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tVarious approa
hes to T-duality with NSNS three-form 
ux are re
on
iled. Non-
ommutativetorus �brations are shown to be the open-string version of T-folds. The non-geometri
 T-dualof a three-torus with uniform 
ux is embedded into a generalized 
omplex six-torus, and thenon-geometry is probed by D0-branes regarded as generalized 
omplex submanifolds. The non-
ommutativity s
ale, whi
h is present in these 
ompa
ti�
ations, is given by a holomorphi
Poisson bive
tor that also en
odes the variation of the dimension of the world-volume ofD-branes under monodromy. This bive
tor is shown to exist in SU(3) � SU(3) stru
ture
ompa
ti�
ations, whi
h have been proposed as mirrors to NSNS-
ux ba
kgrounds. The twoSU(3)-invariant spinors are generi
ally not parallel, thereby giving rise to a non-trivial Poissonbive
tor. Furthermore we show that for non-geometri
 T-duals, the Poisson bive
tor may notbe de
omposable into the tensor produ
t of ve
tors.
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lusion 201 Introdu
tionCompa
ti�
ations with H-
ux are known to give rise to topology 
hanges and even to non-geometri
 situations when T-duality is performed along dire
tions whi
h have non-trivial sup-port of the NSNS H-
ux [1, 2, 3, 4, 5, 6, 7, 8℄. Non-geometry o

urs for example in the verysimple situation of a three-torus endowed with an H-
ux proportional to its volume form.Consider namely the three-torus as a trivial T 2-�bration over a 
ir
le. Upon T-duality alongthe �bre, the metri
 pi
ks up a fa
tor that makes it shrink under monodromy around thebase 
ir
le. The monodromy around the base is a non-trivial element of the O(2; 2;Z) groupa
ting on the two-torus. This prevents a three-dimensional global Riemannian des
riptionfrom existing. Further T-dualizing along the base leads to more pathologi
al situations, wherepoints do not exist even in a lo
al 
oordinate pat
h, and the �bres are 
onje
tured to be
omenon-asso
iative [9, 10℄. We will restri
t ourselves to the 
ase of two T-dualities, and assumethat lo
al 
oordinate pat
hes do exist. Progress in the des
ription of non-asso
iative T-dualswas a
hieved in the re
ent paper [11℄, whi
h also 
ontains observations on the open-stringmetri
 and non-
ommutativity for two T-dualities that have some overlap with ours.Essentially three 
onje
tures have been put forward for the des
ription of the T-dual of atorus with H-
ux: 1



(I) Field of non-
ommutative tori: Mathai and Rosenberg proposed that T-dualizing alonga two-torus with non-zero H-
ux yields a �bration by (or more pre
isely: �eld of) non-
ommutative tori. In parti
ular, this �bration is en
oded in a 
losed one-form, whi
h isobtained by integrating the NSNS 
ux along the �bre dire
tions [7, 12, 13℄.(II) T-folds: these are spa
es where T-dualities 
an a
t as transition fun
tions between lo
alpat
hes [8℄. The T-dualized dire
tions are doubled, and T-duality transformations maypat
h the doubled �bres together. A sigma model with a T-fold as its target spa
e wasproposed, and its boundary 
onditions were studied in [14, 15, 16, 17, 18℄.(III) G�G stru
ture 
ompa
ti�
ations: SU(3)�SU(3) stru
ture manifolds are 
hara
terizedin terms of a pair of pure spinors, 
onstru
ted as bilinear 
ombinations of a pair SU(3)-invariant spinors of Cli�(6). In 
ase the SU(3)-invariant spinors are not parallel toea
h other, their linear independen
e is en
oded by a non-vanishing one-form, and thedis
repan
y between left- and right-moving 
omplex stru
tures is a potential sour
e ofnon-geometry and/or non-
ommutativity. Moreover, [19, 59℄ suggest the relevan
e ofSU(3) � SU(3) stru
tures for mirrors of NSNS 
ux 
ompa
ti�
ations.These dire
tions of resear
h have developed somewhat independently from ea
h other, andit is natural to ask if they are 
ompatible. It is also natural to expe
t that te
hniques fromgeneralized 
omplex geometry �a la Hit
hin and Gualtieri [20, 21℄ should bring some insightsinto the problem for at least two reasons:�rstly, generalized 
omplex (GC) spa
es have been related to non-
ommutativity in twoinstan
es: a non-
ommutativity s
ale is indu
ed by the (0; 2) 
omponent of a B-�eld [22℄,and the master equation of the generalized B-model [23℄ admits deformations by holomorphi
Poisson bive
tors into a Poisson sigma model, whi
h is known to indu
e star-produ
ts in thealgebra of observables [24℄;se
ondly, the doubling of the torus �bres in T-folds reminds one of the sum of tangentand 
otangent spa
es 
onsidered in generalized 
omplex geometry. But GC spa
es have morestru
ture than T-folds, indeed, in [8, 17℄ T-folds were pointed out to be a real version of GCspa
es. Moreover, elements of O(2; 2;Z) 
alled B-transforms and �-transforms a
t on maxi-mally isotropi
 subspa
es as symmetries of the inner produ
t.We shall therefore use as a main te
hni
al tool the geometry of pure spinors, that are in one-to-one 
orresponden
e with generalized 
omplex branes, and building blo
ks for SU(3)�SU(3)stru
ture 
ompa
ti�
ations.Our 
onje
tures, whi
h we will justify in the 
ase of tori with H-
ux, are:� (I) vs. (II): The proposal (I) by Mathai and Rosenberg 
laims that the T-dual to aT 3 
ompa
ti�
ation with H-
ux along two of the T-dualized dire
tions yields a non-
ommutative torus �bration. This is re
on
iled with Hull's T-fold proposal by showingthat the metri
 seen by the open strings on a T-fold is pre
isely the one on the non-
ommutative torus �bration. Thus, the proposal (I) is the open-string version of (II).This 
onne
tion is dis
ussed from various independent angles in se
tions 2, 3 and 4.� (II) vs. (III): when both approa
hes are appli
able as for the T 6 with H-
ux, they yieldthe same T-dual or mirror geometry. 2



� (III) vs. (I): We show that for a generi
 SU(3) � SU(3) stru
ture 
ompa
ti�
ation,where the two SU(3)-invariant spinors are not aligned, there exists a Poisson bive
torwhi
h parametrizes non-
ommutative deformations. The non-
ommutativity is howeveragain only relevant for the open-string se
tor. This relation is dis
ussed in se
tion 5.As for the mirror of a six-torus with H-
ux, we observe that the Poisson bive
tor 
anin fa
t not be de
omposed in terms of ve
tors, whi
h seems to indi
ate that not all thepossible non-
ommutativity s
ales are inherited from SU(3)� SU(3) stru
tures.2 T-folds and non-
ommutative toriIn this se
tion we shall mainly be 
on
erned with the 
onne
tion between non-
ommutativityand T-folds. We shall study this in the 
ase of the simplest non-trivial example, whi
h alreadyillustrates the main point: the Mathai{Rosenberg non-
ommutative torus-�brations are theopen-string version of T-folds. This observation will then be dis
ussed from the generalizedgeometry point of view in the next se
tion.The simplest example that exhibits all the key features is the T 3-
ompa
ti�
ation with kunits of NSNS three-form 
uxH 2 H3(T 3;Z). We shall generally refer to NSNS-
ux supportedon a torus bundle E with base B and �bre F of the type H 2 Hn(F )
H3�n(B) as an n-leggedH-
ux. Thus, the one-legged 
ase is known to have a purely geometri
 T-dual. Our mainfo
us is on the two-legged 
ase, whi
h will be shown to have a non-geometri
 T-dual.In order to understand the T-dual along two �bre dire
tions, we 
onsider the three-torus asa T 2-bundle over S1 (parametrized by x) and dualize along the �bre dire
tions parametrizedby y and z. The metri
 and B-�eld 
an be 
hosen asds2 = dx2 + dy2 + dz2 ; B = kx dy ^ dz : (2.1)Due to the B-�eld the monodromyMk around the S1 is non-trivial and readsMk = 0BB� 1 0 0 00 1 0 00 �k 1 0k 0 0 1 1CCA ; (2.2)in a basis adapted to the 
oordinates (y; z; ~y; ~z), where ~y and ~z are T-dual to y and z. Naivelyapplying the standard Bus
her rules along the �bres yields the T-dual ba
kgroundds2 = dx2 + 11 + k2x2 (dy2 + dz2) ; B = kx1 + k2x2 dy ^ dz ; (2.3)and the monodromy obtained after a
tion of the T-duality matrixgyz = 0BB� 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCA3



along the �bres is Wk = g�1yz Mkgyz =0BB� 1 0 0 �k0 1 k 00 0 1 00 0 0 1 1CCA : (2.4)As this is a non-trivial element (whi
h is not merely a B-�eld shift or an element in thegeometri
ally a
ting SL2(Z)� SL2(Z)) of the T-duality group O(2; 2;Z), the resulting spa
eis an example of a T-fold as de�ned by Hull in [8℄.The alternative proposal by Mathai and Rosenberg [7, 12, 13℄ 
laims that the T-dual isa �eld C of non-
ommutative tori1, A� ! C ! S1, where the non-
ommutativity s
ale �depends on the base-
oordinate x as � = kx : (2.5)This proposal arose from a K-theoreti
al point of view by showing that theH-twisted K-theoryof T 3, KH(T 3), is the same as the algebrai
 K-theory of the algebra asso
iated to the �eld ofnon-
ommutative tori KH(T 3) = K(C) : (2.6)It is furthermore supported by the fa
t that it 
onsistently generalizes the 
ase of geometri

uxes and the T-duality a
tion de�ned in this fashion is, thanks to Morita equivalen
e, of ordertwo. In this approa
h, the a
tion of T-duality is realized in terms of taking the 
rossed-produ
talgebra [12℄.We propose that both pi
tures are in fa
t valid, and are des
ribing di�erent aspe
ts ofthe same T-dual 
ompa
ti�
ation. More pre
isely, we shall argue that the proposal (I) isthe open-string version of the T-fold proposal (II). Starting from the T-fold 
ompa
ti�
ation(2.3), there is an asso
iated open-string metri
 G and Theta-tensor � introdu
ed and studiedin [25, 26, 27, 28℄, whi
h are related to the 
losed-string metri
 g and B-�eld B by (setting2��0 = 1) Gij = (g +B)�1(ij) ; �ij = (g +B)�1[ij℄ : (2.7)These are the metri
 and spa
etime non-
ommutativity parameter, whi
h the open-stringssee. For the ba
kground in (2.3) we obtainds2 = dx2 + d~y2 + d~z2 ; � = kx�~y ^ �~z : (2.8)This is pre
isely the non-
ommutative torus �bration whi
h was proposed as the T-dual spa
e-time in [7℄. Similar ba
kgrounds with a varying, meaning spa
e-dependent, non-
ommutativityparameter have been dis
ussed before in [29, 30℄.How do we interpret this 
onne
tion? The key point is to realize that the K-theory analysisdepends on the open-string data (or open-string algebra). As advo
ated by Witten in [31℄,the K-theory for H-
ux ba
kgrounds has a formulation in terms of the algebrai
 K-theory of a(non-)
ommutative algebra [32℄, whi
h on the other hand 
an be interpreted as the open-stringalgebra [33, 31℄. This algebra is non-
ommutative when H 6= 0. Thus in order to prove the
onje
tured 
orresponden
e, it remains to show that the algebra C is pre
isely the algebra ofopen-string �eld theory in this ba
kground.1The pre
ise de�nition is in terms of the dire
t integral of non-
ommutative torus algebras C = R�2S1 A�d�,with non-
ommutativity parameter � varying along the base S1.4



On more general grounds one is then led to propose the following relation: 
onsider aprin
ipal T 2-bundle E ! M with H-
ux su
h that H2 6= 0, where H2 2 H2(T 2) 
 H1(M)(\two-legged 
ase"). Then the T-dual along the �bre-dire
tions is given by a T-fold. Theasso
iated open-string metri
 and �-tensor 
an be 
omputed from (2.7) and the resultingspa
e will generi
ally be non-
ommutative, with an asso
iated non-
ommutative algebra, A.The 
onje
ture is then, that A is pre
isely the algebra proposed by Mathai and Rosenbergas the T-dual, i.e., it is obtained as a 
rossed produ
t algebra A = C(E;H) o R2, whereC(E;H) is the C�-algebra of the T 2-bundle E with H-
ux and the 
rossed produ
t is takenwith respe
t to the R2-a
tion, whi
h is indu
ed from the T 2-a
tion on the bundle, with theK-theory of the two algebras agreeing.3 Probing non-geometry by generalized 
omplex branesIn this se
tion the same 
on
lusion is rea
hed as in the last se
tion by embedding the dis
ussioninto the setup of generalized 
omplex geometry. It is shown that the T-dual of the ba
kgroundwith H-
ux is given by a �-transformed ba
kground. Again, this is observed in the open-stringse
tor, and we show this by probing the T-fold geometry with generalized 
omplex D-branes.3.1 Generalized 
omplex stru
tures, B-transforms and �-transformsLet us re
all a few de�nitions from generalized 
omplex (GC) geometry [21℄. Given an n-dimensional manifoldM , a generalized almost 
omplex stru
ture on M is de�ned as an almost
omplex stru
ture on the sum of tangent and 
otangent bundles TM � T �M . For example,su
h a stru
ture 
an be indu
ed by an ordinary 
omplex stru
ture J on MJJ = �J 00 �J�� ; (3.1)in whi
h 
ase it will sometimes be termed a diagonal GC stru
ture, or by a symple
ti
 form! on M J! = �0 �!�1! 0 � ; (3.2)where the matri
es are written in a base adapted to the dire
t sum. Hybrid examples, otherthan these two extreme ones, are 
lassi�ed by a generalized Darboux theorem [21℄, sayingthat any GC spa
e is lo
ally the sum of a 
omplex spa
e and a symple
ti
 spa
e. For theexisten
e of hybrid GC stru
tures with no underlying 
omplex or symple
ti
 stru
ture, andtheir relevan
e for N = 1 supersymmetri
 
ompa
ti�
ations in string theory see [34, 35℄. Forthe present dis
ussion where the (non-)geometry is probed by D0-branes, we shall restri
tourselves to GC stru
tures of the form JJ , thus generalizing the B-model.Here we would like to relax the requirement that the spa
e on whi
h the GC stru
turea
ts be globally of the form TM � T �M , and we only assume that it is made of pat
hes thatlook like the sum of lo
al tangent and 
otangent spa
es. The de�nitions are therefore to beunderstood in the neighborhood of some point p (whi
h we assume to be still well-de�ned),that is on TpM � T �pM . 5



The sum TpM � T �pM is naturally endowed with an inner produ
t of signature (n; n),hX + �; Y + �i = 12(�X� + �Y �) ; (3.3)whose matrix in the same basis as above readsG = �0 11 0� : (3.4)The inner produ
t is 
onserved by an a
tion of the group O(n; n) whose generi
 elementde
omposes into a blo
k-diagonal part (en
oding an orthogonal transformation of the tangentspa
e and the indu
ed orthogonal transformation of the 
otangent spa
e), and o�-diagonalblo
ks that 
an be exponentiated into B-transformsexpB = �1 0B 1� ; (3.5)B : X + � 7! X + � + �XB ; (3.6)and �-transforms exp� = �1 �0 1� ; (3.7)� : X + � 7! X + ��� + � ; (3.8)where B and � are antisymmetri
 blo
ks identi�ed with a two-form B�� and a bive
tor ���.AB-transform a
ts by 
onjugation on generalized almost 
omplex stru
tures, thus mappingthe two generalized almost 
omplex stru
tures JJ and J! to the stru
turesJJ(B) = � J 0BJ + J tB �J t� (3.9)and J!(B) = � !�1B �!�1! +B!�1B �B!�1� ; (3.10)whi
h we will en
ounter in se
tion 5.3.2 D-branes as generalized 
omplex submanifoldsLet H be a 
losed three-form. A generalized submanifold is de�ned in [21℄ as a submanifoldN endowed with a two-form B su
h that HjN = dB. The generalized tangent bundle �BN ofthis generalized submanifold is de�ned as the B-transform of the sum of the tangent bundleTN and 
onormal bundle (or annihilator) AnnTN , namely:�BN = fX + � 2 TN � T �M jN ; �jN = �XBg ; (3.11)6



so that � 0N = TN � AnnTN . A generalized tangent bundle is a maximally isotropi
 sub-spa
e (i.e., it is isotropi
 with respe
t to G and it has the maximal possible dimension for anisotropi
 spa
e in ambient signature (n; n), namely n.) Moreover, all the maximally isotropi
subspa
es are of this form, for some submanifold N and two-form B. This is the origin of theone-to-one 
orresponden
e between generalized submanifolds and pure spinors, whi
h will beused in subse
tion 3.4.Given a GC stru
ture J , a generalized 
omplex brane was de�ned in [21℄ to be a generalizedsubmanifold whose generalized tangent bundle is stable under the a
tion of J . In the 
aseof J = JJ , the 
ompatibility 
ondition gives rise to the B-branes, as expe
ted due to thelo
alization properties of the B-model on 
omplex parameters [36℄. The submanifoldN namelyhas to be a 
omplex submanifold, and F has to be of type (1; 1) with respe
t to JJ(TN) � TNJ�(�XF ) + �JXF = 0 : (3.12)In the other extreme 
ase of J = J!, it yields all possible types of A-branes, in
luding thenon-Lagrangian ones [37, 38℄. These are two tests of the idea that D-branes in generalizedgeometries are generalized submanifolds. This idea has passed further tests: 
alibrating formsand pure spinors en
oding stability 
onditions [39, 40℄ for topologi
al branes are 
orre
tlyex
hanged by mirror symmetry [41, 42, 43, 44, 45, 46℄, and the study of morphisms betweengeneralized tangent bundles [47℄ generalizes the K-theoreti
 des
ription of D-branes by takingwinding numbers into a

ount in the resolution of vortex equations of the Yang{Mills{Higgsmodel [48, 49, 36℄. Although all the generalized tangent bundles are n-dimensional, a general-ized submanifold asso
iated to a p-dimensional submanifold N will be sometimes referred toas a generalized Dp-brane, and p will be 
alled the ordinary dimension of the brane.It is important for the des
ription of D-branes in generalized geometries to note thatthe proje
tion of a subspa
e on the tangent spa
e is un
hanged under a B-transform. AB-transform just swit
hes on an Abelian �eld strength with magnitude B along the brane.However, a �-transform shifts the dimension of the proje
tion of the brane on the tangent spa
e(the ordinary dimension of the brane) by the rank of �. Let us review the linear-algebrai
 
asewhere the ambient spa
e is V � V � for some ve
tor spa
e V . A �-transform of a maximallyisotropi
 subspa
e AnnF � F , where F is a subspa
e of V �, reads as a graph over F , in thenotations of [21℄ L(F; �) = fX + � 2 V � F; XjF = ���g : (3.13)The interse
tion of this spa
e and V is just the annihilator of F , be
ause it is trivially embeddedin V � F as L(F; �) \ V = fX + 0 2 V � F; XjF = 0g = AnnF (= L(F; 0)) : (3.14)The ve
tor part of any element of L(F; �) therefore de
omposes into an element of AnnFand an element of the image of � : V � ! V , and the de
omposition is unique be
ause thegraph 
ondition XjF = ��� implies that the interse
tion between AnnF and the image of �is zero-dimensional. Let �V : V � V � ! V denote the proje
tion onto V . We have therefore7



argued that �VL(F; �) = Im� � (L(F; �) \ V ) ; (3.15)and thereforedim(�VL(F; �)) = dim(L(F; �) \ V ) + rk� = dimAnnF + rk� = dim(�VL(F; 0)) + rk�:(3.16)3.3 T-duality maps B-transforms to �-transformsAs we have just motivated the idea that Abelian D-branes may be identi�ed with GC sub-manifolds, and sin
e �-transforms 
an 
hange the ordinary dimension of su
h submanifolds,it is natural to look for the 
onne
tion between �-transforms and monodromies on T-folds, inthe pi
ture (II) of non-geometry. D-branes wrapped on T-folds 
an 
ome ba
k to themselveswith a di�erent dimension after monodromy. We are going to des
ribe how T-dualities mapB-transforms to �-transforms, together with the 
orresponding e�e
ts on D-branes.3.3.1 Geometri
 three-torus with H-
ux and B-transformsConsider again the 
at three-torus with uniform H-
ux, with the same 
oordinates as above.Consider two D2-branes wrapping �bres over two points of the base, one at x = 0 and one atgeneri
 x. Going from the �rst to the se
ond involves a B-transform by the two-formB(x) = kxdy ^ dz : (3.17)Going from x = 0 to generi
 x namely swit
hes a two-form along the brane. The boundary
onditions for open strings ending on a D2-brane wrapping a torus over the point x (withembedding 
oordinates X;Y;Z(�; � ) and the obvious notation) read��Y + kx��Z = 0;��Z � kx��Y = 0: (3.18)The matrix of the B-transform in a basis adapted to the 
oordinates (y; z) and the dual
oordinates (~y; ~z) reads g =0BB� 1 0 0 00 1 0 00 �kx 1 0kx 0 0 1 1CCA (3.19)3.3.2 Geometri
 T-dual with a 
onne
tionIt is instru
tive to perform �rst the T-duality along the y dire
tion. The D2-branes wrappingthe two �bres in question be
ome D1-branes, and parametrizing the base by an angle � withkx = tan �, we observe that the D1-branes are rotated with respe
t to ea
h other within the�bre. This re
e
ts the fa
t that they now live on a torus with a 
onne
tion��(� sin �Z + 
os �Y ) = 0;�� (
os �Z + sin �Y ) = 0: (3.20)8



In the same basis as before, T-duality is en
oded by the matrixgy = 0BB� 0 0 1 00 1 0 01 0 0 00 0 0 1 1CCA ; (3.21)and the B-transform is therefore repla
ed by one with matrixg0 = g�1y ggy = 0BB� 1 kx 0 00 1 0 00 0 1 00 0 �kx 1 1CCA : (3.22)Let us des
ribe these D1-branes in terms of maximally isotropi
2 subspa
es. Start at x = 0with a D1-brane wrapping the y 
ir
le. The 
orresponding pure spinor is the sum of thetangent and 
onormal bundles of the y 
ir
le, with 
oordinatesS1 �AnnS1 = fy; z = 0; �1 = 0; �2g : (3.23)A
ting on it with g0 yields the 
oordinates (y; kxy;�kx�2; �2), whi
h means that there areDiri
hlet 
onditions along the one-dimensional subspa
e of the two-torus at x = l with equa-tion: tan �Y � Z = 0 : (3.24)This is 
onsistent with the fa
t that there is now a 
onne
tion on the torus, and taking x to beequal to 1 (the period of the 
oordinate along the base) and requiring the D1-brane to 
omeba
k to itself does indeed give rise to the identi�
ation of the twisted torus(x; y; z) � (x+ 1; y; z + ky) ; (3.25)as it should [3℄.3.3.3 Non-geometri
 T-dual spa
e and �-transformsLet us perform one more T-duality, along the z dire
tion, and get to the non-geometri
 spa
e.The matrix a
ting on the T 2-�bre, in going from x = 0 to generi
 x, in a basis adapted to thereal 
oordinates (y; z; ~y; ~z) is obtained from g through 
onjugation by the T-duality matrixgyz = 0BB� 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCA :2Isotropi
 is understood with respe
t to the inner produ
t on the sum of the two-torus and the dual two-torus; we do not spe
ify the embedding into T 6 yet; the 
oordinate on base only plays the role of a parameteras it is not a
ted on by the T-dualities we 
onsider. 9



It therefore reads g00 = g�1yz ggyz = 0BB� 1 0 0 �kx0 1 kx 00 0 1 00 0 0 1 1CCA ; (3.26)whi
h we re
ognize as a �-transform by the bive
tor �eld�(x) = kx�y ^ �z : (3.27)Sin
e �-transforms a�e
t the ve
tor part of maximally isotropi
 subspa
es, there is no way oftwisting the torus to bring the D0-brane ba
k to itself after a monodromy around the base.Moreover, �-transforms are also asso
iated to open paths on the base, showing that atta
hingan open string to two D0-branes sitting over di�erent points of the base is impossible, unlessT-dualities are allowed to pat
h the 
oordinate 
harts together. As open strings 
an windaround the base before atta
hing themselves to the se
ond brane, they are sensitive to theglobal e�e
t of non-geometry, even if the two points on the base 
an be put in one single
oordinate pat
h for the purposes of lo
al di�erential geometry. It is 
ru
ial for su
h a globale�e
t that the base be non-simply-
onne
ted.To sum up, T-dualities therefore relate D-branes lo
ated in di�erent �bres. Hen
e theyare needed as 
hanges of 
harts, as predi
ted by the proposal (II). Moreover, the transforma-tions of the 
orresponding pure spinors are di
tated by a bive
tor �eld ���(x) = kx�y ^ �zdepending on the 
oordinate along the base in the same way as the tensor � of the proposal (I).3.4 Generalized D0-branes on the non-geometri
 T-dualAs points might be disturbed by global e�e
ts in non-geometri
 spa
es, we would like to probenon-geometry by generalized D0-branes. Of 
ourse, in order to be able to use te
hniques fromgeneralized geometry for des
ribing T-duals of the three-torus with H-
ux, we �rst have toembed the three-torus into a six-torus.Let us 
onsider a generalized B-model, and pi
k a 
omplex stru
ture of the form JJ , withJ an ordinary 
omplex stru
ture on the six-torus. We still have a 
hoi
e for the 
omplexstru
ture J : we 
an either 
onsider the T 2-�bre as an ellipti
 
urve in this 
omplex stru
ture(whi
h would make B a tensor of type (1; 1) and a valid �eld strength for a D2-brane of typeB wrapping the ellipti
 
urve), or pi
k a 
omplex stru
ture in whi
h y and z are 
omponentsof di�erent 
omplex 
oordinates. This way B would have a nonzero 
omponent of type (0; 2)and the dual torus with 
oordinates ~y and ~z 
ould not support a D2-brane of the B-model.Let us 
hoose the se
ond option in order to single out the role of the (0; 2) 
omponents andtheir possible in
uen
e on non-
ommutativity.The way we embed the three-torus into a six-torus is therefore the following: the T 2-�bre
oordinates y and z are real parts of 
omplex 
oordinates y + iy0 and z + iz0, where y0 andz0 are 
oordinates along additional 
ir
les, and the base is 
ombined with a third additional10




ir
le with 
oordinate x0 into an ellipti
 
urve. In the sequel we shall denote the lo
al 
omplex
oordinates we have just des
ribed byz1 = x+ ix0 ; z2 = y + iy0 ; z3 = z + iz0 : (3.28)This way B is not of type (1; 1) and will therefore 
ontribute non-
ommutative deformationsas argued in [22℄. Moreover, the x-dependen
e means that Morita equivalen
e 
annot be usedto gauge non-
ommutativity away, sin
e the B-�eld will assume non-rational values. Butfor the time being, we are interested in the e�e
t of the (0; 2) and (2; 0) 
omponents of theB-�eld in terms of T-duality transformations, as an illustration of (II). The 
onne
tion withnon-
ommutativity using the language of (I) and (III) will be made in se
tions 4 and 5.A few 
omments about the 
hoi
e of GC stru
ture are in order: we restri
t ourselves todiagonal GC stru
tures, thus generalizing the B-model. We shall see in se
tion 4 that defor-mations of the generalized B-model are indeed suÆ
ient to explain the 
onne
tion betweennon-geometry and non-
ommutativity, but the reason why it is a priori suÆ
ient to 
onsider adiagonal GC stru
ture is that only su
h stru
tures allow generalized D0-branes, whi
h are thepoint-like obje
ts with whi
h one would like to probe non-geometry. Of 
ourse it is well-knownthat D-branes 
orresponding to GC stru
tures of the form J! do not in
lude D0-branes, more-over the generalized Darboux theorem implies that hybrid GC stru
tures lo
ally have someA-type boundary 
onditions that forbid D0-branes.Let us 
onsider generalized D0-branes for the GC stru
ture we have just des
ribed, andthe way they transform under monodromy. They are not a�e
ted by B-transforms be
ausethe graph 
ondition of de�nition (3.11) is empty. On the other hand, their ordinary dimen-sion is raised upon a �-transform by an amount equal to the rank of �, as was explained above.In order to work out the e�e
t of the monodromy on D0-branes, we are going to use thedes
ription of generalized tangent bundles by pure spinors. The mapping between isotropi
spa
es and spinors is made manifest by the a
tion of se
tions of TM � T �M on ��M , whi
h
arries a representation of Cli�ord(n; n):(X + �):� = �X�+ � ^ �; (3.29)(X + �):((X + �):�) = hX + �;X + �i�: (3.30)Given a spinor, one 
an asso
iate to it its null spa
e in V �V �. Maximally isotropi
 subspa
esare therefore in one-to-one 
orresponden
e with pure spinors.In the 
ase of a generalized D0-brane, the pure spinor to be 
onsidered is the holomorphi
three-form 
 := dz1 ^ dz2 ^ dz3 ; (3.31)in a lo
al pat
h where z1; z2; z3 are 
omplex 
oordinates asso
iated to the 
omplex stru
turewe have des
ribed on the six-torus. The annihilator is lo
ally of the formTM (0;1) � T �M (1;0) = Ve
t� ���z1 ; ���z3 ; ���z3��Ve
t �dz1; dz2; dz3� : (3.32)11



Let us write the 
omponents of � in a way adapted to the lo
al 
omplex 
oordinates, sothat ��� is the (�2; 0) part of �, and � ���� and ���� do not appear in the �-transform be
ausethey a
t on 
omponents of the annihilator that are zero (and stay so, be
ause the one-formpart is not transformed by �). The transformation rules are therefore��� ��� + ��dz� �! (���)0��� + (��)0�� + ��dz�; (3.33)where (���)0 = � ����� + ��� ;(��)0 = ����� : (3.34)The ve
tor spa
e spanned by the ve
tors (���)0��� is still the whole subspa
e TM (0;1), whereasthe proje
tion of the annihilator of 
 on TM (1;0) is made two-dimensional by the monodromy,sin
e rk��� = rk(dz2 ^ dz3) = 2.As expe
ted, the dimension of the proje
tion on the tangent spa
e is shifted by the rank ofthe (0;�2) part of the bive
tor �eld �. This establishes that there is no zero-dimensional globalse
tion of the ve
tor part. This phenomenon was observed in the 
ontext of non-
ommutativedeformations in [22℄, where it was 
alled the un
ertainty prin
iple for topologi
al D-branes(
ommutators of equations of 
omplex submanifolds 
annot vanish, and this prevents D-branesfrom wrapping maximal-
odimension submanifolds). In the present 
ase, the 
hange of type3of a pure spinor under monodromy is equivalent to the la
k of a global splitting between mo-menta and winding numbers. The spa
e obtained by T-duality from the generalized 
omplexT 6 with H-
ux 
an therefore not be globally of the form L�L�, with L a maximally isotropi
subspa
e. This is the absen
e of global polarization that appeared in the real 
ase for T-folds,and it is en
oded by the (0;�2) part of the bive
tor �eld �.4 Non-
ommutativity from Lagrangian deformations inthe BV pro
edureIn the previous se
tion our 
onsideration of the T-dual of a 
omplex six-torus with H-
uxhas shown the ne
essity of T-folds for the des
ription of the global topology, when no globalpolarization exists, whi
h reprodu
es the 
riterion of [8℄ for the obje
ts (II). What aboutproposal (I) and non-
ommutativity along the dual T 2-�bres? The 
onne
tion 
omes fromthe 
onstru
tion of topologi
al string theory on GC spa
es in [23℄, where it was explainedthat a tensor � of type (0;�2) 
an deform the B-model with generalized 
omplex targetspa
e, indu
ing star-produ
ts on the �bre. In order to make 
onta
t with [12℄ we are going toshow how the �-transform indu
es this very deformation of the generalized B-model on theT-dual of the GC six-torus. For a 
ategori
al viewpoint on the Fourier{Mukai equivalen
ebetween deformations of 
omplex tori (either in a non-
ommutative dire
tion parametrized bya holomorphi
 Poisson stru
ture or in a B-�eld dire
tion), see [50℄.3A pure spinor 
an be written in a unique way as �1^ � � �^ �n^ eF , where �1; : : : ; �n are 
omplex one-formsand F is a 
omplex two-form; the integer n is 
alled the type of the pure spinor.12



4.1 �-transforms and the generalized B-modelThe Batalin{Vilkovisky (BV) formalism requires a nilpotent operator Q and an odd di�erentialoperator of se
ond order �. They a
t on the graded spa
e of �elds and indu
e an oddsymple
ti
 stru
ture, for whi
h the master a
tion S is a Hamiltonian fun
tion. The oddLapla
ian � indu
es an antibra
ket via the formula(F;G) = (�1)jF j�(F ^G)��F ^ G� (�1)jF jF ^�G : (4.1)The 
ondition Q2 = 0 then indu
es the master equation(S; S) = 0 : (4.2)From now on, as is required by the BV pro
edure, we shall give fermioni
 statisti
s to theve
tor and form 
oordinates, or in other words reverse the parity on the �bres of the tangentand 
otangent bundles. When 
omputing the a
tion of a sigma model, one has to pull ba
kve
tor and form �elds on the world-sheet �, whi
h indu
es a 
hange of statisti
s on the tangentbundle of the world-sheet, whi
h is now denoted �̂. As far as the B-model is 
on
erned, thegraded spa
e of �elds is (in a lo
al 
oordinate pat
h) the spa
e of observables of the B-model.The operators Q and � are the anti-holomorphi
 and holomorphi
 di�erentials,Q = �� = d��� �� ����� = � = dz� ���� = ���� ���� ; (4.3)where in re-expressing � as a se
ond-order di�erential operator, use has been made of theobservation that one-forms may a
t on the de Rham 
omplex as derivatives with respe
t tove
tor 
oordinates [51℄. This way the 
oordinates �� and z� are 
anoni
ally 
onjugate to ea
hother, and one has to add anti�elds to be paired with �z� and ��� (be
ause � is degenerateon the subspa
e they span), 
alled �z�� and ����. As shown in [23℄, the master a
tion for thegeneralized B-model then reads S = Z�̂ ���dz� + ���z���� : (4.4)The allowed deformations of the generalized B-model involve holomorphi
 bive
tor �elds.A Lagrangian submanifold L of the spa
e of �elds has indeed to be 
hosen to 
ompute thegauge-�xed partition-fun
tion ZL := ZLDXe�S[X ℄ ; (4.5)and the invarian
e of this path integral under 
hange of the gauge-�xing 
ondition is equivalentto its invarian
e under the Lagrangian deformations of L. A variation in the gauge-�xing
ondition amounts to a Lagrangian deformation of the Lagrangian submanifold L, namely onewhere the momenta are derived from a densityÆpi = ���xi : (4.6)13



Starting with a Lagrangian submanifold with equation given by the vanishing of all momentapi = 0, invarian
e of ZL under Lagrangian deformations is expressed by the following 
hain ofequalities ÆLZ = ZL Æpi ÆÆpi e�S(xi) = ZL ���xi ÆÆpi e�S(xi) = �ZL � ��pi ��xi �e�S(xi)� = 0 ; (4.7)whi
h implies the quantum master equation�(e�S[X ℄) = 0 : (4.8)Expanding in powers of a deformation of the master a
tion gives rise to the Maurer{Cartanequation. In the 
ase of the generalized B-model, splitting into tensors of di�erent typesshows [23℄ that the deformation of the generalized B-model by a holomorphi
 bive
tor �eld isallowed (moreover, the sum of tangent and 
otangent spa
es is one of the geometries re
entlyaddressed by Ikeda in the deformation theory of BV stru
tures [52℄).In the present 
ontext, the la
k of global polarization indu
es deformations of the BVstru
ture when going from one pat
h of 
oordinates to antother. It is instru
tive to seehow derivatives are a�e
ted by the monodromies des
ribed in (3.33). Let us work out thedeformation of the antibra
ket adapted to the isotropi
 subspa
e TM (0;1)�T �M (1;0) we startedwith in the previous se
tion (F;G) = F ���� ����G� F ���� ����G : (4.9)The 
hange of 
oordinates indu
ed by a �-transform�0� = ����� + �� ;�0� = ����� + �� ; (4.10)indu
es the following 
hanges in derivatives on the 
otangent spa
e���� = ���0� ��0���� + ���0� ��0���� = ���0� ;���� = ���0� ��0���� + ���0� ��0���� = ���0� + ��� ���0� ; (4.11)and the antibra
ket now in
ludes pairs of derivatives with respe
t to the ve
tor 
oordinates,so that the monodromy shifts the antibra
ket by a Poisson bra
ket:(F;G)0 = (F;G) + 2F ���0���� ���0�G : (4.12)We have therefore shown that the data of the BV stru
ture do 
hange from pat
h to pat
h inthe non-geometri
 T-dual of the GC six-torus. We are going to work dire
tly on the mastera
tion, sin
e the �-transform is of the Lagrangian type, so that the T-duality that has beenseen to bind together the 
oordinate pat
hes, is also deforming the master a
tion.14



4.2 From the generalized B-model to the Poisson sigma modelWe have seen in the previous se
tion that in a spe
ial 
ase an obstru
tion to the existen
eof a global generalized 
omplex form L � L� for the T-duals is en
oded by a holomorphi
bive
tor �eld ���. The link with [7℄ is provided by the 
hoi
e of an isotropi
 submanifoldinvolved in the BV gauge-�xing pro
edure. A global su
h 
hoi
e is impossible as soon as the�-transform is non-trivial, and this leads to a deformation of the generalized B-model by theholomorphi
 bive
tor �eld �. The resulting model is pre
isely the Poisson sigma model thatappears as the �-deformation of the topologi
al J -model 
onstru
ted by Pestun [23℄. Star-produ
ts emerge from the Poisson stru
ture by deformation quantization [53, 54℄. Of 
oursethis is no a

ident. Relevan
e of the Kontsevi
h formula in non-
ommutative gauge theoryalong D-branes appeared for example in [27, 55, 56℄.Consider the master a
tion that is obtained from the BV pro
edure for the B-model witha generalized 
omplex manifold as a target spa
e [23℄, i.e., a target spa
e endowed with a GCstru
ture of the diagonal form JJ . We therefore start with the master a
tion on the pat
hwith 
omplex 
oordinates (z�; �z�) S = Z�̂ ���dz� + ���z���� : (4.13)As for the ���, they span the bundle TM (1;0) that is not modi�ed by the monodromy, and the z���are 
onjugate to the antiholomorphi
 base 
oordinates that are untou
hed by the monodromy.The se
ond term is de
oupled in the initial pat
h, and will stay so under monodromy.But the �rst term, as it is endowed with holomorphi
 indi
es, is a�e
ted by the monodromy.This is due to the fa
t that the 
ir
le base 
annot be 
overed by a single pat
h. Let us 
hoosea 
onstru
tion of the spinor bundle where the di�erential forms a
t by di�erentiation withrespe
t to the dual 
oordinates. This 
orresponds to 
hoosing the pure spinor 
 as theva
uum, and ve
tor �elds as 
reation operators, as explained by Witten in [51℄. In a lo
alpat
h we therefore identify dz� with �=���, so that the relevant term in the master a
tiontransforms as follows ��� �����0 = �� ���� + ����� ���� ; (4.14)and the result, in a representation where di�erential forms a
t by multipli
ation, asS0 = Z�̂ (��dz� + �������) ; (4.15)whi
h of the form S + Æ�S, with Æ�S indu
ed by the holomorphi
 bive
tor �. Of 
ourse we
an rewrite the expression for S0 in terms of 
oordinates, ve
tors and forms with 
onventionalstatisti
s, both on the world-sheet � and the target spa
e, by taking multipli
ations to bewedge produ
ts.Sin
e the non-zero 
omponents of the bive
tor �eld � are along the dire
tions y and z, andthey depend only of the 
oordinate x, the parameter � is a Poisson bive
tor �eld�������� + �������� + �������� = 0 : (4.16)The resulting model with a
tion S0 is the Poisson sigma model studied by Cattaneo and Felderin [24℄. We are therefore left with T-dual �bres forming a �eld of non-
ommutative tori over a15




ir
le. A subspa
e of the T-dual T 6 is therefore non-
ommutative, with the non-
ommutativitys
ale predi
ted by (I).For a given topology of the world-sheet, we �nd a deformation of the produ
t of observablesinto a star-produ
t �� as in [24℄:f ��(a1) g(a) = ZX1=aDXf(X(0))g(X(1))ei(S+Æ� S)[X ℄ ; (4.17)where 0; 1;1 are the 
oordinates of the points of insertion of observables on the boundary ofthe world-sheet, and a1 is the 
omponent of the 
oordinates of the point a along the dire
tionx. The 
ontinuous dependen
e on a1 
omes from the de�nition (3.27) for the bive
tor �.The fa
t that non-
ommutativity shows up in the boundary 
orrelators is the sign that theopen-string se
tor is 
ru
ial for the equivalen
e between (I) and (II).5 SU(3) � SU(3) stru
ture and non-
ommutativityIt is argued in [19℄ that the mirror of a Calabi{Yau 
ompa
ti�
ation with magneti
 H-
ux[2℄ possesses an SU(3) � SU(3) stru
ture. SU(3) � SU(3) stru
ture 
ompa
ti�
ations aredes
ribed in terms of pure spinors, made from bilinears of SU(3)-invariant spinors of Cli�(6).In 
ase those invariant spinors are not parallel and the type of the asso
iated pure spinorsis not globally de�ned, the resulting 
ompa
ti�
ation is 
onje
tured to be non-geometri
. In
ase the two pure spinors still have a globally 
onstant type, the 
ompa
ti�
ation has globalSU(2) stru
ture and is still geometri
, an example of whi
h is T 2 �K3. The proposal in [19℄should in parti
ular be 
onsistent with the non-
ommutative T-dual 
onje
ture, when bothsetups are appli
able.In this se
tion we show that pre
isely in the 
ase when the two SU(3)-invariant spinorsare not parallel, there is a non-trivial Poisson bive
tor, whi
h yields a non-
ommutative de-formation of the open-string ba
kground. If the pure spinors have a uniform expression, thePoisson bive
tor is 
onstant and thus one 
an dispose of the non-
ommutativity by Moritaequivalen
e. This of 
ourse is not possible in the 
ase when the Poisson bive
tor is dependenton the remaining 
oordinates.5.1 SU(3) � SU(3) stru
ture manifoldsConsider Type II 
ompa
ti�
ations on six-manifolds with SU(3)�SU(3) stru
ture [20, 21, 5,57, 58, 59℄ (for a detailed introdution and referen
es see [60℄). As su
h they are 
hara
terizedby a pair of no-where vanishing SU(3)-invariant spinors �1;2, whi
h arise in the de
ompositionof the two SO(9; 1) spinors �1;2 of Type II under SO(3; 1) � SO(6). If �1 = �2 the stru
turegroup is redu
ed to SU(3), whi
h in parti
ular in
orporates the 
ase of standard Calabi{Yau
ompa
ti�
ations. If on the other hand the spinors are not parallel to ea
h other throughoutthe manifold, one speaks of an SU(2) stru
ture. The latter is 
hara
terized by a non-vanishingve
tor �eld. De�ning �2+ = 
�1+ + (v + iw)�1� ; 
 2 C ; (5.1)16



the ve
tor �eld in question is �m := �1+y
m�2� = vm � iwm : (5.2)The spinors �1;2 
an also be 
ombined to 
onstru
t a pair of SU(3; 3) bi-spinors�� = �1+ 
 �2�y ; (5.3)whi
h are pure (i.e., they are annihilated by half of the �-matri
es). Moreover, via the standardCli�ord map, they are in one-to-one 
orresponden
e with (formal sums of) di�erential forms.On an SU(3) stru
ture manifold the pure spinors �� 
orrespond to the (3; 0) form 
 and the(exponential of the) (1; 1) form J . Generi
ally however, there are two independent two- andthree-forms J� = j � v ^ w
� = ! ^ (v � iw) : (5.4)Here j and ! parametrize the lo
al SU(2) stru
ture in the transverse dire
tions to v and w.For the present purposes it is instru
tive to note that in the 
ase of non-geometri
 spa
es thenotion of transversality holds only lo
ally, sin
e it 
an be spoiled by a �-transform.The asso
iated two pure spinors are�+ = 18(�
e�ij � i!) ^ e�iv^w ; �� = �18(e�ij + i
!) ^ (v + iw) : (5.5)Raising an index on the two-forms J� we obtain two 
omplex stru
tures, I�, whi
h on the otherhand de�ne a generalized 
omplex stru
ture I as will be dis
ussed in the next se
tion. Thus,one important point to noti
e is that SU(3) � SU(3) stru
ture implies generi
ally that thereare two independent 
omplex stru
tures, whi
h arise from the two SU(3)-invariant spinors�1;2.5.2 Non-
ommutative deformationsTo begin with, let us review some known fa
ts about non-
ommutativity: In [22℄ Kapustinpresents a 
riterion when a 
ompa
ti�
ation allows for non-
ommutative deformations. Con-sider �rst the 
ase of 
losed B. Then for a Calabi{Yau manifold with metri
G and B-�eld andtwo (not ne
essarily equal) 
omplex stru
tures I� 
ompatible with the Levi{Civita 
onne
tion,one may de�ne the generalized 
omplex stru
tureI = � 12(I+ + I�) + ÆP B �ÆPÆJ +BÆP B + 12B(I+ + I�) + 12(I+ + I�)tB �12(I+ + I�)t �BÆP � ; (5.6)where the bive
tor part is de�ned asÆP = 12(J�1+ � J�1� ) ; (5.7)with J� = GI�. Furthermore ÆJ = 1=2(J+ � J�). The 
omplex stru
ture isI = 12(I+ + I�) + ÆP B ; (5.8)17



whereas the Poisson bive
tor, whi
h parametrizes the non-
ommutative deformations, is givenby � = �12IÆP : (5.9)In parti
ular, the non-
ommutativity is non-trivial only if the two 
omplex stru
tures are un-equal I+ 6= I�, sin
e otherwise ÆP = 0. In [40℄ this was generalized to the 
ase of H = dB 6= 0.The only di�eren
e from the above equations is that the 
omplex stru
tures I� now have tobe 
ovariantly 
onstant with respe
t to the 
onne
tion with torsion Hij k. Note howeverthat as in the T-fold 
ase, non-
ommutativity arises only at the level of D-branes, i.e., the
losed-string ba
kground remains 
ommutative, albeit not ne
essarily geometri
, as the left-and right-moving modes on the world-sheet di�er. In parti
ular, a generi
 SU(3) � SU(3)stru
ture 
ompa
ti�
ation yields a pair of distin
t 
omplex stru
tures, and thus two distin
trealizations of the N = 2 super-
onformal algebra for left- and right-movers, respe
tively. Inthis sense, the world-sheet theory is very mu
h alike the situation for asymmetri
 orbifolds.In parti
ular, we 
an then determine ÆP in the 
ase of SU(3)�SU(3) stru
ture 
ompa
t-i�
ations ÆP = �12((GI+)�1 � (GI�)�1) ; (5.10)whi
h has again non-vanishing Poisson bive
tor � = �1=2IÆP if the two 
omplex stru
turesdi�er.In 
ase of the two spinors being never parallel, whi
h 
orresponds to v + iw 6= 0, i.e., wehave an SU(2) stru
ture at least lo
ally, the 
orresponding � is non-zero. So this is indeedthe 
ase, when there are non-trivial non-
ommutative deformations. In fa
t we 
an write thePoisson bive
tor entirely in terms of the one-form � that 
hara
terizes the SU(2) stru
tureÆP = w ^ v = 12i� ^ �� ; (5.11)whi
h means that the non-
ommutativity is governed only by the ve
tors in (5.2).If the SU(2) stru
ture is global, su
h as for K3-
ompa
ti�
ations, the resulting non-
ommutative deformations are 
onstant and thus of minor interest to the present dis
ussion.The interesting 
ases arise, when the above des
ription is only lo
al. Then the Poisson bive
-tor is not 
onstant and one 
annot get rid of it by Morita equivalen
e. Thus, the la
k ofglobal de�nition for the type of the pure spinors (be
ause of the 
hange of dimension betweentwo di�erent base-points that was illustrated above) makes it unlikely that the linear inde-penden
e between two SU(3) spinors 
an be des
ribed by a globally-de�ned ve
tor �eld. Wemay obtain a Poisson bive
tor ÆP , but it need not be of the form v ^ w. We shall present anexpli
it example in the next se
tion.5.3 Torus with H-
ux and mirror symmetryAn illustrative example is T 6 in the 
omplex 
oordinates (3.28) with H-
ux H 2 H3(T 6;Z),whi
h allows to use the language of SU(3)�SU(3) stru
tures. We 
onsider a triple T-dualityalong x0; y; z, whi
h in this 
ontext 
orresponds to 
onsidering the mirror. The three-formis 
 = dz1 ^ dz2 ^ dz3 and the (1; 1)-form is J = Pi dzi ^ d�zi. In parti
ular, the T 3 that18



the T-duality a
ts upon is a spe
ial Lagrangian 
y
le. Note that this is di�erent from theT-duality transformations en
ountered in the previous se
tions for T 3 with H-
ux, however,as in that 
ase, we 
onsider only two-legged H-
ux, i.e., T-duality a
ts in only two dire
tionssupporting the H-
ux.The setup for the square torus is simple enough, and the generalized 
omplex stru
ture Iis diagonal. However swit
hing on the H-
ux yieldsI(B) = � I 0BI + I tB �I t � ; (5.12)The T-dual 
omplex stru
ture was determined in [22℄ to beI 0(B) = � �I t BI + I tB0 I � ; (5.13)so that the Poisson bive
tor is read o� to be ÆP = BI + I tB, whi
h is not ne
essarily van-ishing, as expe
ted. Moreover, if we insist that the �-transformed D0-brane be a generalizedD0-brane with respe
t to I 0 after monodromy, we obtain the 
onstraint � = �(0;2), in termsof the de
omposition with respe
t to I. The deformation parameter is on
e more seen to bea (0,-2) tensor.Let us 
onne
t this non blo
k-diagonal GC stru
ture to the language of maximally isotropi
subspa
es we used to probe the non-geometry by D0-branes. Consider again a graph of somebive
tor �eld � over some subspa
e F of the 
otangent spa
eL(F; �) = fX + � 2 V � F; XjF = ���g ; (5.14)and require stability of this graph under the a
tion of I 0. We are led to the following equation,that must hold for every element � in F�(I t)�� (�����) + (ÆP )���� = ���I���� ; (5.15)Eliminating the 
oordinates �� we observe that the (0;�2) part of � must equal the Poissonbive
tor �eld �I + I t� = ÆP : (5.16)We therefore see that the non-diagonal blo
k of the GC stru
ture in the T-dual pi
ture ispre
isely the parameter of the �-transform that is undergone by any D0-brane. Whenever ÆPis non-zero, the dimension of the proje
tion of a D-brane onto the tangent spa
e is non-zero.Therefore ÆP indu
es non-geometry in the sense that point-like D-branes 
annot be put on aGC spa
e with non-zero bive
tor blo
k.As stated in theorem (5.4) of [61℄ for mirrors of 
omplex tori, the two generalized 
omplexstru
tures JJ(B) and J!(B) shown in formulae (3.9) and (3.10) are ex
hanged by mirrorsymmetry. Indeed, if gx0yz is the element of O(6; 6) en
oding T-duality in the x0; y; z dire
tions,the mirror ex
hange (I(B))0 = gx0yzJ (B)g�1x0yz ; (5.17)19



holds.As we already argued, the image of JJ by T-duality is not blo
k-diagonal anymore, andwe may read o� the Poisson bive
tor ÆP asÆP = 12kx (�y0 ^ �z + �y ^ �z0) ; (5.18)whi
h is not de
omposable as the tensor produ
t of two ve
tors. Hen
e this is a 
ase ofgeneralized type of T-fold. In this example of a non-geometri
 T-dual, the non-
ommutativitys
ale depends on the base 
oordinate x in a way that prevents to gauge it away by Moritaequivalen
e, and furthermore it does not 
ome from a globally de�ned ve
tor �eld that en
odesthe linear independen
e between two SU(3)-invariant spinors. The la
k of a global polarizationin T-folds (II) 
an therefore be tra
ed in the formalism of (III) as the non-de
omposability ofthe Poisson bive
tor �eld ÆP .So far our 
onsideration of the T-dual of a 
omplex torus with H-
ux has shown thene
essity of T-folds for the des
ription of the global topology, when no global 
hoi
e of typefor a pure spinor exists, whi
h reprodu
es the 
riterion of [8℄. What about non-
ommutativityalong the dual T 2-�bres? The 
onne
tion 
omes from the 
onstru
tion of topologi
al stringtheory on GC spa
es and sigma models with bistru
tures in [62, 63, 23, 64℄. It was explainedthat a tensor � of type (0;�2) 
an deform the B-model with generalized 
omplex target spa
e,yielding star-produ
ts indu
ed by the Poisson bive
tor �. In order to make 
onta
t with [12℄it would be interesting to see how the �-transform indu
es this very same deformation of thegeneralized B-model.The results in this se
tion should also be derivable from the a
tion of T-duality on spinorsas advo
ated by Hassan [65, 66, 67℄. In the geometri
 
ase, in parti
ular for the the Lunin{Malda
ena ba
kground [68℄, the analysis was performed in [69℄ and it is easily observed fromtheir results that ÆP in this 
ase is of the form v ^w, and non-
ommutativity does not o

urbetween 
oordinates but as relative phases between ordered produ
ts of �elds, 
orrespondingto global U(1) symmetries.6 Con
lusionT-duality in the presen
e of NSNS 
uxes provides the �rst stepping stone to understandinggeneralized versions of mirror symmetry �a la Strominger{Yau{Zaslow (SYZ) [70℄. The presentpaper dis
usses this issue, thereby merging various existing proposals for the T-dual. If theNSNS H-
ux is supported only on one T-dualized dire
tion the dual is again geometri
 and
onsensus has been rea
hed on the T-dual geometry throughout the literature. Controversystarts when two T-dualized dire
tions are spanned by the H-
ux. Our present investigations
on
ern the 
ase of two dire
tions, applied to tori and torus �brations. We have shown thatthe proposal (I) of Mathai and Rosenberg, 
laiming the dual to be a �eld of non-
ommutativetori, 
an be viewed as the open-string version of Hull's T-fold proposal (II). Se
ondly, we haveshown that generalized geometries provide an alternative setup for studying the T-dual or mir-ror, and 
an be re
on
iled with the non-
ommutativity proposal by expli
it 
onstru
tion of aPoisson bive
tor, whi
h depends 
ru
ially on the ba
kground H-
ux. As argued in [22, 71℄,20



this bive
tor parametrizes non-
ommutative deformations of the open strings. We found thatin the 
ase of two-legged H-
ux, the bive
tor �eld is in fa
t not uniform, but varies along thebase of the torus-�bration.On more general grounds it would be interesting to understand the pre
ise 
onditions forthe dual spa
e to be non-geometri
. The key ingredient for the deformation by the bive
tor�eld is of 
ourse the multiple-
onne
tedness of the base of the �bration. The present dis
ussion
ould be extended to 
ompli
ated �brations over a multiply-
onne
ted base with H-
ux. Onthe other hand, T-dualizing along a two-torus 
arrying a non-zero B-�eld and �bered over a
ontra
tible spa
e, as in the sequen
e of �-deformations in [68℄, 
an lead to a geometri
 T-dual(orbifolds with torsion in that instan
e). This is 
onsistent with the fa
t that any loop on thebase 
an be shrunk and in
luded in a lo
al 
oordinate pat
h (thus removing the �-transformedterm in the formula (4.15) in the simply-
onne
ted 
ases), and also with the fa
t that non-
ommutativity of the dual two-torus in the proposal of [12℄ is measured by 
lasses in the �rstintegral 
ohomology group of the base (thus setting the star-produ
t to the ordinary produ
tin the simply-
onne
ted 
ases).Clearly it would be very interesting to extend the present dis
ussions to more generalsetups, in parti
ular, a generalized SYZ 
onstru
tion would be the most natural next problemto be addressed. The argument of SYZ for the existen
e of T 3-�brations of Calabi{Yaumanifolds rested on the fa
t that a D0-brane had only its position as a modulus. In the 
aseof T-folds, the modulus � is a modulus of Lagrangian deformations and prevents D0-branesfrom existing, just as non-
ommutativity does.A
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