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tWe present a 
omparison of a number of iterative solvers of linearsystems of equations for obtaining the fermion propagator in latti
eQCD. In parti
ular, we 
onsider 
hirally invariant overlap and 
hirallyimproved Wilson (maximally) twisted mass fermions. The 
omparisonof both formulations of latti
e QCD is performed at four �xed valuesof the pion mass between 230MeV and 720MeV. For overlap fermionswe address adaptive pre
ision and low mode pre
onditioning while fortwisted mass fermions we dis
uss even/odd pre
onditioning. Takingthe best available algorithms in ea
h 
ase we �nd that 
al
ulationswith the overlap operator are by a fa
tor of 30-120 more expensivethan with the twisted mass operator.
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tionCertainly, the available 
omputer power has advan
ed impressively over thelast years. Nevertheless, for obtaining high pre
ision simulation results inlatti
e QCD, as our target appli
ation in this paper, it remains essential toimprove {on the one hand{ the algorithms employed for latti
e simulationsand {on the other hand{ to �nd better formulations of latti
e fermions.Two very promising 
andidates for improved versions of latti
e fermions are
hirally invariant [1℄ overlap fermions [2, 3℄ and 
hirally improved Wilsontwisted mass (TM) fermions [4℄ at maximal twist. Both have the potentialto over
ome some basi
 diÆ
ulties of latti
e QCD, most notably they makesimulations at values of the pseudo s
alar mass 
lose to the experimentally2



observed pion mass of 140MeV possible. For a 
omparison of physi
al resultsobtained with the two mentioned operators in the quen
hed approximationsee Ref. [5℄.The reason for these diÆ
ulties is that one has to solve a huge set of linearequations over and over again. Although, due to the only nearest neighbourintera
tion of the underlying Wilson-Dira
 operator, sparse matrix methods
an be employed, the 
omputational 
ost 
an get extremely large, see, e.g.the dis
ussions in Refs. [6, 7, 8℄.The fo
us of this work is to 
ompare di�erent iterative linear solvers1 forsparse matri
es as needed for 
omputing the quark propagator for valen
equarks or for the 
omputation of the fermioni
 "for
e" in dynami
al sim-ulations. It has to be remarked that the exa
t behaviour of sparse matrixmethods is highly problem spe
i�
 and 
an depend strongly on the underly-ing matrix involved. It is hen
e 
ru
ial to 
ompare the optimal method for agiven kind of latti
e fermion. In our 
ase, we will 
onsider overlap fermionsand Wilson twisted mass fermions at maximal twist. We will explore a num-ber of sparse matrix methods for the solution of the linear system de�nedby the 
orresponding latti
e Dira
 operator. Although we have tried to berather 
omprehensive, it is 
lear that su
h a work 
annot be exhaustive.The set of possible linear solvers is too large to be able to 
over all of them,see e.g. [9℄ and di�erent solvers may be better for di�erent situations. Forexample, if we are only interested in 
omputing fermion propagators, thequestion is, whether we want to have a multiple mass solver [10℄. Or, withrespe
t of dynami
al simulations, we need the square of the latti
e Dira
 op-erator and not the operator itself whi
h 
an lead to very di�erent behaviourof the algorithm employed. In addition, ea
h of the basi
 algorithms 
an be
ombined with 
ertain improvement te
hniques whi
h again in
uen
e thealgorithm behaviour substantially.In prin
iple, it is also desirable to study the performan
e behaviour of thealgorithms as a fun
tion of the pseudo s
alar mass, the latti
e volume andthe latti
e spa
ing. Again, in this work, due to the very 
ostly simulationssu
h a study would require, we have to restri
t ourselves to an only limitedset of parameters. In parti
ular, we will 
onsider two physi
al volumes andfour values of the pseudo s
alar mass (mat
hed between both formulationsof latti
e QCD). Finally, we will only take one value of the latti
e spa
ingfor our study.As an out
ome of this work, we will �nd that the 
omputational 
ost ofparti
ular algorithms and variants thereof 
an vary substantially for di�erentsituations. This gives rise to the 
on
lusion that it 
an be very pro�table1What is needed for latti
e 
al
ulations are 
ertain rows or 
olumns of the inverse of thefermion matrix employed whi
h are obtained from the solution of a set of linear equations.By abuse of language, we will therefore sometimes speak about \inversion algorithms",\inverse operator" et
. while the mathemati
al problem is always the solution of a largeset of linear equations using iterative sparse matrix methods.3



to test the {at least most promising{ algorithms for the parti
ular problemone is interested in. It is one of our main 
on
lusions that easily a fa
tor oftwo or larger 
an be gained when the algorithm is adopted to the parti
ularproblem under 
onsideration.Parts of the results presented in this paper were already published inRef. [11℄ and for related work 
on
erning the overlap operator see Refs. [12,13, 14℄.The outline of the paper is as follows. In se
tion 2 we introdu
e theDira
 operators that are 
onsidered in this study. Se
tion 3 dis
usses theiterative linear solver algorithms and spe
ial variants thereof, like multiplemass solvers and, for the overlap operator, adaptive pre
ision solvers andsolvers in a given 
hiral se
tor. In se
tion 4 we present various pre
ondi-tioning te
hniques like even/odd pre
onditioning for the TM operator andlow mode pre
onditioning for the overlap operator. In se
tion 5 we presentand dis
uss our results and in se
tion 6 we �nish with 
on
lusions and anoutlook. Appendix A deals with the 
omputation of eigenvalues and eigen-ve
tors whi
h is important for an eÆ
ient implementation of the overlapoperator, for its low mode pre
onditioning and for the 
omputation of itsindex. Appendix B �nally reformulates the TM operator so that multiplemass solvers be
ome appli
able.2 Latti
e Dira
 operatorsWe 
onsider QCD on a four-dimensional hyper-
ubi
 latti
e in Eu
lideanspa
e-time. The fermioni
 �elds  live on the sites x of the latti
e whilethe SU(3) gauge �elds of the theory are represented by group-valued linkvariables U�(x); � = 1; : : : ; 4. The gauge 
ovariant ba
kward and forwarddi�eren
e operators are given by(r� )(x) = U�(x) (x+ �̂)�  (x);(r�� )(x) =  (x)� Uy�(x� �̂) (x� �̂); (1)and the standard Wilson-Dira
 operator with bare quark mass m0 
an bewritten as DW(m0) = 4X�=1 12f
�(r� +r��)� r��r�g+m0: (2)The twisted mass latti
e Dira
 operator for a SUf(2) 
avour doublet ofmass degenerate quarks has the form [15, 16℄Dtm(�tm) = DW(m0) + i�tm
5�3 ; (3)where DW is the Wilson-Dira
 operator with bare quark massm0 as de�nedabove, �tm the twisted quark mass and �3 the third Pauli matrix a
ting4



in 
avour spa
e. Sin
e it was shown in Ref. [4℄ (for a test in pra
tise seeRefs. [17, 18℄) that physi
al observables are automati
ally O(a) improved ifm0 is tuned to its 
riti
al value, we are only interested in this spe
ial 
ase.The se
ond operator we 
onsider, the massive overlap operator, is de�nedas [2, 3℄ D(�ov) = �1� �ov2M �D + �ov ; (4)where D =M�1 + 
5 sign [Q(�M)℄� (5)is the massless overlap operator, Q(�M) = 
5DW(�M) with M 
hosen tobeM = 1:6 in this work and �ov again the bare quark mass. The matrix sign-fun
tion in Eq.(5) is 
al
ulated by some approximation that 
overs the wholespe
trum of Q(�M). To make this feasible we determine K eigenmodes ofQ(�M) 
losest to the origin, proje
t them out from the sign-fun
tion and
al
ulate their 
ontribution analyti
ally while the rest of the spe
trum is
overed by an approximation employing Chebyshe� polynomials. Denotingby  k the eigenve
tors of Q with 
orresponding eigenvalue �k, i.e. Q k =�k k, we havesign [Q(�M)℄ = KXk=1 sign(�k)Pk+ 1� KXk=1Pk!Q � TN �Q2� 1� KXk=1 Pk! ; (6)where Pk =  k yk are proje
tors onto the eigenmode subspa
es and TN �Q2�denotes the N -th order Chebyshe� polynomial approximation to 1=p(Q2)on the orthogonal subspa
e. The 
al
ulation of the eigenmodes is dis
ussedin appendix A.3 Iterative linear solver algorithmsLet us now turn to the iterative linear solver algorithms that we 
onsiderin our investigation. Table 1 lists the various algorithms and marks with'x' whi
h of them are used with the overlap and the TM operator, respe
-tively. For the 
onvenien
e of the reader we also 
ompile in table 1 for ea
halgorithm the number of operator appli
ations, i.e. matrix-ve
tor (MV) mul-tipli
ations, together with the 
orresponding number of s
alar produ
ts (SP)and linear algebra instru
tions Z = �X + Y (ZAXPY) per iteration. More-over, in the last 
olumn we also note whi
h of the algorithms possess the
apability of using multiple masses (MM).With the ex
eption of the MR algorithm all algorithms are Krylov sub-spa
e methods, i.e. they 
onstru
t the solution of the linear system A = �5



Algorithm Overlap TM MV SP ZAXPY MMCGNE [9℄ x x 2 2 3 yesCGS [9℄ x x 2 2 7 yesBiCGstab [9℄ x x 2 4 6 yesGMRES(m) [9℄ x x 1 m=2 + 1 m=2 + 1 noMR [9℄ x x 1 2 2 yesCGNE� x 1 2 3 yesSUMR [19℄ x 1 6 1 yesTable 1: Linear solver algorithms for the overlap and twisted mass (TM) operator. Alsogiven are the number of matrix ve
tor (MV) multipli
ations, s
alar produ
ts (SP) andz = �x+ y (ZAXPY) linear algebra operations per iteration. We also indi
ate, whetherthe algorithm 
an be used to solve for multiple masses (MM).as a linear 
ombination of ve
tors in the Krylov subspa
eKi = span(v; Av; : : :; Ai�1v) ;where v = r0 = � � A 0 is the initial residual. In 
ontrast the MR algo-rithm is a one-dimensional proje
tion pro
ess [9℄, i.e. ea
h iteration step is
ompletely independent of the previous one. For a detailed des
ription anddis
ussion of the basi
 algorithms we refer to [9℄, whereas we will dis
usssome spe
ial versions in the following subse
tions. Note that we adoptedthe names of the algorithms from Ref. [20℄ where possible.The SUMR algorithm was introdu
ed in Ref. [19℄ and �rst used for latti
eQCD in Ref. [12℄. It makes use of the unitarity property of the masslessoverlap operator and was shown to perform rather well when 
ompared toother standard iterative solvers [12℄.In the 
ase of TM fermions it is sometimes useful to 
onsider the linearsystem 
5A = 
5� instead of A = �. The reason for the importan
e ofthis 
hange will be dis
ussed later. We will add a 
5 to the solver name in
ase the 
hanged system is solved, like for instan
e CGS
5.3.1 Multiple mass solversIn propagator 
al
ulations for QCD appli
ations it is often ne
essary to
ompute solutions of the system(A+ �) = � (7)for several values of a s
alar shift � - usually the mass. It has been realisedsome time ago [10, 21, 22, 23℄ that the solutions of the shifted systems 
anbe obtained at largely the 
ost of only solving the system with the smallest(positive) shift. For the Krylov spa
e solvers this is a
hieved by realising thatthe Krylov spa
es of the shifted systems are essentially the same. In table6



1 we note in the last 
olumn whi
h of the algorithms 
an be implementedwith multiple masses. Multiple mass (MM) versions for BiCGstab and CG
an be found in [22℄. In prin
iple there exists also a MM version for theGMRES algorithm, but sin
e in pra
tise the GMRES has to be restartedafterm iteration steps it does not 
arry over to the 
ase of GMRES(m). Forthe SUMR algorithm we note that the MM version is trivial, sin
e the shiftof the unitary matrix enters in the algorithm not via the iterated ve
torsbut instead only through s
alar 
oeÆ
ients dire
tly into the solution ve
tor.Finally we wish to emphasise that also the CGNE algorithm is 
apableof using multiple masses in spe
ial situations. This remark is non-trivialsin
e in general (Ay+ �)(A+ �) appearing in the normal equation is not ofthe form A0yA0+�0. However, it turns out that for the overlap operator andthe twisted mass operator a MM is possible. For the overlap operator one
an make use of the Ginsparg-Wilson relation in order to bring the shiftednormal equation operator into the desired form [24℄. For the Wilson twistedmass fermion operator we provide in Appendix B the details of the MMimplementation for CGNE.3.2 Chiral CGNE for the overlap operatorDue to the fa
t that the overlap operator obeys the Ginsparg-Wilson relationit is easy to show thatDyD 
ommutes with 
5. As a 
onsequen
e the solutionto the normal equation DyD = � 
an be found in a given 
hiral se
tor aslong as the original sour
e ve
tor � is 
hiral. (This is for example the 
aseif one works with point sour
es in a 
hiral basis.)When applying the CGNE algorithm to the overlap operator one 
anthen make use of this fa
t by noting the relationP�D(�ov)yD(�ov)P� = 2MP�D(�2ov=(2M))P� ; (8)where P� = 1=2(1 � 
5) are the 
hiral proje
tors. Thus in ea
h iterationthe operator is only applied on
e instead of twi
e, but with a modi�ed massparameter. This immediately saves a fa
tor of two in the number of matrix-ve
tor (MV) appli
ations with respe
t to the general 
ase. In table 1 and inthe following we denote this algorithm by CGNE�.3.3 Adaptive pre
ision solvers for the overlap operatorIt is well known that the 
omputational bottlene
k for the solvers employingthe overlap operator is the 
omputation of the approximation of the sign-fun
tion sign(Q). Sin
e ea
h appli
ation of the overlap operator during theiterative solver pro
ess requires yet another iterative pro
edure to approxi-mate sign(Q), we are led to a two-level nested iterative pro
edure where the
ost for the 
al
ulation of the sign-fun
tion enters multipli
atively in thetotal 
ost. So any optimised algorithm will not only aim at minimising the7



number of outer iterations, i.e. the number of overlap operator appli
ations,but it will also try to redu
e the number of inner iterations, i.e. the order ofthe { in our 
ase polynomial { approximation.While the problem of minimising the number of outer iterations dependson a deli
ate interplay between the algorithm and the operator under 
on-sideration and 
omprises one of the main fo
i of the present investigation,the problem to redu
e the number of inner iterations 
an be a
hieved ratherdire
tly in two di�erent ways. Firstly, as dis
ussed in se
tion 2, we proje
tout the lowest 20 or 40 eigenve
tors of the Wilson-Dira
 operator depend-ing on the extent of the latti
e (
f. se
tion 5.1). In this way we a
hievethat our approximations use (Chebyshe�) polynomials typi
ally of the or-der O(200� 300) for the simulation parameters we have employed for thisstudy.Se
ondly, it is then also 
lear that one 
an speed up the 
al
ulations bylarge fa
tors if it is possible to redu
e the a

ura
y of the approximation. Inrealising this, the basi
 idea is to adapt the degree of the polynomial duringthe solver iteration to a
hieve only that pre
ision as a
tually needed in thepresent iteration step. We have implemented the adaptive pre
ision for asele
tion of the algorithms that seemed most promising in our �rst tests andin the following we denote these algorithms by the subs
ript ap for adaptivepre
ision. Usually not more than two lines of additional 
ode are required toimplement the adaptive pre
ision versions of the algorithms. Obviously thedetails of how exa
tly one needs to adapt the pre
ision of the polynomialdepends on the details of the algorithm itself and might also in
uen
e thepossibility to do multi mass inversions.We use two generi
 approa
hes whi
h we illustrate in the following bymeans of the adaptive pre
ision versions of the MR and the CGNE algo-rithms, respe
tively. In the 
ase of the MR we follow a strategy that issimilar to restarting: through the 
omplete 
ourse of the iterative pro
edurewe use a low order polynomial approximation of a degree O(10) for the signfun
tion. Only every m iteration steps we 
orre
t for the errors by 
om-puting the true residuum to full pre
ision, whi
h 
orresponds essentially toa restart of the algorithm. We denote this algorithm with MRap(m). Weremark that with this approa
h the MM 
apability of the MR algorithm islost.The MRap(m) is outlined with pseudo-
ode in algorithm 1, where wedenote the low order approximation of the overlap operator with Aap whilethe full pre
ision operator is denoted with A.The same approa
h as used for the MRap(m) algorithm 
an easily be
arried forward to the GMRESap(m) algorithm. Sin
e the GMRES(m) isrestarted every m iterations, we use only every m-th iteration the full ap-proximation to the sign fun
tion while all other appli
ations of the overlapoperator are performed with an approximation of degree O(10).In 
ase of the CGNEap our strategy is di�erent: here we simply 
al
ulate8



Algorithm 1 MRap(A;Aap; b; x;m; �) algorithm1: i = 02: p = Ax3: r = b� p4: repeat5: i = i+ 16: // Use Aap with fixed low order polynomial7: ~r = Aapr8: � = (~r; r)=(~r; ~r)9: x = x+ �r10: if i mod m = 0 then11: // Corre
t with full A12: p = Ax13: else14: p = p+ �~r15: end if16: r = b� p17: until krk < �
ontributions to the sign-fun
tion approximation up to the point where theyare smaller than �ap = 10�2�, where � is the desired �nal residual, i.e. wenegle
t all 
orre
tions that are mu
h smaller than the �nal residual. Thisrequires the full polynomial only at the beginning of the CG-sear
h whiletowards the end of the sear
h we use polynomials with a degree O(10). Inorder to implement this idea we use a forward re
ursion s
heme for theappli
ation of the Chebyshe� polynomial as detailed in algorithm 2.Algorithm 2 Compute r =Pn�1j=0 
jTj(Q2) v to pre
ision �apRequire: ve
tor v and Chebyshe� 
oeÆ
ients 
j1: d0 = T0(Q2) v = v2: d1 = T1(Q2) v = 2Q2 v � v3: r = 
1d1 + 1=2
0d04: for j=2,...,n-1 do5: dj = Tj(Q2) v = 2Q2 dj�1 � dj�26: r = r + 
jdj7: if kdjk < �ap then8: return r9: end if10: end for11: return rIt is important to note here that with this approa
h for the CGNEap9



the MM 
apability is preserved (in 
ontrast to an approa
h proposed inRef. [25℄ similar to the MRap(m) approa
h des
ribed above where the MM
apability is lost). The strategy for the SUMRap is analogous to the one forthe CGNEap, where again the MM 
apability is preserved.4 Pre
onditioning te
hniques4.1 Even/odd pre
onditioning for the TM operatorEven/odd pre
onditioning for the Wilson TM operator has already been de-s
ribed in [26℄ and we review it here for 
ompleteness only. Let us start withthe hermitian two 
avour Wilson TM operator2 in the hopping parameterrepresentation (� = (2m0 + 8)�1)Q � 
5D = �Q+ Q�� ; (9)where the sub-matri
es Q� 
an be fa
torised with ~� = 2�� as follows:Q� = 
5�1� i~�
5 DeoDoe 1� i~�
5� = 
5�D�ee DeoDoe D�oo�= �
5D�ee 0
5Doe 1��1 (D�ee)�1Deo0 
5(D�oo �Doe(D�ee)�1Deo)� : (10)Note that (D�ee) is trivial to invert:(1� i~�
5)�1 = 1� i~�
51 + ~�2 : (11)Due to the fa
torisation (10) the full fermion matrix 
an be inverted byinverting the two matri
es appearing in the fa
torisation�D�ee DeoDoe D�oo��1 = �1 (D�ee)�1Deo0 (D�oo �Doe(D�ee)�1Deo)��1�D�ee 0Doe 1��1 :and the two fa
tors 
an be simpli�ed as follows:�D�ee 0Doe 1��1 = � (D�ee)�1 0�Doe(D�ee)�1 1�and �1 (D�ee)�1Deo0 (D�oo �Doe(D�ee)�1Deo)��1=�1 �(D�ee)�1Deo(D�oo �Doe(D�ee)�1Deo)�10 (D�oo �Doe(D�ee)�1Deo)�1 � :2In this se
tion we suppress the subs
ript tm for notational 
onvenien
e and simplywrite D for Dtm and � for �tm. 10



The 
omplete inversion is now performed in two separate steps: First we
ompute for a given sour
e �eld � = (�e; �o) an intermediate result ' =('e; 'o) by:�'e'o� = �D�ee 0Doe 1��1��e�o� = � (D�ee)�1�e�Doe(D�ee)�1�e + �o� :This step requires only the appli
ation of Doe and (D�ee)�1, the latter ofwhi
h is given by Eq.(11). The �nal solution  = ( e;  o) 
an then be
omputed with� e o� = �1 (D�ee)�1Deo0 (D�oo �Doe(D�ee)�1Deo)��1�'e'o� = �'e � (D�ee)�1Deo o o � ;where we de�ned o = (D�oo �Doe(D�ee)�1Deo)�1'o = D̂�1'o : (12)Therefore the only inversion that has to be performed numeri
ally is theone to generate  o from 'o and this inversion involves only D̂ that is better
onditioned than the original fermion operator.A similar approa
h is to invert in Eq.(12) instead of D̂ the followingoperator: D̂s = 1� (D�oo)�1Doe(D�ee)�1Deo ;on the sour
e (D�oo)�1'o. As noti
ed already in Ref. [27℄ for the 
ase of non-perturbatively improved Wilson fermions this more symmetri
al treatmentresults in a slightly better 
ondition number leading to 20% less iterationsin the solvers.4.2 Low mode pre
onditioning for the overlap operatorLow mode pre
onditioning (LMP) for the overlap operator has already beendes
ribed in Ref. [25℄ using the CG algorithm on the normal equations. In
ase of the CG the operator DyD to be inverted is hermitian, and hen
enormal, and the low mode pre
onditioning is as des
ribed in Ref. [25℄.The appli
ation of this te
hnique to algorithms like GMRES or MR(whi
h involve D instead of DyD) is not 
ompletely straightforward. Al-though the overlap operator itself is formally normal, in pra
tise it is not dueto the errors introdu
ed by the �nite approximation of the sign-fun
tion3.As a 
onsequen
e one has to distinguish between left and right eigenve
torsof D leading to some additional 
ompli
ations whi
h we are now going todis
uss.3Note that for the CGNE algorithm used in [25℄ the non-normality of the approxi-mate overlap operator is 
ir
umvented by 
onstru
tion sin
e DyD is hermitian for anyapproximation of the sign-fun
tion. 11



Consider the linear equation A = �. The ve
tor spa
e on whi
h thelinear operator A a
ts 
an be split into two (bi-)orthogonal pie
es using the(bi-)orthogonal proje
torsP =Xk rklyk; P? = 1� P: (13)Here we assume that the r0ks and l0ks are approximate right and left eigen-ve
tors (Ritz ve
tors), respe
tively, of the operator A whi
h form a bi-orthogonal basis, i.e. lyirj = Æij . One 
an writeArk = �krk + g(r)k ; (14)Aylk = ��klk + g(l)k ; (15)where lyi g(r)k = ryig(l)k = 0. Indeed, one �ndsPArk = �krk (16)and P?Ark = g(r)k : (17)The operator A then takes the following blo
k formA = � PAP PAP?P?AP P?AP? � (18)and the linear equation reads� PAP PAP?P?AP P?AP? �� P P? � = � P�P?� � : (19)To solve this equation we 
an perform a LU de
omposition of AA = � 1 0P?AP (PAP )�1 1 �� PAP PAP?0 S � � L �U ; (20)where S = P?AP? � P?AP (PAP )�1PAP? is the S
hur 
omplement of A.The lower triangular matrix L 
an be inverted and applied to the right handside, L�1� = � P��P?AP (PAP )�1P� + P?� � ; (21)and the linear system redu
es to solving U(P ; P? )T = L�1�. Written outexpli
itly we obtain the se
ond 
omponent P? from solving the equationP?(A�AP (PAP )�1PA)P? = P?� � P?AP (PAP )�1P� (22)and the �rst 
omponent P from the solution ofPAP � P = P� � PAP? : (23)In detail the whole pro
edure to solve A = � using low mode pre
on-ditioning involves the following steps:12



1. prepare (pre
ondition) the sour
e a

ording to the r.h.s. of Eq.(22),i.e. �0 = P? 1�Xi g(r)i 1�i lyi! � ; (24)where we have used P?ri = 0.2. solve the low mode pre
onditioned system AlmpP? = �0 for P? where Almp is the pre
onditioned operator a
ting in the subspa
e or-thogonal to the low modes, i.e. the operator on the l.h.s. of Eq.(22).To be spe
i�
 the appli
ation of the pre
onditioned operator is givenbyP? �A �AP (PAP )�1PA)�P? =P? 24A�Xi;j;k ��iri + g(r)i � lyirj 1�j lyjrk �lyk�k + g(l)k y�35P? = P? "A�Xi g(r)i 1�i g(l)i y#P? ; (25)where we have used P?ri = lykP? = 0.3. add in the part of the solution from the subspa
e spanned by the lowmodes, i.e. P . This part is essentially the 
ontribution from the lowmodes and it is expli
itly given byP =Xi ri 1�i lyi (� � AP? ): (26)Let us mention for 
ompleteness that there are further related pre
ondi-tioning te
hniques available whi
h do not involve the analyti
 
orre
tion stepin Eq.(26). The Ritz ve
tors 
an be used dire
tly in any right or left pre
on-ditioned version of a given solver like for instan
e in the FGMRES algorithm[20℄. Moreover, the 
omputation of the Ritz pairs and the iterative solution
an be 
ombined in so 
alled iterative solvers with de
ated eigenvalues, seefor instan
e the GMRES versions dis
ussed in Refs.[9, 28, 29℄.5 ResultsIn this se
tion we are going to present our numeri
al results. We organisethe dis
ussion in the following way: we �rst look at the two operators wehave used separately. For ea
h of them we examine the mass and volumedependen
e of the numeri
al e�ort without and with improvements for thesolvers and pre
onditioning te
hniques swit
hed on. For the overlap operator13



we then test in addition the low mode pre
onditioning approa
h in the �{regime. After dis
ussing them separately we will then 
ompare the twooperators by means of the best solver.The algorithms are 
ompared for ea
h operator using the following 
ri-teria:1. The total iteration number :The number of iterations to rea
h 
onvergen
e is a quantity whi
h isindependent of the detailed implementation of the Dira
 operator aswell as of the ma
hine ar
hite
ture, and therefore it provides a fairmeasure for 
omparison.2. The total number of appli
ations of Q:In parti
ular in 
ase of the adaptive pre
ision algorithms of the overlapoperator, it turns out that the 
ost for one iteration depends stronglyon the algorithm details, so a fairer mean for 
omparison in that 
ase isthe total number of appli
ations of the Wilson-Dira
 operator, i.e. thenumber of Q appli
ations. Again this yields a 
omparative measureindependent of the ar
hite
ture and the details of the operator im-plementation, but on the other hand one should keep in mind thatthese �rst two 
riteria negle
t the 
ost stemming from s
alar produ
tsand ZAXPY operations. In parti
ular this 
on
erns the GMRES algo-rithm that needs signi�
antly more of these operations than the otheralgorithms. It also 
on
erns the adaptive pre
ision algorithms for theoverlap operator for reasons explained below.3. The total exe
ution time in se
onds :Finally, in order to study the relative 
ost fa
tor between the inver-sion of the TM and the overlap operator we measure for ea
h operatorand algorithm the absolute timings on a spe
i�
 ma
hine, in our 
aseon one node of the J�uli
h Multipro
essor (JUMP) IBM p690 Regattausing 32 pro
essors. Obviously, these results will depend on the spe-
i�
 details of the ma
hine ar
hite
ture and the parti
ular operatorand linear algebra implementation, and hen
e will have no absolutevalidity. Nevertheless, it is interesting to strive to su
h a 
omparisonsimply to obtain at least a feeling for the order of magnitude of therelative 
ost.5.1 Set-upOur set-up 
onsists of two quen
hed ensembles of 20 
on�gurations withvolumes V = 124 and 164 generated with the Wilson gauge a
tion at � =5:85 
orresponding to a latti
e spa
ing of a � 0:125 fm (r0 = 0:5 fm).The bare quark masses for the overlap operator and the twisted mass op-erator are 
hosen su
h that the 
orresponding pion mass values are mat
hed,14




f. table 2. Note that for the low mode pre
onditioning of the overlap op-erator we 
onsider an additional small mass whi
h should bring the systeminto the "{regime. m�[MeV℄ �ov �tm720 0.10 0.042555 0.06 0.025390 0.03 0.0125230 0.01 0.004�-regime 0.005 {Table 2: Bare quark masses for the overlap and the twisted mass operator mat
hed bythe pion mass. The quark mass of �ov = 0:005 
orresponds to a simulation point in the�-regime, where the notion of a pion mass be
omes meaningless.We invert the twisted mass (the overlap) operator on one (two) point-like sour
e(s) � for ea
h 
on�guration at the four bare quark masses. Therequired stopping 
riterion is krk2 = kAx � �k2 < 10�14, where r is theresidual and x the solution ve
tor. We are working in a 
hiral basis and thetwo sour
es for the overlap operator are 
hosen su
h that they 
orrespond tosour
es in two di�erent 
hiral se
tors. This is relevant for the overlap opera-tor only, whi
h might have exa
t zero modes of the massless operator in oneof the two 
hiral se
tors, potentially leading to a quite di�erent 
onvergen
ebehaviour. Furthermore the 
hiral sour
es allow to use the 
hiral versionof the CGNE algorithm for the overlap operator as des
ribed in se
tion 2.There it is also mentioned that for the overlap operator we proje
t out thelowest 20 and 40 eigenve
tors of Q2 on the 124 and 164 latti
e, respe
tively,in order to make the 
onstru
tion of the sign-fun
tion feasible.For both operators we follow the strategy to �rst 
onsider the not pre-
onditioned algorithms and then to swit
h on the available pre
onditioningsor improvements. Sin
e for the overlap operator we have a large range ofalgorithms to test (and the tests are more 
ostly), we perform the �rst steponly at two masses and study the improvements from the pre
onditioningand the full mass dependen
e only for a sele
tion of algorithms.5.2 Twisted mass resultsBefore presenting results for the un-pre
onditioned TM Dira
 operator, weneed to dis
uss the following point: the number of iterations needed by a
ertain iterative solver depends in the 
ase of the twisted mass Dira
 operatorstrongly on whether Dtm is inverted on a sour
e � or 
5Dtm on a sour
e 
5�.This is due to the fa
t that multiplying with 
5 signi�
antly 
hanges theeigenvalue distribution of the TM operator. All eigenvalues of 
5Dtm lieon a line parallel to the real axis shifted in the imaginary dire
tion by �,be
ause the pure Wilson-Dira
 operator obeys the property DyW = 
5DW
5.15



To give examples, for the BiCGstab and the GMRES algorithms 
5Dtm isadvantageous, while the CGS solver works better with Dtm itself.This result is not surprising: it is well known that for instan
e theBiCGstab iterative solver is not eÆ
ient, or even does not 
onverge, whenthe eigenvalue spe
trum is 
omplex and in exa
tly su
h situations the CGS[30℄ algorithm often performs better. Of 
ourse, for the CG solver this ques-tion is not relevant, sin
e in that 
ase the operator DyD is used. Let us alsomention that neither the MR nor the MR
5 iterative solver 
onverged forthe twisted mass operator within a reasonable number of iterations.The results for the un-pre
onditioned Wilson TM operator are 
olle
tedin table 3 where we give the average number of operator appli
ations (MVappli
ations) that are required to rea
h 
onvergen
e together with the stan-dard deviation. In the 
ase of the TM operator, the number of MV appli
a-tions is proportional to the number of solver iterations where the proportion-ality fa
tor 
an be read o� 
olumn 4 in table 1. From these data it is 
lear�tm = 0:042 0:025 0:0125 0:004V = 124CGNE 2082(60) 2952(175) 3536(234) 3810(243)CGS 1251(178) 1661(262) 1920(361) 2251(553)BiCGstab
5 3541(175) 5712(280) 9764(503) 12772(979)GMRES
5 1962(48) 3314(92) 6223(199) 19204(737)V = 164CGNE 2178(46) 3556(107) 6277(414) 8697(802)CGS 1336(134) 2029(276) 2614(508) 3420(866)BiCGstab
5 3526(145) 5805(239) 10940(547) 26173(2099)GMRES
5 1945(42) 3287(78) 6168(129) 19106(565)Table 3: Average number (and standard deviation) of MV appli
ations for rea
hing
onvergen
e of the un-pre
onditioned Wilson TM operators. Here and in the followingtables, averages are always taken over 20 independent pure gauge 
on�gurations.that the CGS algorithm is the winner for all masses and on both volumes.The CGS algorithm shows a rather weak exponential mass dependen
e andbeats the next best algorithm CGNE by a fa
tor 2.5 at the smallest masson the large volume as is evident from �gure 1 where we plot the logarithmof the absolute timings in units of se
onds as a fun
tion of the bare quarkmass. Sin
e the CGNE shows a similar s
aling with the mass as the CGS wedo not expe
t this 
on
lusion to 
hange for smaller masses. Moreover theCGS appears to have a weaker volume dependen
e than the CGNE, in par-ti
ular at small masses, so we expe
t the 
on
lusion to be strengthened asthe volume is further in
reased. A very interesting point to note is that theGMRES
5 algorithm shows a perfe
t s
aling with the volume in the sense16



that the iteration numbers remain 
onstant as the volume is in
reased.5.2.1 Even/odd pre
onditioningLet us now present the results with even/odd pre
onditioning. For theCGSeo, BiCGstabeo and GMRESeo solvers (and their 
5 versions) we usedthe symmetri
 even/odd pre
onditioning as outlined at the end of se
tion4.1, while for the CGNE we used the non-symmetri
 version. The results forthe average number of operator appli
ations required to rea
h 
onvergen
etogether with the standard deviation are 
olle
ted in table 4.As in the 
ase of the un-pre
onditioned operator also with even/oddpre
onditioning it makes a di�eren
e whether the 
5 version of a solver isused or not. We will dis
uss these di�eren
es here in more detail. TheGMRESeo solver for instan
e stagnates on most of the 20 
on�gurationsfor both latti
e sizes, while the GMRES
5eo 
onverges without problems.The BiCGstabeo algorithm on the other hand does not 
onverge on one 124
on�guration and on six 164 
on�gurations, while again the BiCGstab
5eoalgorithm 
onverges without any problem. In 
ase the BiCGstabeo 
onvergesit is mu
h faster than the BiCGstab
5eo, as 
an be seen in table 4. On theother hand the iteration numbers of BiCGstabeo for the larger volume showonly a very weak mass dependen
e and the varian
e is large. This mightindi
ate that the number of 
on�gurations where the BiCGstabeo does not
onverge is likely to in
rease further, if the volume is in
reased.A similar pi
ture 
an be drawn for the CGSeo and CGS
5eo solvers, butin this 
ase the CGSeo 
onverges in all 
ases and is moreover the fastestalgorithm for both latti
e sizes and all masses.The next to best algorithms are the CGNE and BiCGstabeo, where thelatter has the drawba
k of non-
onvergen
e and instabilities for a 
ertainnumber of 
on�gurations. Therefore, 
on
entrating on the CGNE and theCGSeo, we observe that in parti
ular on the larger volume the CGSeo showsa better s
aling with the mass: while the CGSeo is at the largest mass onlya fa
tor 1.16 faster, this fa
tor in
reases to 1.8 at the smallest mass value.At this point a 
omparison in exe
ution time is of interest, 
f. �g.2 , be
ausethe number of SP and ZAXPY operations for ea
h iteration are di�erentfor the various solvers. We �nd that CGSeo remains the most 
ompetitivealgorithm given the fa
t that BiCGstabeo is not always stable. On the otherhand the situation 
ould 
hange in favour of the GMRESeo algorithm forlarge volumes, sin
e the CGSeo has a mu
h worse volume dependen
e thanthe GMRESeo whi
h again shows a perfe
t s
aling with the volume like inthe un-pre
onditioned 
ase.Finally we note that 
omparing the best algorithm for the even/oddpre
onditioned operator to the one for the un-pre
onditioned operator weobserve a speed-up of about 2 for our investigated range of parameters.17



�tm = 0:042 0:025 0:0125 0:004V = 124CGNEeo 725(18) 1042(64) 1238(91) 1333(93)CGS
5eo 2999(269) 2788(265) 2659(212) 2526(198)CGSeo 599(87) 774(135) 944(169) 1048(234)BiCGstab
5eo 1279(64) 2060(123) 3353(189) 4103(382)BiCGstabeo 799(293) 880(337) 1545(1607) 2044(2801)GMRES
5eo 731(19) 1180(35) 2261(75) 6670(258)V = 164CGNEeo 755(14) 1227(37) 2187(147) 3048(289)CGS
5eo 10408(2043) 8332(1399) 7014(581) 6819(1491)CGSeo 650(60) 962(151) 1317(252) 1687(448)BiCGstab
5eo 1290(71) 2063(94) 3892(183) 8786(730)BiCGstabeo 1595(595) 1705(928) 1576(868) 1884(1501)GMRES
5eo 728(13) 1174(21) 2258(42) 6722(145)Table 4: Average number (and varian
e) of MV appli
ations for 
onvergen
e of theeven/odd pre
onditioned Wilson TM operators.5.3 Overlap resultsLet us �rst have a look at the results of the overlap operator without any im-provements or pre
onditioning. As noted in the introdu
tion to this se
tionwe have investigated the full mass s
aling of the un-pre
onditioned algo-rithms only for a sele
tion of algorithms, in parti
ular we have done this forthe adaptive pre
ision versions to be dis
ussed later. The results are 
ol-le
ted in table 5 where we give the average number of operator appli
ations(MV appli
ations) that are required to rea
h 
onvergen
e together with thestandard deviation. We note again that the number of MV appli
ations isproportional to the number of iterations where the proportionality fa
tor
an be read from 
olumn 4 in table 1. The �rst thing we note is that the it-eration numbers are mu
h smaller than for the Wilson TM operator, usuallyby about one order of magnitude. This is presumably due to the fa
t thatthe spe
trum of the overlap operator is mu
h more restri
ted to lie exa
tlyon the Ginsparg-Wilson 
ir
le and better behaved than the one of the TMoperator, and usually iterative inversion algorithms are very sensitive to thedistribution of the eigenvalues.From the results in table 5 we do not �nd a 
ompletely 
oherent pi
-ture, but we may say that at least at small quark mass CG� is the winnerfollowed by SUMR and GMRES. Looking at the mass s
aling behaviour itappears that CG� shows the weakest dependen
e on the mass and so this
on
lusion should hold towards smaller quark masses. Con
erning the vol-ume dependen
e we note that at the smallest mass the CG� and SUMR have18



�ov = 0:10 0:06 0:03 0:01V = 124CGS 239(22) { 593(88) {BiCGstab 207(13) 333(24) 549(55) 695(108)MR 206( 3) { 646(16) {GMRES 187( 6) { 576(37) {SUMR 174( 7) 260(19) 350(46) 394(55)CG 336(33) { 411(52) {CG� 168(17) { 205(26) {V = 164CGS 241(19) { 738(71) {BiCGstab 212(10) 340(17) 647(36) 1552(215)MR 206( 3) { 644(14) {GMRES 187( 5) { 584(19) {SUMR 179( 5) 284( 9) 523(26) 929(124)CG 411(11) { 949(105) {CG� 206( 6) { 475(52) {Table 5: Average number (and standard deviation) of MV appli
ations for 
onvergen
eof the overlap operator.a very similar behaviour and so again the 
on
lusion should not be 
hangedat larger volumes. However, as for the Wilson TM operator the GMRESalgorithm, and in addition here also the MR, shows a perfe
t s
aling be-haviour with the volume. Towards small quark masses this positive �ndingis 
ompensated by the bad s
aling of these two algorithms with the mass,but for intermediate quark masses we 
an expe
t both GMRES and MR tobe superior to the SUMR and CG�, at least on large enough volumes.Let us �nally make a 
autionary remark on the CG� algorithm. It is 
learthat Eq.(8) holds only for the exa
t overlap operator and any approximationto it will introdu
e some 
orre
tions. Indeed, the approximation errors onboth sides of Eq.(8) are rather di�erent. If we assume a maximal error Æ overthe interval of our approximation to the sign fun
tion, then the l.h.s. hasan error bounded by (1 � �)ÆjDj while for the r.h.s. it is (1 � �2=2M)Æ.As a 
onsequen
e the two operators do agree only up to a 
ertain a

ura
ylevel and the agreement deteriorates towards small quark masses where thelowest modes of D be
ome important. E.g. in propagator 
al
ulations thisis re
e
ted in the fa
t that a solution 
al
ulated with one operator to somea

ura
y is in fa
t not a solution of the other operator to the same a

ura
y.In pra
tise we have observed this phenomenon only at the smallest quarkmass � = 0:01 and mainly on the 164 latti
es where we found a

ura
ylosses in the true residuals of up to two orders of magnitude, i.e. jrj2 <19



10�14 versus jrj2 < 10�12, even though our approximations of D satisfy theGinsparg-Wilson relation to ma
hine pre
ision. Moreover, in those 
ases wehave usually observed a rather strange 
onvergen
e behaviour whi
h 
an berelated to the o

urren
e of spurious zero modes in the underlying Lan
zositeration matrix. As an illustration we show in �gure 3 the worst 
ase thatwe en
ountered. In the lower plot we show the iterated residual as a fun
tionof the iteration number while in the upper plot we show the eigenvalues ofthe 
orresponding underlying Lan
zos iteration matrix (
f. appendix A.2 foradditional explanations).One possible remedy for all this is to simply stop the CG� algorithmshortly before this happens, e.g. in the above 
ase as soon as the iteratedresidual rea
hes jrj2 < 10�12, and to restart with the standard CG algo-rithm. Convergen
e is then usually rea
hed within a small number of itera-tions, but obviously the MM 
apability is lost.5.3.1 Adaptive pre
isionLet us now turn to the adaptive pre
ision algorithms for the overlap op-erator. As noted before we have implemented the adaptive pre
isions forthe MR, GMRES, SUMR and CG� algorithms. Without quoting the num-bers we remark that the iteration numbers (at the parameter points wherewe 
an 
ompare) for the CG�;ap and the SUMRap are the same as for the
orresponding algorithms without adaptive pre
ision (within 0-3%), whilefor the other two, MRap and GMRESap, the iteration numbers in
rease byabout 7-15%. This 
an be understood by the fa
t that the latter two algo-rithms involve several 
orre
tion steps with subsequent restarts as explainedin se
tion 3.3 therefore undermining slightly the eÆ
ien
y of the algorithms.However, it should be 
lear from se
tion 3.3 that the iteration numberis not the 
ru
ial quantity here, but instead it is the total number of appli-
ations of the Wilson kernel, i.e. Q. This is exempli�ed in �gure 4 wherewe show, in units of Q appli
ations, the 
onvergen
e history of SUMR andCG 
ompared to CGap and MRap for the overlap operator on the 164 latti
eat � = 5:85 with � = 0:10 (top) and � = 0:03 (bottom). In table 6 wegive the total number of appli
ations of the Wilson-Dira
 operator Q whi
hagain yields a measure independent of the ar
hite
ture and the details of theoperator implementation for a 
omparison among the algorithms. We �ndthat the gain from the adaptive pre
ision for MR and GMRES is around afa
tor of 5.5, while it is around 1.5 for CG and SUMR. The gain deterioratesminimally towards smaller quark masses, ex
ept for GMRESap where it im-proves slightly. The di�eren
e of the fa
tors for the two sets of algorithmsbe
omes evident by re
e
ting the fa
t that the former use low order polyno-mials right from the start of the algorithm while for the latter the adaptivepre
ision be
omes e�e
tive only towards the end. Comparing among thealgorithms we �nd that ex
ept for the smallest mass on the smaller volume20



�ov = 0:10 0:06 0:03 0:01V = 124MR 103.2(10.2) { 323.2(33.0) {MRap 18.5(1.9) 30.0(2.6) 61.1(4.3) 212.0(17.5)CG� 84.2(13.5) { 103.1(18.9) {CG�;ap 51.2(7.7) 73.2(13.0) 83.3(17.3) 96.7(22.6)GMRES 93.6(10.3) { 288.1(37.5) {GMRESap 18.1(2.1) 27.9(3.2) 52.9(7.0) 150.8(29.9)SUMR 87.3(10.0) 130.5(18.9) 175.7(33.9) 198.0(39.8)SUMRap 55.8(6.7) 83.1(11.9) 118.7(22.3) 146.7(31.8)V = 164MR 126.2(9.6) { 394.2(29.8) {MRap 22.3(1.7) 35.8(2.7) 70.6(5.2) 218.2(14.9)CG� 125.8(10.1) { 291.4(44.1) {CG�;ap 77.0(9.1) 134.8(11.2) 215.3(31.7) 281.1(54.6)GMRES 114.7(8.9) { 357.8(29.0) {GMRESap 22.3(1.8) 34.5(2.7) 66.0(5.6) 198.5(18.2)SUMR 109.4(8.6) 174.2(14.5) 320.2(30.4) 570.5(96.8)SUMRap 69.3(5.6) 108.5(9.2) 196.0(19.3) 372.3(63.1)Table 6: Average number (and standard deviation) of Q appli
ations for 
onvergen
e ofthe overlap operators, in units of 1000.the best algorithm is GMRESap almost mat
hed by MRap. They are by afa
tor 2-3 more eÆ
ient than the next best CG�;ap on the small volume andSUMRap on the large one. This pattern 
an be understood by the bad s
al-ing properties of MR and GMRES, as opposed to CG and SUMR, towardssmall quark masses whi
h on the other hand is 
ompensated at the largervolume by their almost perfe
t s
aling with the volume.However, as dis
ussed before this is not the whole story { for a relative
ost estimate one has to keep in mind that ea
h appli
ation of the sign-fun
tion, independent of the order of the polynomial for the sign-fun
tionapproximation, generi
ally requires the proje
tion of O(10) eigenve
tors ofQ and this 
ontributes a signi�
ant amount to the total 
ost. This is parti
u-larly signi�
ant in the 
ase of the MRap and GMRESap both of whi
h use loworder approximations of the sign-fun
tion but require a rather large numberof iterations (and therefore many proje
tions), so the total 
ost depends ona subtle interplay between the number of s
alar produ
ts (proportional tothe number of iterations in table 5) and the number of Q appli
ations intable 6.In order to take this into a

ount let us 
ompare the absolute timingsfor the adaptive pre
ision algorithms. As emphasised before the results21



will obviously depend on the spe
i�
 MV, SP and ZAXPY implementationdetails as well as on the ar
hite
ture of the ma
hine. In �gure 5 we plot thelogarithm of the absolute timings in units of se
onds as a fun
tion of thebare quark mass.We note that on the more relevant larger volume the pattern followsessentially the one observed for the numbers in table 6. As before, GMRESapand MRap appear to be more eÆ
ient than CG�;ap and SUMRap ex
ept forvery small quark masses. However, the almost perfe
t volume s
aling ofGMRESap (and similarly MRap) suggests that these algorithms will breakeven also at small masses on large enough volumes. Indeed, as is evidentfrom �gure 5, this appears to be the 
ase already on the 164 latti
e where wenote that all four algorithms are similarly eÆ
ient with a slight advantagefor the GMRESap.Let us 
on
lude this se
tion with the remark that a 
omparison of theabove algorithms apparently depends very mu
h on the detailed situationin whi
h the algorithms are used and the spe
i�
 viewpoint one takes. Forexample, the 
on
lusion will be di�erent for the reasons dis
ussed above de-pending on whether a simulation is done on a large or intermediate latti
evolume, or whether one is interested in small or intermediate bare quarkmasses. In a quen
hed or partially quen
hed 
al
ulation one will be inter-ested in MM algorithms whi
h e.g. would ex
lude the GMRESap and MRap,on the other hand in a dynami
al simulation this ex
lusion is only importantwhen a RHMC algorithm is used [31, 32℄.
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Figure 1: Average timings for the inversion of the un-pre
onditioned Wilson TM operatorin units of se
onds on a logarithmi
 s
ale for di�erent bare quark masses. We 
omparetwo volumes, a 124 (top) and a 164 latti
e (bottom).23
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5.3.2 Low mode pre
onditioningLet us now turn to low mode pre
onditioning. We 
on
entrate on the non-hermitian LMP versions of GMRESap and MRap (
f. se
.4.2) and 
ompareit to the hermitian LMP version of CGap [25℄ and in the following we de-note the LMP version of the algorithms by the additional subs
ript lmp.Both GMRESap,lmp and MRap,lmp are parti
ularly promising sin
e the un-pre
onditioned versions show a rather bad performan
e towards small quarkmasses, i.e. they fail to perform eÆ
iently if the 
ondition number of the op-eratorD gets too large. Obviously, proje
ting out the few lowest modes ofDand treating them exa
tly essentially keeps the 
ondition number 
onstanteven when the bare quark mass is pushed to smaller values, e.g. into the"{regime, and hen
e it has the potential to be parti
ularly useful. Further-more, we expe
t the iteration numbers to de
rease for the LMP operatorsso that the overhead of GMRES and MR with respe
t to CG due to the waythe adaptive pre
ision is implemented be
omes less severe.The low modes are 
al
ulated using the methods des
ribed in appendixA. For the following 
omparison the normalised low modes  (�)k of A� =P�DyDP� are 
al
ulated separately in ea
h 
hiral se
tor up to a pre
isionwhi
h is de�ned through the norm of the gradient g(�)k in analogy to Eq.(14).For later 
onvenien
e we introdu
e the triplet notation (n0; n+; n�) to in-di
ate the set of n0 zero modes and n� modes in the 
hirally positive andnegative se
tor, respe
tively. These eigenve
tors 
an dire
tly be used in theCGap,lmp, but for the GMRESap,lmp and MRap,lmp one has to re
onstru
t theapproximate (left and right) eigenve
tors, eigenvalues and gradients. Thisis a
hieved by diagonalising the operator D in the subspa
e spanned by themodes  (�)k leading to Eq.(14) and (15).At this point it appears to be important that the number of modes n�in the two 
hiral se
tors mat
h ea
h other (up to zero modes of the masslessoperator) in order for the non-hermitian LMP to work eÆ
iently. This isillustrated in �gure 6 where we plot the square norm of the true residualjrj2 of the pre
onditioned operator Eq.(25) against the iteration number ofthe GMRESap,lmp(10) algorithm at � = 0:005 on a sample 164 
on�gurationwith topologi
al index � = 5. The two full lines show the residuals in the
ase where the set (5; 10; 10) is used while the dashed lines are the residualsobtained with the set (5,5,12). So in addition to the �ve zero modes, in thelatter 
ase only the �rst �ve non-zero modes of the non-hermitian operator
an e�e
tively be re
onstru
ted while in the former 
ase it is the �rst 10 non-zero modes leading to a mu
h improved 
onvergen
e. More severe, however,is the fa
t that the 
onvergen
e may be
ome unstable if the modes are notmat
hed.In the example above we have used modes  (�)k that were 
al
ulated withan a

ura
y jg(�)k j2 . 10�4 whi
h, after the re
onstru
tion of the lk and rk's,28
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Figure 6: The square norm of the true residual jrj2 of the LM pre
onditioned operatoragainst the iteration number of the GMRESap,lmp(10) algorithm at � = 0:005 on a sample164 
on�guration with topologi
al index � = 5. The full lines show the 
onvergen
e whenthe modes of the two 
hiral se
tors are mat
hed, n+ = n�, dashed lines when the modesare not mat
hed, n+ 6= n�. �� refers to the 
hirality of the point sour
e.translated into jg(l;r)k j2 ' 5 �10�3. It is surprising to see that the LMP workseven with su
h a low a

ura
y of the low modes. On the other hand, after
onvergen
e of the LM pre
onditioned operator (
f. eq.(25)) and after addingin the 
ontributions from the low modes (
f. eq.(26)), we �nd that there isa loss in the true residual of the full operator. This is illustrated in �gure7 where we show the square norm of the true residual jrj2 of the LM pre-
onditioned operator against the iteration number of the GMRESap,lmp(10)algorithm for the same 
on�guration as before, using the set (5,10,10) 
al-
ulated to an a

ura
y of jg(�)k j ' 10�4 (solid bla
k line) together with thetrue residual (�lled bla
k 
ir
le) after adding in the 
ontribution from thelow modes. On the other hand, if we use the set (5,10,10) 
al
ulated to ana

ura
y of jg(�)k j ' 10�6 (short dashed red line) and 10�8 (long dashed blueline), the true residual 
an be sustained at jrj2 ' 10�14 even after addingin the low mode 
ontributions (�lled 
ir
les). What is surprising, however,is that the version using the least a

urate low modes 
onverges the fastest,while the version using the most a

urate low modes 
onverges slowest.Another point worth investigating is how the 
onvergen
e depends onthe number of proje
ted modes. In �gure 8 we show the 
onvergen
e his-tory for the GMRESap,lmp(10) algorithm in the 
ase when the set (5,10,10)(solid bla
k line) and (5,20,20) (short dashed red line) of low modes 
al-
ulated to an a

ura
y of jg(�)k j2 ' 10�6 are used for the pre
onditioning.29
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Figure 7: The square norm of the true residual jrj2 of the LM pre
onditioned operatoragainst the iteration number of the GMRESap,lmp(10) algorithm at � = 0:005 on a sample164 
on�guration with topologi
al index � = 5. For the low mode set (5,10,10) 
al
ulatedto an a

ura
y of jg(�)k j2 ' 10�4 (solid bla
k), 10�6 (short dashed red) and 10�8 (longdashed blue). The dot denotes the residual after adding in the 
ontribution from the lowmodes.In both 
ases the 
onvergen
e is approximately exponential with exponents0.0195 and 0.056 for the pre
onditioning with (5,10,10) and (5,20,20) modes,respe
tively, and the ratio of exponents mat
hes pre
isely the ratio of thesquared 
ondition numbers of the pre
onditioned operators. Finally we notethat there is no sensitivity to whether or not the sour
e is in the 
hiral se
torwhi
h 
ontains the zero-modes.In �g.9 we show the average timings for the inversion of the LM pre-
onditioned overlap operator. For the LMP in addition to the zero modeswe have used 10 nonzero modes on both volumes, i.e. the set (n0; 10; 10).Obviously, to a
hieve similar improvement on di�erent volumes one shoulds
ale the number of low modes with the volume. The fa
t that we havenot done so is re
e
ted in the degradation of the algorithm performan
e onthe larger volume towards smaller quark mass, but one should keep in mindthat the improvement w.r.t. the un-pre
onditioned operator 
an be easilyenhan
ed by using more low modes.The s
ale is 
hosen so that the �gures 
an be dire
tly 
ompared to theones in �g.5, but we remark that su
h a 
omparison is only of limited interest,sin
e the improvement w.r.t. the un-pre
onditioned operator will dependstrongly on the number of low modes and the quark mass.The timings in
lude all the preparation of the eigenmodes as des
ribedin se
tion 5.3.2. Comparing the results for the highest mass with the ones30
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onditioned operatoragainst the iteration number of the GMRESap,lmp(10) algorithm at � = 0:005 on a sample164 
on�guration with topologi
al index � = 5. For the low mode set (5,10,10) (solid bla
kline) and (5,20,20) (short dashed red line) mat
hed low modes 
al
ulated to an a

ura
yof jg(�)k j2 ' 10�6.in �g.5 it be
omes 
lear that the preparation amounts to a non-negligiblefra
tion of the total time, but it should be noted that in a real produ
tionit has to be done only on
e for all inversions on a given 
on�guration.In 
on
lusion we �nd that GMRESap,lmp outperforms CGap,lmp by fa
-tors of up to two in the range of parameters investigated here. Due tothe favourable volume s
aling of the GMRESap,lmp algorithm this fa
tor isexpe
ted to be
ome even larger on larger volumes.
31
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5.4 Comparison between overlap and Wilson TMThe results of the previous se
tions emphasise that an investigation likethe present one is worthwhile { for both the overlap and the twisted massoperator the relative 
ost fa
tor between the worst and the best algorithm
an be as mu
h as one order of magnitude.Let us 
ompare dire
tly the absolute and relative 
ost for the overlapand twisted mass operator in table 7 and table 8 where we pi
k in ea
h
ase the best available algorithm, GMRESap for the overlap and CGSeofor the twisted mass operator. We observe that the relative fa
tor in the
ost (measured in exe
ution time or MV produ
ts) lies between 30 for theheaviest mass under investigation and 120 for the lightest mass. The patternappears to be similar for the two volumes we looked at, even though therelative fa
tor is slightly in
reasing with the volume.V;m�[MeV℄ Wilson TM overlap rel. fa
tor124; 720 599 18.1 30555 774 27.9 36390 944 52.9 56230 1048 96.7 92164; 720 650 22.3 34555 962 34.5 36390 1317 66.0 50230 1687 198.5 118Table 7: Number ofQ appli
ations for the best available algorithm and the 
orrespondingrelative 
ost fa
tor. For the overlap operator the number of Q appli
ations is in units of1000. V;m�[MeV℄ Wilson TM overlap rel. fa
tor124; 720 1.0 48.8 49555 1.3 75.1 58390 1.6 141.5 88230 1.8 225.0 125164; 720 3.7 225.3 61555 5.2 343.9 66390 6.8 652.7 96230 10.0 1949.3 195Table 8: Absolute timings in se
onds on one node of JUeli
h MultiProzessor (JUMP)IBM p690 Regatta in J�uli
h for the best available algorithm and the 
orresponding relative
ost fa
tor.We would like to emphasise that the overlap operator as used in this33



paper obeys latti
e 
hiral symmetry up to ma
hine pre
ision and hen
ethe relative fa
tor 
ompared to TM fermions will be less if a less stringentGinsparg-Wilson fermion is used. In
luding those fermions as well as im-proved overlap fermions (for instan
e with a smeared kernel) in the testsare, however, beyond the s
ope of this paper.6 Con
lusions and OutlookIn this paper we have performed a 
omprehensive, though not 
omplete testof various algorithms to solve very large sets of linear systems employingsparse matri
es as needed in appli
ations of latti
e QCD. We 
onsideredtwo relatively new formulations of latti
e QCD, 
hirally improved Wilsontwisted mass fermions at full twist and 
hirally invariant overlap fermions.The tests were performed on 124 and 164 latti
es and four values of thepseudo s
alar mass of 230MeV, 390MeV, 555MeV and 720MeV. The latti
espa
ing has been �xed to a � 0:125fm.We think that our study will help to sele
t a good linear system solver fortwisted mass and overlap fermions for pra
ti
al simulations. We emphasisethat we 
annot provide a de�nite 
hoi
e of the optimal algorithm for ea
h
ase. The reason simply is that the optimal 
hoi
e depends on many detailsof the problem at hand su
h as the exa
t pseudo s
alar mass, the volume,the sour
e ve
tor et
.. Nevertheless, in general we �nd that for twisted massfermions CGS appears to be the fastest linear solver algorithm while foroverlap fermions it is GMRESap for the parameters investigated here. Ina dire
t 
ompetition between twisted mass and overlap fermions the latterare by a fa
tor of 30-120 more expensive if one 
ompares the best availablealgorithms in ea
h 
ase with an in
reasing fa
tor when the value of thepseudo s
alar mass is lowered. Pre
onditioning plays an important role forboth investigated fermion simulations. A fa
tor of two is obtained by usingeven/odd pre
onditioning for the TM operator. A similar improvement 
anbe expe
ted from SSOR pre
onditioning [33, 34℄.For the overlap operator it turns out to be rather eÆ
ient to adaptthe pre
ision of the polynomial approximation in the 
ourse of the solveriterations. This easily speeds up the inversion by a fa
tor of two. In the�-regime in addition low mode pre
onditioning 
an over
ome the slowingdown of the 
onvergen
e of the algorithms towards small quark masses andthe 
onvergen
e rate 
an essentially be kept 
onstant for all masses. Inparti
ular we �nd that the GMRESap,lmp outperforms CGap,lmp by fa
torsof up to two with tenden
y of getting even better towards larger volumes.One of the aims of this paper has been to at least start an algorithm
omparison and we would hope that our study here will be extended byother groups adding their 
hoi
e of algorithm, optimally using the here em-ployed simulations parameters as ben
hmark points. In this way, a toolkit34



of algorithms 
ould be generated and gradually enlarged.A
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hungsstipendium CH398/1.A Eigenpair ComputationAs mentioned already in se
tion 2, the 
omputation of eigenvalues and eigen-ve
tors or approximations of those are needed in various methods used inthis paper, e.g. for the pra
ti
al implementation of the sign-fun
tion or thelow mode pre
onditioning of the overlap operator. But also if one is in-terested in 
omputing the topologi
al index with the overlap operator oneneeds an algorithm to 
ompute the eigenvalues of the overlap operator.The standard method used in latti
e QCD is the so 
alled Ritz-Ja
obimethod [35℄. For the use of adaptive pre
ision for the overlap operatorwith this method, see Ref. [36, 25℄. Another 
hoi
e would be the Arnoldialgorithm implemented in the ARPACK pa
kage whi
h, however, sometimesfails to 
ompute for instan
e a given number of the lowest eigenvalues of Q2by missing one. This might lead to problems if the eigenvalues are used tonormalise the Wilson-Dira
 operator in the polynomial 
onstru
tion of theoverlap operator.We used yet another method whi
h is des
ribed in the following se
tion.After that we present some implementation details for the determination ofthe index.A.1 Ja
obi-Davidson methodConsider a 
omplex valued N�N matrix A for whi
h we aim at determining(part of) its eigenvalues and eigenve
tors. The exa
t 
omputation of those isin general too demanding and thus one has to rely on some iterative method.The one we are going to des
ribe here was introdu
ed in [37℄.Assume we have an approximation (�k; uk) for the eigenpair (�; u) andwe want to �nd a 
orre
tion v to uk in order to improve the approximation.35



One way of doing this is to look for the orthogonal 
omplement for uk withrespe
t to u, whi
h means we are interested in the subspa
e u?k .The proje
tion of A into this subspa
e is given byBk � (I � ukuyk)A(I � ukuyk) ; (27)where the ve
tor uk has been normalised and I represents the identity ma-trix. Eq. (27) 
an be rewritten as followsA = Bk +Aukuyk + ukuykA� �kukuyk : (28)Sin
e we want to �nd v ? uk su
h thatA(uk + v) = �(uk + v) ;it follows with Bkuk = 0(Bk � �I)v = �rk + (�� �k � uykAv)uk ; (29)where we introdu
ed the residual ve
tor rk given byrk = (A� �kI)uk :Neither rk nor the l.h.s of Eq. (29) have a 
omponent in dire
tion uk andhen
e v should satisfy (Bk � �I)v = �rk : (30)Sin
e � is unknown, we repla
e it by �k and Eq. (30) 
an then be solved withany iterative solver. Note that the matrix B depends on the approximationuk and needs to be newly 
onstru
ted in every step.Solving Eq. (30) for v in every iteration step might look as if the proposedalgorithm is rather 
omputer time demanding. But it turns out that in fa
tit has to be solved only approximately, i.e. in ea
h iteration step only a fewiterations of the solver have to be performed.The basi
 Ja
obi-Davidson (JD) algorithm is summarised in algorithm3. In algorithm 3 we denote matri
es with 
apital letters and ve
tors withsmall letters. V = fvg means that the matrix V 
ontains only one 
olumnv, while W = fV; vgmeans that V is expanded by v to the matrix W by one
olumn. The basi
 algorithm 
an be easily extended in order to 
omputemore than the minimal (maximal) eigenvalue: the simplest way is to performa restart and restri
t the eigenve
tor sear
h to the subspa
e orthogonal tothe already 
omputed eigenve
tor(s).A further way to 
ompute more than one eigenvalue is to solve Eq. (30)more than on
e per iteration for several approximate eigenve
tors. This so
alled blo
king method is also 
apable to deal with degenerate eigenvalues,whi
h are otherwise not 
orre
tly 
omputed by the JD method [38, 39℄.36



Algorithm 3 Basi
 Ja
obi-Davidson algorithmRequire: non trivial initial guess ve
tor v, m > 11: v1 = v=kvk, w1 = Av1, h11 = vy1w1, i = 12: V1 = fv1g, W1 = fw1g, H1 = fh11g3: uk = v1, �1 = h114: r1 = w1 � �1u5: repeat6: for k = 1; :::; m� 1 do7: solve approximately for vk+1 ? uk(I � ukuyk)(A� �kI)(I � ukuyk)vk+1 = �rk (31)8: orthogonalise vk+1 against Vk, Vk+1 = fVk; vk+1g9: wk+1 = Avk+1, Wk+1 = fWk; wk+1g10: 
ompute V yk+1wk+1, the last 
olumn of Hk+1 � V yk+1AVk+111: if A is not hermitian then12: 
ompute vyk+1Wk , the last row of Hk+113: end if14: 
ompute the smallest eigenpair (�k+1; s) of Hk+1 and normalise s.15: uk+1 = Vk+1s // The new eigenve
tor approximation16: û = Auk+1 and rk+1 = û� �k+1uk+117: test for 
onvergen
e, i = i+ 118: end for19: restart: Set V1 = fumg, W1 = fûg, H1 = f�mg20: until 
onvergen
e
37



Moreover, the JD algorithm is able to 
ompute eigenpairs whi
h arelo
ated in the bulk eigenvalue spe
trum of A. This is a
hieved by repla
ing�k in Eq. (30) by an initial guess � in the �rst few iterations, whi
h willdrive the JD algorithm to 
ompute preferably eigenvalues 
lose to � [37℄.Let us �nally dis
uss some implementation details regarding the par-allelisation of the JD algorithm. As soon as the appli
ation of A is par-allelised most of the remaining linear algebra operations are parallelisedtrivially, whi
h in
ludes matrix-ve
tor multipli
ations as V yk+1wk+1. Onlythe 
omputation of the eigenvalues of the (low dimensional) matrix H is notimmediately parallelisable and, in fa
t, it is most eÆ
ient to hold a lo
al
opy of H and 
ompute the eigenvalues on ea
h pro
essor. Then the mul-tipli
ation Vk+1s in line 15 of algorithm 3 is even a lo
al operation. Thisseems to be a doubling of work, but as H is only an order 20� 20 matrix,the parallelisation overhead would be too large.A.1.1 Index 
omputationThe 
omputation of the topologi
al index on a given gauge 
on�gurationwith the overlap operator involves 
ounting the zero modes of Dov. Morepre
isely, the 
hiral se
tor 
ontaining zero modes has to be identi�ed andthen their number has to be determined. To this end we have implementedthe method of Ref. [25℄ whi
h makes use of the Ritz-Ja
obi algorithm. More-over, it is straightforward to adapt the method also to the JD algorithm. Sowe are not going to mention the details of this algorithm.But it is useful to dis
uss some performan
e improvements of the index
omputation: the most time 
onsuming part in the JD algorithm is to �ndan approximate solution to Eq. (30). As suggested in Refs. [38, 39℄, we usedthe following set-up. The a
tual absolute pre
ision to whi
h the solution isdriven is 
omputed as � = x�i ;where i 
ounts the number of JD-iterations performed so far for the eigen-value in question (see algorithm 3) and x = 1:5. Additionally we set themaximal number of iterations in the solver to 50. In this way we avoid onthe one hand that the solution to Eq. (30) is mu
h more pre
ise than the
urrent approximation for the eigenvalue and on the other hand too manyiterations in the solver.Thus, most of the time, the pre
ision required from the iterative solveris only rough, and hen
e it is useful to use adaptive pre
ision for the sign-fun
tion, sin
e the polynomial approximation of the sign-fun
tion is notneeded to be mu
h more pre
ise than the required solver pre
ision. Ourexperien
e shows that setting the pre
ision in the polynomial to 10�2 � � is agood 
hoi
e in this respe
t. We remark that the ve
tor wk+1 (see line 9 inalgorithm 3) as well as the next residual rk+1 should be 
omputed with fullpre
ision in the polynomial in order not to bias the 
omputation.38



A.2 Index from the CG sear
hFor the 
omputation of the topologi
al index it is important to note thatthe determination of the 
hiral se
tor whi
h 
ontains the zero-modes 
omesfor free when one uses the CG-algorithm for the inversion. By estimatingthe eigenvalues on
e in ea
h 
hiral se
tor and by pairing them a

ordingly itis possible to identify the 
hiral se
tor whi
h 
ontains zero modes. From theCG-
oeÆ
ients whi
h are obtained during the iteration one 
an build up atridiagonal matrix whi
h is related to the underlying Lan
zos pro
edure [9℄.The eigenvalues of this matrix approximate the extremal eigenvalues of theoperator and it turns out that the lowest 5-10 eigenvalues are approximatedrather a

urately.In �gure 10 we plot the iterative determination of the lowest eigenvaluesduring a CG-inversion for two di�erent 
on�gurations. For the �rst 
on�gu-ration (left plot) we see a rapid 
onvergen
e of the unpaired lowest eigenvaluetowards the zero mode value suggesting a non-zero topologi
al 
harge in thegiven 
hiral se
tor. The se
ond 
on�guration on the other hand (right plot)also shows a rapid 
onvergen
e of the lowest mode towards the zero modevalue, but this time it is paired by an equal eigenvalue in the opposite 
hiralse
tor hen
e suggesting a 
on�guration with zero topologi
al 
harge. Figure10 emphasises the point that the pairing of modes in the two 
hiral se
tors isthe 
ru
ial ingredient for the determination of the topologi
al 
harge se
torand not the estimate of the eigenvalue itself. Indeed, for the se
ond 
on�g-uration the eigenvalue estimates 
onverge to a value slightly larger than thezero mode value as one would expe
t.B Multiple mass solver for twisted mass fermionsWe want to invert the TM operator at a 
ertain twisted mass �0 obtainingautomati
ally all the solutions for other twisted masses �k (with j�kj � j�0j).Then, as in Eq.(3) the Wilson twisted mass operator is4Dtm = DW + i�k
5�3; k = 1; : : : ; Nm (32)where Nm is the number of additional twisted masses. The operator 
an besplit as Dtm = D(0)tm + i(�k � �0)
5�3; D(0)tm = DW + i�0
5�3 (33)The trivial observation is thatDtmDytm = D(0)tmD(0)ytm + �2k � �20 ; (34)4In the following the subs
ript tm asso
iated with the bare twisted quark masses �k issuppressed. 39



where we have used 
5DW
5 = DyW. Now 
learly we have a shifted linearsystem (A+�k)x�b = 0 with A = D(0)tmD(0)ytm and �k = �2k��20. In algorithm4 we des
ribe the CG-M algorithm to solve the problem (A+ �k)x� b = 0.The lower index indi
ates the iteration steps of the solver, while the upperindex k refers to the shifted problem with �k. The symbols without upperindex refer to mass �0.Algorithm 4 CG-M algorithm1: n = 0; xk0 = 0; r0 = p0 = pk0 = b2: ��1 = �k�1 = �k0 = 1; �k0 = �0 = 03: repeat4: �n = (rn; rn)=(pn; Apn)5: �kn+1 = (�kn�n�1)=(�n�n(1� �kn=�kn�1) + �n�1(1� �k�n))6: �kn = (�n�kn+1)=�kn7: xkn+1 = xkn + �knpkn8: xn+1 = xn + �npn9: rn+1 = rn � �nApn10: �n+1 = (rn+1; rn+1)=(rn; rn)11: pkn+1 = �kn+1rn+1 + �kn+1pkn12: n = n+ 113: until krnk < �
40
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Figure 10: Estimates of the lowest eigenvalues of the overlap operator from the CG-
oeÆ
ients for a 164 
on�guration with topologi
al 
harge � < 0 (top) and � = 0 (bottom)at �ov = 0:03. 41
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