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A New Model for the Colle
tive Beam-Beam Intera
tionJ A EllisonUNM, Albuquerque,NM 87131, USAellison�math.unm.edu A V SobolTe
h-X Corporation,Boulder, CO 80303, USAsobol�tx
orp.
omM VogtDESY{MPY,22607 Hamburg, FRGvogtm�mail.desy.deAbstra
tThe Colle
tive Beam-Beam intera
tion is studied in the framework of maps with a\ki
k-latti
e" model in the 4-D phase spa
e of the transverse motion. A novel approa
h tothe 
lassi
al method of averaging is used to derive an approximate map whi
h is equivalentto a 
ow within the averaging approximation. The 
ow equation is a 
ontinuous-timeVlasov equation whi
h we 
all the averaged Vlasov equation, the new model of this paper.The power of this approa
h is eviden
ed by the fa
t that the averaged Vlasov equation hasexa
t equilibria and the asso
iated linearized equations have un
oupled azimuthal Fouriermodes. The equation for the Fourier modes leads to a Fredholm integral equation of thethird kind and the setting is ready-made for the development of a weakly nonlinear theoryto study the 
oupling of the � and � modes. The � and � eigenmodes are 
al
ulated fromthe third kind integral equation. These results are 
ompared with the ki
k-latti
e modelusing our weighted ma
roparti
le tra
king 
ode and a newly developed, density tra
king,parallel, Perron-Frobenius 
ode.PACS: 02.30.Rz, 29.20.Dh, 29.27.Bd, 45.20.Jj, 52.59.-f, 52.65.-ySubmitted to New Journal of Physi
s1 Introdu
tionIn this paper we introdu
e a new model for the 
olle
tive beam-beam intera
tion for hadronbeams in 4D transverse phase spa
e (2 degrees-of-freedom). This both generalizes and simpli�esthe work of [1, 2, 3, 4℄ on the 
olle
tive beam-beam intera
tion in high energy 
olliders. Inaddition, it extends the preliminary 1 degree-of-freedom 
olle
tive 
ase in [5℄. Our model isbased on the 
lassi
al method of averaging generalized to maps and 
olle
tive for
es. We do notdistribute the beam-beam for
e around the ring as is usually done. The te
hnique we introdu
eshould be of general interest for studies of Vlasov systems with a lo
alized perturbative 
olle
tivefor
e.In Se
tion 2, we dis
uss our basi
 ki
k-latti
e model for the evolution of the 4D phase spa
edensities of the two beams. In Se
tion 3, we brie
y review the basi
 averaging theory whi
h1



is generalized in this paper. Previously, this averaging theory was applied to the weak-strongbeam-beam in one and two degrees-of-freedom [6, 7℄. The equations of the ki
k-latti
e modelwill be transformed to a standard form for the method of averaging in Se
tion 4 and the general\averaged Vlasov equation" (AVE) will be derived (See equation (24)). We then introdu
e thespe
ial 
ase we treat in this paper, namely the 
ase where the tunes of the two beams areidenti
al and are non-resonant. In this 
ase the AVE has the property that any fun
tion ofthe a
tion only is an equilibrium solution. In Se
tion 5, we linearize about these equilibria anddis
uss the linearized equations and the asso
iated third kind integral equation. In addition,we 
ompare our integral equation with the analogous integral equations whi
h arise in thestandard plasma problem and in the beam dynami
s problems 
on
erning the longitudinaldynami
s with wake �elds for a 
oasting beam and a bun
hed beam. In Se
tion 6 we presentnumeri
al results for the � and � mode eigen-problems for an axially symmetri
 Gaussianequilibrium and 
ompare these results with simulations on the exa
t model of Se
tion 2. InSe
tion 7 we give a summary and point to future work. An appendix is in
luded whi
h gives a�rst prin
iples 
al
ulation of the beam-beam for
e.2 The Ki
k-Latti
e Model in 4D Phase Spa
eTo des
ribe the evolution equations, we refer to the bun
hes as \unstarred" and \starred", andfor every quantity X des
ribing the unstarred bun
h, the quantity X� des
ribes the starredbun
h. The evolution equations are symmetri
: the equation for the starred bun
h is obtainedfrom the unstarred bun
h by inter
hanging starred and unstarred quantities, so we mostly stateonly the equation for the unstarred bun
h.We 
onsider two 
ounter-rotating parti
le bun
hes, whi
h 
ollide head on at a single intera
-tion point (IP). The ele
tromagneti
 intera
tion at the IP is determined up to a proportionalityfa
tor by the dimensionless \potential" �, whi
h satis�es the Poisson equation ��� = 2���.Here ��(x; y) is the spatial density (normalized to one), and the potential �[��℄ : R2 ! R isgiven by �[��℄(x; y) = ZR2 G(x� x0; y � y0)��(x0; y0) dx0dy0; (1)where G(x; y) = � ln(px2 + y2=�) = � ln(px2 + y2) + ln(�) is the Green's fun
tion. Inthe following we will omit the s
aling fa
tor � whi
h is in prin
iple needed for dimensional
orre
tness but whi
h 
an be 
hosen 
ompletely arbitrarily sin
e it does not 
ontribute to thebeam-beam ki
k.Letting n refer to the state of the system just before the IP, parti
les in the unstarred bun
h
hange their phase-spa
e position u = (x; y; px; py)T a

ording to the mapun+1 =M un + � �0; 0; ��x�[��n℄(Pun); ��y�[��n℄(Pun)�T! : (2)The asso
iated phase spa
e density  n evolves via  n+1(un+1) =  n(un), or n(u) =  n+1 M u+ � �0; 0; ��x�[��n℄(Pu); ��y�[��n℄(Pu)�T!! ; (3)whi
h is easily inverted to give n+1(u) =  n u� � �0; 0; ��x�[��n℄(PM�1u); ��y�[��n℄(PM�1u)�T! : (4)2



Here M is a stable linear symple
ti
 map representing the linear latti
e, � is the beam-beamfa
tor, P = � 1 0 0 00 1 0 0 � proje
ts phase spa
e on 
on�guration spa
e, and the spatial andphase-spa
e densities are related by��(x; y) = ZR2  �(x; y; px; py) dpxdpy: (5)The beam-beam fa
tor, whi
h is derived in the appendix, is � = 1+����+�� 2N��
 rp, where the absolutevalue of rp = qq�4��0m
2 is the 
lassi
al parti
le radius (as long as only elementary parti
les or ionsof the same 
harge state are involved), N is the number of parti
les, q is the parti
le 
harge, 
is the Lorentz fa
tor asso
iated with �, and m is the parti
le mass. For all modern 
olliders, i.e.in the limit �,�� ! 1, � 
an be approximated by � � 2N�
 rp. The evolution law for the starredbeam is obtained by repla
ingM byM�, � by  and � by �� where starred and unstarred areinter
hanged in �, 
, N and m.Equation (2) 
an be written more 
ompa
tly asun+1 =M�un + �J4ru�[��n℄(Pun)�; (6)where J2k = � 0k Ik�Ik 0k � is the unit symple
ti
 matrix. We note here that a map is said to besymple
ti
 if the Ja
obian, M , of the map satis�es MTJM = J . We have written the ki
k ina \Hamiltonian form" be
ause eventually a transformed � will be a Hamiltonian for a 
ow.For simpli
ity, we takeM = 0BB� Cx 0 �xSx 00 Cy 0 �ySy�Sx=�x 0 Cx 00 �Sy=�y 0 Cy 1CCA ; (7)where Ci := 
os(2��i), Si := sin(2��i) and where �i for i = x; y are the tunes. We have assumedthat the beta fun
tions, �x and �y, have minima at the IP. The distin
tion between the latti
e� and the relativisti
 � should be 
lear from 
ontext.To relate � to the usual beam-beam parameter, we linearize the ki
k in (2) about (x; y) =(0; 0) in the 
ase where �� is mirror symmetri
 and invariant under �2 rotations, i.e. when��(x; y) = ��(�x; y) = ��(x;�y) = ��(y; x). Note that this is still a weaker 
onstraint than fullaxial symmetry. Be
ause of these symmetries, �x(0) = �y(0) = �xy(0) = 0 and �xx(0; 0) =�yy(0; 0) = ����(0; 0) where the latter uses Poisson's equation. Thus the ki
k matrix be
omes� I 0kI I � where k = ����(0; 0). The tune shift is �i = ��i = � 14��ik + O(k2) with i = x; y.Thus the beam-beam parameter �i = �14�i���(0; 0). For a round Gaussian, this gives thestandard result.3 Map Averaging and Error BoundsHere we give an overview of the averaging formalism, whi
h we generalize in this paper, andbrie
y dis
uss error bounds. We 
onsider the autonomous \ki
k-rotate" map in R2un+1 = eJ22�� �un + �(0;��0(u1;n))T� (8)3



with the small parameter �. This is a model for the one degree of freedom weak-strong beam-beam intera
tion and was dis
ussed in [6℄. The transformationu = eJ22�n�v (9)leads to the non-autonomous mapvn+1 = vn + �J2rvH(vn; n�); (10)where H(v; �) = V (v1 
os(2��) + v2 sin(2��)). This is in a standard form for the method ofaveraging in whi
h the transformed dependent variable, v, is slowly varying. If � is irrational,then from Weyl's equidistribution theorem [8℄ the average of H(v; n�) over n exists and is givenby �H(v) = R 10 H(v; �) d�. It is therefore natural to ask, for what values of � are solutions of(10) approximated by solutions of the averaged mapwn+1 = wn + �J2rw �H(wn): (11)Even though the maps in (8) and (10) are symple
ti
, the averaged map is not. However theaveraged 
ow asso
iated with (11) and de�ned by_w = �J2rw �H(w) (12)is Hamiltonian, and it is easy to show that jwn�w(n)j = O(�) over O(1=�) times. Sin
e (12) isautonomous, (11) 
an be viewed as the Euler method for numeri
ally integrating (12). Approx-imating equation (10) with (11) is 
onsidered in our previous work [6℄, where we introdu
e the
on
ept of a far-from-low-order-resonan
e zone for �. This zone is formed by removing a �nitenumber of intervals 
entered on low-order rationals, therefore � needs to satisfy only �nitelymany Diophantine 
onditions, and does not need to be irrational, whi
h makes the formalismmu
h more useful in the appli
ations. The error bound jvn�wnj = O(�) is obtained without theusual near-identity-transformation and is un
hanged asymptoti
ally if an O(�2) term is addedto equations (8,10).In [7℄, we extend the formalism of equations (8-12) to the weak-strong beam-beam intera
-tion in 2 degrees-of-freedom. The equation of motion 
orresponding to (8) is just equation (2)with ��n repla
ed by the spatial density of the strong beam. We are working out the details ofthe averaging theorem in this more 
ompli
ated 
ase with two frequen
ies [9℄. Some ingredientsof our approa
h 
an be found in [10℄. We generalize this to the 
olle
tive beam-beam intera
tionin the next se
tion.4 Map-Averaging for Vlasov SystemsWe will begin by transforming (2) using a representation of the solution to the unperturbed,� = 0, problem. The new 
oordinates will be slowly varying if � is small. As in the previousse
tion we 
ould pro
eed by letting u =Mnq whi
h givesqn+1 = qn + �M�nJ4ru�[��n℄(PMnqn): (13)The averaged equation then be
omeswn+1 = wn + �J4rw �F [��℄(wn); (14)4



where �F [��℄(w) denotes the n-average of M�nJ4ru�[��℄(PMnw).The transformation to (13) turned out to be a major advan
e in Sobol's implementation ofthe Perron-Frobenius (PF) method [11℄ (See [12℄ and [13℄ for a dis
ussion of the PF method).In addition, (13) is well suited for an error analysis whi
h is in progress [14℄. However, ana
tion-angle transformation may be better suited to understand approximate equilibria andthe asso
iated linear analysis that we do here and that is how we will pro
eed.The a
tion-angle transformation from u = (x; y; px; py)T to slowly varying 
oordinates v =(�x;�y; Jx; Jy)T is given by x = p2Jx �x sin(2�n�x +�x) (15)px = p2Jx=�x 
os(2�n�x +�x) (16)y = q2Jy �y sin(2�n�x +�y) (17)py = q2Jy=�y 
os(2�n�y +�y): (18)Note that for �xed J and � these are solutions of the equations of motion with � = 0, that iswithout the beam-beam for
e.Equation (2) be
omes vn+1 = vn + �J4rvH[	�n℄(vn; n) +O(�2); (19)where H[	�℄(v; n) := ZT2�R2+ 	�(v0) dv0� G�p2�xJx sin(2�n�x +�x)�p2��xJ 0x sin(2�n��x +�0x);p2�yJy sin(2�n�y +�y)�q2��yJ 0y sin(2�n��y +�0y)�: (20)The integral in (20) is taken over [0; 2�℄ in the �'s and over [0;1) in the J 's. Sin
e thetransformation is symple
ti
 it is also volume preserving. Thus the (�; J)-density is given by	n(v) =  n(u), and its evolution law is	n(v) = 	n+1�v + �J4rvH[	�n℄(v; n) +O(�2)�; (21)or equivalently 	n+1(v) = 	n�v � �J4rvH[	�n℄(v; n) +O(�2)�: (22)Clearly vn and v�n are slowly varying for � and �� small, and it follows that the transformeddensities 	 and 	� are slowly varying. Thus (19) is in a standard form for averaging andwe now follow the pro
edure laid out in the previous se
tion. The averaged map problem isobtained from (19) by repla
ing H by the appropriate n-average �H and dropping the O(�2)term. The asso
iated averaged 
ow problem is autonomous and has the Hamiltonian form_w = �J4rw �H[	�℄(w): (23)Thus the averaged Vlasov equations for 	 and 	� be
ome� �t	+ �f	; �H[	�℄g = 0�t	� + ��f	�; �H�[	℄g = 0 ; (24)5



where ff; gg = �f��x �g�Jx + �f��y �g�Jy � �f�Jx �g��x � �f�Jy �g��y is the Poisson bra
ket. Note that H�[	℄ isobtained from (20) by inter
hanging the starred and unstarred parameters � and �. System(24) is the new model referred to in the title. Sin
e � and �� are small one immediate advantageof (24) over (2) is that the step size in a numeri
al integration of (24) 
an be O(1=max(�; ��))whi
h is mu
h larger than one turn.At this stage the problem is general with parameters (�x; �y; ��x; ��y ; �x; �y; ��x; ��y ; �; ��) andthe 
orre
t averaged Hamiltonian �H depends on the relation between the four tunes. Here wedis
uss the 
ase �x = ��x and �y = ��y be
ause (i) we wish to 
ompare and 
ontrast our resultswith [3, 4℄ and (ii) it simpli�es the 
al
ulation of the average. In this 
ase G(� � �) in (20) 
anbe rewritten as G(Dx sin(2�n�x + 'x); Dy sin(2�n�y + 'y)), whereDx = D(�xJx; ��xJ 0x;�x � �0x);Dy = D(�yJy; ��yJ 0y;�y ��0y); (25)D(r; s; t) =q2r + 2s� 4prs 
os t; (26)and the phases 'x and 'y are easily determined from the trigonometry involved. If in additionwe 
onsider the 
ase where �x and �y are non-resonant (in the sense that kx�x + ky�y = k0 )kx = ky = k0 = 0), then the averaging over n�x and n�y 
an be done separately and ea
haverage 
an be repla
ed by the asso
iated integral. Thus the averaged Hamiltonian be
omes�H[	�℄(v) = ZT2�R2+ �G�Dx; Dy�	�(v0) dv0; (27)where �G(Dx; Dy) := 1=(2�)2 RT2G(Dx sin tx; Dy sin ty) dtx dty and as before v = (�; J). Fromour experien
e with the non-
olle
tive 
ase [6, 7℄, we expe
t this to be valid for �x, �y far fromlow-order resonan
es; work on the error estimates is in progress [14℄. Note that H = H� if�x = ��x and �y = ��y .Be
ause of the 
onvolution stru
ture of the � integral in (27) (see (25)) any fun
tion 	� =	�e(J) results in �H being independent of �. It follows that any pair of densities 	e and 	�ethat are independent of � are an equilibrium pair for (24). Sin
e  n(x; y; px; py) = 	n(�; J) �	e(J) = 	e �12 � x2�x + �xp2x� ; 12 � y2�y + �yp2y��, we see that (2) and equivalently (19) have quasi-equilibria given the averaging approximation. In [5℄, we have veri�ed this in the 2D phasespa
e 
ase. Figure 1 shows the evolution of two a
tion densities at a hundred out of morethan 105 turns under the exa
t map, the 2D analog of (4), using the PF method for tra
kingphase spa
e densities. The parameters are � = �� = p5 � 2 and � = 3 � 10�3. The red
rosses represent the evolution of a quasi-equilibrium, namely the 
entered Gaussian 	0(�; J) =	e(J) = 1=(2�")e�J=" (for " = 1), while the green �'s stand for a Gaussian that was initiallyshifted by 1�x, giving a �-dependent density. Sin
e the red 
rosses for di�erent dis
rete J lie ontop of ea
h other, 	e hardly evolves over the 105 turns whi
h is 
onsistent with the averagingresult. The �-dependent density however, 
u
tuates as is indi
ated by the band of green �'s.Thus we have strong eviden
e for the existen
e of quasi-equilibria, however we believe that (4)does not admit exa
t equilibria. This is in 
ontrast to the lepton 
ase, see [15℄.
6
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Figure 1: The evolution of the a
tion density in a 1 degrees-of-freedom example. The red
rosses are a quasi equilibrium while the green �'s are a �{dependent 
u
tuating density. Theevolution is over 105 turns.5 The Linearized EquationsTo linearize about an equilibrium, we set 	(v; t) = 	e(J) + 	1(v; t), and 	�(v; t) = 	�e(J) +	�1(v; t). Plugging into (24) and linearizing gives� �t	1 + �f	1; �H[	�e℄g+ �f	e; �H[	�1℄g = 0;�t	�1 + ��f	�1; �H�[	e℄g+ ��f	�e; �H�[	1℄g = 0: (28)Be
ause of the 
onvolution stru
ture of �H in (27), the Fourier modes of (28) are un
oupled,but we do not pursue (28) in that generality here. Instead we investigate solutions, whi
h existwhen 	e = 	�e, � = ��, and �H = �H�. Letting f� = 	1 �	�1, we obtain��f� + ff�; �H[	e℄g � f	e; �H[f�℄g = 0; (29)where f� are the so-
alled � (sum) and � (di�eren
e) modes respe
tively and we have s
aledthe � into the time by de�ning � = �t. We remind the reader that the densities 	1 and 	�1in (28) are 
oupled, while f+ and f� in (29) are not. Moreover, the � and � modes 
anbe intuitively interpreted as in-phase and 180Æ out-of-phase perturbations respe
tively to thestarred and unstarred beam. Note that t in (28) is dimensionless (same as n in (22)) whereas� in (29) has the dimension of a length. Note also that the beam 
urrent, whi
h is a fa
tor of�, has been s
aled out of the problem. Thus there 
an be no threshold for instability in ourproblem.Unfolding the Poisson bra
kets we obtain��f� + 
(J) � r�f� �rJ	e(J) � r� �H[f�℄ = 0; (30)where 
(J) := rJ �H[	e℄(J) : (31)To analyze equation (30), we expandf�(J;�; �) = Xk2Z2 f�k (J; �) eik��: (32)7



To obtain an equation for the Fourier 
oeÆ
ients, we de�neK(J; J 0;�) := �G �D(�xJx; �xJ 0x;�x); D(�yJy; �yJ 0y;�y)� (33)with Fourier 
oeÆ
ients given byKk(J; J 0) = 1(2�)2 ZT2K(J; J 0;�)e�ik��d�: (34)Sin
e K is real and even in �x and �y, Kk is real, and sin
e Kk is real, Kk = K�k. AlsoK(J; J 0;�) = K(J 0; J;�), and�G(Dx; Dy) = Xk2Z2Kk(J; J 0) eik�(���0): (35)An easy 
al
ulation using (35) and (27) gives�H[f�℄(J;�) = (2�)2 Xk2Z2 eik�� ZR2+ Kk(J; J 0)f�k (J 0) dJ 0: (36)Thus the Fourier modes determined by (29) are un
oupled and are given by� i��f�k + k � 
(J)f�k�k � rfe(J) ZR2+ Kk(J; J 0)f�k (J 0) dJ 0 = 0; (37)where fe(J) := (2�)2	e(J) is the equilibrium a
tion density (RR2+ fe(J)dJ = 1).There are two standard approa
hes to analyzing (37): the Lapla
e transform approa
h andthe eigenvalue approa
h.Taking the Lapla
e transform of (37) we obtain(! � k � 
(J)) f̂�k (J)� k � rfe(J) ZR2+ Kk(J; J 0)f̂�k (J 0) dJ 0 = �if�k (J; 0); (38)for =! suÆ
iently large. Here we use �i! instead of the usual Lapla
e variable s, f̂k(J; !)denotes the Lapla
e transform of fk, and 
(J) := �H(	e)(J)0. In the eigenvalue approa
h, welook for solutions of the form f�k (J; �) = f̂�k (J) e�i!� ; (39)whi
h gives (! � k � 
(J)) f̂�k (J)� k � rfe(J) ZR2+ Kk(J; J 0)f̂�k (J 0) dJ 0 = 0: (40)The Lapla
e transformed equation (38) has a non-homogeneous term, however, the left handsides of equations (38) and (40) are identi
al. These equations are of the forma(x)�(x)� � Z K(x; y)�(y)dy = f(x) (41)8



and are 
alled Fredholm integral equations of the third kind (see p.2 [16℄). If a is bounded awayfrom zero it 
an be transformed into a Fredholm integral equation of the se
ond kind. Thusthe primary interest in this third kind equation is in the 
ase where a has zeros and this is our
ase. The 
ase where a has zeros is 
ompli
ated by the fa
t that there are generalized solutionswhi
h are diÆ
ult to represent numeri
ally.Equations (38) and (40) have analogues in both plasma physi
s and other beam dynami
s
ontexts. For example, Crawford and Hislop [17℄ dis
uss the standard plasma problem in theperiodi
 
ase, the 
ase of this paper, summarizing both the Landau and the van Kampen-Casesolutions ([18℄, [19℄, [20℄). Ja
kson [21℄ gives a ni
e presentation of the Landau approa
h in thenon-periodi
 
ase. The third kind integral equations are given in equations (17) and (23) of [17℄and in equation (3.5) of [21℄. As is well known, the plasma problem leads to Landau dampingand growth for 
ertain equilibria depending on the size of the average density. The stabilityanalysis is fa
ilitated by the dispersion fun
tion whi
h un
ouples the 
al
ulation of the poles ofthe solution from the 
al
ulation of the density itself.Two standard beam dynami
s problems 
on
ern the longitudinal dynami
s with wake �eldsfor a 
oasting beam and for a bun
hed beam. The 
oasting beam 
ase is 
ompletely analogousto the periodi
 plasma problem in
luding a dispersion fun
tion and possible Landau dampingfor small beam 
urrent and an instability threshold at some 
riti
al 
urrent after whi
h there isLandau growth. A re
ent dis
ussion of the 
oasting beam problem in the 
ontext of 
oherentsyn
hrotron radiation is given in [22℄. The third kind integral equation is given in equation(27) of that paper. The emphasis in [22℄ is on the threshold for instability whi
h o

urs whena zero of the dispersion fun
tion rea
hes the real axis as the 
urrent in
reases from smallvalues. Landau damping is not dis
ussed as it is not important for the stability dis
ussion andfurthermore would require an analyti
 
ontinuation into the lower half ! plane whi
h wouldrequire assumptions on the equilibrium (see p.7 in [22℄).The bun
hed beam 
ase is more 
ompli
ated as the Fourier modes do not de
ouple. Fur-thermore, it appears at �rst sight that the 
al
ulation of the instability threshold must be donein 
ombination with the 
al
ulation of the density. However, Warno
k has introdu
ed a reg-ularization transformation whi
h eliminates the 
ontinuous spe
trum. The resulting equationis then dis
retized leading to a determinant 
ondition, independent of the density, whi
h isanalogous to the dispersion relation. A 
onvergen
e theorem would then make this rigorous.This is dis
ussed in [23℄, where equation (11) is very similar to our equation (38). However thekernel of the integral equation is mu
h di�erent and, in fa
t, one expe
ts a stability threshold.It is in this paper that Warno
k introdu
es his regularization transformation whi
h eliminatesthe 
ontinuous spe
trum and thus eliminates the numeri
al problem of representing generalizedfun
tions numeri
ally. More re
ent progress on the regularization is given in [24℄.Our equations (38) and (40) are simpler than the longitudinal bun
hed beam equations inthat the Fourier modes are un
oupled. Also, our 
ase is rather spe
ial in that it does not dependon the beam 
urrent as mentioned above. In fa
t the � and � eigen-modes are neutrally stableif k � rfe(J) 6= 0. In this 
ase, the transformationf̂�k (J) = jk � rfe(J)j 12 ĝ�k (J) (42)leads to (! � k � 
(J)) ĝ�k (J)+�� ZR2+ K̂k(J; J 0)ĝ�k (J 0) dJ 0 = 0; (43)9



where K̂k(J; J 0) := jk � rfe(J)j1=2Kk(J; J 0)jk � rfe(J 0)j1=2 and �� := � sgn(k � rfe). Sin
e thekernel K̂k is real and symmetri
, an eigenvalue ! must be real. It is in fa
t a remarkable featureof the linearized AVE (43) for the 
ase of � = ��, (�x; �y) far-from-low-order-resonan
e and forequilibria with k � rfe(J) 6= 0, that despite the presen
e of an amplitude dependent tune shiftand a 
olle
tive for
e, the modes show neither damping nor growth but instead are stable. In[26, 13℄ we have given numeri
al eviden
e that the modes are indeed remarkably stable even inthe fully nonlinear regime of tra
king with equation (2).We have tried to show that eigensolutions (!; f̂�k ) of (40) for equilibria, whi
h do not satisfythe above 
ondition, k � rfe(J) 6= 0 (e.g. densities with two humps), must have ! 2 R, buthave been unsu

essful. This leaves open the possibility of 
omplex eigenvalues. Sin
e thesemust 
ome in 
omplex 
onjugate pairs, there is the possibility of linearly (and thus nonlinearly)unstable solutions.We have assumed that the two beams have the same nonresonant tunes and this is probablythe reason that the eigensolutions are neutrally stable. Previous work indi
ates that when thetunes are di�erent (a so-
alled tune split) or near-to-low-order resonan
e there 
an be Landaudamping or growth. In [25℄, the authors develop a perturbation pro
edure in the near resonan
e
ase and argue that there are regions of stability and instability (see Figure 2 of [25℄ ). Landaudamping is also dis
ussed in [4℄. In [26℄, we have seen eviden
e for Landau damping in the 2Dphase spa
e 
ase (See Figures 5-7 of[26℄ ). A future problem for us is to determine the expli
itform of the averaged equations in this 
ase.Equation (43) and the asso
iated Lapla
e transformed equation 
an be rewritten as (T �!I)ĝ� = h. Sin
e T is symmetri
, we are looking for 
onditions whi
h ensure that it is abounded selfadjoint operator on an appropriate Hilbert spa
e. Su
h operators have a welldeveloped spe
tral theory. For example, the spe
trum is a 
ompa
t subset of the real line
ontained in the interval [m;M ℄ where both m and M are �nite spe
tral values and all spe
tralvalues are either in the point spe
trum (eigenvalues) or the 
ontinuous spe
trum, thus theresidual spe
trum is empty [27℄. Numeri
al results, in the se
tion to follow, indi
ate that forkT = (1; 0) or (0; 1) the spe
trum is the interval [0; k �
(0)℄ for the � mode with 0 an eigenvalueand [0; k �
(0)℄[f!�g for the � mode, with !� > k �
(0) an eigenvalue. A possible explanationfor the stability of the modes using the notion of the \Landau resonan
e" is that the modes 
annot resonantly ex
hange energy with a ma
ros
opi
 fra
tion of the parti
les in the beam. The� mode tune lies at the edge of the in
oherent (
ontinuous) spe
trum towards in�nite orbitalamplitudes. Any sensible phase spa
e density falls o� rapidly at large amplitudes (or even has
ompa
t support) so that the fra
tion of parti
les with tunes in resonan
e with the � modetune vanishes. The � mode tune, in the studied parameter regime, lies 
onsiderably outside thein
oherent spe
trum and is thus even less able to dissipate its energy among the single parti
letraje
tories or to draw energy from them.6 Numeri
al Results for � and � ModesThe analysis of the spe
trum for equation (43) gives important information about the � and� modes. In this se
tion, we dis
uss properties of solutions of (43) and give our results on thenumeri
al solution of this eigenvalue problem.If ! is outside of the range of k � 
(J), (43) 
an be redu
ed to an integral equation of these
ond kind by a simple algebrai
 transformation. Conversely, if ! is in the range of k � 
(J),then (43) it must be treated as a third kind equation. Su
h equations have not been studied asextensively as Fredholm integral equations of the �rst and se
ond kind. A review of work up10



to 1973 and new results are given in [28℄ and more re
ent results are 
ontained in [29℄. Mostre
ently, we have be
ome aware of [30, 31, 32℄. However, to our knowledge, the 
ase when J is2-dimensional has not been dis
ussed nor have 
onvergent numeri
al s
hemes been developed.As mentioned in the previous se
tion the plasma problem and the 
oasting beam problems areof this type and have been studied extensively, however these are parti
ularly simple.We now dis
uss the 
ommonly used, straightforward dis
retization for integral equations ofthe third kind as applied to our spe
ial 
ase and give our numeri
al results. At the end of thisse
tion we will dis
uss progress on work toward a 
onvergent s
heme. In the straightforwardapproa
h, J is put on a mesh and the integral is approximated by a simple quadrature method.This leads to a �nite dimensional matrix eigenproblem and seems to lead to reasonable results.This approa
h has been used in 1D in the beam-beam intera
tion in [3, 4℄, in the longitudinalbun
hed beam 
ase in [33℄ and by us in the 1D beam-beam intera
tion, [13℄. In [13℄ we obtainedex
ellent agreement between the FFT spe
tra of the dipole modes in full blown simulations andthe eigenvalues of a one degree-of-freedom version of (43).We 
onsider the spe
ial 
ase of axially symmetri
 Gaussian beams, wherefe(J) = 1"2 e� Jx+Jy" (44)with �" being the rms emittan
e, and horizontal dipole modes where k = (1; 0)T. With these
hoi
es equation (43) takes the expli
it form (! � 
x(J)) ĝ�1;0(J)�"�3 ZR2+ e�Jx+Jy2" K1;0(J; J 0)e�J0x+J0y2" ĝ�1;0(J 0) dJ 0 = 0: (45)We transform the a
tions Ix = Jx=(1+Jx) and Iy = Jy=(1+Jy), thereby mapping R+ ! [0; 1),and use a 60�60 mesh. Even though the linearized averaged Vlasov equation (45) redu
es thenumber of independent variables from four as in (24) to two, the evaluation of the fun
tions
(J) and K̂k(J; J 0) is in fa
t 
omputationally expensive. The 
omputation of 
 = r �H[	e℄involves a 6-fold integral at ea
h point of the 2D mesh in J and K̂k involves a 4-fold integral atea
h point of a 4D mesh in (J; J 0). Although we found a way to slightly simplify the 
al
ulationfor general 	e, and redu
e the 6-fold integral to a 5-fold integral, going to larger meshes is quiteexpensive. However, for the important parti
ular 
hoi
e of (44) we found a very simple formulainvolving modi�ed Bessel fun
tions: �H[	e℄(J) = Z 10 dq2"+ q��1� exp��Jx + Jy2"+ q � I0� Jx2"+ q� I0� Jy2"+ q�� : (46)This formula has been known in the 
ontext of the weak-strong approximation of the beam-beam tune shift, [34℄. It is straightforward to prove that limJ!0
x(J) = limJ!0
y(J) = 1,and that the ranges of 
x(J);
y(J) are both the interval (0; 1). The latter is also the range ofthe 
ontinuous spe
trum of (43).
x(Jx; Jy) is shown in Figure 2, and the spe
trum of the �nite dimensional approximation of(45) is shown in Figure 3. The plot suggests that (45) has a 
ontinuous spe
trum, 
ommon toboth the � and � modes, whi
h 
oin
ides with the range of 
x(J). In addition, the � mode hasa dis
rete eigenvalue ! = 0, and the � mode has a dis
rete eigenvalue at ! � 1:21. Figures 411
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Figure 5: The � mode eigenfun
tion of (45).
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Figure 6: An eigenfun
tion 
orresponding to an eigenvalue from the 
ontinuous spe
trum of(45).and 5 show that these eigenvalues 
orresponds to regular eigenfun
tions. FFT spe
tra obtainedby tra
king, with our newly written parallel Perron-Frobenius 
ode [11℄, whi
h tra
ks the phasespa
e densities dire
tly in 4D phase spa
e, and with our 4D weighted ma
ro parti
le tra
king
ode [13℄, shows pronoun
ed peaks at tunes that 
orrespond to these dis
rete eigenvalues. Thisindi
ates an ex
ellent agreement between these three 
ompletely di�erent approa
hes. We
onsider this a major feat.Even though our results are quite satisfa
tory, we are interested in a 
onvergent pro
edure.A well established theory (See e.g., [35℄) guarantees that the above des
ribed �nite dimensionalapproximation of the integral equation 
onverges as long as the operator is 
ompa
t. However,as we mentioned before, Figure 3 indi
ates the presen
e of a 
ontinuous spe
trum, whi
h a 
om-pa
t operator 
an not have. In addition, the numeri
ally 
omputed \eigenfun
tions" asso
iatedwith the 
ontinuous spe
trum show a singular behavior, as illustrated in Figure 6. This is to beexpe
ted [28, 29℄ and thus these third kind integral equations are not well suited for numeri
alanalysis in their standard form. Therefore further numeri
al and analyti
al analysis requires aspe
ial treatment of equation (43). Su
h diÆ
ulties are 
ommon for equation (41) where a(x)13



vanishes at least on
e inside of its domain. The re
ent work for the longitudinal bun
hed beamVlasov equation in [23, 24℄ mentioned above, suggests that the 
ontinuous spe
trum 
an beeliminated by the Warno
k regularization transformation g(J; !) = (!� k �
(J))ĝ(J; !). Thisgives the nonlinear eigenvalue problem in !:g(J; !)� � ZR2+ Kk(J; J 0) ĝ(J 0; !)! � k � 
(J 0) dJ 0 = 0; (47)where the solutions (g(J; !); !) for � = �1 give the � and � eigenmodes respe
tively.As mentioned before, equation (41) appears in other physi
s appli
ations, and analyti
alresults have been published in [28, 29, 30, 31, 32℄. We have begun a study of this problem in ourparti
ular 
ase. Spe
i�
ally, the existen
e and uniqueness of solutions of equation (43) in theone and two-dimensional 
ases has been addressed in [36℄. In [36℄, we 
onsider fun
tions whi
hare 
ontinuous ex
ept for pole-like singularities at J su
h that (!�k �
(J)) = 0, and interpretthe integrals over the singularities in the prin
ipal value sense. Under 
ertain assumptions, weproved a version of the Fredholm alternative theorem: the equation has a unique solution forany right-hand side i� the homogeneous version of this equation has only the trivial solution.In addition, this framework may provide a numeri
ally 
onvergent s
heme for solving (43).Alternatively, we are looking for 
onditions so that dis
retization of the Warno
k transformedproblem will lead to a 
onvergent method. The theory of [36℄ is a �rst step.7 Summary and Future WorkAn important aspe
t of 
olle
tive beam-beam theory has been the study of the so-
alled � and �modes. The pioneering works of [1, 2, 3, 4℄ represent a major advan
e; however approximationsare made, the validity of whi
h we would like to understand better. For example, in [3, 4℄,the starting point is a Vlasov equation with a delta fun
tion ki
k and the beam-beam ki
k isdistributed around the ring by smoothing the delta fun
tion. The Vlasov equation is linearizedabout a fun
tion whi
h is only an approximate equilibrium and a
tion-angle variables areintrodu
ed. The Fourier modes in angle are not un
oupled at this stage but a horizontal dipolemode proportional to exp(i�x) is assumed. This leads to an in
onsistent equation. To obtaina 
onsistent equation for this mode an average over the angle variables is taken whi
h, aftera Fourier transform in time, leads to an integral equation, the analog of equation (43). In
ontrast, we start with the ki
k-latti
e model to properly handle the delta fun
tion ki
k. Thenwe make only one approximation, the averaging approximation, and in addition, as statedearlier, we believe we 
an give an upper bound on the error of approximation. Our AVE hasexa
t equilibria and thus our exa
t problem has quasi-equilibria in good agreement with oursimulations. The linearization about these equilibria leads to an equation, whi
h in 
ontrastto the above, has un
oupled Fourier modes. The Fourier modes satisfy an integral equationthat is easily transformed to a formally selfadjoint problem. We are looking for 
onditions su
hthat the asso
iated operator is bounded and selfadjoint, a 
ase whi
h has a well developedtheory. The standard 
omputation of the � and � dipole mode frequen
ies dis
ussed in Se
tion6 is in good agreement with density tra
king based on equation (4), using both the PF andthe weighted ma
ro-parti
le tra
king methods. However the standard numeri
al approa
h tonumeri
ally solving (43) does not 
onverge as the mesh size de
reases beyond some limit andwe are sear
hing for 
onvergent algorithms su
h as that suggested in [23, 36℄.In summary, we have introdu
ed a new model, the averaged Vlasov equation (24), for the14




olle
tive beam-beam intera
tion in two degrees of freedom, whi
h we believe has signi�
antpotential for deepening our understanding of this important 
olle
tive e�e
t.Equation (24) was derived in the spirit of the rigorous analysis in [6℄. We believe similar errorbounds 
an be derived, thus we believe (24) gives a good approximation to the basi
 dynami
sof (2). In fa
t, we have 
he
ked the one degree-of-freedom analog of (24) with two aspe
ts ofa full-blown density tra
king approa
h, the existen
e of quasi-equilibria and the 
al
ulation ofthe � and � mode eigenvalues, with ex
ellent results. More importantly, we have 
he
ked thetwo degree-of-freedom AVE with two full-blown simulation 
odes and have also found ex
ellentagreement in the 
al
ulation of � and � mode eigenvalues. Thus we have 
on�den
e in themodel.We have demonstrated its usefulness as a tool for 
al
ulating � and � mode eigenvaluesand for 
larifying the existen
e of quasi-equilibria. In the 
ase of leptons, progress has beenmade on the question of the existen
e of an equilibrium for the exa
t model [15℄. However, itseems likely that exa
t equilibria do not exist in the hadron 
ase as the underlying dynami
sis likely to be 
haoti
. In addition, the AVE may lead to a faster algorithm for 
al
ulating thedensity evolution. This is be
ause the beam-beam parameters, � and ��, are small and thus thetime step in numeri
al integration of (24) 
an be O(1=max(�; ��)), whi
h is signi�
antly largerthan one turn. We propose to investigate this potential speed up by developing a numeri
alpro
edure to integrate (24). As another example, the AVE will be useful in taking the nextstep beyond the linear theory to investigate 
oupling between the � and � Fourier modes. Inthe Lapla
e-pi
ture, we may be able to use the �xed point iteration s
heme dis
ussed for theplasma problem in [37℄ or in the eigen-pi
ture presented here we may be able to use the vanKampen-Case approa
h [19, 20℄. In the latter 
ase, the work of [17℄ may be useful. Finally, we
an investigate several other e�e
ts su
h as those dis
ussed by Alexahin [4℄. Some topi
s we are
onsidering for future work are: (i) a study of the near-to-low-order resonan
e 
ase as we doin [6℄ (ii) adding another degree of freedom to study the e�e
t of syn
hrotron motion into thedynami
s of equation (2) and (iii) a study of the e�e
t of a tune split by letting ��x = �x + �aand ��y = �y + �b and then applying our averaging formalism. Here (a; b) allow us to vary thetune split in units of the ki
k parameter. As in [6℄ we expe
t bifur
ations as a and b vary. Items(i) and (iii) likely in
ludes the possibility of both Landau damping and growth.Our main point is that we now have a model in whi
h many important 
olle
tive beam-beamintera
tion e�e
ts 
an be studied in a more systemati
 way then was previously available.A
knowledgementsDis
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ontra
t DE-FG02-99ER41104.A Derivation of the Beam-Beam ParameterTo 
al
ulate the ki
k we 
onsider three inertial referen
e frames: the rest frame of the syn-
hronous parti
le of the unstarred bun
h F , the lab frame F 0, and the rest frame of the syn-
hronous parti
le of the starred bun
h F �. The 
oordinate axes of the three frames are paralleland oriented so that viewed from the lab frame F 0, F is moving in the positive z dire
tion withvelo
ity �
 and F � is moving in the negative z dire
tion with velo
ity ���
. In what follows15



we will 
onsider the relative velo
ities of the parti
les with respe
t to the syn
hronous parti
leof their bun
h as non{relativisti
.We 
onsider the momentum 
hange of an unstarred parti
le moving through the starredbun
h. In the ki
k approximation, we assume that the transverse spatial 
oordinates are not
hanged during the intera
tion, i.e. r(t) = (x; y; z + ut)T. Thus the 
hange in transversemomentum of an unstarred parti
le passing through the starred beam measured in F � is�P �?(x; y) = q ZRE�?(x; y; z + ut) dt = qu ZRE�?(x; y; z) dz; (48)where u is the speed of the unstarred parti
le in the starred frame,u = 
 � + ��1 + ��� ; (49)and E�? is the transverse ele
tri
 �eld of the starred bun
h in F �. Note that � is basi
ally thespeed of an unstarred parti
le in the lab frame and that B� is approximately zero in F �.Sin
e the 3-momentum P � is part of a 4-ve
tor and the boosts involved are all in thelongitudinal dire
tion �P? = �P 0? = �P �?: (50)From E�? = �r?�� we have�P �?(x; y) = � N�qq�u4��0 ZR dzr? ZR3���3(~r?; ~z) d2~r?d~zpkr? � ~r?k2 + (z � ~z)2 (51)= � N�qq�u4��0 ZR3 ��3(~r?; ~z) ZR dzr?� d2~r?d~zpkr? � ~r?k2 + (z � ~z)2 : (52)One easily shows by dire
t integration thatZR dzr? 1pkr? � ~r?k2 + (z � ~z)2 = �r? ln kr? � ~r?k2; (53)whi
h is independent of z. Thus�P �?(x; y) = 2N�qq�u4��0 r? ZR2 ��2(~r?) lnkr? � ~r?k| {z }:=�[��2℄(r?) ; (54)where ��2 = RR ��3 dz. The inter
hange of limits going from (51) to (52) is justi�ed for ��3 de
ayingsuÆ
iently fast at 1. (The singularities in the integral are integrable.)Sin
e �P 0? = �P �? the ki
k in the lab frame is� �px�py � = �P �?p0 : (55)16



Sin
e the speed of the unstarred syn
hronous parti
le in the lab frame is �
, we have p0 = m�

.Thus the ki
k is � �px�py � = ��r?�[��2℄(r?) (56)where � = 2N�qq�4�m�0
2 1�
 1 + ���� + �� ; (57)whi
h is the justi�
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