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1 Introdu
tionThe mass of the b-quark,Mb, is a relevant input parameter for phenomenology analysisbased on perturbation theory. Let us just mention the extra
tion of Vub from in
lusiveb-de
ays [2, 3℄. Mb is a fundamental parameter of the Standard Model of parti
lephysi
s. Thus it should be determined pre
isely. One may of 
ourse turn the very �rstobservation around. For instan
e, applying high order perturbation theory to suÆ
ientlywell integrated 
ross se
tions, the quark mass 
an be determined [4{15℄. Still, thea
hievable pre
ision is limited by the intrinsi
 un
ertainty of perturbation theory andmaybe more by experimental diÆ
ulties. On the other hand, the use of latti
e QCDo�ers a strategy to 
ompute the fundamental renormalization group invariant (RGI)parameters of QCD with very pre
isely known experimental input, e.g. Nf (= numberof quarks 
avours) meson masses as well as the nu
leon mass; see [16℄ for a basi
introdu
tion. However, for the b-quark mass, su
h a 
omputation is more involved thanfor the light quarks be
ause the a
hievable inverse latti
e spa
ings are below the mass ofthe quark. E�e
tive theories have to be employed in a numeri
al treatment of the boundstates. The most serious problem that arises is that a power law divergent (� g20=a)additive renormalization of the mass is present due to the absen
e of a 
hiral symmetryin the e�e
tive theories (even in the 
ontinuum). Although at the lowest order in HeavyQuark E�e
tive Theory (HQET) the subtra
tion is known to order g60=a [17{19℄, an (inthe 
ontinuum limit) divergent remainder is unavoidable and the total un
ertainty isdiÆ
ult to estimate as long as the renormalization is 
arried out perturbatively.In [1℄ a general strategy was des
ribed whi
h allows HQET at zero velo
ity to beimplemented non-perturbatively on the latti
e, in
luding all renormalizations.experiment Latti
e with amq � 1mB = 5:4GeV �1(L1;Mb);�2(L1;Mb)? ?�HQET1 (L2);�HQET2 (L2) �HQET1 (L1);�HQET2 (L1)��m(u1)�kin1 (u1); �kin2 (u1)L2 = 2L1The basi
 idea is illustrated in the above diagram. It is founded on the knowledgeof the relation between the RGI mass and the bare mass in QCD [20, 21℄. In a �nitevolume of extent L1 � 0:4 fm, one 
hooses latti
e spa
ings a suÆ
iently smaller than1=mb, su
h that the b-quark propagates 
orre
tly up to 
ontrollable dis
retization errorsof order a2. Finite volume observables �i(L1;Mb) may then be 
omputed as a fun
tionof the RGI mass Mb in
luding an extrapolation to the 
ontinuum limit. The resultingvalues are equated to their representation in HQET { a step 
alled mat
hing, indi
atedby the r.h.s. of the diagram. Choosing now L1=a = O(10), with the same physi
al valueof L1, one uses the knowledge of �i(L1;Mb) to determine the bare parameters in thee�e
tive theory for a-values of about 0:025 fm to 0:05 fm. At these latti
e spa
ings onethen 
omputes the same observables in a larger volume L2 = 2L1. Again these observ-1



ables 
an be extrapolated to the 
ontinuum limit. Next, the knowledge of �i(L2;Mb)and the 
hoi
e L2=a = O(10) yields the bare parameters of the e�e
tive theory for aaround 0:05 fm to 0:1 fm. One then has full 
ontrol over the e�e
tive theory at latti
espa
ings where large volume observables, su
h as the B-meson mass, 
an be 
omputed.Perturbation theory is 
ompletely avoided with the power divergent subtra
tions beingtaken 
are of non-perturbatively.We return to the spe
i�
 appli
ation of 
omputing Mb. The whole 
hain allows toexpressmB in terms of �i(L1;Mb) and thus as a fun
tion ofMb. This fun
tion naturallysplits into various pie
es whi
h may be 
omputed individually as they separately have a
ontinuum limit. In parti
ular, the step s
aling fun
tions � relate �i(L1) to �i(L2). Aswe will see below, at �rst order in 1=mb, two mat
hing observables �1;�2 are suÆ
ientif we 
onsider the spin averaged B-meson mass.The strategy requires all 
onsidered observables to be a

urately des
ribed by the1=mb expansion. Naive 
ounting estimates the a

ura
y of the quark mass as � � �2m2band � � 1L21m2b . For a typi
al QCD s
ale � � 400MeV both these terms yield thesame, very small, estimate. In [22℄ the 1=mb expansion was tested for an even smallerL = L0 = L1=2 and found to be well behaved, as it is also the 
ase in perturbationtheory [23℄. Here we will have additional 
ross 
he
ks by 
hoosing di�erent quantities�i in the mat
hing step.In Se
t. 2 we will go through the de�nition of the e�e
tive theory in order to �xsome notations and give rules how the 1=mb expansion is implemented in pra
ti
e. Wealso dis
uss 
orrelation fun
tions in the S
hr�odinger fun
tional [24, 25℄, whi
h de�nesour �nite volume geometry. These 
orrelation fun
tions are then used in Se
t. 3 to formsuitable dimensionless observables �i, followed by a se
tion whi
h lists the step s
alingfun
tions. Se
t. 4 dis
usses the �nal formula for the RGI b-quark mass Mb. Numeri
alresults for all quantities in the quen
hed approximation are dis
ussed in Se
t. 5. Thisin
ludes also results from an alternative strategy as a 
he
k on the smallness of the1=m2b terms.2 Heavy quark e�e
tive theory on the latti
eWe start from the Ei
hten Hill stati
 quark Lagrangian [26℄, using the notation of[27℄, but setting the mass 
ounter term Æm to zero. Its e�e
t is taken into a

ountin the overall energy shift mbare between the e�e
tive theory and QCD. Thus mbare isregularization dependent with a � g20=a divergen
e. For the sake of a light notation,we also drop the supers
ript W [27℄ for the di�erent latti
e dis
retizations of the stati
Lagrangian, but in the numeri
al 
omputations these di�erent versions will be used andreferred to exa
tly as in that referen
e. We remind the reader that they di�er only bythe 
hoi
e of the 
ovariant derivative D0.The terms of �rst order in 1=mb are introdu
ed exa
tly as in [1℄, but we use aslightly di�erent notation whi
h is 
onvenient when one does not go beyond that order.2



2.1 FormulationThe lowest order (stati
) Lagrangian,Lstat(x) =  h(x)D0  h(x) ; (2.1)is written in terms of the ba
kward 
ovariant derivative D0 as in [27℄ and the 4-
omponent heavy quark �eld subje
t to the 
onstraints P+ h =  h ;  hP+ =  h withP+ = (1 + 
0)=2. At the �rst order we write the HQET LagrangianLHQET(x) = Lstat(x) + L(1)(x) ; (2.2)L(1)(x) = �!spinOspin(x)� !kinOkin(x) ; (2.3)Ospin(x) =  h(x)� �B h(x) Okin =  h(x)D2 h(x) ; (2.4)su
h that the 
lassi
al values for the 
oeÆ
ients are !kin = !spin = 1=(2mb). We usethe dis
retized version ��B =Pk;j �kj bFkj=(2i) ; with �kj and the latti
e �eld tensor bFde�ned in [28℄. The kineti
 term D2 is represented by the nearest neighbor 
ovariant3-d Lapla
ian. The e�e
tive theory is expe
ted to be renormalizable at ea
h (�xed)order in 1=mb if (and only if) path integral expe
tation values are de�ned by expandingthe path integral weight as [1℄exp(�a4Xx [LHQET(x) + Llight(x)℄) = exp(�a4Xx [Lstat(x) + Llight(x)℄) (2.5)� �1 + a4Xx [!spinOspin(x) + !kinOkin(x)℄� :For 
orrelation fun
tions of some multilo
al �elds O this meanshOi = hOistat + !kina4Xx hOOkin(x)istat + !spina4Xx hOOspin(x)istat (2.6)� hOistat + !kinhOikin + !spinhOispin ; (2.7)where hOistat denotes the stati
 expe
tation value with Lagrangian Lstat(x) +Llight(x).All terms 
omposed of just the relativisti
 quarks and the gauge �elds are summarizedin Llight(x). Note that as one performs the Wi
k 
ontra
tions of the heavy quark �eld,the 1=mb terms Okin(x);Ospin(x) leave behind insertions in the stati
 heavy quark prop-agators. From the point of view of renormalization all terms in eq. (2.6) are 
orrelationfun
tions in the stati
 e�e
tive theory, whi
h is power 
ounting renormalizable.The above form assumes that O 
ontains all 1=mb terms needed to represent thelo
al �elds in the e�e
tive theory. A relevant example is the time 
omponent of theheavy light axial 
urrent. In the e�e
tive theory it is represented asAHQET0 (x) = ZHQETA [Astat0 (x) + 
HQETA ÆAstat0 (x)℄ ; (2.8)Astat0 (x) =  l(x)
0
5 h(x) ; (2.9)ÆAstat0 (x) =  l(x)12( �ri+ �r�i)
i
5 h(x) : (2.10)3



Later we will also use the spa
e 
omponents of the ve
tor 
urrent represented byV HQETk (x) = ZHQETV [V statk (x) + 
HQETV ÆV statk (x)℄ ; (2.11)V statk (x) =  l(x)
k h(x) ; (2.12)ÆV statk (x) = � l(x)12( �r i+ �r�i)
i
k h(x) : (2.13)We have 
hosen V statk ; ÆV statk su
h that they are exa
tly related to Astat0 ; ÆAstat0 by a spinrotation.The 
oeÆ
ients !kin; !spin; ZHQETA ; 
HQETA ; ZHQETV ; 
HQETV are fun
tions of the bare
oupling g0 and of the heavy quark mass in latti
e units. They represent bare parametersof the e�e
tive theory, whi
h are to be �xed by mat
hing to QCD. Just like !kin; !spin,the 
oeÆ
ients 
HQETA ; 
HQETV are of order 1=mb, while we may writeZHQETA = ZstatA + Z(1)A ; with Z(1)A = O(1=mb) ; (2.14)and similarly for ZHQETV 1. Note that in the expansion to �rst order, terms su
h as!kin
HQETA / 1=m2b are to be dropped.Below we will 
onsider an example and dis
uss that indeed the bare parameters!kin; !spin; ZHQETA ; 
HQETA ; ZHQETV ; 
HQETV and mbare are suÆ
ient to absorb all diver-gen
es in the e�e
tive theory at this order in 1=mb.2.2 1=mb expansion in a geometry without boundariesIn order to illustrate further how the expansion works, we 
onsider a two-point fun
tionof a 
omposite �eld in a spa
e-time without boundaries, i.e. with periodi
 boundary
onditions or in in�nite volume. We 
hoose the exampleCAA(x0) = Z2Aa3Xx DA0(x)(A0)y(0)E (2.15)with the heavy-light axial 
urrent in QCD, A� =  l
�
5 b, and ZA ensuring the nat-ural normalization of the 
urrent 
onsistent with 
urrent algebra [29, 30℄. The 1=mbexpansion readsCAA(x0) = e�mbarex0(ZHQETA )2a3Xx hhAstat0 (x)(Astat0 (0))yistat (2.16)+!kin hAstat0 (x)(Astat0 (0))yikin + !spinhAstat0 (x)(Astat0 (0))yispin+ 
HQETA hAstat0 (x)(ÆAstat0 (0))yistat + 
HQETA hÆAstat0 (x)(Astat0 (0))yistati� e�mbarex0(ZHQETA )2 hCstatAA (x0) + !kinCkinAA(x0) + !spinCspinAA (x0)+
HQETA [CstatÆAA(x0) + CstatAÆA(x0)℄i (2.17)1 If O(a) improvement is desired in the stati
 approximation, there are also a ÆAstat0 , a ÆV statk 
or-re
tions to the 
urrents. They are not relevant in the present dis
ussion but will be taken into a

ountwhen ne
essary. 4



up to terms of order 1=m2b. As mentioned in the introdu
tion, the mass shift mbare =O(mb) in
ludes an additive mass renormalization. It is also split up asmbare = mstatbare +m(1)bare ; withm(1)bare = O(1=mb) ; (2.18)and the expansion e�mbare x0 � e�mstatbare x0(1� x0m(1)bare) is understood.For illustration we 
he
k the self 
onsisten
y of eq. (2.17). The relevant question
on
erns renormalization, namely: are the \free" parameters mbare : : : 
HQETA suÆ
ientto absorb all divergen
es on the r.h.s.? We 
onsider the most diÆ
ult term, CkinAA(x0).A

ording to the standard rules of renormalization of 
omposite operators, it is renor-malized as�CkinAA�R(x0) = e�mstatbare x0�ZstatA �2a7Xx; z DAstat0 (x) (Astat0 (0))y �Okin�R(z)Estat +C.T. ;(2.19)where C.T. denotes 
onta
t terms to be dis
ussed shortly. The renormalized operator�Okin�R(z) involves a subtra
tion of lower dimensional ones,�Okin�R(z) = ZOkin�Okin(z) + 
1a  h(z)D0 h(z) + 
2a2  h(z) h(z)� ; (2.20)written here in terms of dimensionless 
i. Sin
e we are interested in on-shell observables(x0 > 0 in eq.(2.19)), we may use the equation of motion D0 h(z) = 0 to eliminate these
ond term. The third one, 
2a2 h(z) h(z), is equivalent to a mass shift and only 
hangesm(1)bare, whi
h is hen
e quadrati
ally divergent 2. Thus all terms whi
h are needed for therenormalization ofOkin are present in eq. (2.17). It remains to 
onsider the 
onta
t termsin eq. (2.19). They originate from singularities in the operator produ
ts Okin(z)Astat0 (x)as z ! x (and Okin(z)�Astat0 �y(0) as z ! 0). Using the operator produ
t expansionthey 
an be represented as linear 
ombinations of Astat0 (x) and ÆAstat0 (x). Su
h termsare 
ontained in eq. (2.17) in the form of CstatAA ; CstatÆAA and CstatAÆA 3.We 
on
lude that all terms whi
h are needed for the renormalization of CkinAA(x0)are present in eq. (2.17); the parameters may thus be adjusted to absorb all in�nitiesand with properly 
hosen 
oeÆ
ients the 
ontinuum limit of the r.h.s. is expe
ted toexist. The basi
 assumption of the e�e
tive �eld theory is that on
e the �nite parts ofthe 
oeÆ
ients have been determined by mat
hing a set of observables to QCD, these
oeÆ
ients are appli
able to any other observables.2Using the expli
it form of the stati
 propagator, eq. (2.4) of referen
e [27℄, one 
an 
he
k that indeeda3Px DAstat0 (x) (Astat0 (0))ya4Pz  h(z) h(z)Estat = x0CstatAA (x0).3 Astat0 (x) and ÆAstat0 (x) are the only operators of dimension 3 and 4 with the 
orre
t quantumnumbers. Higher dimensional operators 
ontribute only terms of order a. Note that the Astat0 (x) term ispower divergent � 1=(amb). This divergen
e is absorbed by a power divergent 
ontribution to ZHQETA(at order 1=mb). 5



The B-meson mass is given by CAA(x0) in large volume viamB = � limx0!1 �0 + ��02 logCAA(x0) ; (2.21)with �0f(x0) = 1a [f(x0 + a)� f(x0)℄ ; ��0f(x0) = 1a [f(x0)� f(x0 � a)℄ : (2.22)Inserting the HQET expansion we derivemB = mstatB +m(1)B ; (2.23)with mstatB = mstatbare +Estat ; Estat = � limx0!1 �0 + ��02 logCstatAA (x0) ; (2.24)m(1)B = m(1)bare + !kinEkin + !spinEspin ; (2.25)Ekin = � limx0!1 �0 + ��02 �CkinAA(x0)=CstatAA (x0)� ; (2.26)Espin = � limx0!1 �0 + ��02 �CspinAA (x0)=CstatAA (x0)� : (2.27)Here the terms / 
HQETA of eq. (2.17) do not 
ontribute. They are proportional tothe derivative of ratios CstatÆAA(x0)=CstatAA (x0). At large x0 these ratios approa
h a 
on-stant sin
e ÆAstat0 has the same quantum numbers as Astat0 . Using the transfer matrixformalism (with normalization hBjBi = 1), one further observes thatEkin = �hBja3Xz Okin(0; z)jBistat ; Espin = �hBja3Xz Ospin(0; z)jBistat : (2.28)As expe
ted, only the parameters of the a
tion are relevant in the expansion of a hadronmass. In the above relations mstatbare absorbs a linear divergen
e of Estat and m(1)bare aquadrati
 divergen
e of Ekin.Going through the same steps in the ve
tor 
hannel and using the spin symmetryof the stati
 a
tion is one way to see that the 
ombinationmavB � 14[mB + 3mB� ℄ = mbare +Estat + !kinEkin (2.29)is independent of !spin. It is instru
tive to represent this equation in a di�erent way,subtra
ting the 1=a (and 1=a2) divergen
es of Estat (and Ekin). In this way we havemavB = m(0a)B +m(0b)B +m(1a)B +m(1b)B ; (2.30)m(0a)B = mstatbare +Esubstat ; (2.31)m(0b)B = Estat �Esubstat ; (2.32)m(1a)B = m(1)bare + !kinEsubkin ; (2.33)m(1b)B = !kin[Ekin �Esubkin ℄ ; (2.34)6



with �nite terms m(0a)B ;m(0b)B ;m(1a)B ;m(1b)B . Our strategy, des
ribed in the introdu
tion
an be seen as a way of determining the 
oeÆ
ient !kin as well as the subtra
tionsEsubstat; Esubkin from �nite volume 
omputations in QCD and HQET. Finite parts in thesubtra
tion terms do of 
ourse depend on the detailed 
hoi
e of kinemati
al parameterssu
h as the mat
hing volume, but the end result is unique up to terms of order 1=m2b.Note that by the same logi
s, the order 1=mb term, m(1a)B +m(1b)B , is not unique butdepends on the details of the strategy.Sin
e the predi
tion eq. (2.29) requires only the knowledge of two parameters, wealso need only two �nite volume observables to perform the mat
hing with QCD. TheS
hr�odinger fun
tional is parti
ularly useful to �nd suitable observables [1, 22, 31℄. Wepro
eed to dis
uss the 1=mb expansion in this situation.2.3 S
hr�odinger fun
tional 
orrelation fun
tionsThe pure gauge S
hr�odinger fun
tional has thoroughly been dis
ussed in [24℄, relativisti
and stati
 quarks were introdu
ed in [25℄ and [28℄. In parti
ular in the last referen
ealso Symanzik O(a)-improvement was dis
ussed. The improvement of the S
hr�odingerfun
tional requires the addition of dimension four lo
al 
omposite �elds lo
alized atthe boundaries [32℄. However, it turns out that there are no dimension four 
omposite�elds whi
h involve stati
 quarks �elds and whi
h are 
ompatible with the symmetriesof the stati
 a
tion and the S
hr�odinger fun
tional boundary 
onditions and whi
h donot vanish by the equations of motion. Thus there are no O(a) boundary 
ounter termswith stati
 quark �elds. For the same reason there are also no O(1=mb) boundary termsin HQET. This then means the HQET expansion of the boundary quark �elds �; �� istrivial up to and in
luding 1=mb terms.For details of the boundary 
onditions as well as the de�nition of the �elds �; ��we refer to [28℄, where also our notation is explained. For a general understanding itis, however, suÆ
ient to note a few fa
ts. In spa
e the fermion �elds are taken to beperiodi
 up to a phase, (x+ k̂L) = ei� (x) ;  (x+ k̂L) = e�i� (x) ; (2.35)with the same phase � for all quark �elds, whether relativisti
 or des
ribed by HQET.In time we take homogeneous Diri
hlet boundary 
onditions at x0 = 0 and x0 = T [28℄.Correlation fun
tions 
an be formed from 
omposite �elds in the bulk, 0 < x0 < T ,and boundary quark �elds � ; ��. In QCD, 
orrelation fun
tions in the pseudos
alar andve
tor 
hannel are fA(x0; �) = �a62 Xy;z 
(AI)0(x) �b(y)
5�l(z)� ; (2.36)kV(x0; �) = �a66 Xy;z;k 
(VI)k(x) �b(y)
k�l(z)� : (2.37)7



The O(a) improved 
urrents AI; VI 
an be found in [1℄. Furthermore we 
onsider bound-ary to boundary 
orrelation fun
tionsf1(�) = � a122L6 Xu;v;y;z 
� l 0(u)
5� 0b(v) �b(y)
5�l(z)� ; (2.38)k1(�) = � a126L6 Xu;v;y;z;k 
� l 0(u)
k� 0b(v) �b(y)
k�l(z)� : (2.39)Their renormalization is standard [33℄, for example[fA℄R (x0; �) = ZAZ2� fA(x0; �) ; [f1℄R (�) = Z4� f1(�) ; (2.40)with Z� a renormalization fa
tor of the relativisti
 boundary quark �elds.In 
omplete analogy to the 
ase of a manifold without boundary we 
an write downthe expansions to �rst order in 1=mb. They read[fA℄R = ZHQETA Z�hZ�e�mbarex0 nf statA + 
HQETA f statÆA + !kinfkinA + !spinf spinA o ;(2.41)[kV℄R = ZHQETV Z�hZ�e�mbarex0 nkstatV + 
HQETV kstatÆV + !kinkkinV + !spinkspinV o ;(2.42)= �ZHQETV Z�hZ�e�mbarex0 nf statA + 
HQETV f statÆA + !kinfkinA � 13!spinf spinA o ;[f1℄R = Z2�hZ2� e�mbareT nf stat1 + !kinfkin1 + !spinf spin1 o ; (2.43)[k1℄R = Z2�hZ2� e�mbareT nf stat1 + !kinfkin1 � 13!spinf spin1 o : (2.44)Apart from f statÆA (x0; �) = �a62 Xy;z 
ÆAstat0 (x) �h(y)
5�l(z)� (2.45)the labeling of the di�erent terms follows dire
tly the one introdu
ed in eq. (2.7). Wehave used identities su
h as fkinA = �kkinV ; f spinA = 3kspinV . As a simple 
onsequen
e ofthe spin symmetry of the stati
 a
tion, these are valid at any latti
e spa
ing.3 Finite volume observables and step s
aling fun
tions3.1 ObservablesWe 
on
entrate on a strategy based on the 
orrelation fun
tions f1; k1 alone. This isadvantageous, sin
e the additional 
oeÆ
ients 
HQETA ; 
HQETV in eq. (2.41), eq. (2.42) areavoided. Apart from the b-quark, we set the masses of all quarks to zero.In terms of the spin-averaged 
ombination,F1(L; �) = 14� log f1(�) + 3 log k1(�)� ; (3.1)8



we form R1(L; �1; �2) = F1(L; �1)� F1(L; �2) at T = L=2 (3.2)�1(L; �0) = ��T + ��T2 F1(L; �0) at T = L=2 : (3.3)Note that the boundary quark wave fun
tion renormalization 
an
els in R1 and in �1.They are thus �nite after renormalization of the parameters of the Lagrangian.The dimensionless observables,�1(L;Mb) = R1(L; �1; �2)�Rstat1 (L; �1; �2) ; (3.4)�2(L;Mb) = L�1(L; �0) ; (3.5)Rstat1 (L; �1; �2) = log �f stat1 (L; �1)=f stat1 (L; �2)� at T = L=2 (3.6)are parametrized in terms of the RGI mass of the b-quark,Mb. They have a parti
ularlysimple 1=mb expansion�1(L;Mb) = !kinRkin1 (L; �1; �2) ; (3.7)�2(L;Mb) = L �mbare + �stat1 (L; �0) + !kin�kin1 (L; �0)� ; (3.8)whi
h involvesRkin1 (L; �1; �2) = fkin1 (L; �1)f stat1 (L; �1) � fkin1 (L; �2)f stat1 (L; �2) at T = L=2 ; (3.9)�stat1 (L; �0) = ��T + ��T2 log f stat1 (�0) at T = L=2 ; (3.10)�kin1 (L; �0) = ��T + ��T2 [fkin1 (�0)=f stat1 (�0)℄ at T = L=2 : (3.11)The �0; �1; �2 dependen
e of �i is not expli
itly written, but will of 
ourse be relevantin the numeri
al results. For the reader familiar with [1, 34℄, we point out that �1di�ers from � whi
h was used in those referen
es. Note that in eq. (3.4) we subtra
tthe stati
 term. This simpli�es subsequent formulae. In fa
t, whenever su
h a lowestorder 
ontribution is universal (in the sense of having a universal 
ontinuum limit) andindependent of an HQET parameter, it will be 
onvenient to subtra
t it. Despite thissubtra
tion, we refer to �1 as an observable in QCD.The reader may be surprised that we introdu
e the quantity �1 whi
h 
ontains a(dis
retized) derivative with respe
t to the time extent, T . Its MC evaluation requirestwo separate simulations 4. However, obviously a quantity of order mb is needed andthis is obtained from some logarithmi
 derivative of a 
orrelation fun
tion. Boundary-to-boundary 
orrelation fun
tions are then very 
onvenient sin
e one does not have todeal with the 1=mb 
orre
tions to the 
urrents. It is a useful feature of the S
hr�odingerfun
tional that su
h gauge invariant 
orrelation fun
tions are available.4 In App. C we dis
uss a di�erent strategy, whi
h is based on the x0-derivative of fA and thus requiresless simulations. Note, however, that these additional simulations do not represent a signi�
ant e�ort.9



3.2 Step s
aling fun
tionsWe turn to the relations between �i(L;Mb) and �i(2L;Mb) in the e�e
tive theory.The dimensionful variable L is repla
ed by the S
hr�odinger fun
tional renormalized
oupling �g2(L) [35℄ over whi
h we have good 
ontrol in numeri
al 
omputations [20℄.Straightforward substitution yields�1(2L;Mb) = �kin1 (u)�1(L;Mb) ; (3.12)�2(2L;Mb) = 2�2(L;Mb) + �m(u) + �kin2 (u)�1(L;Mb) ; (3.13)where always u = �g2(L). Our 
ontinuum step s
aling fun
tions � (with any subs
riptsor supers
ripts) are de�ned in terms of those at �nite latti
e spa
ing as�(u) = lima=L!0�(u; a=L) : (3.14)At �nite latti
e spa
ing we have�kin1 (u; a=L) = Rkin1 (2L; �1; �2)Rkin1 (L; �1; �2) ����u=�g2(L) ; (3.15)�kin2 (u; a=L) = 2L [�kin1 (2L; �0)� �kin1 (L; �0)℄Rkin1 (L; �1; �2) ����u=�g2(L) ; (3.16)�m(u; a=L) = 2L ��stat1 (2L; �0)� �stat1 (L; �0)�u=�g2(L) : (3.17)The above equations are easily derived. In a �rst step, just from the 1=mb expansions of�i, one obtains them at a given resolution a=L or equivalently at �xed bare 
oupling, g0.One then uses that �i(L;Mb) are dimensionless physi
al observables with a 
ontinuumlimit. Sin
e the self energy of a stati
 quark 
an
els in �m, also that quantity has a�nite 
ontinuum limit. Thus the 
ontinuum limit of the step s
aling fun
tions �m;�kiniexists and eqs.(3.12,3.13) 
an be written in terms of 
ontinuum quantities, as we havedone.4 Mb in
luding 1=mb 
orre
tionsBefore giving the equation for Mb, we re
all the overall strategy. For L1 � 0:4 fmwe 
ompute �1(L1;Mb);�2(L1;Mb) for a few quark masses around the physi
al one inquen
hed QCD. It is understood that the 
ontinuum limit is rea
hed by an extrapolationand with a suitable interpolation of �i in Mb, these quantities 
an be 
onsidered to beknown as a fun
tion of Mb. With the step s
aling fun
tions des
ribed in the previousse
tion and 
omputed in the e�e
tive theory, we then arrive at �1(L2;Mb);�2(L2;Mb),where L2 = 2L1. It remains to express the spin averaged B-meson mass mavB in termsof �1(L2;Mb);�2(L2;Mb). 10



To this end, we straightforwardly 
ombine eqs. (3.7,3.8) with eq. (2.29) and obtainLmavB = �2(L;Mb) + L[Estat � �stat1 (L; �0)℄ + L[Ekin � �kin1 (L; �0)℄Rkin1 (L; �1; �2) �1(L;Mb) :(4.1)We now set L = L2 in this equation and insert eq. (3.13). In the form of eq. (2.30) wethen have L2m(0a)B (Mb) = �m(u1) + 2�2(L1;Mb) (4.2)L2m(0b)B = L2[Estat � �stat1 (L2; �0)℄ ; (4.3)L2m(1a)B (Mb) = �kin2 (u1)�1(L1;Mb) ; (4.4)L2m(1b)B (Mb) = L2Ekin � �kin1 (L2; �0)Rkin1 (L2; �1; �2) �kin1 (u1)�1(L1;Mb) ; (4.5)where u1 = �g2(L1) ; L2 = 2L1 : (4.6)The subtra
tion of power divergen
es in eq. (2.32), eq. (2.34) are Esubstat = �stat1 (L2; �0),Esubkin = �kin1 (L2; �0) and �kin1 (u1)�1(L1;Mb)=Rkin1 (L2; �1; �2) is a representation of thebare parameter !kin in eq. (2.34). The other parts, m(0a)B ;m(1a)B , are 
omputable entirelyin �nite volume.The step s
aling fun
tions � have been dis
ussed before. They 
an be 
omputedwith latti
e spa
ings su
h that a=L1 is reasonably small, say below 1=6. Of 
ourse theyshould be extrapolated to the 
ontinuum. We work with latti
e spa
ings a � 0:07 fmin this step. The relativisti
 observables �i(L1;Mb) ; i = 1; 2 are 
omputed for a �0:02 fm, where a relativisti
 b-quark 
an be des
ribed by the O(a)-improved Wilsona
tion with 
ontrolled a2-e�e
ts. Finally, the 
ombinations L2[Estat��stat1 (L2; �0)℄ andL2Ekin��kin1 (L2;�0)Rkin1 (L2;�1;�2) are 
omputed for latti
e spa
ings of a � 0:1 fm su
h that �nite sizee�e
ts in Estat and Ekin are negligible on latti
es with an a�ordable number of points.The mass of the b-quark is obtained from eq. (2.30) by expandingMb =M (0)b +M (1)b ; (4.7)where M (0)b is the solution of the stati
 equationmavB = m(0a)B (M (0)b ) +m(0b)B (M (0)b ) (4.8)and the 1=mb 
orre
tion isM (1)b = � 1S �m(1a)B (M (0)b ) +m(1b)B (M (0)b )� (4.9)11
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Figure 1: Continuum extrapolation of �2(L1;Mb), for z = 10:4 ; 12:1 ; 13:3 from bottom to top. Theerrors in the relation between bare quark mass emq and the RGI mass M are translated into errors in�2. The g0{independent part of that error is in
luded after [31℄ the 
ontinuum extrapolation (left sideerror bar). On the right, the equivalent in the alternative strategy is shown for �0 = 1=2 (see App. C).with S = ddMb �m(0a)B (Mb) +m(0b)B (Mb)� = ddMb [m(0a)B (Mb)� : (4.10)We �nish the dis
ussion of the strategy with a remark on the dependen
e on themass of the light quarks. This is relevant be
ause it is of 
ourse better to 
onsider thespin-averaged Bs quark mass in eq. (2.29); the ne
essary large volume 
omputations areeasier than for the Bd meson. In the quen
hed approximation the parameters in the a
-tion mbare; !kin are independent of the light quark mass.5 Sin
e our strategy determinesthem through �nite volume 
omputations, it follows that in all these 
omputations thelight quark mass may be set to zero, a 
onvenient 
hoi
e. Only Ekin and Estat are thento be 
omputed at the mass of the light quark of the meson who's (spin averaged) massis 
onsidered.5 ResultsWe have performed a numeri
al 
omputation in the quen
hed approximation, using theO(a) improved Wilson a
tion [32, 41, 42℄. The box size L2 is 
hosen as L2 = 1:436r0,5 In general, Æm (and hen
e also mbare) will 
ontain a term like b(g0)ml, where for simpli
ity the lightquarks are assumed to be degenerate with mass ml. Obviously, b(g0) = O(g40) does, however, vanish forNf = 0. As a renormalization term odd in ml, it is also absent for twisted mass latti
e QCD [36℄ andQCD with exa
t 
hiral symmetry [37{40℄. 12
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Figure 2: Continuum extrapolation of �1(L1;Mb), separately for R1(L1; 1=2; 1) in QCD (left) andfor Rstat1 (L1; 1=2; 1) in the stati
 approximation (right). Cir
les denote results with a
tion HYP1 andsquares, displa
ed slightly for visibility, are from a
tion HYP2. The 
orresponding 
ontinuum extrapo-lation lines are slightly displa
ed as well.where r0, de�ned in terms of the stati
 quark potential [43℄, has a phenomenologi
alvalue of r0 � 0:5 fm. From [20℄ we know the S
hr�odinger fun
tional 
oupling �g2(L1) =�g2(L2=2) � 3:48. Given the knowledge of r0=a as a fun
tion of g0 of Ref. [44℄ and thatof the renormalized 
oupling [20℄, it is then 
onvenient to �x g0 in di�erent ways forthe di�erent steps of the 
al
ulation. The di�eren
es are of 
ourse only a-e�e
ts whi
hdisappear in the 
ontinuum extrapolations. We give more details below. We will takethe un
ertainties in the relations �g2(L1) � 3:48 and �g2(L1=4) � 1:8811 (whi
h we needlater) into a

ount in the very end.In order to 
omplete our de�nitions, we further 
hoose �0 = 0 and �1; �2 2 f0; 1=2; 1g.The di�erent values of �1; �2 o�er the possibility to 
he
k whether our �nal results areindependent of these arbitrary parameters as they should be up to small 1=m2b terms.Simulation parameters as well as raw results are listed in tables in App. A and B.5.1 QCD observablesFor this part of the 
omputation, we determined the bare parameters as in [31℄: g0 is�xed by requiring �g2(L1=4) = 1:8811 for given resolutions a=L. The PCAC mass of thelight quark, de�ned exa
tly as in that referen
e, is set to zero. Our heavy quark massesare 
hosen su
h that z =Mb L1 � 10� 13 . The bare parameters are listed in Table 3.We fo
us our attention dire
tly on the 
ontinuum extrapolations. As an examplewe show �1(Mb; L1) and �2(Mb; L1) in Fig. 2 and Fig. 1. Note that for the stati
subtra
tion Rstat1 (L1; 1=2; 1), displayed on the right of Fig. 2, our latti
e spa
ings are13



roughly a fa
tor three larger, sin
e in the e�e
tive theory we only have to respe
ta=L1 � 1, not aMb � 1 (for details see App. A). Data have been obtained for twostati
 a
tions, HYP1 and HYP2 [27℄. In �tting them to the expe
ted a-dependen
e,their 
ontinuum limit value is 
onstrained to be independent of the a
tion, but the a2slopes are of 
ourse di�erent. The data for the di�erent a
tions are highly 
orrelated. Asin all su
h 
ases, the errors of the 
ontinuum limit are 
omputed from ja
knife samples.For values of �i whi
h di�er from the 
hoi
e made in the �gures, the a-dependen
eis very similar. In all these 
ases we �nd that extrapolations linear in a2 using all fouravailable latti
e spa
ings are 
ompatible with the ones where the data point at largestlatti
e spa
ing is ignored. We take the extrapolations with three points as our resultsfor further analysis, sin
e they have the more 
onservative error bars. The 
ontinuumlimits are listed together with the raw numbers in Tables 6 and 4. From a �t of the
ontinuum �2(z) to a linear fun
tion, we then extra
t the slopeS = ddz�2 = 0:61(5) (5.1)and we are done with the mat
hing. The rest of the numeri
al 
omputations is 
arriedout in the e�e
tive theory.5.2 HQET step s
aling fun
tionsNext we dis
uss the 
onne
tion of �i(L1;Mb) to �i(L2;Mb), L2 = 2L1. It is given bythe step s
aling fun
tions of Se
t. 3.2. The bare parameters used in their 
omputationare des
ribed in App. A, and the values at �nite resolution a=L1 are given in Tables8-10 6.At lowest order in 1=mb, only �m 
ontributes. In its 
ontinuum extrapolation(Fig. 3, Table 8) we allow for a slope in a2, although the data are 
ompatible with avanishing slope. Note that the absolute error of �m is negligible in 
omparison to twi
ethe one of �2 (see Fig. 1) to whi
h it is added in eq. (4.2). In fa
t the un
ertainty in�m 
orresponds to an error of only 5MeV in the b-quark mass, illustrating the possiblepre
ision in the stati
 e�e
tive theory with these a
tions [27, 45℄.A relevant question is how the pre
ision deteriorates when one in
ludes the �rstorder 
orre
tions in 1=mb. Then two more step s
aling fun
tions 
ontribute. In Fig. 4,we illustrate how the 
ontinuum limit of �kin1 is obtained. Here we have to allow for alinear dependen
e on the latti
e spa
ing, sin
e the theory is not O(a) improved at thelevel of the 1=mb 
ontributions [1℄. Taking the more 
onservative �t with only threepoints, we arrive at the 
ontinuum limit listed in Table 9 for all 
ombinations �1; �2.In eq. (4.5), �kin1 is multiplied by small numbers (of order 1=mb). This means that itserror will be negligible in the overall error budget.Instead of �kin2 we show dire
tly the 
ontinuum extrapolation of m(1a)B , eq. (4.4).As for �m, the data shows no signi�
ant a{dependen
e. Nevertheless, in order to have6 For �m;�kin2 the 
oarsest resolution 
onsidered is a=L1 = 8. Due to the derivative �T at T = L=2,smaller values of L1=a would involve a very short time separation.14
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Figure 3: Continuum extrapolation of �m and e�m.a realisti
 error estimate, we allow for a linear slope in a (Fig. 5). In Table 10 we listthe raw numbers for �kin2 as well as the extra
ted 
ontinuum limit for further analysis.5.3 Large volume matrix elements and MbThe last missing pie
es in eq. (2.30) are the large volume stati
 energy Estat, eq. (2.24),and the matrix element of the kineti
 operator Ekin, eq. (2.28). Here, in 
ontrast to therest of our numeri
al evaluations, the light quark mass is set to the mass of the strangequark in order to avoid a 
hiral extrapolation. The spin averaged mass of the Bs systemis then to be inserted into eq. (2.29).Although Estat and Ekin 
an be 
omputed with periodi
 boundary 
onditions wehere follow [46℄ and evaluate also these quantities with S
hr�odinger fun
tional boundary
onditions in a large volume of about T � (1:5fm)3, with 1:5fm � T � 3fm (also a 
he
kfor �nite size e�e
ts is 
arried out). The extra
tion is fairly standard, but still 
arehas to be taken to make sure that the ground state 
ontribution is obtained. This isa parti
ularly relevant issue for B-physi
s, be
ause the gap to the �rst ex
ited stateis rather small. We relegate details to App. B and dis
uss immediately the universal
ombinations L2m(0b)B , L2m(1b)B whi
h enter in eq. (2.30). The stati
 
ontribution, shown15
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Figure 5: Latti
e spa
ing dependen
e of L2m(1a)B for Mb = M (0)b . On the left we show m(1a)B asintrodu
ed in Se
t. 4, with �1 = 1=2; �2 = 1. We insert �1 in the 
ontinuum limit, su
h that thelatti
e spa
ing dependen
e is just due to �kin2 . On the right the 
orresponding quantity is shown forthe alternative strategy of App. C, again with 
ontinuum values for e�i. There we set �0 = 1=2 ; �1 =1=2 ; �2 = 1.
16



0 0.01
(a/L

2
)
2

2

2.5

L
2
m

B

(0b)

0 0.01
(a/L

2
)
2

2

2.5

L
2
m

B

(0b)

Figure 6: Latti
e spa
ing dependen
e of L2m(0b)B , details as in Fig. 5.in Fig. 6, is known with very good pre
ision 7. In 
ontrast, the 1=mb 
orre
tion L2m(1b)Bdoes have a noti
eable total un
ertainty (Fig. 7, Table 1). Still, this error is only about50% of the one on 2�2. Note also that this error is almost entirely due to Ekin whi
hmay possibly be 
omputed more pre
isely by other te
hniques [47℄.We now have all pie
es ne
essary to solve the equations for Mb. The stati
 one,eq. (4.8), is illustrated in Fig. 8. The horizontal error band is given by subtra
ting thestati
 pie
es �m + L2m(0b)B from the experimental numbermavB = 5:405GeV : (5.2)The �gure demonstrates again that the main sour
e of error is 
ontained in the QCD
omputation of �2. Finally, by interpolating �i(L1;Mb) to Mb = M (0)b we obtain(�1 = 1=2; �2 = 1)r0M (0)b = 17:25(20) ; M (0)b = 6:806(79)GeV for r0 = 0:5 fm (5.3)r0M (1)b = �0:12(9) ; M (1)b = �0:049(39)GeV for r0 = 0:5 fm (5.4)r0Mb = 17:12(22) ; Mb = 6:758(86)GeV for r0 = 0:5 fm : (5.5)Here the small di�eren
e �g2(L1=4) � 1:8811 as well as the statisti
al un
ertainties in�g2(L1) and L1=r0 have been taken into a

ount, as explained in App. D. Moreover,one 
an see in Table 1 that the �i dependen
e of the 1=mb 
ontribution is absorbed.With �MSr0 = 0:602(48) [35,48℄, the 4-loop � fun
tion and the mass anomalous dimen-sion [49{52℄, we translate Mb =M (0)b +M (1)b to the mass in the MS s
heme at its own7 We show the results given for the stati
 a
tion HYP2. The 
ontinuum extrapolation with a
tionHYP1 looks very similar, but the �t has a smaller �2.17
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Figure 7: Latti
e spa
ing dependen
e of L2m(1b)B , details as in Fig. 5.�1 �2 r0M (1a)b r0M (1b)b0 1/2 -0.06(3) -0.06(8)1/2 1 -0.06(3) -0.06(8)1 0 -0.06(3) -0.06(8)Table 1: RGI results of 1=mb 
orre
tion of the b-quark mass, in units of r0.s
ale, mb(mb) = 4:347(48)GeV ; (5.6)the asso
iated perturbative un
ertainty 
an safely be negle
ted. For 
ompleteness wenote that in the MS s
heme the 1=mb term amounts to �27(22)MeV.5.4 Comparison to results from an alternative strategyAs mentioned earlier, at �rst sight it appears more natural to base the 
omputationof Mb on the logarithmi
 derivative of the spin average of fA and kV as the prime�nite volume quantity. We have not 
hosen this option as our standard strategy sin
ethen three observables are needed for mat
hing. However, it is useful to 
onsider alsothat alternative strategy in order to perform an expli
it 
he
k that 1=m2b terms are assmall as expe
ted. The results 
an be appre
iated without detailed de�nitions of theobservables and step s
aling fun
tions, the interested reader 
an �nd them in App. C.Here we note that within this alternative strategy we a
tually have nine di�erent setsof fe�1; e�2; e�3g. Only one observable, e�1 = �1, is in 
ommon to the two strategies. Forour graphs we have sele
ted (arbitrarily) one 
hoi
e of parameters.18
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al solution of eq. (4.8). On the left hand side, data points are 2�2 and the horizontalerror band is L2mavB � �m � L2[Estat � �stat1 (L2; �0)℄. On the right hand side, the analogous terms areshown for the alternative strategy (�0 = 1=2, see Se
t. 5.4).�1 �2 r0 (M (0)b +M (1a)b +M (1b)b )Main strategy Alternative strategy�0 = 0 �0 = 1=2 �0 = 10 1/2 17.12(22) 17.25(28) 17.23(28) 17.17(32)1/2 1 17.12(22) 17.23(27) 17.21(27) 17.14(30)1 0 17.12(22) 17.24(27) 17.22(28) 17.15(30)Table 2: RGI results of Mb inl
uding the 1=mb 
orre
tion, and 
omparison of the two strategies.First, let us summarize what kind of di�eren
es one expe
ts in su
h a 
omparisonapart from a-e�e
ts. In the order of magnitude 
ounting, we take L�11 � � � 0:5GeVand of 
ourse L2 = 2L1. The mat
hing observables �1;�av are 
onstru
ted to be equal tothe quark mass at the leading order in the HQET expansion. They start to di�er at thenext to leading order, whi
h means by terms of order �. Also their dependen
e on �i isof that magnitude. Sin
e �2(L1;Mb) and ~�3(L1;Mb) have been made dimensionless bymultipli
ation with L1 and L1 happens to be around ��1, the di�eren
es of �2(L1;Mb)and ~�3(L1;Mb) are order one. The step s
aling fun
tions �m; e�m as well as L2m(0b)B areadded to �2 (or ~�3) to obtain L2mB in stati
 approximation. Thus they depend onthe details at the same level, apart from a trivial L2=L1 = 2 fa
tor. Of 
ourse, in thetotal stati
 estimate r0M (0)b this dependen
e is redu
ed to r0Mb � (�=mb)2 � 1=5. Inthe same way, the 1=mb 
orre
tions L2m(1a)B ; L2m(1b)B themselves have a dependen
e onthe mat
hing 
onditions whi
h is L2��2=mb � 1=5 but the �nal result r0Mb in
luding19



these terms is a

urate and unique up to r0 � (�3=mb)2 � 1=50 
orre
tions.We leave it to the reader to 
he
k in Fig. 1 to 7 that these expe
tations are fullysatis�ed by our results 8. In fa
t it appears that our estimate for the expansion pa-rameter, �=mb � 1=10 is quite realisti
. Of 
ourse, to �nd this out requires an expli
it
omputation of the 
orre
tion terms as presented here. In some 
ases, su
h as m(1b)B ,our pre
ision is not good enough to resolve a dependen
e on the mat
hing 
onditions.In the b-quark mass in the stati
 approximation, r0M (0)b (eq. (5.3) and Table 12),the maximum di�eren
e is 0:5(2), whi
h is of the predi
ted order of magnitude. Finally,when we add all 
ontributions together, the results from the alternative strategy, Table 2,are fully in agreement with eq. (5.5). As expe
ted 1=m2b terms are not visible with ourpre
ision. They 
an safely be negle
ted.6 Con
lusionsThe main 
on
lusion of this work is that fully non-perturbative 
omputations in latti
eHQET, as they have been suggested in [1℄, are possible in pra
ti
e. In parti
ular, theun
ertainties in the 1=mb 
orre
tions are smaller than those in the stati
 approximation,despite the fa
t that we numeri
ally 
an
el large a�2 divergen
es in the 1=mb terms.The �nal error in the mass of the b-quark is dominated by the un
ertainty in therenormalization in QCD. Errors due to simulations in the e�e
tive theory 
an almostbe negle
ted in 
omparison.A very ni
e result is the independen
e of the �nal numbers for Mb of the mat
hing
ondition: Table 2 shows that within our reasonably small un
ertainties, we get thesame results for the quark mass for altogether twelve di�erent mat
hing 
onditions.This is expe
ted up to very small terms of order r0Mb � (�=mb)3 � 0:02, whi
h shouldbe 
ompared to our result r0Mb = 17:12(22) � 17:25(28). Here the quoted range is dueto the di�erent mat
hing 
onditions. In the order of magnitude estimates we have madea guess for the typi
al s
ale of � � 0:5GeV. In the stati
 approximation, some of themat
hing 
onditions yield slightly di�ering results for the quark mass in agreement withthe expe
tation for su
h variations of r0Mb � (�=mb)2 � 0:2.Both this expli
it test of the magnitude of the di�erent orders in the expansionand the naive order of magnitude estimate say that 1=m2b 
orre
tions are 
ompletelynegligible.Still, in aspe
ts of the 
omputation, 
onsiderable improvement 
an be envisaged.For example, return to the 1=mb 
ontribution to the B-meson mass Fig. 7. The statis-ti
al errors grow rapidly as one de
reases the latti
e spa
ing. The by far dominatingun
ertainty in the shown 
ombination is the one of the large volume matrix Ekin. It ap-pears worth while to look for improvements, maybe along the line of [53℄. Due to theseerrors, and of 
ourse the missing O(a)-improvement of the theory at order 1=mb [1℄,8 We note in passing that e�m, in 
ontrast to �m, does in prin
iple require an improvement 
oeÆ
ient,
statA [28℄, for O(a)-improvement. It has been set to the 1-loop values from [27℄, but the results are ratherinsensitive to 
statA , so its un
ertainty 
an be negle
ted.20



the 
ontinuum extrapolation is not easy. Fortunately it is still pre
ise enough for thepresent 
ase. It will be very interesting to see 
ases where the 1=mb 
orre
tions arelarger, as it is expe
ted, for example, for FB.Let us now turn to the 
omputed value of mb, eq. (5.6). Starting from a pre
iselyspe
i�ed input, namely r0, mK and (mBs + 3mB�s )=4, the value of Mb is unambiguousin the quen
hed approximation, be
ause these inputs �x the bare 
oupling, strangeand beauty quark masses. We have used the experimental meson masses and r0 =0:5 fm. Our numbers for Mb or mb may then be used as a ben
hmark result for othermethods. Indeed, a 
omparison shows agreement with [54℄ and the re
ent extension ofthat work [55℄ mb = 4:42(7)GeV.Earlier, the review [56℄ quoted mb = 4:30(5)(5)GeV and mb = 4:34(3)(6)GeV,based on stati
 
omputations [57℄ and an extrapolation of NRQCD results to the stati
limit [58℄ respe
tively. A perturbative subtra
tion [18, 59, 60℄ of the linear divergen
eÆm was 
arried out in these stati
 estimates and, of 
ourse, a 
ontinuum extrapolation
ould not be done.However, if other inputs are used, the result may 
hange be
ause r0 is only ap-proximately known and be
ause the quen
hed approximation is not real QCD. A roughidea on the possible 
hanges 
an be obtained by varying r0 by �0:05 fm. This 
hangesmb(mb) by roughly �80MeV.These remarks just serve to stress the obvious ne
essity of performing 
omputationswith Nf > 0. The ALPHA-
ollaboration is presently starting with Nf = 2, wherethe renormalization of the quark mass in QCD is known [21℄. The ne
essary HQET
omputations are not expe
ted to be a big numeri
al 
hallenge, apart from the largevolume B-meson matrix elements: simulations of the S
hr�odinger fun
tional for L � 1 fmare not very demanding with nowadays 
omputing 
apabilities [61℄. Altogether theextension of the present work to full QCD is feasible and should be 
arried out, sin
epresently no better method is known to 
ompute the b-quark mass from latti
e QCD.A
knowledgements. We thank Stephan D�urr for 
ollaboration in the early stagesof this work [62℄. We thank NIC for allo
ating 
omputer time on the APEmille 
om-puters at DESY Zeuthen to this proje
t and the APE group for its help. This work issupported by the Deuts
he Fors
hungsgemeins
haft in the SFB/TR 09.A Finite volume simulationsFor the mat
hing in a �nite volume, we performed one set of simulations of (quen
hed)QCD and one of HQET. In the 
ase of the relativisti
 theory, we used L = ~L1, de�nedby �g2(~L1=4) = 1:8811 9. The parameters of these simulations have been taken from [31℄(see Table 3). The di�eren
e is that here L = ~L1 = 2 ~L0 (and T = L=2 and T = L=2�ain addition to T = L) 
ompared to L = ~L0 in [31℄.9 ~L1 di�ers slightly from L1 de�ned in the main text by L1 = 0:718r0 . This mismat
h is however
orre
ted, as explained later in this appendix and in App. D.21



La � �l �g2(L4 ) ZP(g0; L2 ) bm Z �h20 7:2611 0:134145 1:8811(19) 0:6826(3) �0:621 1:0955 0:1241950:1221190:12048324 7:4082 0:133961 1:8811(22) 0:6764(6) �0:622 1:0941 0:1260550:1245280:12338332 7:6547 0:133632 1:8811(28) 0:6713(8) �0:622 1:0916 0:1279910:1269670:12622240 7:8439 0:133373 1:8811(22) 0:6679(8) �0:623 1:0900 0:1289890:1282140:127656Table 3: Bare parameters used in the 
omputation of the QCD observables for L = ~L1.The parameters for the resolution ~L1=a = 20 
annot be found in the mentionedreferen
e. For that point, the gauge 
oupling � has been 
hosen su
h that �g2(~L1=4) =1:8811 for ~L1=4a = 5, see [20℄. The renormalization 
onstant ZP and �l = �
 havebeen 
omputed here, while bm and Z have been extrapolated from the values in Table 2of [31℄. These fa
tors are put into the relationship between the bare mass mq;h and theRGI mass [20, 63℄, M = hZmmq;h (1 + bmamq;h) ; (A.1)where Zm = Z ZAZP ; and amq;h = 12 � 1�h � 1�
� : (A.2)The renormalization 
onstant ZA(g20) is known non-perturbatively from [30℄, whileh = Mm(�0) = 1:544(14) ; �0 = 2=~L1 ; (A.3)relates the running quark mass in the S
hr�odinger fun
tional s
heme [20℄ at the s
ale�0, to the renormalization group invariant quark mass M 10.For all values of ~L1=a three hopping parameters �h have then been �xed in orderto a
hieve z = ~L1M = 10:4; 12:1; 13:3 : (A.4)We 
olle
t these parameters in Table 3, whereas the results for the quantities neededin the mat
hing step are summarized in Tables 4 and 5. The errors there in
lude system-ati
s due to the un
ertainties in the Z-fa
tors, in parti
ular, the error on the universalfa
tor h has been propagated only after performing the 
ontinuum limit extrapolations.10 In h =M=m(�0) we take the small di�eren
e between the above de�ned ~L0 and the value L0 = L1=2into a

ount. It 
auses a 
hange of less than 1% of the value of h used in [31℄.22



L=a z R1 �2�1 = 0 �1 = 1=2 �1 = 1 �0 = 0�2 = 1=2 �2 = 1 �2 = 020 10:4 0:09795(13) 0:27426(30) �0:37221(42) 7:847(40)20 12:1 0:09512(12) 0:26588(30) �0:36100(43) 9:108(46)20 13:3 0:09336(12) 0:26068(30) �0:35404(43) 10:068(50)24 10:4 0:09958(18) 0:27904(37) �0:37862(52) 7:697(44)24 12:1 0:09689(17) 0:27110(37) �0:36799(52) 8:866(50)24 13:3 0:09528(17) 0:26632(36) �0:36159(50) 9:716(54)32 10:4 0:10157(30) 0:28481(71) �0:38638(93) 7:512(53)32 12:1 0:09897(30) 0:27717(71) �0:37614(92) 8:623(58)32 13:3 0:09744(30) 0:27265(71) �0:37008(92) 9:411(62)40 10:4 0:10283(30) 0:28806(52) �0:39089(76) 7:484(51)40 12:1 0:10027(30) 0:28052(52) �0:38079(75) 8:575(56)40 13:3 0:09876(29) 0:27608(52) �0:37484(74) 9:344(60)CL 10:4 0:10450(44) 0:29297(89) �0:39748(125) 7:341(96)CL 12:1 0:10202(44) 0:28567(90) �0:38769(124) 8:386(102)CL 13:3 0:10058(44) 0:28143(91) �0:38202(124) 9:106(107)Table 4: Simulation results of the �nite volume (L = ~L1) relativisti
 observables neededin our main strategy. The 
ontinuum limits, obtained by linear extrapolation in (a=L)2of the results for L=a � 24, are indi
ated by CL.
L=a z Rav ~�3�1 = 0 �1 = 1=2 �1 = 1 �1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 020 10:4 0:1699(9) 0:4299(12) �0:5998(20) 8:059(37) 8:293(37) 8:993(37)20 12:1 0:1668(9) 0:4198(11) �0:5867(20) 9:315(37) 9:545(37) 10:234(37)20 13:3 0:1649(9) 0:4137(11) �0:5787(19) 10:271(37) 10:500(37) 11:180(37)24 10:4 0:1739(23) 0:4391(31) �0:6130(54) 7:864(39) 8:102(38) 8:822(39)24 12:1 0:1710(23) 0:4295(30) �0:6005(52) 9:027(39) 9:263(38) 9:971(39)24 13:3 0:1693(22) 0:4239(29) �0:5931(51) 9:874(39) 10:109(38) 10:809(38)32 10:4 0:1760(41) 0:4494(48) �0:6254(90) 7:713(43) 7:941(41) 8:661(42)32 12:1 0:1733(40) 0:4403(46) �0:6135(87) 8:818(42) 9:045(41) 9:753(42)32 13:3 0:1717(40) 0:4349(45) �0:6066(85) 9:603(42) 9:828(41) 10:531(42)40 10:4 0:1790(70) 0:4493(72) �0:6283(142) 7:656(45) 7:894(42) 8:624(44)40 12:1 0:1763(68) 0:4403(70) �0:6166(138) 8:743(45) 8:979(42) 9:698(44)40 13:3 0:1747(67) 0:4352(68) �0:6099(136) 9:509(45) 9:744(42) 10:456(44)CL 10:4 0:1801(75) 0:4587(84) �0:6392(159) 7:533(89) 7:765(86) 8:496(88)CL 12:1 0:1776(73) 0:4502(81) �0:6280(154) 8:573(91) 8:805(88) 9:524(89)CL 13:3 0:1761(72) 0:4452(79) �0:6218(151) 9:289(93) 9:519(91) 10:234(92)Table 5: Same as Table 4 in the 
ase of the alternative strategy.23



L=a Rstat1�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP26 0.06936(5) 0.06939(4) 0.18583(7) 0.18591(7) -0.25519(12) -0.25530(11)8 0.07572(6) 0.07574(6) 0.20452(11) 0.20457(11) -0.28024(17) -0.28031(17)10 0.07821(5) 0.07822(5) 0.21246(8) 0.21249(8) -0.29067(13) -0.29071(13)12 0.07934(8) 0.07935(8) 0.21622(13) 0.21625(13) -0.29556(21) -0.29559(20)CL 0.08238(12) 0.22596(21) -0.30835(32)Table 6: Latti
e results of Rstat1 for L = L1. The 
ontinuum limits are obtained by alinear extrapolation in (a=L)2 of the results for L=a � 8.L=a Rstatav�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP26 0.1502(3) 0.1543(3) 0.3562(3) 0.3688(3) -0.5231(6) -0.5231(6)8 0.1544(4) 0.1575(4) 0.3672(4) 0.3765(4) -0.5216(7) -0.5340(8)10 0.1571(5) 0.1595(5) 0.3724(6) 0.3710(6) -0.5295(10) -0.5391(10)12 0.1561(8) 0.1579(8) 0.3729(8) 0.3786(9) -0.5289(15) -0.5365(16)CL 0.1606(6) 0.3827(6) -0.5432(11)Table 7: Latti
e results of Rstatav . The details are the same as in Table 6.Ensembles of roughly 2000 (for ~L1=a = 20) to few hundreds (for ~L1=a = 40) gauge 
on-�gurations have been generated for this part of the 
omputation. The latti
e ~L1=a = 20is not used in the extrapolations but rather to 
he
k for the smallness of higher order
uto� e�e
ts for ~L1=a � 24.Con
erning the simulation of HQET, we have 
omputed the various quantities inthe two required volumes. The �rst one, where we mat
h the e�e
tive theory withQCD, has a spa
e extent L1. The se
ond one is su
h that L2 = 2L1. The value of theS
hr�odinger fun
tional renormalized 
oupling is �xed at �g2(L1) = 3:48, and we haveused the resolutions L1=a = 6; 8; 10; 12. The 
orresponding values of � as well as � = �

an be found in Table A.1 of [1℄. All these quantities are 
omputed with two di�erenta
tions, HYP1 and HYP2. The 
ontinuum values are then obtained by 
onstraining the�ts to give the same values for these a
tions. We note that the results for HYP1 andHYP2 are statisti
ally 
orrelated.For the 
omputation of the step s
aling fun
tions one uses the same �; � and L2=a =2L1=a. All these 
omputations are done with several thousand gauge 
on�gurations.Note that, even if L1 is the same in QCD and in HQET, the typi
al latti
e spa
ingsare mu
h larger in the e�e
tive theory. The results of Rstat1 and Rav 
an be found in24



L=a �m(3:48; a=L)HYP1 HYP28 0.431(11) 0.411(11)10 0.437(11) 0.424(10)12 0.422(16) 0.418(16)CL 0.430(25)Table 8: Latti
e results of the step s
aling fun
tion �m. The bare parameters aredes
ribed in the text. The 
ontinuum limit is obtained by a linear extrapolation in(a=L)2 of the results for L=a � 8.L=a �kin1 (3:48; a=L)�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP26 0.6241(17) 0.6245(11) 0.6219(60) 0.6223(5) 0.6225(8) 0.6228(6)8 0.5790(20) 0.5797(13) 0.5789(65) 0.5793(5) 0.5789(10) 0.5794(7)10 0.5587(47) 0.5586(22) 0.5585(14) 0.5588(9) 0.5586(22) 0.5590(14)12 0.5364(66) 0.5342(39) 0.5424(19) 0.5417(12) 0.5409(30) 0.5398(18)CL 0.457(10) 0.471(3) 0.467(5)Table 9: Latti
e results of the step s
aling fun
tion �kin1 . The 
ontinuum limits areobtained by a linear extrapolation in a=L of the results for L=a � 8.L=a �kin2 (3:48; a=L)�1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0HYP1 HYP2 HYP1 HYP2 HYP1 HYP28 4.81(44) 4.72(32) 1.58(15) 1.55(10) -1.19(11) -1.17(8)10 4.34(58) 4.20(39) 1.43(19) 1.39(13) -1.08(15) -1.04(10)12 4.79(86) 3.98(58) 1.58(28) 1.31(19) -1.19(21) -0.99(14)CL 2.9(1.5) 0.96(50) -0.71(38)Table 10: Same as Table 9 for �kin2 .Tables 6 and 7. The values of the step s
aling fun
tions are 
olle
ted in Tables 8, 9and 10.Finally there are simulations in small volume to obtain the subtra
tions �stat1 (L2)and �kin1 (L2). These are done with L2 = 1:436 r0 and � determined from the knowledgeof r0=a [48℄. The parameters, in
luding � = �
, are listed in Table 6 of [27℄. The valuesof � do of 
ourse agree with the ones employed in the large volume, whi
h we des
ribe25



� �s L3 � T aEstat a2EkinHYP1 HYP2 HYP1 HYP26:0219 0:133849 163 � 24 [32℄ 0:4345(21) 0:4029(32) 0:750(4) 0:774(3)6:0219 0:133849 243 � 32 0:4378(25) 0:4034(20) 0:746(7) 0:776(5)6:2885 0:1349798 243 � 48 0:3295(21) 0:3034(29) 0:643(7) 0:676(5)6:4956 0:1350299 323 � 64 0:2724(20) 0:2461(14) 0:599(10) 0:620(11)Table 11: Parameters of the large volume simulations. Where present, the numbers inbra
kets refer to a se
ond dataset at the same (�; �) values.in the next appendix.B Large volume simulations and extra
tion of matrix elementsThe parameters for the simulations in large volume are 
olle
ted in Table 11 togetherwith the results for Estat and Ekin. The latti
e extension L=a and � are su
h thatL = 4L1 � 3=2 fm ex
ept for the se
ond latti
e where we have L = 6L1 � 2 fm. Thislatti
e is used only to 
he
k for the absen
e of �nite size e�e
ts. We see from Table 11that �nite size e�e
ts are indeed very small, the di�eren
e between the results fromthe L=a = 16 and the L=a = 24 latti
es at � = 6:0219 is 
onsistent with zero withinat most one standard deviation (aEstat from HYP1). The number of 
on�gurationsgenerated ranges from 4300 at � = 6:0219 to 2200 at � = 6:4956 (for the larger volumeat � = 6:0219 we had 1300 
on�gurations). Sin
e our phenomenologi
al input is themass of the (spin averaged) Bs meson, we set � to �s in order to reprodu
e the quen
hedvalue of the strange quark mass from Ref. [64℄, i.e.Msr0 = 0:35(1) ; (B.1)with Ms the renormalization group invariant strange quark mass de�ned as in Ap-pendix A after repla
ing �h by �s.The numbers for Estat and Ekin have been obtained by applying two di�erent �ttingpro
edures to two independent datasets (where available). The quoted errors are su
hthat both the results are 
overed and they therefore provide a reasonable estimate ofthe systemati
s asso
iated with the �ts. We now sket
h these pro
edures.Let us 
onsider in QCD the e�e
tive \mass" �(x0) obtained from the 
orrelationfun
tion Fav(x0) in eq. (C.1) and its quantum-me
hani
al de
omposition�(x0) = ��0 + ��02 Fav = E0 +Ae��x0 + : : : (B.2)where E0 is the energy of the ground state, � is the gap between the ground and the�rst ex
ited states and the dots refer to 
ontributions from higher states. The 1=mb26



expansion reads�(x0) = Estat + !kinEkin + (Astat + !kinAkin)e��statx0(1� !kinx0�kin) + : : := �stat(x0) + !kin�kin(x0) + : : : (B.3)where �stat and �kin are de�ned in analogy to eqs. (3.10, 3.11) in terms of the 
orrelatorsf statA (x0) and fkinA (x0).In the 
orrelation fun
tion fÆA(x0) the same states 
ontribute as in fA(x0). Per-forming again �rst the quantum-me
hani
al de
omposition and then the 1=mb expansionof these 
orrelators, it is easy to see that the ratiosP statA (x0) = f statA (x0)f statÆA (x0) and P kinA (x0) = P statA (x0) � fkinA (x0)f statA (x0) � fkinÆA (x0)f statÆA (x0)� (B.4)have the following formP statA = b1 + b2e��statx0 ; (B.5)P kinA = b3 + b4e��statx0 � b2�kinx0e��statx0 : (B.6)They 
an therefore be used to further 
onstrain �stat and �kin. We are thus lead toperform a 
ombined �t�stat = b5 + b6e��statx0 ; (B.7)�kin = b7 + b8e��statx0 � b6�kinx0e��statx0 ; (B.8)together with eq. (B.5) and (B.6), with non-linear parameters a1 = �stat and a2 = �kinand the linear parameters bi, whi
h 
ontain the desired b5 = Estat and b7 = Ekin.Sin
e the 
orre
tion terms are nevertheless not so easy to 
ompute at the smallerlatti
e spa
ings, we perform the above �t �rst at � = 6:0219 and extra
t a�stat anda2�kin. We then use that these quantities s
ale roughly (i.e. r0�stat �
onstant andr20�kin �
onstant). To implement this, we input the s
aled means as priors [65℄ in ase
ond step where we add �2prior = Xi=1;2 �ai � aprior1 �2(Æapriori )2 ; (B.9)to the standard �2. The un
ertainty Æapriori is taken from the �t result at � = 6:0219.However, in order to remain on the safe side, it is not s
aled but kept 
onstant at thesmaller latti
e spa
ing. Thus Æaprior2 =aprior2 / 1=a2 for example. The 
onstraint due tothe priors be
omes weaker as we approa
h the 
ontinuum.Here and in the following pro
edure the �t range is 
hosen to keep a minimumphysi
al distan
e from the boundaries, namely x0 � tmin � 2r0. The stability of theresults is 
he
ked by varying tmin to tmin � r0=2. As an example we show in �gure 927
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Figure 9: Results for P statA , P kinA , �stat and �kin at � = 6:2885 (HYP2) with the 
orre-sponding fun
tions obtained by the �t.the results for P statA ; P kinA ; �stat and �kin at � = 6:2885. One observes that P statA ; �statprovide very good 
onstraints of the parameters �stat; b2; b6. The remaining ones arethen e�e
tively linear �t parameters. Nevertheless, the error band of Ekin (dashed line)resulting from the �t is not that small.An alternative strategy is used to get a se
ond estimate of Estat at the two 
oarserlatti
e spa
ings, where we have two independent datasets. Exploiting again the remarkbefore eq. (B.4) we 
onstru
t an e�e
tive mass �ÆA from the 
orrelator fÆA(x0) in thevery same way as �stat is obtained from f statA (x0). The idea is to 
ombine the twoe�e
tive masses in order to eliminate the 
ontribution from the �rst ex
ited state andthen perform a �t to a 
onstant (in the mentioned �t range). In pra
ti
e we minimizethe quantity Q = tmaxXx0=tmin ��stat(x0) + ��ÆA(x0)�B�2 ; (B.10)with respe
t to �; B. Finally the weighted average of ��stat(x0) + ��ÆA(x0)� =(1 + �)yields the estimate of Estat. The quality of the result is 
omparable to that obtained in28



the �rst approa
h.C Alternative strategyWe brie
y introdu
e an alternative strategy, based on the 
orrelation fun
tions fA; kVin addition to f1; k1. WithFav(x0; �) = 14 log �� [fA℄R (x0; �)� [kV℄3R (x0; �)� (C.1)we introdu
eRav(L; �1; �2) = Fav(x0; �1)� Fav(x0; �2) at x0 = L=2 ; T = L (C.2)�av(L; �0) = ��0 + ��02 Fav(x0; �0) at x0 = L=2 ; T = L : (C.3)Keeping �1, from the standard strategy, we de�ne the set of observablese�1(L;Mb) = �1(L;Mb) ; (C.4)e�2(L;Mb) = Rav(L; �1; �2)�Rstatav (L; �1; �2) ; (C.5)e�3(L;Mb) = L�av(L; �0) ; (C.6)with the 1=mb expansione�2(L;Mb) = !kinRkinA (L; �1; �2) + 
HQETav RÆA(L; �1; �2) (C.7)e�3(L;Mb) = L �mbare + �stat(L; �0) + !kin�kin(L; �0) + 
HQETav �ÆA(L; �0)� ;(C.8)where due to the spin average the 
ombination
HQETav = 14[
HQETA + 3
HQETV ℄ (C.9)is present. The so far unde�ned terms Rstatav ; RkinA ;�kin; RÆA;�ÆA are straightforwardlyobtained from our de�nitions.The alternative observables 
hange from L to 2L viae�i(2L;Mb) = Xj�i �ij(u) e�j(L;Mb) + Æi3 e�m(u) ; (C.10)�ij(u) = lima=L!0�ij(u; a=L) (C.11)with the step s
aling fun
tions (we drop arguments �1; �2 and u = �g2(L) is understood)
29



�0 r0M (0)b r0M (1a)b r0M (1b)b�1 = 0 �1 = 1=2 �1 = 1 �1 = 0 �1 = 1=2 �1 = 1�2 = 1=2 �2 = 1 �2 = 0 �2 = 1=2 �2 = 1 �2 = 00 17.05(25) 0.17(6) 0.17(6) 0.17(6) 0.02(9) 0.02(8) 0.02(9)1/2 17.01(22) 0.20(7) 0.18(6) 0.19(7) 0.02(10) 0.02(9) 0.02(9)1 16.78(28) 0.34(11) 0.30(7) 0.32(8) 0.06(12) 0.06(9) 0.06(10)Table 12: RGI results of Mb in the stati
 approximation and of the 1=mb 
orre
tionfor the alternative strategy.
�11(u; a=L) = Rkin1 (2L)=Rkin1 (L) = �kin1 (u; a=L) (C.12)�21(u; a=L) = 1Rkin1 (L)fRkinA (2L) �RkinA (L)�22(u; a=L)g (C.13)�22(u; a=L) = RÆA(2L)=RÆA(L) (C.14)�31(u; a=L) = 2Lf�kin(2L) � �kin(L)gRkin1 (L) � �32(u; a=L)RkinA (L)Rkin1 (L) (C.15)�32(u; a=L) = 2L�ÆA(2L) � �ÆA(L)RÆA(L) (C.16)�33(u; a=L) = 2 (C.17)e�m(u) = lima=L!0 2L ��stat(2L)� �stat(L)� : (C.18)The �nal relation for the B-meson mass is eq. (2.30) withL2m(0a)B (Mb) = e�m(u1) + 2 e�3(L1;Mb) ; (C.19)L2m(0b)B (Mb) = L2[Estat � �stat(L2)℄ ; (C.20)L2m(1a)B (Mb) = �31(u1) e�1(L1;Mb) + �32(u1) e�2(L1;Mb) ; (C.21)L2m(1b)B (Mb) = L2 �Ekin � �kin(L2)Rkin1 (L2) + �ÆA(L2)RkinA (L2)RÆA(L2)Rkin1 (L2)� �kin1 (u1) e�1(L1;Mb)�L2 �ÆA(L2)RÆA(L2) h�21(u1) e�1(L1;Mb) + �22(u1) e�2(L1;Mb)i : (C.22)Although the results have been already given in Table 2, the reader will �nd moredetails in Table 12.D Propagating un
ertainties in Li=r0 and �g2(Li)In our simulations we have �xed ~L1 by �g2(~L1=4) = 1:8811, be
ause the 
orrespondingbare parameters �; � are available in the literature. We here give the estimate of the30



small e�e
t 
aused by ~L1 6= L1 in the stati
 approximation. From the polynomialinterpolations of the step s
aling fun
tion of the 
oupling, �(u) [20℄, we estimate the
orresponding mismat
h in 
ouplings as~u� u = �g2(~L1)� �g2(L1) = �(�(1:8811)) � 3:48 = �0:17(5) : (D.1)Let us write MbmB = �(~u; z) [1 +K(u)℄ at ~u = u (D.2)with K(u) = �stat1 (L1)�EstatmB ; �(u; z) = z�2(u; z) : (D.3)The relation ddu MbmB = 0 gives� 1 +K(u)�(u; z) ddu�(u; z) = K 0(u) = 1mB ddu�stat1 : (D.4)Denoting by �Mb the 
orre
tion we have to add to Mb when it is 
omputed with ~u 6= u(as we did), we get from the above equations1mB�Mb = [~u� u℄� �(u)K 0(u) ; (D.5)where K 0(u) is easily estimated by taking a numeri
al derivative of �stat1 . From thedi�eren
e of L=a = 12 and L=a = 10 at �xed g20 (with �g2jL=a=12 = 3:48) and with�(u; z) � 1:44 we arrive at the small shiftr0�Mb = �0:055(17) : (D.6)A similar error is be taken into a

ount due to the 2% un
ertainty in the relationL2 = 1:436r0 [48℄. In the same way it leads to a statisti
al error ofr0�Mb = 0:016 : (D.7)The two 
ontributions eq. (D.6), eq. (D.7) are 
ombined tor0�Mb = �0:055(23) ; (D.8)whi
h we have taken into a

ount in Se
t. 5.3. Be
ause of the smallnes of these e�e
ts,they 
an be negle
ted in the 1=mb-
orre
tions.In the 
ase of our alternative strategy, the shift depdends on the value of �0. We�nd �0 = 0 r0�Mb = �0:042(20) ; (D.9)�0 = 1=2 r0�Mb = 0:009(11) ; (D.10)�0 = 1 r0�Mb = 0:150(45) : (D.11)31
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