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Chapter 1Introdu
tionIn these le
tures we shall give a short introdu
tion to the standard model of parti
lephysi
s with emphasis on the ele
troweak theory and the Higgs se
tor, and we shall alsoattempt to explain the underlying 
on
epts of quantum �eld theory.The standard model of parti
le physi
s has the following key features:� As a theory of elementary parti
les, it in
orporates relativity and quantum me-
hani
s, and therefore it is based on quantum �eld theory.� Its predi
tive power rests on the regularisation of divergent quantum 
orre
tionsand the renormalisation pro
edure whi
h introdu
es s
ale{dependent \running
ouplings".� Ele
tromagneti
, weak, strong and also gravitational intera
tions are all related tolo
al symmetries and des
ribed by Abelian and non-Abelian gauge theories.� The masses of all parti
les are generated by two me
hanisms: 
on�nement andspontaneous symmetry breaking.In the following 
hapters we shall explain these points one by one. Finally, instead of asummary, we will brie
y re
all the history of \The making of the Standard Model"[1℄.From the theoreti
al perspe
tive, the standard model has a simple and elegant stru
-ture: It is a 
hiral gauge theory. Spelling out the details reveals a ri
h phenomenologywhi
h 
an a

ount for strong and ele
troweak intera
tions, 
on�nement and spontaneoussymmetry breaking, hadroni
 and leptoni
 
avour physi
s et
. [2, 3℄. The study of allthese aspe
ts has kept theorists and experimenters busy for three de
ades. Let us brie
y
onsider these two sides of the standard model before we enter the dis
ussion of thedetails.1.1 Theoreti
al Perspe
tiveThe standard model is a theory of �elds with spins 0, 12 and 1. The fermions (matter�elds) 
an be arranged in a big ve
tor 
ontaining left-handed spinors only:	TL = � qL1; uCR1; eCR1; dCR1; lL1; (nCR1)| {z }1st family ; qL2; : : :| {z }2nd ; : : : ; (nCR3)| {z }3rd � ; (1.1)3



where the �elds are the quarks and leptons, all in threefold family repli
ation. The quarks
ome in triplets of 
olour, i.e., they 
arry an index �, � = 1; 2; 3, whi
h we suppressedin the above expression. The left-handed quarks and leptons 
ome in doublets of weakisospin, q�Li = �u�Lid�Li� and lLi = ��LieLi� ;where i is the family index, i = 1; 2; 3. We have in
luded a right-handed neutrino nRbe
ause there is eviden
e for neutrino masses from neutrino os
illation experiments.The subs
ripts L and R denote left- and right-handed �elds, respe
tively, whi
h areeigenstates of the 
hiral proje
tion operators PL or PR. The supers
ript C indi
atesthe 
harge 
onjugate �eld (the antiparti
le). Note that the 
harge 
onjugate of a right-handed �eld is left-handed:PL L � 1 � 
52  L =  L ; PL CR =  CR ; PL R = PL CL = 0 ; (1.2)PR R � 1 + 
52  R =  R ; PR CL =  CL ; PR L = PR CR = 0 : (1.3)So all �elds in the big 
olumn ve
tor of fermions have been 
hosen left-handed. Alto-gether there are 48 
hiral fermions. The fa
t that left- and right-handed fermions 
arrydi�erent weak isospin makes the standard model a 
hiral gauge theory. The threefoldrepli
ation of quark-lepton families is one of the puzzles whose explanation requiresphysi
s beyond the standard model [4℄.The spin-1 parti
les are the gauge bosons asso
iated with the fundamental intera
-tions in the standard model,GA� ; A = 1; : : : ; 8 : the gluons of the strong intera
tions ; (1.4)W I� ; I = 1; 2; 3 ; B� : the W and B bosons of the ele
troweak intera
tions. (1.5)These for
es are gauge intera
tions, asso
iated with the symmetry groupGSM = SU(3)C � SU(2)W � U(1)Y ; (1.6)where the subs
ripts C, W , and Y denote 
olour, weak isospin and hyper
harge, respe
-tively.The gauge group a
ts on the fermions via the 
ovariant derivative D�, whi
h is anordinary partial derivative plus a big matrix A� built out of the gauge bosons and thegenerators of the gauge group:D�	L = (��1 + gA�) 	L : (1.7)From the 
ovariant derivative we 
an also 
onstru
t the �eld strength tensor,F�� = � �g [D�;D� ℄ ; (1.8)whi
h is a matrix-valued obje
t as well. 4



The last ingredient of the standard model is the Higgs �eld �, the only spin-0 �eldin the theory. It is a 
omplex s
alar �eld and a doublet of weak isospin. It 
ouples left-and right-handed fermions together.Written in terms of these �elds, the Lagrangean of the theory is rather simple: L = �12 tr [F��F ��℄ + 	L�
�D�	L + tr h(D��)yD��i+ �2 �y� � 12� ��y��2 +�12	TLCh�	L + h.
.� : (1.9)The matrix C in the last term is the 
harge 
onjugation matrix a
ting on the spinors, his a matrix of Yukawa 
ouplings. All 
oupling 
onstants are dimensionless, in parti
ular,there is no mass term for any quark, lepton or ve
tor boson. All masses are generatedvia the Higgs me
hanism whi
h gives a va
uum expe
tation value to the Higgs �eld,h�i � v = 174 GeV : (1.10)The Higgs boson asso
iated with the Higgs me
hanism has not yet been found, but itsdis
overy is generally expe
ted at the LHC.1.2 Phenomenologi
al Aspe
tsThe standard model Lagrangean (1.9) has a ri
h stru
ture whi
h has led to di�erentareas of resear
h in parti
le physi
s:� The gauge group is 
omposed of three subgroups with di�erent properties:{ The SU(3) part leads to quantum 
hromodynami
s, the theory of strong in-tera
tions [5℄. Here the most important phenomena are asymptoti
 freedomand 
on�nement: The quarks and gluons appear as free parti
les only atvery short distan
es, probed in deep-inelasti
 s
attering, but are 
on�nedinto mesons and baryons at large distan
es.{ The SU(2) � U(1) subgroup des
ribes the ele
troweak se
tor of the standardmodel. It gets broken down to the U(1)em subgroup of quantum ele
trodynam-i
s by the Higgs me
hanism, leading to massive W and Z bosons whi
h areresponsible for 
harged and neutral 
urrent weak intera
tions, respe
tively.� The Yukawa intera
tion term 
an be split into di�erent pie
es for quarks andleptons:12	TLCh�	L = hu ij �uRiqLj� + hd ij �dRiqLje� + he ij�eRilLje� + hn ij�nRilLj� ; (1.11)where i; j = 1; 2; 3 label the families and e�a = �ab��b . When the Higgs �elddevelops a va
uum expe
tation value h�i = v, the Yukawa intera
tions generatemass terms. The �rst two terms, mass terms for up-type- and down-type-quarks,respe
tively, 
annot be diagonalised simultaneously, and this misalignment leadsto the CKM matrix and 
avour physi
s [6℄. Similarly, the last two terms give riseto lepton masses and neutrino mixings [7℄.5



Chapter 2Quantisation of FieldsIn this 
hapter we will 
over some basi
s of quantum �eld theory (QFT). For a more in-depth treatment, there are many ex
ellent books on QFT and its appli
ation in parti
lephysi
s, su
h as [2, 3℄.2.1 Why Fields?2.1.1 Quantisation in Quantum Me
hani
s q(t)_q(t)Figure 2.1: Parti
le movingin one dimensionQuantum me
hani
s is obtained from 
lassi
al me
hani
s bya method 
alled quantisation. Consider for example a par-ti
le moving in one dimension along a traje
tory q(t), withvelo
ity _q(t) (see Fig. 2.1). Its motion 
an be 
al
ulated inthe Lagrangean or the Hamiltonian approa
h. The Lagrangefun
tion L(q; _q) is a fun
tion of the position and the velo
ityof the parti
le, usually just the kineti
 minus the potentialenergy. The equation of motion is obtained by requiring thatthe a
tion, the time integral of the Lagrange fun
tion, be ex-tremal, or, in other words, that its variation under arbitraryperturbations around the traje
tory vanishes:ÆS = Æ Z dtL (q(t); _q(t)) = 0 : (2.1)The Hamiltonian of the system, whi
h 
orresponds to the total energy, depends on the
oordinate q and its 
onjugate momentum p rather than _q:H(p; q) = p _q � L (q; _q) ; p = �L� _q : (2.2)To quantise the system, one repla
es the 
oordinate and the momentum by operatorsq and p a
ting on some Hilbert spa
e of states we will spe
ify later. In the Heisenbergpi
ture, the states are time-independent and the operators 
hange with time asq(t) = e�Htq(0)e��Ht : (2.3)6



Sin
e p and q are now operators, they need not 
ommute, and one postulates the 
om-mutation relation [p(0); q(0)℄ = ��~ ; (2.4)where h = 2�~ is Plan
k's 
onstant. In the following we shall use units where ~ = 
 = 1.The 
ommutator (2.4) leads to the un
ertainty relation�q ��p � 12 : (2.5)Note that on S
hr�odinger wave fun
tions the operator q is just the 
oordinate itself andp is ���=�q. In this way the 
ommutation relation (2.4) is satis�ed.As an example example of a quantum me
hani
al system, 
onsider the harmoni
os
illator with the Hamiltonian H = 12 �p2 + !2q2� ; (2.6)whi
h 
orresponds to a parti
le (with mass 1) moving in a quadrati
 potential with astrength 
hara
terised by !2. Classi
ally, H is simply the sum of kineti
 and potentialenergy. In the quantum system, we 
an de�ne new operators as linear 
ombinations ofp and q: q = 1p2! �a+ ay� ; p = ��r!2 �a� ay� ; (2.7a)i:e: ; a = r!2 q + �r 12!p ; ay =r!2 q � �r 12!p : (2.7b)a and ay satisfy the 
ommutation relations�a; ay� = 1 : (2.8)In terms of a and ay the Hamiltonian is given byH = !2 �aay + aya� : (2.9)Sin
e Eqs. (2.7) are linear transformations, the new operators a and ay enjoy the sametime evolution as q and p: a(t) = e�Hta(0)e��Ht = a(0)e��!t ; (2.10)where the last equality follows from the 
ommutator of a with the Hamiltonian,[H; a℄ = �!a ; �H; ay� = !ay : (2.11)We 
an now 
onstru
t the Hilbert spa
e of states the operators a
t on. We �rst noti
ethat the 
ommutators (2.11) imply that a and ay de
rease and in
rease the energyof a state, respe
tively. To see this, suppose we have a state jEi with �xed energy,HjEi = EjEi. ThenHajEi = (aH + [H; a℄)jEi = aEjEi � !ajEi = (E � !) ajEi ; (2.12)7



i.e., the energy of a the state ajEi is (E � !). In the same way one 
an show thatHayjEi = (E + !)jEi. From the form of H we 
an also see that its eigenvalues mustbe positive. This suggests 
onstru
ting the spa
e of states starting from a lowest-energystate j0i, the va
uum or no-parti
le state. This state needs to satisfyaj0i = 0 ; (2.13)so its energy is !=2. States with more \parti
les", i.e., higher ex
itations, are obtainedby su

essive appli
ation of ay:jni = �ay�nj0i ; with Hjni = �n+ 12�!jni : (2.14)2.1.2 Spe
ial Relativity Requires Antiparti
lesA1!B1+e��Q=1(t1;~x1) (t2;~x2)A2+e�!B2�Q=�1Figure 2.2: Ele
tron moving fromA1 to A2
So far, we have 
onsidered nonrelativisti
 quan-tum me
hani
s. A theory of elementary parti
les,however, has to in
orporate spe
ial relativity. It isvery remarkable that quantum me
hani
s togetherwith spe
ial relativity implies the existen
e of an-tiparti
les. To see this (following an argumentin [8℄), 
onsider two system (e.g. atoms) A1 andA2 at positions ~x1 and ~x2. Assume that at timet1 atom A1 emits an ele
tron and turns into B1.So the 
harge of B1 is one unit higher than thatof A1. At a later time t2 the ele
tron is absorbed by atom A2 whi
h turns into B2 with
harge lower by one unit. This is illustrated in Fig. 2.2.A

ording to spe
ial relativity, we 
an also wat
h the system from a frame movingwith relative velo
ity ~v. One might now worry whether the pro
ess is still 
ausal, i.e.,whether the emission still pre
edes the absorption. In the boosted frame (with primed
oordinates), one hast02 � t01 = 
 (t2 � t1) + 
~v (~x2 � ~x1) ; 
 = 1p1 � ~v 2 : (2.15)t02�t01 must be positive for the pro
ess to remain 
ausal. Sin
e j~vj < 1, t02�t01 
an only benegative for spa
elike distan
es, i.e., (t2 � t1)2 � (~x1 � ~x2)2 < 0. This, however, wouldmean that the ele
tron travelled faster than the speed of light, whi
h is not possiblea

ording to spe
ial relativity. Hen
e, within 
lassi
al physi
s, 
ausality is not violated.This is where quantum me
hani
s 
omes in. The un
ertainty relation leads to a\fuzzy" light 
one, whi
h gives a non-negligible propagation probability for the ele
troneven for slightly spa
elike distan
es, as long as(t2 � t1)2 � (~x1 � ~x2)2 & � ~2m2 : (2.16)Does this mean 
ausality is violated? 8



A2!B2+e+�Q=�1(t02;~x02)(t01;~x01)A1+e+!B1�Q=1Figure 2.3: Positron moving fromA2 to A1Fortunately, there is a way out: The antipar-ti
le. In the moving frame, one 
an 
onsider thewhole pro
ess as emission of a positron at t = t02,followed by its absorption at a later time t = t01(see Fig. 2.3). So we see that quantum me
hani
stogether with spe
ial relativity requires the exis-ten
e of antiparti
les for 
onsisten
y. In addition,parti
le and antiparti
le need to have the samemass.In a relativisti
 theory, the un
ertainty rela-tion (2.5) also implies that parti
les 
annot be lo
alized below their Compton wavelength�x � ~m
 : (2.17)For shorter distan
es the momentum un
ertainty �p > m
 allows for 
ontributions frommultiparti
le states, and one 
an no longer talk about a single parti
le.2.2 Multiparti
le States and FieldsIn the previous se
tion we saw that the 
ombination of quantum me
hani
s and spe
ialrelativity has important 
onsequen
es. First, we need antiparti
les, and se
ond, parti
lenumber is not well-de�ned. These properties 
an be 
onveniently des
ribed by means of�elds. A �eld here is a 
olle
tion of in�nitely many harmoni
 os
illators, 
orrespondingto di�erent momenta. For ea
h os
illator, we 
an 
onstru
t operators and states just asbefore in the quantum me
hani
al 
ase. These operators will then be 
ombined into a�eld operator, the quantum analogue of the 
lassi
al �eld. These results 
an be obtainedby applying the method of 
anoni
al quantisation to �elds.2.2.1 States, Creation and AnnihilationThe starting point is a 
ontinuous set of harmoni
 os
illators, whi
h are labelled by thespatial momentum ~k. We want to 
onstru
t the quantum �elds for parti
les of mass m,so we 
an 
ombine ea
h momentum ~k with the asso
iated energy !k = k0 = p~k2 +m2to form the momentum 4-ve
tor k. This 4-ve
tor satis�es k2 � k�k� = m2. For ea
h kwe de�ne 
reation and annihilation operators, both for parti
les (a, ay) and antiparti
les(b, by), and 
onstru
t the spa
e of states just as we did for the harmoni
 os
illator in theprevious se
tion.For the states we again postulate the va
uum state, whi
h is annihilated by bothparti
le and antiparti
le annihilation operators. Ea
h 
reation operator ay(k) (by(k))
reates a (anti)parti
le with momentum k, so the spa
e of states is:va
uum: j0i ; a(k)j0i = b(k)j0i = 0one-parti
le states: ay(k)j0i ; by(k)j0itwo-parti
le states: ay(k1)ay(k2)j0i ; ay(k1)by(k2)j0i ; by(k1)by(k2)j0i... 9



Like in the harmoni
 os
illator 
ase, we also have to postulate the 
ommutation rela-tions of these operators, and we 
hoose them in a similar way: operators with di�erentmomenta 
orrespond to di�erent harmoni
 os
illators and hen
e they 
ommute. Fur-thermore, parti
le and antiparti
le operators should 
ommute with ea
h other. Hen
e,there are only two non-vanishing 
ommutators (\
anoni
al 
ommutation relations"):�a(k); ay(k0)� = �b(k); by(k0)� = (2�)3 2!k Æ3�~k � ~k0� ; (2.18)whi
h are the 
ounterparts of relation (2.8). The expression on the right-hand side isthe Lorentz-invariant way to say that only operators with the same momentum do not
ommute (the (2�)3 is just 
onvention).Sin
e we now have a 
ontinuous label for the 
reation and annihilation operators, weneed a Lorentz-invariant way to sum over operators with di�erent momentum. The four
omponents of k are not independent, but satisfy k2 � k�k� = m2, and we also requirepositive energy, that is k0 = !k > 0. Taking these things into a

ount, one is led to theintegration measureZ dk � Z d4k(2�)4 2� Æ�k2 �m2� ��k0�= Z d4k(2�)3Æ��k0 � !k� �k0 + !k�� ��k0�= Z d4k(2�)3 12!k �Æ�k0 � !k�+ Æ�k0 + !k�� ��k0�= Z d3k(2�)3 12!k : (2.19)The numeri
al fa
tors are 
hosen su
h that they mat
h those in Eq. (2.18) for the
ommutator of a(k) and ay(k).2.2.2 Charge and MomentumNow we have the ne
essary tools to 
onstru
t operators whi
h express some properties of�elds and states. The �rst one is the operator of 4-momentum, i.e., of spatial momentumand energy. Its 
onstru
tion is obvious, sin
e we interpret ay(k) as a 
reation operator fora state with 4-momentum k. That means we just have to 
ount the number of parti
leswith ea
h momentum and sum the 
ontributions:P � = Z dk k� �ay(k)a(k) + by(k)b(k)� : (2.20)This gives the 
orre
t 
ommutation relations:�P �; ay(k)� = k�ay(k) ; �P �; by(k)� = k�by(k) ; (2.21a)�P �; a(k)� = �k�a(k) ; �P �; b(k)� = �k�b(k) : (2.21b)Another important operator is the 
harge. Sin
e parti
les and antiparti
les haveopposite 
harges, the net 
harge of a state is proportional to the number of parti
les10



minus the number of antiparti
les:Q = Z dk �ay(k)a(k)� by(k)b(k)� ; (2.22)and one easily veri�es�Q; ay(k)� = ay(k) ; �Q; by(k)� = �by(k) : (2.23)We now have 
on�rmed our intuition that ay(k) �by(k)� 
reates a parti
le with 4-momentum k and 
harge +1 (-1). Both momentum and 
harge are 
onserved: The timederivative of an operator is equal to the 
ommutator of the operator with the Hamilto-nian, whi
h is the 0-
omponent of P �. This obviously 
ommutes with the momentumoperator, but also with the 
harge:� ddtQ = [Q;H℄ = 0 : (2.24)So far, this 
onstru
tion applied to the 
ase of a 
omplex �eld. For the spe
ial 
aseof neutral parti
les, one has a = b and Q = 0, i.e., the �eld is real.2.2.3 Field OperatorWe are now ready to introdu
e �eld operators, whi
h 
an be thought of as Fouriertransform of 
reation and annihilation operators:�(x) = Z dk �e��kxa(k) + e�kxby(k)� : (2.25)A spa
etime translation is generated by the 4-momentum in the following way:e�yP�(x)e��yP = �(x+ y): (2.26)This transformation 
an be derived from the transformation of the a's:e�yPay(k)e��yP = ay(k) + �y� �P �; ay(k)�+O �y2� (2.27)= (1 + �yk + � � � ) ay(k) (2.28)= e�ykay(k) : (2.29)The 
ommutator with the 
harge operator is[Q;�(x)℄ = ��(x) ; �Q;�y� = �y : (2.30)The �eld operator obeys the (free) �eld equation,��+m2��(x) = Z dk ��k2 +m2� �e��kxa(k) + e�kxby(k)� = 0; (2.31)where � = �2=�t2 � ~r2 is the d'Alambert operator.11



2.2.4 Propagator (t1;~x1)�Q=+1 (t2;~x2)�Q=�1t2>t1; Q=�1t1>t2; Q=+1Figure 2.4: Propagation of a parti
le or an an-tiparti
le, depending on the temporal order.
Now we 
an ta
kle the problem of 
ausal prop-agation that led us to introdu
e antiparti
les.We 
onsider the 
ausal propagation of a 
hargedparti
le between x�1 = (t1; ~x1) and x�2 = (t2; ~x2),see Fig. (2.4). The �eld operator 
reates a statewith 
harge �1 \at position (t; ~x)",Q�(t; ~x)j0i = ��(t; ~x)j0i ; (2.32)Q�y(t; ~x)j0i = �y(t; ~x)j0i : (2.33)Depending on the temporal order of x1 andx2, we interpret the propagation of 
harge either as a parti
le going from x1 to x2 or anantiparti
le going the other way. Formally, this is expressed as the time-ordered produ
t(using the �-fun
tion, �(� ) = 1 for � > 0 and �(� ) = 0 for � < 0):T�(x2)�y(x1) = �(t2 � t1)�(x2)�y(x1) + �(t1 � t2)�y(x1)�(x2) : (2.34)The va
uum expe
tation value of this expression is the Feynman propagator:��F(x2 � x1) = 
0 ��T�(x2)�y(x1)�� 0�= �Z d4k(2�)4 e�k(x2�x1)k2 �m2 + �" ; (2.35)where we used the �-fun
tion representation�(� ) = � 12�� 1Z�1d! e��!�! + �� : (2.36)This Feynman propagator is a Green fun
tion for the �eld equation,��+m2��F(x2 � x1) = Z d4k(2�)4 (�p2 +m2)p2 �m2 + �"e��p(x2�x1) = �Æ4 (x2 � x1) : (2.37)It is 
ausal, i.e. it propagates parti
les into the future and antiparti
les into the past.2.3 Canoni
al QuantisationAll the results from the previous se
tion 
an be derived in a more rigorous manner byusing the method of 
anoni
al quantisation whi
h provides the step from 
lassi
al toquantum me
hani
s. We now start from 
lassi
al �eld theory, where the �eld at point ~x
orresponds to the position q in 
lassi
al me
hani
s, and we again have to 
onstru
t the
onjugate momentum variables and impose 
ommutation relations among them.Let us 
onsider the Lagrange density for a 
omplex s
alar �eld �. Like the Lagrangeanin 
lassi
al me
hani
s, the free Lagrange density is just the kineti
 minus the potentialenergy density,  L = ���y����m2�y� : (2.38)12



The Lagrangean has a U(1)-symmetry, i.e., under the transformation of the �eld�! �0 = e��� ; � = 
onst: ; (2.39)it stays invariant. From Noether's theorem, there is a 
onserved 
urrent j� asso
iatedwith this symmetry,j� = ��y�$�� = � ��y���� ���y�� ; ��j� = 0 : (2.40)The spa
e integral of the time 
omponent of this 
urrent is 
onserved in time:Q = Z d3x ��y�$0� ; �0Q = 0 : (2.41)The time derivative vanishes be
ause we 
an inter
hange derivation and integration andthen repla
e �0j0 by �iji sin
e ��j� = �0j0+�iji = 0. So we are left with an integral of atotal derivative whi
h we 
an transform into a surfa
e integral via Gauss' theorem. Sin
ewe always assume that all �elds vanish at spatial in�nity, the surfa
e term vanishes.Now we need to 
onstru
t the \momentum" �(x) 
onjugate to the �eld �. Like in
lassi
al me
hani
s, it is given by the derivative of the Lagrangean with respe
t to thetime derivative of the �eld,�(x) = �  L� _�(x) = _�y(x) ; �y(x) = �  L� _�y(x) = _� : (2.42)At this point, we again repla
e the 
lassi
al �elds by operators whi
h a
t on someHilbert spa
e of states and whi
h obey 
ertain 
ommutation relations. The 
ommuta-tion relations we have to impose are analogous to Eq. (2.4). The only non-vanishing
ommutators are the ones between �eld and 
onjugate momentum, at di�erent spatialpoints but at equal times,[�(t; ~x); �(t; ~x0)℄ = ��y(t; ~x); �y(t; ~x0)� = ��Æ3 (~x� ~x0) ; (2.43)all other 
ommutators vanish.These relations are satis�ed by the �eld operator de�ned in Eq. (2.25) via the(anti)parti
le 
reation and annihilation operators. Its �eld equation 
an be derivedfrom the Lagrangean, �� �  L�(���) � �  L�� = ��+m2��y = 0 : (2.44)From the Lagrangean and the momentum, we 
an also 
onstru
t the Hamiltoniandensity, H = � _�+ �y _�y �  L = �y� + �~r�y��~r��+m2�y� : (2.45)Note that 
anoni
al quantisation yields Lorentz invariant results, although it requiresthe 
hoi
e of a parti
ular time dire
tion. 13



2.4 FermionsFermions are what makes 
al
ulations unpleasant.In the previous se
tion we 
onsidered a s
alar �eld, whi
h des
ribes parti
les withspin 0. In the standard model, there is just one fundamental s
alar �eld, the Higgs �eld,whi
h still remains to be dis
overed. There are other bosoni
 �elds, gauge �elds whi
h
arry spin 1 (photons, W�, Z0 and the gluons). Those are des
ribed by ve
tor �eldswhi
h will be dis
ussed in Chapter 3. Furthermore, there are the matter �elds, fermionswith spin 12 , the quarks and leptons.To des
ribe fermioni
 parti
les, we need to introdu
e new quantities, spinor �elds.These are four-
omponent obje
ts (but not ve
tors!)  , whi
h are de�ned via a set of
-matri
es. These four-by-four matri
es are labelled by a ve
tor index and a
t on spinorindi
es. They ful�ll the anti
ommutation relations (the Cli�ord or Dira
 algebra),f
�; 
�g = 2g��1 ; (2.46)with the metri
 g�� = diag(+;�;�;�). The numeri
al form of the 
-matri
es is not�xed, rather, one 
an 
hoose among di�erent possible representations. A 
ommon rep-resentation is the so-
alled 
hiral or Weyl representation, whi
h is 
onstru
ted from thePauli matri
es: 
0 = � 0 1212 0 � ; 
i = � 0 �i��i 0� : (2.47)This representation is parti
ularly useful when one 
onsiders spinors of given 
hiralities.However, for other purposes, other representations are more 
onvenient. Various rulesand identities related to 
-matri
es are 
olle
ted in Appendix A.The Lagrangean for a free fermion 
ontains, just as for a s
alar, the kineti
 term andthe mass:  L =  �=� �m  : (2.48)The kineti
 term 
ontains only a �rst-order derivative, the operator =� � 
���. Theadjoint spinor  is de�ned as  �  y
0. (The �rst guess  y is not Lorentz invariant.)To derive the �eld equation, one has to treat  and  as independent variables. TheEuler-Lagrange equation for  is the familiar Dira
 equation:0 = �  L� = ��=� �m� ; (2.49)sin
e  L does not depend on derivatives of  .1The Lagrangean again has a U(1)-symmetry, the multipli
ation of  by a 
onstantphase,  !  0 = e�� ;  !  0 = e��� ; (2.50)whi
h leads to a 
onserved 
urrent and, 
orrespondingly, to a 
onserved 
harge,j� =  
� ; ��j� = 0 ; Q = Z d3x 
0 : (2.51)1Of 
ourse one 
an shift the derivative from  to  via integration by parts. This slightly modi�esthe 
omputation, but the result is still the same. 14



2.4.1 Canoni
al Quantisation of FermionsQuantisation pro
eeds along similar lines as in the s
alar 
ase. One �rst de�nes themomentum �� 
onjugate to the �eld  � (� = 1; : : : ; 4),�� = �  L� _ � = � � 
0�� = � y� : (2.52)Instead of imposing 
ommutation relations, however, for fermions one has to imposeanti
ommutation relations. This is a manifestation of the Pauli ex
lusion prin
iple whi
h
an be derived from the spin-statisti
s theorem. The relations are again postulated atequal times (\
anoni
al anti
ommutation relations"):f��(t; ~x);  �(t; ~x0)g = ��Æ��Æ3 (~x� ~x0) ; (2.53a)f��(t; ~x); ��(t; ~x0)g = f �(t; ~x);  �(t; ~x0)g = 0 : (2.53b)In order to obtain 
reation and annihilation operators, we again expand the �eldoperator in terms of plane waves. Be
ause of the four-
omponent nature of the �eld,now a spinor u(p) o

urs, where p is the momentum four-ve
tor of the plane wave:��=� �m�u(p)e��px = 0 ; (2.54)whi
h implies �=p �m�u(p) = 0 : (2.55)This is an eigenvalue equation for the 4 � 4-matrix p�
�, whi
h has two solutions forp2 = m2 and p0 > 0. They are denoted u(1;2)(p) and represent positive energy parti
les.Taking a positive sign in the exponential in Eq. (2.54), whi
h is equivalent to 
onsideringp0 < 0, we obtain two more solutions, v(1;2)(p) that 
an be interpreted as antiparti
les.The form of these solutions depends on the representation of the 
-matri
es. For theWeyl representation they are given in the appendix.The eigenspinors determined from the equations (� = 1; 2),�=p �m�u(i)(p) = 0 ; �=p +m� v(i)(p) = 0 ; (2.56)obey the identities: u(i)(p)u(j)(p) = �v(i)(p)v(j)(p) = 2mÆij ; (2.57)Xi u(i)� (p)u(i)� (p) = �=p +m��� ; Xi v(i)� (p)v(i)� (p) = �=p �m��� : (2.58)These are the ingredients we need to de�ne 
reation and annihilation operators interms of the spinor �eld  (x) and its 
onjugate  (x): (x) = Z dpXi �bi(p)u(i)(p)e��px + dyi (p)v(i)(p)e�px� ; (2.59a) (x) = Z dpXi �byi(p)u(i)(p)e�px + di(p)v(i)(p)e��px� : (2.59b)15



Here, as before, dp = d3p(2�)3 12Ep ; Ep = p~p2 +m2 : (2.60)Inverting Eq. (2.59a) one obtainsbi(p) = Z d3xu(i)(p)e�px
0 (x) ; (2.61)and similar equations for the other operators.The 
reation and annihilation operators inherit the anti
ommutator algebra from the�eld operators, nbi(~p); byj(~p 0)o = ndi(~p); dyj(~p 0)o = (2�)32EpÆ3 (~p � ~p 0) ; (2.62a)fbi(~p ); dj(~p 0)g = all other anti
ommutators = 0 : (2.62b)The momentum and 
harge operators are again 
onstru
ted from the 
reation andannihilation operators by \
ounting" the number of parti
les in ea
h state and summingover all states, P � = Z dk k� �by(k)b(k) + dy(k)d(k)� ; (2.63)Q = Z dk �by(k)b(k)� dy(k)d(k)� : (2.64)These operators have the 
orre
t algebrai
 relations, whi
h involve 
ommutators, sin
eP � and Q are bosoni
 operators (not 
hanging the number of fermions in a given state):hP �; byi (p)i = p�byi (p) ; hP �; dyi (p)i = p�dyi (p) ; (2.65)hQ; byi(p)i = byi (p) ; hQ; dyi(p)i = �dyi (p) : (2.66)An operator we did not en
ounter in the s
alar 
ase is the spin operator ~� . Ithas three 
omponents, 
orresponding to the three 
omponents of an angular momentumve
tor2. Only one 
ombination of these 
omponents is, however, measurable. This isspe
i�ed by a 
hoi
e of quantisation axis, i.e., a spatial unit ve
tor ~s. The operator thatmeasures the spin of a parti
le is given by the s
alar produ
t ~s � ~�. Creation operatorsfor parti
les with de�nite spin satisfy the 
ommutation relationsh~s � ~�; dy�(p)i = �12dy�(p) ; h~s � ~�; by�(p)i = �12by�(p) : (2.67)In summary, all these 
ommutation relations tell us how to interpret the operatorsdy�(p) (by�(p)): They 
reate spin-12 fermions with four-momentum p�, 
harge +1 (�1)2A
tually, � is 
onstru
ted as a 
ommutator of 
-matri
es and as su
h has six independent 
ompo-nents. But three of these 
orrespond to Lorentz boosts whi
h mix time and spatial dire
tions. ~� is thespin operator in the rest frame. 16



and spin orientation �12 (�12) relative to the 
hosen axis ~s. Their 
onjugates d�(p) andb�(p) annihilate those parti
les.This immediately leads to the 
onstru
tion of the Fo
k spa
e of fermions: We againstart from a va
uum state j0i, whi
h is annihilated by the annihilation operators, and
onstru
t parti
le states by su

essive appli
ation of 
reation operators:va
uum: j0i ; bi(p)j0i = di(p)j0i = 0one-parti
le states: byi(p)j0i ; dyi (p)j0itwo-parti
le states: byi(p1)dyj(p2)j0i ; : : :...At this point we 
an verify that the Pauli prin
iple is indeed satis�ed, due to the 
hoi
eof anti
ommutation relations in Eq. (2.53). For a state of two fermions with identi
alquantum numbers, we would getbyi (p) byi (p)| {z }anti
ommutingjXi = �byi(p) byi (p)jXi = 0 ; (2.68)wherejXi is an arbitrary state. Had we quantised the theory with 
ommutation relationsinstead, the fermions would have the wrong (i.e., Bose) statisti
s.The �nal expression we need for the further dis
ussion is the propagator. By thesame reasoning as in the s
alar 
ase, it is obtained as the time-ordered produ
t of two�eld operators. The Feynman propagator SF for fermions, whi
h is now a matrix-valuedobje
t, is given by�SF(x1 � x2)�� = 
0 ��T �(x1) �(x2)�� 0�= �Z d4p(2�)4 �=p+m���p2 �m2 + �"e��p(x1�x2) : (2.69)This 
ompletes our dis
ussion on the quantisation of free s
alar and spinor �elds.2.5 Intera
tionsSo far, we have 
onsidered free parti
les and their propagation. A theory of elementaryparti
les obviously needs intera
tions. Unfortunately, they are mu
h more diÆ
ult tohandle, and little is known rigorously (ex
ept in two dimensions). Hen
e, we have tolook for approximations.By far the most important approximation method is perturbation theory where onetreats the intera
tion as a small e�e
t, a perturbation, to the free theory. The intera
tionstrength is quanti�ed by a numeri
al parameter, the 
oupling 
onstant, and one expressesphysi
al quantities as power series in this parameter. This approa
h has been verysu

essful and has led to many 
elebrated results, like the pre
ise predi
tion of theanomalous magneti
 moment of the ele
tron, despite the fa
t that important 
on
eptualproblems still remain to be resolved. 17



2.5.1 �4 Theory p1 ...pn p01... p0mFigure 2.5: S
attering of n in
oming parti-
les, produ
ing m outgoing ones with momentap1; : : : ; pn and p01; : : : ; p0m, respe
tively.
Let us 
onsider the simplest example of anintera
ting theory, involving only one reals
alar �eld with a quarti
 self-intera
tion (a
ubi
 term would look even simpler, but thenthe theory would not have a ground statesin
e the energy would not be bounded frombelow): L =  L0 +  LI= 12������� 12m2�2 � �4!�4 : (2.70) L0 is the free Lagrangean, 
ontaining kineti
and mass term, while  LI is the intera
tion term, whose strength is given by the dimen-sionless 
oupling 
onstant �.In perturbation theory we 
an 
al
ulate various physi
al quantities, in parti
ulars
attering 
ross se
tions for pro
esses like the one in Fig. 2.5: n parti
les with momentapi intera
t, resulting in m parti
les with momenta p0j . Sin
e the intera
tion is lo
alisedin a region of spa
etime, parti
les are free at in�nite past and future. In other words,we have free asymptoti
 statesjp1; : : : ; pn ; ini at ; t = �1 and jp01; : : : ; p0m ; outi at t = +1 : (2.71)The transition amplitude for the s
attering pro
ess is determined by the s
alar produ
tof in
oming and outgoing states, whi
h de�nes a unitary matrix, the so-
alled S-matrix(S for s
attering),hp01; : : : ; p0m ; out j p1; : : : ; pn ; ini = hp01; : : : ; p0m jSj p1; : : : ; pni : (2.72)p1...pnp2 p01pn...p0mFigure 2.6: A dis
onne
ted diagram: One par-ti
le does not parti
ipate in the intera
tion.Detailed te
hniques have been developedto obtain a perturbative expansion for the S-matrix from the de�nition (2.72). The basisare Wi
k's theorem and the LSZ-formalism.One starts from a generalisation of the prop-agator, the time-ordered produ
t of k �elds,� (x1; : : : ; xk)= h0 jT �(x1); : : : �(xk)j 0i : (2.73)First, dis
onne
ted pie
es involving non-intera
ting parti
les have to be subtra
ted (seeFig. 2.6), and the blob in Fig. 2.5 de
omposes into a smaller blob and straight lines justpassing from the left to the right side. From the Fourier transform� (x01; : : : ; x0m; x1; : : : ; xn) F:T:�! ~�(p01; : : : ; p0m; p1; : : : ; pn) (2.74)one then obtains the amplitude for the s
attering pro
esshp01; : : : ; p0m jSj p1; : : : ; pni = (2�)4 Æ4 Xout p0i �Xin pi! iM ; (2.75)18



where the matrix element M 
ontains all the dynami
s of the intera
tion. Due to thetranslational invarian
e of the theory, the total momentum is 
onserved. The matrixelement 
an be 
al
ulated perturbatively up to the desired order in the 
oupling � viaa set of Feynman rules. To 
al
ulate the 
ross se
tion for a parti
ular pro
ess, one �rstdraws all possible Feynman diagrams with a given number of verti
es and then translatesthem into an analyti
 expression using the Feynman rules.For the �4 theory, the Feynman diagrams are all 
omposed out of three buildingblo
ks: External lines 
orresponding to in
oming or outgoing parti
les, propagators and4-verti
es. The Feynman rules read:i. p 1 External lines: For ea
h external line, multiply by 1(i.e., external lines don't 
ontribute to the matrix ele-ment in this theory). However, one needs to keep tra
kof the momentum of ea
h parti
le entering or leavingthe intera
tion. The momentum dire
tion is indi
atedby the arrow.ii. p �p2 �m2 + �" Propagators between verti
es are free propagators 
or-responding to the momentum of the parti
le. Notethat parti
les of internal lines need not be on-shell, i.e.,p2 = m2 need not hold!iii. ��� Verti
es yield a fa
tor of the 
oupling 
onstant. In thistheory, there is only one spe
ies of parti
les, and theintera
tion term does not 
ontain derivatives, so thereis only one vertex, and it does not depend on the mo-menta.iv. Z d4p(2�)4 The momenta of internal loops are not �xed by the in-
oming momenta. For ea
h undetermined loop momen-tum p, one integrates over all values of p.As an example, let us 
al
ulate the matrix element for the 2 ! 2 s
attering pro
essto se
ond order in �. The relevant diagrams are 
olle
ted in Fig. (2.7). The �rst-orderdiagram simply 
ontributes a fa
tor of ���, while the se
ond-order diagrams involve anintegration:�M = ���+ 12 (���)2 Z d4p(2�)4 �p2 �m2 �(p+ p1 � p3)2 �m2+ 12 (���)2 Z d4p(2�)4 �p2 �m2 �(p + p1 � p4)2 �m2+ 12 (���)2 Z d4p(2�)4 �p2 �m2 �(p1 + p2 � p)2 �m2 +O ��3� : (2.76)The fa
tors of 12 are symmetry fa
tors whi
h arise if a diagram is invariant under inter-
hange of internal lines. The expression for M has a serious problem: The integrals do19



p1p2 p3p4(a) Tree graph Figure 2.7: Feynman graphs for 2 ! 2 s
atteringin �4 theory to se
ond order. The one-loop graphsall are invariant under the inter
hange of the inter-nal lines and hen
e get a symmetry fa
tor of 12 .p1p2 p3p4p p+ p1 � p3 p1p2 p3p4p p1p2 p3p4pp1 + p2 � p(a) One-loop graphsnot 
onverge. This 
an be seen by 
ounting the powers of the integration variable p.For p mu
h larger that in
oming momenta and the mass, the integrand behaves like p�4.That means that the integral depends logarithmi
ally on the upper integration limit,�Z d4p(2�)4 �p2 �m2 �(p + p1 � p3)2 �m2 p� pi;m���������! �Z d4p(2�)4�1p4 / ln� : (2.77)Divergent loop diagrams are ubiquitous in quantum �eld theory. They 
an be 
uredby regularisation, i.e., making the integrals �nite by introdu
ing some 
uto� parameter,and renormalisation, where this additional parameter is removed in the end, yielding�nite results for observables. This will be dis
ussed in more detail in the 
hapter onquantum 
orre
tions.2.5.2 FermionsWe 
an augment the theory by adding a fermioni
 �eld  , with a Lagrangean in
ludingan intera
tion with the s
alar �, L =  ��=� �m� | {z }free Lagrangean � g � | {z }intera
tion : (2.78)There are additional Feynman rules for fermions. The lines 
arry two arrows, one forthe momentum as for the s
alars and one for the fermion number 
ow, whi
h basi
allydistinguishes parti
les and antiparti
les. The additional rules are:i. p�!p�! u(p)u(p) In
oming or outgoing parti
les get a fa
tor of u(p) oru(p), respe
tively.ii. p�!p�! v(p)v(p) In
oming or outgoing antiparti
les get a fa
tor of v(p)or v(p), respe
tively.20



iii. p�! � �=p +m�p2 �m2 + �" Free propagator for fermion with momentum p.iv. ��g The fermion-fermion-s
alar vertex yields a fa
tor of the
oupling 
onstant. Again, there is no momentum de-penden
e.

21



Chapter 3Gauge TheoriesIn addition to spin-0 and spin-12 parti
les, the standard model 
ontains spin-1 parti
les.They are the quanta of ve
tor �elds whi
h 
an des
ribe strong and ele
troweak intera
-tions. The 
orresponding theories 
ome with a lo
al (\gauge") symmetry and are 
alledgauge theories.3.1 Global Symmetries v Gauge SymmetriesConsider a 
omplex s
alar �eld with the Lagrangean L = ���y�� � V ��y�� ; (3.1)whi
h is a generalisation of the one 
onsidered in Eq. (2.38). This theory has a U(1)symmetry under whi
h � ! �0 = expf��g� with 
onstant parameter �. Usually it issuÆ
ient to 
onsider the variation of the �elds and the Lagrangean under in�nitesimaltransformations, Æ� = �0 � � = ��� ; Æ�y = ����y ; (3.2)where terms O (�2) have been negle
ted. To derive the Noether 
urrent, Eq. (2.40), we
ompute the variation of the Lagrangean under su
h a transformation:Æ L = �  L��Æ�+ �  L��yÆ�y + �  L� (���) Æ (���)| {z }=��Æ� + �  L� (���y)Æ ����y�= ��  L�� � �� �  L� (���)�| {z }=0 by equation of motion Æ�+� �  L��y � �� �  L� (���y)�| {z }=0 Æ�y+ ��� �  L� (���)Æ�+ �  L� (���y)Æ�y�= ��� �����y�� ��y����= ����j� : (3.3)Sin
e the Lagrangean is invariant, Æ L = 0, we obtain a 
onserved 
urrent for solutionsof the equations of motion, ��j� = 0 : (3.4)22



From the �rst to the se
ond line we have used that�  L� (���)��Æ� = ��� �  L� (���)Æ������ �  L� (���)� Æ� (3.5)by the Leibniz rule.The above pro
edure 
an be generalised to more 
ompli
ated Lagrangeans and sym-metries. The derivation does not depend on the pre
ise form of  L, and up to the se
ondline of (3.3), it is independent of the form of Æ�. As a general result, a symmetry of theLagrangean always implies a 
onserved 
urrent, whi
h in turn gives a 
onserved quantity(often referred to as 
harge, but it 
an be angular momentum or energy as well).What is the meaning of su
h a symmetry? Loosely speaking, it states that \physi
sdoes not 
hange" under su
h a transformation. This, however, does not mean that thesolutions to the equations of motion derived from this Lagrangean are invariant undersu
h a transformation. Indeed, generi
ally they are not, and only � � 0 is invariant.As an example, 
onsider the Mexi
an hat potential,V (�y�) = ��2�y�+ � ��y��2 : (3.6)This potential has a ring of minima, namely all �elds for whi
h j�j2 = �2=(2�). Thismeans that any 
onstant � with this modulus is a solution to the equation of motion,��+ �V�� ��; �y� = ��� �y ��2 � 2��y�� = 0 : (3.7)These solutions are not invariant under U(1) phase rotations. On the other hand, itis obvious that any solution to the equations of motion will be mapped into anothersolution under su
h a transformation.This situation is analogous to the Kepler problem: A planet moving around a station-ary (very massive) star. The setup is invariant under spatial rotations around the star,i.e., the symmetries form the group SO(3). This group is three-dimensional (meaningthat any rotation 
an be built from three independent rotations, e.g. around the threeaxes of a Cartesian 
oordinate system). Thus there are three 
onserved 
harges whi
h
orrespond to the three 
omponents of angular momentum. The solutions of this prob-lem { the planet's orbits { are ellipses in a plane, so they are not at all invariant underspatial rotations, not even under rotations in the plane of motion. Rotated solutions,however, are again solutions.In parti
le physi
s, most experiments are s
attering experiments at 
olliders. Forthose, the statement that \physi
s does not 
hange" translates into \transformed initialstates lead to transformed �nal states": If one applies the transformation to the initialstate and performs the experiment, the result will be the same as if one had done theexperiment with the untransformed state and transformed the result.There is a subtle, but important, di�eren
e between this and another type of sym-metry, gauge symmetry. A gauge transformation is also a transformation whi
h leavesthe Lagrangean invariant, but it does relate identi
al states whi
h des
ribe exa
tly thesame physi
s.This might be familiar from ele
trodynami
s. One formulation uses ele
tri
 andmagneti
 �elds ~E and ~B, together with 
harge and 
urrent densities � and ~j. These23



�elds and sour
es are related by Maxwell's equations:~r� ~E + � ~B�t = 0 ; ~r � ~B = 0 ; (3.8a)~r� ~B � � ~E�t = ~j ; ~r � ~E = � : (3.8b)The �rst two of these 
an be identi
ally solved by introdu
ing the potentials � and ~A,whi
h yield ~E and ~B via~E = �~r�� � ~A�t ; ~B = ~r� ~A : (3.9)So we have redu
ed the six 
omponents of ~E and ~B down to the four independent ones� and ~A. However, the 
orresponden
e between the physi
al �elds and the potentials isnot unique. If some potentials � and ~A lead to 
ertain ~E and ~B �elds, the transformedpotentials ~A0 = ~A+ ~r� ; �0 = �� ���t ; (3.10)where � is a s
alar �eld, give the same ele
tri
 and magneti
 �elds.This transformation (3.9) is 
alled gauge transformation. It is a symmetry of thetheory, but it is di�erent from the global symmetries we 
onsidered before. First, it isa lo
al transformation, i.e., the transformation parameter � varies in spa
e and time.Se
ond, it relates physi
ally indistinguishable �eld 
on�gurations, sin
e solutions of theequations of motion for ele
tri
 and magneti
 �elds are invariant. It is important to notethat this gauge transformation is inhomogeneous, i.e., the variation is not multipli
ative,but 
an generate non-vanishing potentials from zero. Potentials that are related to � = 0and ~A = 0 by a gauge transformation are 
alled pure gauge.Phrased di�erently, we have expressed the physi
al �elds ~E and ~B in terms of thepotentials � and ~A. These potentials still 
ontain too many degrees of freedom for thephysi
al �elds ~E and ~B, sin
e di�erent potentials 
an lead to the same ~E and ~B �elds. Sothe des
ription in terms of potentials is redundant, and the gauge transformation (3.10)quanti�es just this redundan
y. Physi
al states and observables have to be invariantunder gauge transformations.3.2 Abelian Gauge TheoriesThe easiest way to 
ome up with a gauge symmetry is to start from a global symmetryand promote it to a gauge one, that is, demand invarian
e of the Lagrangean under lo
altransformations (where the transformation parameter is a fun
tion of spa
etime). To seethis, re
all the Lagrangean with the global U(1) symmetry from the pre
eding se
tion, L = ���y���� V (�y�) ;and the transformation �! �0 = e��� ; Æ� = �0 � � = ��� :24



If we now allow spa
etime dependent parameters �(x), the Lagrangean is no longerinvariant. The potential part still is, but the kineti
 term pi
ks up derivatives of �(x),so the variation of the Lagrangean isÆ L = ���� ����y�� �y���� = ���� j� ; (3.11)the derivative of � times the Noether 
urrent of the global symmetry derived before.The way to restore invarian
e of the Lagrangean is to add another �eld, the gauge�eld, with a gauge transformation just like the ele
tromagneti
 potentials in the previousse
tion, 
ombined into a four-ve
tor A� = (�; ~A):A�(x) ! A0�(x) = A�(x)� 1e���(x) : (3.12)The fa
tor 1e is in
luded for later 
onvenien
e. We 
an now 
ombine the inhomogeneoustransformation of A� with the inhomogeneous transformation of the derivative in a
ovariant derivative D�: D�� = (�� + �eA�) � : (3.13)This is 
alled 
ovariant derivative be
ause the di�erentiated obje
t D�� transforms inthe same way as the original �eld,D�� �! (D��)0 = ��� + �eA0���0= �� �e��(x)��+ �e�A�(x)� 1e���(x)� e��(x)�= e��(x)D�� : (3.14)So we 
an 
onstru
t an invariant Lagrangean from the �eld and its 
ovariant derivative: L = (D��)y (D��)� V ��y�� : (3.15)So far this is a theory of a 
omplex s
alar with U(1) gauge invarian
e. The gauge�eld A�, however, is not a dynami
al �eld, i.e., there is no kineti
 term for it. Thiskineti
 term should be gauge invariant and 
ontain derivatives up to se
ond order. Inorder to �nd su
h a kineti
 term, we �rst 
onstru
t the �eld strength tensor from the
ommutator of two 
ovariant derivatives:F�� = � �e [D�;D� ℄ = � �e [(�� + �eA�) ; (�� + �eA�)℄= � �e �[��; ��℄ + [�� ; �eA�℄ + [�eA�; ��℄� e2 [A�; A�℄�= ��A� � ��A� : (3.16)To 
he
k that this is a sensible obje
t to 
onstru
t, we 
an rede
ompose A� into thes
alar and ve
tor potential � and ~A and spell out the �eld strength tensor in ele
tri
and magneti
 �elds, F �� =0BB� 0 �E1 �E2 �E3E1 0 �B3 B2E2 B3 0 �B1E3 �B2 B2 0 1CCA : (3.17)25



This shows that the �eld strength is gauge invariant, as ~E and ~B are. Of 
ourse, this
an also be shown by straightforward 
al
ulation,ÆF�� = ��ÆA� � ��ÆA� = �1e (���� � ����)�(x) = 0 ; (3.18)so it is just the antisymmetry in � and � that ensures gauge invarian
e.The desired kineti
 term is now just the square of the �eld strength tensor, Lgaugekin = �14F��F �� ; (3.19a)or, in terms of ~E and ~B �elds,  L = 12 � ~E2 � ~B2� (3.19b)The 
oupling to s
alar �elds via the 
ovariant derivative 
an also be applied tofermions. To 
ouple a fermion  to the gauge �eld, one simply imposes the gaugetransformation  !  0 = e�� : (3.20)In the Lagrangean, one again repla
es the ordinary derivative with the 
ovariant one.The Lagrangean for a fermion 
oupled to a U(1) gauge �eld is quantum ele
trodynam-i
s (QED), if we 
all the �elds ele
tron and photon: LQED = �14F��F �� +  �� =D �m� : (3.21)Finally, let us note that for a U(1) gauge theory, di�erent �elds may have di�erent
harges under the gauge group (as e.g. quarks and leptons indeed do). For �elds with
harge q (in units of elementary 
harge), we have to repla
e the gauge transformationsand 
onsequently the 
ovariant derivative as follows: q !  0q = e�q� q ; D(q)�  q = (�� + �qeA�) q : (3.22)What have we done so far? We started from a Lagrangean, Eq. (3.1) with a globalU(1) symmetry (3.2). We imposed invarian
e under lo
al transformations, so we had tointrodu
e a new �eld, the gauge �eld A�. This �eld transformed inhomogeneously undergauge transformations, just in a way to make a 
ovariant derivative. This 
ovariantderivative was the obje
t that 
oupled the gauge �eld to the other �elds of the theory.To make this into a dynami
al theory, we added a kineti
 term for the gauge �eld, usingthe �eld strength tensor. Alternatively, we 
ould have started with the gauge �eld andtried to 
ouple it to other �elds, and we would have been led to the transformationproperties (3.2). This is all we need to 
onstru
t the Lagrangean for QED. For QCDand the ele
troweak theory, however, we need a ri
her stru
ture: non-Abelian gaugetheories. 26



3.3 Non-Abelian Gauge TheoriesTo 
onstru
t non-Abelian theories in the same way as before, we �rst have to dis
ussnon-Abelian groups, i.e., groups whose elements do not 
ommute. We will fo
us onthe groups SU(n), sin
e they are most relevant for the standard model. SU(n) is thegroup of n� n 
omplex unitary matri
es with determinant 1. To see how many degreesof freedom there are, we have to 
ount: A n � n 
omplex matrix U has n2 
omplexentries, equivalent to 2n2 real ones. The unitarity 
onstraint, UyU = 1, is a matrixequation, but not all 
omponent equations are independent. A
tually, UyU is Hermitean,�UyU�y = UyU , so the diagonal entries are real and the lower triangle is the 
omplex
onjugate of the upper one. Thus, there are n + 2 � 12n(n � 1) real 
onstraints. Finally,by taking the determinant of the unitarity 
onstraint, det �UyU� = jdetU j2 = 1. Hen
e,restri
ting to detU = 1 eliminates one more real degree of freedom. All in all, we have2n2 � n� 2 � 12n(n� 1) � 1 = n2 � 1 real degrees of freedom in the elements of SU(n).This means that any U 2 SU(n) 
an be spe
i�ed by n2 � 1 real parameters �a. Thegroup elements are usually written in terms of these parameters and n2�1 matri
es T a,the generators of the group, as an exponentialU = exp f��aT ag = 1 + ��aT a +O ��2� ; (3.23)and one often 
onsiders only in�nitesimal parameters.The generators are usually 
hosen as Hermitean matri
es1. The produ
t of groupelements translates into 
ommutation relations for the generators,�T a; T b� = �fab
T 
 ; (3.24)with the antisymmetri
 stru
ture 
onstants fab
, whi
h of 
ourse also depend on the
hoi
e of generators.In the standard model, the relevant groups are SU(2) for the ele
troweak theory andSU(3) for QCD. SU(2) has three parameters. The generators are usually 
hosen to bethe Pauli matri
es, T a = 12�a, whose 
ommutation relations are ��a; �b� = �"ab
�
. The
ommon generators of SU(3) are the eight Gell-Mann matri
es, T a = 12�a.To 
onstru
t a model with a global SU(n) symmetry, we 
onsider not a single �eld,but an n-
omponent ve
tor �i, i = 1; : : : ; n (
alled a multiplet of SU(n)), on whi
h thematri
es of SU(n) a
t by multipli
ation :� =0B��1...�n1CA �! �0 = U� ; �y = ��y1; � � � ;�yn� �! ��y�0 = �yUy : (3.25)Now we see why we want unitary matri
es U : A produ
t �y� is invariant under su
h atransformation. This means that we 
an generalise the Lagrangean (3.1) in a straight-forward way to in
lude a non-Abelian symmetry: L = (���)y(���)� V ��y�� : (3.26)1A
tually, the generators live in the Lie algebra of the group, and so one 
an 
hoose any basis onelikes, Hermitean or not. 27



If we allow for lo
al transformations U = U(x), we immediately en
ounter the sameproblem as before: The derivative term is not invariant, be
ause the derivatives a
t onthe matrix U as well, ��� ! ���0 = �� (U�) = U��� + (��U) � : (3.27)To save the day, we again need to introdu
e a 
ovariant derivative 
onsisting of a partialderivative plus a gauge �eld. This time, however, the ve
tor �eld needs to be matrix-valued, i.e., A� = Aa�T a, where T a are the generators of the group. We 
learly need oneve
tor �eld per generator, as ea
h generator represents an independent transformationin the group.The transformation law of A� is 
hosen su
h that the 
ovariant derivative is 
ovariant,(D��)0 = [(�� + �gA�) �℄0= ��� + �gA0�� (U�)= U ��� + U�1 (��U) + �gU�1A0�U��!= UD�� : (3.28)This requirement �xes the transformation of A� to beA0� = UA�U�1 � �gU��U�1 : (3.29)In the Abelian 
ase this redu
es to the known transformation law, Eq. (3.12).For in�nitesimal parameters � = �aT a, the matrix U = expf��g = 1 + ��, andEq. (3.29) be
omes A0� = A� � 1g��� + � [�;A�℄ ; (3.30)or for ea
h 
omponent Aa�0 = Aa� � 1g���a � fab
�bA
� : (3.31)Sometimes it is 
onvenient to write down the 
ovariant derivative in 
omponent form:(D��)i = ���Æij + �gT aijAa���j : (3.32)Next we need a kineti
 term, whi
h again involves the �eld strength, the 
ommutatorof 
ovariant derivatives:F�� = � �g [D�;D� ℄ = ��A� � ��A� + �g [A�; a�℄ = F a��T a ;F a�� = ��Aa� � ��Aa� � gfab
Ab�A
� : (3.33)Now we see that the �eld strength is more that just the derivative: There is a quadrati
term in the potentials. This leads to a self-intera
tion of gauge �elds, like in QCD, wherethe gluons intera
t with ea
h other. This is the basi
 reason for 
on�nement, unlike inQED, where the photon is not 
harged. 28



Furthermore, when we 
al
ulate the transformation of the �eld strength, we �nd thatit is not invariant, but transforms asF�� ! F 0�� = UF��U�1 ; (3.34)i.e., it is 
ovariant. There is an easy way to produ
e an invariant quantity out of this:the tra
e. Sin
e trAB = trBA, the Lagrangean L = �12 tr (F��F ��) = �14F a��F a �� (3.35)is indeed invariant, as tr (UF 2U�1) = tr (U�1UF 2) = trF 2. In the se
ond step we haveused a normalisation 
onvention, tr �T aT b� = 12Æab ; (3.36)and every generator is ne
essarily tra
eless. The fa
tor 12 is arbitrary and 
ould be 
hosendi�erently, with 
ompensating 
hanges in the 
oeÆ
ient of the kineti
 term.By 
hoosing the gauge group SU(3) and 
oupling the gauge �eld to fermions, thequarks, we 
an write down the Lagrangean of quantum 
hromodynami
s (QCD): LQCD = �14Ga��Ga �� + q �� =D �m� q ; (3.37)where a = 1; : : : ; 8 
ounts the gluons and q is a three-
omponent (i.e. three-
olour)quark.3.4 QuantisationSo far we have only dis
ussed 
lassi
al gauge theories. If we want to quantise the theoryand �nd the Feynman rules for diagrams involving gauge �elds, we have a problem: Wehave to make sure we do not 
ount �eld 
on�gurations of A� whi
h are pure gauge,nor that we 
ount separately �elds whi
h di�er only by a gauge transformation, sin
ethose are meant to be physi
ally identi
al. On the more te
hni
al side, the na��ve Greenfun
tion for the free equation of motion does not exist. In the Abelian 
ase, the equationis ��F �� = �A� � ����A� = (�g�� � ����)A� = 0 : (3.38)The Green fun
tion should be the inverse of the di�erential operator in bra
kets, but theoperator is not invertible. Indeed, it annihilates every pure gauge mode, as it should,(�g�� � ����) ��� = 0 ; (3.39)so it has zero eigenvalues. Hen
e, the propagator must be de�ned in a more 
lever way.One way out would be to �x the gauge, i.e., simply demand a 
ertain gauge 
onditionlike ~r� ~A = 0 (Coulomb gauge) or n�A� = 0 with a �xed 4-ve
tor (axial gauge). It turnsout, however, that the loss of Lorentz invarian
e 
auses many problems in 
al
ulations.29



A better way makes use of Faddeev{Popov ghosts. In this approa
h, we add twoterms to the Lagrangean, the gauge-�xing term and the ghost term. The gauge-�xingterm is not gauge invariant, but rather represents a 
ertain gauge 
ondition whi
h 
anbe 
hosen freely. The fa
t that it is not gauge invariant means that now the propagatoris well-de�ned, but the pri
e to pay is that it propagates too many degrees of freedom,namely gauge modes. This is 
ompensated by the propagation of ghosts, strange �eldswhi
h are s
alars but anti
ommute and do not show up as physi
al states but only asinternal lines in loop 
al
ulations. It turns out that gauge invarian
e is not lost butrather traded for a di�erent symmetry, BRST-symmetry, whi
h ensures that we getphysi
ally sensible results.For external states, we have to restri
t to physi
al states, of whi
h there are two formassless bosons. They are labelled by two polarisation ve
tors ��� whi
h are transverse,i.e., orthogonal to the momentum four-ve
tor and the spatial momentum, k��� = ~k~� = 0.The form of the gauge �xing and ghost terms depends on the gauge 
ondition wewant to take. A 
ommon (
lass of) gauge is the 
ovariant gauge whi
h depends on aparameter �, whi
h be
omes Feynman gauge (Landau/Lorenz gauge) for � = 1 (� = 0)We now list the Feynman rules for a non-Abelian gauge theory (QCD) 
oupled tofermions (quarks) and ghosts. The fermioni
 external states and propagators are listedin Se
tion 2.5.2.i. k�!� k�!� ��(k)���(k) For ea
h external line one has a polarisationve
tor.ii. p� �a b ��Æabk2 + �"��g�� + (1� �)k�k�k2 � The propagator for gauge bosons 
ontainsthe parameter �.iii. ka b ��Æabk2 + �" The propagator for ghosts is the one of s
alarparti
les. There are no external ghost states.iv. � �e
� In QED, there is just one vertex betweenphoton and ele
tron.v. � �g2
��a In QCD, the basi
 quark-quark-gluon vertexinvolves the Gell-Mann matri
es.vi. b 
�!p �; a �gfab
p� The ghosts 
ouple to the gauge �eld.vii. gfab
k� + permutations Three-gluon self-intera
tion.30



viii. �14g2fab
fadeg��g��+permutations Four-gluon self-intera
tion.
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Chapter 4Quantum Corre
tionsNow that we have the Feynman rules, we are ready to 
al
ulate quantum 
orre
tions[3, 5, 9℄. As a �rst example we will 
onsider the anomalous magneti
 moment of theele
tron at one-loop order. This was histori
ally, and still is today, one of the mostimportant tests of quantum �eld theory. The 
al
ulation is still quite simple be
ausethe one-loop expression is �nite. In most 
ases, however, one en
ounters divergent loopintegrals. In the following se
tions we will study these divergen
es and show how toremove them by renormalisation. Finally, as an appli
ation, we will dis
uss the runningof 
oupling 
onstants and asymptoti
 freedom.4.1 Anomalous Magneti
 MomentThe magneti
 moment of the ele
tron determines its energy in a magneti
 �eld,Hmag = �~� � ~B : (4.1)For a parti
le with spin ~s, the magneti
 moment is aligned in the dire
tion of ~s, and fora 
lassi
al spinning parti
le of mass m and 
harge e, its magnitude would be the Bohrmagneton, e=(2m). In the quantum theory, the magneti
 moment is di�erent, whi
h isexpressed by the Land�e fa
tor ge, ~�e = ge e2m~s : (4.2)We now want to 
al
ulate ge in QED. To lowest order, this just means solving theDira
 equation in an external ele
tromagneti
 �eld A� = (�; ~A),�� =D �m� = [
� (��� � eA�)�m℄ = 0 : (4.3)For a bound nonrelativisti
 ele
tron a stationary solution takes the form (x) = �'(~x)�(~x)� e��Et ; with E �mm � 1 : (4.4)It is 
onvenient to use the following representation of the Dira
 matri
es:
0 = �1 00 �1� ; 
i = � 0 �i��i 0� : (4.5)32



p p0q � = p p0q � + p p0kq � + � � �Figure 4.1: Tree level and one-loop diagram for the magneti
 moment.One then obtains the two 
oupled equations[(E � e�)�m℄'� ���~r� e ~A� � ~�� = 0 ; (4.6a)�� (E � e�)�m| {z }��2m ��+ ���~r� e ~A� � ~�' = 0 : (4.6b)The 
oeÆ
ient of � in the se
ond equation is approximately independent of �, so we 
ansolve the equation to determine � in terms of ',� = 1m ���~r� e ~A� � ~�' : (4.7)Inserting this into (4.6a), we get the Pauli equation,� 12m ���~r� e ~A�2 + e�� e2m ~B � ~��' = (E �m)' : (4.8)This is a S
hr�odinger-like equation whi
h implies (sin
e ~s = 12~�),Hmag = �2 e2m~s ~B : (4.9)Hen
e, the Land�e fa
tor of the ele
tron is ge = 2.In QED, the magneti
 moment is modi�ed by quantum 
orre
tions. The magneti
moment is the spin-dependent 
oupling of the ele
tron to a photon in the limit of vanish-ing photon momentum. Diagrammati
ally, it is 
ontained in the blob on the left side ofFig. 4.1, whi
h denotes the 
omplete ele
tron-photon 
oupling. The tree-level diagramis the fundamental ele
tron-photon 
oupling. There are several one-loop 
orre
tions tothis diagram, but only the so-
alled vertex 
orre
tion, where an internal photon 
on-ne
ts the two ele
tron lines, gives a 
ontribution to the magneti
 moment. All otherone-loop diagrams 
on
ern only external legs, su
h as an ele
tron-positron-bubble onthe in
oming photon, and will be removed by wave-fun
tion renormalisation.The expression for the tree-level diagram is�u(p0)e
�u(p) : (4.10)Note that the photon be
omes on-shell only for q ! 0, so no polarisation ve
tor isin
luded. The matrix element of the ele
tromagneti
 
urrent 
an be de
omposed via the33



Gordon identity into 
onve
tion and spin 
urrents,u(p0)
�u(p) = u(p0)�(p + p0)�2m + �2m��� (p0 � p)��u(p) : (4.11)Here the �rst term 
an be viewed as the net 
ow of 
harged parti
les, the se
ond one isthe spin 
urrent. Only this one is relevant for the magneti
 moment, sin
e it gives thespin-dependent 
oupling of the ele
tron.In order to isolate the magneti
 moment from the loop diagram, we �rst note thatthe 
orresponding expression will 
ontain the same external states, so it 
an be writtenas �u(p0)e��(p; q)u(p) ; q = p0 � p ; (4.12)where ��(p; q) is the 
orre
tion to the vertex due to the ex
hange of the photon. We
an now de
ompose �� into di�erent parts a

ording to index stru
ture and extra
t theterm /���. Using the Feynman rules, we �nd for �� in Feynman gauge (� = 1),�e��(p; q) = (��e)3 Z d4k(2�)4 ��g��k2 + �"
� � �=p0 � =k +m�(p0 � k)2 �m2 + �"
�� � �=p � =k +m�(p � k)2 �m2 + �"
� : (4.13)This integral is logarithmi
ally divergent, as 
an be seen by power 
ounting, sin
e theleading term is / k2 in the numerator and / k6 in the denominator.On the other hand, the part /���q� is �nite and 
an be extra
ted via some tri
ks:� Consider �rst the denominator of the integral (4.13). It is the produ
t of threeterms of the form (momentum)2 � m2, whi
h 
an be transformed into a sum atthe expense of further integrations over the so-
alled Feynman parameters x1 andx2, 1A1A2A3 = 2 1Z0 dx1 1�x1Z0 dx2 1[A1x1 +A2x2 +A3 (1 � x1 � x2)℄3 : (4.14)� After introdu
ing the Feynman parameters, the next tri
k is to shift the integrationmomentum k ! k0, whereA1x1 +A2x2 +A3 (1� x1 � x2) = (k � x1p0 � x2p)| {z }k0 2 � (x1p0 + x2p)2 + �" : (4.15)Note that one must be 
areful when manipulating divergent integrals. In prin
iple,one should �rst regularise them and then perform the shifts on the regularisedintegrals, but in this 
ase, there is no problem.� For the numerator, the important part is the Dira
 algebra of 
-matri
es. Astandard 
al
ulation gives (see appendix)
� �=p 0 � =k + m�
� �=p� =k +m� 
�= �2m2
� � 4�m��� (p0 � p)� � 2=p
� =p 0 +O(k) +O�k2� : (4.16)34



Here we have used again the Gordon formula to trade (p + p0)� for ���q�, whi
honly is allowed if the expression is sandwi
hed between on-shell spinors u(p0) andu(p).� Now the numerator is split into pie
es independent of k, linear and quadrati
 ink. The linear term 
an be dropped under the integral. The quadrati
 pie
e leadsto a divergent 
ontribution whi
h we will dis
uss later. The integral over thek-independent part in the limit q� ! 0 yieldsZ d4k(2�)4 1�k2 � (x1 + x2)2m2 + �"�3 = � �32�2 1(x1 + x2)2m2 : (4.17)Now all that is left are the parameter integrals over x1 and x2.Finally, one obtains the result, usually expressed in terms of the �ne stru
ture 
on-stant � = e2= (4�),�eu(p0)��u(p) = +�eu(p0)� �2� �2m���q� + � � ��u(p) ; (4.18)where the dots represent 
ontributions whi
h are not / ���q�.Comparison with the Gordon de
omposition (4.11) gives the one-loop 
orre
tion tothe Land�e fa
tor, g = 2�1 + �2�� : (4.19)This 
orre
tion was �rst 
al
ulated by S
hwinger in 1948. It is often expressed as theanomalous magneti
 moment ae, ae = g � 22 : (4.20)Today, ae is known up to three loops analyti
ally and to four loops numeri
ally [10℄.The agreement of theory and experiment is impressive:aexpe = (1159652185:9 � 3:8) � 10�12 ;athe = (1159652175:9 � 8:5) � 10�12 : (4.21)This is one of the 
ornerstones of our 
on�den
e in quantum �eld theory.4.2 Divergen
esThe anomalous magneti
 moment we 
al
ulated in the last se
tion was tedious work,but at least the result was �nite. Most other expressions, however, have divergentmomentum integrals. One su
h example is the vertex fun
tion �� we already 
onsidered.It has 
ontributions whi
h are logarithmi
ally divergent. We 
an isolate these by settingq = 0, whi
h yields��(p; 0) = �2�e2 1Z0 dx1 1�x1Z0 dx2 Z d4k(2�)2 
� =k
� =k
��k2 � (x1 + x2)2m2 + �"�3 : (4.22)This expression is treated in two steps:35



� First we make the integral �nite in a step 
alled regularisation. In this step, wehave to introdu
e a new parameter of mass dimension 1. An obvious 
hoi
e wouldbe a 
uto� � whi
h serves as an upper bound for the momentum integration. Onemight even argue that there should be a 
uto� at a s
ale where quantum gravitybe
omes important, although a regularisation parameter has generally no dire
tphysi
al meaning.� The se
ond step is renormalisation. The divergen
es are absorbed into the param-eters of the theory. The key idea is that the \bare" parameters whi
h appear inthe Lagrangean are not physi
al, so they 
an be divergent. Their divergen
es are
hosen su
h as to 
an
el the divergen
es 
oming from the divergent integrals.� Finally, the regulator is removed. Sin
e all divergen
es have been absorbed into theparameters of the theory, the results remain �nite for in�nite regulator. Of 
ourse,one has to make sure the results do not depend on the regularisation method.The 
uto� regularisation, while 
on
eptually simple, is not a 
onvenient method, asit breaks Lorentz and gauge invarian
e. Symmetries, however, are very important forall 
al
ulations, so a good regularisation s
heme should preserve as many symmetriesas possible. We will restri
t ourselves to dimensional regularisation, whi
h is the most
ommon s
heme used nowadays.4.2.1 Dimensional RegularisationThe key idea is to de�ne the theory not in four, but in d = 4 � � dimensions [9℄. If� is not an integer, the integrals do 
onverge. Non-integer dimensionality might seemweird, but in the end we will take the limit of �! 0 and return to four dimensions. Thispro
edure is well-de�ned and just an intermediate step in the 
al
ulation.Let us 
onsider some te
hni
al issues. In d dimensions, the Lorentz indi
es \rangefrom 0 to d", in the sense that g��g�� = d ; (4.23)and there are d 
-matri
es obeying the usual algebra,f
�; 
�g = 2g��1 ; tr (1) = 4 : (4.24)
-matrix 
ontra
tions are also modi�ed due to the 
hange in the tra
e of g�� , su
h as
�
�
� = � (2 � �) 
� ; 
�
�
�
� = 4g�� � �
�
� : (4.25)The tensor stru
ture of diagrams 
an be simpli�ed as follows. If a momentum integralover k 
ontains a fa
tor of k�k� , this must be proportional to g��k2, sin
e it is of se
ondorder in k and symmetri
 in (��). The only symmetri
 tensor we have is the metri
 (aslong as the remaining integrand depends only on the square of k and the squares of theexternal momenta pi), and the 
oeÆ
ient 
an be obtained by 
ontra
ting with g�� toyield Z d4k(2�)4k�k�f�k2; p2i � = 1d g�� Z d4k(2�)4k2f�k2; p2i � : (4.26)36



The measure of an integral 
hanges from d4k to ddk. Sin
e k is a dimensionful quan-tity1 (of mass dimension 1), we need to 
ompensate the 
hange in dimensionality by afa
tor of ��, where � is an arbitrary parameter of mass dimension 1. The mass dimen-sions of �elds and parameters also 
hange. They 
an be derived from the 
ondition thatthe a
tion, whi
h is the d-dimensional integral over the Lagrangean, be dimensionless.S
hemati
ally (i.e., without all numeri
al fa
tors), a Lagrangean of gauge �elds, s
alarsand fermions reads L = (��A�)2 + e��A�A�A� + e2 (A�A�)2+ (���)2 +  ��=� �m� + e =A +m2�2 + � � � : (4.27)The 
ondition of dimensionless a
tion, [S℄ = 0, translates into [ L℄ = d, sin
e �ddx� = �d.Derivatives have mass dimension 1, and so do masses. That implies for the dimensionsof the �elds (and the limit as d! 4),[A�℄ = d � 22 ! 1 ; [�℄ = d� 22 ! 1 ; (4.28)[ ℄ = d � 12 ! 32 ; [e℄ = 2� d2 ! 0 : (4.29)How do we evaluate a d-dimensional integral? One �rst transforms to Eu
lidean spa
erepla
ing k0 by �k4, so that the Lorentzian measure ddk be
omes ddkE. In Eu
lideanspa
e, one 
an easily 
onvert to spheri
al 
oordinates and perform the integral over theangular variables, whi
h gives the \area" of the d-dimensional \unit sphere",Z ddkE(2�)df�k2� = Z d
d(2�)d| {z }12d�1�d=2 1�(d=2) 1Z0 dkE kd�1E f�k2� : (4.30)The remaining integral 
an then be evaluated, again often using �-fun
tions. The resultis �nite for d 6= 4, but as we let d! 4, the original divergen
e appears again in the formof �(2� d=2). The �-fun
tion has poles at negative integers and at zero, so the integralexists for noninteger dimension. In the limit d! 4, or equivalently, �! 0, one has��2 � d2� = �� �2� = 2� � 
E +O (�) ; (4.31)with the Euler 
onstant 
E ' 0:58.As an example, 
onsider the logarithmi
ally divergent integral (
f. (4.22))Z d4k(2�)4 1(k2 + C)2 ; (4.32)where C = (x1 + x2)2m2. In d Eu
lidean dimensions, this be
omes�� Z d4kE(2�)4 1(k2E + C)2 = ����2 � d2�(4�)d=2 �(2) 1C2�d=2 = 18�2 1� + � � � (4.33)1In our units where ~ = 
 = 1, the only dimension is mass, so everything 
an be expressed in powersof GeV. The basi
 quantities have [mass℄ = [energy℄ = [momentum℄ = 1 and [length℄ = [time℄ = �1, so[dx�℄ = �1 and [��℄ = 1. 37



p p� kk p = ��� (p)(a) The ele
tron self-energy � �qq p+ qp = ����� (q)(b) The va
uum polarisationFigure 4.2: One-loop 
orre
tions to the propagators of ele
tron and photon.For the original expression (4.22) we thus obtain�� (p; 0) = �2� 1� 
� +O(1) : (4.34)What have we a
hieved? In four dimensions, the result is still divergent. However,the situation is better than before: We have separated the divergent part from the �niteone and 
an take 
are of the divergen
e before taking the limit � ! 0. This is done inthe pro
edure of renormalisation.There are more divergent one-loop graphs where we 
an a
hieve the same: the ele
-tron self-energy � in Fig. 4.2(a) (linearly divergent) and the photon self-energy or va
uumpolarisation ��� in Fig. 4.2(b) (quadrati
ally divergent). The self-energy graph has twodivergent terms, �(p) = 3�2� 1�m� �2� 1� �=p �m�+O(1) ; (4.35)whi
h 
ontribute to the mass renormalisation and the wave fun
tion renormalisation,respe
tively. The va
uum polarisation seems more 
ompli
ated sin
e it is a se
ond ranktensor. However, the tensor stru
ture is �xed by gauge invarian
e whi
h requiresq���� (q) = 0 : (4.36)Therefore, be
ause of Lorentz invarian
e,��� (q) = �g��q2 � q�q����q2� : (4.37)The remaining s
alar quantity �(q2) has the divergent part��q2� = 2�3� 1� +O(1) : (4.38)4.2.2 RenormalisationSo far we have isolated the divergen
es, but they are still there. How do we get ridof them? The 
ru
ial insight is that the parameters of the Lagrangean, the \bare"parameters, are not observable. Rather, the sum of bare parameters and loop-indu
ed38




orre
tions are physi
al. Hen
e, divergen
ies of bare parameters 
an 
an
el againstdivergent loop 
orre
tions, leaving physi
al observables �nite.To make this more expli
it, let us express, as an example, the QED Lagrangean interms of bare �elds A�0 and  0 and bare parameters m0 and e0, L = �14 (��A0� � ��A0�) ���A0� � ��A0��+  0 (
� (��� � e0A0�)�m0) 0 : (4.39)The \renormalised �elds" A� and  and the \renormalised parameters" e and m arethen obtained from the bare ones by multipli
ative res
aling,A0� = pZ3A� ;  0 = pZ2 ; (4.40)m0 = ZmZ2 m ; e0 = Z1Z2pZ3�2�d=2e : (4.41)Note that 
oupling and ele
tron mass now depend on the mass parameter �,e = e(�) ; m = m(�) : (4.42)In terms of the renormalized �elds and parameters the Lagrangean (4.39) reads L = �14 (��A� � ��A�) (��A� � ��A�) +  (
� (��� � eA�)�m) + � L ; (4.43)where � L 
ontains the divergent 
ounterterms,� L = � (Z3 � 1) 14F��F �� + (Z2 � 1) �=� � (Zm � 1)m  � (Z1 � 1) e =A : (4.44)The 
ounterterms have the same stru
ture as the original Lagrangean and lead to newverti
es in the Feynman rules:i. � q � �� (Z3 � 1)� (g��q2 � q�q�) Photon wave fun
tion 
ounterterm (
ountertemsare generi
ally denoted by ). It has the sametensor stru
ture as the va
uum polarisation.ii. p �� (Z2 � 1) =p Ele
tron wave fun
tion 
ounterterm.iii. p �� (Zm � 1)m Ele
tron mass 
ounterterm.iv. ��e (Z1 � 1) 
� Vertex 
ounterterm.The renormalisation 
onstants Zi are determined by requiring that the 
ounterterms
an
el the divergen
es. They 
an be determined as power series in �. The lowest order39




ounterterms are O (�) and have to be added to the one-loop diagrams. Cal
ulating e.g.the O (�) 
orre
tion to the ele
tron-photon vertex, one has+ = ��e
�� �2� 1� + (Z1 � 1) +O (1)� : (4.45)Demanding that the whole expression be �nite determines the divergent part of Z1,Z1 = 1� �2� 1� +O (1) : (4.46)Similarly, the O (�) va
uum polarisation now has two 
ontributions,+ = �� �g��q2 � q�q���2�3� 1� + (Z3 � 1) +O (1)� ; (4.47)whi
h yields Z3 = 1� 2�3� 1� +O (1) : (4.48)The other 
onstants Z2 and Zm are �xed analogously. A Ward identity, whi
h followsfrom gauge invarian
e, yields the important relation Z1 = Z2. The �nite parts of therenormalisation 
onstants are still undetermined. There are di�erent ways to �x them,
orresponding to di�erent renormalisation s
hemes. All s
hemes give the same resultsfor physi
al quantities, but di�er at intermediate steps.Having absorbed the divergen
es into the renormalised parameters and �elds, we
an safely take the limit � ! 0. The theory now yields well-de�ned relations betweenphysi
al observables. Divergen
ies 
an be removed to all orders in the loop expansionfor renormalisable theories [3, 9℄. Quantum ele
trodynami
s and the standard modelbelong to this 
lass. The proof is highly non-trivial and has been a major a
hievementin quantum �eld theory!4.2.3 Running Coupling in QEDContrary to the bare 
oupling e0, the renormalised 
oupling e(�) depends on the renor-malisation s
ale � (
f. (4.41)),e0 = Z1Z2pZ3��2+d=2e(�) = e(�)���=2Z� 123 ;where we have used the Ward identity Z1 = Z2. It is very remarkable that the s
aledependen
e is determined by the divergen
ies. To see this, expand Eq. (4.41) in � ande(�), e0 = e(�)�1� �2 ln� + � � ���1 + 1� �3� + � � ��= e(�)�1� e2(�)12�2 + 1� e2(�)24�2 ln�+O ��; e4(�)�� ; (4.49)40



where we have used � = e2=(4�). Sin
e the bare mass e0 does not depend on �,di�erentiation with respe
t to � yields0 = � ���e0 = � ���e� e324�2 +O �e5� ; (4.50)and therefore � ���e = e324�2 +O �e5� � �(e) : (4.51)This equation is known as the renormalisation group equation, and the fun
tion on theright hand side of Eq. (4.51) is the so-
alled the � fun
tion ,�(e) = b0(4�)2e3 +O �e5� ; with b0 = 23 : (4.52)The di�erential equation (4.51) 
an easily be integrated. Using a given value of e ata s
ale �1, the 
oupling � at another s
ale � is given by�(�) = � (�1)1� � (�1) b0(2�) ln ��1 : (4.53)Sin
e b0 > 0, the 
oupling in
reases with � until it approa
hes the so-
alled Landau polewhere the denominator vanishes and perturbation theory breaks down.What is the meaning of a s
ale dependent 
oupling? This be
omes 
lear when one
al
ulates physi
al quantities, su
h as a s
attering amplitude at some momentum trans-fer q2. In the perturbative expansion one then �nds terms/ e2(�) log(q2=�2). Su
h termsmake the expansion unreliable unless one 
hooses �2 � q2. Hen
e, e2(q2) represents thee�e
tive intera
tion strength at a momentum (or energy) s
ale q2 or, alternatively, at adistan
e of r � 1=q.The positive � fun
tion in QED implies that the e�e
tive 
oupling strength de
reasesat large distan
es. Qualitatively, this 
an be understood as the e�e
t of \va
uum po-larisation": Ele
tron-positron pairs et
. from the va
uum s
reen any bare 
harge atdistan
es larger than the 
orresponding Compton wavelength. Quantitatively, one �ndsthat the value �(0) = 1137, measured in Thompson s
attering, in
reases to �(M2Z) = 1127,the value 
onveniently used in ele
troweak pre
ision tests.4.2.4 Running Coupling in QCDEverything we did so far for QED 
an be extended to non-Abelian gauge theories, inparti
ular to QCD [5℄. It is, however, mu
h more 
ompli
ated, sin
e there are morediagrams to 
al
ulate, and we will not be able to dis
uss this in detail. The additionaldiagrams 
ontain gluon self-intera
tions and ghosts, and they lead to similar divergen
es,41



whi
h again are absorbed by renormalisation 
onstants. S
hemati
ally, these are+ +  Z1 ; (4.54)+  Z2 ; (4.55)+ + +  Z3 : (4.56)The renormalised 
oupling 
an again be de�ned as in QED, Eq. (4.41),g0 = Z1Z2pZ3��2+d=2 g : (4.57)The 
oeÆ
ients of the 1=�-divergen
es depend on the gauge group and on the number ofdi�erent fermions. For a SU(N
) gauge group with Nf 
avours of fermions, one obtainsthe � fun
tion for the gauge 
oupling g,� ���g = b0(4�)2g3 +O �g5� ; b0 = ��113 N
 � 43Nf� : (4.58)Note that for Nf < 11N
=4 the 
oeÆ
ient is negative! Hen
e, the 
oupling de
reases athigh momentum transfers or short distan
es. The 
al
ulation of this 
oeÆ
ient earnedthe Nobel Prize in 2004 for Gross, Politzer and Wil
zek. The de
rease of the 
ouplingat short distan
es is the famous phenomenon of asymptoti
 freedom. As a 
onsequen
e,one 
an treat in deep-inelasti
 s
attering quarks inside the proton as quasi-free parti
les,whi
h is the basis of the parton model.The 
oupling at a s
ale � 
an again be expressed in terms of the 
oupling at areferen
e s
ale �1, �(�) = � (�1)1 + � (�1) jb0j(2�) ln ��1 : (4.59)The analogue of the Landau pole now o

urs at small � or large distan
es. For QCDwithN
 = 3 and Nf = 6, the pole is at the \QCD s
ale" �QCD ' 300 MeV. At the QCDs
ale gluons and quarks are strongly 
oupled and 
olour is 
on�ned [5℄. Correspondingly,the inverse of �QCD gives roughly the size of hadrons, rhad � ��1QCD � 0:7 fm.42



Chapter 5Ele
troweak TheorySo far we have studied QED, the simplest gauge theory, and QCD, the prime exampleof a non-Abelian gauge theory. But there also are the weak intera
tions, whi
h seemrather di�erent. They are short-ranged, whi
h requires massive messenger parti
les,seemingly in
onsistent with gauge invarian
e. Furthermore, weak intera
tions 
ome intwo types, 
harged and neutral 
urrent-
urrent intera
tions, whi
h 
ouple quarks andleptons di�erently. Charged 
urrent intera
tions, mediated by the W� bosons, onlyinvolve left-handed fermions and readily 
hange 
avour, as in the strange quark de
ays ! ue��e. Neutral 
urrent intera
tions, on the other hand, 
ouple both left- andright-handed fermions, and 
avour-
hanging neutral 
urrents are strongly suppressed.Despite these di�eren
es from QED and QCD, weak intera
tions also turn out to bedes
ribed by a non-Abelian gauge theory. Yet the ele
troweak theory is di�erent be
auseof two reasons: It is a 
hiral gauge theory, and the gauge symmetry is spontaneouslybroken.5.1 Quantum NumbersIn a 
hiral gauge theory, the building blo
ks are massless left- and right-handed fermions, L = 12 �1� 
5� L ;  R = 12 �1 + 
5� R ; (5.1)with di�erent gauge quantum numbers. For one generation of standard model parti
les,we will have seven 
hiral spinors: Two ea
h for up- and down-type quark and 
hargedlepton, and just one for the neutrino whi
h we will treat as massless in this 
hapter,i.e., we omit the right-handed one. The ele
troweak gauge group is a produ
t of twogroups, GEW = SU(2)W � U(1)Y . Here the subs
ript W stands for \weak isospin",whi
h is the quantum number asso
iated with the SU(2)W fa
tor, and the U(1) 
hargeis the hyper
harge Y .The assignment of quantum numbers, whi
h 
orresponds to the grouping into rep-resentations of the gauge group, is obtained as follows: The non-Abelian group SU(2)Whas a 
hargeless one-dimensional singlet (1) representation and 
harged multidimen-sional representations, starting with the two-dimensional doublet (2) representation1.1Here we use \representation" as meaning \irredu
ible representation". Of 
ourse we 
an buildredu
ible representations of any dimension. 43



We are not allowed to mix quarks and leptons, sin
e weak intera
tions do not 
hange
olour, nor left- and right-handed �elds, whi
h would violate Lorentz symmetry. TheU(1)Y fa
tor is Abelian, so it only has one-dimensional representations. This means we
an assign di�erent hyper
harges we to the various singlets and doublets of SU(2)W .Furthermore, we know that 
harged 
urrents 
onne
t up- with down-type quarksand 
harged leptons with neutrinos, and that the W� bosons 
ouple only to left-handedfermions. This suggests to form doublets from uL and dL, and from eL and �L, and tokeep the right-handed �elds as singlets. So we obtain the SU(2)W multipletsqL = �uLdL� ; uR ; dR ; lL = ��LeL� ; eR ; (5.2)with the hyper
harges (whi
h we will justify later)�eld: qL uR dR lL eRhyper
harge: 16 23 �13 �12 �1 : (5.3)With these representations, we 
an write down the 
ovariant derivatives. The SU(2)Whas three generators, whi
h we 
hoose to be the Pauli matri
es, and therefore three gauge�elds W I� , I = 1; 2; 3. The U(1)Y gauge �eld is B�, and the 
oupling 
onstants are g andg0, respe
tively. The 
ovariant derivatives a
ting on the left-handed �elds areD� L = (�� + �gW� + �g0Y B�) L ; where W� = 12�IW I� ; (5.4)while the right-handed �elds are singlets under SU(2)W , and hen
e do not 
ouple to theW bosons, D� R = (�� + �g0Y B�) R : (5.5)From the expli
it form of the Pauli matri
es,�1 = �0 11 0� ; �2 = �0 ��� 0 � ; �3 = �1 00 �1� ; (5.6)we see that W 1� and W 2� mix up- and down-type quarks, while W 3� does not, like theU(1) boson B�.It is often 
onvenient to split the Lagrangean into the free (kineti
) part and theintera
tion Lagrangean, whi
h takes the form (
urrent)�(ve
tor �eld). In the ele
troweaktheory, one has Lint = �gJ IW; �W I � � g0JY; �B� ; (5.7)with the 
urrentsJ IW; � = qL
� 12�IqL + lL
� 12�IlL ; (5.8)JY; � = 16qL
�qL � 12 lL
�lL + 23uR
�uR � 13dR
�dR � eR
�eR : (5.9)These 
urrents have to be 
onserved, ��J� = 0, to allow a 
onsistent 
oupling to gaugebosons. 44



5.1.1 AnomaliesBefore 
onsidering the Higgs me
hanism whi
h will lead to the identi�
ation of thephysi
al W�, Z and 
 bosons of the standard model, let us brie
y dis
uss anomalies. Wewill see that the 
hoi
e of hyper
harges in (5.3) is severely 
onstrained by the 
onsisten
yof the theory.Suppose we have a 
lassi
al �eld theory with a 
ertain symmetry and asso
iated
onserved 
urrent. After quantising the theory, the resulting quantum �eld theory mightnot have that symmetry anymore, whi
h means the 
urrent is no longer 
onserved. Thisis 
alled an anomaly. Anomalies are not a problem for global symmetries, where thequantised theory just la
ks that parti
ular symmetry. For gauge symmetries, however,the 
urrents have to be 
onserved, otherwise the theory is in
onsistent.A / JA JBJC L � JA JBJC RFigure 5.1: The gauge anomaly is given by triangle diagrams with 
hiral fermions in the loop.Anomalies are 
aused by 
ertain one-loop diagrams, the so-
alled triangle diagrams(see Fig 5.1). The left- and right-handed fermions 
ontribute with di�erent sign, so ifthey have the same quantum numbers, the anomaly vanishes. This is the 
ase in QEDand QCD, whi
h thus are automati
ally anomaly free. In general, for 
urrents JA, JBand JC, the anomaly A is the di�eren
e of the tra
es of the generators TA, TB and TCin the left- and right-handed se
tors,A = tr ��TA; TB	TC�L � tr ��TA; TB	 TC�R != 0 : (5.10)Here the tra
e is taken over all fermions. For the ele
troweak theory, in prin
iple thereare four 
ombinations of 
urrents, 
ontaining three, two, one or no SU(2)W 
urrent.However, the tra
e of any odd number of �I matri
es vanishes, so we only have to 
he
kthe SU(2)2WU(1)Y and U(1)3Y anomalies.The SU(2)W generators are 12�I , whose anti
ommutator is �12�I; 12�J	 = 12ÆIJ . Fur-thermore, only the left-handed �elds 
ontribute, sin
e the right-handed ones are SU(2)Wsinglets. Hen
e the SU(2)2WU(1)Y anomaly isA = tr ��12�I ; 12�J� Y �L = 12ÆIJ tr [Y ℄L = 12ÆIJ � 3|{z}N
 �16 � 12� = 0 : (5.11)We see that it only vanishes if quarks 
ome in three 
olours!45



The U(1)3Y anomaly also vanishes:A = tr [fY; Y g Y ℄L � tr [fY; Y gY ℄R = 2�tr �Y 3�L � tr �Y 3�R�= 2 3 � 2�16�3 + 2��12�3 � 3�23�3 � 3��13�3 � (�1)3!= 0 : (5.12)This vanishing of the anomaly is again related to the number of 
olours. It does notvanish in either the left- or right-handed se
tor, nor in the quark and lepton se
torindividually. Hen
e, the vanishing of anomalies provides a deep 
onne
tion betweenquarks and leptons in the standard model, whi
h is a hint to grand uni�ed theorieswhere anomaly 
an
ellation is often automati
.Anomaly 
an
ellation is not restri
ted to the ele
troweak gauge 
urrents, but appliesto the strong for
e and gravity as well: Mixed SU(3)C -U(1)Y anomalies vanish by thesame argument as above: Only the SU(3)2CU(1)Y triangle 
ontributes, but it is tr [Y ℄L�tr [Y ℄R = 0. The same is true for the last possible anomaly, the gravitational one, wheretwo non-Abelian gauge 
urrents are repla
ed by the energy-momentum tensor T�� .Hen
e, the standard model is anomaly free, as it should be. For this, all parti
les ofone generation with their strange hyper
harges have to 
onspire to 
an
el the di�erentanomalies. A \standard model" without quarks, for instan
e, would not be a 
onsistenttheory, nor a \standard model" with four 
olours of quarks. Note that a right-handedneutrino, suggested by neutrino masses, does not pose any problem, sin
e it is a 
ompletesinglet, without any 
harge, and thus it does not 
ontribute to any gauge anomaly.5.2 Higgs Me
hanismThe ele
troweak model dis
ussed so far bears little resemblan
e to the physi
s of weakintera
tions. The gauge bosons W I� and B� are massless, implying long-range for
es, be-
ause a mass term m2W�W � would violate gauge invarian
e. Furthermore, the fermionsare massless as well, again be
ause of gauge invarian
e: A mass term mixes left- andright-handed fermions, m  = m � L R +  R L� ; (5.13)and sin
e these have di�erent gauge quantum numbers, su
h a term is not gauge invari-ant. The way out is the 
elebrated Higgs me
hanism: Spontaneous symmetry breakinggenerates masses for the gauge bosons and fermions without destroying gauge invarian
e.A simpler version of this e�e
t is what happens in super
ondu
tors: The 
ondensate ofCooper pairs indu
es an e�e
tive mass for the photon, so that ele
tromagneti
 inter-a
tions be
ome short-ranged, leading to the Meissner{O
hsenfeld e�e
t where externalmagneti
 �elds are expelled from the super
ondu
tor, levitating it.The key ingredient for the Higgs me
hanism is a 
omplex s
alar �eld �, whi
h is adoublet under SU(2)W with hyper
harge �12, whi
h has four real degrees of freedom.The 
ru
ial feature of the Higgs �eld is its potential ,whi
h is of the Mexi
an hat form: L = (D��)y (D��) � V ��y�� ; (5.14)46



with D�� = ��� + �gW� � �2g0B��� ;V ��y�� = ��2 �y� + 12� ��y��2 ; �2 > 0 : (5.15)This potential has a minimum away from the origin, at �y� = v2 � �2=�. In theva
uum, the Higgs �eld settles in this minimum. At �rst sight, the minimisation of thepotential only �xes the modulus �y�, i.e., one of the four degrees of freedom. The otherthree, however, 
an be eliminated by a gauge transformation, and we 
an 
hoose thefollowing form of �, whi
h is often referred to as unitary gauge:� = �v + 1p2H(x)0 � ; H = H� (5.16)Here we have eliminated the upper 
omponent and the imaginary part of the lower one.We have also shifted the lower 
omponent to the va
uum value, so that the dynami
al�eld H(x) vanishes in the va
uum.In unitary gauge, the Higgs Lagrangean (5.14) be
omes L = �2 v4+ 12��H ��H � �v2H2 + �p2 vH3 + �8H4+ 14 �v + 1p2 H�2 �W 1� ;W 2� ;W 3� ; B��0BB�g2 00 g2 00 g2 gg0gg0 g021CCA0BB�W 1�W 2�W 3�B� 1CCA : (5.17)The �rst line 
ould be interpreted as va
uum energy density, i.e., a 
osmologi
al 
onstant.However, su
h an interpretation is on shaky grounds in quantum �eld theory, so we willignore this term2. The se
ond line des
ribes a real s
alar �eld H of mass m2H = 2�v2with 
ubi
 and quarti
 self-intera
tions. The most important line, however, is the lastone: It 
ontains mass terms for the ve
tor bosons! A 
loser look at the mass matrixreveals that it only is of rank three, so it has one zero eigenvalue, and the three remainingones are g2, g2, and (g2 + g02). In other words, it des
ribes one massless parti
le, two ofequal nonzero mass and one whi
h is even heavier, i.e., we have identi�ed the physi
al
, W� and Z bosons.The massless eigenstate of the mass matrix, i.e., the photon, is the linear 
om-bination A� = � sin �WW 3� + 
os �WB�, the orthogonal 
ombination is the Z boson,Z� = 
os �WW 3� + sin �WB�. Here we have introdu
ed the Weinberg angle �W, whi
his de�ned by sin �W = g0pg2 + g02 ; 
os �W = gpg2 + g02 : (5.18)2Generally, nothing prevents us from adding an arbitrary 
onstant to the Lagrangean, obtaining anydesired \va
uum energy". For example, the Higgs potential is often written as ��y�� v2�2, so thatits expe
tation value vanishes in the va
uum. These potentials just di�er by the a shift � v4, and areindistinguishable within QFT. 47



To summarise, the theory 
ontains the following mass eigenstates:� Two 
harged ve
tor bosons W� with mass M2W = 12g2v2,� two neutral ve
tor bosons with masses MZ = 12 (g2 + g02) v2 = M2W 
os�2 �W andM
 = 0,� and one neutral Higgs boson with mass m2H = 2�v2.The Higgs me
hanism and the diagonalisation of the ve
tor boson mass matrix allowus to rewrite the intera
tion Lagrangean (5.7), whi
h was given in terms of the old�elds W I� and B� and their 
urrents (5.8) and (5.9), in terms of the physi
al �eld. Theasso
iated 
urrents are separated into a 
harged 
urrent (for W�� ) and neutral 
urrents(for A� and Z�): LCC = � gp2 Xi=1;2;3(uLi
�dLi + �Li
�eLi)W+� + h.
. ; (5.19) LNC = �gJ3�W 3� � g0JY �B�= �eJem�A� � esin 2�WJZ �Z� ; (5.20)with the ele
tromagneti
 and Z 
urrentsJem� = Xi=u;d;
;s;t;b;e;�;� i
�Qi i ; with the ele
tri
 
harge Qi = T 3i + Yi ; (5.21)JZ � = Xi=u;d;
;s;t;be;�;�;�e;��;�� i
� �vi � ai
5� i : (5.22)Here the fermions  i are the sum of left- and right-handed �elds, i =  Li +  Ri : (5.23)The 
oupling to the photon, the ele
tri
 
harge Q, is given by the sum of the third
omponent of weak isospin T 3 (�12 for doublets, zero for singlets) and the hyper
harge Y .This reprodu
es the known ele
tri
 
harges of quarks and leptons, whi
h justi�es thehyper
harge assignments in (5.3). The 
oupling 
onstant e is related to the original
ouplings and the weak mixing angle:e = g sin �W = g0 
os �W : (5.24)The photon 
ouples only ve
tor-like, i.e., it does not distinguish between di�erent 
hiral-ities. The Z boson, on the other hand, 
ouples to the ve
tor- and axial-ve
tor 
urrentsof di�erent fermions  i (i.e., their left-and right-handed 
omponents) with di�erentstrengths. They are given by the respe
tive 
ouplings vi and ai, whi
h are universal forall families. In parti
ular, the Z 
ouples in the same way to all leptons, a fa
t known aslepton universality.The Higgs me
hanism des
ribed above is also 
alled spontaneous symmetry breaking.This term, however, is somewhat misleading: Gauge symmetries are never broken, but48



only hidden. The Lagrangean (5.17) only has a manifest U(1) symmetry asso
iated withthe massless ve
tor �eld, so it seems we have lost three gauge symmetries. This, however,is just a 
onsequen
e of 
hoosing the unitary gauge. The Higgs me
hanism 
an also bedes
ribed in a manifestly gauge invariant way, and all 
urrents remain 
onserved.The \spontaneous breaking of gauge invarian
e" reshu�es the degrees of freedomof the theory: Before symmetry breaking, we have the 
omplex Higgs doublet (fourreal degrees of freedom) and four massless ve
tor �elds with two degrees of freedomea
h, so twelve in total. After symmetry breaking (and going to unitary gauge), threeHiggs degrees of freedom are gone (one remaining), but they have resurfa
ed as extra
omponents of three massive ve
tor �elds3 (nine), and one ve
tor �eld stays massless(another two). So there still are twelve degrees of freedom.5.3 Fermion Masses and MixingsThe Higgs me
hanism generates masses not only for the gauge bosons, but also for thefermions. As already emphasized, dire
t mass terms are not allowed in the standardmodel. There are, however, allowed Yukawa 
ouplings of the Higgs doublet to twofermions. They 
ome in three 
lasses, 
ouplings to quark doublets and either up- ordown-type quark singlets, and to lepton doublet and 
harged lepton singlets. Ea
h termis parametrised by a 3 � 3-matrix in generation spa
e, LY = (hu)ij qL iuR j� + (hd)ij qL idR je� + (he)ij lL ieR je� + h.
. ; (5.25)where e� is given by e�a = �ab��b .These Yukawa 
ouplings e�e
tively turn into mass terms on
e the ele
troweak sym-metry is spontaneously broken: A va
uum expe
tation value h�Xi = v inserted in theLagrangean (5.25) yields Lm = (mu)ij uL iuR j + (md)ij dL idR j + (me)ij eL ieR j + h.
. : (5.26)Here the mass matri
es are mu = huv et
., and uL, dL and eL denote the respe
tive
omponents of the quark and lepton doublets qL and lL.The mass matri
es thus obtained are in general not diagonal in the basis where the
harged 
urrent is diagonal. They 
an be diagonalised by bi-unitary transformations,V (u)ymueV (u) = diag(mu;m
;mt) ; (5.27a)V (d)ymdeV (d) = diag(md;ms;mb) ; (5.27b)V (e)ymeeV (e) = diag(me;m�;m�) ; (5.27
)with unitary matri
es V , V (u)yV (u) = 1 ; et
.3Remember that a massless ve
tor only has two (transverse) degrees of freedom, while a massive onehas a third, longitudinal, mode. 49



This amounts to a 
hange of basis from the weak eigenstates (indi
es i; j; : : :) to masseigenstates (with indi
es �; �; : : :):uL i = V (u)i� uL� ; dL i = V (d)i� dL;� ; uR i = eV (u)i� uR� ; dR i = eV (d)i� dR� : (5.28)The up- and down-type matri
es V (u) and V (d) are not identi
al, whi
h has an important
onsequen
e: The 
harged 
urrent 
ouplings are now no longer diagonal, but rather LCC = � gp2 V��uL�
�dL �W+� + h.
. ; (5.29)with the CKM matrix V�� = V (u)y�iV (d)i� ; (5.30)whi
h 
arries the information about 
avour mixing in 
harged 
urrent intera
tions. Be-
ause of the unitarity of the transformations, there is no 
avour mixing in the neutral
urrent.We saw that the Higgs me
hanism generates fermion masses sin
e dire
t mass termsare not allowed due to gauge invarian
e. There is one possible ex
eption: a right-handedneutrino, whi
h one may add to the standard model to have also neutrino masses. It isa singlet of the standard model gauge group and 
an therefore have a Majorana massterm whi
h involves the 
harge 
onjugate fermion C = C T ; (5.31)where C = �
2
0 is the 
harge 
onjugation matrix. As the name suggests, the 
harge
onjugate spinor has 
harges opposite to the original one. It also has opposite 
hirality,PL CR =  R. Thus we 
an produ
e a mass term  C (remember that a mass term alwaysrequires both 
hiralities), whi
h only is gauge invariant for singlet �elds.So a right-handed neutrino �R 
an have the usual Higgs 
oupling and a Majoranamass term,  L�,mass = h� ijlL i�R j� + 12Mij�R i�R j + h.
. ; (5.32)where i; j again are family indi
es.The Higgs va
uum expe
tation value v turns the 
oupling matrix h� into the Dira
mass matrix mD = h�v. The eigenvalues of the Majorana mass matrix M 
an be mu
hlarger than the Dira
 masses, and a diagonalisation of the (�L; �R) system leads to threelight modes �i with the mass matrixm� = �mDM�1mTD : (5.33)Large Majorana masses naturally appear in grand uni�ed theories. For M � 1015 GeV,and mD � mt � 100 GeV for the largest Dira
 mass, one �nds m� � 10�2 eV, whi
his 
onsistent with results from neutrino os
illation experiments. This \seesaw me
ha-nism", whi
h explains the smallness of neutrino masses masses as a 
onsequen
e of largeMajorana mass terms, su

essfully relates neutrino physi
s to grand uni�ed theories.50



5.4 Predi
tionsThe ele
troweak theory 
ontains four parameters, the two gauge 
ouplings and the twoparameters of the Higgs potential: g, g0, �2 and �. They 
an be traded for four otherparameters, whi
h are more easily measured: The �ne-stru
ture 
onstant �, the Fermi
onstant GF and the Z boson mass MZ , whi
h are known to great a

ura
y, and theHiggs mass mH whi
h is not yet known.W ff 0(a) Z ff(b) Figure 5.2: De
ays of the W and Zbosons into two fermions. InW de-
ays, the fermion and antifermion
an have di�erent 
avour. Thegrey blobs indi
ate higher order
orre
tions whi
h must be in
ludedto mat
h the experimental pre
i-sion.At LEP, W and Z bosons were produ
ed in huge numbers. There are many observ-ables related to their produ
tion and de
ay (Fig. 5.2). These in
lude:� The W mass MW and the de
ay widths �W and �Z .� Ratios of partial de
ay widths, for example, the ratio of the partial Z width intobottom quarks to that into all hadrons,Rb = 1�(Z ! hadrons)��Z ! bb� : (5.34)� Forward-ba
kward asymmetries: In e+e� ! Z=
 ! ff rea
tions, the dire
tion ofthe outgoing fermion is 
orrelated with the in
oming ele
tron. This is quanti�edby the asymmetries Affb,Affb = �ff � �fb�ff + �fb ; for f = �; �; b; 
 ; (5.35)where �ff is the 
ross se
tion for an outgoing fermion in the forward dire
tion, i.e.,� 2 [0; �=2℄ in Fig. 5.4, while �fb is the 
ross se
tion for ba
kward s
attering.Also important are double, left-right and forward-ba
kward asymmetries,AfbLR = �fLf � �fLb � �fRf + �fRb�fLf + �fLb + �fRf + �fRb � 34Af : (5.36)The reason for these asymmetries is the presen
e of the axial 
ouplings ai in theZ boson 
urrent (5.22), whi
h lead to di�erent 
ross se
tions for the pro
essesZ ! fLfR and Z ! fRfL. Thus, one 
an dedu
e the ai and vi 
ouplings for51



e�e+ Z; 
 ff(a) e� e+ff �(b) Figure 5.3: The forward-ba
kwardasymmetry Afb: In the pro
esse+e� ! Z=
 ! ff , there is a 
or-relation between the dire
tions ofthe outgoing fermion and the in-
oming ele
tron. This asymme-try has been measured for sev-eral types of �nal state fermions,mostly at LEP with 
enter of massenergy ps = MZ .fermions from the forward-ba
kward asymmetries, and �nally the weak mixingangle, on whi
h the ve
tor- and axial-ve
tor 
ouplings of the Z boson depend,sin2 �lepte� = 14 �1� vlal� : (5.37)� Ele
troweak measurements by now are very pre
ise, and require the in
lusion of Wboson loops in theoreti
al 
al
ulations, so that they test the non-Abelian natureof the ele
troweak theory. The theoreti
al predi
tions 
riti
ally depend on the theele
tromagneti
 
oupling at the ele
troweak s
ale, �(mZ), whi
h di�ers from thelow energy value �(0) in parti
ular by hadroni
 
orre
tions, ��had(mZ).An important observable is the � parameter, de�ned by� = M2WM2Z 
os2 �W : (5.38)At tree level, � = 1. Loop 
orre
tions to the masses of the gauge bosons, andtherefore to �, due to quark or Higgs boson loops as in Fig. 5.4, are an importantpredi
tion of the ele
troweak theory.The tree level value � = 1 is prote
ted by an approximate SU(2) symmetry, 
alled
ustodial symmetry, whi
h is only broken by the U(1)Y gauge intera
tion and byYukawa 
ouplings. Thus the 
orre
tions depend on the fermion masses, and aredominated by the top quark, as in Fig 5.4(a). The leading 
orre
tion is��(t) = 3GFm2t8�2p2 / m2tM2W : (5.39)This led to the 
orre
t predi
tion of the top mass from ele
troweak pre
ision databefore the top quark was dis
overed at the TeVatron.The 
orre
tion due to the Higgs boson diagrams in Fig. 5.4(b) again depends onthe Higgs mass, but this time the e�e
t is only logarithmi
:��(H) = �C lnm2HM2W : (5.40)52



W+ W+bt Z Ztt(a) Heavy quark 
orre
tionsW�; Z W�; ZH W�; Z W�; ZH(b) Higgs 
orre
tionsFigure 5.4: Radiative 
orre
tions to the masses of the W and Z bosons, whi
h depend on the massesof the parti
les in the loop. Diagrams with gauge boson self-intera
tions have been omitted.e�e+ �e W�W+(a) e�e+ Z=
 W�W+(b) Figure 5.5: The pro
ess e+e� !W+W�. The diagrams of panel(b) 
ontain triple gauge bosonverti
es, 
WW and ZWW .From this relation, one 
an obtain a predi
tion for the mass of the Higgs boson.Clearly, the a

ura
y of this predi
tion strongly depends on the experimental erroron the top mass, whi
h a�e
ts � quadrati
ally.However, the Higgs mass (weakly) in
uen
es many other quantities, and frompre
ision measurements one 
an obtain a �t for the Higgs mass. This is shown inthe famous blue-band plot, Fig. 6.3.� A 
hara
teristi
 predi
tion of any non-Abelian gauge theory is the self-intera
tionof the gauge bosons. In the ele
troweak theory, this 
an be seen in the pro
esse+e� ! W+W�.The tree-level diagrams are given in Fig. 5.5, and Fig. 5.6(a) shows the mea-sured 
ross se
tion from LEP, 
ompared with theoreti
al predi
tions. Clearly, thefull 
al
ulation in
luding all diagrams agrees well with data, while the omission53



of the 
WW and ZWW verti
es leads to large dis
repan
ies. For the pro
esse+e� ! ZZ, on the other hand, there is no triple gauge boson (ZZZ or 
ZZ)vertex, so at tree level one only has the t-
hannel diagram whi
h is similar to thediagram in Fig. 5.5(a), but with an ele
tron instead of the neutrino. The agreementbetween theory and data is evident from Fig. 5.6(b).5.4.1 Fermi Theory �� ��e��eFigure 5.7: � de
ayThe ex
hange of a W boson with momentum q in a Feynman diagram
ontributes a fa
tor of (M2W � q2)�2 to the amplitude. For low-energypro
esses like muon de
ay (see Fig. 5.7), the momentum transferis mu
h smaller than the mass of the W boson. Hen
e, to goodapproximation one 
an ignore q2 and repla
e the propagator by M�2W .This amounts to introdu
ing an e�e
tive four-fermion vertex (seeFig. 5.8),  Le�CC = �GFp2J�CCJyCC� ; (5.41)where GF is Fermi's 
onstant, GF = g24p2M2W = 12p2 v2 ; (5.42)whi
h is inversely proportional to the Higgs va
uum expe
tation value v2. A four-fermiontheory for the weak intera
tions was �rst introdu
ed by Fermi in 1934. Sin
e it is not
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(b) For Z pair produ
tion, there is no triple Zvertex, whi
h agrees well with the experimen-tal result.Figure 5.6: Gauge boson pair produ
tion 
ross se
tions at LEP2 energies. From [11℄.54



renormalisable, it 
annot be 
onsidered a fundamental theory. However, one 
an useit as an e�e
tive theory at energies small 
ompared to the W mass. This is suÆ
ientfor many appli
ations in 
avour physi
s, where the energy s
ale is set by the masses ofleptons, kaons and B mesons.W q2 �M2W Figure 5.8: W boson ex
hange 
an be de-s
ribed in terms of the Fermi theory, ane�e
tive theory for momentum transferssmall 
ompared to the W mass. The Wpropagator is repla
ed by a four-fermionvertex / GF.5.5 SummaryThe ele
troweak theory is a 
hiral gauge theory with gauge group SU(2)W � U(1)Y .This symmetry is spontaneously broken down to U(1)em by the Higgs me
hanism whi
hgenerates the gauge boson and Higgs masses, and also all fermion masses, sin
e dire
tmass terms are forbidden by gauge invarian
e.The ele
troweak theory is extremely well tested experimentally, to the level of 0.1%,whi
h probes loop e�e
ts of the non-Abelian gauge theory. The results of a globalele
troweak �t are shown in Fig. 5.9. There is one deviation of almost 3�, all otherquantities agree within less than 2�.This impressive agreement is only possible due to two properties of the ele
troweakintera
tions: They 
an be tested in lepton-lepton 
ollisions, whi
h allow for very pre
isemeasurements, and they 
an be reliably 
al
ulated in perturbation theory. QCD, onthe other hand, requires hadroni
 pro
esses whi
h are experimentally known with lessa

ura
y and also theoreti
ally subje
t to larger un
ertainties.
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02767

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.743

AfbA0,l 0.01714 ± 0.00095 0.01643

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480

RbRb 0.21629 ± 0.00066 0.21581

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1037

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.404 ± 0.030 80.376

ΓW [GeV]ΓW [GeV] 2.115 ± 0.058 2.092

mt [GeV]mt [GeV] 172.5 ± 2.3 172.9Figure 5.9: Results of a global �t to ele
troweak pre
ision data. The right 
olumn shows the deviationof the �t from measured values in units of the standard deviation. From [11℄.56



Chapter 6The Higgs Pro�leThe only missing building blo
k of the standard model is the Higgs boson. Spontaneouslybroken ele
troweak symmetry, however, is a 
ornerstone of the standard model, and sothe dis
overy of the Higgs boson and the detailed study of its intera
tions is a topi
 ofprime importan
e for the LHC and also the ILC.The investigation of the Higgs se
tor 
an be expe
ted to to give important insight alsoon physi
s beyond the standard model. Sin
e the Higgs is a s
alar parti
le, its mass issubje
t to quadrati
ally divergent quantum 
orre
tions, and an enormous \�ne-tuning"of the tree-level mass term is needed to keep the Higgs light (this is usually referred toas the \naturalness problem" of the Higgs se
tor). Su
h 
onsiderations have motivatedvarious extensions of the standard model:� Supersymmetry retains an elementary s
alar Higgs (and a
tually adds four more),while radiative 
orre
tions with opposite signs from bosons and fermions 
an
el.� Te
hni
olour theories model the Higgs as a 
omposite parti
le of size 1=�TC, where�TC � 1 TeV is the 
on�nement s
ale of a new non-Abelian gauge intera
tion.These theories generi
ally have problems with ele
troweak pre
ision tests and thegeneration of fermion masses.� A related idea regards the Higgs as a pseudo-Goldstone boson of some approximateglobal symmetry spontaneously broken at an energy s
ale above the ele
troweaks
ale. The Higgs mass is then related to the expli
it breaking of this symmetry.� In theories with large extra dimensions new degrees of freedom o

ur, and the Higgs�eld 
an be identi�ed, for instan
e, as the �fth 
omponent of a �ve-dimensionalve
tor �eld.All su
h ideas 
an be tested at the LHC and the ILC, sin
e the unitarity of WW s
at-tering implies that the standard model Higgs and/or other e�e
ts related to ele
troweaksymmetry breaking be
ome manifest at energies below � 1 TeV.6.1 Higgs Couplings and De
aySuppose a resonan
e is found at the LHC with a mass above 114 GeV and zero 
harge.How 
an one establish that it indeed is the Higgs?57



H ff / mf(a) H WL=ZLWL=ZL/ mH(b)H G=
G=
(
) H HH / mH(d)Figure 6.1: Higgs boson de
ays. Tree-level 
ouplings are proportional to masses, but there also areloop-indu
ed de
ays into massless parti
les. The 
ubi
 Higgs self-
oupling 
an be probed at the ILCand possibly at the LHC.The Higgs boson 
an be distinguished from other s
alar parti
les as they o

ur,for instan
e, in supersymmetri
 theories, by its spe
ial 
ouplings to standard modelparti
les. All 
ouplings are proportional to the mass of the parti
le, sin
e it is generatedby the Higgs me
hanism. Hen
e, the Higgs de
ays dominantly into the heaviest parti
leskinemati
ally allowed, whi
h are tt or, for a light Higgs, bb and �� pairs. It also has astrong 
oupling / mH to the longitudinal 
omponent of W and Z bosons. The tree-level diagrams are given in Figs. 6.1(a) and 6.1(b). In addition, there are importantloop-indu
ed 
ouplings to massless gluons and photons (see Fig. (6.1(
)).The tree level de
ay widths in the approximation mH � mf ;MW are given by��H ! ff� = GFmHm2f4�p2 N
 ; (6.1a)�(H ! ZLZL) = 12�(H ! WLWL) = GFm3H32�p2 : (6.1b)The bran
hing fra
tions of the Higgs into di�erent de
ay produ
ts strongly depend onthe Higgs mass, as shown in Fig. 6.2. For a heavy Higgs, with mH > 2MW , thede
ay into a pair of W bosons dominates. At the threshold the width in
reases by twoorders of magnitude, and it almost equals the Higgs mass at mH � 1 TeV where theHiggs dynami
s be
omes nonperturbative. For a light Higgs with a mass just abovethe present experimental limit, mH > 114 GeV, the de
ay into two photons might bethe best possible dete
tion 
hannel given the large QCD ba
kground for the de
ay intotwo gluons at the LHC. It is 
learly an experimental 
hallenge to establish the massdependen
e of the Higgs 
ouplings, so the true dis
overy of the Higgs is likely to takeseveral years of LHC data! 58



Figure 6.2: Left: Higgs bran
hing ratios as fun
tion of the Higgs mass. Right: Higgs de
ay width asfun
tion of the Higgs mass. It in
reases by two orders of magnitude at the WW threshold. From [12℄.6.2 Higgs Mass BoundsWe now turn to the issue of the Higgs mass. Within the standard model, m2H = 2�v2 isa free parameter whi
h 
annot be predi
ted. There are, however, theoreti
al 
onsisten
yarguments whi
h yield stringent upper and lower bounds on the Higgs mass.Before we present these argument, we �rst re
all the experimental bounds:� The Higgs has not been seen at LEP. This gives a lower bound on the mass,mH > 114 GeV.� The Higgs 
ontributes to radiative 
orre
tions, in parti
ular for the � parameter.Hen
e, pre
ision measurements yield indire
t 
onstraints on the Higgs mass. Theresult of a global �t is shown in the blue-band plot, Fig. 6.3. The 
urrent 95%
on�den
e level upper bound is mH < 185 GeV, an impressive result! One shouldkeep in mind, however, that the loop 
orre
tions used to determine the Higgs massstrongly depend on the top mass as well. A shift of a few GeV in the top mass,well within the 
urrent un
ertainties, 
an shift the Higgs mass best �t by severaltens of GeV, as 
an be seen by 
omparing he plots in Fig. 6.3.Theoreti
al bounds on the Higgs mass arise, even in the standard model, from two
onsisten
y requirements: (Non-)Triviality and va
uum stability. In the minimal super-symmetri
 standard model (MSSM), on the other hand, the Higgs self-
oupling is givenby the gauge 
ouplings, whi
h implies the upper bound mH . 135 GeV.The mass bounds in the standard model arise from the s
ale dependen
e of 
ouplings,as explained in Chapter 4. Most relevant are the quarti
 Higgs self-
oupling � and thetop quark Yukawa 
oupling ht whi
h gives the top mass via mt = htv. Other Yukawa
ouplings are mu
h smaller and 
an be ignored. The renormalisation group equations59
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Figure 6.3: The blue-band plot showing the 
onstraints on the Higgs mass from pre
ision measurements.The small plots show the same plot from winter 
onferen
es of di�erent years: 1997, 2001, 2003 and2005 (left to right). The big plot dates from winter 2006. The best �t and the width of the parabolavary, most notable due to shifts in the top mass and its un
ertainty. From [11℄.for the 
ouplings �(�) and ht(�) are� ����(�) = ��(�; ht) = 1(4�)2 �12�2 � 12h4t + : : :� ; (6.2a)� ���ht(�) = ��(�; ht) = ht(4�)2 �92h2t � 8g2s + : : :� : (6.2b)These equations imply that ht de
reases with in
reasing � whereas the behaviour of �(�)depends on the initial 
ondition �(v), i.e., on the Higgs mass.For the standard model to be a 
onsistent theory from the ele
troweak s
ale v up tosome high-energy 
uto� �, one needs to satisfy the following two 
onditions in the rangev < � < �:� The triviality bound: �(�) < 1. If � would hit the Landau pole at some s
ale60



�L < �, a �nite value �(�L) would require �(v) = 0, i.e., the theory would be\trivial".� The va
uum stability bound: �(�) > 0. If � would be
ome negative, the Higgspotential would not be bounded from below anymore, and the ele
troweak va
uumwould no longer be the ground state of the theory.These two requirements de�ne allowed regions in the mH-mt{plane as fun
tion of the
uto� � (see Fig. (6.4a)). For a given top mass, this translates into an upper and lowerbound on the Higgs mass. For in
reasing �, the allowed region shrinks, and for theknown top quark mass and � � �GUT � 1016 GeV, the Higgs mass is 
onstrained to liein a narrow region, 130 GeV < mH < 180 GeV (see Fig. (6.4b)).
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Precision �(b)Figure 6.4: Bounds on the Higgs and top mass from triviality and va
uum stability. Panel (a) showsthe 
ombined bounds for di�erent values of � (from [13℄). Panel (b) gives the bounds on the Higgsmass for the known top mass (from [14℄).The impressively narrow band of allowed Higgs masses, whi
h one obtains from thetriviality and va
uum stability bounds, assumes that the standard model is valid up to�GUT, the s
ale of grand uni�
ation. This might seem a bold extrapolation, given thefa
t that our present experimental knowledge ends at the ele
troweak s
ale, � 102 GeV.There are, however, two indi
ations for su
h a \desert" between the ele
troweak s
ale andthe GUT s
ale: First, the gauge 
ouplings empiri
ally unify at the GUT s
ale, espe
iallyin the supersymmetri
 standard model, if there are no new parti
les between � 102 GeVand �GUT; se
ond, via the seesaw me
hanism, the eviden
e for small neutrino massesis also 
onsistent with an extrapolation to �GUT without new physi
s at intermediates
ales. 61



Chapter 7History and OutlookFinally, instead of a summary, we shall brie
y re
all the history of \The making of theStandard Model" following a review by S. Weinberg [1℄. It is very instru
tive to look atthis pro
ess as the interplay of some \good ideas" and some \misunderstandings" whi
hoften prevented progress for many years.1. A \good idea" was the quark model, proposed in 1964 independently by Gell-Mann and Zweig. The hypothesis that hadrons are made out of three quarksand antiquarks allowed one to understand their quantum numbers and mass spe
-trum in terms of an approximate SU(3) 
avour symmetry, the \eightfold way".Furthermore, the deep-inelasti
 s
attering experiments at SLAC in 1968 
ould beinterpreted as elasti
 s
attering of ele
trons o� point-like partons inside the proton,and it was natural to identify these partons with quarks.But were quarks real or just some mathemati
al entities? Many physi
ists did notbelieve in quarks sin
e no parti
les with third integer 
harges were found despitemany experimental sear
hes.2. Another \good idea" was the invention of non-Abelian gauge theories by Yang andMills in 1954. The lo
al symmetry was the isospin group SU(2), and one hopedto obtain in this way a theory of strong intera
tions with the �-mesons as gaugebosons. Only several years later, after the V �A-stru
ture of the weak intera
tionshad been identi�ed, Bludman, Glashow, Salam and Ward and others developedtheories of the weak intera
tions with intermediate ve
tor bosons.But all physi
al appli
ations of non-Abelian gauge theories seemed to require mas-sive ve
tor bosons be
ause no massless ones had been found, neither in strong norweak intera
tions. Su
h mass terms had to be inserted by hand, breaking expli
-itly the lo
al gauge symmetry and thereby destroying the rationale for introdu
ingnon-Abelian lo
al symmetries in the �rst pla
e. Furthermore, it was realized thatnon-Abelian gauge theories with mass terms would be non-renormalisable, plaguedby the same divergen
ies as the four-fermion theory of weak intera
tions.3. A further \good idea" was spontaneous symmetry breaking: There 
an be sym-metries of the Lagrangean that are not symmetries of the va
uum. A

ording tothe Goldstone theorem there must be a massless spinless parti
le for every spon-taneously broken global symmetry. On the other hand, there is no experimental62



eviden
e for any massless s
alar with strong or weak intera
tions. In 1964 Higgsand Englert and Brout found a way to 
ir
umvent Goldstone's theorem: The the-orem does not apply if the symmetry is a gauge symmetry as in ele
trodynami
sor the non-Abelian Yang{Mills theory. Then the Goldstone boson be
omes theheli
ity-zero part of the gauge boson, whi
h thereby a
quires a mass.But again, these new developments were applied to broken symmetries in strongintera
tions, and in 1967 Weinberg still 
onsidered the 
hiral SU(2)L � SU(2)Rsymmetry of strong intera
tions to be a gauge theory with the � and a1 mesons asgauge bosons. In the same year, however, he then applied the idea of spontaneoussymmetry breaking to the weak intera
tions of the leptons of the �rst family,(�L; eL) and eR (he did not believe in quarks!). This led to the gauge groupSU(2) � U(1), massive W and Z bosons, a massless photon and the Higgs boson!The next steps on the way to the Standard Model are well known: The proof by 't Hooftand Veltman that non-Abelian gauge theories are renormalisable and the dis
overy ofasymptoti
 freedom by Gross and Wil
zek and Politzer. Finally, it was realised that theinfrared properties of non-Abelian gauge theories lead to the 
on�nement of quarks andmassless gluons, and the generation of hadron masses. So, by 1973 \The making of theStandard Model" was 
ompleted!Sin
e 1973 many important experiments have 
on�rmed that the Standard Model isindeed the 
orre
t theory of elementary parti
les:� 1973: dis
overy of neutral 
urrents� 1979: dis
overy of the gluon� 1983: dis
overy of the W and Z bosons� 1975 - 2000: dis
overy of the third family, � , b, t and ��� During the past de
ade impressive quantitative tests have been performed of theele
troweak theory at LEP, SLC and Tevatron, and of QCD at LEP, HERA andTevatron.Today, there are also a number of \good ideas" on the market, whi
h lead beyondthe Standard Model. These in
lude grand uni�
ation, dynami
al symmetry breaking,supersymmetry and string theory. Very likely, there are again some \misunderstandings"among theorists, but we 
an soon hope for 
lari�
ations from the results of the LHC.
We would like to thank the parti
ipants of the s
hool for stimulating questions and theorganisers for arranging an enjoyable and fruitful meeting in Kitzb�uhel.63



Appendix AVe
tors, Spinors and 
-AlgebraA.1 Metri
 ConventionsOur spa
etime metri
 is mostly minus,g�� = diag(+;�;�;�) ; (A.1)so timelike ve
tors v� have positive norm v�v� > 0. The 
oordinate four-ve
tor isx� = (t; ~x) (with upper index), and derivatives with respe
t to x� are denoted by�� = ��x� = � ��t; ~r� : (A.2)Greek indi
es �; �; �; : : : run from 0 to 3, purely spatial ve
tors are indi
ated by an ve
torarrow.A.2 
-Matri
esIn four dimensions, the 
-matri
es are de�ned by their anti
ommutators,f
�; 
�g = 2g��1 ; � = 0; : : : ; 3 (A.3)In addition, 
0 = 
y0 is Hermitean while the 
i = �
yi are anti-Hermitean, and all 
�are tra
eless. The matrix form of the 
-matri
es is not �xed by the algebra, and thereare several 
ommon representations, like the Dira
 and Weyl representations, Eqs. (4.5)and (2.47), respe
tively. However, the following identities hold regardless of the repre-sentation.The produ
t of all 
-matri
es is 
5 = �
0
1
2
3 (A.4)whi
h is Hermitean, squares to one and anti
ommutes with all 
-matri
es,�
5; 
�	 = 0 : (A.5)64



The 
hiral proje
tors PL=R are de�ned asPL=R = 12 �1 � 
5� ; PLPR = PRPL = 0 ; P 2L=R = PL=R : (A.6)To evaluate Feynman diagrams like for the anomalous magneti
 moment, one oftenneeds to 
ontra
t several 
-matri
es su
h as
�
� = 4 (A.7a)
�
�
� = �2
� (A.7b)
�
�
�
� = 4g�� (A.7
)
�
�
�
�
� = �2
�
�
� et
. (A.7d)For a ve
tor v� we sometimes use the slash =v = 
�v�A.3 Dira
, Weyl and Majorana SpinorsThe solutions of the Dira
 equation in momentum spa
e are �xed by the equations�=p�m�u(i)(p) = 0 �=p +m�v(i)(p) = 0 : (A.8)Here it is 
onvenient to 
hoose the Weyl representation (2.47) of the Dira
 matri
es,
0 = � 0 1212 0 � ; 
i = � 0 �i��i 0� ; ) 
5 = ��120 12� :In this basis, the spinors u(p) and v(p) are given byus(p) =  pE12 + ~p � ~� �spE12 � ~p � ~� �s! ; vs(p) =  pE12 + ~p � ~� �s�pE12 � ~p � ~� �s! : (A.9)Here � and � are two-
omponent unit spinors. Choosing the momentum along the z-axisand e.g. � = (1; 0)T , the positive-energy spinor be
omesu+ = 0BB�pE + pz0pE � pz0 1CCA ; (A.10)whi
h has spin +12 along the z-axis. For � = (0; 1)T , the spin is reversed, and similar for� and the negative energy spinors.The spinors 
onsidered so far are 
alled Dira
 spinors: They are restri
ted only bythe Dira
 equation and have four degrees of freedom (parti
le and antiparti
le, spin upand spin down). There are two restri
ted 
lasses of spinors, Weyl and Majorana spinors,whi
h only have two degrees of freedom.Weyl or 
hiral spinors are subje
t to the 
onstraintPL L =  L or PR R =  R (A.11)65



and 
orrespond to purely left- or right-handed fermions. In the language of u's and v's,
hiral spinors 
orrespond to sums u � 
5v.Chiral spinors 
an have a kineti
 term, butno usual mass term, sin
e( L) = PL L = (PL L)y 
0 =  yLPL
0 =  LPR (A.12)and hen
e  L  L =  L PRPL| {z }=0  L = 0 : (A.13)However, there is the possibility of a Majorana mass term via the 
harge 
onjugatespinor  C:  C = C T with the 
harge 
onjugation matrix C = �
0
2 : (A.14) C is of opposite 
hirality to  , so it 
an be used to build a bilinear  C for a massterm. However, this term violates all symmetries under whi
h  is 
harged, so it is onlya

eptable for 
omplete singlets, like right-handed neutrinos.
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alar �eld, 9Lagrange density, 12Lagrange fun
tion, 6LagrangeanNon-Abelian gauge �eld, 29QCD, 29QED, 26Land�e fa
tor, 32Landau pole, 41Magneti
 moment, 32anomalous, 35one-loop 
orre
tion, 35Majorana mass, 50Mass dimension, 37Maxwell's equations, 24Mexi
an hat potential, 23Momentum operator, 10Naturalness problem, 57Noether 
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uum polarisation), 38Spin operator, 16Spinors, 14Spontaneous symmetry breaking, 48
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