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hep-th/0609084CALT-68-2610DESY 06-155ZMP-HH/06-015T-duality with H-ux:non-ommutativity, T-folds and G�G struturePasal Grange � and Sakura Sh�afer-Nameki �;℄� II. Institut f�ur Theoretishe Physik der Universit�at HamburgLuruper Chaussee 149, 22761 Hamburg, Germany� Zentrum f�ur Mathematishe Physik, Universit�at HamburgBundesstrasse 55, 20146 Hamburg, Germany℄ California Institute of Tehnology1200 E California Blvd., Pasadena, CA 91125, USApasal.grange�desy.de, ss299�theory.alteh.eduAbstratVarious approahes to T-duality with NSNS three-form ux are reoniled. Non-ommutativetorus �brations are shown to be the open-string version of T-folds. The non-geometri T-dualof a three-torus with uniform ux is embedded into a generalized omplex six-torus, and thenon-geometry is probed by D0-branes regarded as generalized omplex submanifolds. The non-ommutativity sale, whih is present in these ompati�ations, is given by a holomorphiPoisson bivetor that also enodes the variation of the dimension of the world-volume ofD-branes under monodromy. This bivetor is shown to exist in SU(3) � SU(3) strutureompati�ations, whih have been proposed as mirrors to NSNS-ux bakgrounds. The twoSU(3)-invariant spinors are generially not parallel, thereby giving rise to a non-trivial Poissonbivetor. Furthermore we show that for non-geometri T-duals, the Poisson bivetor may notbe deomposable into the tensor produt of vetors.



Contents1 Introdution 12 T-folds and non-ommutative tori 33 Probing non-geometry by generalized omplex branes 53.1 Generalized omplex strutures, B-transforms and �-transforms . . . . . . . . 53.2 D-branes as generalized omplex submanifolds . . . . . . . . . . . . . . . . . . 63.3 T-duality maps B-transforms to �-transforms . . . . . . . . . . . . . . . . . . 83.3.1 Geometri three-torus with H-ux and B-transforms . . . . . . . . . . 83.3.2 Geometri T-dual with a onnetion . . . . . . . . . . . . . . . . . . . 83.3.3 Non-geometri T-dual spae and �-transforms . . . . . . . . . . . . . . 93.4 Generalized D0-branes on the non-geometri T-dual . . . . . . . . . . . . . . . 104 Non-ommutativity from Lagrangian deformations in the BV proedure 124.1 �-transforms and the generalized B-model . . . . . . . . . . . . . . . . . . . . 134.2 From the generalized B-model to the Poisson sigma model . . . . . . . . . . . 155 SU(3) � SU(3) struture and non-ommutativity 165.1 SU(3) � SU(3) struture manifolds . . . . . . . . . . . . . . . . . . . . . . . . 165.2 Non-ommutative deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 175.3 Torus with H-ux and mirror symmetry . . . . . . . . . . . . . . . . . . . . . 186 Conlusion 201 IntrodutionCompati�ations with H-ux are known to give rise to topology hanges and even to non-geometri situations when T-duality is performed along diretions whih have non-trivial sup-port of the NSNS H-ux [1, 2, 3, 4, 5, 6, 7, 8℄. Non-geometry ours for example in the verysimple situation of a three-torus endowed with an H-ux proportional to its volume form.Consider namely the three-torus as a trivial T 2-�bration over a irle. Upon T-duality alongthe �bre, the metri piks up a fator that makes it shrink under monodromy around thebase irle. The monodromy around the base is a non-trivial element of the O(2; 2;Z) groupating on the two-torus. This prevents a three-dimensional global Riemannian desriptionfrom existing. Further T-dualizing along the base leads to more pathologial situations, wherepoints do not exist even in a loal oordinate path, and the �bres are onjetured to beomenon-assoiative [9, 10℄. We will restrit ourselves to the ase of two T-dualities, and assumethat loal oordinate pathes do exist. Progress in the desription of non-assoiative T-dualswas ahieved in the reent paper [11℄, whih also ontains observations on the open-stringmetri and non-ommutativity for two T-dualities that have some overlap with ours.Essentially three onjetures have been put forward for the desription of the T-dual of atorus with H-ux: 1



(I) Field of non-ommutative tori: Mathai and Rosenberg proposed that T-dualizing alonga two-torus with non-zero H-ux yields a �bration by (or more preisely: �eld of) non-ommutative tori. In partiular, this �bration is enoded in a losed one-form, whih isobtained by integrating the NSNS ux along the �bre diretions [7, 12, 13℄.(II) T-folds: these are spaes where T-dualities an at as transition funtions between loalpathes [8℄. The T-dualized diretions are doubled, and T-duality transformations maypath the doubled �bres together. A sigma model with a T-fold as its target spae wasproposed, and its boundary onditions were studied in [14, 15, 16, 17, 18℄.(III) G�G struture ompati�ations: SU(3)�SU(3) struture manifolds are haraterizedin terms of a pair of pure spinors, onstruted as bilinear ombinations of a pair SU(3)-invariant spinors of Cli�(6). In ase the SU(3)-invariant spinors are not parallel toeah other, their linear independene is enoded by a non-vanishing one-form, and thedisrepany between left- and right-moving omplex strutures is a potential soure ofnon-geometry and/or non-ommutativity. Moreover, [19, 59℄ suggest the relevane ofSU(3) � SU(3) strutures for mirrors of NSNS ux ompati�ations.These diretions of researh have developed somewhat independently from eah other, andit is natural to ask if they are ompatible. It is also natural to expet that tehniques fromgeneralized omplex geometry �a la Hithin and Gualtieri [20, 21℄ should bring some insightsinto the problem for at least two reasons:�rstly, generalized omplex (GC) spaes have been related to non-ommutativity in twoinstanes: a non-ommutativity sale is indued by the (0; 2) omponent of a B-�eld [22℄,and the master equation of the generalized B-model [23℄ admits deformations by holomorphiPoisson bivetors into a Poisson sigma model, whih is known to indue star-produts in thealgebra of observables [24℄;seondly, the doubling of the torus �bres in T-folds reminds one of the sum of tangentand otangent spaes onsidered in generalized omplex geometry. But GC spaes have morestruture than T-folds, indeed, in [8, 17℄ T-folds were pointed out to be a real version of GCspaes. Moreover, elements of O(2; 2;Z) alled B-transforms and �-transforms at on maxi-mally isotropi subspaes as symmetries of the inner produt.We shall therefore use as a main tehnial tool the geometry of pure spinors, that are in one-to-one orrespondene with generalized omplex branes, and building bloks for SU(3)�SU(3)struture ompati�ations.Our onjetures, whih we will justify in the ase of tori with H-ux, are:� (I) vs. (II): The proposal (I) by Mathai and Rosenberg laims that the T-dual to aT 3 ompati�ation with H-ux along two of the T-dualized diretions yields a non-ommutative torus �bration. This is reoniled with Hull's T-fold proposal by showingthat the metri seen by the open strings on a T-fold is preisely the one on the non-ommutative torus �bration. Thus, the proposal (I) is the open-string version of (II).This onnetion is disussed from various independent angles in setions 2, 3 and 4.� (II) vs. (III): when both approahes are appliable as for the T 6 with H-ux, they yieldthe same T-dual or mirror geometry. 2



� (III) vs. (I): We show that for a generi SU(3) � SU(3) struture ompati�ation,where the two SU(3)-invariant spinors are not aligned, there exists a Poisson bivetorwhih parametrizes non-ommutative deformations. The non-ommutativity is howeveragain only relevant for the open-string setor. This relation is disussed in setion 5.As for the mirror of a six-torus with H-ux, we observe that the Poisson bivetor anin fat not be deomposed in terms of vetors, whih seems to indiate that not all thepossible non-ommutativity sales are inherited from SU(3)� SU(3) strutures.2 T-folds and non-ommutative toriIn this setion we shall mainly be onerned with the onnetion between non-ommutativityand T-folds. We shall study this in the ase of the simplest non-trivial example, whih alreadyillustrates the main point: the Mathai{Rosenberg non-ommutative torus-�brations are theopen-string version of T-folds. This observation will then be disussed from the generalizedgeometry point of view in the next setion.The simplest example that exhibits all the key features is the T 3-ompati�ation with kunits of NSNS three-form uxH 2 H3(T 3;Z). We shall generally refer to NSNS-ux supportedon a torus bundle E with base B and �bre F of the type H 2 Hn(F )
H3�n(B) as an n-leggedH-ux. Thus, the one-legged ase is known to have a purely geometri T-dual. Our mainfous is on the two-legged ase, whih will be shown to have a non-geometri T-dual.In order to understand the T-dual along two �bre diretions, we onsider the three-torus asa T 2-bundle over S1 (parametrized by x) and dualize along the �bre diretions parametrizedby y and z. The metri and B-�eld an be hosen asds2 = dx2 + dy2 + dz2 ; B = kx dy ^ dz : (2.1)Due to the B-�eld the monodromyMk around the S1 is non-trivial and readsMk = 0BB� 1 0 0 00 1 0 00 �k 1 0k 0 0 1 1CCA ; (2.2)in a basis adapted to the oordinates (y; z; ~y; ~z), where ~y and ~z are T-dual to y and z. Naivelyapplying the standard Busher rules along the �bres yields the T-dual bakgroundds2 = dx2 + 11 + k2x2 (dy2 + dz2) ; B = kx1 + k2x2 dy ^ dz ; (2.3)and the monodromy obtained after ation of the T-duality matrixgyz = 0BB� 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCA3



along the �bres is Wk = g�1yz Mkgyz =0BB� 1 0 0 �k0 1 k 00 0 1 00 0 0 1 1CCA : (2.4)As this is a non-trivial element (whih is not merely a B-�eld shift or an element in thegeometrially ating SL2(Z)� SL2(Z)) of the T-duality group O(2; 2;Z), the resulting spaeis an example of a T-fold as de�ned by Hull in [8℄.The alternative proposal by Mathai and Rosenberg [7, 12, 13℄ laims that the T-dual isa �eld C of non-ommutative tori1, A� ! C ! S1, where the non-ommutativity sale �depends on the base-oordinate x as � = kx : (2.5)This proposal arose from a K-theoretial point of view by showing that theH-twisted K-theoryof T 3, KH(T 3), is the same as the algebrai K-theory of the algebra assoiated to the �eld ofnon-ommutative tori KH(T 3) = K(C) : (2.6)It is furthermore supported by the fat that it onsistently generalizes the ase of geometriuxes and the T-duality ation de�ned in this fashion is, thanks to Morita equivalene, of ordertwo. In this approah, the ation of T-duality is realized in terms of taking the rossed-produtalgebra [12℄.We propose that both pitures are in fat valid, and are desribing di�erent aspets ofthe same T-dual ompati�ation. More preisely, we shall argue that the proposal (I) isthe open-string version of the T-fold proposal (II). Starting from the T-fold ompati�ation(2.3), there is an assoiated open-string metri G and Theta-tensor � introdued and studiedin [25, 26, 27, 28℄, whih are related to the losed-string metri g and B-�eld B by (setting2��0 = 1) Gij = (g +B)�1(ij) ; �ij = (g +B)�1[ij℄ : (2.7)These are the metri and spaetime non-ommutativity parameter, whih the open-stringssee. For the bakground in (2.3) we obtainds2 = dx2 + d~y2 + d~z2 ; � = kx�~y ^ �~z : (2.8)This is preisely the non-ommutative torus �bration whih was proposed as the T-dual spae-time in [7℄. Similar bakgrounds with a varying, meaning spae-dependent, non-ommutativityparameter have been disussed before in [29, 30℄.How do we interpret this onnetion? The key point is to realize that the K-theory analysisdepends on the open-string data (or open-string algebra). As advoated by Witten in [31℄,the K-theory for H-ux bakgrounds has a formulation in terms of the algebrai K-theory of a(non-)ommutative algebra [32℄, whih on the other hand an be interpreted as the open-stringalgebra [33, 31℄. This algebra is non-ommutative when H 6= 0. Thus in order to prove theonjetured orrespondene, it remains to show that the algebra C is preisely the algebra ofopen-string �eld theory in this bakground.1The preise de�nition is in terms of the diret integral of non-ommutative torus algebras C = R�2S1 A�d�,with non-ommutativity parameter � varying along the base S1.4



On more general grounds one is then led to propose the following relation: onsider aprinipal T 2-bundle E ! M with H-ux suh that H2 6= 0, where H2 2 H2(T 2) 
 H1(M)(\two-legged ase"). Then the T-dual along the �bre-diretions is given by a T-fold. Theassoiated open-string metri and �-tensor an be omputed from (2.7) and the resultingspae will generially be non-ommutative, with an assoiated non-ommutative algebra, A.The onjeture is then, that A is preisely the algebra proposed by Mathai and Rosenbergas the T-dual, i.e., it is obtained as a rossed produt algebra A = C(E;H) o R2, whereC(E;H) is the C�-algebra of the T 2-bundle E with H-ux and the rossed produt is takenwith respet to the R2-ation, whih is indued from the T 2-ation on the bundle, with theK-theory of the two algebras agreeing.3 Probing non-geometry by generalized omplex branesIn this setion the same onlusion is reahed as in the last setion by embedding the disussioninto the setup of generalized omplex geometry. It is shown that the T-dual of the bakgroundwith H-ux is given by a �-transformed bakground. Again, this is observed in the open-stringsetor, and we show this by probing the T-fold geometry with generalized omplex D-branes.3.1 Generalized omplex strutures, B-transforms and �-transformsLet us reall a few de�nitions from generalized omplex (GC) geometry [21℄. Given an n-dimensional manifoldM , a generalized almost omplex struture on M is de�ned as an almostomplex struture on the sum of tangent and otangent bundles TM � T �M . For example,suh a struture an be indued by an ordinary omplex struture J on MJJ = �J 00 �J�� ; (3.1)in whih ase it will sometimes be termed a diagonal GC struture, or by a sympleti form! on M J! = �0 �!�1! 0 � ; (3.2)where the matries are written in a base adapted to the diret sum. Hybrid examples, otherthan these two extreme ones, are lassi�ed by a generalized Darboux theorem [21℄, sayingthat any GC spae is loally the sum of a omplex spae and a sympleti spae. For theexistene of hybrid GC strutures with no underlying omplex or sympleti struture, andtheir relevane for N = 1 supersymmetri ompati�ations in string theory see [34, 35℄. Forthe present disussion where the (non-)geometry is probed by D0-branes, we shall restritourselves to GC strutures of the form JJ , thus generalizing the B-model.Here we would like to relax the requirement that the spae on whih the GC strutureats be globally of the form TM � T �M , and we only assume that it is made of pathes thatlook like the sum of loal tangent and otangent spaes. The de�nitions are therefore to beunderstood in the neighborhood of some point p (whih we assume to be still well-de�ned),that is on TpM � T �pM . 5



The sum TpM � T �pM is naturally endowed with an inner produt of signature (n; n),hX + �; Y + �i = 12(�X� + �Y �) ; (3.3)whose matrix in the same basis as above readsG = �0 11 0� : (3.4)The inner produt is onserved by an ation of the group O(n; n) whose generi elementdeomposes into a blok-diagonal part (enoding an orthogonal transformation of the tangentspae and the indued orthogonal transformation of the otangent spae), and o�-diagonalbloks that an be exponentiated into B-transformsexpB = �1 0B 1� ; (3.5)B : X + � 7! X + � + �XB ; (3.6)and �-transforms exp� = �1 �0 1� ; (3.7)� : X + � 7! X + ��� + � ; (3.8)where B and � are antisymmetri bloks identi�ed with a two-form B�� and a bivetor ���.AB-transform ats by onjugation on generalized almost omplex strutures, thus mappingthe two generalized almost omplex strutures JJ and J! to the struturesJJ(B) = � J 0BJ + J tB �J t� (3.9)and J!(B) = � !�1B �!�1! +B!�1B �B!�1� ; (3.10)whih we will enounter in setion 5.3.2 D-branes as generalized omplex submanifoldsLet H be a losed three-form. A generalized submanifold is de�ned in [21℄ as a submanifoldN endowed with a two-form B suh that HjN = dB. The generalized tangent bundle �BN ofthis generalized submanifold is de�ned as the B-transform of the sum of the tangent bundleTN and onormal bundle (or annihilator) AnnTN , namely:�BN = fX + � 2 TN � T �M jN ; �jN = �XBg ; (3.11)6



so that � 0N = TN � AnnTN . A generalized tangent bundle is a maximally isotropi sub-spae (i.e., it is isotropi with respet to G and it has the maximal possible dimension for anisotropi spae in ambient signature (n; n), namely n.) Moreover, all the maximally isotropisubspaes are of this form, for some submanifold N and two-form B. This is the origin of theone-to-one orrespondene between generalized submanifolds and pure spinors, whih will beused in subsetion 3.4.Given a GC struture J , a generalized omplex brane was de�ned in [21℄ to be a generalizedsubmanifold whose generalized tangent bundle is stable under the ation of J . In the aseof J = JJ , the ompatibility ondition gives rise to the B-branes, as expeted due to theloalization properties of the B-model on omplex parameters [36℄. The submanifoldN namelyhas to be a omplex submanifold, and F has to be of type (1; 1) with respet to JJ(TN) � TNJ�(�XF ) + �JXF = 0 : (3.12)In the other extreme ase of J = J!, it yields all possible types of A-branes, inluding thenon-Lagrangian ones [37, 38℄. These are two tests of the idea that D-branes in generalizedgeometries are generalized submanifolds. This idea has passed further tests: alibrating formsand pure spinors enoding stability onditions [39, 40℄ for topologial branes are orretlyexhanged by mirror symmetry [41, 42, 43, 44, 45, 46℄, and the study of morphisms betweengeneralized tangent bundles [47℄ generalizes the K-theoreti desription of D-branes by takingwinding numbers into aount in the resolution of vortex equations of the Yang{Mills{Higgsmodel [48, 49, 36℄. Although all the generalized tangent bundles are n-dimensional, a general-ized submanifold assoiated to a p-dimensional submanifold N will be sometimes referred toas a generalized Dp-brane, and p will be alled the ordinary dimension of the brane.It is important for the desription of D-branes in generalized geometries to note thatthe projetion of a subspae on the tangent spae is unhanged under a B-transform. AB-transform just swithes on an Abelian �eld strength with magnitude B along the brane.However, a �-transform shifts the dimension of the projetion of the brane on the tangent spae(the ordinary dimension of the brane) by the rank of �. Let us review the linear-algebrai asewhere the ambient spae is V � V � for some vetor spae V . A �-transform of a maximallyisotropi subspae AnnF � F , where F is a subspae of V �, reads as a graph over F , in thenotations of [21℄ L(F; �) = fX + � 2 V � F; XjF = ���g : (3.13)The intersetion of this spae and V is just the annihilator of F , beause it is trivially embeddedin V � F as L(F; �) \ V = fX + 0 2 V � F; XjF = 0g = AnnF (= L(F; 0)) : (3.14)The vetor part of any element of L(F; �) therefore deomposes into an element of AnnFand an element of the image of � : V � ! V , and the deomposition is unique beause thegraph ondition XjF = ��� implies that the intersetion between AnnF and the image of �is zero-dimensional. Let �V : V � V � ! V denote the projetion onto V . We have therefore7



argued that �VL(F; �) = Im� � (L(F; �) \ V ) ; (3.15)and thereforedim(�VL(F; �)) = dim(L(F; �) \ V ) + rk� = dimAnnF + rk� = dim(�VL(F; 0)) + rk�:(3.16)3.3 T-duality maps B-transforms to �-transformsAs we have just motivated the idea that Abelian D-branes may be identi�ed with GC sub-manifolds, and sine �-transforms an hange the ordinary dimension of suh submanifolds,it is natural to look for the onnetion between �-transforms and monodromies on T-folds, inthe piture (II) of non-geometry. D-branes wrapped on T-folds an ome bak to themselveswith a di�erent dimension after monodromy. We are going to desribe how T-dualities mapB-transforms to �-transforms, together with the orresponding e�ets on D-branes.3.3.1 Geometri three-torus with H-ux and B-transformsConsider again the at three-torus with uniform H-ux, with the same oordinates as above.Consider two D2-branes wrapping �bres over two points of the base, one at x = 0 and one atgeneri x. Going from the �rst to the seond involves a B-transform by the two-formB(x) = kxdy ^ dz : (3.17)Going from x = 0 to generi x namely swithes a two-form along the brane. The boundaryonditions for open strings ending on a D2-brane wrapping a torus over the point x (withembedding oordinates X;Y;Z(�; � ) and the obvious notation) read��Y + kx��Z = 0;��Z � kx��Y = 0: (3.18)The matrix of the B-transform in a basis adapted to the oordinates (y; z) and the dualoordinates (~y; ~z) reads g =0BB� 1 0 0 00 1 0 00 �kx 1 0kx 0 0 1 1CCA (3.19)3.3.2 Geometri T-dual with a onnetionIt is instrutive to perform �rst the T-duality along the y diretion. The D2-branes wrappingthe two �bres in question beome D1-branes, and parametrizing the base by an angle � withkx = tan �, we observe that the D1-branes are rotated with respet to eah other within the�bre. This reets the fat that they now live on a torus with a onnetion��(� sin �Z + os �Y ) = 0;�� (os �Z + sin �Y ) = 0: (3.20)8



In the same basis as before, T-duality is enoded by the matrixgy = 0BB� 0 0 1 00 1 0 01 0 0 00 0 0 1 1CCA ; (3.21)and the B-transform is therefore replaed by one with matrixg0 = g�1y ggy = 0BB� 1 kx 0 00 1 0 00 0 1 00 0 �kx 1 1CCA : (3.22)Let us desribe these D1-branes in terms of maximally isotropi2 subspaes. Start at x = 0with a D1-brane wrapping the y irle. The orresponding pure spinor is the sum of thetangent and onormal bundles of the y irle, with oordinatesS1 �AnnS1 = fy; z = 0; �1 = 0; �2g : (3.23)Ating on it with g0 yields the oordinates (y; kxy;�kx�2; �2), whih means that there areDirihlet onditions along the one-dimensional subspae of the two-torus at x = l with equa-tion: tan �Y � Z = 0 : (3.24)This is onsistent with the fat that there is now a onnetion on the torus, and taking x to beequal to 1 (the period of the oordinate along the base) and requiring the D1-brane to omebak to itself does indeed give rise to the identi�ation of the twisted torus(x; y; z) � (x+ 1; y; z + ky) ; (3.25)as it should [3℄.3.3.3 Non-geometri T-dual spae and �-transformsLet us perform one more T-duality, along the z diretion, and get to the non-geometri spae.The matrix ating on the T 2-�bre, in going from x = 0 to generi x, in a basis adapted to thereal oordinates (y; z; ~y; ~z) is obtained from g through onjugation by the T-duality matrixgyz = 0BB� 0 0 1 00 0 0 11 0 0 00 1 0 0 1CCA :2Isotropi is understood with respet to the inner produt on the sum of the two-torus and the dual two-torus; we do not speify the embedding into T 6 yet; the oordinate on base only plays the role of a parameteras it is not ated on by the T-dualities we onsider. 9



It therefore reads g00 = g�1yz ggyz = 0BB� 1 0 0 �kx0 1 kx 00 0 1 00 0 0 1 1CCA ; (3.26)whih we reognize as a �-transform by the bivetor �eld�(x) = kx�y ^ �z : (3.27)Sine �-transforms a�et the vetor part of maximally isotropi subspaes, there is no way oftwisting the torus to bring the D0-brane bak to itself after a monodromy around the base.Moreover, �-transforms are also assoiated to open paths on the base, showing that attahingan open string to two D0-branes sitting over di�erent points of the base is impossible, unlessT-dualities are allowed to path the oordinate harts together. As open strings an windaround the base before attahing themselves to the seond brane, they are sensitive to theglobal e�et of non-geometry, even if the two points on the base an be put in one singleoordinate path for the purposes of loal di�erential geometry. It is ruial for suh a globale�et that the base be non-simply-onneted.To sum up, T-dualities therefore relate D-branes loated in di�erent �bres. Hene theyare needed as hanges of harts, as predited by the proposal (II). Moreover, the transforma-tions of the orresponding pure spinors are ditated by a bivetor �eld ���(x) = kx�y ^ �zdepending on the oordinate along the base in the same way as the tensor � of the proposal (I).3.4 Generalized D0-branes on the non-geometri T-dualAs points might be disturbed by global e�ets in non-geometri spaes, we would like to probenon-geometry by generalized D0-branes. Of ourse, in order to be able to use tehniques fromgeneralized geometry for desribing T-duals of the three-torus with H-ux, we �rst have toembed the three-torus into a six-torus.Let us onsider a generalized B-model, and pik a omplex struture of the form JJ , withJ an ordinary omplex struture on the six-torus. We still have a hoie for the omplexstruture J : we an either onsider the T 2-�bre as an ellipti urve in this omplex struture(whih would make B a tensor of type (1; 1) and a valid �eld strength for a D2-brane of typeB wrapping the ellipti urve), or pik a omplex struture in whih y and z are omponentsof di�erent omplex oordinates. This way B would have a nonzero omponent of type (0; 2)and the dual torus with oordinates ~y and ~z ould not support a D2-brane of the B-model.Let us hoose the seond option in order to single out the role of the (0; 2) omponents andtheir possible inuene on non-ommutativity.The way we embed the three-torus into a six-torus is therefore the following: the T 2-�breoordinates y and z are real parts of omplex oordinates y + iy0 and z + iz0, where y0 andz0 are oordinates along additional irles, and the base is ombined with a third additional10



irle with oordinate x0 into an ellipti urve. In the sequel we shall denote the loal omplexoordinates we have just desribed byz1 = x+ ix0 ; z2 = y + iy0 ; z3 = z + iz0 : (3.28)This way B is not of type (1; 1) and will therefore ontribute non-ommutative deformationsas argued in [22℄. Moreover, the x-dependene means that Morita equivalene annot be usedto gauge non-ommutativity away, sine the B-�eld will assume non-rational values. Butfor the time being, we are interested in the e�et of the (0; 2) and (2; 0) omponents of theB-�eld in terms of T-duality transformations, as an illustration of (II). The onnetion withnon-ommutativity using the language of (I) and (III) will be made in setions 4 and 5.A few omments about the hoie of GC struture are in order: we restrit ourselves todiagonal GC strutures, thus generalizing the B-model. We shall see in setion 4 that defor-mations of the generalized B-model are indeed suÆient to explain the onnetion betweennon-geometry and non-ommutativity, but the reason why it is a priori suÆient to onsider adiagonal GC struture is that only suh strutures allow generalized D0-branes, whih are thepoint-like objets with whih one would like to probe non-geometry. Of ourse it is well-knownthat D-branes orresponding to GC strutures of the form J! do not inlude D0-branes, more-over the generalized Darboux theorem implies that hybrid GC strutures loally have someA-type boundary onditions that forbid D0-branes.Let us onsider generalized D0-branes for the GC struture we have just desribed, andthe way they transform under monodromy. They are not a�eted by B-transforms beausethe graph ondition of de�nition (3.11) is empty. On the other hand, their ordinary dimen-sion is raised upon a �-transform by an amount equal to the rank of �, as was explained above.In order to work out the e�et of the monodromy on D0-branes, we are going to use thedesription of generalized tangent bundles by pure spinors. The mapping between isotropispaes and spinors is made manifest by the ation of setions of TM � T �M on ��M , whiharries a representation of Cli�ord(n; n):(X + �):� = �X�+ � ^ �; (3.29)(X + �):((X + �):�) = hX + �;X + �i�: (3.30)Given a spinor, one an assoiate to it its null spae in V �V �. Maximally isotropi subspaesare therefore in one-to-one orrespondene with pure spinors.In the ase of a generalized D0-brane, the pure spinor to be onsidered is the holomorphithree-form 
 := dz1 ^ dz2 ^ dz3 ; (3.31)in a loal path where z1; z2; z3 are omplex oordinates assoiated to the omplex struturewe have desribed on the six-torus. The annihilator is loally of the formTM (0;1) � T �M (1;0) = Vet� ���z1 ; ���z3 ; ���z3��Vet �dz1; dz2; dz3� : (3.32)11



Let us write the omponents of � in a way adapted to the loal omplex oordinates, sothat ��� is the (�2; 0) part of �, and � ���� and ���� do not appear in the �-transform beausethey at on omponents of the annihilator that are zero (and stay so, beause the one-formpart is not transformed by �). The transformation rules are therefore��� ��� + ��dz� �! (���)0��� + (��)0�� + ��dz�; (3.33)where (���)0 = � ����� + ��� ;(��)0 = ����� : (3.34)The vetor spae spanned by the vetors (���)0��� is still the whole subspae TM (0;1), whereasthe projetion of the annihilator of 
 on TM (1;0) is made two-dimensional by the monodromy,sine rk��� = rk(dz2 ^ dz3) = 2.As expeted, the dimension of the projetion on the tangent spae is shifted by the rank ofthe (0;�2) part of the bivetor �eld �. This establishes that there is no zero-dimensional globalsetion of the vetor part. This phenomenon was observed in the ontext of non-ommutativedeformations in [22℄, where it was alled the unertainty priniple for topologial D-branes(ommutators of equations of omplex submanifolds annot vanish, and this prevents D-branesfrom wrapping maximal-odimension submanifolds). In the present ase, the hange of type3of a pure spinor under monodromy is equivalent to the lak of a global splitting between mo-menta and winding numbers. The spae obtained by T-duality from the generalized omplexT 6 with H-ux an therefore not be globally of the form L�L�, with L a maximally isotropisubspae. This is the absene of global polarization that appeared in the real ase for T-folds,and it is enoded by the (0;�2) part of the bivetor �eld �.4 Non-ommutativity from Lagrangian deformations inthe BV proedureIn the previous setion our onsideration of the T-dual of a omplex six-torus with H-uxhas shown the neessity of T-folds for the desription of the global topology, when no globalpolarization exists, whih reprodues the riterion of [8℄ for the objets (II). What aboutproposal (I) and non-ommutativity along the dual T 2-�bres? The onnetion omes fromthe onstrution of topologial string theory on GC spaes in [23℄, where it was explainedthat a tensor � of type (0;�2) an deform the B-model with generalized omplex targetspae, induing star-produts on the �bre. In order to make ontat with [12℄ we are going toshow how the �-transform indues this very deformation of the generalized B-model on theT-dual of the GC six-torus. For a ategorial viewpoint on the Fourier{Mukai equivalenebetween deformations of omplex tori (either in a non-ommutative diretion parametrized bya holomorphi Poisson struture or in a B-�eld diretion), see [50℄.3A pure spinor an be written in a unique way as �1^ � � �^ �n^ eF , where �1; : : : ; �n are omplex one-formsand F is a omplex two-form; the integer n is alled the type of the pure spinor.12



4.1 �-transforms and the generalized B-modelThe Batalin{Vilkovisky (BV) formalism requires a nilpotent operator Q and an odd di�erentialoperator of seond order �. They at on the graded spae of �elds and indue an oddsympleti struture, for whih the master ation S is a Hamiltonian funtion. The oddLaplaian � indues an antibraket via the formula(F;G) = (�1)jF j�(F ^G)��F ^ G� (�1)jF jF ^�G : (4.1)The ondition Q2 = 0 then indues the master equation(S; S) = 0 : (4.2)From now on, as is required by the BV proedure, we shall give fermioni statistis to thevetor and form oordinates, or in other words reverse the parity on the �bres of the tangentand otangent bundles. When omputing the ation of a sigma model, one has to pull bakvetor and form �elds on the world-sheet �, whih indues a hange of statistis on the tangentbundle of the world-sheet, whih is now denoted �̂. As far as the B-model is onerned, thegraded spae of �elds is (in a loal oordinate path) the spae of observables of the B-model.The operators Q and � are the anti-holomorphi and holomorphi di�erentials,Q = �� = d��� �� ����� = � = dz� ���� = ���� ���� ; (4.3)where in re-expressing � as a seond-order di�erential operator, use has been made of theobservation that one-forms may at on the de Rham omplex as derivatives with respet tovetor oordinates [51℄. This way the oordinates �� and z� are anonially onjugate to eahother, and one has to add anti�elds to be paired with �z� and ��� (beause � is degenerateon the subspae they span), alled �z�� and ����. As shown in [23℄, the master ation for thegeneralized B-model then reads S = Z�̂ ���dz� + ���z���� : (4.4)The allowed deformations of the generalized B-model involve holomorphi bivetor �elds.A Lagrangian submanifold L of the spae of �elds has indeed to be hosen to ompute thegauge-�xed partition-funtion ZL := ZLDXe�S[X ℄ ; (4.5)and the invariane of this path integral under hange of the gauge-�xing ondition is equivalentto its invariane under the Lagrangian deformations of L. A variation in the gauge-�xingondition amounts to a Lagrangian deformation of the Lagrangian submanifold L, namely onewhere the momenta are derived from a densityÆpi = ���xi : (4.6)13



Starting with a Lagrangian submanifold with equation given by the vanishing of all momentapi = 0, invariane of ZL under Lagrangian deformations is expressed by the following hain ofequalities ÆLZ = ZL Æpi ÆÆpi e�S(xi) = ZL ���xi ÆÆpi e�S(xi) = �ZL � ��pi ��xi �e�S(xi)� = 0 ; (4.7)whih implies the quantum master equation�(e�S[X ℄) = 0 : (4.8)Expanding in powers of a deformation of the master ation gives rise to the Maurer{Cartanequation. In the ase of the generalized B-model, splitting into tensors of di�erent typesshows [23℄ that the deformation of the generalized B-model by a holomorphi bivetor �eld isallowed (moreover, the sum of tangent and otangent spaes is one of the geometries reentlyaddressed by Ikeda in the deformation theory of BV strutures [52℄).In the present ontext, the lak of global polarization indues deformations of the BVstruture when going from one path of oordinates to antother. It is instrutive to seehow derivatives are a�eted by the monodromies desribed in (3.33). Let us work out thedeformation of the antibraket adapted to the isotropi subspae TM (0;1)�T �M (1;0) we startedwith in the previous setion (F;G) = F ���� ����G� F ���� ����G : (4.9)The hange of oordinates indued by a �-transform�0� = ����� + �� ;�0� = ����� + �� ; (4.10)indues the following hanges in derivatives on the otangent spae���� = ���0� ��0���� + ���0� ��0���� = ���0� ;���� = ���0� ��0���� + ���0� ��0���� = ���0� + ��� ���0� ; (4.11)and the antibraket now inludes pairs of derivatives with respet to the vetor oordinates,so that the monodromy shifts the antibraket by a Poisson braket:(F;G)0 = (F;G) + 2F ���0���� ���0�G : (4.12)We have therefore shown that the data of the BV struture do hange from path to path inthe non-geometri T-dual of the GC six-torus. We are going to work diretly on the masteration, sine the �-transform is of the Lagrangian type, so that the T-duality that has beenseen to bind together the oordinate pathes, is also deforming the master ation.14



4.2 From the generalized B-model to the Poisson sigma modelWe have seen in the previous setion that in a speial ase an obstrution to the existeneof a global generalized omplex form L � L� for the T-duals is enoded by a holomorphibivetor �eld ���. The link with [7℄ is provided by the hoie of an isotropi submanifoldinvolved in the BV gauge-�xing proedure. A global suh hoie is impossible as soon as the�-transform is non-trivial, and this leads to a deformation of the generalized B-model by theholomorphi bivetor �eld �. The resulting model is preisely the Poisson sigma model thatappears as the �-deformation of the topologial J -model onstruted by Pestun [23℄. Star-produts emerge from the Poisson struture by deformation quantization [53, 54℄. Of oursethis is no aident. Relevane of the Kontsevih formula in non-ommutative gauge theoryalong D-branes appeared for example in [27, 55, 56℄.Consider the master ation that is obtained from the BV proedure for the B-model witha generalized omplex manifold as a target spae [23℄, i.e., a target spae endowed with a GCstruture of the diagonal form JJ . We therefore start with the master ation on the pathwith omplex oordinates (z�; �z�) S = Z�̂ ���dz� + ���z���� : (4.13)As for the ���, they span the bundle TM (1;0) that is not modi�ed by the monodromy, and the z���are onjugate to the antiholomorphi base oordinates that are untouhed by the monodromy.The seond term is deoupled in the initial path, and will stay so under monodromy.But the �rst term, as it is endowed with holomorphi indies, is a�eted by the monodromy.This is due to the fat that the irle base annot be overed by a single path. Let us hoosea onstrution of the spinor bundle where the di�erential forms at by di�erentiation withrespet to the dual oordinates. This orresponds to hoosing the pure spinor 
 as thevauum, and vetor �elds as reation operators, as explained by Witten in [51℄. In a loalpath we therefore identify dz� with �=���, so that the relevant term in the master ationtransforms as follows ��� �����0 = �� ���� + ����� ���� ; (4.14)and the result, in a representation where di�erential forms at by multipliation, asS0 = Z�̂ (��dz� + �������) ; (4.15)whih of the form S + Æ�S, with Æ�S indued by the holomorphi bivetor �. Of ourse wean rewrite the expression for S0 in terms of oordinates, vetors and forms with onventionalstatistis, both on the world-sheet � and the target spae, by taking multipliations to bewedge produts.Sine the non-zero omponents of the bivetor �eld � are along the diretions y and z, andthey depend only of the oordinate x, the parameter � is a Poisson bivetor �eld�������� + �������� + �������� = 0 : (4.16)The resulting model with ation S0 is the Poisson sigma model studied by Cattaneo and Felderin [24℄. We are therefore left with T-dual �bres forming a �eld of non-ommutative tori over a15



irle. A subspae of the T-dual T 6 is therefore non-ommutative, with the non-ommutativitysale predited by (I).For a given topology of the world-sheet, we �nd a deformation of the produt of observablesinto a star-produt �� as in [24℄:f ��(a1) g(a) = ZX1=aDXf(X(0))g(X(1))ei(S+Æ� S)[X ℄ ; (4.17)where 0; 1;1 are the oordinates of the points of insertion of observables on the boundary ofthe world-sheet, and a1 is the omponent of the oordinates of the point a along the diretionx. The ontinuous dependene on a1 omes from the de�nition (3.27) for the bivetor �.The fat that non-ommutativity shows up in the boundary orrelators is the sign that theopen-string setor is ruial for the equivalene between (I) and (II).5 SU(3) � SU(3) struture and non-ommutativityIt is argued in [19℄ that the mirror of a Calabi{Yau ompati�ation with magneti H-ux[2℄ possesses an SU(3) � SU(3) struture. SU(3) � SU(3) struture ompati�ations aredesribed in terms of pure spinors, made from bilinears of SU(3)-invariant spinors of Cli�(6).In ase those invariant spinors are not parallel and the type of the assoiated pure spinorsis not globally de�ned, the resulting ompati�ation is onjetured to be non-geometri. Inase the two pure spinors still have a globally onstant type, the ompati�ation has globalSU(2) struture and is still geometri, an example of whih is T 2 �K3. The proposal in [19℄should in partiular be onsistent with the non-ommutative T-dual onjeture, when bothsetups are appliable.In this setion we show that preisely in the ase when the two SU(3)-invariant spinorsare not parallel, there is a non-trivial Poisson bivetor, whih yields a non-ommutative de-formation of the open-string bakground. If the pure spinors have a uniform expression, thePoisson bivetor is onstant and thus one an dispose of the non-ommutativity by Moritaequivalene. This of ourse is not possible in the ase when the Poisson bivetor is dependenton the remaining oordinates.5.1 SU(3) � SU(3) struture manifoldsConsider Type II ompati�ations on six-manifolds with SU(3)�SU(3) struture [20, 21, 5,57, 58, 59℄ (for a detailed introdution and referenes see [60℄). As suh they are haraterizedby a pair of no-where vanishing SU(3)-invariant spinors �1;2, whih arise in the deompositionof the two SO(9; 1) spinors �1;2 of Type II under SO(3; 1) � SO(6). If �1 = �2 the struturegroup is redued to SU(3), whih in partiular inorporates the ase of standard Calabi{Yauompati�ations. If on the other hand the spinors are not parallel to eah other throughoutthe manifold, one speaks of an SU(2) struture. The latter is haraterized by a non-vanishingvetor �eld. De�ning �2+ = �1+ + (v + iw)�1� ;  2 C ; (5.1)16



the vetor �eld in question is �m := �1+ym�2� = vm � iwm : (5.2)The spinors �1;2 an also be ombined to onstrut a pair of SU(3; 3) bi-spinors�� = �1+ 
 �2�y ; (5.3)whih are pure (i.e., they are annihilated by half of the �-matries). Moreover, via the standardCli�ord map, they are in one-to-one orrespondene with (formal sums of) di�erential forms.On an SU(3) struture manifold the pure spinors �� orrespond to the (3; 0) form 
 and the(exponential of the) (1; 1) form J . Generially however, there are two independent two- andthree-forms J� = j � v ^ w
� = ! ^ (v � iw) : (5.4)Here j and ! parametrize the loal SU(2) struture in the transverse diretions to v and w.For the present purposes it is instrutive to note that in the ase of non-geometri spaes thenotion of transversality holds only loally, sine it an be spoiled by a �-transform.The assoiated two pure spinors are�+ = 18(�e�ij � i!) ^ e�iv^w ; �� = �18(e�ij + i!) ^ (v + iw) : (5.5)Raising an index on the two-forms J� we obtain two omplex strutures, I�, whih on the otherhand de�ne a generalized omplex struture I as will be disussed in the next setion. Thus,one important point to notie is that SU(3) � SU(3) struture implies generially that thereare two independent omplex strutures, whih arise from the two SU(3)-invariant spinors�1;2.5.2 Non-ommutative deformationsTo begin with, let us review some known fats about non-ommutativity: In [22℄ Kapustinpresents a riterion when a ompati�ation allows for non-ommutative deformations. Con-sider �rst the ase of losed B. Then for a Calabi{Yau manifold with metriG and B-�eld andtwo (not neessarily equal) omplex strutures I� ompatible with the Levi{Civita onnetion,one may de�ne the generalized omplex strutureI = � 12(I+ + I�) + ÆP B �ÆPÆJ +BÆP B + 12B(I+ + I�) + 12(I+ + I�)tB �12(I+ + I�)t �BÆP � ; (5.6)where the bivetor part is de�ned asÆP = 12(J�1+ � J�1� ) ; (5.7)with J� = GI�. Furthermore ÆJ = 1=2(J+ � J�). The omplex struture isI = 12(I+ + I�) + ÆP B ; (5.8)17



whereas the Poisson bivetor, whih parametrizes the non-ommutative deformations, is givenby � = �12IÆP : (5.9)In partiular, the non-ommutativity is non-trivial only if the two omplex strutures are un-equal I+ 6= I�, sine otherwise ÆP = 0. In [40℄ this was generalized to the ase of H = dB 6= 0.The only di�erene from the above equations is that the omplex strutures I� now have tobe ovariantly onstant with respet to the onnetion with torsion Hij k. Note howeverthat as in the T-fold ase, non-ommutativity arises only at the level of D-branes, i.e., thelosed-string bakground remains ommutative, albeit not neessarily geometri, as the left-and right-moving modes on the world-sheet di�er. In partiular, a generi SU(3) � SU(3)struture ompati�ation yields a pair of distint omplex strutures, and thus two distintrealizations of the N = 2 super-onformal algebra for left- and right-movers, respetively. Inthis sense, the world-sheet theory is very muh alike the situation for asymmetri orbifolds.In partiular, we an then determine ÆP in the ase of SU(3)�SU(3) struture ompat-i�ations ÆP = �12((GI+)�1 � (GI�)�1) ; (5.10)whih has again non-vanishing Poisson bivetor � = �1=2IÆP if the two omplex struturesdi�er.In ase of the two spinors being never parallel, whih orresponds to v + iw 6= 0, i.e., wehave an SU(2) struture at least loally, the orresponding � is non-zero. So this is indeedthe ase, when there are non-trivial non-ommutative deformations. In fat we an write thePoisson bivetor entirely in terms of the one-form � that haraterizes the SU(2) strutureÆP = w ^ v = 12i� ^ �� ; (5.11)whih means that the non-ommutativity is governed only by the vetors in (5.2).If the SU(2) struture is global, suh as for K3-ompati�ations, the resulting non-ommutative deformations are onstant and thus of minor interest to the present disussion.The interesting ases arise, when the above desription is only loal. Then the Poisson bive-tor is not onstant and one annot get rid of it by Morita equivalene. Thus, the lak ofglobal de�nition for the type of the pure spinors (beause of the hange of dimension betweentwo di�erent base-points that was illustrated above) makes it unlikely that the linear inde-pendene between two SU(3) spinors an be desribed by a globally-de�ned vetor �eld. Wemay obtain a Poisson bivetor ÆP , but it need not be of the form v ^ w. We shall present anexpliit example in the next setion.5.3 Torus with H-ux and mirror symmetryAn illustrative example is T 6 in the omplex oordinates (3.28) with H-ux H 2 H3(T 6;Z),whih allows to use the language of SU(3)�SU(3) strutures. We onsider a triple T-dualityalong x0; y; z, whih in this ontext orresponds to onsidering the mirror. The three-formis 
 = dz1 ^ dz2 ^ dz3 and the (1; 1)-form is J = Pi dzi ^ d�zi. In partiular, the T 3 that18



the T-duality ats upon is a speial Lagrangian yle. Note that this is di�erent from theT-duality transformations enountered in the previous setions for T 3 with H-ux, however,as in that ase, we onsider only two-legged H-ux, i.e., T-duality ats in only two diretionssupporting the H-ux.The setup for the square torus is simple enough, and the generalized omplex struture Iis diagonal. However swithing on the H-ux yieldsI(B) = � I 0BI + I tB �I t � ; (5.12)The T-dual omplex struture was determined in [22℄ to beI 0(B) = � �I t BI + I tB0 I � ; (5.13)so that the Poisson bivetor is read o� to be ÆP = BI + I tB, whih is not neessarily van-ishing, as expeted. Moreover, if we insist that the �-transformed D0-brane be a generalizedD0-brane with respet to I 0 after monodromy, we obtain the onstraint � = �(0;2), in termsof the deomposition with respet to I. The deformation parameter is one more seen to bea (0,-2) tensor.Let us onnet this non blok-diagonal GC struture to the language of maximally isotropisubspaes we used to probe the non-geometry by D0-branes. Consider again a graph of somebivetor �eld � over some subspae F of the otangent spaeL(F; �) = fX + � 2 V � F; XjF = ���g ; (5.14)and require stability of this graph under the ation of I 0. We are led to the following equation,that must hold for every element � in F�(I t)�� (�����) + (ÆP )���� = ���I���� ; (5.15)Eliminating the oordinates �� we observe that the (0;�2) part of � must equal the Poissonbivetor �eld �I + I t� = ÆP : (5.16)We therefore see that the non-diagonal blok of the GC struture in the T-dual piture ispreisely the parameter of the �-transform that is undergone by any D0-brane. Whenever ÆPis non-zero, the dimension of the projetion of a D-brane onto the tangent spae is non-zero.Therefore ÆP indues non-geometry in the sense that point-like D-branes annot be put on aGC spae with non-zero bivetor blok.As stated in theorem (5.4) of [61℄ for mirrors of omplex tori, the two generalized omplexstrutures JJ(B) and J!(B) shown in formulae (3.9) and (3.10) are exhanged by mirrorsymmetry. Indeed, if gx0yz is the element of O(6; 6) enoding T-duality in the x0; y; z diretions,the mirror exhange (I(B))0 = gx0yzJ (B)g�1x0yz ; (5.17)19



holds.As we already argued, the image of JJ by T-duality is not blok-diagonal anymore, andwe may read o� the Poisson bivetor ÆP asÆP = 12kx (�y0 ^ �z + �y ^ �z0) ; (5.18)whih is not deomposable as the tensor produt of two vetors. Hene this is a ase ofgeneralized type of T-fold. In this example of a non-geometri T-dual, the non-ommutativitysale depends on the base oordinate x in a way that prevents to gauge it away by Moritaequivalene, and furthermore it does not ome from a globally de�ned vetor �eld that enodesthe linear independene between two SU(3)-invariant spinors. The lak of a global polarizationin T-folds (II) an therefore be traed in the formalism of (III) as the non-deomposability ofthe Poisson bivetor �eld ÆP .So far our onsideration of the T-dual of a omplex torus with H-ux has shown theneessity of T-folds for the desription of the global topology, when no global hoie of typefor a pure spinor exists, whih reprodues the riterion of [8℄. What about non-ommutativityalong the dual T 2-�bres? The onnetion omes from the onstrution of topologial stringtheory on GC spaes and sigma models with bistrutures in [62, 63, 23, 64℄. It was explainedthat a tensor � of type (0;�2) an deform the B-model with generalized omplex target spae,yielding star-produts indued by the Poisson bivetor �. In order to make ontat with [12℄it would be interesting to see how the �-transform indues this very same deformation of thegeneralized B-model.The results in this setion should also be derivable from the ation of T-duality on spinorsas advoated by Hassan [65, 66, 67℄. In the geometri ase, in partiular for the the Lunin{Maldaena bakground [68℄, the analysis was performed in [69℄ and it is easily observed fromtheir results that ÆP in this ase is of the form v ^w, and non-ommutativity does not ourbetween oordinates but as relative phases between ordered produts of �elds, orrespondingto global U(1) symmetries.6 ConlusionT-duality in the presene of NSNS uxes provides the �rst stepping stone to understandinggeneralized versions of mirror symmetry �a la Strominger{Yau{Zaslow (SYZ) [70℄. The presentpaper disusses this issue, thereby merging various existing proposals for the T-dual. If theNSNS H-ux is supported only on one T-dualized diretion the dual is again geometri andonsensus has been reahed on the T-dual geometry throughout the literature. Controversystarts when two T-dualized diretions are spanned by the H-ux. Our present investigationsonern the ase of two diretions, applied to tori and torus �brations. We have shown thatthe proposal (I) of Mathai and Rosenberg, laiming the dual to be a �eld of non-ommutativetori, an be viewed as the open-string version of Hull's T-fold proposal (II). Seondly, we haveshown that generalized geometries provide an alternative setup for studying the T-dual or mir-ror, and an be reoniled with the non-ommutativity proposal by expliit onstrution of aPoisson bivetor, whih depends ruially on the bakground H-ux. As argued in [22, 71℄,20



this bivetor parametrizes non-ommutative deformations of the open strings. We found thatin the ase of two-legged H-ux, the bivetor �eld is in fat not uniform, but varies along thebase of the torus-�bration.On more general grounds it would be interesting to understand the preise onditions forthe dual spae to be non-geometri. The key ingredient for the deformation by the bivetor�eld is of ourse the multiple-onnetedness of the base of the �bration. The present disussionould be extended to ompliated �brations over a multiply-onneted base with H-ux. Onthe other hand, T-dualizing along a two-torus arrying a non-zero B-�eld and �bered over aontratible spae, as in the sequene of �-deformations in [68℄, an lead to a geometri T-dual(orbifolds with torsion in that instane). This is onsistent with the fat that any loop on thebase an be shrunk and inluded in a loal oordinate path (thus removing the �-transformedterm in the formula (4.15) in the simply-onneted ases), and also with the fat that non-ommutativity of the dual two-torus in the proposal of [12℄ is measured by lasses in the �rstintegral ohomology group of the base (thus setting the star-produt to the ordinary produtin the simply-onneted ases).Clearly it would be very interesting to extend the present disussions to more generalsetups, in partiular, a generalized SYZ onstrution would be the most natural next problemto be addressed. The argument of SYZ for the existene of T 3-�brations of Calabi{Yaumanifolds rested on the fat that a D0-brane had only its position as a modulus. In the aseof T-folds, the modulus � is a modulus of Lagrangian deformations and prevents D0-branesfrom existing, just as non-ommutativity does.AknowledgmentsWe thank Mariana Gra~na, Simeon Hellerman, Jan Louis, Varghese Mathai, Ruben Minasian,Bastiaan Spanjaard and Dan Waldram for disussions and omments on various oasions.P.G. thanks the Institute for Advaned Study for hospitality, as well as the organizers of the38th International Symposium Ahrenshoop for a stimulating onferene, and is funded bythe German-Israeli Foundation for Sienti� Researh and Development. S.S.N. thanks theErwin Shr�odinger Institute, Wien, for hospitality and is funded by a Calteh John A. MConePostdotoral Fellowship in Theoretial Physis. This work was supported in part by the DFGand the European RTN Program MRTN-CT-2004-503369.
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