0:4239(29) �0:5931(51) 9:874(39) 10:109(38) 10:809(38)32 10:4 0:1760(41) 0:4494(48) �0:6254(90) 7:713(43) 7:941(41) 8:661(42)32 12:1 0:1733(40) 0:4403(46) �0:6135(87) 8:818(42) 9:045(41) 9:753(42)32 13:3 0:1717(40) 0:4349(45) �0:6066(85) 9:603(42) 9:828(41) 10:531(42)40 10:4 0:1790(70) 0:4493(72) �0:6283(142) 7:656(45) 7:894(42) 8:624(44)40 12:1 0:1763(68) 0:4403(70) �0:6166(138) 8:743(45) 8:979(42) 9:698(44)40 13:3 0:1747(67) 0:4352(68) �0:6099(136) 9:509(45) 9:744(42) 10:456(44)CL 10:4 0:1801(75) 0:4587(84) �0:6392(159) 7:533(89) 7:765(86) 8:496(88)CL 12:1 0:1776(73) 0:4502(81) �0:6280(154) 8:573(91) 8:805(88) 9:524(89)CL 13:3 0:1761(72) 0:4452(79) �0:6218(151) 9:289(93) 9:519(91) 10:234(92)Table 5: Same as Table 4 in the ase of the alternative strategy.23



L=a Rstat1�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP26 0.06936(5) 0.06939(4) 0.18583(7) 0.18591(7) -0.25519(12) -0.25530(11)8 0.07572(6) 0.07574(6) 0.20452(11) 0.20457(11) -0.28024(17) -0.28031(17)10 0.07821(5) 0.07822(5) 0.21246(8) 0.21249(8) -0.29067(13) -0.29071(13)12 0.07934(8) 0.07935(8) 0.21622(13) 0.21625(13) -0.29556(21) -0.29559(20)CL 0.08238(12) 0.22596(21) -0.30835(32)Table 6: Lattie results of Rstat1 for L = L1. The ontinuum limits are obtained by alinear extrapolation in (a=L)2 of the results for L=a � 8.L=a Rstatav�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP26 0.1502(3) 0.1543(3) 0.3562(3) 0.3688(3) -0.5231(6) -0.5231(6)8 0.1544(4) 0.1575(4) 0.3672(4) 0.3765(4) -0.5216(7) -0.5340(8)10 0.1571(5) 0.1595(5) 0.3724(6) 0.3710(6) -0.5295(10) -0.5391(10)12 0.1561(8) 0.1579(8) 0.3729(8) 0.3786(9) -0.5289(15) -0.5365(16)CL 0.1606(6) 0.3827(6) -0.5432(11)Table 7: Lattie results of Rstatav . The details are the same as in Table 6.Ensembles of roughly 2000 (for ~L1=a = 20) to few hundreds (for ~L1=a = 40) gauge on-�gurations have been generated for this part of the omputation. The lattie ~L1=a = 20is not used in the extrapolations but rather to hek for the smallness of higher orderuto� e�ets for ~L1=a � 24.Conerning the simulation of HQET, we have omputed the various quantities inthe two required volumes. The �rst one, where we math the e�etive theory withQCD, has a spae extent L1. The seond one is suh that L2 = 2L1. The value of theShr�odinger funtional renormalized oupling is �xed at �g2(L1) = 3:48, and we haveused the resolutions L1=a = 6; 8; 10; 12. The orresponding values of � as well as � = �an be found in Table A.1 of [1℄. All these quantities are omputed with two di�erentations, HYP1 and HYP2. The ontinuum values are then obtained by onstraining the�ts to give the same values for these ations. We note that the results for HYP1 andHYP2 are statistially orrelated.For the omputation of the step saling funtions one uses the same �; � and L2=a =2L1=a. All these omputations are done with several thousand gauge on�gurations.Note that, even if L1 is the same in QCD and in HQET, the typial lattie spaingsare muh larger in the e�etive theory. The results of Rstat1 and Rav an be found in24



L=a �m(3:48; a=L)HYP1 HYP28 0.431(11) 0.411(11)10 0.437(11) 0.424(10)12 0.422(16) 0.418(16)CL 0.430(25)Table 8: Lattie results of the step saling funtion �m. The bare parameters aredesribed in the text. The ontinuum limit is obtained by a linear extrapolation in(a=L)2 of the results for L=a � 8.L=a �kin1 (3:48; a=L)�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP26 0.6241(17) 0.6245(11) 0.6219(60) 0.6223(5) 0.6225(8) 0.6228(6)8 0.5790(20) 0.5797(13) 0.5789(65) 0.5793(5) 0.5789(10) 0.5794(7)10 0.5587(47) 0.5586(22) 0.5585(14) 0.5588(9) 0.5586(22) 0.5590(14)12 0.5364(66) 0.5342(39) 0.5424(19) 0.5417(12) 0.5409(30) 0.5398(18)CL 0.457(10) 0.471(3) 0.467(5)Table 9: Lattie results of the step saling funtion �kin1 . The ontinuum limits areobtained by a linear extrapolation in a=L of the results for L=a � 8.L=a �kin2 (3:48; a=L)�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP28 4.81(44) 4.72(32) 1.58(15) 1.55(10) -1.19(11) -1.17(8)10 4.34(58) 4.20(39) 1.43(19) 1.39(13) -1.08(15) -1.04(10)12 4.79(86) 3.98(58) 1.58(28) 1.31(19) -1.19(21) -0.99(14)CL 2.9(1.5) 0.96(50) -0.71(38)Table 10: Same as Table 9 for �kin2 .Tables 6 and 7. The values of the step saling funtions are olleted in Tables 8, 9and 10.Finally there are simulations in small volume to obtain the subtrations �stat1 (L2)and �kin1 (L2). These are done with L2 = 1:436 r0 and � determined from the knowledgeof r0=a [48℄. The parameters, inluding � = �, are listed in Table 6 of [27℄. The valuesof � do of ourse agree with the ones employed in the large volume, whih we desribe25



� �s L3 � T aEstat a2EkinHYP1 HYP2 HYP1 HYP26:0219 0:133849 163 � 24 [32℄ 0:4345(21) 0:4029(32) 0:750(4) 0:774(3)6:0219 0:133849 243 � 32 0:4378(25) 0:4034(20) 0:746(7) 0:776(5)6:2885 0:1349798 243 � 48 0:3295(21) 0:3034(29) 0:643(7) 0:676(5)6:4956 0:1350299 323 � 64 0:2724(20) 0:2461(14) 0:599(10) 0:620(11)Table 11: Parameters of the large volume simulations. Where present, the numbers inbrakets refer to a seond dataset at the same (�; �) values.in the next appendix.B Large volume simulations and extration of matrix elementsThe parameters for the simulations in large volume are olleted in Table 11 togetherwith the results for Estat and Ekin. The lattie extension L=a and � are suh thatL = 4L1 � 3=2 fm exept for the seond lattie where we have L = 6L1 � 2 fm. Thislattie is used only to hek for the absene of �nite size e�ets. We see from Table 11that �nite size e�ets are indeed very small, the di�erene between the results fromthe L=a = 16 and the L=a = 24 latties at � = 6:0219 is onsistent with zero withinat most one standard deviation (aEstat from HYP1). The number of on�gurationsgenerated ranges from 4300 at � = 6:0219 to 2200 at � = 6:4956 (for the larger volumeat � = 6:0219 we had 1300 on�gurations). Sine our phenomenologial input is themass of the (spin averaged) Bs meson, we set � to �s in order to reprodue the quenhedvalue of the strange quark mass from Ref. [64℄, i.e.Msr0 = 0:35(1) ; (B.1)with Ms the renormalization group invariant strange quark mass de�ned as in Ap-pendix A after replaing �h by �s.The numbers for Estat and Ekin have been obtained by applying two di�erent �ttingproedures to two independent datasets (where available). The quoted errors are suhthat both the results are overed and they therefore provide a reasonable estimate ofthe systematis assoiated with the �ts. We now sketh these proedures.Let us onsider in QCD the e�etive \mass" �(x0) obtained from the orrelationfuntion Fav(x0) in eq. (C.1) and its quantum-mehanial deomposition�(x0) = ��0 + ��02 Fav = E0 +Ae��x0 + : : : (B.2)where E0 is the energy of the ground state, � is the gap between the ground and the�rst exited states and the dots refer to ontributions from higher states. The 1=mb26



expansion reads�(x0) = Estat + !kinEkin + (Astat + !kinAkin)e��statx0(1� !kinx0�kin) + : : := �stat(x0) + !kin�kin(x0) + : : : (B.3)where �stat and �kin are de�ned in analogy to eqs. (3.10, 3.11) in terms of the orrelatorsf statA (x0) and fkinA (x0).In the orrelation funtion fÆA(x0) the same states ontribute as in fA(x0). Per-forming again �rst the quantum-mehanial deomposition and then the 1=mb expansionof these orrelators, it is easy to see that the ratiosP statA (x0) = f statA (x0)f statÆA (x0) and P kinA (x0) = P statA (x0) � fkinA (x0)f statA (x0) � fkinÆA (x0)f statÆA (x0)� (B.4)have the following formP statA = b1 + b2e��statx0 ; (B.5)P kinA = b3 + b4e��statx0 � b2�kinx0e��statx0 : (B.6)They an therefore be used to further onstrain �stat and �kin. We are thus lead toperform a ombined �t�stat = b5 + b6e��statx0 ; (B.7)�kin = b7 + b8e��statx0 � b6�kinx0e��statx0 ; (B.8)together with eq. (B.5) and (B.6), with non-linear parameters a1 = �stat and a2 = �kinand the linear parameters bi, whih ontain the desired b5 = Estat and b7 = Ekin.Sine the orretion terms are nevertheless not so easy to ompute at the smallerlattie spaings, we perform the above �t �rst at � = 6:0219 and extrat a�stat anda2�kin. We then use that these quantities sale roughly (i.e. r0�stat �onstant andr20�kin �onstant). To implement this, we input the saled means as priors [65℄ in aseond step where we add �2prior = Xi=1;2 �ai � aprior1 �2(Æapriori )2 ; (B.9)to the standard �2. The unertainty Æapriori is taken from the �t result at � = 6:0219.However, in order to remain on the safe side, it is not saled but kept onstant at thesmaller lattie spaing. Thus Æaprior2 =aprior2 / 1=a2 for example. The onstraint due tothe priors beomes weaker as we approah the ontinuum.Here and in the following proedure the �t range is hosen to keep a minimumphysial distane from the boundaries, namely x0 � tmin � 2r0. The stability of theresults is heked by varying tmin to tmin � r0=2. As an example we show in �gure 927
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Figure 9: Results for P statA , P kinA , �stat and �kin at � = 6:2885 (HYP2) with the orre-sponding funtions obtained by the �t.the results for P statA ; P kinA ; �stat and �kin at � = 6:2885. One observes that P statA ; �statprovide very good onstraints of the parameters �stat; b2; b6. The remaining ones arethen e�etively linear �t parameters. Nevertheless, the error band of Ekin (dashed line)resulting from the �t is not that small.An alternative strategy is used to get a seond estimate of Estat at the two oarserlattie spaings, where we have two independent datasets. Exploiting again the remarkbefore eq. (B.4) we onstrut an e�etive mass �ÆA from the orrelator fÆA(x0) in thevery same way as �stat is obtained from f statA (x0). The idea is to ombine the twoe�etive masses in order to eliminate the ontribution from the �rst exited state andthen perform a �t to a onstant (in the mentioned �t range). In pratie we minimizethe quantity Q = tmaxXx0=tmin ��stat(x0) + ��ÆA(x0)�B�2 ; (B.10)with respet to �; B. Finally the weighted average of ��stat(x0) + ��ÆA(x0)� =(1 + �)yields the estimate of Estat. The quality of the result is omparable to that obtained in28



the �rst approah.C Alternative strategyWe briey introdue an alternative strategy, based on the orrelation funtions fA; kVin addition to f1; k1. WithFav(x0; �) = 14 log �� [fA℄R (x0; �)� [kV℄3R (x0; �)� (C.1)we introdueRav(L; �1; �2) = Fav(x0; �1)� Fav(x0; �2) at x0 = L=2 ; T = L (C.2)�av(L; �0) = ��0 + ��02 Fav(x0; �0) at x0 = L=2 ; T = L : (C.3)Keeping �1, from the standard strategy, we de�ne the set of observablese�1(L;Mb) = �1(L;Mb) ; (C.4)e�2(L;Mb) = Rav(L; �1; �2)�Rstatav (L; �1; �2) ; (C.5)e�3(L;Mb) = L�av(L; �0) ; (C.6)with the 1=mb expansione�2(L;Mb) = !kinRkinA (L; �1; �2) + HQETav RÆA(L; �1; �2) (C.7)e�3(L;Mb) = L �mbare + �stat(L; �0) + !kin�kin(L; �0) + HQETav �ÆA(L; �0)� ;(C.8)where due to the spin average the ombinationHQETav = 14[HQETA + 3HQETV ℄ (C.9)is present. The so far unde�ned terms Rstatav ; RkinA ;�kin; RÆA;�ÆA are straightforwardlyobtained from our de�nitions.The alternative observables hange from L to 2L viae�i(2L;Mb) = Xj�i �ij(u) e�j(L;Mb) + Æi3 e�m(u) ; (C.10)�ij(u) = lima=L!0�ij(u; a=L) (C.11)with the step saling funtions (we drop arguments �1; �2 and u = �g2(L) is understood)
29



�0 r0M (0)b r0M (1a)b r0M (1b)b�1 = 0 �1 = 1=2 �1 = 1 �1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0 �2 = 1=2 �2 = 1 �2 = 00 17.05(25) 0.17(6) 0.17(6) 0.17(6) 0.02(9) 0.02(8) 0.02(9)1/2 17.01(22) 0.20(7) 0.18(6) 0.19(7) 0.02(10) 0.02(9) 0.02(9)1 16.78(28) 0.34(11) 0.30(7) 0.32(8) 0.06(12) 0.06(9) 0.06(10)Table 12: RGI results of Mb in the stati approximation and of the 1=mb orretionfor the alternative strategy.
�11(u; a=L) = Rkin1 (2L)=Rkin1 (L) = �kin1 (u; a=L) (C.12)�21(u; a=L) = 1Rkin1 (L)fRkinA (2L) �RkinA (L)�22(u; a=L)g (C.13)�22(u; a=L) = RÆA(2L)=RÆA(L) (C.14)�31(u; a=L) = 2Lf�kin(2L) � �kin(L)gRkin1 (L) � �32(u; a=L)RkinA (L)Rkin1 (L) (C.15)�32(u; a=L) = 2L�ÆA(2L) � �ÆA(L)RÆA(L) (C.16)�33(u; a=L) = 2 (C.17)e�m(u) = lima=L!0 2L ��stat(2L)� �stat(L)� : (C.18)The �nal relation for the B-meson mass is eq. (2.30) withL2m(0a)B (Mb) = e�m(u1) + 2 e�3(L1;Mb) ; (C.19)L2m(0b)B (Mb) = L2[Estat � �stat(L2)℄ ; (C.20)L2m(1a)B (Mb) = �31(u1) e�1(L1;Mb) + �32(u1) e�2(L1;Mb) ; (C.21)L2m(1b)B (Mb) = L2 �Ekin � �kin(L2)Rkin1 (L2) + �ÆA(L2)RkinA (L2)RÆA(L2)Rkin1 (L2)� �kin1 (u1) e�1(L1;Mb)�L2 �ÆA(L2)RÆA(L2) h�21(u1) e�1(L1;Mb) + �22(u1) e�2(L1;Mb)i : (C.22)Although the results have been already given in Table 2, the reader will �nd moredetails in Table 12.D Propagating unertainties in Li=r0 and �g2(Li)In our simulations we have �xed ~L1 by �g2(~L1=4) = 1:8811, beause the orrespondingbare parameters �; � are available in the literature. We here give the estimate of the30



small e�et aused by ~L1 6= L1 in the stati approximation. From the polynomialinterpolations of the step saling funtion of the oupling, �(u) [20℄, we estimate theorresponding mismath in ouplings as~u� u = �g2(~L1)� �g2(L1) = �(�(1:8811)) � 3:48 = �0:17(5) : (D.1)Let us write MbmB = �(~u; z) [1 +K(u)℄ at ~u = u (D.2)with K(u) = �stat1 (L1)�EstatmB ; �(u; z) = z�2(u; z) : (D.3)The relation ddu MbmB = 0 gives� 1 +K(u)�(u; z) ddu�(u; z) = K 0(u) = 1mB ddu�stat1 : (D.4)Denoting by �Mb the orretion we have to add to Mb when it is omputed with ~u 6= u(as we did), we get from the above equations1mB�Mb = [~u� u℄� �(u)K 0(u) ; (D.5)where K 0(u) is easily estimated by taking a numerial derivative of �stat1 . From thedi�erene of L=a = 12 and L=a = 10 at �xed g20 (with �g2jL=a=12 = 3:48) and with�(u; z) � 1:44 we arrive at the small shiftr0�Mb = �0:055(17) : (D.6)A similar error is be taken into aount due to the 2% unertainty in the relationL2 = 1:436r0 [48℄. In the same way it leads to a statistial error ofr0�Mb = 0:016 : (D.7)The two ontributions eq. (D.6), eq. (D.7) are ombined tor0�Mb = �0:055(23) ; (D.8)whih we have taken into aount in Set. 5.3. Beause of the smallnes of these e�ets,they an be negleted in the 1=mb-orretions.In the ase of our alternative strategy, the shift depdends on the value of �0. We�nd �0 = 0 r0�Mb = �0:042(20) ; (D.9)�0 = 1=2 r0�Mb = 0:009(11) ; (D.10)�0 = 1 r0�Mb = 0:150(45) : (D.11)31
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