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The WZNW model on PSU(1;1j2)Gerhard G�otz1, Thomas Quella2;3, Volker S
homerus1;41 Servi
e de Physique Th�eorique, CEA Sa
lay,F-91191 Gif-sur-Yvette, Fran
e2 King's College London, Department of Mathemati
s,Strand, London WC2R 2LS, United Kingdom3 KdV Institute for Mathemati
s, University of Amsterdam,Plantage Muidergra
ht 24, 1018 TV Amsterdam, The Netherlands4 DESY Theory Group, DESY Hamburg,Notkestrasse 85, D{22603 Hamburg, GermanyAbstra
tA

ording to the work of Berkovits, Vafa andWitten, the non-linear sigma modelon the supergroup PSU(1; 1j2) is the essential building blo
k for string theory onAdS3�S3�T4. Models asso
iated with a non-vanishing value of the RR 
ux 
an beobtained through a psu(1; 1j2) invariant marginal deformation of the WZNW modelon PSU(1; 1j2). We take this as a motivation to present a manifestly psu(1; 1j2)
ovariant 
onstru
tion of the model at the Wess-Zumino point, 
orresponding toa purely NSNS ba
kground 3-form 
ux. At this point the model possesses an en-han
eddpsu(1; 1j2) 
urrent algebra symmetry whose representation theory, in
ludingexpli
it 
hara
ter formulas, is developed systemati
ally in the �rst part of the paper.The spa
e of vertex operators and a free fermion representation for their 
orrelationfun
tions is our main subje
t in the se
ond part. Contrary to a widespread 
laim,bosoni
 and fermioni
 �elds are ne
essarily 
oupled to ea
h other. The intera
tion
hanges the supersymmetry transformations, with drasti
 
onsequen
es for the mul-tiplets of lo
alized normalizable states in the model. It is only this fa
t whi
h allowsus to de
ompose the full state spa
e into multiplets of the global supersymmetry.We analyze these de
ompositions systemati
ally as a preparation for a forth
omingstudy of the RR deformation.
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1 Introdu
tionString theory duals to super
onformal �eld theories in various dimensions (see [1℄ for areview) 
an be related to 2D sigma models on supergroups and 
osets (see [2, 3, 4, 5, 6, 7℄for some early referen
es). The pre
ise relation depends on the parti
ular framework, i.e.whether the models arise within the Green-S
hwarz formalism, the hybrid or the purespinor approa
h. These developments provide strong motivation to study world-sheetmodels with supermanifolds as target spa
es. This applies in parti
ular to 1+1 dimen-sional sigma models on the super
onformal group PSU(1; 1j2). In this 
ase, the hybridformalism developed by Berkovits, Vafa and Witten [4℄ furnishes a 
ovariant 
onstru
tionof string theory on AdS3�S3. The main 
onstituent of their formulation is a sigma modelon PSU(1; 1j2).1Type IIB string theory on AdS3 � S3 has one rather pe
uliar feature, namely thatthe 
onditions on ba
kground �elds imposed by the string equations of motion may besolved by both RR and/or NSNS 3-form 
uxes. Hen
e, there exists a 2-parameter familyof AdS3� S3 ba
kgrounds with an unbroken PSU(1; 1j2) symmetry. It is well known thatmodels with pure NSNS ba
kground �elds are easiest to deal with and indeed string theoryin AdS3 � S3 has been solved for su
h 
ases using the NSR formalism [13, 14℄, based onearlier work on the Eu
lidean model [15, 16, 17℄. A

ording to 
ommon folklore, however,in
orporating RR 
uxes in the NSR formulation is 
on
eptually diÆ
ult. This is wherethe hybrid approa
h 
omes in: it essentially removes the 
on
eptual issues, but 
ertainlyleaves us with the hard task of solving the non-linear sigma model on PSU(1; 1j2).Though very little is known about sigma models on superspa
es, there exist a fewinteresting results that are parti
ularly relevant in our present 
ontext. Most importantly,Bershadsky et al. [18℄ have argued that quantum theories with PSL(N jN) target spa
eare 
onformally invariant even before in
luding the familiar WZ term. Of 
ourse the lattermay then be added with any integer 
oeÆ
ient, preserving 
onformal invarian
e. Su
ha behavior 
an ultimately be tra
ed ba
k to the vanishing of the dual Coxeter numberof PSL(N jN) along with the uniqueness of the invariant rank 3 tensor. This observation�ts ni
ely with the before-mentioned parametrization of AdS3�S3 ba
kgrounds. WZNWmodels on PSU(1; 1j2) at level k des
ribe pure NSNS ba
kgrounds with N = k + 2 units1The same model has been proposed to des
ribe plateau transitions in the integer quantum Hall e�e
t[8℄ (see also [9, 10℄ for some further studies in this 
ontext). Let us note that models with superalgebrasymmetries arise quite generally when systems with disorder are treated using Efetov's supersymmetri
method [11℄ (see also [12℄ for a review). 1



of NSNS 
ux running through the 3-sphere. Varying the 
oeÆ
ient of the kineti
 relativeto the WZ term 
orresponds to adding RR 
ux, see [4℄ for a pre
ise relation between theparameters. Hen
e, the hybrid formulation o�ers a 
on
eptually very simple des
riptionof AdS3 � S3 ba
kgrounds with RR 
ux through marginal deformations of PSU(1; 1j2)WZNW models. Let us note that the parameter asso
iated with RR 
uxes is 
ontinuousin perturbative string theory sin
e the mass of D5-branes is suppressed by a fa
tor gsrelative to the mass of NS5-branes.Obviously, the 
onstru
tion of sigma models on PSU(1; 1j2) through marginal defor-mation of the WZNW theory remains a very diÆ
ult te
hni
al problem. To begin with,surprisingly little is known even about WZNW models on supergroups. As we shalldemonstrate below, models with 
urrent superalgebra symmetries behave very di�erentlyfrom their bosoni
 
ounterparts. The se
ond obsta
le arises with the RR deformationwhi
h is still te
hni
ally hard to 
ontrol sin
e it breaks many of the lo
al symmetriesof the underlying world-sheet model. In fa
t, it was shown in [18℄ that swit
hing onthe deformation redu
es the 
hiral symmetries of the 
onformal �eld theory from a fullpsu(1; 1j2) 
urrent algebra to the 
hiral algebra generated by the so-
alled Casimir �eldswhi
h is too small a symmetry to render the model solvable within a standard 
onfor-mal �eld theory analysis.2 Nevertheless, some 
onformal �eld theory te
hniques, and inparti
ular 
onformal perturbation theory, do o�er a promising approa
h to 
omputing
ertain spe
tra in the theory, even at generi
 points in the moduli spa
e. We shall 
omeba
k to this issue in a forth
oming paper.The main fo
us of this work is on the psu(1; 1j2) 
ovariant 
onstru
tion of the WZNWmodel on the PSU(1; 1j2). We exploit and extend the insights whi
h have been gainedre
ently in [20℄ where the WZNW on GL(1j1) has been re-examined using a free �eldrepresentation. In 
omparison to the earlier solution of the GL(1j1) WZNW model byRozansky and Saleur [21℄, the new approa
h linked some of the pe
uliar properties ofthe �eld theory to 
hara
teristi
 features of super-geometry. In this geometri
 
ontext, it
an be argued in parti
ular that WZNW models on supergroups give rise to examples oflogarithmi
 
onformal �eld theories (see e.g. [22, 23, 24, 25℄ and referen
es therein). Theappearan
e of logarithmi
 singularities had been observed repeatedly before in the theoryof disordered systems (see e.g. [26, 27, 28℄). Another property of the GL(1j1) WZNW2In [18℄, the misnomer \Casimir algebra" was used for the generi
 
hiral symmetry of the deformedmodels. This deviates from standard 
onventions. In fa
t, ex
ept for very spe
ial 
ases the Casimiralgebra is mu
h larger than the algebra of Casimir �elds (see [19℄ for a ni
e review).2



model that was also established in [20℄ is its symmetry with respe
t to a spe
ial spe
tral
ow automorphism of the 
urrent superalgebra. We shall en
ounter the same features inthe PSU(1; 1j2) WZNW model, though the derivation is a bit di�erent due to the non-
ompa
tness of the target spa
e. The logarithmi
 singularities turn out to a�e
t only these
tor of lo
alized normalizable states in the theory. It is a somewhat surprising out
omeof this analysis that { 
ontrary to a widespread believe, see e.g. [9℄ { the WZNW modelon PSU(1; 1j2) does not simply fa
torize into a produ
t of the usual bosoni
 subse
torand a bun
h of free fermions. Su
h a fa
torization applies only to the free �eld theorythat is used in the 
onstru
tion, but re
eives an interesting 
orre
tion due to a non-trivials
reening 
harge. The latter modi�es, in parti
ular, the transformation laws of �elds in arather non-trivial way. This fa
t be
omes 
ru
ial for a su

essful RR deformation of thetheory (see below and our forth
oming paper).We have de
ided to separate the material of this paper into two parts. The �rst
ontains a rather 
omplete dis
ussion of the representation theoreti
 foundations for boththe �nite dimensional Lie algebra psl(2j2) and its aÆne version 
psl(2j2)k. Spe
ial attentionis devoted to in�nite dimensional representation of psl(2j2). Among the main new resultsare expli
it 
hara
ter formulas for all irredu
ible representations of 
psl(2j2)k belongingto �nite dimensional representations and the in�nite dimensional dis
rete and prin
ipalseries. The se
ond part then deals with the PSU(1; 1j2) WZNWmodel. After an extendeddis
ussion of the a
tion fun
tional, we study the state spa
e �rst in the minisuperspa
eapproximation. It is shown that the Lapla
ian on PSU(1; 1j2) is non-diagonalizable, andthe stru
ture of the Jordan blo
ks is dis
ussed. In fa
t, we shall provide expli
it formulasfor all its generalized eigenfun
tions and study their transformation law wrt. the a
tionof psl(2j2). Following this dis
ussion, we explain how 
orrelators of the WZNW model onPSU(1; 1j2) 
an be 
omputed starting from 
orrelation fun
tions for the WZNW model onthe bosoni
 base. We shall also see how the non-trivial properties of the minisuperspa
etheory re-emerge in the �eld theory, giving rise to those features of the WZNW model wehave outlined in the previous paragraph. Finally, as an appli
ation of our main results, weshall address the Casimir de
omposition of the state spa
e. More pre
isely, we des
ribean algorithm that allows to 
ount all the states of the theory whi
h transform in thesame representation with respe
t to the global symmetries. These results shall serve as astarting point for a forth
oming analysis of the RR deformation.
3



Part I: Representation theory
The �rst part of this work is devoted to the representation theory of both the �nitedimensional Lie superalgebra psl(2j2) and its aÆne 
ounterpart. We shall dis
uss �niteand in�nite dimensional representations of psl(2j2) and the 
orresponding modules ofthe psl(2j2) 
urrent algebra. Some results on the �nite dimensional representations ofpsl(2j2) are fairly standard but they are in
luded for 
ompleteness (see [29, 30, 31, 32℄ formore details and referen
es). We believe that our analysis of representations of the aÆnealgebra and their 
hara
ters are new.2 Representation theory of psl(2j2)In this se
tion we shall dis
uss the Lie superalgebra psl(2j2) and its �nite and in�nitedimensional representations. The latter 
ome in two series, namely a prin
ipal 
ontinuousand a `dis
rete' series. We will not 
omment on the 
omplementary series sin
e it doesnot have any physi
al signi�
an
e in the 
ontext we are interested in.2.1 The Lie superalgebra psl(2j2)The Lie superalgebra g = psl(2j2) possesses six bosoni
 generators Kab = �Kba witha; b = 1; : : : ; 4. They form the Lie algebra so(4) whi
h is isomorphi
 to g(0) = sl(2)� sl(2).In addition, there are eight fermioni
 generators that we denote by Sa�. They split into twosets (� = 1; 2) ea
h of whi
h transform in the ve
tor representation of so(4) (a = 1; : : : ; 4)whi
h is the (1=2; 1=2) of sl(2)� sl(2). The relations of psl(2j2) are then given by[Kab; K
d℄ = i �Æa
Kbd � Æb
Kad � ÆadKb
 + ÆbdKa
�[Kab; S

℄ = i �Æa
Sb
 � Æb
Sa
�[Sa�; Sb�℄ = i2 ��� �ab
dK
d : (2.1)Here, ��� and �ab
d denote the usual 
ompletely antisymmetri
 �-symbols with �12 = 1 and�1234 = 1, respe
tively. An invariant metri
 is given byhKab; K
di = ��ab
d hSa�; Sb�i = ���� Æab : (2.2)4



It is unique up to a s
alar fa
tor. The signs have been 
hosen in view of the real formpsu(1; 1j2) whi
h will be 
onsidered below. In order to de�ne a root spa
e de
ompositionof psl(2j2) we split the fermions g(1) into two sets of four generatorsg(1)+ = spanfSa1g ; g(1)� = spanfSa2g :As indi
ated by the subs
ripts �, we shall think of the fermioni
 generators Sa1 as anni-hilation operators and of Sa2 as 
reation operators.In our dis
ussion below we shall also employ a se
ond basis whi
h 
learly exhibits thesl(2)� sl(2) stru
ture of the bosoni
 subalgebra. The two Cartan generators of this newbasis are given byK01 = 12�K12 +K34� K02 = 12�K12 �K34� : (2.3)These are supplemented by the bosoni
 raising and lowering operators of the formK�1 = 12�K14 +K23 � iK24 � iK13�K�2 = 12��K14 +K23 � iK24 � iK13� : (2.4)The elements K�� either 
ommute with K01 ; K02 or shift the 
orresponding eigenvalue by�1. Finally there are four fermioni
 raising and four fermioni
 lowering operators (�=1,2)S�1� = S1� � iS2� S�2� = S3� � iS4� ; (2.5)whi
h raise/lower the eigenvalues of K01 ; K02 by �1=2. A 
omplete set of relations betweenthe new generators of the Lie algebra psl(2j2) 
an be read o� from (3.1){(3.10) below.2.2 Ka
 modules and their 
hara
tersIn the present 
ase the bosoni
 subalgebra g(0) 
onsists of two 
ommuting 
opies of sl(2).The Ka
 modules [33℄ of psl(2j2) are then labelled by pairs (�; �) of representations �; �of sl(2). By 
onstru
tion, we de
lare that the 
orresponding representation spa
e V(�;�)is annihilated by Sa1 and then generate the Ka
 module [�; �℄ through appli
ation of theraising operators Sa2 ,[�; �℄ := Indgg(0)� g(1)+ V(�;�) = U(g)
g(0)� g(1)+ V(�;�) :5



Here, we have extended the g(0)-module V(�;�) to a representation of g(0) � g(1)+ by settingSa1V(�;�) = 0. Note that we 
an apply at most four fermioni
 generators to the states inV(�;�). When 
hoosing the labels �; � we silently agreed to identify the Cartan subalgebraof psl(2j2) with that of its maximal bosoni
 subalgebra.To ea
h of these Ka
 modules we 
an asso
iate a super
hara
ter a

ording to thestandard pres
ription3�[�;�℄(z1; z2) = strhzK011 zK022 i = trh(�1)F zK011 zK022 i = ��(z1)��(z2)�F (z1; z2) : (2.6)It en
odes the 
omplete information about the weight 
ontent but not how the ve
torsare linked internally. The symbols �� and �� denote sl(2)-
hara
ters while the last fa
tor�F stems from the 
ontribution of the fermioni
 generators and is independent of the
hoi
e of � and �. For the de�nition of the super
hara
ters we will always assume thatthe ground states, i.e. the states in the representation V(�;�) we started with, are bosoni
.In order to determine the fermioni
 term �F in the 
hara
ters (2.6) we re
all that thefermioni
 raising operators transform in the representation (1=2; 1=2) of sl(2)� sl(2) whileprodu
ts of more than one generator transform in antisymmetrized produ
ts thereof. Thisimplies that the fermioni
 
ontribution to Ka
 modules has the bosoni
 
ontent4VF = 2(0; 0)� 2(1=2; 1=2)� (1; 0)� (0; 1) : (2.7)From this we read o� immediately that�F (z1; z2) = 4 + z1 + z�11 + z2 + z�12 � 2(z 121 + z� 121 )(z 122 + z� 122 ) : (2.8)We introdu
ed a spe
ial symbol for this representation sin
e it will appear frequentlythroughout the text. Note that �F = �[0;0℄ 
oin
ides with the 
hara
ter of the Ka
module generated from the trivial representation.Obviously, the bosoni
 
ontributions to the 
hara
ters will strongly depend on thelabels � and �. In view of our appli
ations to the Lie supergroup PSL(2j2) we are in fa
tprimarily interested in representations for whi
h � = j2 = 0; 1=2; 1; : : : ; labels the �nitedimensional irredu
ible representations of sl(2) so that��(z2) = �j2(z2) = j2Xl=�j2 zl2 : (2.9)3We wish to emphasize that 
hara
ters and super
hara
ters are related by the substitution z1=2 !�z1=2. Hen
e, they both en
ode pre
isely the same information. Some of the formulas below possess amore natural interpretation in terms of super
hara
ters though.4Here and in the following the phrase \bosoni
 
ontent" refers to the de
omposition of a Lie superal-gebra module with respe
t to the maximal bosoni
 subalgebra.6



The �rst label �, on the other hand, will be allowed to run through three di�erent seriesof representations.Finite dimensional representations of psl(2j2) are obtained when we set � = j1 =0; 1=2; 1; : : : . In this 
ase, the 
ontribution to the 
hara
ters (2.6) is given by ��(z1) =�j1(z1) as de�ned in (2.9). Even though su
h representations are not asso
iated to unitaryrepresentations of su(1; 1) � su(2) unless j1 = j2 = 0, �nite dimensional representationsplay an important role, in parti
ular for the boundary WZNW model.Our se
ond series of psl(2j2) representations is aÆliated with the two dis
rete seriesof su(1; 1). In this 
ase, the label is � = (�; j1) with j1 < 0 any negative real number.5With our 
hoi
e of j1 and of the inde�nite metri
 (2.2), the value of the Casimir elementin (�; j1) is given by �j1(j1 + 1). By de�nition, the representations (+; j1) and (�; j1)have a lowest/highest weight with K01 eigenvalues �j1 > 0 and j1 < 0, respe
tively. The
orresponding 
hara
ters are given by�(�;j1)(z1) = 1Xn=0 z�j1�n1 = z�j111� z�11 : (2.10)In the last two lines the geometri
 series expression is valid for jz1j < 1 and jz1j > 1,respe
tively. Let us emphasize again that, in our 
onventions, the representations (+; j1)are a
tually labelled by a negative real number j1 although their lowest weight has apositive weight �j1.The last set of representations we need 
omes with the prin
ipal 
ontinuous seriesof su(1; 1). We label su
h representations by tupels � = (j1; �) where 0 � � < 1 andj1 2 S = �1=2 + iR. Representations in the prin
ipal 
ontinuous series have neitherhighest nor lowest weight states. Eigenvalues of the Cartan element K01 take values on� + Z. Hen
e the 
hara
ters of the third series read�(j1;�)(z1) = Xn2Zz�+n1 : (2.11)Note that these 
hara
ters do not depend on the spin j1. Yet, the latter determines thevalue �j1(j1 + 1) of the quadrati
 Casimir.The importan
e of Ka
 modules stems from the fa
t that they are irredu
ible forgeneri
 values of the labels � and �. Nevertheless, for spe
ial atypi
al 
hoi
es of (�; �), non-trivial invariant subspa
es exist. A 
lose inspe
tion of the a
tion of fermioni
 generators on5 Our notation seems to deviate from the standard one but it appears to be 
loser to the a
tual
onstru
tion of the modules and hen
e the formulas we en
ounter will be easier.7



Ka
 modules reveals that, starting with a bosoni
 highest or lowest weight representation,there is just one single atypi
ality 
ondition whi
h may be written in the form60 = (j2 � j1)(j1 + j2 + 1) = �j1(j1 + 1) + j2(j2 + 1) = C2(j1; j2) ; (2.12)i.e. the Ka
 module [�; �℄ possesses a non-trivial invariant submodule if and only if thequadrati
 Casimir of the bosoni
 subalgebra vanishes on the multiplet (�; �) from whi
hthe Ka
 module is generated. For �nite dimensional representations this happens when-ever j1 = j2. Similarly, the Ka
 modules �(�; j1); j2� 
ease to be irredu
ible if and only ifj1 = �j2 � 1. In the following we shall study the atypi
al 
ases in mu
h more detail.In 
ase of the prin
ipal 
ontinuous series, �nally, the atypi
ally 
ondition (2.12) doesnot apply. But sin
e the value of the quadrati
 Casimir is dire
tly determined by the labelof the bosoni
 highest weight multiplet and identi
al on the whole representation generatedfrom it we 
an give a ne
essary 
ondition for the de
oupling of a bosoni
 subrepresentation�(j 01; �0); j 02� of the Ka
 module �(j1; �); j2�: The eigenvalues of the Casimir operatorhave to agree. A 
areful analysis of this 
ondition in
luding the dis
ussion of possiblede
omposition series then shows that the Ka
 modules �(j1; �); j2� are always irredu
ible.2.3 Finite dimensional atypi
al representationsAs des
ribed in the previous subse
tion, �nite dimensional Ka
 modules of psl(2j2) arelabelled by pairs [j1; j2℄ with ji = 0; 1=2; 1; : : : . A Ka
 module [j1; j2℄ is irredu
ible when-ever j1 6= j2. In 
ase j1 = j2, however, Ka
 modules turn out to be inde
omposable
omposites of smaller irredu
ible building blo
ks (short multiplets). We shall des
ribe thelatter in the next paragraph before dis
ussing the new 
lass of so-
alled proje
tive 
overs.These are maximal inde
omposable 
omposites of short multiplets. In some sense that weshall make more pre
ise below, the proje
tive 
overs should be 
onsidered as the naturalrepla
ement of Ka
 modules in 
ase we are dealing with atypi
al representations.2.3.1 Atypi
al Ka
 modules and irredu
ible representationsAs we have mentioned several times, the Ka
 modules [j; j℄ 
ontain non-trivial invariantsubspa
es. For j � 1 the stru
ture of the Ka
 module 
an be en
oded in the following
hain [j; j℄ : [j℄ ! [j + 12 ℄� [j � 12 ℄ ! [j℄ ; (2.13)6This 
onditions arises if one tries to return from the state S12S22S32S42 jj1; j2i on the fourth fermionlevel to the original highest weight state jj1; j2i. 8



where [j℄ denote irredu
ible atypi
al representations (short multiplets) of psl(2j2). Thestru
ture of the redu
ible Ka
 modules 
an also be depi
ted by a planar diagram in whi
hthe verti
al dire
tion refers to the spin j of the atypi
al 
onstituents,[j; j℄ : [j + 12 ℄
%%KK

KK[j℄
$$HH

HH

::vvvv [j℄ :[j � 12 ℄ 99ssss

(2.14)
Sin
e pi
tures of this type will appear frequently throughout this text, let us pause herefor a moment and explain 
arefully how to de
ode their information. We read the diagram(2.13) from right to left. The rightmost entry in our 
hain 
ontains the so-
alled so
leof the inde
omposable representation, i.e. the largest fully redu
ible invariant submodulewe 
an �nd. In the 
ase of our Ka
 module, the so
le happens to be irredu
ible and it isgiven by the atypi
al representation [j℄. If we divide the Ka
 module by the submodule[j℄, we obtain a new inde
omposable representation of our Lie superalgebra. Its diagramis obtained from the one above by removing the last entry and all arrows 
onne
ted to it.The so
le of this quotient is a dire
t sum of the two atypi
al representations [j�1=2℄. It israther obvious how to iterate this pro
edure until the entire inde
omposable representationis split up into 
oors with only dire
t sums of irredu
ible representations appearing onea
h 
oor.There are two spe
ial 
ases for whi
h the de
omposition of the Ka
 module does notfollow the generi
 pattern as des
ribed in eq. (2.13). These are the 
ases j = 0 andj = 1=2, [0; 0℄ : [0℄ ! [ 12 ℄! [0℄ ; (2.15)[ 12 ; 12 ℄ : [ 12 ℄ ! [1℄ ! [0℄� [0℄ ! [ 12 ℄ : (2.16)The irredu
ible 
onstituents [0℄ and [1=2℄ are the trivial one-dimensional representationand the 14-dimensional adjoint representation of psl(2j2).The super
hara
ters of short multiplets 
an be dedu
ed from those of the 
orrespond-ing Ka
 modules and the 
omposition patterns (2.13), (2.15) and (2.16). They possessthe form�[j℄(z1; z2) = 2�j(z1)�j(z2)� �j+ 12 (z1)�j� 12 (z2)� �j� 12 (z1)�j+ 12 (z2) (2.17)9



for all j > 0. We would like to stress that these super
hara
ters do not 
ontain thefermioni
 fa
tor �F that appears in all super
hara
ters of typi
al irredu
ible representa-tions.2.3.2 Proje
tive 
overs of [j℄In the previous subse
tion we have seen the �rst examples of representations whi
h arebuilt out of several short multiplets. Ka
 modules are only one example of su
h 
ompositesand we shall indeed need another 
lass of inde
omposables as we pro
eed, the so-
alledproje
tive 
overs Pj. By de�nition, these are the largest inde
omposables whose so
le
onsists of a single atypi
al representation [j℄. General results imply that su
h a maximalinde
omposable extension of [j℄ exists and is unique [29℄. In 
ase of j � 3=2, the stru
tureof Pj is en
oded in the following diagramPj : [j℄ �! 2[j + 12 ℄� 2[j � 12 ℄ �! [j + 1℄� 4[j℄� [j � 1℄ �! (2.18)�! 2[j + 12 ℄� 2[j � 12 ℄ �! [j℄ :Note that Pj 
ontains an entire Ka
 module as a proper submodule. In this sense, theKa
 modules are extendable. We also observe one rather generi
 feature of proje
tive
overs: they are built up from di�erent Ka
 modules in a way that resembles the patternin whi
h Ka
 modules are 
onstru
ted out of irredu
ibles (see eq. (2.13)).7 One may seethis even more 
learly if Pj is displayed as a 2-dimensional diagram in whi
h the additionaldire
tion keeps tra
k of the spin j of the atypi
al 
onstituents [j℄,Pj : [j + 1℄
((PPPP2[j + 1=2℄

((PPPPPP

77nnnn 2[j + 1=2℄
&&NN

NN
N[j℄

&&MMMMM

88qqqqq 4[j℄ 77nnnnnn

((PPPPPP [j℄ :2[j � 1=2℄ 77nnnnnn

((PPPP
2[j � 1=2℄ 88ppppp[j � 1℄ 77nnnn

(2.19)
We will 
ontinue to swit
h between su
h planar pi
tures and diagrams of the form (2.18).The remaining 
ases j = 0; 1=2; 1 have to be listed separately. When j = 1 the pi
ture isvery similar only that we have to insert 2[0℄ in pla
e of [j � 1℄,P1 : [1℄ �! 2[ 32 ℄� 2[ 12 ℄ �! [2℄� 4[1℄� 2[0℄ �! 2[ 32 ℄� 2[ 12 ℄ �! [1℄ : (2.20)7In mathemati
s this statement is known as a generalization of the BGG duality theorem [29℄.10



The proje
tive 
over of the atypi
al representation [1=2℄ is obtained from the generi
 
aseby the formal substitution 2[j � 1=2℄! 3[0℄,P 12 : [ 12 ℄ �! 2[1℄� 3[0℄ �! [ 32 ℄� 4[ 12 ℄ �! 2[1℄� 3[0℄ �! [ 12 ℄ : (2.21)Finally, the proje
tive 
over P0 of the trivial representation is given by,P0 : [0℄ �! 3[ 12 ℄ �! 2[1℄� 6[0℄ �! 3[ 12 ℄ �! [0℄ : (2.22)The reader is invited to 
onvert the last three formulas into planar pi
tures.This 
on
ludes our list of the proje
tive 
overs of �nite dimensional representations.The representations Pj appear in the operator produ
ts of 
ertain open string vertexoperators in the WZNW model, when we 
onsider boundary 
onditions 
orresponding toa point-like brane. Together, typi
al representations and the proje
tive 
overs of atypi
alsform the subset of so-
alled proje
tive representations. What makes this 
lass parti
ularlyinteresting is its behavior under tensor produ
ts. In fa
t, it is well-known that proje
tiverepresentations of a Lie superalgebra form an ideal in the fusion ring. This means thatthe produ
t of a proje
tive representation with any other representation, no matter how
ompli
ated it is, 
an be de
omposed into proje
tives. We shall later see that this propertyof proje
tive representations (along with the fa
t that they are easy to list) has invaluable
onsequen
es.It is moreover relevant to observe that, unlike for the atypi
als themselves, the 
har-a
ters of their proje
tive 
overs 
ontain the full fermioni
 
hara
ter �F as a fa
tor. To bepre
ise one has�Pj = h2�j(z1)�j(z2)� �j+ 12 (z1)�j+ 12 (z2)� �jj� 12 j(z1)�jj� 12 j(z2)i�F (z1; z2) : (2.23)This property puts proje
tive 
overs on an equal footing with typi
al irredu
ibles. Even-tually, it will even allow us to 
ome up with a version of the familiar Ra
ah-Speiser al-gorithm whi
h holds for proje
tive representations of Lie superalgebras. We refer readersinterested in further details to se
tion 7.1 below.2.4 In�nite dimensional atypi
al representationsLet us now turn to the theory of in�nite dimensional atypi
al representations of psl(2j2).As we have remarked before, atypi
als appear only in the dis
rete series and if the labels(�; �) = �(�; j1); j2� satisfy the 
ondition j1 + j2 + 1 = 0. The plan of this subse
tion11



follows the same logi
 as our dis
ussion of �nite dimensional atypi
als, i.e. we shall studyatypi
al Ka
 modules and irredu
ibles �rst and then turn to the proje
tive 
overs. Butsin
e some of the results below seem to be less known, we will be a bit more detailedabout their derivation.2.4.1 Atypi
al Ka
 modules and irredu
ible representationsKa
 modules of the form �(�;�j � 1); j� fail to be irredu
ible. In order to understandthe stru
ture of the resulting Ka
 modules let us �rst have a look at the bosoni
 
ontentof typi
al representations,�(�;�j � 1); j���sl(2)�sl(2) = �(�;�j � 1); j�
 VF ; (2.24)where VF denotes the fermioni
 
ontributions as spe
i�ed in (2.7). This tensor produ
t
an be evaluated using the familiar rules for sl(2) and the additional formula(�;�j � 1)
 k = �j�1+kMl=�j�1�k (�; l) ; (2.25)whi
h holds as long as j � 0 and k � j, or more generally as long as the sum on the righthand side does not 
ontain 
ontributions with non-negative half-integer or integer l. It isstraightforward to see that in �(�;�j�1); j� the bosoni
 representations �(�;�j�1); j�,�(�;�j � 12); j � 12� and �(�;�j � 32); j + 12� de
ouple. After dividing out the indu
edinvariant submodules we are left with the irredu
ible representation [j℄� whose bosoni

ontent reads[j℄���sl(2)�sl(2) = 2�(�;�j � 1); j�� �(�;�j � 32); j � 12�� �(�;�j � 12); j + 12� (2.26)for j 6= 0. We also infer that the stru
ture of the degenerate Ka
 modules is des
ribed bythe 
omposition series�(�;�j � 1); j� : [j℄� ! [j + 12 ℄� � [j � 12 ℄� ! [j℄� : (2.27)Again, we assumed that j 6= 0. Formally this formula is identi
al to the one whi
h isobtained for �nite dimensional representations [32℄.So far we have avoided to investigate the spe
ial 
ase j = 0. The 
hara
ters of the irre-du
ible representations [0℄� are easily obtained from the above sin
e these representationsarise as building blo
ks of the Ka
 modules �(�;�3=2); 1=2�,[0℄���sl(2)�sl(2) = 2�(�;�1); 0�� �(�;�1=2); 1=2� : (2.28)12



Con
erning the stru
ture of the spe
ial Ka
 modules �(�;�1); 0� we note that theirbosoni
 
ontent is given by�(�;�1); 0���sl(2)�sl(2) = 2�(�;�1); 0�� 2�(�;�3=2); 1=2�� 2�(�;�1=2); 1=2��R((�;�1);0) � �(�;�2); 0�� �(�;�1); 1� : (2.29)Let us stress that it 
ontains an inde
omposable bosoni
 representation R((�;�1);0) whi
hhas the de
omposition seriesR((�;�1);0) : �(�;�1); 0�! (0; 0)! �(�;�1); 0� : (2.30)The stru
ture of the Ka
 module may be summarized in the de
omposition series�(�;�1); 0� : [0℄� ! [0℄� [1=2℄� ! [0℄� : (2.31)It is interesting to �nd a �nite dimensional representation in the de
omposition serieseven though we started with an in�nite dimensional representation.For later appli
ations we shall draw an important 
on
lusion from the de
ompositionformulas (2.27) and (2.31) of Ka
 modules. Note that they allow us to express thesuper
hara
ter of the atypi
al trivial representation [0℄ formally as in in�nite sum oversuper
hara
ters of Ka
 modules,8�[0℄(z1; z2) = 1Xn=0 (n+ 1)�[(�;�n=2�1);n=2℄(z1; z2) : (2.32)Indeed, one 
an show by straightforward dire
t 
omputation that the terms on the righthand side sum up to �[0℄ = 1. If the super
hara
ters of the Ka
 modules are de
omposedinto a sum of bosoni
 
hara
ters as en
oded in formulas (2.27) and (2.31), then all butthe 
ontribution from the trivial representation 
an
el ea
h other.2.4.2 Proje
tive 
overs of [j℄�In 
ase of �nite dimensional representations, the proje
tive 
overs are built up from Ka
modules and there exists a rather simple rule to determine the number of Ka
 modulesof any type within a given proje
tive 
over [29℄. If we extrapolate this rule to our present8We have �rst learned this tri
k and its generalization to aÆne super
hara
ters from Hubert Saleur[34℄, see also [35℄ for a very simple version thereof.
13



setup, we arrive at the following 
omposition series for the proje
tive 
overs of the dis
reterepresentationsP�j : [j℄� �! 2[j + 12 ℄� � 2[j � 12 ℄� �! [j + 1℄� � 4[j℄� � [j � 1℄��! 2[j + 12 ℄� � 2[j � 12 ℄� �! [j℄�for j � 1. The same expression may be used for j = 1=2 if we formally repla
e [� 12 ℄�by the trivial representation [0℄. The stru
ture of the proje
tive 
overs of [0℄� does notfollow the generi
 pattern. Instead it is given byP�0 : [0℄� �! [0℄� 2[ 12 ℄� �! 3[0℄� � [1℄� �! [0℄� 2[ 12 ℄� �! [0℄� :Needless to stress that the 
hara
ters of these proje
tive 
overs 
ontain the fa
tor �F asin the �nite dimensional 
ase.

14



3 Representation theory of the aÆne superalgebraIrredu
ible representations of the aÆne psl(2j2) superalgebra 
an be built over all theirredu
ible representations of the psl(2j2) algebra that we dis
ussed above. The latter
an be either �nite or in�nite dimensional. We shall address the in�nite dimensional ones�rst and then turn to the �nite dimensional representations in the se
ond subse
tion.3.1 The aÆne psl(2j2) algebra and spe
tral 
owsHere we display the de�nition of the 
urrent algebra 
psl(2j2)k �rst. In terms of raisingand lowering operators (2.3){(2.5) it may be written as[K01;m; K�1;n℄ = �K�1;m+n [K02;m; K�2;n℄ = �K�2;m+n (3.1)[K01;m; S�1�;n℄ = �12 S�1�;m+n [K01;m; S�2�;n℄ = �12 S�2�;m+n (3.2)[K02;m; S�1�;n℄ = �12 S�1�;m+n [K02;m; S�2�;n℄ = �12 S�2�;m+n (3.3)fS�1�;m; S�2�;ng = �2���K�1;m+n fS�1�;m; S�2�;ng = �2��� K�2;m+n (3.4)[K�1;m; S�1�;n℄ = �S�2�;m+n [K�1;m; S�2�;n℄ = �S�1�;m+n (3.5)[K�2;m; S�1�;n℄ = �S�2�;m+n [K�2;m; S�2�;n℄ = �S�1�;m+n : (3.6)In addition, there are six relations involving the level k of the psl(2j2) 
urrent algebra.These read as follows,[K01;m; K01;n℄ = �k2 mÆm+n;0 [K02;m; K02;n℄ = k2 mÆm+n;0 (3.7)[K+1;m; K�1;n℄ = 2K01;m+n �mk Æm+n;0 [K+2;m; K�2;n℄ = 2K02;m+n +mk Æm+n;0 (3.8)fS+1�;m; S�1�;ng = 2����K01;m+n �K02;m+n�� 2mk ��� Æm+n;0 (3.9)fS+2�;m; S�2�;ng = 2����K01;m+n +K02;m+n�� 2mk ��� Æm+n;0 : (3.10)The algebra de�ned by eqs. (3.1){(3.10) possesses a two-parameter family 
(w1;w2) ofautomorphisms. It is indu
ed from the following two-parameter family of automorphismsfor the bosoni
 subalgebra bsl(2)�k � bsl(2)k
(w1;w2)(K01;n) = K01;n � k2 w1 Æn0 
(w1;w2)(K�1;n) = K�1;n�w1 (3.11)
(w1;w2)(K02;n) = K02;n + k2 w2 Æn0 
(w1;w2)(K�2;n) = K�2;n�w2 : (3.12)15



One may easily 
he
k that these maps extend to the whole algebra 
psl(2j2)k through
(w1;w2)(S�1�;n) = S�1�;n�w1+w22 
(w1;w2)(S�2�;n) = S�2�;n�w1�w22 : (3.13)Appli
ation of these automorphisms maps representations of the 
urrent algebra onto ea
hother. They therefore play a 
ru
ial role in the representations theory of 
psl(2j2)k.3.1.1 Free �eld 
onstru
tion of the aÆne algebraFollowing [36, 4℄ we 
an 
onstru
t 
psl(2j2)k out of four pairs of fermions pa (of weighth = 1) and �a (with h = 0) whi
h satisfypa(z) �b(w) = Æabz � w : (3.14)and the aÆne sl(2)�k�2 � sl(2)k�2 algebra that is generated by 
urrents jab with thefollowing operator produ
t expansionjab(z) j
d(w) = �k �ab
d + 2(Æa
Æbd � ÆadÆb
)(z � w)2 + i�Æa
jbd � Æadjb
 � Æb
jad + Æbdja
�z � w :(3.15)Based on this stru
ture we now obtain the 
psl(2j2)k algebra viaKab = jab � i��apb � �bpa� ; Sa2 = paSa1 = k ��a + i2 �ab
d ��bj
d � i�b�
pd� : (3.16)It is straightforward to show that the �elds K and Sa� obey the 
orre
t relations followingfrom eqs. (2.1) and (2.2).One of the main ingredients in the representation theory of 
psl(2j2)k are the spe
tral
ow automorphisms whi
h have been de�ned in eqs. (3.11)-(3.13). We would like to showthat the spe
tral 
ows of the full aÆne Lie superalgebra are inherited from those whi
hmay be de�ned for sl(2)�k�2�sl(2)k�2 and the fermions pa and �a. For the bosoni
 
urrentalgebra we have the standard transformations
(w1;w2)(J01;n) = J01;n � k + 22 w1 Æn0 
(w1;w2)(J�1;n) = J�1;n�w1 (3.17)
(w1;w2)(J02;n) = J02;n + k � 22 w2 Æn0 
(w1;w2)(J�2;n) = J�2;n�w2 : (3.18)In view of the s
hemati
 stru
ture K = J + (p�) of the 
urrents appearing in the fullsuperalgebra we also need to implement a non-trivial transformation on the fermions. A16



suitable basis is p�1 = p1 � ip2 = S�12 p�2 = p3 � ip4 = S�22 (3.19)��1 = �1 � i�2 ��2 = �3 � i�4 : (3.20)Starting from the de�ning relation �pam; �bn	 = ÆabÆm+n;0 there remain the following non-vanishing anti-
ommutators�p�1;m; ��1;n	 = 2Æm+n;0 �p�2;m; ��2;n	 = 2Æm+n;0 : (3.21)Employing (3.11) and (3.13), a natural and 
onsistent 
andidate for the spe
tral 
ow onthe fermions is
(w1;w2)(p�1;n) = p�1;n�w1+w22 
(w1;w2)(p�2;n) = p�2;n�w1�w22 (3.22)
(w1;w2)(��1;n) = ��1;n�w1+w22 
(w1;w2)(��2;n) = ��2;n�w1�w22 : (3.23)One 
an easily 
he
k that this transformation leaves (3.21) invariant. The 
onsisten
y ofthe a
tion of 
(w1;w2) on jab and the fermions p and � with the spe
tral 
ow on K�1;n, K�1;n,K01;m and K02;m given in (3.11) and (3.12) 
an be veri�ed by expressing the latter in termsof the (p�; ��)-basis and taking 
are about normal ordering.3.2 Typi
al representations and their super
hara
tersIn the following we shall be 
on
erned with the various representations of the aÆne algebra
psl(2j2)k. Without further mentioning we shall always assume that the level k is an integerk � 3. The standard representations are obtained by a
ting with generators of negativemode number n on ground states whi
h 
an transform in the various representations of thezero mode algebra psl(2j2). Hen
e, generi
 representations [�; �℄^ of the 
urrent algebraare labelled by the same pairs of sl(2) representation labels �; � as the modules [�; �℄ ofpsl(2j2), with some additional k-dependent trun
ations on the possible range of the spinlabels.As before we take the se
ond label � = j2 = 0; 1=2; 1; : : : to be a half-integer. Weshall also require that j2 � k=2� 1. As for the �rst label, there are again three di�erentseries 
orresponding to � = (�; j1) (for �12 > j1 > �k+12 ) or � = (j1; �) (for j1 2 S =�12 + iR) for representations with an in�nite number of ground states and to � = j1 =17



0; 1=2; 1; k=2+ 1 when the number of ground states is �nite. In terms of these labels, theground states of the asso
iated representations possess 
onformal dimension9h[(�;j1);j2℄ = ��j1(j1 + 1) + j2(j2 + 1)�=k :Our aim is to des
ribe the singular ve
tors in the Verma modules and to provide theasso
iated formulas for the super
hara
ters�R(q; z1; z2) := strR � qL0� 
24 zK011 zK022 �of irredu
ible representations sin
e these are the basi
 building blo
ks of any type ofrepresentation. We de�ne typi
al representations to be those whi
h result from Vermamodules in whi
h all the singular ve
tors are inherited from the bosoni
 subalgebra. As a
onsequen
e, these typi
al representations have a very ni
e representation in terms of thefree �eld 
onstru
tion (3.16). In order to 
larify this statement we re
all that the pairsof fermions have a unique representation F if we restri
t ourselves to integer moding.10Given any irredu
ible representation V(�;�) of bsl(2)�k�2 � bsl(2)k�2 we may then de�ne ana
tion of 
psl(2j2)k on the generalized Fo
k moduleV[�;�℄ = V(�;�) 
F (3.24)using the free fermion realization. Our terminology ensures that this representation isirredu
ible if and only if it is typi
al. This follows from the analysis of the Ka
-Kazhdandeterminant, see appendix A. Hen
e, the super
hara
ter of an irredu
ible typi
al repre-sentation takes the form�[�;�℄(q; z1; z2) = 1�4(q) Ya;b=�1 #1(za=21 zb=22 ; q) ��k�2� (q; z1) �k�2� (q; z2) (3.25)where #1(y; q) = �iy1=2q1=8 1Yn=1 (1� qn)(1� yqn)(1� y�1qn�1) : (3.26)The �rst fa
tors #1=� in the 
hara
ter (3.25) arise from the four pairs of fermioni
 �eldspa and �a in the free �eld 
onstru
tion.Atypi
al Ka
 modules are obtained when j1�j2 = nk or j1+j2+1 = nk for some n 2 Zand they possess additional singular ve
tors resulting from the appli
ation of fermioni
9 We will omit the hat in aÆne representations if this interpretation is 
lear from the 
ontext.10With non-integer moding global supersymmetry 
annot be realized in the WZNW model we areaiming at. 18



generators, see appendix A. Given the physi
al k-dependent bounds on the spins it iseasy to see that the only atypi
ality 
onditions whi
h apply are j1 = j2 and j1+j2+1 = 0,just as in the zero mode se
tor. Hen
e all the aÆne submodules originate from singularve
tors on the level of the ground states. The 
orresponding irredu
ible representationsof 
psl(2j2)k are denoted by [j℄^ and [j℄�̂, respe
tively. In the following we shall presentexpli
it formulas for the super
hara
ters of all these representations.3.3 Representations with an in�nite number of ground statesTo begin with we shall present formulas for the super
hara
ters of the dis
rete and prin-
ipal 
ontinuous series representations of the aÆne algebra 
psl(2j2)k. In the former seriesspe
ial attention will be paid to the atypi
al 
ases. In this se
tor the 
hara
ters may beexpressed in terms of in�nite sums of 
hara
ters of typi
al representations, see [35℄ for the�rst formula of this type in the 
ontext of gl(1j1) and unpublished work of Hubert Saleur[34℄ for a more elaborate appli
ation.3.3.1 Typi
al dis
rete series representationsPhysi
ally relevant typi
al representations of the dis
rete series are labelled by j1 and j2with j1+j2+1 6= 0 and j1 < �1=2. We shall also keep our restri
tion to values j1 � �(k+1)=2. Furthermore, j2 are 
ertainly taken from the usual set j2 = 0; 1=2; 1; : : : ; k=2 � 1.The 
hara
ters of the 
orresponding representations of 
psl(2j2)k read,�[(�;j1);j2℄(q; z1; z2) = 1�4(q) Y�;�=� #1(z�=21 z�=22 ; q) ��k�2(�;j1)(q; z1) �k�2j2 (q; z2) (3.27)where j1 + j2 + 1 6= 0. Let us re
all that the relevant bsl(2) 
hara
ters are given by��k�2(�;j1)(q; z1) = �iq� (j1+1=2)2k z�(j1+1=2)1 #1(q; z1)�1 (3.28)�k�2j2 (q; z2) = iq (j2+1=2)2k zj2+1=22 #1(q; z2)�1 	kj2(q; z2) (3.29)where 	kj2(q; z2) = Xa2Z qka2+2a(j2+1=2) �zak2 � z�ak�2(j2+1=2)2 � : (3.30)We amend eq. (3.28) by the pres
ription to expand the fun
tion # in powers of z1 for thepositive sign and in powers of 1=z1 for the negative sign. Similarly, an expansion in 1=z2is to be used in equation (3.29). In the following we shall use the symbol �(�; j1); j2�^ forthese irredu
ible representations of the aÆne algebra 
psl(2j2)k.19



3.3.2 Atypi
al dis
rete series representationsNothing keeps us from evaluating the 
hara
ters we introdu
ed in the previous subse
tionat the spe
ial points where j1 + j2 + 1 = 0. At these points, the Verma modules over therepresentations �(�;�j� 1); j� develop new fermioni
 singular ve
tors. The latter are allto be found among the ground states so that the 
omposition of the atypi
al module fromirredu
ibles is identi
al to the one for the 
orresponding Ka
 modules of the horizontalsubalgebra psl(2j2). For the 
hara
ters this implies�[(�;j+1);j℄(q; z1; z2) = 2�[j℄�(q; z1; z2)� �[j+1=2℄�(q; z1; z2)� �[j�1=2℄�(q; z1; z2)�[(�;1);0℄(q; z1; z2) = 2�[0℄�(q; z1; z2)� �[1=2℄�(q; z1; z2)� �[0℄(q; z1; z2) : (3.31)Note that the 
hara
ter �[0℄ that appears in the last line is the 
hara
ter of the va
uumrepresentation. The formulas (3.31) 
an be used to solve for the 
hara
ters of atypi
alrepresentations from the dis
rete series. In fa
t, formula (2.32) suggests that�[j℄�(q; z1; z2) = � 1Xn=0 (n+ 1)�[(�;�(j+3=2+n=2));j+1=2+n=2℄(q; z1; z2)= � 1�4(q)#1(q; z1)#1(q; z2) Y�;�=� #1(z�=21 z�=22 ; q)	�j (q; z1; z2) (3.32)with 	�j (q; z1; z2) = Xa2Z qka2+2a(j+1)  z�j�11 zak+j+12(1� qaz�1=21 z1=22 )2 � z�j�11 z�ak�(j+1)2(1� qaz�1=21 z�1=22 )2! :One may 
he
k that these 
hara
ters indeed obey the relations (3.31). In view of theequation (2.32) we 
an also formally use the previous formula for the value j = �1=2 todetermine the va
uum 
hara
ter of the psl(2j2) 
urrent algebra�[0℄(q; z1; z2) = � 1�4(q)#1(q; z1)#1(q; z2) Y�;�=� #1(z�=21 z�=22 ; q)	0(q; z1; z2) (3.33)with 	0 = Xa2Z qka2+az�1=21  zak+1=22(1� qaz�1=21 z1=22 )2 � z�ak�1=22(1� qaz�1=21 z�1=22 )2! :This should be 
onsidered as an expansion in 1=z1 and 1=z2. Note that 	0 = 	+�1=2 =	��1=2. The fun
tions 	 
an be expressed as a derivative of higher level Appell fun
tions[37℄, as in the 
ase of sl(2j1) [38℄. For an expli
it evaluation we pro
eed as follows: We�rst divide the sum over a 2 Z in two domains, a � 0 and a < 0. For a � 0 weexpand the denominator as it stands while for a < 0 we �rst multiply both numerator20



and denominator with q�2a in order to obtain an expansion in positive powers of q. Theresulting expressions have been veri�ed to reprodu
e the stru
ture of singular ve
tors ofthe module [0℄^ for k = 1; 2; : : : ; 7 and energies smaller or equal to h = 4.The formulas we have proposed also pass some more general non-trivial 
onsisten
y
he
ks. To begin with there is a simple relation between the 
hara
ters of representationsfrom the dis
rete series,�[(�;j1);j2℄(q; z1; z2) = �[(�;j1);j2℄(q; z�11 ; z2) ; �[j℄�(q; z1; z2) = �[j℄�(q; z�11 ; z2) :This property expresses a manifest symmetry of the 
orresponding representations. Infa
t, under the re
e
tion K01 ! �K01 and an 
orresponding a
tion on the fermions whi
hpromotes this transformation into an automorphism, the representations from the twodi�erent dis
rete series are mapped onto ea
h other.Our se
ond 
ru
ial observation 
on
erns the behavior of the 
hara
ters under spe
-tral 
ow. We 
onsider the spe
tral 
ow automorphisms 
� = 
(�1;1). Note that thesegenerate all spe
tral 
ows that do not interpolate between Ramond and Neveu-S
hwarzrepresentations, i.e. that map integer mode numbers to integer mode numbers. On thezero modes L0; K01 � K01;0 and K02 � K02;0 they a
t a

ording to
�(L0) = L0 +K02 �K01 ; 
�(K01) = K01 � k=2 ; 
�(K02 ) = K02 + k=2 :On 
hara
ters of representations, the a
tion of the spe
tral 
ow 
an be expressed as
����(q; z1; z2)� = z�k=21 zk=22 ��(q; q�1z1; qz2) :It is rather easy to see that this a
tion is 
onsistent with the following behavior of irre-du
ible representations,[(�; j1); j2℄^ 
���! [(�;�k=2� 1� j1; k=2� 1� j2℄^ ; [j℄�̂ 
���! [k=2� 1� j℄�̂ :Combining all these observations we obtain the following equation in the 
ase that thelevel k is evenzk=21 zk=22 �[k=4�1=2℄�(q; q�1z1; qz2) = �[k=4�1=2℄+(q; q�1z1; qz2) = �[k=4�1=2℄�(q; z�11 ; z2) :A short 
omputation shows that our formula (3.32) for the 
hara
ters of dis
rete seriesrepresentations provides a fun
tion �[k=4�1=2℄� with the desired property. This 
onstitutesa rather strong test for the expression we proposed.21



3.3.3 The 
ontinuous series representationsAs we have dis
ussed above, the Lie superalgebra psl(2j2) possesses another type of in�nitedimensional irredu
ible representations, the prin
ipal 
ontinuous series. These represen-tations are labelled by pairs �(j1; �); j2�^ where j1 2 S= 1=2 + iR and 0 � � < 1. Theserepresentations give rise to typi
al representations of the aÆne Lie superalgebra. Their
hara
ters are,�[(j1;�);j2℄(q; z1; z2) = 1�4(q) Y�;�=� #1(z�=21 z�=22 ; q) ��k�2(j1;�)(q; z1) �k�2j2 (q; z2) (3.34)where ��k�2(j1;�)(q; z1) = �iq� (j1�1=2)2k �(j;�)(z1) (z1=21 � z�1=21 )#1(q; z1)�1 : (3.35)These 
hara
ters will be the most important building blo
ks for the partition sum of thebulk PSU(1; 1j2) WZNW model.3.4 Representations with a �nite number of ground statesFinally, we turn to representations with �nite number of ground states. These do notappear in the bulk spe
trum of the PSU(1; 1j2) WZNW model but are expe
ted to furnishthe building blo
k for the boundary spe
tra asso
iated with instantoni
 branes. Spe
ialattention is devoted to the atypi
al representations.3.4.1 Typi
al representationsThe free �eld 
onstru
tion we have reviewed above suggests that generi
 representationshave no singular ve
tors ex
ept from the ones that arise through the representations ofthe two bosoni
 bsl(2) 
urrent algebra at levels �k � 2. This is indeed the 
ase. Thestatement implies a pre
ise expression for the 
hara
ters of typi
al representations�[j1;j2℄(q; z1; z2) = 1�4(q) Y�;�=� #1(q; z�=21 z�=22 ) ��k�2j1 (q; z1)�k�2j2 (q; z2) (3.36)where j1 6= j2 and j1 � k=2+1. The fun
tion #1 was de�ned in eq. (3.25) above. We alsore
all that the bsl(2) 
hara
ters for negative level are given by��k�2j1 (q; z1) = iq� (j1+1=2)2k �zj1+1=21 � z�j1�1=21 � #1(q; z1)�1 (3.37)We shall use the symbol [j1; j2℄^ for these irredu
ible representations of the aÆne algebra.22



3.4.2 Atypi
al representationsNothing prevents us from evaluating the previous 
hara
ter formulas at the points j1 =j = j2. But the resulting fun
tions turn out to be the 
hara
ters of inde
omposablerepresentations [j; j℄^ whi
h 
ontain fermioni
 singular multiplets. The latter lie all withinthe spa
e of ground states and hen
e the de
omposition follows exa
tly the de
ompositionformulas (2.13,2.15,2.16) for Ka
 modules of the Lie superalgebra psl(2j2)�[j;j℄(q; z1; z2) = 2�[j℄(q; z1; z2)� �[j+1=2℄(q; z1; z2)� �[j�1=2℄(q; z1; z2)�[1=2;1=2℄(q; z1; z2) = 2�[1=2℄(q; z1; z2)� �[1℄(q; z1; z2)� 2�[0℄(q; z1; z2)�[0;0℄(q; z1; z2) = 2�[0℄(q; z1; z2)� �[1=2℄(q; z1; z2) : (3.38)In the �rst row we assumed j � 1. The relative sign between the two terms on the righthand side is due to the fermioni
 nature of the singular ve
tors. Even though equation(3.38) is not a 
losed formula for the 
hara
ters of atypi
al representations, it 
an beused to 
onstru
t the latter re
ursively as a sum of the fun
tions �[j;j℄ and of the va
uum
hara
ter �[0℄. We have determined the latter in the previous subse
tion and hen
e knowall 
hara
ters, at least impli
itly.We 
an do a little better, though, and provide expli
it expressions for the atypi
al
hara
ters. To this end we observe that the typi
al representations obey�[j1;j2℄(q; z1; z2) = �[(�;j1+1);j2℄(q; z1; z2)� �[(+;j1+1);j2℄(q; z1; z2) ;where we silently agreed to formally expand both 
hara
ters on the right hand side in pow-ers of z1. Using this observation, we dedu
e that the 
hara
ters of atypi
al representations[j℄^; j � 1=2; must be given by�[j℄(q; z1; z2) = � 1Xn=0 (n + 1)�[j+1=2+n=2;j+1=2+n=2℄(q; z1; z2)= �[j℄+(q; z1; z2)� �[j℄�(q; z1; z2) for j � 12 : (3.39)It is somewhat 
umbersome but rather straightforward to 
he
k that these 
hara
tersindeed obey the relations (3.38). Note that formula (3.39) should only be used for j � 1=2.The va
uum 
hara
ter is not given by expression (3.39) but rather by formula (3.33).
23



Part II: Solution of the WZNWmodel
After all the representation theoreti
 preparations we 
an now address the WZNW modelon the supergroup PSU(1; 1j2). We shall start with a dis
ussion of the Lagrangian beforewe pro
eed to the parti
le limit and analyze its state spa
e in some detail. We shall show,in parti
ular, that the Lapla
ian on the supergroup PSU(1; 1j2) is non-diagonalizable andobtain expli
it formulas for all its generalized eigenfun
tions. Afterwards we turn to thefull �eld theory. The latter will be solved through a free �eld representation. We dis
usshow the non-diagonalizability of the Lapla
ian is naturally inherited by the zero-mode ofthe energy momentum tensor. Hen
e, the PSU(1; 1j2) WZNWmodel provides an exampleof a logarithmi
 
onformal �eld theory. As an appli
ation of our results on the stru
tureof the state spa
e, we �nally propose an algorithm that allows to 
ount the numberof states that possess the same transformation law under the global symmetries. Theresulting formulas will only be used in our forth
oming analysis of the RR deformation.Nevertheless, some 
omments on the latter are in
luded at the end of this part.4 The WZNW LagrangianBefore we spell out the WZNW model we are about to 
onsider, we would like to re
alla few basi
 fa
ts on supergroups. Let us begin with the supergroup GL(mjn). ElementsS 2 GL(mjn) 
an be represented through invertible matri
es of the formS = �A �� B� (4.1)where A and B are elements of GL(m) and GL(n), respe
tively, with Grassmann-evenmatrix elements. The symbols � and �, on the other hand, denote re
tangular matri-
es with Grassmann-odd entries. We pass from GL(mjn) to SL(mjn) by imposing theadditional 
ondition sdet(S) = 1 on the superdeterminant of S,sdet(S) = det(A� �B�1�)det(B) = det(A)det(B � �A�1�) != 1 : (4.2)When n = m, the 
onstru
tion of the superdeterminant implies that SL(njn) possesses anon-trivial 
enter 
onsisting of s
alar multiples of the identity matrix. In des
ending to24



PSL(njn), we identify supermatri
es in SL(njn) that di�er by a s
alar multiple. Further-more, we introdu
e the following unitarity 
ondition for supermatri
es S 2 GL(mjn),S � Sy = � (4.3)where � = diag(�1; 1; : : : ; 1) is the m + n dimensional Minkowski metri
. Supermatri
esS 2 SL(mjn) obeying the 
ondition (4.3) form the supergroup SU(1; m � 1jn). Identi�-
ation of s
alar multiples �nally leads to PSU(1; m� 1jn).We are now prepared to spell out the a
tion fun
tional for the WZNW model onPSU(1; 1j2) at level k. Sin
e there is no fundamental representation of this group we willinstead work with SU(1; 1j2) and show that the Lagrangian a
tually does not depend onthe additional degree of freedom 
orresponding to multiples of the identity element. Forall S 2 SU(1; 1j2) we thus de�neSSU(1;1j2)k [S℄ = � k2� Z d2z str �S�1�SS�1 ��S�� k12� Z str��S�1dS�3� (4.4)with a suitably normalized supertra
e str. For supermatri
es S of the form (4.1), thesupertra
e is given by str(S) = tr(A)� tr(D). Using the Polyakov-Wiegmann identity forWZNW models,SSU(1;1j2)k [S1S2℄ = SSU(1;1j2)k [S1℄ + SSU(1;1j2)k [S2℄ + k2� Z d2z str �S�11 ��S1�S2S�12 � ; (4.5)one may easily show that the a
tion SSU(1;1j2)k remains invariant if we multiply the super-matrix S 2 SU(1; 1j2) with a s
alar fa
tor exp�, i.e.SSU(1;1j2)k [e�S℄ = SSU(1;1j2)k [S℄ :This relation ensures that the fun
tional form of the WZNW a
tion for PSU(1; 1j2) isidenti
al to the WZNW a
tion for SU(1; 1j2). In parti
ular we like to stress that no expli
itgauge pro
edure is required, in 
ontrast to what has been proposed in [9℄. As in all WZNWmodels the Lagrangian de�ned in (4.4) leads to two 
hiral sets of 
urrents J�(z) and �J�(�z)whi
h generate two (anti)
ommuting 
opies of the aÆne Lie superalgebra dpsu(1; 1j2)k.Their pre
ise relations 
an easily be re
onstru
ted from its zero-mode subsuperalgebra(2.1) and the metri
 (2.2).Our aim is to show that the introdu
tion of auxiliary �elds allows to de
ouple bosoni
and fermioni
 degrees of freedom to a large extent. The result will be a sum of tworenormalized bosoni
 WZNW models, the a
tion for a holomorphi
 and anti-holomorphi
25



set of symple
ti
 fermions and an intera
tion term whi
h mixes the two. Our derivationis motivated by the ideas given in [9℄ but the fermions are treated di�erently, along thelines of [20℄. The �rst step is to rewrite our a
tion with the help of the following produ
tde
omposition of SU(1; 1j2) supermatri
es,S = e��id 0� id� � �A 00 B� � �id �0 id� = e�� A A��A �A�+B� (4.6)where the fa
tor exp� is 
hosen su
h that the matri
es A and B are uni-modular. Usingon
e more the Polyakov-Wiegmann identity (4.5) for supergroups, we �nd thatSPSU(1;1j2)k [S℄ = SPSU(1;1j2)k ��id 0� id��+ SPSU(1;1j2)k ��A 00 B��+ SPSU(1;1j2)k ��id �0 id� �+ k2� Z d2z str� 0 0����AA�1 ���A��B�1� (4.7)The �rst and third term vanishes due to the fa
t that the only 
ontributions to supertra
es
ome from non-trivial bosoni
 submatri
es. Hen
e, we are left with only two terms. Takinginto a

ount the inde�nite stru
ture of the metri
 the result 
an now we rewritten asSPSU(1;1j2)k [S℄ = SAdS3k [A℄ + SSU(2)k [B℄� k2� Z d2z trh���A��B�1i (4.8)where SAdS3k and SSU(2)k denote the usual bosoni
 WZNW a
tions. It is easy to see thatthe previous a
tion is equivalent to the fun
tionalSPSU(1;1j2)k [S; p; �℄ = SAdS3k+2 [A℄ + SSU(2)k�2 [B℄ + 12�k Z d2z tr�k(p���+�p���)+A�1pB�p	 (4.9)where the �elds have been de
oupled to a large extent. Integrating out the auxiliary�elds p and �p one indeed arrives at the original a
tion if one imposes the identi�
ations� = � and �� = �. The shift of the levels arises from the modi�
ation of the path integralmeasure.5 The minisuperspa
e theoryIn this se
tion we would like to analyse the spa
e of (generalized) eigenfun
tions of theLapla
e operator on the supergroup PSU(1; 1j2). We shall set up the problem in the�rst subse
tion. Expli
it formulas for all the generalized eigenfun
tions are derived inthe se
ond subse
tion. Their transformation behaviour with respe
t to the left and rightregular a
tion of psl(2j2) is �nally investigated in the last subse
tion.26



5.1 The Lapla
ian on the Supergroup PSU(1;1j2)On the supergroup PSU(1; 1j2) we 
an introdu
e various di�erent 
oordinates. For ourpurposes in the next subse
tion, a preferred set of 
oordinates is de�ned through thede
omposition, G = ei�aSa2 g ei��aSa1 = ei�aSa2 eixabKab ei��aSa1 : (5.1)In these 
oordinates, we 
an easily express the di�erential operators implementing theleft and right regular representation. In the following, we denote the generators of thebosoni
 subalgebra on the bosoni
 subgroup by Lab0 and Rab0 , respe
tively. For the leftregular a
tion we �nd (see also [39℄)La2 = �a ; Lab = Lab0 � i(�a�b � �b�a) (5.2)La1 = �Dab(g) ��b + ~La1 where ~La1 = i2 �ab
d ��bL
d0 � i�b�
�d� : (5.3)Here, the partial derivatives �a and ��a denote di�erentiation with respe
t to the fermioni

oordinates �a and ��a, respe
tively, and the matrix Dab(g) of fun
tions on the bosoni
subgroup is obtained by evaluation of elements g in the (1=2; 1=2) representation. By
onstru
tion, it satis�es the following di�erential equationsLab0 D
d(g) = i�Æa
Dbd(g)� Æb
Dad(g)� ; Rab0 D
d(g) = i�ÆadD
b(g)� ÆbdD
a(g)� :To 
he
k the 
ommutation relations is straightforward, though a bit 
umbersome. Theright regular representation is obtained similarly, with the two types of fermioni
 gen-erators ex
hanged, ��a repla
ing �a et
. Needless to stress that the left and right a
tion(anti-)
ommute.A short and straightforward 
omputation of the quadrati
 Casimir element C2 =��ab
dKabK
d=4 + ���Sa�Sa� in the left or right regular representation gives the followingexpli
it formula for the Lapla
ian � on the supergroup� = L(C2) = R(C2) = �0 +Q where Q = 2 �aDab(g)��b (5.4)and �0 is the usual Lapla
e operator on the bosoni
 subgroup, i.e. on AdS3 � S3. Ouraim is to �nd generalized eigenfun
tions of this operator. Let us re
all that a fun
tion  is 
alled a generalized eigenfun
tion of � for eigenvalue � if(�� �)n  = 0 for some n > 0 : (5.5)27



 is an eigenfun
tion if this equation is satis�ed for n = 1 (and hen
e for all other valuesof n). We shall see in the next subse
tion that generalized eigenfun
tions of � with � 6= 0are in fa
t true eigenfun
tions. For � = 0, on the other hand, non-trivial generalizedeigenfun
tions do appear. This means that the Lapla
ian on the supergroup PSU(1; 1j2)
an only be brought into Jordan normal form. The Jordan 
ells turn out to possess arank up to �ve. By 
onstru
tion, the individual spa
es of generalized eigenfun
tions 
omeequipped with the left and right regular a
tion of the Lie superalgebra psl(2j2). We shalldes
ribe its de
omposition into inde
omposables in the se
ond subse
tion.5.2 Generalized eigenfun
tions of the Lapla
ianIn this subse
tion we show that generalized eigenfun
tions of the Lapla
ian on PSU(1; 1j2)are in one-to-one 
orresponden
e with elements of the following auxiliary spa
eH0 := L2�AdS3 � SU(2)�
 �(�; ��) (5.6)of Grassmann valued fun
tions whose 
oeÆ
ients are square integrable fun
tions on thebosoni
 subgroup. Under favorable 
ir
umstan
es, i.e. when the fermioni
 generators ofthe Lie superalgebra transform in a unitary representation of its bosoni
 subgroup G, thespa
e of Grassmann valued fun
tions on G 
oin
ides with the spa
e of generalized eigen-fun
tions. This is the 
ase e.g. for the GL(1j1) model studied in [20℄, but the key examplewe have in mind here is PSL(2j2) with a real form that removes all non-trivial �nitedimensional representations of the bosoni
 subalgebra, and in parti
ular the (1=2; 1=2)representation, from the list of unitaries.The key idea in the subsequent 
onstru
tion of generalized eigenfun
tions is to 
onsiderthe elements  0 of H0 as `leading 
ontributions'. More pre
isely, we shall show that alleigenfun
tions of the bosoni
 Lapla
ian 
an be turned into generalized eigenfun
tions byadding appropriate terms with lower fermion number. To this end, let us rewrite equation(5.5) in the following form(�� �)n � = �(�0 � �)n + An(�)� � = 0 :The operators An(�) are lengthy 
ombinations of Q and (�0 � �) whi
h 
an be workedout expli
itly. What is most important is to note that ea
h term in An(�) 
ontains a leastone Q. Hen
e, the operators An(�) are nilpotent.28



A short and formal manipulation shows that generalized eigenfun
tions for the eigen-value � at order n possess the general form (n)� = �(n)�  �0 = 1X�=0��(�0 � �)�nAn(�)�� �0where  �0 2 H0 is an eigenfun
tion of �0 with eigenvalue �, i.e. �0 �0 = � �0 . Sin
e An(�)
ontains anti-
ommuting fermioni
 derivatives, the sum on the right hand side trun
atesafter a �nite number of terms at � = 4. On the other hand, the formula requires to invertthe operator �0 � �. Hen
e the operator �(n)� need not be well de�ned for all  �0 . Toanalyze this issue further, we note that �(n)� = �(5)� = �� is independent of n for n � 5and 
ompute � = �� �0 =  �0 � 1(�0 � �)Q0� �0 + � 1(�0 � �)Q0��2  �0 + 1(�0 � �)2Q0�Q00� �0 + : : :where Q = Q0� +Q00� = �1� P0(�)�Q+ P0(�)Q (5.7)and P0(�) is the proje
tor on eigenstates of �0 with eigenvalue �. We have not displayedthe third and fourth order terms in Q be
ause the expression would be rather bulky(there are 14 su
h terms). Let us observe that the inverse powers of (�0 � �) only a
t in
ombination with Q0�, i.e. after appli
ation of the proje
tion 1�P0(�). This 
ontinues tohold for the higher order terms and hen
e  � is well de�ned for all  �0 . Sin
e P0(�)�� = id,we 
on
lude that generalized eigenfun
tions are indeed in one-to-one 
orresponden
e withelements  0 2 H0.It is instru
tive to 
ontrast these �ndings with results on the true eigenve
tors of theLapla
ian. Our general formula (5.5) applied to the spe
ial 
ase n = 1 shows that su
heigenfun
tions must be of the form (1)� = �(1)�  �0 = 1X�=0 ��(�0 � �)�1Q��  �0 (5.8)=  �0 � 1(�0 � �)Q �0 + � 1(�0 � �)Q�2  �0 + : : :In order for  (1)� to be well de�ned it is obviously ne
essary that Q00� �0 = P0(�)Q �0 = 0.11Note that the 
ondition automati
ally ensures that our expression for the eigenfun
tion11The 
ondition is also suÆ
ient, though this requires a slightly more elaborate argument.29



 (1)� agrees with the formula for generalized eigenfun
tions above. It is easy to see thatP0(�)Q �0 = 0 for eigenfun
tions  �0 of �0 with eigenvalue � 6= 0 : (5.9)Hen
e, we 
on
lude that all generalized eigenfun
tions of the Lapla
ian on PSU(1; 1j2)with nonzero eigenvalue are true eigenfun
tions. For � = 0, on the other hand, non-trivialgeneralized eigenfun
tions exist. These are in one-to-one 
orresponden
e with fun
tions �0 for whi
h P0(0)Q �0 6= 0.Our 
laim (5.9) 
an be established as follows: suppose that  �0 transforms in the rep-resentation (j1; j2) of the bosoni
 subalgebra. Then, after appli
ation of Q, the resultingstate Q �0 de
omposes into four 
omposents a

ording to the four di�erent representations(j1�1=2; j2�1=2) and (j1�1=2; j2�1=2) that arise after multipli
ation with the fun
tionsDab(g) in the (1=2; 1=2) representations. The resulting possible eigenvalues of the bosoni
Lapla
ian are Æ� = �� (j1� j2) and Æ� = �� (j1+ j2�1) with � = j1(j1+1)� j2(j2+1).Hen
e, we 
on
lude that P0(�)Q �0 = 0, unless j1 = j2 or j1 + 1 = �j2. The latter
onditions on the 
hoi
e of (j1; j2) are equivalent to requiring � = 0. This proves our
laim and 
on
ludes this subse
tion.5.3 Regular a
tion on generalized eigenfun
tionsSin
e the Lapla
ian 
ommutes with both the left and the right regular representation, Land R provide two (anti-)
ommuting a
tions of the Lie superalgebra psl(2j2) on general-ized eigenfun
tions  2 H � �H0.In order to spell out the behavior of states  2 H under the right regular a
tion weintrodu
e the following new representationsB(�; �) := Indgg(0)V(�;�) = U(g)
g(0) V(�;�) :By 
onstru
tion, these representations have a dimension 162 �dim(�; �) and 
ertainly noneof them is irredu
ible. All the representations 
an be de
omposed into a sum of proje
tiverepresentations [29℄. Generi
ally, B(�; �) de
omposes into a sum of typi
al Ka
 modulesa

ording to B(�; �) �= M(�0;�0) �[�; �℄ : (�0; � 0)� � [�0; � 0℄ (5.10)where �[�; �℄ : (�0; � 0)� denotes the multipli
ity of the bosoni
 multiplet (�0; � 0) insidethe Ka
 module [�; �℄. The formula applies whenever the summation extends only over30



bosoni
 representations (�0; � 0) with non-vanishing Casimir. More expli
itly, we 
an usethe above formula for all representations (�; �) = �(j1; �); j2� from the 
ontinuous seriesand for dis
rete series representations (�; �) = �(�; j1); j2� as long as j1 + j2 + 1 6= 0;�1.In the remaining 
ases, proje
tive 
overs of atypi
al representations appear,B�(�;�j � 1); j� �= 2 � P�j � : : : (5.11)B�(�;�j � 12); j + 12� �= P�j� 12 � : : : (5.12)B�(�;�j � 32); j � 12� �= P�j+ 12 � : : : (5.13)where the dots : : : stand for a sum of typi
al Ka
 modules that 
an be determinedthrough the rule (5.10) if we remember to omit all terms that 
orrespond to an atypi
alrepresentation.It is relatively easy to see that the spa
e H of generalized eigenfun
tions possessesthe following de
omposition with respe
t to the asymmetri
 a
tion of the subsymmetryg(0)L � gR, H �= 1M2J=0 ZSdj Z 10 d� �(j; �); J�+L 
 B�(j; �); J�R �� 1M2J=0M�=� Z 112 dj �(�;�j); J�+L 
 B�(�;�j); J�R :The domain of the �rst integral is given by S = �1=2 + iR, as usual for the prin
ipal
ontinuous series representations. In order to justify the de
omposition, let us note thatthe ground states from whi
h the representations B(�; �) are generated, 
an be identi�edwith those states  � in H whose top 
omponent P0(�) � has maximal fermion number.In order to rewrite our de
omposition formula in terms of inde
omposables, we needto insert the formulas (5.10)-(5.13). We then 
olle
t all terms that give rise to the sameproje
tive representation of gR. On the subspa
e Htyp � H of states with non-zeroeigenvalue �, the bosoni
 multiplets of of the g(0)L a
tion turn out to 
ombine into a Ka
module for the Lie superalgebra gL, i.e.Htyp �= 1M2J=0 ZSdj Z 10 d� �(j; �); J�+L 
 �(j; �); J�R �� 1M2J=0M�=� Z 112 ;j 6=J+1 dj �(�;�j); J�+L 
 �(�;�j); J�R :31



Another way to arrive at this result is by noting that our operator � provides an inter-twiner between the a
tion of L and R on Htyp and some simpli�ed a
tion ~L and ~R ofpsl(2j2) on the subspa
e H0;typ � H0 of eigenfun
tions with non-zero eigenvalues of �0.The a
tion ~L, for example, is generated by the operator ~La1 de�ned in formula (5.3) alongwith ~La2 = La2 ; ~Lab = Lab : (5.14)A similar 
onstru
tion gives ~R. With respe
t to these two a
tions of psl(2j2), the spa
eH0 is easily seen to de
ompose into an integral over left and right Ka
 modules. Thisapplies even to the subspa
e on whi
h �0 vanishes. But on the latter � 
eases to be anintertwiner between the trun
ated a
tions ~L; ~R and the full regular a
tion L;R. In thenext se
tion we shall see that the ~L� ~R module H0 models the spa
e of vertex operatorsin the free �eld representation. The full L�R a
tion onH, on the other hand, agrees witha
tions of psl(2j2) on the ground states of the full intera
ting theory. The dis
repan
ybetween the two a
tions in the atypi
al se
tor will have remarkable 
onsequen
es whi
hat the end 
ulminate in the logarithmi
 behavior of the WZNW theory.As for the atypi
al se
tor Hatyp of generalized eigenfun
tions with vanishing eigenvalue�, it is built up from proje
tive 
overs only when 
onsidered with respe
t to the right (orleft) regular a
tion. The asso
iated multipli
ity spa
es possess the same g(0)L representa-tion 
ontent as the atypi
al irredu
ible psl(2j2) representations from the dis
rete series.But this time, enhan
ing the left a
tion from the bosoni
 subalgebra to the full psl(2j2)has more drasti
 e�e
ts than simply to promote the multipli
ity spa
es into represen-tations of the Lie superalgebra. Note that su
h a behavior would obviously violate thesymmetry between left and right regular transformations and hen
e 
annot be the rightanswer. Instead, as a gL � gR module, the atypi
al se
tor H is built from non-
hiral in-de
omposables whi
h en
ompass an in�nite number of atypi
al 
onstituents mu
h in thesame way as it happens for GL(1j1) (see [20℄). We refrain from working out the detailshere.This gives us a fairly 
omplete pi
ture of the spa
e of wave fun
tions for a parti
lemoving on PSU(1; 1j2) and a very good basis to dis
uss how �eld theoreti
 
orre
tionsa�e
t the stru
ture of the state spa
e. In the full �eld theory, there will be two newphenomena whi
h have to be taken into a

ount. First of all there will be a 
ut-o�asso
iated with the �niteness of the level k. Moreover, the aÆne Lie superalgebra admitsa family of spe
tral 
ow automorphisms whi
h has to be taken into a

ount properly.32



6 Vertex operators and 
orrelation fun
tionsNow that we obtained a profound knowledge about the parti
le limit of the sigma modelon PSU(1; 1j2), we are �nally in a position to return to the solution of the full quantumtheory. Our starting point is the Lagrangian (4.9),SPSU(1;1j2)k = S0 + Sint = SAdS3k+2 + SSU(2)k�2 + Sferm + Sint ; (6.1)
onsisting of a de
oupled system with a purely bosoni
 WZNW model on AdS3 � SU(2)and a set of free fermions as well as an intera
tion term 
oupling bosoni
 and fermioni
degrees of freedom. Following the general strategy adopted in [20℄ we will start with ananalysis of the de
oupled theory and 
onsider the additional term as a perturbation. Ourmain aim is to �nd the vertex operators of the full supergroup WZNW theory and tosket
h the 
al
ulation of their 
orrelation fun
tions.The state spa
e Ĥ0 of the de
oupled theory des
ribed by S0 is 
ompletely knownusing standard results in 
onformal �eld theory. For reasons to be
ome 
lear below werestri
t ourselves to fermions with integer moding. Under this assumption there existsa unique representation F 
 �F for the fermions. It is generated from a ground stateby the appli
ation of the modes �a�n and pa�(n+1) for n � 0 and similarly for the anti-holomorphi
 �elds. The SU(2)k�2 WZNW model is des
ribed by a 
harge 
onjugatepartition fun
tion involving unitary representations with spin 2J = 0; 1; : : : ; k�2 [40℄. Inthe AdS3 WZNW model on the other hand two di�erent kinds of representations of theunderlying aÆne algebra bsl(2;R)k+2 
ontribute [13℄: the prin
ipal 
ontinuous series (j; �)for j 2 S = �12 + iR and � 2 [0; 1) and the dis
rete series (�; j) for �12 > j > �k+12 .Moreover, one has to take into a

ount the spe
tral 
ow automorphism whi
h mapsordinary highest weight modules to twisted ones. This leads to an additional quantumnumber w whi
h has to be atta
hed to the representations of bsl(2;R)k+2 . The pre
isede�nition of the spe
tral 
ow automorphism has been given in (3.17).Based on the previous remarks we 
an spell out the spa
e of the de
oupled system,12Ĥ0 �= k�2M2J=0Mw2ZZSdj Z 10 d� hV((j;�)w ;J) 
Fi
 hV((j;�)w;J)+ 
 �Fi� k�2M2J=0Mw2ZZ k+1212 dj hV((+;�j)w;J) 
Fi
 hV((+;�j)w;J)+ 
 �Fi : (6.2)12We remind the reader that the orbit of representations (+; j)w in
ludes representations based on(�; j0). 33



Nevertheless we are not yet done. Sin
e we intend to des
ribe a supersymmetri
 theory wehave to 
ast the state spa
e in a manifestly 
ovariant form. In addition we have to make
onta
t to the minisuperspa
e analysis presented in se
tion 5. In order to a
hieve thesegoals we must �nd a realization of ea
h, the holomorphi
 and anti-holomorphi
 aÆne Liesuperalgebras dpsu(1; 1j2)k, on Ĥ0. Moreover their zero mode a
tion on the ground stateshas to resemble that of the di�erential operators ~L and ~R on H0, respe
tively. This spa
eand the 
orresponding operators have been introdu
ed in (5.6) and (5.14).In fa
t, a realization of the aÆne Lie superalgebra dpsu(1; 1j2)k in terms of the sym-metry generators jab and the fermions p and � of the de
oupled system (and their anti-holomorphi
 analogues) has already been presented in (3.16). In this 
ase the zero modese
tor of the 
orresponding expressions indeed redu
es to the tilded di�erential operators(5.14) a
ting on the spa
e H0 if we identify the auxiliary �elds p and �p with the fermioni
derivatives as usual. For the identi�
ation to hold it is 
ru
ial that in the �rst term ��ain Sa1 the zero mode of the 
oordinate �eld � is eliminated by the a
tion of the derivative.Needless to say, similar 
onsiderations apply for the anti-holomorphi
 se
tor.After having established the stru
ture of Ĥ0 as a representation spa
e with respe
t todpsu(1; 1j2)k �dpsu(1; 1j2)k it is just a small step to spell out the proposalĤ0 �= k�2M2J=0Mw2ZZSdj Z 10d�V[(j;�);J ℄w
V[(j;�);J℄+w � k�2M2J=0Mw2ZZ k+1212 dj V[(+;�j);J℄w
V[(+;�j);J℄+w :(6.3)This spa
e meets all the requirements stated above. First of all, it is indeed a fully 
ovari-ant version of the spa
e (6.2). This is immediately obvious in view of our dis
ussion ofaÆne Lie superalgebra representations in se
tion 3.2 and, in parti
ular, given the de�ni-tion (3.24). Only the treatment of spe
tral 
ow requires a few 
omments sin
e a spe
tral
ow whi
h ex
lusively a
ts in the AdS3 se
tor 
annot be lifted to the full superalgebraPSU(1; 1j2) in general. Indeed, as 
an be inferred from (3.17) the only spe
tral 
ow au-tomorphisms whi
h solely a
t on the AdS fa
tor are of the form 
(w;0). But in order tokeep the integer moding of the fermions whi
h is required for the implementation of theglobal supersymmetry one would have to 
hoose w even, resulting in the ommission ofevery se
ond representation. The simple way out is to 
onsider the spe
tral 
ows 
(w;w)for all w 2 Z. In this 
ase the moding of the fermions stays invariant and the a
tion onthe SU(2) se
tor 
an be absorbed in a relabeling of the 
orresponding integrable weights.Spe
tral 
ow automorphisms that respe
t the fermioni
 boundary 
onditions were found34



in [20℄ to be exa
t symmetries of the WZNW model on the supergroup GL(1j1). We be-lieve that this observation generalizes to arbitrary supergroups. In the 
ase of PSU(1; 1j2)it is indeed 
onsistent with the results of Malda
ena and Ooguri [13℄.On the other hand, beside being supersymmetri
, the state spa
e (6.3) 
an be shownto be a straightforward aÆnization of the minisuperspa
e result H0. In order to establishthis 
orresponden
e we 
onsider the semi-
lassi
al limit k ! 1 in whi
h the 
urvatureof the supergroup be
omes small and the trun
ation of the spe
trum 
an be negle
ted.We are moreover only interested in the light states whose 
onformal dimension approa
hzero. This for
es us to dis
ard all the spe
tral 
ow representations.13 We are thus leftwith the ground states of the aÆne modules V[�;�℄ and these obviously transform in theKa
 module V[�;�℄. This 
on
ludes our treatment of the de
oupled theory.Now we turn our attention again to the full WZNW model as de�ned in eq. (6.1),in
luding the intera
tion term Sint. Let us remind the reader that the spa
e H0 just hasbeen an auxiliary spa
e whi
h helped analyzing the spa
e H = �H0 on whi
h the trueleft and right regular a
tions of psu(1; 1j2) have been de�ned. The same happens in thefull PSU(1; 1j2) �eld theory where the regular a
tions are promoted to lo
al symmetries.Roughly speaking, the presen
e of the additional term Sint imitates the a
tion of theoperator � : H0 ! H and modi�es the de�nition of the aÆne 
urrents. This means thatthe true state spa
e of the PSU(1; 1j2) WZNW model is given by a spa
e Ĥ whi
h di�ersfrom Ĥ0 in the way the aÆne 
urrents a
t. Without going into details we symboli
allyintrodu
e the map �̂ : Ĥ0 ! Ĥ whi
h intertwines the a
tions in the typi
al se
tor.It is important, however, to emphasize that the representation 
ontent of Ĥ0 and Ĥis not isomorphi
. In parti
ular, the atypi
al se
tor in Ĥ may not be written as theprodu
t of holomorphi
 and anti-holomorphi
 representations sin
e the zero modes L0and �L0 of the energy momentum tensors, the aÆne analogues of the Lapla
e operatordis
ussed in se
tion 5, are not diagonalizable. Modular invarian
e then enfor
es that thedi�eren
e of the nilpotent part vanishes on the state spa
e and this is only possible if therepresentations do not fa
torize. Another 
onsequen
e of the previous statements is theo

uren
e of logarithmi
 
orrelation fun
tions in the PSU(1; 1j2) WZNW model.Let us 
on
lude this se
tion with a brief sket
h of the 
al
ulation of 
orrelation fun
-tions. Given any vertex operator �(z; �z) 
orresponding to a state in the full Hilbert spa
eĤ { with or without spe
tral 
ow { we 
an �nd a vertex operator �0(z; �z) in the de
ou-13We should obviously keep those whi
h map (+; j) to (�; j0).35



pled theory su
h that �(z; �z) = �̂�0(z; �z). As in the minisuperspa
e theory the a
tionof �̂ basi
ally adds subleading 
ontributions to the full vertex operator. The 
orrelationfun
tions are then easily determined using the des
ription
�(z1; �z1) � � ��(zn; �zn)�PSU(1;1j2)k = 
�0(z1; �z1) � � ��0(zn; �zn) e�Sint�S0 : (6.4)In order to make sense out of this expression it is ne
essary to 
ast the intera
tion termin a form whi
h may be evaluated in the de
oupled theory. It is not diÆ
ult to 
onvin
eoneself that the 
orresponding alternative form of the intera
tion term in (4.9) is givenby Sint � 12�k Z d2z pa(z)Dab(z; �z) �pb(�z) : (6.5)The operators Dab(z; �z) are non-
hiral vertex operators of the AdS3 � S3 WZNW theorywhi
h transforms in the (1=2; 1=2)�(1=2; 1=2) representation with respe
t to the holomor-phi
 and anti-holomorphi
 bosoni
 
urrents. Given the knowledge of 
orrelation fun
tionsin the de
oupled theory [41, 14℄ it is now a tedious but algorithmi
 exer
ise to 
al
ulatethe right hand side of (6.4). It is worth noti
ing that due to the presen
e of the fermionsp and �p the expansion will terminate after a �nite number of terms. The only 
aveat
on
erns the insertion of the vertex operators Dab in the 
orrelation fun
tions of the AdS3WZNW model sin
e these do not exist in the physi
al spe
trum of the bosoni
 theorybut are rather asso
iated with non-normalizable degenerate �elds. It is well known that
orrelation fun
tions with insertions of su
h degenerate �elds 
an be determined from thephysi
al ones by analyti
 
ontinuation. In fa
t, a reversal of this argument was a 
ru
ialingredient in the solution of the two best understood non-rational 
onformal �eld theories,i.e. Liouville theory [42℄ and the (eu
lidean) AdS3 model [16℄. Hen
e, all the ingedientsfor the 
omputation of 
orrelators in the WZNW model on the supergroup are determinedby the solution of the bosoni
 model, as we have 
laimed several times before.7 Casimir de
omposition of the state spa
eThe 
entral result of the following se
tion 
an be 
onsidered as a 
orollary of our ob-servation that the ground states of the �eld theory all transform a

ording to proje
tiverepresentations. As we shall explain below, this implies that one 
an 
ount the numberof �eld theoreti
 states in any given psl(2j2) representation through some variant of theRa
ah-Speiser algorithm. The results play a 
entral role for the study of the RR deforma-tion. Though we shall publish this investigation in a separate paper, we de
ided to in
lude36



a short dis
ussion of the RR deformation and its relation to Casimir de
ompositions atthe end of this se
tion.7.1 The psl(2j2) symmetry and its bran
hing fun
tionsBy 
onstru
tion, the RR deformation preserves both global left and right psl(2j2) a
tion.Hen
e, the state spa
e of the perturbed theory will 
ontinue to 
arry a representationof these two 
ommuting psl(2j2) transformations. In order to study the perturbation, itseems worthwhile to de
ompose the state spa
e of the model expli
itly with respe
t tothe preserved symmetries, in parti
ular with respe
t to the left and right psl(2j2) a
tion.Sin
e this is a bit 
umbersome to write down for the full state spa
e of the bulk theory,we shall explain the main idea in a simpler example that is relevant for the study ofinstantoni
 point-like branes in the PSU(1; 1j2) model.Naively, one might expe
t that the spe
trum of open strings on su
h branes 
ontainsno zero modes and hen
e possesses a unique ground state that transforms in the trivialrepresentation of the preserved psl(2j2) of the boundary theory. If this was true, the de-
omposition of the boundary spe
trum into representations of psl(2j2) would be extremelydiÆ
ult, if not impossible. In fa
t, states of the boundary theory would then transforma

ording to all those representations that appear in some tensor power of the adjointrepresentation. Our investigations show [32℄ that very exoti
 inde
omposable representa-tions 
an emerge in this way. Sin
e the adjoint representation of psl(2j2) is atypi
al andnot proje
tive, tensor powers are spe
i�
ally not de
omposable into proje
tives. The in-de
omposables that arise in this way 
annot even be listed easily so that the bookkeepingof the possible states and their transformation laws appears as a daunting task.Fortunately, the boundary spe
trum of a maximally symmetri
 point-like brane in ourWZNW model does possess zero modes. In fa
t, a thorough investigation of the gluing
ondition shows that while su
h branes are lo
alized in the bosoni
 
oordinates they mustne
essarily be delo
alized in all fermioni
 dire
tions (details will be published elsewhere).Sin
e there are eight fermioni
 
oordinates, ea
h 
ontributing one zero mode, we 
on
ludethat the ground states transform a

ording to the representationB(0; 0) �= P0 � [1; 0℄ � [0; 1℄ ;i.e. as a sum of proje
tive representations. Ex
ited states therefore transform in represen-tations that emerge from a produ
t of a proje
tive representation with some power of the37



adjoint and whi
h, by abstra
t mathemati
al results, 
an be de
omposed into proje
tives.This result is on
e more a 
on�rmation of what we saw in the bulk theory: the physi-
al states of the PSU(1; 1j2) WZNW model all transform in proje
tive representations,i.e. they either form typi
al long multiplets or they sit in maximally extended atypi
alrepresentations.In the �rst part of this work we listed expli
itly all the (�nite dimensional) proje
tiverepresentations of psl(2j2). Our aim now is to 
ompute the bran
hing fun
tions for astate spa
e of the WZNW model into psl(2j2) representations. We shall �rst show thatthere is an eÆ
ient algorithm that determines this bran
hing expli
itly and then we shallstate the results for one example. Note that the bran
hing fun
tions 
an be 
onsideredas 
hara
ters of the so-
alled Casimir algebra [19℄.7.1.1 The Ra
ah-Speiser algorithmIn its original form, the Ra
ah-Speiser algorithm is a powerful tool whi
h allows to de
om-pose tensor produ
ts of representations of semi-simple Lie algebras. The only knowledgerequired is the weight 
ontent of one of the representations involved and the a
tion of theWeyl group. In this paper we will use it in a slightly di�erent setup. We assume thatwe have given a set of weights belonging to some �nite dimensional representation R.The weight 
ontent 
an be en
oded in some generating fun
tion, the 
hara
ter of R. Inthe 
ase of ordinary bosoni
 Lie algebras R 
an be written as a dire
t sum of irredu
iblerepresentations Ri. The Ra
ah-Speiser algorithm allows us to determine the Ri and theirmultipli
ities by just analyzing the original weight system. Consequently, the 
hara
terof R 
an be expressed through the 
hara
ters of the irredu
ible representations Ri.It is 
lear that for prin
ipal reasons the algorithm 
annot be extended to Lie superal-gebras. This is due to the presen
e of not fully redu
ible representations: there 
an existseveral inequivalent representations whi
h have the same weight 
ontent. Our 
laim, how-ever, is that the Ra
ah-Speiser algorithm may be extended to Lie superalgebras as longas one is just dealing with proje
tive representations. In fa
t, proje
tive representationsshare the 
ru
ial property that their 
hara
ters always 
ontain the fermioni
 fa
tor VF(see eq. (2.7)) multiplied by some representations of the bosoni
 subalgebra. Hen
e, theproblem of re
onstru
ting the representation 
ontent of a proje
tive representation out ofits weight system is redu
ed to a problem 
on
erning the bosoni
 subalgebra. This state-ment also allows to 
al
ulate tensor produ
ts of proje
tive representations using 
hara
ter38



methods. One 
ould thus say that inde
omposable proje
tive representations { typi
alirredu
ibles and proje
tive 
overs { play a similar role for (simple) Lie superalgebras asirredu
ible ones play for ordinary (simple) bosoni
 Lie algebras.Before we start to dis
uss 
ompli
ations arising in the super 
ase it is 
onvenient toexplain the idea of the original Ra
ah-Speiser algorithm in the example of the Lie algebrasl(2). Suppose we are given some (�nite dimensional) representation R of sl(2) with a
hara
ter of the form �R(z) = X2l2Z al zl : (7.1)The 
oeÆ
ients al give the multipli
ity of states with isospin l. For 
onsisten
y they haveto satisfy al = a�l. It is easy to see that we may rewrite the previous expression in termsof 
hara
ters of irredu
ible representations as�R(z) = Xj�0�aj � aj+1��j(z) : (7.2)Due to the linearity of the problem it is enough to prove this relation on the level of
hara
ters of irredu
ible representations where it is obvious. Basi
ally the formula 
ountsthe number of weights with isospin j and 
he
ks how many still exist for j+1. The latterobviously do not belong to the spin j representation and have to be subtra
ted. TheRa
ah-Speiser tri
k provides a very simple way e.g. to derive the Casimir 
hara
ters ofbsu(2)k, see [43℄, after splitting the algebra into parafermions and a û(1) part.In this paper we are interested in the Casimir 
hara
ters of 
psl(2j2)k. As we will seein the following se
tion this problem may be redu
ed to one solely involving the bosoni
subalgebra sl(2)� sl(2). Applying formula (7.2) to this new situation with two fa
tors we�nd �R(z1; z2) = X2l1;2l22Z al1l2 zl11 zl22= Xj1;j2�0 �aj1;j2 � aj1+1;j2 � aj1;j2+1 + aj1+1;j2+1��j1(z1)�j2(z2) : (7.3)In the intended appli
ation of this formula to aÆne modules the multipli
ities of theweights are in�nite. In that 
ase we let the 
oeÆ
ients al1l2 depend on a formal variableq in order to be able to distinguish the energy of the states and to resolve the in�nities.The previous formulas are obvious even without using fan
y te
hnology and re
ruitinggreat names. Yet, sin
e our ideas for the 
al
ulation of Casimir 
hara
ters are likely to39



apply for more 
ompli
ated Lie superalgebras we would like to make 
lear from the startthat our 
onsiderations easily may be generalized. In that 
ase one has to use the shifteda
tion of the Weyl group w � � = w(�+ �)� � in order to map the given weights into thefundamental domain, taking into a

ount the sign of the transformation. The result willthen be a sum over the 
orresponding highest weight ve
tors, and these in turn 
an berepla
ed by 
hara
ters of irredu
ible representations.7.1.2 Example: Bran
hing rules for P0As we have announ
ed before, our goal is to de
ompose the spa
e of physi
al states of thePSU(1; 1j2) WZNW model with respe
t to the horizontal subalgebra. For simpli
ity weshall fo
us on one parti
ular building blo
k of the open string spe
trum on a point-likebrane, namely on the de
omposition of the representation P̂0 of the aÆne 
psl(2j2). Theresults 
an easily be extended to the other two pie
es [0; 1℄^ and [1; 0℄^ whi
h appear inthe brane's spe
trum (see above).14The representation P̂0 is built on top of the �nite dimensional proje
tive 
over P0by a
ting with the negative modes of the 
urrent algebra, followed by the removal of allbosoni
 singular ve
tors, i.e. all the singular ve
tors that do not appear among the groundstates. As we observed above the states at higher energy levels transform in the tensorprodu
t of P0 with (symmetrized) tensor produ
ts of the adjoint representation of psl(2j2)with itself. Sin
e the tensor produ
ts of arbitrary representations with a proje
tive oneare proje
tive again, the aÆne representation may be written asP̂0��psl(2j2) = Xj1 6=j2 aj1j2(q) [j1; j2℄ +Xj bj(q)Pj : (7.4)This should be read as a formal de
omposition of the aÆne representation into represen-tations of the horizontal subalgebra. The multipli
ities on ea
h energy level are 
ontainedin the generating fun
tions aj1j2(q) and bj(q) whi
h 
an be 
onsidered as 
hara
ters of theCasimir algebra.Now we employ our knowledge about the bosoni
 
ontent of proje
tive representationsas stated in eq. (2.23). If we denote by �F the 
hara
ter of the fermioni
 zero modes, asbefore, then the 
hara
ter of P̂0 is given by�P̂0 = " Xj1 6=j2 aj1j2(q)�(j1;j2) +Xj bj(q)�2�(j;j) � �(j+ 12 ;j+ 12 ) � �(jj� 12 j;jj� 12 j)�#�F : (7.5)14It is also rather straightforward to �nd the generalization to in�nite dimensional representations likethose that appear in the bulk spe
trum. 40



All the relevant notations have been introdu
ed in the �rst part of this work. Given thesuper
hara
ter on the left hand side we 
an then in prin
iple derive the 
oeÆ
ients aj1j2(q)and bj(q) using a re�ned version of the Ra
ah-Speiser algorithm. From part I of this workwe re
all that �P̂0(q; z1; z2) = 2�[0;0℄(q; z1; z2)� 2�[1=2;1=2℄(q; z1; z2) : (7.6)Expli
it formulas for the super
hara
ters on the right hand side were provided in eq. (3.25).What is most important for us is that the super
hara
ter of P̂0 possesses an overall fa
tor�F as any proje
tive representation. By expansion into powers of z1 and z2 and 
omparisonwe are thus able to uniquely determine the fun
tions aj1j2(q) and bj(q). To this end letus 
onsider the previous expression as a generating fun
tion for the q-series 
mn(q),�P̂0(q; z1; z2) = X2m;2n2Z
mn(q) zm1 zn2 �F (z1; z2) : (7.7)Then the fun
tions aj1j2(q) are determined by the Ra
ah-Speiser tri
k,aj1j2(q) = 
j1;j2(q)� 
j1+1;j2(q)� 
j1;j2+1(q) + 
j1+1;j2+1(q) : (7.8)These quantities also have meaning for j1 = j2. Yet, in that 
ase they do not 
ount \real"representations but just the Ka
 modules whi
h sit inside the proje
tive representations.We �nda00 = 2b0 + b 12 a 12 12 = 2b0 + 2b 12 + b1 ajj = bj� 12 + 2bj + bj+ 12 : (7.9)This relation needs to be inverted to �nd the values of the bj. For a �xed energy level thisinversion is almost trivial, one just has to start from the 
ontributions with highest spinin order to �nd the 
orresponding proje
tive 
overs. The des
ribed pro
edure may seem abit abstra
t, but it is straightforward to implement the expansions and the Ra
ah-Speisertri
k on the 
omputer. In this way the bran
hing fun
tions a(q) and b(q) 
an in prin
iplebe determined to any desired order. For large values of the level k one �nds for instan
eP̂0(q) = P0 � qh4P 12 � 6�[1; 0℄� [0; 1℄�� 2�( 32 ; 12)� ( 12 ; 32)�i� q2hP0 � 16P 12 � 4P1 � 4�[2; 1℄� [1; 2℄�� 6�[2; 0℄� [0; 2℄�� 24�[1; 0℄� [0; 1℄�� 2�( 52 ; 12)� ( 12 ; 52)�� 18�( 32 ; 12)� ( 12 ; 32)�i� � � � : (7.10)With a bit more work one might also be able to write down 
losed formulas.41



Before we 
on
lude this subse
tion, let us stress on
e more that the whole pro
edurerelied extremely on the fa
t that only proje
tive representations o

urred in the aÆne
hara
ter. If there had been non-proje
tive atypi
als in addition to the proje
tive ones,knowledge of the 
hara
ters would have been insuÆ
ient to determine the de
omposition.7.2 Some remarks on the RR deformationThe RR deformation of the AdS3 ba
kground 
orresponds to adding the the followingextra to the a
tion of the WZNW modelSPSL(2j2)RR;� = � �2� Z d2z tr �S�1�SS�1 ��S� :We 
an rewrite the perturbation in terms of the �elds we have studied above. To thisend, we shall need the left and right invariant (anti-)holomorphi
 
urrents J�(z) and�J�(�z) along with some degenerate primary �elds ���(z; �z) that transform in the (atypi
al)adjoint representation [1=2℄ of psl(2j2), i.e.J�(z)���(w; �w) = if���z � w ���(w; �w) + : : : ;�J�(�z)���(w; �w) = if����z � �w ���(w; �w) + : : : : (7.11)It is then easy to identify the RR perturbation with the one that is generated by the
omposite �eld �(z; �z) = : J�(z)���(z; �z) �J�(�z) : : (7.12)By 
onstru
tion, the �eld � has 
onformal weights h = �h = 1 in the WZNW model but inprin
iple its dimension 
ould 
hange when we perturb the theory. A

ording to [18℄ (seealso [44, 45℄ for related studies), however, � is truly marginal, i.e. its dimension remains ath = �h = 1 in all orders of perturbation theory. Note that the perturbation with the �eld �res
ales the kineti
 term of the WZNWmodel and thus alters the relative normalization ofkineti
 and Wess-Zumino term. The resulting moduli spa
e and its physi
al interpretationis summarized in �gure 1.We do not want to re-derive the 
onformal invarian
e of the RR deformation here, butinstead will dis
uss a somewhat more general assertion. To begin with, it follows fromthe marginality of � that the deformed theory possesses the usual (anti-)holomorphi
Virasoro �eld. The latter is psl(2j2) invariant and hen
e a
ts as a symmetry within thebran
hing spa
es of the de
omposition (7.4). The true 
hiral symmetry of the deformed42



Deformed WZW model:mixture of NS and RR 
uxk � 2��
WZW model: pure NS 
uxPrin
ipal 
hiral model: pure RR 
uxkFigure 1: The moduli spa
e of string theory on PSU(1; 1j2). The verti
al axis gives thenormalization of the kineti
 term, the horizontal the normalization of the Wess-Zuminoterm. The lines with � 6= 0 
orrespond to marginal deformations of the WZNW model.theory is larger. In fa
t, it was 
laimed in [18℄ that all the Casimir �elds in the 
urrentalgebra provide 
hiral �elds of the deformed model, i.e. that all �elds of the formW (n) = t�1����n J�1 � � �J�n (7.13)involving 
ontra
tions with an invariant, symmetri
 and tra
eless tensor t are holomorphi
even after a �nite deformation with �. We would like to establish this in �rst orderperturbation theory. Let us emphasize that the symmetry and tra
elessness of t implythat on the right hand side no parti
ular normal ordering pres
ription has to be spe
i�ed.To begin with, we analyze the behaviour of a single 
urrent. An insertion of the latterinto a 
orrelation fun
tion 
orresponds to the perturbative expansion
J�(z; �z) � � ��� = 
J�(z) � � � �0 � �DJ�(z) � � �Z d2w�(w; �w)E0 + � � � : (7.14)The integral may easily be evaluated with the help of the operator produ
t expansionJ�(z) �(w; �w) = k : ��� �J� : (w; �w)(z � w)2 = k : ��� �J� : (z; �z)(z � w)2 � k : ���� �J� : (z; �z)z � w : (7.15)The se
ond expansion where the argument w is repla
ed by z is more suitable for the
al
ulation of the integral. Introdu
ing the usual step fun
tion 
ut-o� whi
h restri
ts theintegration to the domain jz � wj2 > a2 we �nd, following an argument of Cardy [46℄,��J� = �� k : ���� �J� : + � � � = �2�i� k f��� : J���� �J� : + � � � : (7.16)This equation is the quantum analogue of the 
lassi
al relation ��J = 
(k; �)[J; g �Jg�1℄whi
h 
an be derived from the equations of motion of the perturbed Lagrangian in 
on-ne
tion with the Maurer-Cartan equation. We believe that the higher order terms in �43



reprodu
e pre
isely the 
lassi
al equation, i.e. that ��J� is proportional to f��� : J���� �J� :and that the �-dependent prefa
tor 
oin
ides with the 
lassi
al expression 
(k; �).We are now �nally prepared to investigate the 
hiral properties of the Casimir 
urrentsW (n). Taking the derivative will produ
e a number of terms but we 
an move the 
urrentwith the derivative to the last position. This is be
ause the di�eren
e between two di�erentnormal orderings of the 
urrents and their derivatives always involves the metri
 or thestru
ture 
onstants with two open indi
es. Upon 
ontra
tion with t these terms vanishby assumption. Together with the result (7.16) this implies��W (n) = �2�i� k f�n�� t�1����n J�1 � � �J�n�1J���� �J� : (7.17)In this equation the normal ordering again is not relevant. This is basi
ally due to thesame reasons as above, 
ombined with the fa
t that operator produ
ts of 
urrents withthe �eld � give rise to a single term involving the stru
ture 
onstants f . In addition wehave to use the vanishing of the dual Coxeter number of psl(2j2) in order to get rid ofmultiple f -
ontra
tions. Reordering and relabeling the 
urrents we then �nd the desiredresult ��W (n) = 0 due to the invarian
e of the tensor t.Having established the holomorphi
ity of Casimir �elds, it seems important to adda few 
omments on denominations. It would be tempting to baptize the 
hiral algebrathat is generated by the Casimir �elds as Casimir algebra. But this is not how the latterterm is used. By de�nition, the psl(2j2) Casimir algebra is the 
hiral algebra whose
hara
ters are given by the bran
hing fun
tions we 
omputed in the previous subse
tion[47, 48℄. These are not the same as the 
hara
ters of the 
hiral algebra that is generatedby the Casimir �elds [19℄. In fa
t, 
hara
ters of the latter may be 
al
ulated using thequantum Drinfeld-Sokolov redu
tion [49, 50℄ and they only appear as building blo
ks forthe bran
hing fun
tions above, but in most 
ases the pre
ise relation is highly involved.Put di�erently, the 
hiral algebra generated by the Casimir �elds is mu
h smaller thanthe Casimir algebra. Roughly, the di�eren
e is that the Casimir �elds are obtained asinvariant 
ombinations of 
urrents whereas the Casimir algebra also 
ontains invariant�elds involving derivatives of 
urrents. The �rst �eld in the Casimir algebra that isnot a Casimir �eld appears at 
onformal weight h = 4 and it is given by str(�J�J).In this sense, the de
ompositions dis
ussed in the previous subse
tion would not seemsuÆ
ient in order to 
ontrol the deformation away from the WZNW point. On the otherhand, the spe
tra possess a higher degree of degenera
y whi
h 
annot be explained bythe 
hiral symmetries we have des
ribed. Take, for example, the 
urrent itself: it does44



not stay holomorphi
 beyond the WZ point, yet its 
onformal weight rests at h = 1 allalong the line of marginal deformations. Su
h additional degenera
ies may possibly beattributed to some new symmetry whose algebrai
 stru
ture remains to be un
overed.15In a forth
oming paper, we shall suggest a di�erent pi
ture that is intimately related toCasimir algebras.8 Outlook and 
on
lusionsIn this work we presented a 
omplete solution of the WZNW model on the supergroupPSU(1; 1j2) in terms of a free fermion 
onstru
tion whi
h kept the bosoni
 symmetrymanifest. After a thorough dis
ussion of the representation theoreti
 foundations in part Iwe derived the pre
ise form of the spe
trum based on methods of harmoni
 analysis. It wasfound that the state spa
e splits into two parts. The typi
al (non-BPS) se
tor behavesni
ely and de
omposes into tensor produ
ts of 
hiral irredu
ible representations. Onthe other hand, there exists an atypi
al (BPS) se
tor related to states with vanishing
onformal dimension where our intuition from purely bosoni
 WZNW models breaksdown. Here we found non-
hiral inde
omposable representations on whi
h the zero-modeof the energy momentum tensor is not diagonalizable. Although we just provided a briefsket
h of how 
orrelation fun
tions may be 
al
ulated it is thus established that thePSU(1; 1j2) WZNW model is a logarithmi
 
onformal �eld theory.We would like to stress that the logarithms only arise be
ause the WZNW model onthe supergroup PSU(1; 1j2) does not fa
torize into a produ
t of fermioni
 and bosoni
subse
tors, 
ontrary to a widespread 
laim. In the minisuperspa
e theory, the 
ouplingmay be as
ribed to the existen
e of the nilpotent term Q in the Lapla
ian. The operatorQis a di�erential operator in the fermioni
 dire
tions with 
oeÆ
ients whi
h vary along thebosoni
 base. Compared to the fa
torized theory, this additional term alters the stru
tureof the eigenfun
tions along with their transformation law under psl(2j2). As a result,all the states transform in proje
tive representations only, both in the parti
le limit andthe full �eld theory. It is worthwhile to emphasize that without the 
oupling the �eldtheory ground states would have transformed as (a produ
t of) Ka
 modules, even in theatypi
al se
tor where the modules degenerate. Hen
e, the intera
tion between bosons andfermions drasti
ally 
hanges the embedding stru
ture of the fermioni
 singular ve
tors in15Additional Yangian symmetries (see [51, 52℄ for a review) are known to exist in these models, see e.g.[53℄. See also [54, 55, 56, 57, 58, 59, 60℄ for some 
losely related studies and results.45



our state spa
e.As in usual free �eld 
onstru
tions for purely bosoni
 WZNW models one might betempted to set all singular ve
tors to zero and to work with irredu
ible representationsonly. But in the 
ase of supergroup WZNW models, the fermioni
 singular ve
tors 
annotbe de
oupled, at least for generi
 values of the level k. An investigation of the relevantKnizhnik-Zamolod
hikov equations similar to the one in [21℄ shows indeed that generi
allylo
al solutions 
ontain logarithms. Hen
e, at least some of the fermioni
 singular ve
torsare needed for 
onsisten
y. There are also other ways to argue that fermioni
 singularve
tors have a very di�erent status from their bosoni
 
ounterparts. In parti
ular, itis unavoidable that the states on higher energy levels in aÆne modules { irredu
ible ornot { transform in redu
ible but inde
omposable representations of the horizontal super-algebra. Therefore it seems unnatural to insist on removing fermioni
 singular ve
torsamong the ground states and to work with irredu
ible aÆne representations only. Evenworse, in atypi
al irredu
ible aÆne modules or the asso
iated Ka
 modules we have littleor no 
han
e to ever 
ontrol the behavior of all ex
ited states under global psu(1; 1j2)transformations.It is in this 
ontext that proje
tivity of representations 
omes to our res
ue. Indeed,for aÆne modules based on a proje
tive representation of psu(1; 1j2) � psu(1; 1j2) allthe ex
ited states transform in proje
tive representations. Moreover, the Ra
ah-Speiseralgorithm allows to determine the de
omposition rather expli
itly. Sin
e the psu(1; 1j2)symmetry is an important part of the symmetry that remains unbroken when we turn onRR 
ux, the o

urren
e of proje
tive representations is the best we 
ould hope for if weare interested in getting a handle on the �-model des
ribing AdS3 � S3 with a mixtureof NS and RR 
uxes. Hen
e, we think that even in 
ases where it might not be stri
tlyne
essary for reasons of 
onsisten
y it is mu
h preferable to de�ne the WZNW modelsu
h that it in
ludes all the fermioni
 singular ve
tors. This is also suggested by theminisuperspa
e analysis in whi
h fermioni
 singular ve
tors appear naturally among theeigenstates of the Lapla
ian.Another remarkable 
onsequen
e of the 
oupling of bosons and fermions is that thenaive algebra of fun
tions on PSU(1; 1j2) { generated by the produ
t of fun
tions on itsbody AdS3 � S3 with monomials in the fermioni
 variables { does not furnish the appro-priate model for the representation spa
e of the global supersymmetry transformations.The origin of this surprising fa
t is that the fermions transform in a �nite dimensional46



non-unitary representation of the bosoni
 subgroup. In fa
t, along with the two super-symmetry transformation laws { one for the de
oupled theory and one for the full theory{ we have to distinguish two di�erent models for the representation spa
es. While in thede
oupled theory we are indeed working with the naive algebra of fun
tions, this is nottrue anymore in the full, 
oupled system. The operator � derived from Q (or analogouslythe intera
tion term16 in the full WZW model) mediates between these two inequivalentrepresentation spa
es. As part of this pro
ess the operator � entangles the two 
hiralsubse
tors of the free fermion theory by adding subleading 
ontributions to the free �eldvertex operators. These in turn 
hange the normalizability properties with respe
t tothe bosoni
 subgroup and explain why the naive algebra of fun
tions did not provide theproper representation spa
e for the full theory.Though the observations we have listed in the last few paragraphs emerged from thestudy of the WZNW model on PSU(1; 1j2), it is 
lear that they extend to a mu
h larger
lass of models. Let us point out that the minisuperspa
e analysis is not at all restri
ted tothe WZ-point and hen
e most of our remarks 
on
erning the stru
ture and importan
e offermioni
 singular ve
tors apply to more general sigma models, in parti
ular to prin
ipal
hiral models on a large 
lass of supergroups. Similarly, subtleties su
h as the 
ouplingof bosoni
 and fermioni
 degrees of freedom { whi
h eventually lead to the o

urren
eof inde
omposable non-
hiral representations and logarithmi
 
orrelation fun
tions { arebound to arise in more general setups. In fa
t, the same features are 
ommon to mostrelativisti
 theories with a global target spa
e superalgebra symmetry.Supergroups and 
osets thereof appear naturally in all attempts to quantize super-string theory in a manifestly target spa
e supersymmetri
 way. On the 
orrespondingba
kgrounds, the supersymmetry transformations are realized geometri
ally as an isome-try or, more pre
isely, as the left and (for the group 
ase) right a
tion of the supergroup onitself. This statement holds in parti
ular for all supersymmetri
 AdS-spa
es whi
h 
an beexpressed as (right) 
osets based on super
onformal groups su
h as PSU(N;N j2N) [2, 5℄,higher dimensional relatives of the supergroup 
onsidered here. Due to the presen
e ofRamond-Ramond 
uxes the quantization of these ba
kgrounds has been a notoriouslydiÆ
ult task.In the 
ase of AdS3 ba
kgrounds, the hybrid approa
h of [4℄ provides one way toresolve the 
on
eptual issues. As we stressed several times before, it involves the sigma16One 
ould also refer to it as s
reening 
harge but it should be kept in mind that no BRST pro
edureis implied in our des
ription. 47



model on PSU(1; 1j2). Con
erning higher dimensional ba
kgrounds, the quantization ofstring ba
kgrounds using pure spinors [6℄ may be 
onsidered the most promising re
entdevelopment, see also [61, 62℄ for some results on AdS5 ba
kgrounds that were obtainedin this formalism. Yet, one drawba
k of the original formulation was the ne
essity ofsolving the pure spinor 
onstraint expli
itly using a suitable 
hoi
e of 
oordinates. Thisin turn partly ruined the manifest Lorentz 
ovarian
e. The problem was over
ome in[63℄ upon introdu
tion of new additional ghost systems. In follow up papers the 
entralrole of a spe
ial aÆne Lie superalgebra has been emphasized [64, 65℄ (see also [66℄). Theexisten
e of lo
al and global superalgebra symmetries 
onne
ts these developments withthe te
hni
al aspe
ts of our work, even though we have not been 
on
erned with imposingthe physi
al state 
onditions.A
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�1�2rootsnegative positive roots
Figure 2: The root diagram of psl(2j2).A On the irredu
ibility of generalized Fo
k spa
esThe Ka
-Kazhdan formula en
odes the pre
ise stru
ture of singular ve
tors in a Vermamodule, in
luding their multipli
ities [67, 68℄. This in turns allows one to representthe 
hara
ters of irredu
ible representations as alternating sums of 
hara
ters of Vermamodules [69℄. In this se
tion we are going to dis
uss the singular ve
tors of Verma modulesover 
psl(2j2) and show that their irredu
ible quotients are typi
ally isomorphi
 to thegeneralized Fo
k modules introdu
ed in se
tion 3.2. Instead of working dire
tly with theKa
-Kazhdan determinant, we are taking a more dire
t and physi
ally more intuitive routehere, whi
h to the best of our knowledge should be 
ompletely equivalent. Neverthelesswe have to introdu
e a bit of notation �rst.The set of all pairs (�1; �2) with �i 2 Z forms the weight latti
e of psl(2j2). The twoentries 
orrespond to weights in the individual fa
tors of sl(2)� sl(2), respe
tively (let usre
all that the weight is twi
e the spin). Due to the embedding into the supersymmetri
setup we have the slightly unusual s
alar produ
t
(�1; �2); (�1; �2)� = �12 ��1�1 � �2�2� : (A.1)In order to des
ribe the root system of the Lie superalgebra psl(2j2) at least one of thetwo simple roots has to be 
hosen fermioni
. It turns out to be useful to work with a rootsystem whose simple roots 
orrespond to �1 = (1;�1) and �2 = (0; 2). The remainingpositive roots are then given by �1 + �2 = (1; 1) and 2�1 + �2 = (2; 0). The fermioni
roots have multipli
ity two while the bosoni
 ones just have multipli
ity one. A sket
h ofthe root diagram 
an be found in �gure 2.If we denote the Weyl ve
tor as � = (1; 1) as usual then the 
onformal dimension of a49



highest weight representation � is given byh� = h�; �+ 2�i2k : (A.2)Note that the 
onformal dimension is invariant under the transformationw � � = w(�+ �)� � ; (A.3)where w refers to an element of the bosoni
 Weyl group, i.e. a pair of elements of theWeyl group of sl(2) (the statement holds in general though). This may be tra
ed ba
kto the fa
t that the 
orresponding Weyl transformations leave the metri
 h�; �i invariant.Re
e
tions perpendi
ular to the fermioni
 roots, however, 
hange the sign. Thereforethey should not be used in the formula above.After these remarks we are �nally prepared to dis
uss the stru
ture of Verma modulesover 
psl(2j2). We will 
onsider a Verma module that is based on a highest weight (�; h�)where we in
luded the eigenvalue of L0, the 
onformal weight, for 
ompleteness. Singularve
tors (�; h�) 
an just o

ur if the di�eren
e (� � �; h� � h�) is a linear 
ombinationof aÆne simple roots with non-negative 
oeÆ
ients. This in parti
ular implies that the
onformal weights have to satisfy the relationh� = h� + n (A.4)with a non-negative integer n. Note that the 
onformal dimension of a singular ve
torindeed is �xed to be h� as in (A.2) for algebrai
 reasons and 
annot be 
hosen arbitrarily.Moreover, the di�eren
e �� � has to be an element of the root latti
e of psl(2j2) (in fa
tthe a
tual 
ondition is more restri
tive). In the following we will assume that every weightwhi
h a

ording to the previous 
riteria has the potential to des
ribe a singular ve
torin fa
t is singular. This seems to be a straightforward 
onsequen
e of the Ka
-Kazhdanformula [67, 68℄. It is even enough to restri
t the analysis to the 
ase where the aÆneweights di�er by a multiple of a simple root. The other states whi
h de
ouple are justdes
endents of the ones obtained through the latter.To illustrate the de
oupling 
onditions we have to spe
ify the aÆne simple roots �rst.The bosoni
 simple roots are given by the set�(�;�n) ��� 2 �(0) ; n > 0	 [ �(�2; 0)	 : (A.5)The se
ond label in ea
h tupel refers to the energy of the roots, i.e. to the mode number.The remaining simple roots are fermioni
,�(�;�n) ��� 2 �(1) ; n > 0	 [ �(�1; 0)	 : (A.6)50



In the previous de�nitions �(0) and �(1) refer to the bosoni
 and fermioni
 roots ofpsl(2j2). �1 and �2 have been spe
i�ed above. Let us stress that they do not 
oin
idewith the simple roots of sl(2)� sl(2).Let us dis
uss the bosoni
 de
oupling 
onditions �rst. For the m-fold appli
ation ofthe root �(�2; 0); n� the de
oupling 
ondition readsh(�1�2m;�2) != h(�1;�2) +mn ) �(�1 + 1) = nk +m : (A.7)This equation 
annot be solved for m (for positive level k and due to the restri
tions on�1), thus proving the absen
e of bosoni
 singular ve
tors with respe
t to the �rst fa
torbsl(2)�k. On the other hand the m-fold appli
ation of the root �(0;�2); n� yieldsh(�1;�2�2m) != h(�1;�2) +mn ) �(�2 + 1) = nk �m : (A.8)In this 
ase the equation may always be solved for m (for positive level k). Consequently,all Verma modules of 
psl(2j2)k possess bosoni
 singular ve
tors.The situation is di�erent for the fermioni
 simple roots be
ause they just may beapplied on
e, i.e. m is bound to be one. The 
orresponding four de
oupling 
onditionsare h(�1+1;�2+1) != h(�1;�2) + n ) �1 � �2 = �2nk (A.9a)h(�1+1;�2�1) != h(�1;�2) + n ) �1 + �2 + 2 = �2nk (A.9b)h(�1�1;�2+1) != h(�1;�2) + n ) �1 + �2 + 2 = 2nk (A.9
)h(�1�1;�2�1) != h(�1;�2) + n ) �1 � �2 = 2nk : (A.9d)In this 
ase none of these equations ne
essarily possesses a solution. We thus realize thatthe existen
e of fermioni
 singular ve
tors is a rather spe
ial in
iden
e, related to thefa
tual absen
e of the variable m. It is thus sensible to introdu
e the notion of a typi
alVerma module. This is a Verma module in whi
h none of the fermioni
 ve
tors de
ouples.In other words: The highest weight has to violate all the 
onditions (A.9a)-(A.9d).The analysis above has to be slightly re�ned for n = 0. The reason is that for n = 0we are bound to use the positive roots of psl(2j2) in the equations above but the negativeones have to be dis
arded. Thus just half of the equations above will 
orrespond to avalid de
oupling 
ondition under these 
ir
umstan
es.After the rather formal dis
ussion of the previous paragraphs we are now prepared toprove the �rst important mathemati
al result.51



Lemma 1. Let � be the highest weight of a typi
al Verma module. Then every singularve
tor � in this Verma module is again typi
al.Proof. Sin
e singular ve
tors 
an just o

ur in the se
ond fa
tor of bsl(2)�k� bsl(2)k we justhave to distinguish two 
ases, 
orresponding to the two di�erent signs in (A.8). In the\�"-
ase one �nds (�1; �2) = ��1;��2 + 2(nk � 1)� : (A.10)The 
onditions for the existen
e of a singular ve
tor in the submodule � on the otherhand read ��1 + �2 = ��1 � �2 � 2 + 2nk ?= 2lk (A.11)��1 � �2 � 2 = ��1 + �2 � 2nk ?= 2lk : (A.12)Ea
h of them 
ould only be satis�ed if � was atypi
al. Similar 
onsiderations apply tothe \+"-
ase.Basi
ally the previous Lemma implies that for typi
al modules the 
omplete stru
tureof singular ve
tors is 
aptured by the bosoni
 singular ve
tors. It should moreover benoted that for 
psl(2j2)k the de
oupling 
onditions for the bosoni
 roots are pre
isely thosethat one obtains in Verma modules over bsl(2)�k�2 � bsl(2)k�2. As a result we have theConje
ture 1. The 
hara
ters of the generalized Fo
k module based on a typi
al weight �and that of the 
orresponding irredu
ible module obtained from the Verma module 
oin
ide.In parti
ular the Fo
k module is irredu
ible itself.In order to promote this 
onje
ture to a theorem one would have to dis
uss the mul-tipli
ities of zeroes in the Ka
-Kazhdan determinant [67, 68℄ but we refrain from doingso here. For atypi
al modules one has to work a bit harder to obtain the 
hara
ters ofirredu
ible modules, see se
tion 3 for details. We 
on
lude by expressing our expe
ta-tion that the reasoning of this appendix generalizes to more general 
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