
*H
EP
-P
H/
06
09
∣7
4*

 DESY-06-151
ar

X
iv

:h
ep

-p
h/

06
09

17
4 

v1
   

18
 S

ep
 2

00
6

DESY-06-151
Field Theory and Standard ModelW. Buhm�uller, C. L�udelingDeutshes Elektronen{Synhrotron DESY, 22607 Hamburg, GermanyAbstratThis is a short introdution to the Standard Modeland the underlying onepts of quantum �eld theory.

Letures given at the European Shool of High-Energy Physis,August 2005, Kitzb�uhel, Austria



Contents1 Introdution 31.1 Theoretial Perspetive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Phenomenologial Aspets . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Quantisation of Fields 62.1 Why Fields? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.1 Quantisation in Quantum Mehanis . . . . . . . . . . . . . . . . 62.1.2 Speial Relativity Requires Antipartiles . . . . . . . . . . . . . . 82.2 Multipartile States and Fields . . . . . . . . . . . . . . . . . . . . . . . 92.2.1 States, Creation and Annihilation . . . . . . . . . . . . . . . . . . 92.2.2 Charge and Momentum . . . . . . . . . . . . . . . . . . . . . . . 102.2.3 Field Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2.4 Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3 Canonial Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.4 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.4.1 Canonial Quantisation of Fermions . . . . . . . . . . . . . . . . . 152.5 Interations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.5.1 �4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.5.2 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Gauge Theories 223.1 Global Symmetries v Gauge Symmetries . . . . . . . . . . . . . . . . . . 223.2 Abelian Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.3 Non-Abelian Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . 273.4 Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Quantum Corretions 324.1 Anomalous Magneti Moment . . . . . . . . . . . . . . . . . . . . . . . . 324.2 Divergenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.2.1 Dimensional Regularisation . . . . . . . . . . . . . . . . . . . . . 364.2.2 Renormalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.2.3 Running Coupling in QED . . . . . . . . . . . . . . . . . . . . . . 404.2.4 Running Coupling in QCD . . . . . . . . . . . . . . . . . . . . . . 415 Eletroweak Theory 435.1 Quantum Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1.1 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451



5.2 Higgs Mehanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465.3 Fermion Masses and Mixings . . . . . . . . . . . . . . . . . . . . . . . . . 495.4 Preditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.4.1 Fermi Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 The Higgs Pro�le 576.1 Higgs Couplings and Deay . . . . . . . . . . . . . . . . . . . . . . . . . 576.2 Higgs Mass Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 History and Outlook 62A Vetors, Spinors and -Algebra 64A.1 Metri Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64A.2 -Matries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64A.3 Dira, Weyl and Majorana Spinors . . . . . . . . . . . . . . . . . . . . . 65

2



Chapter 1IntrodutionIn these letures we shall give a short introdution to the standard model of partilephysis with emphasis on the eletroweak theory and the Higgs setor, and we shall alsoattempt to explain the underlying onepts of quantum �eld theory.The standard model of partile physis has the following key features:� As a theory of elementary partiles, it inorporates relativity and quantum me-hanis, and therefore it is based on quantum �eld theory.� Its preditive power rests on the regularisation of divergent quantum orretionsand the renormalisation proedure whih introdues sale{dependent \runningouplings".� Eletromagneti, weak, strong and also gravitational interations are all related toloal symmetries and desribed by Abelian and non-Abelian gauge theories.� The masses of all partiles are generated by two mehanisms: on�nement andspontaneous symmetry breaking.In the following hapters we shall explain these points one by one. Finally, instead of asummary, we will briey reall the history of \The making of the Standard Model"[1℄.From the theoretial perspetive, the standard model has a simple and elegant stru-ture: It is a hiral gauge theory. Spelling out the details reveals a rih phenomenologywhih an aount for strong and eletroweak interations, on�nement and spontaneoussymmetry breaking, hadroni and leptoni avour physis et. [2, 3℄. The study of allthese aspets has kept theorists and experimenters busy for three deades. Let us brieyonsider these two sides of the standard model before we enter the disussion of thedetails.1.1 Theoretial PerspetiveThe standard model is a theory of �elds with spins 0, 12 and 1. The fermions (matter�elds) an be arranged in a big vetor ontaining left-handed spinors only:	TL = � qL1; uCR1; eCR1; dCR1; lL1; (nCR1)| {z }1st family ; qL2; : : :| {z }2nd ; : : : ; (nCR3)| {z }3rd � ; (1.1)3



where the �elds are the quarks and leptons, all in threefold family repliation. The quarksome in triplets of olour, i.e., they arry an index �, � = 1; 2; 3, whih we suppressedin the above expression. The left-handed quarks and leptons ome in doublets of weakisospin, q�Li = �u�Lid�Li� and lLi = ��LieLi� ;where i is the family index, i = 1; 2; 3. We have inluded a right-handed neutrino nRbeause there is evidene for neutrino masses from neutrino osillation experiments.The subsripts L and R denote left- and right-handed �elds, respetively, whih areeigenstates of the hiral projetion operators PL or PR. The supersript C indiatesthe harge onjugate �eld (the antipartile). Note that the harge onjugate of a right-handed �eld is left-handed:PL L � 1 � 52  L =  L ; PL CR =  CR ; PL R = PL CL = 0 ; (1.2)PR R � 1 + 52  R =  R ; PR CL =  CL ; PR L = PR CR = 0 : (1.3)So all �elds in the big olumn vetor of fermions have been hosen left-handed. Alto-gether there are 48 hiral fermions. The fat that left- and right-handed fermions arrydi�erent weak isospin makes the standard model a hiral gauge theory. The threefoldrepliation of quark-lepton families is one of the puzzles whose explanation requiresphysis beyond the standard model [4℄.The spin-1 partiles are the gauge bosons assoiated with the fundamental intera-tions in the standard model,GA� ; A = 1; : : : ; 8 : the gluons of the strong interations ; (1.4)W I� ; I = 1; 2; 3 ; B� : the W and B bosons of the eletroweak interations. (1.5)These fores are gauge interations, assoiated with the symmetry groupGSM = SU(3)C � SU(2)W � U(1)Y ; (1.6)where the subsripts C, W , and Y denote olour, weak isospin and hyperharge, respe-tively.The gauge group ats on the fermions via the ovariant derivative D�, whih is anordinary partial derivative plus a big matrix A� built out of the gauge bosons and thegenerators of the gauge group:D�	L = (��1 + gA�) 	L : (1.7)From the ovariant derivative we an also onstrut the �eld strength tensor,F�� = � �g [D�;D� ℄ ; (1.8)whih is a matrix-valued objet as well. 4



The last ingredient of the standard model is the Higgs �eld �, the only spin-0 �eldin the theory. It is a omplex salar �eld and a doublet of weak isospin. It ouples left-and right-handed fermions together.Written in terms of these �elds, the Lagrangean of the theory is rather simple: L = �12 tr [F��F ��℄ + 	L��D�	L + tr h(D��)yD��i+ �2 �y� � 12� ��y��2 +�12	TLCh�	L + h..� : (1.9)The matrix C in the last term is the harge onjugation matrix ating on the spinors, his a matrix of Yukawa ouplings. All oupling onstants are dimensionless, in partiular,there is no mass term for any quark, lepton or vetor boson. All masses are generatedvia the Higgs mehanism whih gives a vauum expetation value to the Higgs �eld,h�i � v = 174 GeV : (1.10)The Higgs boson assoiated with the Higgs mehanism has not yet been found, but itsdisovery is generally expeted at the LHC.1.2 Phenomenologial AspetsThe standard model Lagrangean (1.9) has a rih struture whih has led to di�erentareas of researh in partile physis:� The gauge group is omposed of three subgroups with di�erent properties:{ The SU(3) part leads to quantum hromodynamis, the theory of strong in-terations [5℄. Here the most important phenomena are asymptoti freedomand on�nement: The quarks and gluons appear as free partiles only atvery short distanes, probed in deep-inelasti sattering, but are on�nedinto mesons and baryons at large distanes.{ The SU(2) � U(1) subgroup desribes the eletroweak setor of the standardmodel. It gets broken down to the U(1)em subgroup of quantum eletrodynam-is by the Higgs mehanism, leading to massive W and Z bosons whih areresponsible for harged and neutral urrent weak interations, respetively.� The Yukawa interation term an be split into di�erent piees for quarks andleptons:12	TLCh�	L = hu ij �uRiqLj� + hd ij �dRiqLje� + he ij�eRilLje� + hn ij�nRilLj� ; (1.11)where i; j = 1; 2; 3 label the families and e�a = �ab��b . When the Higgs �elddevelops a vauum expetation value h�i = v, the Yukawa interations generatemass terms. The �rst two terms, mass terms for up-type- and down-type-quarks,respetively, annot be diagonalised simultaneously, and this misalignment leadsto the CKM matrix and avour physis [6℄. Similarly, the last two terms give riseto lepton masses and neutrino mixings [7℄.5



Chapter 2Quantisation of FieldsIn this hapter we will over some basis of quantum �eld theory (QFT). For a more in-depth treatment, there are many exellent books on QFT and its appliation in partilephysis, suh as [2, 3℄.2.1 Why Fields?2.1.1 Quantisation in Quantum Mehanis q(t)_q(t)Figure 2.1: Partile movingin one dimensionQuantum mehanis is obtained from lassial mehanis bya method alled quantisation. Consider for example a par-tile moving in one dimension along a trajetory q(t), withveloity _q(t) (see Fig. 2.1). Its motion an be alulated inthe Lagrangean or the Hamiltonian approah. The Lagrangefuntion L(q; _q) is a funtion of the position and the veloityof the partile, usually just the kineti minus the potentialenergy. The equation of motion is obtained by requiring thatthe ation, the time integral of the Lagrange funtion, be ex-tremal, or, in other words, that its variation under arbitraryperturbations around the trajetory vanishes:ÆS = Æ Z dtL (q(t); _q(t)) = 0 : (2.1)The Hamiltonian of the system, whih orresponds to the total energy, depends on theoordinate q and its onjugate momentum p rather than _q:H(p; q) = p _q � L (q; _q) ; p = �L� _q : (2.2)To quantise the system, one replaes the oordinate and the momentum by operatorsq and p ating on some Hilbert spae of states we will speify later. In the Heisenbergpiture, the states are time-independent and the operators hange with time asq(t) = e�Htq(0)e��Ht : (2.3)6



Sine p and q are now operators, they need not ommute, and one postulates the om-mutation relation [p(0); q(0)℄ = ��~ ; (2.4)where h = 2�~ is Plank's onstant. In the following we shall use units where ~ =  = 1.The ommutator (2.4) leads to the unertainty relation�q ��p � 12 : (2.5)Note that on Shr�odinger wave funtions the operator q is just the oordinate itself andp is ���=�q. In this way the ommutation relation (2.4) is satis�ed.As an example example of a quantum mehanial system, onsider the harmoniosillator with the Hamiltonian H = 12 �p2 + !2q2� ; (2.6)whih orresponds to a partile (with mass 1) moving in a quadrati potential with astrength haraterised by !2. Classially, H is simply the sum of kineti and potentialenergy. In the quantum system, we an de�ne new operators as linear ombinations ofp and q: q = 1p2! �a+ ay� ; p = ��r!2 �a� ay� ; (2.7a)i:e: ; a = r!2 q + �r 12!p ; ay =r!2 q � �r 12!p : (2.7b)a and ay satisfy the ommutation relations�a; ay� = 1 : (2.8)In terms of a and ay the Hamiltonian is given byH = !2 �aay + aya� : (2.9)Sine Eqs. (2.7) are linear transformations, the new operators a and ay enjoy the sametime evolution as q and p: a(t) = e�Hta(0)e��Ht = a(0)e��!t ; (2.10)where the last equality follows from the ommutator of a with the Hamiltonian,[H; a℄ = �!a ; �H; ay� = !ay : (2.11)We an now onstrut the Hilbert spae of states the operators at on. We �rst notiethat the ommutators (2.11) imply that a and ay derease and inrease the energyof a state, respetively. To see this, suppose we have a state jEi with �xed energy,HjEi = EjEi. ThenHajEi = (aH + [H; a℄)jEi = aEjEi � !ajEi = (E � !) ajEi ; (2.12)7



i.e., the energy of a the state ajEi is (E � !). In the same way one an show thatHayjEi = (E + !)jEi. From the form of H we an also see that its eigenvalues mustbe positive. This suggests onstruting the spae of states starting from a lowest-energystate j0i, the vauum or no-partile state. This state needs to satisfyaj0i = 0 ; (2.13)so its energy is !=2. States with more \partiles", i.e., higher exitations, are obtainedby suessive appliation of ay:jni = �ay�nj0i ; with Hjni = �n+ 12�!jni : (2.14)2.1.2 Speial Relativity Requires AntipartilesA1!B1+e��Q=1(t1;~x1) (t2;~x2)A2+e�!B2�Q=�1Figure 2.2: Eletron moving fromA1 to A2
So far, we have onsidered nonrelativisti quan-tum mehanis. A theory of elementary partiles,however, has to inorporate speial relativity. It isvery remarkable that quantum mehanis togetherwith speial relativity implies the existene of an-tipartiles. To see this (following an argumentin [8℄), onsider two system (e.g. atoms) A1 andA2 at positions ~x1 and ~x2. Assume that at timet1 atom A1 emits an eletron and turns into B1.So the harge of B1 is one unit higher than thatof A1. At a later time t2 the eletron is absorbed by atom A2 whih turns into B2 withharge lower by one unit. This is illustrated in Fig. 2.2.Aording to speial relativity, we an also wath the system from a frame movingwith relative veloity ~v. One might now worry whether the proess is still ausal, i.e.,whether the emission still preedes the absorption. In the boosted frame (with primedoordinates), one hast02 � t01 =  (t2 � t1) + ~v (~x2 � ~x1) ;  = 1p1 � ~v 2 : (2.15)t02�t01 must be positive for the proess to remain ausal. Sine j~vj < 1, t02�t01 an only benegative for spaelike distanes, i.e., (t2 � t1)2 � (~x1 � ~x2)2 < 0. This, however, wouldmean that the eletron travelled faster than the speed of light, whih is not possibleaording to speial relativity. Hene, within lassial physis, ausality is not violated.This is where quantum mehanis omes in. The unertainty relation leads to a\fuzzy" light one, whih gives a non-negligible propagation probability for the eletroneven for slightly spaelike distanes, as long as(t2 � t1)2 � (~x1 � ~x2)2 & � ~2m2 : (2.16)Does this mean ausality is violated? 8



A2!B2+e+�Q=�1(t02;~x02)(t01;~x01)A1+e+!B1�Q=1Figure 2.3: Positron moving fromA2 to A1Fortunately, there is a way out: The antipar-tile. In the moving frame, one an onsider thewhole proess as emission of a positron at t = t02,followed by its absorption at a later time t = t01(see Fig. 2.3). So we see that quantum mehanistogether with speial relativity requires the exis-tene of antipartiles for onsisteny. In addition,partile and antipartile need to have the samemass.In a relativisti theory, the unertainty rela-tion (2.5) also implies that partiles annot be loalized below their Compton wavelength�x � ~m : (2.17)For shorter distanes the momentum unertainty �p > m allows for ontributions frommultipartile states, and one an no longer talk about a single partile.2.2 Multipartile States and FieldsIn the previous setion we saw that the ombination of quantum mehanis and speialrelativity has important onsequenes. First, we need antipartiles, and seond, partilenumber is not well-de�ned. These properties an be onveniently desribed by means of�elds. A �eld here is a olletion of in�nitely many harmoni osillators, orrespondingto di�erent momenta. For eah osillator, we an onstrut operators and states just asbefore in the quantum mehanial ase. These operators will then be ombined into a�eld operator, the quantum analogue of the lassial �eld. These results an be obtainedby applying the method of anonial quantisation to �elds.2.2.1 States, Creation and AnnihilationThe starting point is a ontinuous set of harmoni osillators, whih are labelled by thespatial momentum ~k. We want to onstrut the quantum �elds for partiles of mass m,so we an ombine eah momentum ~k with the assoiated energy !k = k0 = p~k2 +m2to form the momentum 4-vetor k. This 4-vetor satis�es k2 � k�k� = m2. For eah kwe de�ne reation and annihilation operators, both for partiles (a, ay) and antipartiles(b, by), and onstrut the spae of states just as we did for the harmoni osillator in theprevious setion.For the states we again postulate the vauum state, whih is annihilated by bothpartile and antipartile annihilation operators. Eah reation operator ay(k) (by(k))reates a (anti)partile with momentum k, so the spae of states is:vauum: j0i ; a(k)j0i = b(k)j0i = 0one-partile states: ay(k)j0i ; by(k)j0itwo-partile states: ay(k1)ay(k2)j0i ; ay(k1)by(k2)j0i ; by(k1)by(k2)j0i... 9



Like in the harmoni osillator ase, we also have to postulate the ommutation rela-tions of these operators, and we hoose them in a similar way: operators with di�erentmomenta orrespond to di�erent harmoni osillators and hene they ommute. Fur-thermore, partile and antipartile operators should ommute with eah other. Hene,there are only two non-vanishing ommutators (\anonial ommutation relations"):�a(k); ay(k0)� = �b(k); by(k0)� = (2�)3 2!k Æ3�~k � ~k0� ; (2.18)whih are the ounterparts of relation (2.8). The expression on the right-hand side isthe Lorentz-invariant way to say that only operators with the same momentum do notommute (the (2�)3 is just onvention).Sine we now have a ontinuous label for the reation and annihilation operators, weneed a Lorentz-invariant way to sum over operators with di�erent momentum. The fouromponents of k are not independent, but satisfy k2 � k�k� = m2, and we also requirepositive energy, that is k0 = !k > 0. Taking these things into aount, one is led to theintegration measureZ dk � Z d4k(2�)4 2� Æ�k2 �m2� ��k0�= Z d4k(2�)3Æ��k0 � !k� �k0 + !k�� ��k0�= Z d4k(2�)3 12!k �Æ�k0 � !k�+ Æ�k0 + !k�� ��k0�= Z d3k(2�)3 12!k : (2.19)The numerial fators are hosen suh that they math those in Eq. (2.18) for theommutator of a(k) and ay(k).2.2.2 Charge and MomentumNow we have the neessary tools to onstrut operators whih express some properties of�elds and states. The �rst one is the operator of 4-momentum, i.e., of spatial momentumand energy. Its onstrution is obvious, sine we interpret ay(k) as a reation operator fora state with 4-momentum k. That means we just have to ount the number of partileswith eah momentum and sum the ontributions:P � = Z dk k� �ay(k)a(k) + by(k)b(k)� : (2.20)This gives the orret ommutation relations:�P �; ay(k)� = k�ay(k) ; �P �; by(k)� = k�by(k) ; (2.21a)�P �; a(k)� = �k�a(k) ; �P �; b(k)� = �k�b(k) : (2.21b)Another important operator is the harge. Sine partiles and antipartiles haveopposite harges, the net harge of a state is proportional to the number of partiles10



minus the number of antipartiles:Q = Z dk �ay(k)a(k)� by(k)b(k)� ; (2.22)and one easily veri�es�Q; ay(k)� = ay(k) ; �Q; by(k)� = �by(k) : (2.23)We now have on�rmed our intuition that ay(k) �by(k)� reates a partile with 4-momentum k and harge +1 (-1). Both momentum and harge are onserved: The timederivative of an operator is equal to the ommutator of the operator with the Hamilto-nian, whih is the 0-omponent of P �. This obviously ommutes with the momentumoperator, but also with the harge:� ddtQ = [Q;H℄ = 0 : (2.24)So far, this onstrution applied to the ase of a omplex �eld. For the speial aseof neutral partiles, one has a = b and Q = 0, i.e., the �eld is real.2.2.3 Field OperatorWe are now ready to introdue �eld operators, whih an be thought of as Fouriertransform of reation and annihilation operators:�(x) = Z dk �e��kxa(k) + e�kxby(k)� : (2.25)A spaetime translation is generated by the 4-momentum in the following way:e�yP�(x)e��yP = �(x+ y): (2.26)This transformation an be derived from the transformation of the a's:e�yPay(k)e��yP = ay(k) + �y� �P �; ay(k)�+O �y2� (2.27)= (1 + �yk + � � � ) ay(k) (2.28)= e�ykay(k) : (2.29)The ommutator with the harge operator is[Q;�(x)℄ = ��(x) ; �Q;�y� = �y : (2.30)The �eld operator obeys the (free) �eld equation,��+m2��(x) = Z dk ��k2 +m2� �e��kxa(k) + e�kxby(k)� = 0; (2.31)where � = �2=�t2 � ~r2 is the d'Alambert operator.11



2.2.4 Propagator (t1;~x1)�Q=+1 (t2;~x2)�Q=�1t2>t1; Q=�1t1>t2; Q=+1Figure 2.4: Propagation of a partile or an an-tipartile, depending on the temporal order.
Now we an takle the problem of ausal prop-agation that led us to introdue antipartiles.We onsider the ausal propagation of a hargedpartile between x�1 = (t1; ~x1) and x�2 = (t2; ~x2),see Fig. (2.4). The �eld operator reates a statewith harge �1 \at position (t; ~x)",Q�(t; ~x)j0i = ��(t; ~x)j0i ; (2.32)Q�y(t; ~x)j0i = �y(t; ~x)j0i : (2.33)Depending on the temporal order of x1 andx2, we interpret the propagation of harge either as a partile going from x1 to x2 or anantipartile going the other way. Formally, this is expressed as the time-ordered produt(using the �-funtion, �(� ) = 1 for � > 0 and �(� ) = 0 for � < 0):T�(x2)�y(x1) = �(t2 � t1)�(x2)�y(x1) + �(t1 � t2)�y(x1)�(x2) : (2.34)The vauum expetation value of this expression is the Feynman propagator:��F(x2 � x1) = 
0 ��T�(x2)�y(x1)�� 0�= �Z d4k(2�)4 e�k(x2�x1)k2 �m2 + �" ; (2.35)where we used the �-funtion representation�(� ) = � 12�� 1Z�1d! e��!�! + �� : (2.36)This Feynman propagator is a Green funtion for the �eld equation,��+m2��F(x2 � x1) = Z d4k(2�)4 (�p2 +m2)p2 �m2 + �"e��p(x2�x1) = �Æ4 (x2 � x1) : (2.37)It is ausal, i.e. it propagates partiles into the future and antipartiles into the past.2.3 Canonial QuantisationAll the results from the previous setion an be derived in a more rigorous manner byusing the method of anonial quantisation whih provides the step from lassial toquantum mehanis. We now start from lassial �eld theory, where the �eld at point ~xorresponds to the position q in lassial mehanis, and we again have to onstrut theonjugate momentum variables and impose ommutation relations among them.Let us onsider the Lagrange density for a omplex salar �eld �. Like the Lagrangeanin lassial mehanis, the free Lagrange density is just the kineti minus the potentialenergy density,  L = ���y����m2�y� : (2.38)12



The Lagrangean has a U(1)-symmetry, i.e., under the transformation of the �eld�! �0 = e��� ; � = onst: ; (2.39)it stays invariant. From Noether's theorem, there is a onserved urrent j� assoiatedwith this symmetry,j� = ��y�$�� = � ��y���� ���y�� ; ��j� = 0 : (2.40)The spae integral of the time omponent of this urrent is onserved in time:Q = Z d3x ��y�$0� ; �0Q = 0 : (2.41)The time derivative vanishes beause we an interhange derivation and integration andthen replae �0j0 by �iji sine ��j� = �0j0+�iji = 0. So we are left with an integral of atotal derivative whih we an transform into a surfae integral via Gauss' theorem. Sinewe always assume that all �elds vanish at spatial in�nity, the surfae term vanishes.Now we need to onstrut the \momentum" �(x) onjugate to the �eld �. Like inlassial mehanis, it is given by the derivative of the Lagrangean with respet to thetime derivative of the �eld,�(x) = �  L� _�(x) = _�y(x) ; �y(x) = �  L� _�y(x) = _� : (2.42)At this point, we again replae the lassial �elds by operators whih at on someHilbert spae of states and whih obey ertain ommutation relations. The ommuta-tion relations we have to impose are analogous to Eq. (2.4). The only non-vanishingommutators are the ones between �eld and onjugate momentum, at di�erent spatialpoints but at equal times,[�(t; ~x); �(t; ~x0)℄ = ��y(t; ~x); �y(t; ~x0)� = ��Æ3 (~x� ~x0) ; (2.43)all other ommutators vanish.These relations are satis�ed by the �eld operator de�ned in Eq. (2.25) via the(anti)partile reation and annihilation operators. Its �eld equation an be derivedfrom the Lagrangean, �� �  L�(���) � �  L�� = ��+m2��y = 0 : (2.44)From the Lagrangean and the momentum, we an also onstrut the Hamiltoniandensity, H = � _�+ �y _�y �  L = �y� + �~r�y��~r��+m2�y� : (2.45)Note that anonial quantisation yields Lorentz invariant results, although it requiresthe hoie of a partiular time diretion. 13



2.4 FermionsFermions are what makes alulations unpleasant.In the previous setion we onsidered a salar �eld, whih desribes partiles withspin 0. In the standard model, there is just one fundamental salar �eld, the Higgs �eld,whih still remains to be disovered. There are other bosoni �elds, gauge �elds whiharry spin 1 (photons, W�, Z0 and the gluons). Those are desribed by vetor �eldswhih will be disussed in Chapter 3. Furthermore, there are the matter �elds, fermionswith spin 12 , the quarks and leptons.To desribe fermioni partiles, we need to introdue new quantities, spinor �elds.These are four-omponent objets (but not vetors!)  , whih are de�ned via a set of-matries. These four-by-four matries are labelled by a vetor index and at on spinorindies. They ful�ll the antiommutation relations (the Cli�ord or Dira algebra),f�; �g = 2g��1 ; (2.46)with the metri g�� = diag(+;�;�;�). The numerial form of the -matries is not�xed, rather, one an hoose among di�erent possible representations. A ommon rep-resentation is the so-alled hiral or Weyl representation, whih is onstruted from thePauli matries: 0 = � 0 1212 0 � ; i = � 0 �i��i 0� : (2.47)This representation is partiularly useful when one onsiders spinors of given hiralities.However, for other purposes, other representations are more onvenient. Various rulesand identities related to -matries are olleted in Appendix A.The Lagrangean for a free fermion ontains, just as for a salar, the kineti term andthe mass:  L =  �=� �m  : (2.48)The kineti term ontains only a �rst-order derivative, the operator =� � ���. Theadjoint spinor  is de�ned as  �  y0. (The �rst guess  y is not Lorentz invariant.)To derive the �eld equation, one has to treat  and  as independent variables. TheEuler-Lagrange equation for  is the familiar Dira equation:0 = �  L� = ��=� �m� ; (2.49)sine  L does not depend on derivatives of  .1The Lagrangean again has a U(1)-symmetry, the multipliation of  by a onstantphase,  !  0 = e�� ;  !  0 = e��� ; (2.50)whih leads to a onserved urrent and, orrespondingly, to a onserved harge,j� =  � ; ��j� = 0 ; Q = Z d3x 0 : (2.51)1Of ourse one an shift the derivative from  to  via integration by parts. This slightly modi�esthe omputation, but the result is still the same. 14



2.4.1 Canonial Quantisation of FermionsQuantisation proeeds along similar lines as in the salar ase. One �rst de�nes themomentum �� onjugate to the �eld  � (� = 1; : : : ; 4),�� = �  L� _ � = � � 0�� = � y� : (2.52)Instead of imposing ommutation relations, however, for fermions one has to imposeantiommutation relations. This is a manifestation of the Pauli exlusion priniple whihan be derived from the spin-statistis theorem. The relations are again postulated atequal times (\anonial antiommutation relations"):f��(t; ~x);  �(t; ~x0)g = ��Æ��Æ3 (~x� ~x0) ; (2.53a)f��(t; ~x); ��(t; ~x0)g = f �(t; ~x);  �(t; ~x0)g = 0 : (2.53b)In order to obtain reation and annihilation operators, we again expand the �eldoperator in terms of plane waves. Beause of the four-omponent nature of the �eld,now a spinor u(p) ours, where p is the momentum four-vetor of the plane wave:��=� �m�u(p)e��px = 0 ; (2.54)whih implies �=p �m�u(p) = 0 : (2.55)This is an eigenvalue equation for the 4 � 4-matrix p��, whih has two solutions forp2 = m2 and p0 > 0. They are denoted u(1;2)(p) and represent positive energy partiles.Taking a positive sign in the exponential in Eq. (2.54), whih is equivalent to onsideringp0 < 0, we obtain two more solutions, v(1;2)(p) that an be interpreted as antipartiles.The form of these solutions depends on the representation of the -matries. For theWeyl representation they are given in the appendix.The eigenspinors determined from the equations (� = 1; 2),�=p �m�u(i)(p) = 0 ; �=p +m� v(i)(p) = 0 ; (2.56)obey the identities: u(i)(p)u(j)(p) = �v(i)(p)v(j)(p) = 2mÆij ; (2.57)Xi u(i)� (p)u(i)� (p) = �=p +m��� ; Xi v(i)� (p)v(i)� (p) = �=p �m��� : (2.58)These are the ingredients we need to de�ne reation and annihilation operators interms of the spinor �eld  (x) and its onjugate  (x): (x) = Z dpXi �bi(p)u(i)(p)e��px + dyi (p)v(i)(p)e�px� ; (2.59a) (x) = Z dpXi �byi(p)u(i)(p)e�px + di(p)v(i)(p)e��px� : (2.59b)15



Here, as before, dp = d3p(2�)3 12Ep ; Ep = p~p2 +m2 : (2.60)Inverting Eq. (2.59a) one obtainsbi(p) = Z d3xu(i)(p)e�px0 (x) ; (2.61)and similar equations for the other operators.The reation and annihilation operators inherit the antiommutator algebra from the�eld operators, nbi(~p); byj(~p 0)o = ndi(~p); dyj(~p 0)o = (2�)32EpÆ3 (~p � ~p 0) ; (2.62a)fbi(~p ); dj(~p 0)g = all other antiommutators = 0 : (2.62b)The momentum and harge operators are again onstruted from the reation andannihilation operators by \ounting" the number of partiles in eah state and summingover all states, P � = Z dk k� �by(k)b(k) + dy(k)d(k)� ; (2.63)Q = Z dk �by(k)b(k)� dy(k)d(k)� : (2.64)These operators have the orret algebrai relations, whih involve ommutators, sineP � and Q are bosoni operators (not hanging the number of fermions in a given state):hP �; byi (p)i = p�byi (p) ; hP �; dyi (p)i = p�dyi (p) ; (2.65)hQ; byi(p)i = byi (p) ; hQ; dyi(p)i = �dyi (p) : (2.66)An operator we did not enounter in the salar ase is the spin operator ~� . Ithas three omponents, orresponding to the three omponents of an angular momentumvetor2. Only one ombination of these omponents is, however, measurable. This isspei�ed by a hoie of quantisation axis, i.e., a spatial unit vetor ~s. The operator thatmeasures the spin of a partile is given by the salar produt ~s � ~�. Creation operatorsfor partiles with de�nite spin satisfy the ommutation relationsh~s � ~�; dy�(p)i = �12dy�(p) ; h~s � ~�; by�(p)i = �12by�(p) : (2.67)In summary, all these ommutation relations tell us how to interpret the operatorsdy�(p) (by�(p)): They reate spin-12 fermions with four-momentum p�, harge +1 (�1)2Atually, � is onstruted as a ommutator of -matries and as suh has six independent ompo-nents. But three of these orrespond to Lorentz boosts whih mix time and spatial diretions. ~� is thespin operator in the rest frame. 16



and spin orientation �12 (�12) relative to the hosen axis ~s. Their onjugates d�(p) andb�(p) annihilate those partiles.This immediately leads to the onstrution of the Fok spae of fermions: We againstart from a vauum state j0i, whih is annihilated by the annihilation operators, andonstrut partile states by suessive appliation of reation operators:vauum: j0i ; bi(p)j0i = di(p)j0i = 0one-partile states: byi(p)j0i ; dyi (p)j0itwo-partile states: byi(p1)dyj(p2)j0i ; : : :...At this point we an verify that the Pauli priniple is indeed satis�ed, due to the hoieof antiommutation relations in Eq. (2.53). For a state of two fermions with identialquantum numbers, we would getbyi (p) byi (p)| {z }antiommutingjXi = �byi(p) byi (p)jXi = 0 ; (2.68)wherejXi is an arbitrary state. Had we quantised the theory with ommutation relationsinstead, the fermions would have the wrong (i.e., Bose) statistis.The �nal expression we need for the further disussion is the propagator. By thesame reasoning as in the salar ase, it is obtained as the time-ordered produt of two�eld operators. The Feynman propagator SF for fermions, whih is now a matrix-valuedobjet, is given by�SF(x1 � x2)�� = 
0 ��T �(x1) �(x2)�� 0�= �Z d4p(2�)4 �=p+m���p2 �m2 + �"e��p(x1�x2) : (2.69)This ompletes our disussion on the quantisation of free salar and spinor �elds.2.5 InterationsSo far, we have onsidered free partiles and their propagation. A theory of elementarypartiles obviously needs interations. Unfortunately, they are muh more diÆult tohandle, and little is known rigorously (exept in two dimensions). Hene, we have tolook for approximations.By far the most important approximation method is perturbation theory where onetreats the interation as a small e�et, a perturbation, to the free theory. The interationstrength is quanti�ed by a numerial parameter, the oupling onstant, and one expressesphysial quantities as power series in this parameter. This approah has been verysuessful and has led to many elebrated results, like the preise predition of theanomalous magneti moment of the eletron, despite the fat that important oneptualproblems still remain to be resolved. 17



2.5.1 �4 Theory p1 ...pn p01... p0mFigure 2.5: Sattering of n inoming parti-les, produing m outgoing ones with momentap1; : : : ; pn and p01; : : : ; p0m, respetively.
Let us onsider the simplest example of aninterating theory, involving only one realsalar �eld with a quarti self-interation (aubi term would look even simpler, but thenthe theory would not have a ground statesine the energy would not be bounded frombelow): L =  L0 +  LI= 12������� 12m2�2 � �4!�4 : (2.70) L0 is the free Lagrangean, ontaining kinetiand mass term, while  LI is the interation term, whose strength is given by the dimen-sionless oupling onstant �.In perturbation theory we an alulate various physial quantities, in partiularsattering ross setions for proesses like the one in Fig. 2.5: n partiles with momentapi interat, resulting in m partiles with momenta p0j . Sine the interation is loalisedin a region of spaetime, partiles are free at in�nite past and future. In other words,we have free asymptoti statesjp1; : : : ; pn ; ini at ; t = �1 and jp01; : : : ; p0m ; outi at t = +1 : (2.71)The transition amplitude for the sattering proess is determined by the salar produtof inoming and outgoing states, whih de�nes a unitary matrix, the so-alled S-matrix(S for sattering),hp01; : : : ; p0m ; out j p1; : : : ; pn ; ini = hp01; : : : ; p0m jSj p1; : : : ; pni : (2.72)p1...pnp2 p01pn...p0mFigure 2.6: A disonneted diagram: One par-tile does not partiipate in the interation.Detailed tehniques have been developedto obtain a perturbative expansion for the S-matrix from the de�nition (2.72). The basisare Wik's theorem and the LSZ-formalism.One starts from a generalisation of the prop-agator, the time-ordered produt of k �elds,� (x1; : : : ; xk)= h0 jT �(x1); : : : �(xk)j 0i : (2.73)First, disonneted piees involving non-interating partiles have to be subtrated (seeFig. 2.6), and the blob in Fig. 2.5 deomposes into a smaller blob and straight lines justpassing from the left to the right side. From the Fourier transform� (x01; : : : ; x0m; x1; : : : ; xn) F:T:�! ~�(p01; : : : ; p0m; p1; : : : ; pn) (2.74)one then obtains the amplitude for the sattering proesshp01; : : : ; p0m jSj p1; : : : ; pni = (2�)4 Æ4 Xout p0i �Xin pi! iM ; (2.75)18



where the matrix element M ontains all the dynamis of the interation. Due to thetranslational invariane of the theory, the total momentum is onserved. The matrixelement an be alulated perturbatively up to the desired order in the oupling � viaa set of Feynman rules. To alulate the ross setion for a partiular proess, one �rstdraws all possible Feynman diagrams with a given number of verties and then translatesthem into an analyti expression using the Feynman rules.For the �4 theory, the Feynman diagrams are all omposed out of three buildingbloks: External lines orresponding to inoming or outgoing partiles, propagators and4-verties. The Feynman rules read:i. p 1 External lines: For eah external line, multiply by 1(i.e., external lines don't ontribute to the matrix ele-ment in this theory). However, one needs to keep trakof the momentum of eah partile entering or leavingthe interation. The momentum diretion is indiatedby the arrow.ii. p �p2 �m2 + �" Propagators between verties are free propagators or-responding to the momentum of the partile. Notethat partiles of internal lines need not be on-shell, i.e.,p2 = m2 need not hold!iii. ��� Verties yield a fator of the oupling onstant. In thistheory, there is only one speies of partiles, and theinteration term does not ontain derivatives, so thereis only one vertex, and it does not depend on the mo-menta.iv. Z d4p(2�)4 The momenta of internal loops are not �xed by the in-oming momenta. For eah undetermined loop momen-tum p, one integrates over all values of p.As an example, let us alulate the matrix element for the 2 ! 2 sattering proessto seond order in �. The relevant diagrams are olleted in Fig. (2.7). The �rst-orderdiagram simply ontributes a fator of ���, while the seond-order diagrams involve anintegration:�M = ���+ 12 (���)2 Z d4p(2�)4 �p2 �m2 �(p+ p1 � p3)2 �m2+ 12 (���)2 Z d4p(2�)4 �p2 �m2 �(p + p1 � p4)2 �m2+ 12 (���)2 Z d4p(2�)4 �p2 �m2 �(p1 + p2 � p)2 �m2 +O ��3� : (2.76)The fators of 12 are symmetry fators whih arise if a diagram is invariant under inter-hange of internal lines. The expression for M has a serious problem: The integrals do19



p1p2 p3p4(a) Tree graph Figure 2.7: Feynman graphs for 2 ! 2 satteringin �4 theory to seond order. The one-loop graphsall are invariant under the interhange of the inter-nal lines and hene get a symmetry fator of 12 .p1p2 p3p4p p+ p1 � p3 p1p2 p3p4p p1p2 p3p4pp1 + p2 � p(a) One-loop graphsnot onverge. This an be seen by ounting the powers of the integration variable p.For p muh larger that inoming momenta and the mass, the integrand behaves like p�4.That means that the integral depends logarithmially on the upper integration limit,�Z d4p(2�)4 �p2 �m2 �(p + p1 � p3)2 �m2 p� pi;m���������! �Z d4p(2�)4�1p4 / ln� : (2.77)Divergent loop diagrams are ubiquitous in quantum �eld theory. They an be uredby regularisation, i.e., making the integrals �nite by introduing some uto� parameter,and renormalisation, where this additional parameter is removed in the end, yielding�nite results for observables. This will be disussed in more detail in the hapter onquantum orretions.2.5.2 FermionsWe an augment the theory by adding a fermioni �eld  , with a Lagrangean inludingan interation with the salar �, L =  ��=� �m� | {z }free Lagrangean � g � | {z }interation : (2.78)There are additional Feynman rules for fermions. The lines arry two arrows, one forthe momentum as for the salars and one for the fermion number ow, whih basiallydistinguishes partiles and antipartiles. The additional rules are:i. p�!p�! u(p)u(p) Inoming or outgoing partiles get a fator of u(p) oru(p), respetively.ii. p�!p�! v(p)v(p) Inoming or outgoing antipartiles get a fator of v(p)or v(p), respetively.20



iii. p�! � �=p +m�p2 �m2 + �" Free propagator for fermion with momentum p.iv. ��g The fermion-fermion-salar vertex yields a fator of theoupling onstant. Again, there is no momentum de-pendene.
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Chapter 3Gauge TheoriesIn addition to spin-0 and spin-12 partiles, the standard model ontains spin-1 partiles.They are the quanta of vetor �elds whih an desribe strong and eletroweak intera-tions. The orresponding theories ome with a loal (\gauge") symmetry and are alledgauge theories.3.1 Global Symmetries v Gauge SymmetriesConsider a omplex salar �eld with the Lagrangean L = ���y�� � V ��y�� ; (3.1)whih is a generalisation of the one onsidered in Eq. (2.38). This theory has a U(1)symmetry under whih � ! �0 = expf��g� with onstant parameter �. Usually it issuÆient to onsider the variation of the �elds and the Lagrangean under in�nitesimaltransformations, Æ� = �0 � � = ��� ; Æ�y = ����y ; (3.2)where terms O (�2) have been negleted. To derive the Noether urrent, Eq. (2.40), weompute the variation of the Lagrangean under suh a transformation:Æ L = �  L��Æ�+ �  L��yÆ�y + �  L� (���) Æ (���)| {z }=��Æ� + �  L� (���y)Æ ����y�= ��  L�� � �� �  L� (���)�| {z }=0 by equation of motion Æ�+� �  L��y � �� �  L� (���y)�| {z }=0 Æ�y+ ��� �  L� (���)Æ�+ �  L� (���y)Æ�y�= ��� �����y�� ��y����= ����j� : (3.3)Sine the Lagrangean is invariant, Æ L = 0, we obtain a onserved urrent for solutionsof the equations of motion, ��j� = 0 : (3.4)22



From the �rst to the seond line we have used that�  L� (���)��Æ� = ��� �  L� (���)Æ������ �  L� (���)� Æ� (3.5)by the Leibniz rule.The above proedure an be generalised to more ompliated Lagrangeans and sym-metries. The derivation does not depend on the preise form of  L, and up to the seondline of (3.3), it is independent of the form of Æ�. As a general result, a symmetry of theLagrangean always implies a onserved urrent, whih in turn gives a onserved quantity(often referred to as harge, but it an be angular momentum or energy as well).What is the meaning of suh a symmetry? Loosely speaking, it states that \physisdoes not hange" under suh a transformation. This, however, does not mean that thesolutions to the equations of motion derived from this Lagrangean are invariant undersuh a transformation. Indeed, generially they are not, and only � � 0 is invariant.As an example, onsider the Mexian hat potential,V (�y�) = ��2�y�+ � ��y��2 : (3.6)This potential has a ring of minima, namely all �elds for whih j�j2 = �2=(2�). Thismeans that any onstant � with this modulus is a solution to the equation of motion,��+ �V�� ��; �y� = ��� �y ��2 � 2��y�� = 0 : (3.7)These solutions are not invariant under U(1) phase rotations. On the other hand, itis obvious that any solution to the equations of motion will be mapped into anothersolution under suh a transformation.This situation is analogous to the Kepler problem: A planet moving around a station-ary (very massive) star. The setup is invariant under spatial rotations around the star,i.e., the symmetries form the group SO(3). This group is three-dimensional (meaningthat any rotation an be built from three independent rotations, e.g. around the threeaxes of a Cartesian oordinate system). Thus there are three onserved harges whihorrespond to the three omponents of angular momentum. The solutions of this prob-lem { the planet's orbits { are ellipses in a plane, so they are not at all invariant underspatial rotations, not even under rotations in the plane of motion. Rotated solutions,however, are again solutions.In partile physis, most experiments are sattering experiments at olliders. Forthose, the statement that \physis does not hange" translates into \transformed initialstates lead to transformed �nal states": If one applies the transformation to the initialstate and performs the experiment, the result will be the same as if one had done theexperiment with the untransformed state and transformed the result.There is a subtle, but important, di�erene between this and another type of sym-metry, gauge symmetry. A gauge transformation is also a transformation whih leavesthe Lagrangean invariant, but it does relate idential states whih desribe exatly thesame physis.This might be familiar from eletrodynamis. One formulation uses eletri andmagneti �elds ~E and ~B, together with harge and urrent densities � and ~j. These23



�elds and soures are related by Maxwell's equations:~r� ~E + � ~B�t = 0 ; ~r � ~B = 0 ; (3.8a)~r� ~B � � ~E�t = ~j ; ~r � ~E = � : (3.8b)The �rst two of these an be identially solved by introduing the potentials � and ~A,whih yield ~E and ~B via~E = �~r�� � ~A�t ; ~B = ~r� ~A : (3.9)So we have redued the six omponents of ~E and ~B down to the four independent ones� and ~A. However, the orrespondene between the physial �elds and the potentials isnot unique. If some potentials � and ~A lead to ertain ~E and ~B �elds, the transformedpotentials ~A0 = ~A+ ~r� ; �0 = �� ���t ; (3.10)where � is a salar �eld, give the same eletri and magneti �elds.This transformation (3.9) is alled gauge transformation. It is a symmetry of thetheory, but it is di�erent from the global symmetries we onsidered before. First, it isa loal transformation, i.e., the transformation parameter � varies in spae and time.Seond, it relates physially indistinguishable �eld on�gurations, sine solutions of theequations of motion for eletri and magneti �elds are invariant. It is important to notethat this gauge transformation is inhomogeneous, i.e., the variation is not multipliative,but an generate non-vanishing potentials from zero. Potentials that are related to � = 0and ~A = 0 by a gauge transformation are alled pure gauge.Phrased di�erently, we have expressed the physial �elds ~E and ~B in terms of thepotentials � and ~A. These potentials still ontain too many degrees of freedom for thephysial �elds ~E and ~B, sine di�erent potentials an lead to the same ~E and ~B �elds. Sothe desription in terms of potentials is redundant, and the gauge transformation (3.10)quanti�es just this redundany. Physial states and observables have to be invariantunder gauge transformations.3.2 Abelian Gauge TheoriesThe easiest way to ome up with a gauge symmetry is to start from a global symmetryand promote it to a gauge one, that is, demand invariane of the Lagrangean under loaltransformations (where the transformation parameter is a funtion of spaetime). To seethis, reall the Lagrangean with the global U(1) symmetry from the preeding setion, L = ���y���� V (�y�) ;and the transformation �! �0 = e��� ; Æ� = �0 � � = ��� :24



If we now allow spaetime dependent parameters �(x), the Lagrangean is no longerinvariant. The potential part still is, but the kineti term piks up derivatives of �(x),so the variation of the Lagrangean isÆ L = ���� ����y�� �y���� = ���� j� ; (3.11)the derivative of � times the Noether urrent of the global symmetry derived before.The way to restore invariane of the Lagrangean is to add another �eld, the gauge�eld, with a gauge transformation just like the eletromagneti potentials in the previoussetion, ombined into a four-vetor A� = (�; ~A):A�(x) ! A0�(x) = A�(x)� 1e���(x) : (3.12)The fator 1e is inluded for later onveniene. We an now ombine the inhomogeneoustransformation of A� with the inhomogeneous transformation of the derivative in aovariant derivative D�: D�� = (�� + �eA�) � : (3.13)This is alled ovariant derivative beause the di�erentiated objet D�� transforms inthe same way as the original �eld,D�� �! (D��)0 = ��� + �eA0���0= �� �e��(x)��+ �e�A�(x)� 1e���(x)� e��(x)�= e��(x)D�� : (3.14)So we an onstrut an invariant Lagrangean from the �eld and its ovariant derivative: L = (D��)y (D��)� V ��y�� : (3.15)So far this is a theory of a omplex salar with U(1) gauge invariane. The gauge�eld A�, however, is not a dynamial �eld, i.e., there is no kineti term for it. Thiskineti term should be gauge invariant and ontain derivatives up to seond order. Inorder to �nd suh a kineti term, we �rst onstrut the �eld strength tensor from theommutator of two ovariant derivatives:F�� = � �e [D�;D� ℄ = � �e [(�� + �eA�) ; (�� + �eA�)℄= � �e �[��; ��℄ + [�� ; �eA�℄ + [�eA�; ��℄� e2 [A�; A�℄�= ��A� � ��A� : (3.16)To hek that this is a sensible objet to onstrut, we an redeompose A� into thesalar and vetor potential � and ~A and spell out the �eld strength tensor in eletriand magneti �elds, F �� =0BB� 0 �E1 �E2 �E3E1 0 �B3 B2E2 B3 0 �B1E3 �B2 B2 0 1CCA : (3.17)25



This shows that the �eld strength is gauge invariant, as ~E and ~B are. Of ourse, thisan also be shown by straightforward alulation,ÆF�� = ��ÆA� � ��ÆA� = �1e (���� � ����)�(x) = 0 ; (3.18)so it is just the antisymmetry in � and � that ensures gauge invariane.The desired kineti term is now just the square of the �eld strength tensor, Lgaugekin = �14F��F �� ; (3.19a)or, in terms of ~E and ~B �elds,  L = 12 � ~E2 � ~B2� (3.19b)The oupling to salar �elds via the ovariant derivative an also be applied tofermions. To ouple a fermion  to the gauge �eld, one simply imposes the gaugetransformation  !  0 = e�� : (3.20)In the Lagrangean, one again replaes the ordinary derivative with the ovariant one.The Lagrangean for a fermion oupled to a U(1) gauge �eld is quantum eletrodynam-is (QED), if we all the �elds eletron and photon: LQED = �14F��F �� +  �� =D �m� : (3.21)Finally, let us note that for a U(1) gauge theory, di�erent �elds may have di�erentharges under the gauge group (as e.g. quarks and leptons indeed do). For �elds withharge q (in units of elementary harge), we have to replae the gauge transformationsand onsequently the ovariant derivative as follows: q !  0q = e�q� q ; D(q)�  q = (�� + �qeA�) q : (3.22)What have we done so far? We started from a Lagrangean, Eq. (3.1) with a globalU(1) symmetry (3.2). We imposed invariane under loal transformations, so we had tointrodue a new �eld, the gauge �eld A�. This �eld transformed inhomogeneously undergauge transformations, just in a way to make a ovariant derivative. This ovariantderivative was the objet that oupled the gauge �eld to the other �elds of the theory.To make this into a dynamial theory, we added a kineti term for the gauge �eld, usingthe �eld strength tensor. Alternatively, we ould have started with the gauge �eld andtried to ouple it to other �elds, and we would have been led to the transformationproperties (3.2). This is all we need to onstrut the Lagrangean for QED. For QCDand the eletroweak theory, however, we need a riher struture: non-Abelian gaugetheories. 26



3.3 Non-Abelian Gauge TheoriesTo onstrut non-Abelian theories in the same way as before, we �rst have to disussnon-Abelian groups, i.e., groups whose elements do not ommute. We will fous onthe groups SU(n), sine they are most relevant for the standard model. SU(n) is thegroup of n� n omplex unitary matries with determinant 1. To see how many degreesof freedom there are, we have to ount: A n � n omplex matrix U has n2 omplexentries, equivalent to 2n2 real ones. The unitarity onstraint, UyU = 1, is a matrixequation, but not all omponent equations are independent. Atually, UyU is Hermitean,�UyU�y = UyU , so the diagonal entries are real and the lower triangle is the omplexonjugate of the upper one. Thus, there are n + 2 � 12n(n � 1) real onstraints. Finally,by taking the determinant of the unitarity onstraint, det �UyU� = jdetU j2 = 1. Hene,restriting to detU = 1 eliminates one more real degree of freedom. All in all, we have2n2 � n� 2 � 12n(n� 1) � 1 = n2 � 1 real degrees of freedom in the elements of SU(n).This means that any U 2 SU(n) an be spei�ed by n2 � 1 real parameters �a. Thegroup elements are usually written in terms of these parameters and n2�1 matries T a,the generators of the group, as an exponentialU = exp f��aT ag = 1 + ��aT a +O ��2� ; (3.23)and one often onsiders only in�nitesimal parameters.The generators are usually hosen as Hermitean matries1. The produt of groupelements translates into ommutation relations for the generators,�T a; T b� = �fabT  ; (3.24)with the antisymmetri struture onstants fab, whih of ourse also depend on thehoie of generators.In the standard model, the relevant groups are SU(2) for the eletroweak theory andSU(3) for QCD. SU(2) has three parameters. The generators are usually hosen to bethe Pauli matries, T a = 12�a, whose ommutation relations are ��a; �b� = �"ab�. Theommon generators of SU(3) are the eight Gell-Mann matries, T a = 12�a.To onstrut a model with a global SU(n) symmetry, we onsider not a single �eld,but an n-omponent vetor �i, i = 1; : : : ; n (alled a multiplet of SU(n)), on whih thematries of SU(n) at by multipliation :� =0B��1...�n1CA �! �0 = U� ; �y = ��y1; � � � ;�yn� �! ��y�0 = �yUy : (3.25)Now we see why we want unitary matries U : A produt �y� is invariant under suh atransformation. This means that we an generalise the Lagrangean (3.1) in a straight-forward way to inlude a non-Abelian symmetry: L = (���)y(���)� V ��y�� : (3.26)1Atually, the generators live in the Lie algebra of the group, and so one an hoose any basis onelikes, Hermitean or not. 27



If we allow for loal transformations U = U(x), we immediately enounter the sameproblem as before: The derivative term is not invariant, beause the derivatives at onthe matrix U as well, ��� ! ���0 = �� (U�) = U��� + (��U) � : (3.27)To save the day, we again need to introdue a ovariant derivative onsisting of a partialderivative plus a gauge �eld. This time, however, the vetor �eld needs to be matrix-valued, i.e., A� = Aa�T a, where T a are the generators of the group. We learly need onevetor �eld per generator, as eah generator represents an independent transformationin the group.The transformation law of A� is hosen suh that the ovariant derivative is ovariant,(D��)0 = [(�� + �gA�) �℄0= ��� + �gA0�� (U�)= U ��� + U�1 (��U) + �gU�1A0�U��!= UD�� : (3.28)This requirement �xes the transformation of A� to beA0� = UA�U�1 � �gU��U�1 : (3.29)In the Abelian ase this redues to the known transformation law, Eq. (3.12).For in�nitesimal parameters � = �aT a, the matrix U = expf��g = 1 + ��, andEq. (3.29) beomes A0� = A� � 1g��� + � [�;A�℄ ; (3.30)or for eah omponent Aa�0 = Aa� � 1g���a � fab�bA� : (3.31)Sometimes it is onvenient to write down the ovariant derivative in omponent form:(D��)i = ���Æij + �gT aijAa���j : (3.32)Next we need a kineti term, whih again involves the �eld strength, the ommutatorof ovariant derivatives:F�� = � �g [D�;D� ℄ = ��A� � ��A� + �g [A�; a�℄ = F a��T a ;F a�� = ��Aa� � ��Aa� � gfabAb�A� : (3.33)Now we see that the �eld strength is more that just the derivative: There is a quadratiterm in the potentials. This leads to a self-interation of gauge �elds, like in QCD, wherethe gluons interat with eah other. This is the basi reason for on�nement, unlike inQED, where the photon is not harged. 28



Furthermore, when we alulate the transformation of the �eld strength, we �nd thatit is not invariant, but transforms asF�� ! F 0�� = UF��U�1 ; (3.34)i.e., it is ovariant. There is an easy way to produe an invariant quantity out of this:the trae. Sine trAB = trBA, the Lagrangean L = �12 tr (F��F ��) = �14F a��F a �� (3.35)is indeed invariant, as tr (UF 2U�1) = tr (U�1UF 2) = trF 2. In the seond step we haveused a normalisation onvention, tr �T aT b� = 12Æab ; (3.36)and every generator is neessarily traeless. The fator 12 is arbitrary and ould be hosendi�erently, with ompensating hanges in the oeÆient of the kineti term.By hoosing the gauge group SU(3) and oupling the gauge �eld to fermions, thequarks, we an write down the Lagrangean of quantum hromodynamis (QCD): LQCD = �14Ga��Ga �� + q �� =D �m� q ; (3.37)where a = 1; : : : ; 8 ounts the gluons and q is a three-omponent (i.e. three-olour)quark.3.4 QuantisationSo far we have only disussed lassial gauge theories. If we want to quantise the theoryand �nd the Feynman rules for diagrams involving gauge �elds, we have a problem: Wehave to make sure we do not ount �eld on�gurations of A� whih are pure gauge,nor that we ount separately �elds whih di�er only by a gauge transformation, sinethose are meant to be physially idential. On the more tehnial side, the na��ve Greenfuntion for the free equation of motion does not exist. In the Abelian ase, the equationis ��F �� = �A� � ����A� = (�g�� � ����)A� = 0 : (3.38)The Green funtion should be the inverse of the di�erential operator in brakets, but theoperator is not invertible. Indeed, it annihilates every pure gauge mode, as it should,(�g�� � ����) ��� = 0 ; (3.39)so it has zero eigenvalues. Hene, the propagator must be de�ned in a more lever way.One way out would be to �x the gauge, i.e., simply demand a ertain gauge onditionlike ~r� ~A = 0 (Coulomb gauge) or n�A� = 0 with a �xed 4-vetor (axial gauge). It turnsout, however, that the loss of Lorentz invariane auses many problems in alulations.29



A better way makes use of Faddeev{Popov ghosts. In this approah, we add twoterms to the Lagrangean, the gauge-�xing term and the ghost term. The gauge-�xingterm is not gauge invariant, but rather represents a ertain gauge ondition whih anbe hosen freely. The fat that it is not gauge invariant means that now the propagatoris well-de�ned, but the prie to pay is that it propagates too many degrees of freedom,namely gauge modes. This is ompensated by the propagation of ghosts, strange �eldswhih are salars but antiommute and do not show up as physial states but only asinternal lines in loop alulations. It turns out that gauge invariane is not lost butrather traded for a di�erent symmetry, BRST-symmetry, whih ensures that we getphysially sensible results.For external states, we have to restrit to physial states, of whih there are two formassless bosons. They are labelled by two polarisation vetors ��� whih are transverse,i.e., orthogonal to the momentum four-vetor and the spatial momentum, k��� = ~k~� = 0.The form of the gauge �xing and ghost terms depends on the gauge ondition wewant to take. A ommon (lass of) gauge is the ovariant gauge whih depends on aparameter �, whih beomes Feynman gauge (Landau/Lorenz gauge) for � = 1 (� = 0)We now list the Feynman rules for a non-Abelian gauge theory (QCD) oupled tofermions (quarks) and ghosts. The fermioni external states and propagators are listedin Setion 2.5.2.i. k�!� k�!� ��(k)���(k) For eah external line one has a polarisationvetor.ii. p� �a b ��Æabk2 + �"��g�� + (1� �)k�k�k2 � The propagator for gauge bosons ontainsthe parameter �.iii. ka b ��Æabk2 + �" The propagator for ghosts is the one of salarpartiles. There are no external ghost states.iv. � �e� In QED, there is just one vertex betweenphoton and eletron.v. � �g2��a In QCD, the basi quark-quark-gluon vertexinvolves the Gell-Mann matries.vi. b �!p �; a �gfabp� The ghosts ouple to the gauge �eld.vii. gfabk� + permutations Three-gluon self-interation.30



viii. �14g2fabfadeg��g��+permutations Four-gluon self-interation.
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Chapter 4Quantum CorretionsNow that we have the Feynman rules, we are ready to alulate quantum orretions[3, 5, 9℄. As a �rst example we will onsider the anomalous magneti moment of theeletron at one-loop order. This was historially, and still is today, one of the mostimportant tests of quantum �eld theory. The alulation is still quite simple beausethe one-loop expression is �nite. In most ases, however, one enounters divergent loopintegrals. In the following setions we will study these divergenes and show how toremove them by renormalisation. Finally, as an appliation, we will disuss the runningof oupling onstants and asymptoti freedom.4.1 Anomalous Magneti MomentThe magneti moment of the eletron determines its energy in a magneti �eld,Hmag = �~� � ~B : (4.1)For a partile with spin ~s, the magneti moment is aligned in the diretion of ~s, and fora lassial spinning partile of mass m and harge e, its magnitude would be the Bohrmagneton, e=(2m). In the quantum theory, the magneti moment is di�erent, whih isexpressed by the Land�e fator ge, ~�e = ge e2m~s : (4.2)We now want to alulate ge in QED. To lowest order, this just means solving theDira equation in an external eletromagneti �eld A� = (�; ~A),�� =D �m� = [� (��� � eA�)�m℄ = 0 : (4.3)For a bound nonrelativisti eletron a stationary solution takes the form (x) = �'(~x)�(~x)� e��Et ; with E �mm � 1 : (4.4)It is onvenient to use the following representation of the Dira matries:0 = �1 00 �1� ; i = � 0 �i��i 0� : (4.5)32



p p0q � = p p0q � + p p0kq � + � � �Figure 4.1: Tree level and one-loop diagram for the magneti moment.One then obtains the two oupled equations[(E � e�)�m℄'� ���~r� e ~A� � ~�� = 0 ; (4.6a)�� (E � e�)�m| {z }��2m ��+ ���~r� e ~A� � ~�' = 0 : (4.6b)The oeÆient of � in the seond equation is approximately independent of �, so we ansolve the equation to determine � in terms of ',� = 1m ���~r� e ~A� � ~�' : (4.7)Inserting this into (4.6a), we get the Pauli equation,� 12m ���~r� e ~A�2 + e�� e2m ~B � ~��' = (E �m)' : (4.8)This is a Shr�odinger-like equation whih implies (sine ~s = 12~�),Hmag = �2 e2m~s ~B : (4.9)Hene, the Land�e fator of the eletron is ge = 2.In QED, the magneti moment is modi�ed by quantum orretions. The magnetimoment is the spin-dependent oupling of the eletron to a photon in the limit of vanish-ing photon momentum. Diagrammatially, it is ontained in the blob on the left side ofFig. 4.1, whih denotes the omplete eletron-photon oupling. The tree-level diagramis the fundamental eletron-photon oupling. There are several one-loop orretions tothis diagram, but only the so-alled vertex orretion, where an internal photon on-nets the two eletron lines, gives a ontribution to the magneti moment. All otherone-loop diagrams onern only external legs, suh as an eletron-positron-bubble onthe inoming photon, and will be removed by wave-funtion renormalisation.The expression for the tree-level diagram is�u(p0)e�u(p) : (4.10)Note that the photon beomes on-shell only for q ! 0, so no polarisation vetor isinluded. The matrix element of the eletromagneti urrent an be deomposed via the33



Gordon identity into onvetion and spin urrents,u(p0)�u(p) = u(p0)�(p + p0)�2m + �2m��� (p0 � p)��u(p) : (4.11)Here the �rst term an be viewed as the net ow of harged partiles, the seond one isthe spin urrent. Only this one is relevant for the magneti moment, sine it gives thespin-dependent oupling of the eletron.In order to isolate the magneti moment from the loop diagram, we �rst note thatthe orresponding expression will ontain the same external states, so it an be writtenas �u(p0)e��(p; q)u(p) ; q = p0 � p ; (4.12)where ��(p; q) is the orretion to the vertex due to the exhange of the photon. Wean now deompose �� into di�erent parts aording to index struture and extrat theterm /���. Using the Feynman rules, we �nd for �� in Feynman gauge (� = 1),�e��(p; q) = (��e)3 Z d4k(2�)4 ��g��k2 + �"� � �=p0 � =k +m�(p0 � k)2 �m2 + �"�� � �=p � =k +m�(p � k)2 �m2 + �"� : (4.13)This integral is logarithmially divergent, as an be seen by power ounting, sine theleading term is / k2 in the numerator and / k6 in the denominator.On the other hand, the part /���q� is �nite and an be extrated via some triks:� Consider �rst the denominator of the integral (4.13). It is the produt of threeterms of the form (momentum)2 � m2, whih an be transformed into a sum atthe expense of further integrations over the so-alled Feynman parameters x1 andx2, 1A1A2A3 = 2 1Z0 dx1 1�x1Z0 dx2 1[A1x1 +A2x2 +A3 (1 � x1 � x2)℄3 : (4.14)� After introduing the Feynman parameters, the next trik is to shift the integrationmomentum k ! k0, whereA1x1 +A2x2 +A3 (1� x1 � x2) = (k � x1p0 � x2p)| {z }k0 2 � (x1p0 + x2p)2 + �" : (4.15)Note that one must be areful when manipulating divergent integrals. In priniple,one should �rst regularise them and then perform the shifts on the regularisedintegrals, but in this ase, there is no problem.� For the numerator, the important part is the Dira algebra of -matries. Astandard alulation gives (see appendix)� �=p 0 � =k + m�� �=p� =k +m� �= �2m2� � 4�m��� (p0 � p)� � 2=p� =p 0 +O(k) +O�k2� : (4.16)34



Here we have used again the Gordon formula to trade (p + p0)� for ���q�, whihonly is allowed if the expression is sandwihed between on-shell spinors u(p0) andu(p).� Now the numerator is split into piees independent of k, linear and quadrati ink. The linear term an be dropped under the integral. The quadrati piee leadsto a divergent ontribution whih we will disuss later. The integral over thek-independent part in the limit q� ! 0 yieldsZ d4k(2�)4 1�k2 � (x1 + x2)2m2 + �"�3 = � �32�2 1(x1 + x2)2m2 : (4.17)Now all that is left are the parameter integrals over x1 and x2.Finally, one obtains the result, usually expressed in terms of the �ne struture on-stant � = e2= (4�),�eu(p0)��u(p) = +�eu(p0)� �2� �2m���q� + � � ��u(p) ; (4.18)where the dots represent ontributions whih are not / ���q�.Comparison with the Gordon deomposition (4.11) gives the one-loop orretion tothe Land�e fator, g = 2�1 + �2�� : (4.19)This orretion was �rst alulated by Shwinger in 1948. It is often expressed as theanomalous magneti moment ae, ae = g � 22 : (4.20)Today, ae is known up to three loops analytially and to four loops numerially [10℄.The agreement of theory and experiment is impressive:aexpe = (1159652185:9 � 3:8) � 10�12 ;athe = (1159652175:9 � 8:5) � 10�12 : (4.21)This is one of the ornerstones of our on�dene in quantum �eld theory.4.2 DivergenesThe anomalous magneti moment we alulated in the last setion was tedious work,but at least the result was �nite. Most other expressions, however, have divergentmomentum integrals. One suh example is the vertex funtion �� we already onsidered.It has ontributions whih are logarithmially divergent. We an isolate these by settingq = 0, whih yields��(p; 0) = �2�e2 1Z0 dx1 1�x1Z0 dx2 Z d4k(2�)2 � =k� =k��k2 � (x1 + x2)2m2 + �"�3 : (4.22)This expression is treated in two steps:35



� First we make the integral �nite in a step alled regularisation. In this step, wehave to introdue a new parameter of mass dimension 1. An obvious hoie wouldbe a uto� � whih serves as an upper bound for the momentum integration. Onemight even argue that there should be a uto� at a sale where quantum gravitybeomes important, although a regularisation parameter has generally no diretphysial meaning.� The seond step is renormalisation. The divergenes are absorbed into the param-eters of the theory. The key idea is that the \bare" parameters whih appear inthe Lagrangean are not physial, so they an be divergent. Their divergenes arehosen suh as to anel the divergenes oming from the divergent integrals.� Finally, the regulator is removed. Sine all divergenes have been absorbed into theparameters of the theory, the results remain �nite for in�nite regulator. Of ourse,one has to make sure the results do not depend on the regularisation method.The uto� regularisation, while oneptually simple, is not a onvenient method, asit breaks Lorentz and gauge invariane. Symmetries, however, are very important forall alulations, so a good regularisation sheme should preserve as many symmetriesas possible. We will restrit ourselves to dimensional regularisation, whih is the mostommon sheme used nowadays.4.2.1 Dimensional RegularisationThe key idea is to de�ne the theory not in four, but in d = 4 � � dimensions [9℄. If� is not an integer, the integrals do onverge. Non-integer dimensionality might seemweird, but in the end we will take the limit of �! 0 and return to four dimensions. Thisproedure is well-de�ned and just an intermediate step in the alulation.Let us onsider some tehnial issues. In d dimensions, the Lorentz indies \rangefrom 0 to d", in the sense that g��g�� = d ; (4.23)and there are d -matries obeying the usual algebra,f�; �g = 2g��1 ; tr (1) = 4 : (4.24)-matrix ontrations are also modi�ed due to the hange in the trae of g�� , suh as��� = � (2 � �) � ; ���� = 4g�� � ��� : (4.25)The tensor struture of diagrams an be simpli�ed as follows. If a momentum integralover k ontains a fator of k�k� , this must be proportional to g��k2, sine it is of seondorder in k and symmetri in (��). The only symmetri tensor we have is the metri (aslong as the remaining integrand depends only on the square of k and the squares of theexternal momenta pi), and the oeÆient an be obtained by ontrating with g�� toyield Z d4k(2�)4k�k�f�k2; p2i � = 1d g�� Z d4k(2�)4k2f�k2; p2i � : (4.26)36



The measure of an integral hanges from d4k to ddk. Sine k is a dimensionful quan-tity1 (of mass dimension 1), we need to ompensate the hange in dimensionality by afator of ��, where � is an arbitrary parameter of mass dimension 1. The mass dimen-sions of �elds and parameters also hange. They an be derived from the ondition thatthe ation, whih is the d-dimensional integral over the Lagrangean, be dimensionless.Shematially (i.e., without all numerial fators), a Lagrangean of gauge �elds, salarsand fermions reads L = (��A�)2 + e��A�A�A� + e2 (A�A�)2+ (���)2 +  ��=� �m� + e =A +m2�2 + � � � : (4.27)The ondition of dimensionless ation, [S℄ = 0, translates into [ L℄ = d, sine �ddx� = �d.Derivatives have mass dimension 1, and so do masses. That implies for the dimensionsof the �elds (and the limit as d! 4),[A�℄ = d � 22 ! 1 ; [�℄ = d� 22 ! 1 ; (4.28)[ ℄ = d � 12 ! 32 ; [e℄ = 2� d2 ! 0 : (4.29)How do we evaluate a d-dimensional integral? One �rst transforms to Eulidean spaereplaing k0 by �k4, so that the Lorentzian measure ddk beomes ddkE. In Eulideanspae, one an easily onvert to spherial oordinates and perform the integral over theangular variables, whih gives the \area" of the d-dimensional \unit sphere",Z ddkE(2�)df�k2� = Z d
d(2�)d| {z }12d�1�d=2 1�(d=2) 1Z0 dkE kd�1E f�k2� : (4.30)The remaining integral an then be evaluated, again often using �-funtions. The resultis �nite for d 6= 4, but as we let d! 4, the original divergene appears again in the formof �(2� d=2). The �-funtion has poles at negative integers and at zero, so the integralexists for noninteger dimension. In the limit d! 4, or equivalently, �! 0, one has��2 � d2� = �� �2� = 2� � E +O (�) ; (4.31)with the Euler onstant E ' 0:58.As an example, onsider the logarithmially divergent integral (f. (4.22))Z d4k(2�)4 1(k2 + C)2 ; (4.32)where C = (x1 + x2)2m2. In d Eulidean dimensions, this beomes�� Z d4kE(2�)4 1(k2E + C)2 = ����2 � d2�(4�)d=2 �(2) 1C2�d=2 = 18�2 1� + � � � (4.33)1In our units where ~ =  = 1, the only dimension is mass, so everything an be expressed in powersof GeV. The basi quantities have [mass℄ = [energy℄ = [momentum℄ = 1 and [length℄ = [time℄ = �1, so[dx�℄ = �1 and [��℄ = 1. 37



p p� kk p = ��� (p)(a) The eletron self-energy � �qq p+ qp = ����� (q)(b) The vauum polarisationFigure 4.2: One-loop orretions to the propagators of eletron and photon.For the original expression (4.22) we thus obtain�� (p; 0) = �2� 1� � +O(1) : (4.34)What have we ahieved? In four dimensions, the result is still divergent. However,the situation is better than before: We have separated the divergent part from the �niteone and an take are of the divergene before taking the limit � ! 0. This is done inthe proedure of renormalisation.There are more divergent one-loop graphs where we an ahieve the same: the ele-tron self-energy � in Fig. 4.2(a) (linearly divergent) and the photon self-energy or vauumpolarisation ��� in Fig. 4.2(b) (quadratially divergent). The self-energy graph has twodivergent terms, �(p) = 3�2� 1�m� �2� 1� �=p �m�+O(1) ; (4.35)whih ontribute to the mass renormalisation and the wave funtion renormalisation,respetively. The vauum polarisation seems more ompliated sine it is a seond ranktensor. However, the tensor struture is �xed by gauge invariane whih requiresq���� (q) = 0 : (4.36)Therefore, beause of Lorentz invariane,��� (q) = �g��q2 � q�q����q2� : (4.37)The remaining salar quantity �(q2) has the divergent part��q2� = 2�3� 1� +O(1) : (4.38)4.2.2 RenormalisationSo far we have isolated the divergenes, but they are still there. How do we get ridof them? The ruial insight is that the parameters of the Lagrangean, the \bare"parameters, are not observable. Rather, the sum of bare parameters and loop-indued38



orretions are physial. Hene, divergenies of bare parameters an anel againstdivergent loop orretions, leaving physial observables �nite.To make this more expliit, let us express, as an example, the QED Lagrangean interms of bare �elds A�0 and  0 and bare parameters m0 and e0, L = �14 (��A0� � ��A0�) ���A0� � ��A0��+  0 (� (��� � e0A0�)�m0) 0 : (4.39)The \renormalised �elds" A� and  and the \renormalised parameters" e and m arethen obtained from the bare ones by multipliative resaling,A0� = pZ3A� ;  0 = pZ2 ; (4.40)m0 = ZmZ2 m ; e0 = Z1Z2pZ3�2�d=2e : (4.41)Note that oupling and eletron mass now depend on the mass parameter �,e = e(�) ; m = m(�) : (4.42)In terms of the renormalized �elds and parameters the Lagrangean (4.39) reads L = �14 (��A� � ��A�) (��A� � ��A�) +  (� (��� � eA�)�m) + � L ; (4.43)where � L ontains the divergent ounterterms,� L = � (Z3 � 1) 14F��F �� + (Z2 � 1) �=� � (Zm � 1)m  � (Z1 � 1) e =A : (4.44)The ounterterms have the same struture as the original Lagrangean and lead to newverties in the Feynman rules:i. � q � �� (Z3 � 1)� (g��q2 � q�q�) Photon wave funtion ounterterm (ountertemsare generially denoted by ). It has the sametensor struture as the vauum polarisation.ii. p �� (Z2 � 1) =p Eletron wave funtion ounterterm.iii. p �� (Zm � 1)m Eletron mass ounterterm.iv. ��e (Z1 � 1) � Vertex ounterterm.The renormalisation onstants Zi are determined by requiring that the ountertermsanel the divergenes. They an be determined as power series in �. The lowest order39



ounterterms are O (�) and have to be added to the one-loop diagrams. Calulating e.g.the O (�) orretion to the eletron-photon vertex, one has+ = ��e�� �2� 1� + (Z1 � 1) +O (1)� : (4.45)Demanding that the whole expression be �nite determines the divergent part of Z1,Z1 = 1� �2� 1� +O (1) : (4.46)Similarly, the O (�) vauum polarisation now has two ontributions,+ = �� �g��q2 � q�q���2�3� 1� + (Z3 � 1) +O (1)� ; (4.47)whih yields Z3 = 1� 2�3� 1� +O (1) : (4.48)The other onstants Z2 and Zm are �xed analogously. A Ward identity, whih followsfrom gauge invariane, yields the important relation Z1 = Z2. The �nite parts of therenormalisation onstants are still undetermined. There are di�erent ways to �x them,orresponding to di�erent renormalisation shemes. All shemes give the same resultsfor physial quantities, but di�er at intermediate steps.Having absorbed the divergenes into the renormalised parameters and �elds, wean safely take the limit � ! 0. The theory now yields well-de�ned relations betweenphysial observables. Divergenies an be removed to all orders in the loop expansionfor renormalisable theories [3, 9℄. Quantum eletrodynamis and the standard modelbelong to this lass. The proof is highly non-trivial and has been a major ahievementin quantum �eld theory!4.2.3 Running Coupling in QEDContrary to the bare oupling e0, the renormalised oupling e(�) depends on the renor-malisation sale � (f. (4.41)),e0 = Z1Z2pZ3��2+d=2e(�) = e(�)���=2Z� 123 ;where we have used the Ward identity Z1 = Z2. It is very remarkable that the saledependene is determined by the divergenies. To see this, expand Eq. (4.41) in � ande(�), e0 = e(�)�1� �2 ln� + � � ���1 + 1� �3� + � � ��= e(�)�1� e2(�)12�2 + 1� e2(�)24�2 ln�+O ��; e4(�)�� ; (4.49)40



where we have used � = e2=(4�). Sine the bare mass e0 does not depend on �,di�erentiation with respet to � yields0 = � ���e0 = � ���e� e324�2 +O �e5� ; (4.50)and therefore � ���e = e324�2 +O �e5� � �(e) : (4.51)This equation is known as the renormalisation group equation, and the funtion on theright hand side of Eq. (4.51) is the so-alled the � funtion ,�(e) = b0(4�)2e3 +O �e5� ; with b0 = 23 : (4.52)The di�erential equation (4.51) an easily be integrated. Using a given value of e ata sale �1, the oupling � at another sale � is given by�(�) = � (�1)1� � (�1) b0(2�) ln ��1 : (4.53)Sine b0 > 0, the oupling inreases with � until it approahes the so-alled Landau polewhere the denominator vanishes and perturbation theory breaks down.What is the meaning of a sale dependent oupling? This beomes lear when onealulates physial quantities, suh as a sattering amplitude at some momentum trans-fer q2. In the perturbative expansion one then �nds terms/ e2(�) log(q2=�2). Suh termsmake the expansion unreliable unless one hooses �2 � q2. Hene, e2(q2) represents thee�etive interation strength at a momentum (or energy) sale q2 or, alternatively, at adistane of r � 1=q.The positive � funtion in QED implies that the e�etive oupling strength dereasesat large distanes. Qualitatively, this an be understood as the e�et of \vauum po-larisation": Eletron-positron pairs et. from the vauum sreen any bare harge atdistanes larger than the orresponding Compton wavelength. Quantitatively, one �ndsthat the value �(0) = 1137, measured in Thompson sattering, inreases to �(M2Z) = 1127,the value onveniently used in eletroweak preision tests.4.2.4 Running Coupling in QCDEverything we did so far for QED an be extended to non-Abelian gauge theories, inpartiular to QCD [5℄. It is, however, muh more ompliated, sine there are morediagrams to alulate, and we will not be able to disuss this in detail. The additionaldiagrams ontain gluon self-interations and ghosts, and they lead to similar divergenes,41



whih again are absorbed by renormalisation onstants. Shematially, these are+ +  Z1 ; (4.54)+  Z2 ; (4.55)+ + +  Z3 : (4.56)The renormalised oupling an again be de�ned as in QED, Eq. (4.41),g0 = Z1Z2pZ3��2+d=2 g : (4.57)The oeÆients of the 1=�-divergenes depend on the gauge group and on the number ofdi�erent fermions. For a SU(N) gauge group with Nf avours of fermions, one obtainsthe � funtion for the gauge oupling g,� ���g = b0(4�)2g3 +O �g5� ; b0 = ��113 N � 43Nf� : (4.58)Note that for Nf < 11N=4 the oeÆient is negative! Hene, the oupling dereases athigh momentum transfers or short distanes. The alulation of this oeÆient earnedthe Nobel Prize in 2004 for Gross, Politzer and Wilzek. The derease of the ouplingat short distanes is the famous phenomenon of asymptoti freedom. As a onsequene,one an treat in deep-inelasti sattering quarks inside the proton as quasi-free partiles,whih is the basis of the parton model.The oupling at a sale � an again be expressed in terms of the oupling at areferene sale �1, �(�) = � (�1)1 + � (�1) jb0j(2�) ln ��1 : (4.59)The analogue of the Landau pole now ours at small � or large distanes. For QCDwithN = 3 and Nf = 6, the pole is at the \QCD sale" �QCD ' 300 MeV. At the QCDsale gluons and quarks are strongly oupled and olour is on�ned [5℄. Correspondingly,the inverse of �QCD gives roughly the size of hadrons, rhad � ��1QCD � 0:7 fm.42



Chapter 5Eletroweak TheorySo far we have studied QED, the simplest gauge theory, and QCD, the prime exampleof a non-Abelian gauge theory. But there also are the weak interations, whih seemrather di�erent. They are short-ranged, whih requires massive messenger partiles,seemingly inonsistent with gauge invariane. Furthermore, weak interations ome intwo types, harged and neutral urrent-urrent interations, whih ouple quarks andleptons di�erently. Charged urrent interations, mediated by the W� bosons, onlyinvolve left-handed fermions and readily hange avour, as in the strange quark deays ! ue��e. Neutral urrent interations, on the other hand, ouple both left- andright-handed fermions, and avour-hanging neutral urrents are strongly suppressed.Despite these di�erenes from QED and QCD, weak interations also turn out to bedesribed by a non-Abelian gauge theory. Yet the eletroweak theory is di�erent beauseof two reasons: It is a hiral gauge theory, and the gauge symmetry is spontaneouslybroken.5.1 Quantum NumbersIn a hiral gauge theory, the building bloks are massless left- and right-handed fermions, L = 12 �1� 5� L ;  R = 12 �1 + 5� R ; (5.1)with di�erent gauge quantum numbers. For one generation of standard model partiles,we will have seven hiral spinors: Two eah for up- and down-type quark and hargedlepton, and just one for the neutrino whih we will treat as massless in this hapter,i.e., we omit the right-handed one. The eletroweak gauge group is a produt of twogroups, GEW = SU(2)W � U(1)Y . Here the subsript W stands for \weak isospin",whih is the quantum number assoiated with the SU(2)W fator, and the U(1) hargeis the hyperharge Y .The assignment of quantum numbers, whih orresponds to the grouping into rep-resentations of the gauge group, is obtained as follows: The non-Abelian group SU(2)Whas a hargeless one-dimensional singlet (1) representation and harged multidimen-sional representations, starting with the two-dimensional doublet (2) representation1.1Here we use \representation" as meaning \irreduible representation". Of ourse we an buildreduible representations of any dimension. 43



We are not allowed to mix quarks and leptons, sine weak interations do not hangeolour, nor left- and right-handed �elds, whih would violate Lorentz symmetry. TheU(1)Y fator is Abelian, so it only has one-dimensional representations. This means wean assign di�erent hyperharges we to the various singlets and doublets of SU(2)W .Furthermore, we know that harged urrents onnet up- with down-type quarksand harged leptons with neutrinos, and that the W� bosons ouple only to left-handedfermions. This suggests to form doublets from uL and dL, and from eL and �L, and tokeep the right-handed �elds as singlets. So we obtain the SU(2)W multipletsqL = �uLdL� ; uR ; dR ; lL = ��LeL� ; eR ; (5.2)with the hyperharges (whih we will justify later)�eld: qL uR dR lL eRhyperharge: 16 23 �13 �12 �1 : (5.3)With these representations, we an write down the ovariant derivatives. The SU(2)Whas three generators, whih we hoose to be the Pauli matries, and therefore three gauge�elds W I� , I = 1; 2; 3. The U(1)Y gauge �eld is B�, and the oupling onstants are g andg0, respetively. The ovariant derivatives ating on the left-handed �elds areD� L = (�� + �gW� + �g0Y B�) L ; where W� = 12�IW I� ; (5.4)while the right-handed �elds are singlets under SU(2)W , and hene do not ouple to theW bosons, D� R = (�� + �g0Y B�) R : (5.5)From the expliit form of the Pauli matries,�1 = �0 11 0� ; �2 = �0 ��� 0 � ; �3 = �1 00 �1� ; (5.6)we see that W 1� and W 2� mix up- and down-type quarks, while W 3� does not, like theU(1) boson B�.It is often onvenient to split the Lagrangean into the free (kineti) part and theinteration Lagrangean, whih takes the form (urrent)�(vetor �eld). In the eletroweaktheory, one has Lint = �gJ IW; �W I � � g0JY; �B� ; (5.7)with the urrentsJ IW; � = qL� 12�IqL + lL� 12�IlL ; (5.8)JY; � = 16qL�qL � 12 lL�lL + 23uR�uR � 13dR�dR � eR�eR : (5.9)These urrents have to be onserved, ��J� = 0, to allow a onsistent oupling to gaugebosons. 44



5.1.1 AnomaliesBefore onsidering the Higgs mehanism whih will lead to the identi�ation of thephysial W�, Z and  bosons of the standard model, let us briey disuss anomalies. Wewill see that the hoie of hyperharges in (5.3) is severely onstrained by the onsistenyof the theory.Suppose we have a lassial �eld theory with a ertain symmetry and assoiatedonserved urrent. After quantising the theory, the resulting quantum �eld theory mightnot have that symmetry anymore, whih means the urrent is no longer onserved. Thisis alled an anomaly. Anomalies are not a problem for global symmetries, where thequantised theory just laks that partiular symmetry. For gauge symmetries, however,the urrents have to be onserved, otherwise the theory is inonsistent.A / JA JBJC L � JA JBJC RFigure 5.1: The gauge anomaly is given by triangle diagrams with hiral fermions in the loop.Anomalies are aused by ertain one-loop diagrams, the so-alled triangle diagrams(see Fig 5.1). The left- and right-handed fermions ontribute with di�erent sign, so ifthey have the same quantum numbers, the anomaly vanishes. This is the ase in QEDand QCD, whih thus are automatially anomaly free. In general, for urrents JA, JBand JC, the anomaly A is the di�erene of the traes of the generators TA, TB and TCin the left- and right-handed setors,A = tr ��TA; TB	TC�L � tr ��TA; TB	 TC�R != 0 : (5.10)Here the trae is taken over all fermions. For the eletroweak theory, in priniple thereare four ombinations of urrents, ontaining three, two, one or no SU(2)W urrent.However, the trae of any odd number of �I matries vanishes, so we only have to hekthe SU(2)2WU(1)Y and U(1)3Y anomalies.The SU(2)W generators are 12�I , whose antiommutator is �12�I; 12�J	 = 12ÆIJ . Fur-thermore, only the left-handed �elds ontribute, sine the right-handed ones are SU(2)Wsinglets. Hene the SU(2)2WU(1)Y anomaly isA = tr ��12�I ; 12�J� Y �L = 12ÆIJ tr [Y ℄L = 12ÆIJ � 3|{z}N �16 � 12� = 0 : (5.11)We see that it only vanishes if quarks ome in three olours!45



The U(1)3Y anomaly also vanishes:A = tr [fY; Y g Y ℄L � tr [fY; Y gY ℄R = 2�tr �Y 3�L � tr �Y 3�R�= 2 3 � 2�16�3 + 2��12�3 � 3�23�3 � 3��13�3 � (�1)3!= 0 : (5.12)This vanishing of the anomaly is again related to the number of olours. It does notvanish in either the left- or right-handed setor, nor in the quark and lepton setorindividually. Hene, the vanishing of anomalies provides a deep onnetion betweenquarks and leptons in the standard model, whih is a hint to grand uni�ed theorieswhere anomaly anellation is often automati.Anomaly anellation is not restrited to the eletroweak gauge urrents, but appliesto the strong fore and gravity as well: Mixed SU(3)C -U(1)Y anomalies vanish by thesame argument as above: Only the SU(3)2CU(1)Y triangle ontributes, but it is tr [Y ℄L�tr [Y ℄R = 0. The same is true for the last possible anomaly, the gravitational one, wheretwo non-Abelian gauge urrents are replaed by the energy-momentum tensor T�� .Hene, the standard model is anomaly free, as it should be. For this, all partiles ofone generation with their strange hyperharges have to onspire to anel the di�erentanomalies. A \standard model" without quarks, for instane, would not be a onsistenttheory, nor a \standard model" with four olours of quarks. Note that a right-handedneutrino, suggested by neutrino masses, does not pose any problem, sine it is a ompletesinglet, without any harge, and thus it does not ontribute to any gauge anomaly.5.2 Higgs MehanismThe eletroweak model disussed so far bears little resemblane to the physis of weakinterations. The gauge bosons W I� and B� are massless, implying long-range fores, be-ause a mass term m2W�W � would violate gauge invariane. Furthermore, the fermionsare massless as well, again beause of gauge invariane: A mass term mixes left- andright-handed fermions, m  = m � L R +  R L� ; (5.13)and sine these have di�erent gauge quantum numbers, suh a term is not gauge invari-ant. The way out is the elebrated Higgs mehanism: Spontaneous symmetry breakinggenerates masses for the gauge bosons and fermions without destroying gauge invariane.A simpler version of this e�et is what happens in superondutors: The ondensate ofCooper pairs indues an e�etive mass for the photon, so that eletromagneti inter-ations beome short-ranged, leading to the Meissner{Ohsenfeld e�et where externalmagneti �elds are expelled from the superondutor, levitating it.The key ingredient for the Higgs mehanism is a omplex salar �eld �, whih is adoublet under SU(2)W with hyperharge �12, whih has four real degrees of freedom.The ruial feature of the Higgs �eld is its potential ,whih is of the Mexian hat form: L = (D��)y (D��) � V ��y�� ; (5.14)46



with D�� = ��� + �gW� � �2g0B��� ;V ��y�� = ��2 �y� + 12� ��y��2 ; �2 > 0 : (5.15)This potential has a minimum away from the origin, at �y� = v2 � �2=�. In thevauum, the Higgs �eld settles in this minimum. At �rst sight, the minimisation of thepotential only �xes the modulus �y�, i.e., one of the four degrees of freedom. The otherthree, however, an be eliminated by a gauge transformation, and we an hoose thefollowing form of �, whih is often referred to as unitary gauge:� = �v + 1p2H(x)0 � ; H = H� (5.16)Here we have eliminated the upper omponent and the imaginary part of the lower one.We have also shifted the lower omponent to the vauum value, so that the dynamial�eld H(x) vanishes in the vauum.In unitary gauge, the Higgs Lagrangean (5.14) beomes L = �2 v4+ 12��H ��H � �v2H2 + �p2 vH3 + �8H4+ 14 �v + 1p2 H�2 �W 1� ;W 2� ;W 3� ; B��0BB�g2 00 g2 00 g2 gg0gg0 g021CCA0BB�W 1�W 2�W 3�B� 1CCA : (5.17)The �rst line ould be interpreted as vauum energy density, i.e., a osmologial onstant.However, suh an interpretation is on shaky grounds in quantum �eld theory, so we willignore this term2. The seond line desribes a real salar �eld H of mass m2H = 2�v2with ubi and quarti self-interations. The most important line, however, is the lastone: It ontains mass terms for the vetor bosons! A loser look at the mass matrixreveals that it only is of rank three, so it has one zero eigenvalue, and the three remainingones are g2, g2, and (g2 + g02). In other words, it desribes one massless partile, two ofequal nonzero mass and one whih is even heavier, i.e., we have identi�ed the physial, W� and Z bosons.The massless eigenstate of the mass matrix, i.e., the photon, is the linear om-bination A� = � sin �WW 3� + os �WB�, the orthogonal ombination is the Z boson,Z� = os �WW 3� + sin �WB�. Here we have introdued the Weinberg angle �W, whihis de�ned by sin �W = g0pg2 + g02 ; os �W = gpg2 + g02 : (5.18)2Generally, nothing prevents us from adding an arbitrary onstant to the Lagrangean, obtaining anydesired \vauum energy". For example, the Higgs potential is often written as ��y�� v2�2, so thatits expetation value vanishes in the vauum. These potentials just di�er by the a shift � v4, and areindistinguishable within QFT. 47



To summarise, the theory ontains the following mass eigenstates:� Two harged vetor bosons W� with mass M2W = 12g2v2,� two neutral vetor bosons with masses MZ = 12 (g2 + g02) v2 = M2W os�2 �W andM = 0,� and one neutral Higgs boson with mass m2H = 2�v2.The Higgs mehanism and the diagonalisation of the vetor boson mass matrix allowus to rewrite the interation Lagrangean (5.7), whih was given in terms of the old�elds W I� and B� and their urrents (5.8) and (5.9), in terms of the physial �eld. Theassoiated urrents are separated into a harged urrent (for W�� ) and neutral urrents(for A� and Z�): LCC = � gp2 Xi=1;2;3(uLi�dLi + �Li�eLi)W+� + h.. ; (5.19) LNC = �gJ3�W 3� � g0JY �B�= �eJem�A� � esin 2�WJZ �Z� ; (5.20)with the eletromagneti and Z urrentsJem� = Xi=u;d;;s;t;b;e;�;� i�Qi i ; with the eletri harge Qi = T 3i + Yi ; (5.21)JZ � = Xi=u;d;;s;t;be;�;�;�e;��;�� i� �vi � ai5� i : (5.22)Here the fermions  i are the sum of left- and right-handed �elds, i =  Li +  Ri : (5.23)The oupling to the photon, the eletri harge Q, is given by the sum of the thirdomponent of weak isospin T 3 (�12 for doublets, zero for singlets) and the hyperharge Y .This reprodues the known eletri harges of quarks and leptons, whih justi�es thehyperharge assignments in (5.3). The oupling onstant e is related to the originalouplings and the weak mixing angle:e = g sin �W = g0 os �W : (5.24)The photon ouples only vetor-like, i.e., it does not distinguish between di�erent hiral-ities. The Z boson, on the other hand, ouples to the vetor- and axial-vetor urrentsof di�erent fermions  i (i.e., their left-and right-handed omponents) with di�erentstrengths. They are given by the respetive ouplings vi and ai, whih are universal forall families. In partiular, the Z ouples in the same way to all leptons, a fat known aslepton universality.The Higgs mehanism desribed above is also alled spontaneous symmetry breaking.This term, however, is somewhat misleading: Gauge symmetries are never broken, but48



only hidden. The Lagrangean (5.17) only has a manifest U(1) symmetry assoiated withthe massless vetor �eld, so it seems we have lost three gauge symmetries. This, however,is just a onsequene of hoosing the unitary gauge. The Higgs mehanism an also bedesribed in a manifestly gauge invariant way, and all urrents remain onserved.The \spontaneous breaking of gauge invariane" reshu�es the degrees of freedomof the theory: Before symmetry breaking, we have the omplex Higgs doublet (fourreal degrees of freedom) and four massless vetor �elds with two degrees of freedomeah, so twelve in total. After symmetry breaking (and going to unitary gauge), threeHiggs degrees of freedom are gone (one remaining), but they have resurfaed as extraomponents of three massive vetor �elds3 (nine), and one vetor �eld stays massless(another two). So there still are twelve degrees of freedom.5.3 Fermion Masses and MixingsThe Higgs mehanism generates masses not only for the gauge bosons, but also for thefermions. As already emphasized, diret mass terms are not allowed in the standardmodel. There are, however, allowed Yukawa ouplings of the Higgs doublet to twofermions. They ome in three lasses, ouplings to quark doublets and either up- ordown-type quark singlets, and to lepton doublet and harged lepton singlets. Eah termis parametrised by a 3 � 3-matrix in generation spae, LY = (hu)ij qL iuR j� + (hd)ij qL idR je� + (he)ij lL ieR je� + h.. ; (5.25)where e� is given by e�a = �ab��b .These Yukawa ouplings e�etively turn into mass terms one the eletroweak sym-metry is spontaneously broken: A vauum expetation value h�Xi = v inserted in theLagrangean (5.25) yields Lm = (mu)ij uL iuR j + (md)ij dL idR j + (me)ij eL ieR j + h.. : (5.26)Here the mass matries are mu = huv et., and uL, dL and eL denote the respetiveomponents of the quark and lepton doublets qL and lL.The mass matries thus obtained are in general not diagonal in the basis where theharged urrent is diagonal. They an be diagonalised by bi-unitary transformations,V (u)ymueV (u) = diag(mu;m;mt) ; (5.27a)V (d)ymdeV (d) = diag(md;ms;mb) ; (5.27b)V (e)ymeeV (e) = diag(me;m�;m�) ; (5.27)with unitary matries V , V (u)yV (u) = 1 ; et.3Remember that a massless vetor only has two (transverse) degrees of freedom, while a massive onehas a third, longitudinal, mode. 49



This amounts to a hange of basis from the weak eigenstates (indies i; j; : : :) to masseigenstates (with indies �; �; : : :):uL i = V (u)i� uL� ; dL i = V (d)i� dL;� ; uR i = eV (u)i� uR� ; dR i = eV (d)i� dR� : (5.28)The up- and down-type matries V (u) and V (d) are not idential, whih has an importantonsequene: The harged urrent ouplings are now no longer diagonal, but rather LCC = � gp2 V��uL��dL �W+� + h.. ; (5.29)with the CKM matrix V�� = V (u)y�iV (d)i� ; (5.30)whih arries the information about avour mixing in harged urrent interations. Be-ause of the unitarity of the transformations, there is no avour mixing in the neutralurrent.We saw that the Higgs mehanism generates fermion masses sine diret mass termsare not allowed due to gauge invariane. There is one possible exeption: a right-handedneutrino, whih one may add to the standard model to have also neutrino masses. It isa singlet of the standard model gauge group and an therefore have a Majorana massterm whih involves the harge onjugate fermion C = C T ; (5.31)where C = �20 is the harge onjugation matrix. As the name suggests, the hargeonjugate spinor has harges opposite to the original one. It also has opposite hirality,PL CR =  R. Thus we an produe a mass term  C (remember that a mass term alwaysrequires both hiralities), whih only is gauge invariant for singlet �elds.So a right-handed neutrino �R an have the usual Higgs oupling and a Majoranamass term,  L�,mass = h� ijlL i�R j� + 12Mij�R i�R j + h.. ; (5.32)where i; j again are family indies.The Higgs vauum expetation value v turns the oupling matrix h� into the Diramass matrix mD = h�v. The eigenvalues of the Majorana mass matrix M an be muhlarger than the Dira masses, and a diagonalisation of the (�L; �R) system leads to threelight modes �i with the mass matrixm� = �mDM�1mTD : (5.33)Large Majorana masses naturally appear in grand uni�ed theories. For M � 1015 GeV,and mD � mt � 100 GeV for the largest Dira mass, one �nds m� � 10�2 eV, whihis onsistent with results from neutrino osillation experiments. This \seesaw meha-nism", whih explains the smallness of neutrino masses masses as a onsequene of largeMajorana mass terms, suessfully relates neutrino physis to grand uni�ed theories.50



5.4 PreditionsThe eletroweak theory ontains four parameters, the two gauge ouplings and the twoparameters of the Higgs potential: g, g0, �2 and �. They an be traded for four otherparameters, whih are more easily measured: The �ne-struture onstant �, the Fermionstant GF and the Z boson mass MZ , whih are known to great auray, and theHiggs mass mH whih is not yet known.W ff 0(a) Z ff(b) Figure 5.2: Deays of the W and Zbosons into two fermions. InW de-ays, the fermion and antifermionan have di�erent avour. Thegrey blobs indiate higher orderorretions whih must be inludedto math the experimental prei-sion.At LEP, W and Z bosons were produed in huge numbers. There are many observ-ables related to their prodution and deay (Fig. 5.2). These inlude:� The W mass MW and the deay widths �W and �Z .� Ratios of partial deay widths, for example, the ratio of the partial Z width intobottom quarks to that into all hadrons,Rb = 1�(Z ! hadrons)��Z ! bb� : (5.34)� Forward-bakward asymmetries: In e+e� ! Z= ! ff reations, the diretion ofthe outgoing fermion is orrelated with the inoming eletron. This is quanti�edby the asymmetries Affb,Affb = �ff � �fb�ff + �fb ; for f = �; �; b;  ; (5.35)where �ff is the ross setion for an outgoing fermion in the forward diretion, i.e.,� 2 [0; �=2℄ in Fig. 5.4, while �fb is the ross setion for bakward sattering.Also important are double, left-right and forward-bakward asymmetries,AfbLR = �fLf � �fLb � �fRf + �fRb�fLf + �fLb + �fRf + �fRb � 34Af : (5.36)The reason for these asymmetries is the presene of the axial ouplings ai in theZ boson urrent (5.22), whih lead to di�erent ross setions for the proessesZ ! fLfR and Z ! fRfL. Thus, one an dedue the ai and vi ouplings for51



e�e+ Z;  ff(a) e� e+ff �(b) Figure 5.3: The forward-bakwardasymmetry Afb: In the proesse+e� ! Z= ! ff , there is a or-relation between the diretions ofthe outgoing fermion and the in-oming eletron. This asymme-try has been measured for sev-eral types of �nal state fermions,mostly at LEP with enter of massenergy ps = MZ .fermions from the forward-bakward asymmetries, and �nally the weak mixingangle, on whih the vetor- and axial-vetor ouplings of the Z boson depend,sin2 �lepte� = 14 �1� vlal� : (5.37)� Eletroweak measurements by now are very preise, and require the inlusion of Wboson loops in theoretial alulations, so that they test the non-Abelian natureof the eletroweak theory. The theoretial preditions ritially depend on the theeletromagneti oupling at the eletroweak sale, �(mZ), whih di�ers from thelow energy value �(0) in partiular by hadroni orretions, ��had(mZ).An important observable is the � parameter, de�ned by� = M2WM2Z os2 �W : (5.38)At tree level, � = 1. Loop orretions to the masses of the gauge bosons, andtherefore to �, due to quark or Higgs boson loops as in Fig. 5.4, are an importantpredition of the eletroweak theory.The tree level value � = 1 is proteted by an approximate SU(2) symmetry, alledustodial symmetry, whih is only broken by the U(1)Y gauge interation and byYukawa ouplings. Thus the orretions depend on the fermion masses, and aredominated by the top quark, as in Fig 5.4(a). The leading orretion is��(t) = 3GFm2t8�2p2 / m2tM2W : (5.39)This led to the orret predition of the top mass from eletroweak preision databefore the top quark was disovered at the TeVatron.The orretion due to the Higgs boson diagrams in Fig. 5.4(b) again depends onthe Higgs mass, but this time the e�et is only logarithmi:��(H) = �C lnm2HM2W : (5.40)52



W+ W+bt Z Ztt(a) Heavy quark orretionsW�; Z W�; ZH W�; Z W�; ZH(b) Higgs orretionsFigure 5.4: Radiative orretions to the masses of the W and Z bosons, whih depend on the massesof the partiles in the loop. Diagrams with gauge boson self-interations have been omitted.e�e+ �e W�W+(a) e�e+ Z= W�W+(b) Figure 5.5: The proess e+e� !W+W�. The diagrams of panel(b) ontain triple gauge bosonverties, WW and ZWW .From this relation, one an obtain a predition for the mass of the Higgs boson.Clearly, the auray of this predition strongly depends on the experimental erroron the top mass, whih a�ets � quadratially.However, the Higgs mass (weakly) inuenes many other quantities, and frompreision measurements one an obtain a �t for the Higgs mass. This is shown inthe famous blue-band plot, Fig. 6.3.� A harateristi predition of any non-Abelian gauge theory is the self-interationof the gauge bosons. In the eletroweak theory, this an be seen in the proesse+e� ! W+W�.The tree-level diagrams are given in Fig. 5.5, and Fig. 5.6(a) shows the mea-sured ross setion from LEP, ompared with theoretial preditions. Clearly, thefull alulation inluding all diagrams agrees well with data, while the omission53



of the WW and ZWW verties leads to large disrepanies. For the proesse+e� ! ZZ, on the other hand, there is no triple gauge boson (ZZZ or ZZ)vertex, so at tree level one only has the t-hannel diagram whih is similar to thediagram in Fig. 5.5(a), but with an eletron instead of the neutrino. The agreementbetween theory and data is evident from Fig. 5.6(b).5.4.1 Fermi Theory �� ��e��eFigure 5.7: � deayThe exhange of a W boson with momentum q in a Feynman diagramontributes a fator of (M2W � q2)�2 to the amplitude. For low-energyproesses like muon deay (see Fig. 5.7), the momentum transferis muh smaller than the mass of the W boson. Hene, to goodapproximation one an ignore q2 and replae the propagator by M�2W .This amounts to introduing an e�etive four-fermion vertex (seeFig. 5.8),  Le�CC = �GFp2J�CCJyCC� ; (5.41)where GF is Fermi's onstant, GF = g24p2M2W = 12p2 v2 ; (5.42)whih is inversely proportional to the Higgs vauum expetation value v2. A four-fermiontheory for the weak interations was �rst introdued by Fermi in 1934. Sine it is not
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renormalisable, it annot be onsidered a fundamental theory. However, one an useit as an e�etive theory at energies small ompared to the W mass. This is suÆientfor many appliations in avour physis, where the energy sale is set by the masses ofleptons, kaons and B mesons.W q2 �M2W Figure 5.8: W boson exhange an be de-sribed in terms of the Fermi theory, ane�etive theory for momentum transferssmall ompared to the W mass. The Wpropagator is replaed by a four-fermionvertex / GF.5.5 SummaryThe eletroweak theory is a hiral gauge theory with gauge group SU(2)W � U(1)Y .This symmetry is spontaneously broken down to U(1)em by the Higgs mehanism whihgenerates the gauge boson and Higgs masses, and also all fermion masses, sine diretmass terms are forbidden by gauge invariane.The eletroweak theory is extremely well tested experimentally, to the level of 0.1%,whih probes loop e�ets of the non-Abelian gauge theory. The results of a globaleletroweak �t are shown in Fig. 5.9. There is one deviation of almost 3�, all otherquantities agree within less than 2�.This impressive agreement is only possible due to two properties of the eletroweakinterations: They an be tested in lepton-lepton ollisions, whih allow for very preisemeasurements, and they an be reliably alulated in perturbation theory. QCD, onthe other hand, requires hadroni proesses whih are experimentally known with lessauray and also theoretially subjet to larger unertainties.
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02767

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.743

AfbA0,l 0.01714 ± 0.00095 0.01643

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480

RbRb 0.21629 ± 0.00066 0.21581

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1037

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.404 ± 0.030 80.376

ΓW [GeV]ΓW [GeV] 2.115 ± 0.058 2.092

mt [GeV]mt [GeV] 172.5 ± 2.3 172.9Figure 5.9: Results of a global �t to eletroweak preision data. The right olumn shows the deviationof the �t from measured values in units of the standard deviation. From [11℄.56



Chapter 6The Higgs Pro�leThe only missing building blok of the standard model is the Higgs boson. Spontaneouslybroken eletroweak symmetry, however, is a ornerstone of the standard model, and sothe disovery of the Higgs boson and the detailed study of its interations is a topi ofprime importane for the LHC and also the ILC.The investigation of the Higgs setor an be expeted to to give important insight alsoon physis beyond the standard model. Sine the Higgs is a salar partile, its mass issubjet to quadratially divergent quantum orretions, and an enormous \�ne-tuning"of the tree-level mass term is needed to keep the Higgs light (this is usually referred toas the \naturalness problem" of the Higgs setor). Suh onsiderations have motivatedvarious extensions of the standard model:� Supersymmetry retains an elementary salar Higgs (and atually adds four more),while radiative orretions with opposite signs from bosons and fermions anel.� Tehniolour theories model the Higgs as a omposite partile of size 1=�TC, where�TC � 1 TeV is the on�nement sale of a new non-Abelian gauge interation.These theories generially have problems with eletroweak preision tests and thegeneration of fermion masses.� A related idea regards the Higgs as a pseudo-Goldstone boson of some approximateglobal symmetry spontaneously broken at an energy sale above the eletroweaksale. The Higgs mass is then related to the expliit breaking of this symmetry.� In theories with large extra dimensions new degrees of freedom our, and the Higgs�eld an be identi�ed, for instane, as the �fth omponent of a �ve-dimensionalvetor �eld.All suh ideas an be tested at the LHC and the ILC, sine the unitarity of WW sat-tering implies that the standard model Higgs and/or other e�ets related to eletroweaksymmetry breaking beome manifest at energies below � 1 TeV.6.1 Higgs Couplings and DeaySuppose a resonane is found at the LHC with a mass above 114 GeV and zero harge.How an one establish that it indeed is the Higgs?57



H ff / mf(a) H WL=ZLWL=ZL/ mH(b)H G=G=() H HH / mH(d)Figure 6.1: Higgs boson deays. Tree-level ouplings are proportional to masses, but there also areloop-indued deays into massless partiles. The ubi Higgs self-oupling an be probed at the ILCand possibly at the LHC.The Higgs boson an be distinguished from other salar partiles as they our,for instane, in supersymmetri theories, by its speial ouplings to standard modelpartiles. All ouplings are proportional to the mass of the partile, sine it is generatedby the Higgs mehanism. Hene, the Higgs deays dominantly into the heaviest partileskinematially allowed, whih are tt or, for a light Higgs, bb and �� pairs. It also has astrong oupling / mH to the longitudinal omponent of W and Z bosons. The tree-level diagrams are given in Figs. 6.1(a) and 6.1(b). In addition, there are importantloop-indued ouplings to massless gluons and photons (see Fig. (6.1()).The tree level deay widths in the approximation mH � mf ;MW are given by��H ! ff� = GFmHm2f4�p2 N ; (6.1a)�(H ! ZLZL) = 12�(H ! WLWL) = GFm3H32�p2 : (6.1b)The branhing frations of the Higgs into di�erent deay produts strongly depend onthe Higgs mass, as shown in Fig. 6.2. For a heavy Higgs, with mH > 2MW , thedeay into a pair of W bosons dominates. At the threshold the width inreases by twoorders of magnitude, and it almost equals the Higgs mass at mH � 1 TeV where theHiggs dynamis beomes nonperturbative. For a light Higgs with a mass just abovethe present experimental limit, mH > 114 GeV, the deay into two photons might bethe best possible detetion hannel given the large QCD bakground for the deay intotwo gluons at the LHC. It is learly an experimental hallenge to establish the massdependene of the Higgs ouplings, so the true disovery of the Higgs is likely to takeseveral years of LHC data! 58



Figure 6.2: Left: Higgs branhing ratios as funtion of the Higgs mass. Right: Higgs deay width asfuntion of the Higgs mass. It inreases by two orders of magnitude at the WW threshold. From [12℄.6.2 Higgs Mass BoundsWe now turn to the issue of the Higgs mass. Within the standard model, m2H = 2�v2 isa free parameter whih annot be predited. There are, however, theoretial onsistenyarguments whih yield stringent upper and lower bounds on the Higgs mass.Before we present these argument, we �rst reall the experimental bounds:� The Higgs has not been seen at LEP. This gives a lower bound on the mass,mH > 114 GeV.� The Higgs ontributes to radiative orretions, in partiular for the � parameter.Hene, preision measurements yield indiret onstraints on the Higgs mass. Theresult of a global �t is shown in the blue-band plot, Fig. 6.3. The urrent 95%on�dene level upper bound is mH < 185 GeV, an impressive result! One shouldkeep in mind, however, that the loop orretions used to determine the Higgs massstrongly depend on the top mass as well. A shift of a few GeV in the top mass,well within the urrent unertainties, an shift the Higgs mass best �t by severaltens of GeV, as an be seen by omparing he plots in Fig. 6.3.Theoretial bounds on the Higgs mass arise, even in the standard model, from twoonsisteny requirements: (Non-)Triviality and vauum stability. In the minimal super-symmetri standard model (MSSM), on the other hand, the Higgs self-oupling is givenby the gauge ouplings, whih implies the upper bound mH . 135 GeV.The mass bounds in the standard model arise from the sale dependene of ouplings,as explained in Chapter 4. Most relevant are the quarti Higgs self-oupling � and thetop quark Yukawa oupling ht whih gives the top mass via mt = htv. Other Yukawaouplings are muh smaller and an be ignored. The renormalisation group equations59
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�L < �, a �nite value �(�L) would require �(v) = 0, i.e., the theory would be\trivial".� The vauum stability bound: �(�) > 0. If � would beome negative, the Higgspotential would not be bounded from below anymore, and the eletroweak vauumwould no longer be the ground state of the theory.These two requirements de�ne allowed regions in the mH-mt{plane as funtion of theuto� � (see Fig. (6.4a)). For a given top mass, this translates into an upper and lowerbound on the Higgs mass. For inreasing �, the allowed region shrinks, and for theknown top quark mass and � � �GUT � 1016 GeV, the Higgs mass is onstrained to liein a narrow region, 130 GeV < mH < 180 GeV (see Fig. (6.4b)).
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Chapter 7History and OutlookFinally, instead of a summary, we shall briey reall the history of \The making of theStandard Model" following a review by S. Weinberg [1℄. It is very instrutive to look atthis proess as the interplay of some \good ideas" and some \misunderstandings" whihoften prevented progress for many years.1. A \good idea" was the quark model, proposed in 1964 independently by Gell-Mann and Zweig. The hypothesis that hadrons are made out of three quarksand antiquarks allowed one to understand their quantum numbers and mass spe-trum in terms of an approximate SU(3) avour symmetry, the \eightfold way".Furthermore, the deep-inelasti sattering experiments at SLAC in 1968 ould beinterpreted as elasti sattering of eletrons o� point-like partons inside the proton,and it was natural to identify these partons with quarks.But were quarks real or just some mathematial entities? Many physiists did notbelieve in quarks sine no partiles with third integer harges were found despitemany experimental searhes.2. Another \good idea" was the invention of non-Abelian gauge theories by Yang andMills in 1954. The loal symmetry was the isospin group SU(2), and one hopedto obtain in this way a theory of strong interations with the �-mesons as gaugebosons. Only several years later, after the V �A-struture of the weak interationshad been identi�ed, Bludman, Glashow, Salam and Ward and others developedtheories of the weak interations with intermediate vetor bosons.But all physial appliations of non-Abelian gauge theories seemed to require mas-sive vetor bosons beause no massless ones had been found, neither in strong norweak interations. Suh mass terms had to be inserted by hand, breaking expli-itly the loal gauge symmetry and thereby destroying the rationale for introduingnon-Abelian loal symmetries in the �rst plae. Furthermore, it was realized thatnon-Abelian gauge theories with mass terms would be non-renormalisable, plaguedby the same divergenies as the four-fermion theory of weak interations.3. A further \good idea" was spontaneous symmetry breaking: There an be sym-metries of the Lagrangean that are not symmetries of the vauum. Aording tothe Goldstone theorem there must be a massless spinless partile for every spon-taneously broken global symmetry. On the other hand, there is no experimental62



evidene for any massless salar with strong or weak interations. In 1964 Higgsand Englert and Brout found a way to irumvent Goldstone's theorem: The the-orem does not apply if the symmetry is a gauge symmetry as in eletrodynamisor the non-Abelian Yang{Mills theory. Then the Goldstone boson beomes theheliity-zero part of the gauge boson, whih thereby aquires a mass.But again, these new developments were applied to broken symmetries in stronginterations, and in 1967 Weinberg still onsidered the hiral SU(2)L � SU(2)Rsymmetry of strong interations to be a gauge theory with the � and a1 mesons asgauge bosons. In the same year, however, he then applied the idea of spontaneoussymmetry breaking to the weak interations of the leptons of the �rst family,(�L; eL) and eR (he did not believe in quarks!). This led to the gauge groupSU(2) � U(1), massive W and Z bosons, a massless photon and the Higgs boson!The next steps on the way to the Standard Model are well known: The proof by 't Hooftand Veltman that non-Abelian gauge theories are renormalisable and the disovery ofasymptoti freedom by Gross and Wilzek and Politzer. Finally, it was realised that theinfrared properties of non-Abelian gauge theories lead to the on�nement of quarks andmassless gluons, and the generation of hadron masses. So, by 1973 \The making of theStandard Model" was ompleted!Sine 1973 many important experiments have on�rmed that the Standard Model isindeed the orret theory of elementary partiles:� 1973: disovery of neutral urrents� 1979: disovery of the gluon� 1983: disovery of the W and Z bosons� 1975 - 2000: disovery of the third family, � , b, t and ��� During the past deade impressive quantitative tests have been performed of theeletroweak theory at LEP, SLC and Tevatron, and of QCD at LEP, HERA andTevatron.Today, there are also a number of \good ideas" on the market, whih lead beyondthe Standard Model. These inlude grand uni�ation, dynamial symmetry breaking,supersymmetry and string theory. Very likely, there are again some \misunderstandings"among theorists, but we an soon hope for lari�ations from the results of the LHC.
We would like to thank the partiipants of the shool for stimulating questions and theorganisers for arranging an enjoyable and fruitful meeting in Kitzb�uhel.63



Appendix AVetors, Spinors and -AlgebraA.1 Metri ConventionsOur spaetime metri is mostly minus,g�� = diag(+;�;�;�) ; (A.1)so timelike vetors v� have positive norm v�v� > 0. The oordinate four-vetor isx� = (t; ~x) (with upper index), and derivatives with respet to x� are denoted by�� = ��x� = � ��t; ~r� : (A.2)Greek indies �; �; �; : : : run from 0 to 3, purely spatial vetors are indiated by an vetorarrow.A.2 -MatriesIn four dimensions, the -matries are de�ned by their antiommutators,f�; �g = 2g��1 ; � = 0; : : : ; 3 (A.3)In addition, 0 = y0 is Hermitean while the i = �yi are anti-Hermitean, and all �are traeless. The matrix form of the -matries is not �xed by the algebra, and thereare several ommon representations, like the Dira and Weyl representations, Eqs. (4.5)and (2.47), respetively. However, the following identities hold regardless of the repre-sentation.The produt of all -matries is 5 = �0123 (A.4)whih is Hermitean, squares to one and antiommutes with all -matries,�5; �	 = 0 : (A.5)64



The hiral projetors PL=R are de�ned asPL=R = 12 �1 � 5� ; PLPR = PRPL = 0 ; P 2L=R = PL=R : (A.6)To evaluate Feynman diagrams like for the anomalous magneti moment, one oftenneeds to ontrat several -matries suh as�� = 4 (A.7a)��� = �2� (A.7b)���� = 4g�� (A.7)����� = �2��� et. (A.7d)For a vetor v� we sometimes use the slash =v = �v�A.3 Dira, Weyl and Majorana SpinorsThe solutions of the Dira equation in momentum spae are �xed by the equations�=p�m�u(i)(p) = 0 �=p +m�v(i)(p) = 0 : (A.8)Here it is onvenient to hoose the Weyl representation (2.47) of the Dira matries,0 = � 0 1212 0 � ; i = � 0 �i��i 0� ; ) 5 = ��120 12� :In this basis, the spinors u(p) and v(p) are given byus(p) =  pE12 + ~p � ~� �spE12 � ~p � ~� �s! ; vs(p) =  pE12 + ~p � ~� �s�pE12 � ~p � ~� �s! : (A.9)Here � and � are two-omponent unit spinors. Choosing the momentum along the z-axisand e.g. � = (1; 0)T , the positive-energy spinor beomesu+ = 0BB�pE + pz0pE � pz0 1CCA ; (A.10)whih has spin +12 along the z-axis. For � = (0; 1)T , the spin is reversed, and similar for� and the negative energy spinors.The spinors onsidered so far are alled Dira spinors: They are restrited only bythe Dira equation and have four degrees of freedom (partile and antipartile, spin upand spin down). There are two restrited lasses of spinors, Weyl and Majorana spinors,whih only have two degrees of freedom.Weyl or hiral spinors are subjet to the onstraintPL L =  L or PR R =  R (A.11)65



and orrespond to purely left- or right-handed fermions. In the language of u's and v's,hiral spinors orrespond to sums u � 5v.Chiral spinors an have a kineti term, butno usual mass term, sine( L) = PL L = (PL L)y 0 =  yLPL0 =  LPR (A.12)and hene  L  L =  L PRPL| {z }=0  L = 0 : (A.13)However, there is the possibility of a Majorana mass term via the harge onjugatespinor  C:  C = C T with the harge onjugation matrix C = �02 : (A.14) C is of opposite hirality to  , so it an be used to build a bilinear  C for a massterm. However, this term violates all symmetries under whih  is harged, so it is onlyaeptable for omplete singlets, like right-handed neutrinos.
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Index2 ! 2 sattering in �4 theory, 19Adjoint spinor, 14Antipartile, 9asymptoti freedom, 42Asymptoti states, 18Bare �elds, 39Bare parameters, 39� funtion, 41for QCD oupling, 42Canonial antiommutation relationsfor reation and annihilation opera-tors, 16for spinor �elds, 15Canonial ommutation relationsfor p and q, 7for reation and annihilation opera-tors, 10for �eld operators, 13for raising and lowering operators, 7Charge operator, 11CKM matrix, 50Compton wavelength, 9Conjugate momentumfor fermions, 15for salar �elds, 13in quantum mehanis, 6Counterterms, 39Covariant derivative, 25Creation and annihilation operators, 9Dira algebra, 14Dira euation, 14Disonneted diagrams, 18Eletroweak theoryW I and B bosons, 44harged urrent, 48gauge group, 43

Isospin and hyperharge urrents, 44neutral urrent, 48quantum numbers, 44Faddeev{Popov ghosts, 30Fermi onstant GF, 54Feynman parameters, 34Feynman propagator, 12for fermions, 17Feynman rulesfor �4 theory, 19ounterterms, 39for fermions, 20for non-Abelian gauge theories, 30Field strength, 25Forward-bakward asymmetries, 51-matries, 14Dira representation, 32Weyl representation, 14Gauge boson self-interation, 53Gauge onditions, 29Gauge potentialeletromagneti, 24Transformation of, 28Gauge transformation, 24Gordon identity, 34Group generators, 27Gell-Mann matries for SU(3), 27Pauli matries for SU(2), 27Hamiltonian, 6Harmoni osillator, 7Heisenberg piture, 6Higgsmehanism, 46potential, 46Hilbert spaefor the spinor �eld, 17of the harmoni osillator, 767



of the salar �eld, 9Lagrange density, 12Lagrange funtion, 6LagrangeanNon-Abelian gauge �eld, 29QCD, 29QED, 26Land�e fator, 32Landau pole, 41Magneti moment, 32anomalous, 35one-loop orretion, 35Majorana mass, 50Mass dimension, 37Maxwell's equations, 24Mexian hat potential, 23Momentum operator, 10Naturalness problem, 57Noether urrent, 22Noether's theorem, 13Pauli equation, 33Pauli priniple, 17�4 theory, 18Polarisation vetor, 30R ratios, 51Regularisation, 36dimensional, 36Renormalisation, 36onstants, 39group equation, 41shemes, 40Renormalised �elds, 39� parameter, 52Running Coupling, 40S matrix, 18See-saw mehanism, 50Self-energyeletron, 38photon (vauum polarisation), 38Spin operator, 16Spinors, 14Spontaneous symmetry breaking, 48

Struture onstants, 27SU(n), 27� funtion, 12Triangle diagrams, 45u and v spinors, 15Unertainty relation, 7Unitary gauge, 47Vauum, 8Vertex orretion, 33Ward identity, 40weak mixing angle, 47

68



Bibliography[1℄ S. Weinberg, \The making of the standard model," Eur. Phys. J. C 34 (2004) 5[arXiv:hep-ph/0401010℄[2℄ O. Nahtmann, \Elementary Partile Physis: Conepts And Phenomena,"Springer 1990[3℄ M. E. Peskin and D. V. Shroeder, \An Introdution to quantum �eld theory,"Perseus Books 1995[4℄ J. Ellis, these proeedings[5℄ G. Eker, these proeedings[6℄ R. Fleisher, these proeedings[7℄ M. Lindner, these proeedings[8℄ S. Weinberg, \Gravitation and Cosmology" (Wiley, New York, 1972), pp. 61-63[9℄ G. 't Hooft, M. Veltman, \Diagrammar", CERN report 73-9 (1973)[10℄ T. Kinoshita, Nul. Phys. Pro. Suppl. 157 (2006) 101[11℄ LEP Eletroweak Working Group, http://lepewwg.web.ern.h[12℄ M. Spira, Fortsh. Phys. 46 (1998) 203 [arXiv:hep-ph/9705337℄[13℄ C. D. Froggatt, Surveys High Energ. Phys. 18 (2003) 77 [arXiv:hep-ph/0307138℄[14℄ C. Quigg, Ata Phys. Polon. B 30 (1999) 2145 [arXiv:hep-ph/9905369℄
69

http://arxiv.org/abs/hep-ph/0401010
http://lepewwg.web.cern.ch
http://arxiv.org/abs/hep-ph/9705337
http://arxiv.org/abs/hep-ph/0307138
http://arxiv.org/abs/hep-ph/9905369

	Introduction
	Theoretical Perspective
	Phenomenological Aspects

	Quantisation of Fields
	Why Fields?
	Quantisation in Quantum Mechanics
	Special Relativity Requires Antiparticles

	Multiparticle States and Fields
	States, Creation and Annihilation
	Charge and Momentum
	Field Operator
	Propagator

	Canonical Quantisation
	Fermions
	Canonical Quantisation of Fermions

	Interactions
	4 Theory
	Fermions


	Gauge Theories
	Global Symmetries v Gauge Symmetries
	Abelian Gauge Theories
	Non-Abelian Gauge Theories
	Quantisation

	Quantum Corrections
	Anomalous Magnetic Moment
	Divergences
	Dimensional Regularisation
	Renormalisation
	Running Coupling in QED
	Running Coupling in QCD


	Electroweak Theory
	Quantum Numbers
	Anomalies

	Higgs Mechanism
	Fermion Masses and Mixings
	Predictions
	Fermi Theory

	Summary

	The Higgs Profile
	Higgs Couplings and Decay
	Higgs Mass Bounds

	History and Outlook
	Vectors, Spinors and bold0mu mumu Raw-Algebra
	Metric Conventions
	-Matrices
	Dirac, Weyl and Majorana Spinors


