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A New Model for the Colletive Beam-Beam InterationJ A EllisonUNM, Albuquerque,NM 87131, USAellison�math.unm.edu A V SobolTeh-X Corporation,Boulder, CO 80303, USAsobol�txorp.omM VogtDESY{MPY,22607 Hamburg, FRGvogtm�mail.desy.deAbstratThe Colletive Beam-Beam interation is studied in the framework of maps with a\kik-lattie" model in the 4-D phase spae of the transverse motion. A novel approah tothe lassial method of averaging is used to derive an approximate map whih is equivalentto a ow within the averaging approximation. The ow equation is a ontinuous-timeVlasov equation whih we all the averaged Vlasov equation, the new model of this paper.The power of this approah is evidened by the fat that the averaged Vlasov equation hasexat equilibria and the assoiated linearized equations have unoupled azimuthal Fouriermodes. The equation for the Fourier modes leads to a Fredholm integral equation of thethird kind and the setting is ready-made for the development of a weakly nonlinear theoryto study the oupling of the � and � modes. The � and � eigenmodes are alulated fromthe third kind integral equation. These results are ompared with the kik-lattie modelusing our weighted maropartile traking ode and a newly developed, density traking,parallel, Perron-Frobenius ode.PACS: 02.30.Rz, 29.20.Dh, 29.27.Bd, 45.20.Jj, 52.59.-f, 52.65.-ySubmitted to New Journal of Physis1 IntrodutionIn this paper we introdue a new model for the olletive beam-beam interation for hadronbeams in 4D transverse phase spae (2 degrees-of-freedom). This both generalizes and simpli�esthe work of [1, 2, 3, 4℄ on the olletive beam-beam interation in high energy olliders. Inaddition, it extends the preliminary 1 degree-of-freedom olletive ase in [5℄. Our model isbased on the lassial method of averaging generalized to maps and olletive fores. We do notdistribute the beam-beam fore around the ring as is usually done. The tehnique we introdueshould be of general interest for studies of Vlasov systems with a loalized perturbative olletivefore.In Setion 2, we disuss our basi kik-lattie model for the evolution of the 4D phase spaedensities of the two beams. In Setion 3, we briey review the basi averaging theory whih1



is generalized in this paper. Previously, this averaging theory was applied to the weak-strongbeam-beam in one and two degrees-of-freedom [6, 7℄. The equations of the kik-lattie modelwill be transformed to a standard form for the method of averaging in Setion 4 and the general\averaged Vlasov equation" (AVE) will be derived (See equation (24)). We then introdue thespeial ase we treat in this paper, namely the ase where the tunes of the two beams areidential and are non-resonant. In this ase the AVE has the property that any funtion ofthe ation only is an equilibrium solution. In Setion 5, we linearize about these equilibria anddisuss the linearized equations and the assoiated third kind integral equation. In addition,we ompare our integral equation with the analogous integral equations whih arise in thestandard plasma problem and in the beam dynamis problems onerning the longitudinaldynamis with wake �elds for a oasting beam and a bunhed beam. In Setion 6 we presentnumerial results for the � and � mode eigen-problems for an axially symmetri Gaussianequilibrium and ompare these results with simulations on the exat model of Setion 2. InSetion 7 we give a summary and point to future work. An appendix is inluded whih gives a�rst priniples alulation of the beam-beam fore.2 The Kik-Lattie Model in 4D Phase SpaeTo desribe the evolution equations, we refer to the bunhes as \unstarred" and \starred", andfor every quantity X desribing the unstarred bunh, the quantity X� desribes the starredbunh. The evolution equations are symmetri: the equation for the starred bunh is obtainedfrom the unstarred bunh by interhanging starred and unstarred quantities, so we mostly stateonly the equation for the unstarred bunh.We onsider two ounter-rotating partile bunhes, whih ollide head on at a single intera-tion point (IP). The eletromagneti interation at the IP is determined up to a proportionalityfator by the dimensionless \potential" �, whih satis�es the Poisson equation ��� = 2���.Here ��(x; y) is the spatial density (normalized to one), and the potential �[��℄ : R2 ! R isgiven by �[��℄(x; y) = ZR2 G(x� x0; y � y0)��(x0; y0) dx0dy0; (1)where G(x; y) = � ln(px2 + y2=�) = � ln(px2 + y2) + ln(�) is the Green's funtion. Inthe following we will omit the saling fator � whih is in priniple needed for dimensionalorretness but whih an be hosen ompletely arbitrarily sine it does not ontribute to thebeam-beam kik.Letting n refer to the state of the system just before the IP, partiles in the unstarred bunhhange their phase-spae position u = (x; y; px; py)T aording to the mapun+1 =M un + � �0; 0; ��x�[��n℄(Pun); ��y�[��n℄(Pun)�T! : (2)The assoiated phase spae density  n evolves via  n+1(un+1) =  n(un), or n(u) =  n+1 M u+ � �0; 0; ��x�[��n℄(Pu); ��y�[��n℄(Pu)�T!! ; (3)whih is easily inverted to give n+1(u) =  n u� � �0; 0; ��x�[��n℄(PM�1u); ��y�[��n℄(PM�1u)�T! : (4)2



Here M is a stable linear sympleti map representing the linear lattie, � is the beam-beamfator, P = � 1 0 0 00 1 0 0 � projets phase spae on on�guration spae, and the spatial andphase-spae densities are related by��(x; y) = ZR2  �(x; y; px; py) dpxdpy: (5)The beam-beam fator, whih is derived in the appendix, is � = 1+����+�� 2N�� rp, where the absolutevalue of rp = qq�4��0m2 is the lassial partile radius (as long as only elementary partiles or ionsof the same harge state are involved), N is the number of partiles, q is the partile harge, is the Lorentz fator assoiated with �, and m is the partile mass. For all modern olliders, i.e.in the limit �,�� ! 1, � an be approximated by � � 2N� rp. The evolution law for the starredbeam is obtained by replaingM byM�, � by  and � by �� where starred and unstarred areinterhanged in �, , N and m.Equation (2) an be written more ompatly asun+1 =M�un + �J4ru�[��n℄(Pun)�; (6)where J2k = � 0k Ik�Ik 0k � is the unit sympleti matrix. We note here that a map is said to besympleti if the Jaobian, M , of the map satis�es MTJM = J . We have written the kik ina \Hamiltonian form" beause eventually a transformed � will be a Hamiltonian for a ow.For simpliity, we takeM = 0BB� Cx 0 �xSx 00 Cy 0 �ySy�Sx=�x 0 Cx 00 �Sy=�y 0 Cy 1CCA ; (7)where Ci := os(2��i), Si := sin(2��i) and where �i for i = x; y are the tunes. We have assumedthat the beta funtions, �x and �y, have minima at the IP. The distintion between the lattie� and the relativisti � should be lear from ontext.To relate � to the usual beam-beam parameter, we linearize the kik in (2) about (x; y) =(0; 0) in the ase where �� is mirror symmetri and invariant under �2 rotations, i.e. when��(x; y) = ��(�x; y) = ��(x;�y) = ��(y; x). Note that this is still a weaker onstraint than fullaxial symmetry. Beause of these symmetries, �x(0) = �y(0) = �xy(0) = 0 and �xx(0; 0) =�yy(0; 0) = ����(0; 0) where the latter uses Poisson's equation. Thus the kik matrix beomes� I 0kI I � where k = ����(0; 0). The tune shift is �i = ��i = � 14��ik + O(k2) with i = x; y.Thus the beam-beam parameter �i = �14�i���(0; 0). For a round Gaussian, this gives thestandard result.3 Map Averaging and Error BoundsHere we give an overview of the averaging formalism, whih we generalize in this paper, andbriey disuss error bounds. We onsider the autonomous \kik-rotate" map in R2un+1 = eJ22�� �un + �(0;��0(u1;n))T� (8)3



with the small parameter �. This is a model for the one degree of freedom weak-strong beam-beam interation and was disussed in [6℄. The transformationu = eJ22�n�v (9)leads to the non-autonomous mapvn+1 = vn + �J2rvH(vn; n�); (10)where H(v; �) = V (v1 os(2��) + v2 sin(2��)). This is in a standard form for the method ofaveraging in whih the transformed dependent variable, v, is slowly varying. If � is irrational,then from Weyl's equidistribution theorem [8℄ the average of H(v; n�) over n exists and is givenby �H(v) = R 10 H(v; �) d�. It is therefore natural to ask, for what values of � are solutions of(10) approximated by solutions of the averaged mapwn+1 = wn + �J2rw �H(wn): (11)Even though the maps in (8) and (10) are sympleti, the averaged map is not. However theaveraged ow assoiated with (11) and de�ned by_w = �J2rw �H(w) (12)is Hamiltonian, and it is easy to show that jwn�w(n)j = O(�) over O(1=�) times. Sine (12) isautonomous, (11) an be viewed as the Euler method for numerially integrating (12). Approx-imating equation (10) with (11) is onsidered in our previous work [6℄, where we introdue theonept of a far-from-low-order-resonane zone for �. This zone is formed by removing a �nitenumber of intervals entered on low-order rationals, therefore � needs to satisfy only �nitelymany Diophantine onditions, and does not need to be irrational, whih makes the formalismmuh more useful in the appliations. The error bound jvn�wnj = O(�) is obtained without theusual near-identity-transformation and is unhanged asymptotially if an O(�2) term is addedto equations (8,10).In [7℄, we extend the formalism of equations (8-12) to the weak-strong beam-beam intera-tion in 2 degrees-of-freedom. The equation of motion orresponding to (8) is just equation (2)with ��n replaed by the spatial density of the strong beam. We are working out the details ofthe averaging theorem in this more ompliated ase with two frequenies [9℄. Some ingredientsof our approah an be found in [10℄. We generalize this to the olletive beam-beam interationin the next setion.4 Map-Averaging for Vlasov SystemsWe will begin by transforming (2) using a representation of the solution to the unperturbed,� = 0, problem. The new oordinates will be slowly varying if � is small. As in the previoussetion we ould proeed by letting u =Mnq whih givesqn+1 = qn + �M�nJ4ru�[��n℄(PMnqn): (13)The averaged equation then beomeswn+1 = wn + �J4rw �F [��℄(wn); (14)4



where �F [��℄(w) denotes the n-average of M�nJ4ru�[��℄(PMnw).The transformation to (13) turned out to be a major advane in Sobol's implementation ofthe Perron-Frobenius (PF) method [11℄ (See [12℄ and [13℄ for a disussion of the PF method).In addition, (13) is well suited for an error analysis whih is in progress [14℄. However, anation-angle transformation may be better suited to understand approximate equilibria andthe assoiated linear analysis that we do here and that is how we will proeed.The ation-angle transformation from u = (x; y; px; py)T to slowly varying oordinates v =(�x;�y; Jx; Jy)T is given by x = p2Jx �x sin(2�n�x +�x) (15)px = p2Jx=�x os(2�n�x +�x) (16)y = q2Jy �y sin(2�n�x +�y) (17)py = q2Jy=�y os(2�n�y +�y): (18)Note that for �xed J and � these are solutions of the equations of motion with � = 0, that iswithout the beam-beam fore.Equation (2) beomes vn+1 = vn + �J4rvH[	�n℄(vn; n) +O(�2); (19)where H[	�℄(v; n) := ZT2�R2+ 	�(v0) dv0� G�p2�xJx sin(2�n�x +�x)�p2��xJ 0x sin(2�n��x +�0x);p2�yJy sin(2�n�y +�y)�q2��yJ 0y sin(2�n��y +�0y)�: (20)The integral in (20) is taken over [0; 2�℄ in the �'s and over [0;1) in the J 's. Sine thetransformation is sympleti it is also volume preserving. Thus the (�; J)-density is given by	n(v) =  n(u), and its evolution law is	n(v) = 	n+1�v + �J4rvH[	�n℄(v; n) +O(�2)�; (21)or equivalently 	n+1(v) = 	n�v � �J4rvH[	�n℄(v; n) +O(�2)�: (22)Clearly vn and v�n are slowly varying for � and �� small, and it follows that the transformeddensities 	 and 	� are slowly varying. Thus (19) is in a standard form for averaging andwe now follow the proedure laid out in the previous setion. The averaged map problem isobtained from (19) by replaing H by the appropriate n-average �H and dropping the O(�2)term. The assoiated averaged ow problem is autonomous and has the Hamiltonian form_w = �J4rw �H[	�℄(w): (23)Thus the averaged Vlasov equations for 	 and 	� beome� �t	+ �f	; �H[	�℄g = 0�t	� + ��f	�; �H�[	℄g = 0 ; (24)5



where ff; gg = �f��x �g�Jx + �f��y �g�Jy � �f�Jx �g��x � �f�Jy �g��y is the Poisson braket. Note that H�[	℄ isobtained from (20) by interhanging the starred and unstarred parameters � and �. System(24) is the new model referred to in the title. Sine � and �� are small one immediate advantageof (24) over (2) is that the step size in a numerial integration of (24) an be O(1=max(�; ��))whih is muh larger than one turn.At this stage the problem is general with parameters (�x; �y; ��x; ��y ; �x; �y; ��x; ��y ; �; ��) andthe orret averaged Hamiltonian �H depends on the relation between the four tunes. Here wedisuss the ase �x = ��x and �y = ��y beause (i) we wish to ompare and ontrast our resultswith [3, 4℄ and (ii) it simpli�es the alulation of the average. In this ase G(� � �) in (20) anbe rewritten as G(Dx sin(2�n�x + 'x); Dy sin(2�n�y + 'y)), whereDx = D(�xJx; ��xJ 0x;�x � �0x);Dy = D(�yJy; ��yJ 0y;�y ��0y); (25)D(r; s; t) =q2r + 2s� 4prs os t; (26)and the phases 'x and 'y are easily determined from the trigonometry involved. If in additionwe onsider the ase where �x and �y are non-resonant (in the sense that kx�x + ky�y = k0 )kx = ky = k0 = 0), then the averaging over n�x and n�y an be done separately and eahaverage an be replaed by the assoiated integral. Thus the averaged Hamiltonian beomes�H[	�℄(v) = ZT2�R2+ �G�Dx; Dy�	�(v0) dv0; (27)where �G(Dx; Dy) := 1=(2�)2 RT2G(Dx sin tx; Dy sin ty) dtx dty and as before v = (�; J). Fromour experiene with the non-olletive ase [6, 7℄, we expet this to be valid for �x, �y far fromlow-order resonanes; work on the error estimates is in progress [14℄. Note that H = H� if�x = ��x and �y = ��y .Beause of the onvolution struture of the � integral in (27) (see (25)) any funtion 	� =	�e(J) results in �H being independent of �. It follows that any pair of densities 	e and 	�ethat are independent of � are an equilibrium pair for (24). Sine  n(x; y; px; py) = 	n(�; J) �	e(J) = 	e �12 � x2�x + �xp2x� ; 12 � y2�y + �yp2y��, we see that (2) and equivalently (19) have quasi-equilibria given the averaging approximation. In [5℄, we have veri�ed this in the 2D phasespae ase. Figure 1 shows the evolution of two ation densities at a hundred out of morethan 105 turns under the exat map, the 2D analog of (4), using the PF method for trakingphase spae densities. The parameters are � = �� = p5 � 2 and � = 3 � 10�3. The redrosses represent the evolution of a quasi-equilibrium, namely the entered Gaussian 	0(�; J) =	e(J) = 1=(2�")e�J=" (for " = 1), while the green �'s stand for a Gaussian that was initiallyshifted by 1�x, giving a �-dependent density. Sine the red rosses for di�erent disrete J lie ontop of eah other, 	e hardly evolves over the 105 turns whih is onsistent with the averagingresult. The �-dependent density however, utuates as is indiated by the band of green �'s.Thus we have strong evidene for the existene of quasi-equilibria, however we believe that (4)does not admit exat equilibria. This is in ontrast to the lepton ase, see [15℄.
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Figure 1: The evolution of the ation density in a 1 degrees-of-freedom example. The redrosses are a quasi equilibrium while the green �'s are a �{dependent utuating density. Theevolution is over 105 turns.5 The Linearized EquationsTo linearize about an equilibrium, we set 	(v; t) = 	e(J) + 	1(v; t), and 	�(v; t) = 	�e(J) +	�1(v; t). Plugging into (24) and linearizing gives� �t	1 + �f	1; �H[	�e℄g+ �f	e; �H[	�1℄g = 0;�t	�1 + ��f	�1; �H�[	e℄g+ ��f	�e; �H�[	1℄g = 0: (28)Beause of the onvolution struture of �H in (27), the Fourier modes of (28) are unoupled,but we do not pursue (28) in that generality here. Instead we investigate solutions, whih existwhen 	e = 	�e, � = ��, and �H = �H�. Letting f� = 	1 �	�1, we obtain��f� + ff�; �H[	e℄g � f	e; �H[f�℄g = 0; (29)where f� are the so-alled � (sum) and � (di�erene) modes respetively and we have saledthe � into the time by de�ning � = �t. We remind the reader that the densities 	1 and 	�1in (28) are oupled, while f+ and f� in (29) are not. Moreover, the � and � modes anbe intuitively interpreted as in-phase and 180Æ out-of-phase perturbations respetively to thestarred and unstarred beam. Note that t in (28) is dimensionless (same as n in (22)) whereas� in (29) has the dimension of a length. Note also that the beam urrent, whih is a fator of�, has been saled out of the problem. Thus there an be no threshold for instability in ourproblem.Unfolding the Poisson brakets we obtain��f� + 
(J) � r�f� �rJ	e(J) � r� �H[f�℄ = 0; (30)where 
(J) := rJ �H[	e℄(J) : (31)To analyze equation (30), we expandf�(J;�; �) = Xk2Z2 f�k (J; �) eik��: (32)7



To obtain an equation for the Fourier oeÆients, we de�neK(J; J 0;�) := �G �D(�xJx; �xJ 0x;�x); D(�yJy; �yJ 0y;�y)� (33)with Fourier oeÆients given byKk(J; J 0) = 1(2�)2 ZT2K(J; J 0;�)e�ik��d�: (34)Sine K is real and even in �x and �y, Kk is real, and sine Kk is real, Kk = K�k. AlsoK(J; J 0;�) = K(J 0; J;�), and�G(Dx; Dy) = Xk2Z2Kk(J; J 0) eik�(���0): (35)An easy alulation using (35) and (27) gives�H[f�℄(J;�) = (2�)2 Xk2Z2 eik�� ZR2+ Kk(J; J 0)f�k (J 0) dJ 0: (36)Thus the Fourier modes determined by (29) are unoupled and are given by� i��f�k + k � 
(J)f�k�k � rfe(J) ZR2+ Kk(J; J 0)f�k (J 0) dJ 0 = 0; (37)where fe(J) := (2�)2	e(J) is the equilibrium ation density (RR2+ fe(J)dJ = 1).There are two standard approahes to analyzing (37): the Laplae transform approah andthe eigenvalue approah.Taking the Laplae transform of (37) we obtain(! � k � 
(J)) f̂�k (J)� k � rfe(J) ZR2+ Kk(J; J 0)f̂�k (J 0) dJ 0 = �if�k (J; 0); (38)for =! suÆiently large. Here we use �i! instead of the usual Laplae variable s, f̂k(J; !)denotes the Laplae transform of fk, and 
(J) := �H(	e)(J)0. In the eigenvalue approah, welook for solutions of the form f�k (J; �) = f̂�k (J) e�i!� ; (39)whih gives (! � k � 
(J)) f̂�k (J)� k � rfe(J) ZR2+ Kk(J; J 0)f̂�k (J 0) dJ 0 = 0: (40)The Laplae transformed equation (38) has a non-homogeneous term, however, the left handsides of equations (38) and (40) are idential. These equations are of the forma(x)�(x)� � Z K(x; y)�(y)dy = f(x) (41)8



and are alled Fredholm integral equations of the third kind (see p.2 [16℄). If a is bounded awayfrom zero it an be transformed into a Fredholm integral equation of the seond kind. Thusthe primary interest in this third kind equation is in the ase where a has zeros and this is ourase. The ase where a has zeros is ompliated by the fat that there are generalized solutionswhih are diÆult to represent numerially.Equations (38) and (40) have analogues in both plasma physis and other beam dynamisontexts. For example, Crawford and Hislop [17℄ disuss the standard plasma problem in theperiodi ase, the ase of this paper, summarizing both the Landau and the van Kampen-Casesolutions ([18℄, [19℄, [20℄). Jakson [21℄ gives a nie presentation of the Landau approah in thenon-periodi ase. The third kind integral equations are given in equations (17) and (23) of [17℄and in equation (3.5) of [21℄. As is well known, the plasma problem leads to Landau dampingand growth for ertain equilibria depending on the size of the average density. The stabilityanalysis is failitated by the dispersion funtion whih unouples the alulation of the poles ofthe solution from the alulation of the density itself.Two standard beam dynamis problems onern the longitudinal dynamis with wake �eldsfor a oasting beam and for a bunhed beam. The oasting beam ase is ompletely analogousto the periodi plasma problem inluding a dispersion funtion and possible Landau dampingfor small beam urrent and an instability threshold at some ritial urrent after whih there isLandau growth. A reent disussion of the oasting beam problem in the ontext of oherentsynhrotron radiation is given in [22℄. The third kind integral equation is given in equation(27) of that paper. The emphasis in [22℄ is on the threshold for instability whih ours whena zero of the dispersion funtion reahes the real axis as the urrent inreases from smallvalues. Landau damping is not disussed as it is not important for the stability disussion andfurthermore would require an analyti ontinuation into the lower half ! plane whih wouldrequire assumptions on the equilibrium (see p.7 in [22℄).The bunhed beam ase is more ompliated as the Fourier modes do not deouple. Fur-thermore, it appears at �rst sight that the alulation of the instability threshold must be donein ombination with the alulation of the density. However, Warnok has introdued a reg-ularization transformation whih eliminates the ontinuous spetrum. The resulting equationis then disretized leading to a determinant ondition, independent of the density, whih isanalogous to the dispersion relation. A onvergene theorem would then make this rigorous.This is disussed in [23℄, where equation (11) is very similar to our equation (38). However thekernel of the integral equation is muh di�erent and, in fat, one expets a stability threshold.It is in this paper that Warnok introdues his regularization transformation whih eliminatesthe ontinuous spetrum and thus eliminates the numerial problem of representing generalizedfuntions numerially. More reent progress on the regularization is given in [24℄.Our equations (38) and (40) are simpler than the longitudinal bunhed beam equations inthat the Fourier modes are unoupled. Also, our ase is rather speial in that it does not dependon the beam urrent as mentioned above. In fat the � and � eigen-modes are neutrally stableif k � rfe(J) 6= 0. In this ase, the transformationf̂�k (J) = jk � rfe(J)j 12 ĝ�k (J) (42)leads to (! � k � 
(J)) ĝ�k (J)+�� ZR2+ K̂k(J; J 0)ĝ�k (J 0) dJ 0 = 0; (43)9



where K̂k(J; J 0) := jk � rfe(J)j1=2Kk(J; J 0)jk � rfe(J 0)j1=2 and �� := � sgn(k � rfe). Sine thekernel K̂k is real and symmetri, an eigenvalue ! must be real. It is in fat a remarkable featureof the linearized AVE (43) for the ase of � = ��, (�x; �y) far-from-low-order-resonane and forequilibria with k � rfe(J) 6= 0, that despite the presene of an amplitude dependent tune shiftand a olletive fore, the modes show neither damping nor growth but instead are stable. In[26, 13℄ we have given numerial evidene that the modes are indeed remarkably stable even inthe fully nonlinear regime of traking with equation (2).We have tried to show that eigensolutions (!; f̂�k ) of (40) for equilibria, whih do not satisfythe above ondition, k � rfe(J) 6= 0 (e.g. densities with two humps), must have ! 2 R, buthave been unsuessful. This leaves open the possibility of omplex eigenvalues. Sine thesemust ome in omplex onjugate pairs, there is the possibility of linearly (and thus nonlinearly)unstable solutions.We have assumed that the two beams have the same nonresonant tunes and this is probablythe reason that the eigensolutions are neutrally stable. Previous work indiates that when thetunes are di�erent (a so-alled tune split) or near-to-low-order resonane there an be Landaudamping or growth. In [25℄, the authors develop a perturbation proedure in the near resonanease and argue that there are regions of stability and instability (see Figure 2 of [25℄ ). Landaudamping is also disussed in [4℄. In [26℄, we have seen evidene for Landau damping in the 2Dphase spae ase (See Figures 5-7 of[26℄ ). A future problem for us is to determine the expliitform of the averaged equations in this ase.Equation (43) and the assoiated Laplae transformed equation an be rewritten as (T �!I)ĝ� = h. Sine T is symmetri, we are looking for onditions whih ensure that it is abounded selfadjoint operator on an appropriate Hilbert spae. Suh operators have a welldeveloped spetral theory. For example, the spetrum is a ompat subset of the real lineontained in the interval [m;M ℄ where both m and M are �nite spetral values and all spetralvalues are either in the point spetrum (eigenvalues) or the ontinuous spetrum, thus theresidual spetrum is empty [27℄. Numerial results, in the setion to follow, indiate that forkT = (1; 0) or (0; 1) the spetrum is the interval [0; k �
(0)℄ for the � mode with 0 an eigenvalueand [0; k �
(0)℄[f!�g for the � mode, with !� > k �
(0) an eigenvalue. A possible explanationfor the stability of the modes using the notion of the \Landau resonane" is that the modes annot resonantly exhange energy with a marosopi fration of the partiles in the beam. The� mode tune lies at the edge of the inoherent (ontinuous) spetrum towards in�nite orbitalamplitudes. Any sensible phase spae density falls o� rapidly at large amplitudes (or even hasompat support) so that the fration of partiles with tunes in resonane with the � modetune vanishes. The � mode tune, in the studied parameter regime, lies onsiderably outside theinoherent spetrum and is thus even less able to dissipate its energy among the single partiletrajetories or to draw energy from them.6 Numerial Results for � and � ModesThe analysis of the spetrum for equation (43) gives important information about the � and� modes. In this setion, we disuss properties of solutions of (43) and give our results on thenumerial solution of this eigenvalue problem.If ! is outside of the range of k � 
(J), (43) an be redued to an integral equation of theseond kind by a simple algebrai transformation. Conversely, if ! is in the range of k � 
(J),then (43) it must be treated as a third kind equation. Suh equations have not been studied asextensively as Fredholm integral equations of the �rst and seond kind. A review of work up10



to 1973 and new results are given in [28℄ and more reent results are ontained in [29℄. Mostreently, we have beome aware of [30, 31, 32℄. However, to our knowledge, the ase when J is2-dimensional has not been disussed nor have onvergent numerial shemes been developed.As mentioned in the previous setion the plasma problem and the oasting beam problems areof this type and have been studied extensively, however these are partiularly simple.We now disuss the ommonly used, straightforward disretization for integral equations ofthe third kind as applied to our speial ase and give our numerial results. At the end of thissetion we will disuss progress on work toward a onvergent sheme. In the straightforwardapproah, J is put on a mesh and the integral is approximated by a simple quadrature method.This leads to a �nite dimensional matrix eigenproblem and seems to lead to reasonable results.This approah has been used in 1D in the beam-beam interation in [3, 4℄, in the longitudinalbunhed beam ase in [33℄ and by us in the 1D beam-beam interation, [13℄. In [13℄ we obtainedexellent agreement between the FFT spetra of the dipole modes in full blown simulations andthe eigenvalues of a one degree-of-freedom version of (43).We onsider the speial ase of axially symmetri Gaussian beams, wherefe(J) = 1"2 e� Jx+Jy" (44)with �" being the rms emittane, and horizontal dipole modes where k = (1; 0)T. With thesehoies equation (43) takes the expliit form (! � 
x(J)) ĝ�1;0(J)�"�3 ZR2+ e�Jx+Jy2" K1;0(J; J 0)e�J0x+J0y2" ĝ�1;0(J 0) dJ 0 = 0: (45)We transform the ations Ix = Jx=(1+Jx) and Iy = Jy=(1+Jy), thereby mapping R+ ! [0; 1),and use a 60�60 mesh. Even though the linearized averaged Vlasov equation (45) redues thenumber of independent variables from four as in (24) to two, the evaluation of the funtions
(J) and K̂k(J; J 0) is in fat omputationally expensive. The omputation of 
 = r �H[	e℄involves a 6-fold integral at eah point of the 2D mesh in J and K̂k involves a 4-fold integral ateah point of a 4D mesh in (J; J 0). Although we found a way to slightly simplify the alulationfor general 	e, and redue the 6-fold integral to a 5-fold integral, going to larger meshes is quiteexpensive. However, for the important partiular hoie of (44) we found a very simple formulainvolving modi�ed Bessel funtions: �H[	e℄(J) = Z 10 dq2"+ q��1� exp��Jx + Jy2"+ q � I0� Jx2"+ q� I0� Jy2"+ q�� : (46)This formula has been known in the ontext of the weak-strong approximation of the beam-beam tune shift, [34℄. It is straightforward to prove that limJ!0
x(J) = limJ!0
y(J) = 1,and that the ranges of 
x(J);
y(J) are both the interval (0; 1). The latter is also the range ofthe ontinuous spetrum of (43).
x(Jx; Jy) is shown in Figure 2, and the spetrum of the �nite dimensional approximation of(45) is shown in Figure 3. The plot suggests that (45) has a ontinuous spetrum, ommon toboth the � and � modes, whih oinides with the range of 
x(J). In addition, the � mode hasa disrete eigenvalue ! = 0, and the � mode has a disrete eigenvalue at ! � 1:21. Figures 411
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Figure 4: The � mode eigenfuntion of (45).12
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Figure 6: An eigenfuntion orresponding to an eigenvalue from the ontinuous spetrum of(45).and 5 show that these eigenvalues orresponds to regular eigenfuntions. FFT spetra obtainedby traking, with our newly written parallel Perron-Frobenius ode [11℄, whih traks the phasespae densities diretly in 4D phase spae, and with our 4D weighted maro partile trakingode [13℄, shows pronouned peaks at tunes that orrespond to these disrete eigenvalues. Thisindiates an exellent agreement between these three ompletely di�erent approahes. Weonsider this a major feat.Even though our results are quite satisfatory, we are interested in a onvergent proedure.A well established theory (See e.g., [35℄) guarantees that the above desribed �nite dimensionalapproximation of the integral equation onverges as long as the operator is ompat. However,as we mentioned before, Figure 3 indiates the presene of a ontinuous spetrum, whih a om-pat operator an not have. In addition, the numerially omputed \eigenfuntions" assoiatedwith the ontinuous spetrum show a singular behavior, as illustrated in Figure 6. This is to beexpeted [28, 29℄ and thus these third kind integral equations are not well suited for numerialanalysis in their standard form. Therefore further numerial and analytial analysis requires aspeial treatment of equation (43). Suh diÆulties are ommon for equation (41) where a(x)13



vanishes at least one inside of its domain. The reent work for the longitudinal bunhed beamVlasov equation in [23, 24℄ mentioned above, suggests that the ontinuous spetrum an beeliminated by the Warnok regularization transformation g(J; !) = (!� k �
(J))ĝ(J; !). Thisgives the nonlinear eigenvalue problem in !:g(J; !)� � ZR2+ Kk(J; J 0) ĝ(J 0; !)! � k � 
(J 0) dJ 0 = 0; (47)where the solutions (g(J; !); !) for � = �1 give the � and � eigenmodes respetively.As mentioned before, equation (41) appears in other physis appliations, and analytialresults have been published in [28, 29, 30, 31, 32℄. We have begun a study of this problem in ourpartiular ase. Spei�ally, the existene and uniqueness of solutions of equation (43) in theone and two-dimensional ases has been addressed in [36℄. In [36℄, we onsider funtions whihare ontinuous exept for pole-like singularities at J suh that (!�k �
(J)) = 0, and interpretthe integrals over the singularities in the prinipal value sense. Under ertain assumptions, weproved a version of the Fredholm alternative theorem: the equation has a unique solution forany right-hand side i� the homogeneous version of this equation has only the trivial solution.In addition, this framework may provide a numerially onvergent sheme for solving (43).Alternatively, we are looking for onditions so that disretization of the Warnok transformedproblem will lead to a onvergent method. The theory of [36℄ is a �rst step.7 Summary and Future WorkAn important aspet of olletive beam-beam theory has been the study of the so-alled � and �modes. The pioneering works of [1, 2, 3, 4℄ represent a major advane; however approximationsare made, the validity of whih we would like to understand better. For example, in [3, 4℄,the starting point is a Vlasov equation with a delta funtion kik and the beam-beam kik isdistributed around the ring by smoothing the delta funtion. The Vlasov equation is linearizedabout a funtion whih is only an approximate equilibrium and ation-angle variables areintrodued. The Fourier modes in angle are not unoupled at this stage but a horizontal dipolemode proportional to exp(i�x) is assumed. This leads to an inonsistent equation. To obtaina onsistent equation for this mode an average over the angle variables is taken whih, aftera Fourier transform in time, leads to an integral equation, the analog of equation (43). Inontrast, we start with the kik-lattie model to properly handle the delta funtion kik. Thenwe make only one approximation, the averaging approximation, and in addition, as statedearlier, we believe we an give an upper bound on the error of approximation. Our AVE hasexat equilibria and thus our exat problem has quasi-equilibria in good agreement with oursimulations. The linearization about these equilibria leads to an equation, whih in ontrastto the above, has unoupled Fourier modes. The Fourier modes satisfy an integral equationthat is easily transformed to a formally selfadjoint problem. We are looking for onditions suhthat the assoiated operator is bounded and selfadjoint, a ase whih has a well developedtheory. The standard omputation of the � and � dipole mode frequenies disussed in Setion6 is in good agreement with density traking based on equation (4), using both the PF andthe weighted maro-partile traking methods. However the standard numerial approah tonumerially solving (43) does not onverge as the mesh size dereases beyond some limit andwe are searhing for onvergent algorithms suh as that suggested in [23, 36℄.In summary, we have introdued a new model, the averaged Vlasov equation (24), for the14



olletive beam-beam interation in two degrees of freedom, whih we believe has signi�antpotential for deepening our understanding of this important olletive e�et.Equation (24) was derived in the spirit of the rigorous analysis in [6℄. We believe similar errorbounds an be derived, thus we believe (24) gives a good approximation to the basi dynamisof (2). In fat, we have heked the one degree-of-freedom analog of (24) with two aspets ofa full-blown density traking approah, the existene of quasi-equilibria and the alulation ofthe � and � mode eigenvalues, with exellent results. More importantly, we have heked thetwo degree-of-freedom AVE with two full-blown simulation odes and have also found exellentagreement in the alulation of � and � mode eigenvalues. Thus we have on�dene in themodel.We have demonstrated its usefulness as a tool for alulating � and � mode eigenvaluesand for larifying the existene of quasi-equilibria. In the ase of leptons, progress has beenmade on the question of the existene of an equilibrium for the exat model [15℄. However, itseems likely that exat equilibria do not exist in the hadron ase as the underlying dynamisis likely to be haoti. In addition, the AVE may lead to a faster algorithm for alulating thedensity evolution. This is beause the beam-beam parameters, � and ��, are small and thus thetime step in numerial integration of (24) an be O(1=max(�; ��)), whih is signi�antly largerthan one turn. We propose to investigate this potential speed up by developing a numerialproedure to integrate (24). As another example, the AVE will be useful in taking the nextstep beyond the linear theory to investigate oupling between the � and � Fourier modes. Inthe Laplae-piture, we may be able to use the �xed point iteration sheme disussed for theplasma problem in [37℄ or in the eigen-piture presented here we may be able to use the vanKampen-Case approah [19, 20℄. In the latter ase, the work of [17℄ may be useful. Finally, wean investigate several other e�ets suh as those disussed by Alexahin [4℄. Some topis we areonsidering for future work are: (i) a study of the near-to-low-order resonane ase as we doin [6℄ (ii) adding another degree of freedom to study the e�et of synhrotron motion into thedynamis of equation (2) and (iii) a study of the e�et of a tune split by letting ��x = �x + �aand ��y = �y + �b and then applying our averaging formalism. Here (a; b) allow us to vary thetune split in units of the kik parameter. As in [6℄ we expet bifurations as a and b vary. Items(i) and (iii) likely inludes the possibility of both Landau damping and growth.Our main point is that we now have a model in whih many important olletive beam-beaminteration e�ets an be studied in a more systemati way then was previously available.AknowledgementsDisussions with Bob Warnok, Yuri Alexahin, Sott Dumas and Tanaji Sen are gratefullyaknowledged.The work of JAE and AVS was supported by DOE ontrat DE-FG02-99ER41104.A Derivation of the Beam-Beam ParameterTo alulate the kik we onsider three inertial referene frames: the rest frame of the syn-hronous partile of the unstarred bunh F , the lab frame F 0, and the rest frame of the syn-hronous partile of the starred bunh F �. The oordinate axes of the three frames are paralleland oriented so that viewed from the lab frame F 0, F is moving in the positive z diretion withveloity � and F � is moving in the negative z diretion with veloity ���. In what follows15



we will onsider the relative veloities of the partiles with respet to the synhronous partileof their bunh as non{relativisti.We onsider the momentum hange of an unstarred partile moving through the starredbunh. In the kik approximation, we assume that the transverse spatial oordinates are nothanged during the interation, i.e. r(t) = (x; y; z + ut)T. Thus the hange in transversemomentum of an unstarred partile passing through the starred beam measured in F � is�P �?(x; y) = q ZRE�?(x; y; z + ut) dt = qu ZRE�?(x; y; z) dz; (48)where u is the speed of the unstarred partile in the starred frame,u =  � + ��1 + ��� ; (49)and E�? is the transverse eletri �eld of the starred bunh in F �. Note that � is basially thespeed of an unstarred partile in the lab frame and that B� is approximately zero in F �.Sine the 3-momentum P � is part of a 4-vetor and the boosts involved are all in thelongitudinal diretion �P? = �P 0? = �P �?: (50)From E�? = �r?�� we have�P �?(x; y) = � N�qq�u4��0 ZR dzr? ZR3���3(~r?; ~z) d2~r?d~zpkr? � ~r?k2 + (z � ~z)2 (51)= � N�qq�u4��0 ZR3 ��3(~r?; ~z) ZR dzr?� d2~r?d~zpkr? � ~r?k2 + (z � ~z)2 : (52)One easily shows by diret integration thatZR dzr? 1pkr? � ~r?k2 + (z � ~z)2 = �r? ln kr? � ~r?k2; (53)whih is independent of z. Thus�P �?(x; y) = 2N�qq�u4��0 r? ZR2 ��2(~r?) lnkr? � ~r?k| {z }:=�[��2℄(r?) ; (54)where ��2 = RR ��3 dz. The interhange of limits going from (51) to (52) is justi�ed for ��3 deayingsuÆiently fast at 1. (The singularities in the integral are integrable.)Sine �P 0? = �P �? the kik in the lab frame is� �px�py � = �P �?p0 : (55)16
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