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observed pion mass of 140MeV possible. For a omparison of physial resultsobtained with the two mentioned operators in the quenhed approximationsee Ref. [5℄.The reason for these diÆulties is that one has to solve a huge set of linearequations over and over again. Although, due to the only nearest neighbourinteration of the underlying Wilson-Dira operator, sparse matrix methodsan be employed, the omputational ost an get extremely large, see, e.g.the disussions in Refs. [6, 7, 8℄.The fous of this work is to ompare di�erent iterative linear solvers1 forsparse matries as needed for omputing the quark propagator for valenequarks or for the omputation of the fermioni "fore" in dynamial sim-ulations. It has to be remarked that the exat behaviour of sparse matrixmethods is highly problem spei� and an depend strongly on the underly-ing matrix involved. It is hene ruial to ompare the optimal method for agiven kind of lattie fermion. In our ase, we will onsider overlap fermionsand Wilson twisted mass fermions at maximal twist. We will explore a num-ber of sparse matrix methods for the solution of the linear system de�nedby the orresponding lattie Dira operator. Although we have tried to berather omprehensive, it is lear that suh a work annot be exhaustive.The set of possible linear solvers is too large to be able to over all of them,see e.g. [9℄ and di�erent solvers may be better for di�erent situations. Forexample, if we are only interested in omputing fermion propagators, thequestion is, whether we want to have a multiple mass solver [10℄. Or, withrespet of dynamial simulations, we need the square of the lattie Dira op-erator and not the operator itself whih an lead to very di�erent behaviourof the algorithm employed. In addition, eah of the basi algorithms an beombined with ertain improvement tehniques whih again inuene thealgorithm behaviour substantially.In priniple, it is also desirable to study the performane behaviour of thealgorithms as a funtion of the pseudo salar mass, the lattie volume andthe lattie spaing. Again, in this work, due to the very ostly simulationssuh a study would require, we have to restrit ourselves to an only limitedset of parameters. In partiular, we will onsider two physial volumes andfour values of the pseudo salar mass (mathed between both formulationsof lattie QCD). Finally, we will only take one value of the lattie spaingfor our study.As an outome of this work, we will �nd that the omputational ost ofpartiular algorithms and variants thereof an vary substantially for di�erentsituations. This gives rise to the onlusion that it an be very pro�table1What is needed for lattie alulations are ertain rows or olumns of the inverse of thefermion matrix employed whih are obtained from the solution of a set of linear equations.By abuse of language, we will therefore sometimes speak about \inversion algorithms",\inverse operator" et. while the mathematial problem is always the solution of a largeset of linear equations using iterative sparse matrix methods.3



to test the {at least most promising{ algorithms for the partiular problemone is interested in. It is one of our main onlusions that easily a fator oftwo or larger an be gained when the algorithm is adopted to the partiularproblem under onsideration.Parts of the results presented in this paper were already published inRef. [11℄ and for related work onerning the overlap operator see Refs. [12,13, 14℄.The outline of the paper is as follows. In setion 2 we introdue theDira operators that are onsidered in this study. Setion 3 disusses theiterative linear solver algorithms and speial variants thereof, like multiplemass solvers and, for the overlap operator, adaptive preision solvers andsolvers in a given hiral setor. In setion 4 we present various preondi-tioning tehniques like even/odd preonditioning for the TM operator andlow mode preonditioning for the overlap operator. In setion 5 we presentand disuss our results and in setion 6 we �nish with onlusions and anoutlook. Appendix A deals with the omputation of eigenvalues and eigen-vetors whih is important for an eÆient implementation of the overlapoperator, for its low mode preonditioning and for the omputation of itsindex. Appendix B �nally reformulates the TM operator so that multiplemass solvers beome appliable.2 Lattie Dira operatorsWe onsider QCD on a four-dimensional hyper-ubi lattie in Eulideanspae-time. The fermioni �elds  live on the sites x of the lattie whilethe SU(3) gauge �elds of the theory are represented by group-valued linkvariables U�(x); � = 1; : : : ; 4. The gauge ovariant bakward and forwarddi�erene operators are given by(r� )(x) = U�(x) (x+ �̂)�  (x);(r�� )(x) =  (x)� Uy�(x� �̂) (x� �̂); (1)and the standard Wilson-Dira operator with bare quark mass m0 an bewritten as DW(m0) = 4X�=1 12f�(r� +r��)� r��r�g+m0: (2)The twisted mass lattie Dira operator for a SUf(2) avour doublet ofmass degenerate quarks has the form [15, 16℄Dtm(�tm) = DW(m0) + i�tm5�3 ; (3)where DW is the Wilson-Dira operator with bare quark massm0 as de�nedabove, �tm the twisted quark mass and �3 the third Pauli matrix ating4



in avour spae. Sine it was shown in Ref. [4℄ (for a test in pratise seeRefs. [17, 18℄) that physial observables are automatially O(a) improved ifm0 is tuned to its ritial value, we are only interested in this speial ase.The seond operator we onsider, the massive overlap operator, is de�nedas [2, 3℄ D(�ov) = �1� �ov2M �D + �ov ; (4)where D =M�1 + 5 sign [Q(�M)℄� (5)is the massless overlap operator, Q(�M) = 5DW(�M) with M hosen tobeM = 1:6 in this work and �ov again the bare quark mass. The matrix sign-funtion in Eq.(5) is alulated by some approximation that overs the wholespetrum of Q(�M). To make this feasible we determine K eigenmodes ofQ(�M) losest to the origin, projet them out from the sign-funtion andalulate their ontribution analytially while the rest of the spetrum isovered by an approximation employing Chebyshe� polynomials. Denotingby  k the eigenvetors of Q with orresponding eigenvalue �k, i.e. Q k =�k k, we havesign [Q(�M)℄ = KXk=1 sign(�k)Pk+ 1� KXk=1Pk!Q � TN �Q2� 1� KXk=1 Pk! ; (6)where Pk =  k yk are projetors onto the eigenmode subspaes and TN �Q2�denotes the N -th order Chebyshe� polynomial approximation to 1=p(Q2)on the orthogonal subspae. The alulation of the eigenmodes is disussedin appendix A.3 Iterative linear solver algorithmsLet us now turn to the iterative linear solver algorithms that we onsiderin our investigation. Table 1 lists the various algorithms and marks with'x' whih of them are used with the overlap and the TM operator, respe-tively. For the onveniene of the reader we also ompile in table 1 for eahalgorithm the number of operator appliations, i.e. matrix-vetor (MV) mul-tipliations, together with the orresponding number of salar produts (SP)and linear algebra instrutions Z = �X + Y (ZAXPY) per iteration. More-over, in the last olumn we also note whih of the algorithms possess theapability of using multiple masses (MM).With the exeption of the MR algorithm all algorithms are Krylov sub-spae methods, i.e. they onstrut the solution of the linear system A = �5



Algorithm Overlap TM MV SP ZAXPY MMCGNE [9℄ x x 2 2 3 yesCGS [9℄ x x 2 2 7 yesBiCGstab [9℄ x x 2 4 6 yesGMRES(m) [9℄ x x 1 m=2 + 1 m=2 + 1 noMR [9℄ x x 1 2 2 yesCGNE� x 1 2 3 yesSUMR [19℄ x 1 6 1 yesTable 1: Linear solver algorithms for the overlap and twisted mass (TM) operator. Alsogiven are the number of matrix vetor (MV) multipliations, salar produts (SP) andz = �x+ y (ZAXPY) linear algebra operations per iteration. We also indiate, whetherthe algorithm an be used to solve for multiple masses (MM).as a linear ombination of vetors in the Krylov subspaeKi = span(v; Av; : : :; Ai�1v) ;where v = r0 = � � A 0 is the initial residual. In ontrast the MR algo-rithm is a one-dimensional projetion proess [9℄, i.e. eah iteration step isompletely independent of the previous one. For a detailed desription anddisussion of the basi algorithms we refer to [9℄, whereas we will disusssome speial versions in the following subsetions. Note that we adoptedthe names of the algorithms from Ref. [20℄ where possible.The SUMR algorithm was introdued in Ref. [19℄ and �rst used for lattieQCD in Ref. [12℄. It makes use of the unitarity property of the masslessoverlap operator and was shown to perform rather well when ompared toother standard iterative solvers [12℄.In the ase of TM fermions it is sometimes useful to onsider the linearsystem 5A = 5� instead of A = �. The reason for the importane ofthis hange will be disussed later. We will add a 5 to the solver name inase the hanged system is solved, like for instane CGS5.3.1 Multiple mass solversIn propagator alulations for QCD appliations it is often neessary toompute solutions of the system(A+ �) = � (7)for several values of a salar shift � - usually the mass. It has been realisedsome time ago [10, 21, 22, 23℄ that the solutions of the shifted systems anbe obtained at largely the ost of only solving the system with the smallest(positive) shift. For the Krylov spae solvers this is ahieved by realising thatthe Krylov spaes of the shifted systems are essentially the same. In table6



1 we note in the last olumn whih of the algorithms an be implementedwith multiple masses. Multiple mass (MM) versions for BiCGstab and CGan be found in [22℄. In priniple there exists also a MM version for theGMRES algorithm, but sine in pratise the GMRES has to be restartedafterm iteration steps it does not arry over to the ase of GMRES(m). Forthe SUMR algorithm we note that the MM version is trivial, sine the shiftof the unitary matrix enters in the algorithm not via the iterated vetorsbut instead only through salar oeÆients diretly into the solution vetor.Finally we wish to emphasise that also the CGNE algorithm is apableof using multiple masses in speial situations. This remark is non-trivialsine in general (Ay+ �)(A+ �) appearing in the normal equation is not ofthe form A0yA0+�0. However, it turns out that for the overlap operator andthe twisted mass operator a MM is possible. For the overlap operator onean make use of the Ginsparg-Wilson relation in order to bring the shiftednormal equation operator into the desired form [24℄. For the Wilson twistedmass fermion operator we provide in Appendix B the details of the MMimplementation for CGNE.3.2 Chiral CGNE for the overlap operatorDue to the fat that the overlap operator obeys the Ginsparg-Wilson relationit is easy to show thatDyD ommutes with 5. As a onsequene the solutionto the normal equation DyD = � an be found in a given hiral setor aslong as the original soure vetor � is hiral. (This is for example the aseif one works with point soures in a hiral basis.)When applying the CGNE algorithm to the overlap operator one anthen make use of this fat by noting the relationP�D(�ov)yD(�ov)P� = 2MP�D(�2ov=(2M))P� ; (8)where P� = 1=2(1 � 5) are the hiral projetors. Thus in eah iterationthe operator is only applied one instead of twie, but with a modi�ed massparameter. This immediately saves a fator of two in the number of matrix-vetor (MV) appliations with respet to the general ase. In table 1 and inthe following we denote this algorithm by CGNE�.3.3 Adaptive preision solvers for the overlap operatorIt is well known that the omputational bottlenek for the solvers employingthe overlap operator is the omputation of the approximation of the sign-funtion sign(Q). Sine eah appliation of the overlap operator during theiterative solver proess requires yet another iterative proedure to approxi-mate sign(Q), we are led to a two-level nested iterative proedure where theost for the alulation of the sign-funtion enters multipliatively in thetotal ost. So any optimised algorithm will not only aim at minimising the7



number of outer iterations, i.e. the number of overlap operator appliations,but it will also try to redue the number of inner iterations, i.e. the order ofthe { in our ase polynomial { approximation.While the problem of minimising the number of outer iterations dependson a deliate interplay between the algorithm and the operator under on-sideration and omprises one of the main foi of the present investigation,the problem to redue the number of inner iterations an be ahieved ratherdiretly in two di�erent ways. Firstly, as disussed in setion 2, we projetout the lowest 20 or 40 eigenvetors of the Wilson-Dira operator depend-ing on the extent of the lattie (f. setion 5.1). In this way we ahievethat our approximations use (Chebyshe�) polynomials typially of the or-der O(200� 300) for the simulation parameters we have employed for thisstudy.Seondly, it is then also lear that one an speed up the alulations bylarge fators if it is possible to redue the auray of the approximation. Inrealising this, the basi idea is to adapt the degree of the polynomial duringthe solver iteration to ahieve only that preision as atually needed in thepresent iteration step. We have implemented the adaptive preision for aseletion of the algorithms that seemed most promising in our �rst tests andin the following we denote these algorithms by the subsript ap for adaptivepreision. Usually not more than two lines of additional ode are required toimplement the adaptive preision versions of the algorithms. Obviously thedetails of how exatly one needs to adapt the preision of the polynomialdepends on the details of the algorithm itself and might also inuene thepossibility to do multi mass inversions.We use two generi approahes whih we illustrate in the following bymeans of the adaptive preision versions of the MR and the CGNE algo-rithms, respetively. In the ase of the MR we follow a strategy that issimilar to restarting: through the omplete ourse of the iterative proedurewe use a low order polynomial approximation of a degree O(10) for the signfuntion. Only every m iteration steps we orret for the errors by om-puting the true residuum to full preision, whih orresponds essentially toa restart of the algorithm. We denote this algorithm with MRap(m). Weremark that with this approah the MM apability of the MR algorithm islost.The MRap(m) is outlined with pseudo-ode in algorithm 1, where wedenote the low order approximation of the overlap operator with Aap whilethe full preision operator is denoted with A.The same approah as used for the MRap(m) algorithm an easily bearried forward to the GMRESap(m) algorithm. Sine the GMRES(m) isrestarted every m iterations, we use only every m-th iteration the full ap-proximation to the sign funtion while all other appliations of the overlapoperator are performed with an approximation of degree O(10).In ase of the CGNEap our strategy is di�erent: here we simply alulate8



Algorithm 1 MRap(A;Aap; b; x;m; �) algorithm1: i = 02: p = Ax3: r = b� p4: repeat5: i = i+ 16: // Use Aap with fixed low order polynomial7: ~r = Aapr8: � = (~r; r)=(~r; ~r)9: x = x+ �r10: if i mod m = 0 then11: // Corret with full A12: p = Ax13: else14: p = p+ �~r15: end if16: r = b� p17: until krk < �ontributions to the sign-funtion approximation up to the point where theyare smaller than �ap = 10�2�, where � is the desired �nal residual, i.e. weneglet all orretions that are muh smaller than the �nal residual. Thisrequires the full polynomial only at the beginning of the CG-searh whiletowards the end of the searh we use polynomials with a degree O(10). Inorder to implement this idea we use a forward reursion sheme for theappliation of the Chebyshe� polynomial as detailed in algorithm 2.Algorithm 2 Compute r =Pn�1j=0 jTj(Q2) v to preision �apRequire: vetor v and Chebyshe� oeÆients j1: d0 = T0(Q2) v = v2: d1 = T1(Q2) v = 2Q2 v � v3: r = 1d1 + 1=20d04: for j=2,...,n-1 do5: dj = Tj(Q2) v = 2Q2 dj�1 � dj�26: r = r + jdj7: if kdjk < �ap then8: return r9: end if10: end for11: return rIt is important to note here that with this approah for the CGNEap9



the MM apability is preserved (in ontrast to an approah proposed inRef. [25℄ similar to the MRap(m) approah desribed above where the MMapability is lost). The strategy for the SUMRap is analogous to the one forthe CGNEap, where again the MM apability is preserved.4 Preonditioning tehniques4.1 Even/odd preonditioning for the TM operatorEven/odd preonditioning for the Wilson TM operator has already been de-sribed in [26℄ and we review it here for ompleteness only. Let us start withthe hermitian two avour Wilson TM operator2 in the hopping parameterrepresentation (� = (2m0 + 8)�1)Q � 5D = �Q+ Q�� ; (9)where the sub-matries Q� an be fatorised with ~� = 2�� as follows:Q� = 5�1� i~�5 DeoDoe 1� i~�5� = 5�D�ee DeoDoe D�oo�= �5D�ee 05Doe 1��1 (D�ee)�1Deo0 5(D�oo �Doe(D�ee)�1Deo)� : (10)Note that (D�ee) is trivial to invert:(1� i~�5)�1 = 1� i~�51 + ~�2 : (11)Due to the fatorisation (10) the full fermion matrix an be inverted byinverting the two matries appearing in the fatorisation�D�ee DeoDoe D�oo��1 = �1 (D�ee)�1Deo0 (D�oo �Doe(D�ee)�1Deo)��1�D�ee 0Doe 1��1 :and the two fators an be simpli�ed as follows:�D�ee 0Doe 1��1 = � (D�ee)�1 0�Doe(D�ee)�1 1�and �1 (D�ee)�1Deo0 (D�oo �Doe(D�ee)�1Deo)��1=�1 �(D�ee)�1Deo(D�oo �Doe(D�ee)�1Deo)�10 (D�oo �Doe(D�ee)�1Deo)�1 � :2In this setion we suppress the subsript tm for notational onveniene and simplywrite D for Dtm and � for �tm. 10



The omplete inversion is now performed in two separate steps: First weompute for a given soure �eld � = (�e; �o) an intermediate result ' =('e; 'o) by:�'e'o� = �D�ee 0Doe 1��1��e�o� = � (D�ee)�1�e�Doe(D�ee)�1�e + �o� :This step requires only the appliation of Doe and (D�ee)�1, the latter ofwhih is given by Eq.(11). The �nal solution  = ( e;  o) an then beomputed with� e o� = �1 (D�ee)�1Deo0 (D�oo �Doe(D�ee)�1Deo)��1�'e'o� = �'e � (D�ee)�1Deo o o � ;where we de�ned o = (D�oo �Doe(D�ee)�1Deo)�1'o = D̂�1'o : (12)Therefore the only inversion that has to be performed numerially is theone to generate  o from 'o and this inversion involves only D̂ that is betteronditioned than the original fermion operator.A similar approah is to invert in Eq.(12) instead of D̂ the followingoperator: D̂s = 1� (D�oo)�1Doe(D�ee)�1Deo ;on the soure (D�oo)�1'o. As notied already in Ref. [27℄ for the ase of non-perturbatively improved Wilson fermions this more symmetrial treatmentresults in a slightly better ondition number leading to 20% less iterationsin the solvers.4.2 Low mode preonditioning for the overlap operatorLow mode preonditioning (LMP) for the overlap operator has already beendesribed in Ref. [25℄ using the CG algorithm on the normal equations. Inase of the CG the operator DyD to be inverted is hermitian, and henenormal, and the low mode preonditioning is as desribed in Ref. [25℄.The appliation of this tehnique to algorithms like GMRES or MR(whih involve D instead of DyD) is not ompletely straightforward. Al-though the overlap operator itself is formally normal, in pratise it is not dueto the errors introdued by the �nite approximation of the sign-funtion3.As a onsequene one has to distinguish between left and right eigenvetorsof D leading to some additional ompliations whih we are now going todisuss.3Note that for the CGNE algorithm used in [25℄ the non-normality of the approxi-mate overlap operator is irumvented by onstrution sine DyD is hermitian for anyapproximation of the sign-funtion. 11



Consider the linear equation A = �. The vetor spae on whih thelinear operator A ats an be split into two (bi-)orthogonal piees using the(bi-)orthogonal projetorsP =Xk rklyk; P? = 1� P: (13)Here we assume that the r0ks and l0ks are approximate right and left eigen-vetors (Ritz vetors), respetively, of the operator A whih form a bi-orthogonal basis, i.e. lyirj = Æij . One an writeArk = �krk + g(r)k ; (14)Aylk = ��klk + g(l)k ; (15)where lyi g(r)k = ryig(l)k = 0. Indeed, one �ndsPArk = �krk (16)and P?Ark = g(r)k : (17)The operator A then takes the following blok formA = � PAP PAP?P?AP P?AP? � (18)and the linear equation reads� PAP PAP?P?AP P?AP? �� P P? � = � P�P?� � : (19)To solve this equation we an perform a LU deomposition of AA = � 1 0P?AP (PAP )�1 1 �� PAP PAP?0 S � � L �U ; (20)where S = P?AP? � P?AP (PAP )�1PAP? is the Shur omplement of A.The lower triangular matrix L an be inverted and applied to the right handside, L�1� = � P��P?AP (PAP )�1P� + P?� � ; (21)and the linear system redues to solving U(P ; P? )T = L�1�. Written outexpliitly we obtain the seond omponent P? from solving the equationP?(A�AP (PAP )�1PA)P? = P?� � P?AP (PAP )�1P� (22)and the �rst omponent P from the solution ofPAP � P = P� � PAP? : (23)In detail the whole proedure to solve A = � using low mode preon-ditioning involves the following steps:12



1. prepare (preondition) the soure aording to the r.h.s. of Eq.(22),i.e. �0 = P? 1�Xi g(r)i 1�i lyi! � ; (24)where we have used P?ri = 0.2. solve the low mode preonditioned system AlmpP? = �0 for P? where Almp is the preonditioned operator ating in the subspae or-thogonal to the low modes, i.e. the operator on the l.h.s. of Eq.(22).To be spei� the appliation of the preonditioned operator is givenbyP? �A �AP (PAP )�1PA)�P? =P? 24A�Xi;j;k ��iri + g(r)i � lyirj 1�j lyjrk �lyk�k + g(l)k y�35P? = P? "A�Xi g(r)i 1�i g(l)i y#P? ; (25)where we have used P?ri = lykP? = 0.3. add in the part of the solution from the subspae spanned by the lowmodes, i.e. P . This part is essentially the ontribution from the lowmodes and it is expliitly given byP =Xi ri 1�i lyi (� � AP? ): (26)Let us mention for ompleteness that there are further related preondi-tioning tehniques available whih do not involve the analyti orretion stepin Eq.(26). The Ritz vetors an be used diretly in any right or left preon-ditioned version of a given solver like for instane in the FGMRES algorithm[20℄. Moreover, the omputation of the Ritz pairs and the iterative solutionan be ombined in so alled iterative solvers with deated eigenvalues, seefor instane the GMRES versions disussed in Refs.[9, 28, 29℄.5 ResultsIn this setion we are going to present our numerial results. We organisethe disussion in the following way: we �rst look at the two operators wehave used separately. For eah of them we examine the mass and volumedependene of the numerial e�ort without and with improvements for thesolvers and preonditioning tehniques swithed on. For the overlap operator13



we then test in addition the low mode preonditioning approah in the �{regime. After disussing them separately we will then ompare the twooperators by means of the best solver.The algorithms are ompared for eah operator using the following ri-teria:1. The total iteration number :The number of iterations to reah onvergene is a quantity whih isindependent of the detailed implementation of the Dira operator aswell as of the mahine arhiteture, and therefore it provides a fairmeasure for omparison.2. The total number of appliations of Q:In partiular in ase of the adaptive preision algorithms of the overlapoperator, it turns out that the ost for one iteration depends stronglyon the algorithm details, so a fairer mean for omparison in that ase isthe total number of appliations of the Wilson-Dira operator, i.e. thenumber of Q appliations. Again this yields a omparative measureindependent of the arhiteture and the details of the operator im-plementation, but on the other hand one should keep in mind thatthese �rst two riteria neglet the ost stemming from salar produtsand ZAXPY operations. In partiular this onerns the GMRES algo-rithm that needs signi�antly more of these operations than the otheralgorithms. It also onerns the adaptive preision algorithms for theoverlap operator for reasons explained below.3. The total exeution time in seonds :Finally, in order to study the relative ost fator between the inver-sion of the TM and the overlap operator we measure for eah operatorand algorithm the absolute timings on a spei� mahine, in our aseon one node of the J�ulih Multiproessor (JUMP) IBM p690 Regattausing 32 proessors. Obviously, these results will depend on the spe-i� details of the mahine arhiteture and the partiular operatorand linear algebra implementation, and hene will have no absolutevalidity. Nevertheless, it is interesting to strive to suh a omparisonsimply to obtain at least a feeling for the order of magnitude of therelative ost.5.1 Set-upOur set-up onsists of two quenhed ensembles of 20 on�gurations withvolumes V = 124 and 164 generated with the Wilson gauge ation at � =5:85 orresponding to a lattie spaing of a � 0:125 fm (r0 = 0:5 fm).The bare quark masses for the overlap operator and the twisted mass op-erator are hosen suh that the orresponding pion mass values are mathed,14



f. table 2. Note that for the low mode preonditioning of the overlap op-erator we onsider an additional small mass whih should bring the systeminto the "{regime. m�[MeV℄ �ov �tm720 0.10 0.042555 0.06 0.025390 0.03 0.0125230 0.01 0.004�-regime 0.005 {Table 2: Bare quark masses for the overlap and the twisted mass operator mathed bythe pion mass. The quark mass of �ov = 0:005 orresponds to a simulation point in the�-regime, where the notion of a pion mass beomes meaningless.We invert the twisted mass (the overlap) operator on one (two) point-like soure(s) � for eah on�guration at the four bare quark masses. Therequired stopping riterion is krk2 = kAx � �k2 < 10�14, where r is theresidual and x the solution vetor. We are working in a hiral basis and thetwo soures for the overlap operator are hosen suh that they orrespond tosoures in two di�erent hiral setors. This is relevant for the overlap opera-tor only, whih might have exat zero modes of the massless operator in oneof the two hiral setors, potentially leading to a quite di�erent onvergenebehaviour. Furthermore the hiral soures allow to use the hiral versionof the CGNE algorithm for the overlap operator as desribed in setion 2.There it is also mentioned that for the overlap operator we projet out thelowest 20 and 40 eigenvetors of Q2 on the 124 and 164 lattie, respetively,in order to make the onstrution of the sign-funtion feasible.For both operators we follow the strategy to �rst onsider the not pre-onditioned algorithms and then to swith on the available preonditioningsor improvements. Sine for the overlap operator we have a large range ofalgorithms to test (and the tests are more ostly), we perform the �rst steponly at two masses and study the improvements from the preonditioningand the full mass dependene only for a seletion of algorithms.5.2 Twisted mass resultsBefore presenting results for the un-preonditioned TM Dira operator, weneed to disuss the following point: the number of iterations needed by aertain iterative solver depends in the ase of the twisted mass Dira operatorstrongly on whether Dtm is inverted on a soure � or 5Dtm on a soure 5�.This is due to the fat that multiplying with 5 signi�antly hanges theeigenvalue distribution of the TM operator. All eigenvalues of 5Dtm lieon a line parallel to the real axis shifted in the imaginary diretion by �,beause the pure Wilson-Dira operator obeys the property DyW = 5DW5.15



To give examples, for the BiCGstab and the GMRES algorithms 5Dtm isadvantageous, while the CGS solver works better with Dtm itself.This result is not surprising: it is well known that for instane theBiCGstab iterative solver is not eÆient, or even does not onverge, whenthe eigenvalue spetrum is omplex and in exatly suh situations the CGS[30℄ algorithm often performs better. Of ourse, for the CG solver this ques-tion is not relevant, sine in that ase the operator DyD is used. Let us alsomention that neither the MR nor the MR5 iterative solver onverged forthe twisted mass operator within a reasonable number of iterations.The results for the un-preonditioned Wilson TM operator are olletedin table 3 where we give the average number of operator appliations (MVappliations) that are required to reah onvergene together with the stan-dard deviation. In the ase of the TM operator, the number of MV applia-tions is proportional to the number of solver iterations where the proportion-ality fator an be read o� olumn 4 in table 1. From these data it is lear�tm = 0:042 0:025 0:0125 0:004V = 124CGNE 2082(60) 2952(175) 3536(234) 3810(243)CGS 1251(178) 1661(262) 1920(361) 2251(553)BiCGstab5 3541(175) 5712(280) 9764(503) 12772(979)GMRES5 1962(48) 3314(92) 6223(199) 19204(737)V = 164CGNE 2178(46) 3556(107) 6277(414) 8697(802)CGS 1336(134) 2029(276) 2614(508) 3420(866)BiCGstab5 3526(145) 5805(239) 10940(547) 26173(2099)GMRES5 1945(42) 3287(78) 6168(129) 19106(565)Table 3: Average number (and standard deviation) of MV appliations for reahingonvergene of the un-preonditioned Wilson TM operators. Here and in the followingtables, averages are always taken over 20 independent pure gauge on�gurations.that the CGS algorithm is the winner for all masses and on both volumes.The CGS algorithm shows a rather weak exponential mass dependene andbeats the next best algorithm CGNE by a fator 2.5 at the smallest masson the large volume as is evident from �gure 1 where we plot the logarithmof the absolute timings in units of seonds as a funtion of the bare quarkmass. Sine the CGNE shows a similar saling with the mass as the CGS wedo not expet this onlusion to hange for smaller masses. Moreover theCGS appears to have a weaker volume dependene than the CGNE, in par-tiular at small masses, so we expet the onlusion to be strengthened asthe volume is further inreased. A very interesting point to note is that theGMRES5 algorithm shows a perfet saling with the volume in the sense16



that the iteration numbers remain onstant as the volume is inreased.5.2.1 Even/odd preonditioningLet us now present the results with even/odd preonditioning. For theCGSeo, BiCGstabeo and GMRESeo solvers (and their 5 versions) we usedthe symmetri even/odd preonditioning as outlined at the end of setion4.1, while for the CGNE we used the non-symmetri version. The results forthe average number of operator appliations required to reah onvergenetogether with the standard deviation are olleted in table 4.As in the ase of the un-preonditioned operator also with even/oddpreonditioning it makes a di�erene whether the 5 version of a solver isused or not. We will disuss these di�erenes here in more detail. TheGMRESeo solver for instane stagnates on most of the 20 on�gurationsfor both lattie sizes, while the GMRES5eo onverges without problems.The BiCGstabeo algorithm on the other hand does not onverge on one 124on�guration and on six 164 on�gurations, while again the BiCGstab5eoalgorithm onverges without any problem. In ase the BiCGstabeo onvergesit is muh faster than the BiCGstab5eo, as an be seen in table 4. On theother hand the iteration numbers of BiCGstabeo for the larger volume showonly a very weak mass dependene and the variane is large. This mightindiate that the number of on�gurations where the BiCGstabeo does notonverge is likely to inrease further, if the volume is inreased.A similar piture an be drawn for the CGSeo and CGS5eo solvers, butin this ase the CGSeo onverges in all ases and is moreover the fastestalgorithm for both lattie sizes and all masses.The next to best algorithms are the CGNE and BiCGstabeo, where thelatter has the drawbak of non-onvergene and instabilities for a ertainnumber of on�gurations. Therefore, onentrating on the CGNE and theCGSeo, we observe that in partiular on the larger volume the CGSeo showsa better saling with the mass: while the CGSeo is at the largest mass onlya fator 1.16 faster, this fator inreases to 1.8 at the smallest mass value.At this point a omparison in exeution time is of interest, f. �g.2 , beausethe number of SP and ZAXPY operations for eah iteration are di�erentfor the various solvers. We �nd that CGSeo remains the most ompetitivealgorithm given the fat that BiCGstabeo is not always stable. On the otherhand the situation ould hange in favour of the GMRESeo algorithm forlarge volumes, sine the CGSeo has a muh worse volume dependene thanthe GMRESeo whih again shows a perfet saling with the volume like inthe un-preonditioned ase.Finally we note that omparing the best algorithm for the even/oddpreonditioned operator to the one for the un-preonditioned operator weobserve a speed-up of about 2 for our investigated range of parameters.17



�tm = 0:042 0:025 0:0125 0:004V = 124CGNEeo 725(18) 1042(64) 1238(91) 1333(93)CGS5eo 2999(269) 2788(265) 2659(212) 2526(198)CGSeo 599(87) 774(135) 944(169) 1048(234)BiCGstab5eo 1279(64) 2060(123) 3353(189) 4103(382)BiCGstabeo 799(293) 880(337) 1545(1607) 2044(2801)GMRES5eo 731(19) 1180(35) 2261(75) 6670(258)V = 164CGNEeo 755(14) 1227(37) 2187(147) 3048(289)CGS5eo 10408(2043) 8332(1399) 7014(581) 6819(1491)CGSeo 650(60) 962(151) 1317(252) 1687(448)BiCGstab5eo 1290(71) 2063(94) 3892(183) 8786(730)BiCGstabeo 1595(595) 1705(928) 1576(868) 1884(1501)GMRES5eo 728(13) 1174(21) 2258(42) 6722(145)Table 4: Average number (and variane) of MV appliations for onvergene of theeven/odd preonditioned Wilson TM operators.5.3 Overlap resultsLet us �rst have a look at the results of the overlap operator without any im-provements or preonditioning. As noted in the introdution to this setionwe have investigated the full mass saling of the un-preonditioned algo-rithms only for a seletion of algorithms, in partiular we have done this forthe adaptive preision versions to be disussed later. The results are ol-leted in table 5 where we give the average number of operator appliations(MV appliations) that are required to reah onvergene together with thestandard deviation. We note again that the number of MV appliations isproportional to the number of iterations where the proportionality fatoran be read from olumn 4 in table 1. The �rst thing we note is that the it-eration numbers are muh smaller than for the Wilson TM operator, usuallyby about one order of magnitude. This is presumably due to the fat thatthe spetrum of the overlap operator is muh more restrited to lie exatlyon the Ginsparg-Wilson irle and better behaved than the one of the TMoperator, and usually iterative inversion algorithms are very sensitive to thedistribution of the eigenvalues.From the results in table 5 we do not �nd a ompletely oherent pi-ture, but we may say that at least at small quark mass CG� is the winnerfollowed by SUMR and GMRES. Looking at the mass saling behaviour itappears that CG� shows the weakest dependene on the mass and so thisonlusion should hold towards smaller quark masses. Conerning the vol-ume dependene we note that at the smallest mass the CG� and SUMR have18



�ov = 0:10 0:06 0:03 0:01V = 124CGS 239(22) { 593(88) {BiCGstab 207(13) 333(24) 549(55) 695(108)MR 206( 3) { 646(16) {GMRES 187( 6) { 576(37) {SUMR 174( 7) 260(19) 350(46) 394(55)CG 336(33) { 411(52) {CG� 168(17) { 205(26) {V = 164CGS 241(19) { 738(71) {BiCGstab 212(10) 340(17) 647(36) 1552(215)MR 206( 3) { 644(14) {GMRES 187( 5) { 584(19) {SUMR 179( 5) 284( 9) 523(26) 929(124)CG 411(11) { 949(105) {CG� 206( 6) { 475(52) {Table 5: Average number (and standard deviation) of MV appliations for onvergeneof the overlap operator.a very similar behaviour and so again the onlusion should not be hangedat larger volumes. However, as for the Wilson TM operator the GMRESalgorithm, and in addition here also the MR, shows a perfet saling be-haviour with the volume. Towards small quark masses this positive �ndingis ompensated by the bad saling of these two algorithms with the mass,but for intermediate quark masses we an expet both GMRES and MR tobe superior to the SUMR and CG�, at least on large enough volumes.Let us �nally make a autionary remark on the CG� algorithm. It is learthat Eq.(8) holds only for the exat overlap operator and any approximationto it will introdue some orretions. Indeed, the approximation errors onboth sides of Eq.(8) are rather di�erent. If we assume a maximal error Æ overthe interval of our approximation to the sign funtion, then the l.h.s. hasan error bounded by (1 � �)ÆjDj while for the r.h.s. it is (1 � �2=2M)Æ.As a onsequene the two operators do agree only up to a ertain auraylevel and the agreement deteriorates towards small quark masses where thelowest modes of D beome important. E.g. in propagator alulations thisis reeted in the fat that a solution alulated with one operator to someauray is in fat not a solution of the other operator to the same auray.In pratise we have observed this phenomenon only at the smallest quarkmass � = 0:01 and mainly on the 164 latties where we found auraylosses in the true residuals of up to two orders of magnitude, i.e. jrj2 <19



10�14 versus jrj2 < 10�12, even though our approximations of D satisfy theGinsparg-Wilson relation to mahine preision. Moreover, in those ases wehave usually observed a rather strange onvergene behaviour whih an berelated to the ourrene of spurious zero modes in the underlying Lanzositeration matrix. As an illustration we show in �gure 3 the worst ase thatwe enountered. In the lower plot we show the iterated residual as a funtionof the iteration number while in the upper plot we show the eigenvalues ofthe orresponding underlying Lanzos iteration matrix (f. appendix A.2 foradditional explanations).One possible remedy for all this is to simply stop the CG� algorithmshortly before this happens, e.g. in the above ase as soon as the iteratedresidual reahes jrj2 < 10�12, and to restart with the standard CG algo-rithm. Convergene is then usually reahed within a small number of itera-tions, but obviously the MM apability is lost.5.3.1 Adaptive preisionLet us now turn to the adaptive preision algorithms for the overlap op-erator. As noted before we have implemented the adaptive preisions forthe MR, GMRES, SUMR and CG� algorithms. Without quoting the num-bers we remark that the iteration numbers (at the parameter points wherewe an ompare) for the CG�;ap and the SUMRap are the same as for theorresponding algorithms without adaptive preision (within 0-3%), whilefor the other two, MRap and GMRESap, the iteration numbers inrease byabout 7-15%. This an be understood by the fat that the latter two algo-rithms involve several orretion steps with subsequent restarts as explainedin setion 3.3 therefore undermining slightly the eÆieny of the algorithms.However, it should be lear from setion 3.3 that the iteration numberis not the ruial quantity here, but instead it is the total number of appli-ations of the Wilson kernel, i.e. Q. This is exempli�ed in �gure 4 wherewe show, in units of Q appliations, the onvergene history of SUMR andCG ompared to CGap and MRap for the overlap operator on the 164 lattieat � = 5:85 with � = 0:10 (top) and � = 0:03 (bottom). In table 6 wegive the total number of appliations of the Wilson-Dira operator Q whihagain yields a measure independent of the arhiteture and the details of theoperator implementation for a omparison among the algorithms. We �ndthat the gain from the adaptive preision for MR and GMRES is around afator of 5.5, while it is around 1.5 for CG and SUMR. The gain deterioratesminimally towards smaller quark masses, exept for GMRESap where it im-proves slightly. The di�erene of the fators for the two sets of algorithmsbeomes evident by reeting the fat that the former use low order polyno-mials right from the start of the algorithm while for the latter the adaptivepreision beomes e�etive only towards the end. Comparing among thealgorithms we �nd that exept for the smallest mass on the smaller volume20



�ov = 0:10 0:06 0:03 0:01V = 124MR 103.2(10.2) { 323.2(33.0) {MRap 18.5(1.9) 30.0(2.6) 61.1(4.3) 212.0(17.5)CG� 84.2(13.5) { 103.1(18.9) {CG�;ap 51.2(7.7) 73.2(13.0) 83.3(17.3) 96.7(22.6)GMRES 93.6(10.3) { 288.1(37.5) {GMRESap 18.1(2.1) 27.9(3.2) 52.9(7.0) 150.8(29.9)SUMR 87.3(10.0) 130.5(18.9) 175.7(33.9) 198.0(39.8)SUMRap 55.8(6.7) 83.1(11.9) 118.7(22.3) 146.7(31.8)V = 164MR 126.2(9.6) { 394.2(29.8) {MRap 22.3(1.7) 35.8(2.7) 70.6(5.2) 218.2(14.9)CG� 125.8(10.1) { 291.4(44.1) {CG�;ap 77.0(9.1) 134.8(11.2) 215.3(31.7) 281.1(54.6)GMRES 114.7(8.9) { 357.8(29.0) {GMRESap 22.3(1.8) 34.5(2.7) 66.0(5.6) 198.5(18.2)SUMR 109.4(8.6) 174.2(14.5) 320.2(30.4) 570.5(96.8)SUMRap 69.3(5.6) 108.5(9.2) 196.0(19.3) 372.3(63.1)Table 6: Average number (and standard deviation) of Q appliations for onvergene ofthe overlap operators, in units of 1000.the best algorithm is GMRESap almost mathed by MRap. They are by afator 2-3 more eÆient than the next best CG�;ap on the small volume andSUMRap on the large one. This pattern an be understood by the bad sal-ing properties of MR and GMRES, as opposed to CG and SUMR, towardssmall quark masses whih on the other hand is ompensated at the largervolume by their almost perfet saling with the volume.However, as disussed before this is not the whole story { for a relativeost estimate one has to keep in mind that eah appliation of the sign-funtion, independent of the order of the polynomial for the sign-funtionapproximation, generially requires the projetion of O(10) eigenvetors ofQ and this ontributes a signi�ant amount to the total ost. This is partiu-larly signi�ant in the ase of the MRap and GMRESap both of whih use loworder approximations of the sign-funtion but require a rather large numberof iterations (and therefore many projetions), so the total ost depends ona subtle interplay between the number of salar produts (proportional tothe number of iterations in table 5) and the number of Q appliations intable 6.In order to take this into aount let us ompare the absolute timingsfor the adaptive preision algorithms. As emphasised before the results21



will obviously depend on the spei� MV, SP and ZAXPY implementationdetails as well as on the arhiteture of the mahine. In �gure 5 we plot thelogarithm of the absolute timings in units of seonds as a funtion of thebare quark mass.We note that on the more relevant larger volume the pattern followsessentially the one observed for the numbers in table 6. As before, GMRESapand MRap appear to be more eÆient than CG�;ap and SUMRap exept forvery small quark masses. However, the almost perfet volume saling ofGMRESap (and similarly MRap) suggests that these algorithms will breakeven also at small masses on large enough volumes. Indeed, as is evidentfrom �gure 5, this appears to be the ase already on the 164 lattie where wenote that all four algorithms are similarly eÆient with a slight advantagefor the GMRESap.Let us onlude this setion with the remark that a omparison of theabove algorithms apparently depends very muh on the detailed situationin whih the algorithms are used and the spei� viewpoint one takes. Forexample, the onlusion will be di�erent for the reasons disussed above de-pending on whether a simulation is done on a large or intermediate lattievolume, or whether one is interested in small or intermediate bare quarkmasses. In a quenhed or partially quenhed alulation one will be inter-ested in MM algorithms whih e.g. would exlude the GMRESap and MRap,on the other hand in a dynamial simulation this exlusion is only importantwhen a RHMC algorithm is used [31, 32℄.
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Figure 1: Average timings for the inversion of the un-preonditioned Wilson TM operatorin units of seonds on a logarithmi sale for di�erent bare quark masses. We omparetwo volumes, a 124 (top) and a 164 lattie (bottom).23
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Figure 2: Average timings for the inversion of the even/odd preonditioned Wilson TMoperator in units of seonds on a logarithmi sale for di�erent bare quark masses. Weompare two volumes, a 124 (top) and the 164 lattie (bottom).24
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5.3.2 Low mode preonditioningLet us now turn to low mode preonditioning. We onentrate on the non-hermitian LMP versions of GMRESap and MRap (f. se.4.2) and ompareit to the hermitian LMP version of CGap [25℄ and in the following we de-note the LMP version of the algorithms by the additional subsript lmp.Both GMRESap,lmp and MRap,lmp are partiularly promising sine the un-preonditioned versions show a rather bad performane towards small quarkmasses, i.e. they fail to perform eÆiently if the ondition number of the op-eratorD gets too large. Obviously, projeting out the few lowest modes ofDand treating them exatly essentially keeps the ondition number onstanteven when the bare quark mass is pushed to smaller values, e.g. into the"{regime, and hene it has the potential to be partiularly useful. Further-more, we expet the iteration numbers to derease for the LMP operatorsso that the overhead of GMRES and MR with respet to CG due to the waythe adaptive preision is implemented beomes less severe.The low modes are alulated using the methods desribed in appendixA. For the following omparison the normalised low modes  (�)k of A� =P�DyDP� are alulated separately in eah hiral setor up to a preisionwhih is de�ned through the norm of the gradient g(�)k in analogy to Eq.(14).For later onveniene we introdue the triplet notation (n0; n+; n�) to in-diate the set of n0 zero modes and n� modes in the hirally positive andnegative setor, respetively. These eigenvetors an diretly be used in theCGap,lmp, but for the GMRESap,lmp and MRap,lmp one has to reonstrut theapproximate (left and right) eigenvetors, eigenvalues and gradients. Thisis ahieved by diagonalising the operator D in the subspae spanned by themodes  (�)k leading to Eq.(14) and (15).At this point it appears to be important that the number of modes n�in the two hiral setors math eah other (up to zero modes of the masslessoperator) in order for the non-hermitian LMP to work eÆiently. This isillustrated in �gure 6 where we plot the square norm of the true residualjrj2 of the preonditioned operator Eq.(25) against the iteration number ofthe GMRESap,lmp(10) algorithm at � = 0:005 on a sample 164 on�gurationwith topologial index � = 5. The two full lines show the residuals in thease where the set (5; 10; 10) is used while the dashed lines are the residualsobtained with the set (5,5,12). So in addition to the �ve zero modes, in thelatter ase only the �rst �ve non-zero modes of the non-hermitian operatoran e�etively be reonstruted while in the former ase it is the �rst 10 non-zero modes leading to a muh improved onvergene. More severe, however,is the fat that the onvergene may beome unstable if the modes are notmathed.In the example above we have used modes  (�)k that were alulated withan auray jg(�)k j2 . 10�4 whih, after the reonstrution of the lk and rk's,28
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5.4 Comparison between overlap and Wilson TMThe results of the previous setions emphasise that an investigation likethe present one is worthwhile { for both the overlap and the twisted massoperator the relative ost fator between the worst and the best algorithman be as muh as one order of magnitude.Let us ompare diretly the absolute and relative ost for the overlapand twisted mass operator in table 7 and table 8 where we pik in eahase the best available algorithm, GMRESap for the overlap and CGSeofor the twisted mass operator. We observe that the relative fator in theost (measured in exeution time or MV produts) lies between 30 for theheaviest mass under investigation and 120 for the lightest mass. The patternappears to be similar for the two volumes we looked at, even though therelative fator is slightly inreasing with the volume.V;m�[MeV℄ Wilson TM overlap rel. fator124; 720 599 18.1 30555 774 27.9 36390 944 52.9 56230 1048 96.7 92164; 720 650 22.3 34555 962 34.5 36390 1317 66.0 50230 1687 198.5 118Table 7: Number ofQ appliations for the best available algorithm and the orrespondingrelative ost fator. For the overlap operator the number of Q appliations is in units of1000. V;m�[MeV℄ Wilson TM overlap rel. fator124; 720 1.0 48.8 49555 1.3 75.1 58390 1.6 141.5 88230 1.8 225.0 125164; 720 3.7 225.3 61555 5.2 343.9 66390 6.8 652.7 96230 10.0 1949.3 195Table 8: Absolute timings in seonds on one node of JUelih MultiProzessor (JUMP)IBM p690 Regatta in J�ulih for the best available algorithm and the orresponding relativeost fator.We would like to emphasise that the overlap operator as used in this33



paper obeys lattie hiral symmetry up to mahine preision and henethe relative fator ompared to TM fermions will be less if a less stringentGinsparg-Wilson fermion is used. Inluding those fermions as well as im-proved overlap fermions (for instane with a smeared kernel) in the testsare, however, beyond the sope of this paper.6 Conlusions and OutlookIn this paper we have performed a omprehensive, though not omplete testof various algorithms to solve very large sets of linear systems employingsparse matries as needed in appliations of lattie QCD. We onsideredtwo relatively new formulations of lattie QCD, hirally improved Wilsontwisted mass fermions at full twist and hirally invariant overlap fermions.The tests were performed on 124 and 164 latties and four values of thepseudo salar mass of 230MeV, 390MeV, 555MeV and 720MeV. The lattiespaing has been �xed to a � 0:125fm.We think that our study will help to selet a good linear system solver fortwisted mass and overlap fermions for pratial simulations. We emphasisethat we annot provide a de�nite hoie of the optimal algorithm for eahase. The reason simply is that the optimal hoie depends on many detailsof the problem at hand suh as the exat pseudo salar mass, the volume,the soure vetor et.. Nevertheless, in general we �nd that for twisted massfermions CGS appears to be the fastest linear solver algorithm while foroverlap fermions it is GMRESap for the parameters investigated here. Ina diret ompetition between twisted mass and overlap fermions the latterare by a fator of 30-120 more expensive if one ompares the best availablealgorithms in eah ase with an inreasing fator when the value of thepseudo salar mass is lowered. Preonditioning plays an important role forboth investigated fermion simulations. A fator of two is obtained by usingeven/odd preonditioning for the TM operator. A similar improvement anbe expeted from SSOR preonditioning [33, 34℄.For the overlap operator it turns out to be rather eÆient to adaptthe preision of the polynomial approximation in the ourse of the solveriterations. This easily speeds up the inversion by a fator of two. In the�-regime in addition low mode preonditioning an overome the slowingdown of the onvergene of the algorithms towards small quark masses andthe onvergene rate an essentially be kept onstant for all masses. Inpartiular we �nd that the GMRESap,lmp outperforms CGap,lmp by fatorsof up to two with tendeny of getting even better towards larger volumes.One of the aims of this paper has been to at least start an algorithmomparison and we would hope that our study here will be extended byother groups adding their hoie of algorithm, optimally using the here em-ployed simulations parameters as benhmark points. In this way, a toolkit34



of algorithms ould be generated and gradually enlarged.AknowledgementsWe thank NIC and the omputer entre at Forshungszentrum J�ulih forproviding the neessary tehnial help and omputer resoures. This workhas been supported in part by the DFG Sonderforshungsbereih/TransregioSFB/TR9-03 and the EU Integrated Infrastruture Initiative Hadron Physis(I3HP) under ontrat RII3-CT-2004-506078. We also thank the DEISAConsortium (o-funded by the EU, FP6 projet 508830), for support withinthe DEISA Extreme Computing Initiative (www.deisa.org). The work ofT.C. is supported by the DFG in the form of a Forshungsstipendium CH398/1.A Eigenpair ComputationAs mentioned already in setion 2, the omputation of eigenvalues and eigen-vetors or approximations of those are needed in various methods used inthis paper, e.g. for the pratial implementation of the sign-funtion or thelow mode preonditioning of the overlap operator. But also if one is in-terested in omputing the topologial index with the overlap operator oneneeds an algorithm to ompute the eigenvalues of the overlap operator.The standard method used in lattie QCD is the so alled Ritz-Jaobimethod [35℄. For the use of adaptive preision for the overlap operatorwith this method, see Ref. [36, 25℄. Another hoie would be the Arnoldialgorithm implemented in the ARPACK pakage whih, however, sometimesfails to ompute for instane a given number of the lowest eigenvalues of Q2by missing one. This might lead to problems if the eigenvalues are used tonormalise the Wilson-Dira operator in the polynomial onstrution of theoverlap operator.We used yet another method whih is desribed in the following setion.After that we present some implementation details for the determination ofthe index.A.1 Jaobi-Davidson methodConsider a omplex valued N�N matrix A for whih we aim at determining(part of) its eigenvalues and eigenvetors. The exat omputation of those isin general too demanding and thus one has to rely on some iterative method.The one we are going to desribe here was introdued in [37℄.Assume we have an approximation (�k; uk) for the eigenpair (�; u) andwe want to �nd a orretion v to uk in order to improve the approximation.35



One way of doing this is to look for the orthogonal omplement for uk withrespet to u, whih means we are interested in the subspae u?k .The projetion of A into this subspae is given byBk � (I � ukuyk)A(I � ukuyk) ; (27)where the vetor uk has been normalised and I represents the identity ma-trix. Eq. (27) an be rewritten as followsA = Bk +Aukuyk + ukuykA� �kukuyk : (28)Sine we want to �nd v ? uk suh thatA(uk + v) = �(uk + v) ;it follows with Bkuk = 0(Bk � �I)v = �rk + (�� �k � uykAv)uk ; (29)where we introdued the residual vetor rk given byrk = (A� �kI)uk :Neither rk nor the l.h.s of Eq. (29) have a omponent in diretion uk andhene v should satisfy (Bk � �I)v = �rk : (30)Sine � is unknown, we replae it by �k and Eq. (30) an then be solved withany iterative solver. Note that the matrix B depends on the approximationuk and needs to be newly onstruted in every step.Solving Eq. (30) for v in every iteration step might look as if the proposedalgorithm is rather omputer time demanding. But it turns out that in fatit has to be solved only approximately, i.e. in eah iteration step only a fewiterations of the solver have to be performed.The basi Jaobi-Davidson (JD) algorithm is summarised in algorithm3. In algorithm 3 we denote matries with apital letters and vetors withsmall letters. V = fvg means that the matrix V ontains only one olumnv, while W = fV; vgmeans that V is expanded by v to the matrix W by oneolumn. The basi algorithm an be easily extended in order to omputemore than the minimal (maximal) eigenvalue: the simplest way is to performa restart and restrit the eigenvetor searh to the subspae orthogonal tothe already omputed eigenvetor(s).A further way to ompute more than one eigenvalue is to solve Eq. (30)more than one per iteration for several approximate eigenvetors. This soalled bloking method is also apable to deal with degenerate eigenvalues,whih are otherwise not orretly omputed by the JD method [38, 39℄.36



Algorithm 3 Basi Jaobi-Davidson algorithmRequire: non trivial initial guess vetor v, m > 11: v1 = v=kvk, w1 = Av1, h11 = vy1w1, i = 12: V1 = fv1g, W1 = fw1g, H1 = fh11g3: uk = v1, �1 = h114: r1 = w1 � �1u5: repeat6: for k = 1; :::; m� 1 do7: solve approximately for vk+1 ? uk(I � ukuyk)(A� �kI)(I � ukuyk)vk+1 = �rk (31)8: orthogonalise vk+1 against Vk, Vk+1 = fVk; vk+1g9: wk+1 = Avk+1, Wk+1 = fWk; wk+1g10: ompute V yk+1wk+1, the last olumn of Hk+1 � V yk+1AVk+111: if A is not hermitian then12: ompute vyk+1Wk , the last row of Hk+113: end if14: ompute the smallest eigenpair (�k+1; s) of Hk+1 and normalise s.15: uk+1 = Vk+1s // The new eigenvetor approximation16: û = Auk+1 and rk+1 = û� �k+1uk+117: test for onvergene, i = i+ 118: end for19: restart: Set V1 = fumg, W1 = fûg, H1 = f�mg20: until onvergene
37



Moreover, the JD algorithm is able to ompute eigenpairs whih areloated in the bulk eigenvalue spetrum of A. This is ahieved by replaing�k in Eq. (30) by an initial guess � in the �rst few iterations, whih willdrive the JD algorithm to ompute preferably eigenvalues lose to � [37℄.Let us �nally disuss some implementation details regarding the par-allelisation of the JD algorithm. As soon as the appliation of A is par-allelised most of the remaining linear algebra operations are parallelisedtrivially, whih inludes matrix-vetor multipliations as V yk+1wk+1. Onlythe omputation of the eigenvalues of the (low dimensional) matrix H is notimmediately parallelisable and, in fat, it is most eÆient to hold a loalopy of H and ompute the eigenvalues on eah proessor. Then the mul-tipliation Vk+1s in line 15 of algorithm 3 is even a loal operation. Thisseems to be a doubling of work, but as H is only an order 20� 20 matrix,the parallelisation overhead would be too large.A.1.1 Index omputationThe omputation of the topologial index on a given gauge on�gurationwith the overlap operator involves ounting the zero modes of Dov. Morepreisely, the hiral setor ontaining zero modes has to be identi�ed andthen their number has to be determined. To this end we have implementedthe method of Ref. [25℄ whih makes use of the Ritz-Jaobi algorithm. More-over, it is straightforward to adapt the method also to the JD algorithm. Sowe are not going to mention the details of this algorithm.But it is useful to disuss some performane improvements of the indexomputation: the most time onsuming part in the JD algorithm is to �ndan approximate solution to Eq. (30). As suggested in Refs. [38, 39℄, we usedthe following set-up. The atual absolute preision to whih the solution isdriven is omputed as � = x�i ;where i ounts the number of JD-iterations performed so far for the eigen-value in question (see algorithm 3) and x = 1:5. Additionally we set themaximal number of iterations in the solver to 50. In this way we avoid onthe one hand that the solution to Eq. (30) is muh more preise than theurrent approximation for the eigenvalue and on the other hand too manyiterations in the solver.Thus, most of the time, the preision required from the iterative solveris only rough, and hene it is useful to use adaptive preision for the sign-funtion, sine the polynomial approximation of the sign-funtion is notneeded to be muh more preise than the required solver preision. Ourexperiene shows that setting the preision in the polynomial to 10�2 � � is agood hoie in this respet. We remark that the vetor wk+1 (see line 9 inalgorithm 3) as well as the next residual rk+1 should be omputed with fullpreision in the polynomial in order not to bias the omputation.38



A.2 Index from the CG searhFor the omputation of the topologial index it is important to note thatthe determination of the hiral setor whih ontains the zero-modes omesfor free when one uses the CG-algorithm for the inversion. By estimatingthe eigenvalues one in eah hiral setor and by pairing them aordingly itis possible to identify the hiral setor whih ontains zero modes. From theCG-oeÆients whih are obtained during the iteration one an build up atridiagonal matrix whih is related to the underlying Lanzos proedure [9℄.The eigenvalues of this matrix approximate the extremal eigenvalues of theoperator and it turns out that the lowest 5-10 eigenvalues are approximatedrather aurately.In �gure 10 we plot the iterative determination of the lowest eigenvaluesduring a CG-inversion for two di�erent on�gurations. For the �rst on�gu-ration (left plot) we see a rapid onvergene of the unpaired lowest eigenvaluetowards the zero mode value suggesting a non-zero topologial harge in thegiven hiral setor. The seond on�guration on the other hand (right plot)also shows a rapid onvergene of the lowest mode towards the zero modevalue, but this time it is paired by an equal eigenvalue in the opposite hiralsetor hene suggesting a on�guration with zero topologial harge. Figure10 emphasises the point that the pairing of modes in the two hiral setors isthe ruial ingredient for the determination of the topologial harge setorand not the estimate of the eigenvalue itself. Indeed, for the seond on�g-uration the eigenvalue estimates onverge to a value slightly larger than thezero mode value as one would expet.B Multiple mass solver for twisted mass fermionsWe want to invert the TM operator at a ertain twisted mass �0 obtainingautomatially all the solutions for other twisted masses �k (with j�kj � j�0j).Then, as in Eq.(3) the Wilson twisted mass operator is4Dtm = DW + i�k5�3; k = 1; : : : ; Nm (32)where Nm is the number of additional twisted masses. The operator an besplit as Dtm = D(0)tm + i(�k � �0)5�3; D(0)tm = DW + i�05�3 (33)The trivial observation is thatDtmDytm = D(0)tmD(0)ytm + �2k � �20 ; (34)4In the following the subsript tm assoiated with the bare twisted quark masses �k issuppressed. 39



where we have used 5DW5 = DyW. Now learly we have a shifted linearsystem (A+�k)x�b = 0 with A = D(0)tmD(0)ytm and �k = �2k��20. In algorithm4 we desribe the CG-M algorithm to solve the problem (A+ �k)x� b = 0.The lower index indiates the iteration steps of the solver, while the upperindex k refers to the shifted problem with �k. The symbols without upperindex refer to mass �0.Algorithm 4 CG-M algorithm1: n = 0; xk0 = 0; r0 = p0 = pk0 = b2: ��1 = �k�1 = �k0 = 1; �k0 = �0 = 03: repeat4: �n = (rn; rn)=(pn; Apn)5: �kn+1 = (�kn�n�1)=(�n�n(1� �kn=�kn�1) + �n�1(1� �k�n))6: �kn = (�n�kn+1)=�kn7: xkn+1 = xkn + �knpkn8: xn+1 = xn + �npn9: rn+1 = rn � �nApn10: �n+1 = (rn+1; rn+1)=(rn; rn)11: pkn+1 = �kn+1rn+1 + �kn+1pkn12: n = n+ 113: until krnk < �
40
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Figure 10: Estimates of the lowest eigenvalues of the overlap operator from the CG-oeÆients for a 164 on�guration with topologial harge � < 0 (top) and � = 0 (bottom)at �ov = 0:03. 41
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