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The WZNW model on PSU(1;1j2)Gerhard G�otz1, Thomas Quella2;3, Volker Shomerus1;41 Servie de Physique Th�eorique, CEA Salay,F-91191 Gif-sur-Yvette, Frane2 King's College London, Department of Mathematis,Strand, London WC2R 2LS, United Kingdom3 KdV Institute for Mathematis, University of Amsterdam,Plantage Muidergraht 24, 1018 TV Amsterdam, The Netherlands4 DESY Theory Group, DESY Hamburg,Notkestrasse 85, D{22603 Hamburg, GermanyAbstratAording to the work of Berkovits, Vafa andWitten, the non-linear sigma modelon the supergroup PSU(1; 1j2) is the essential building blok for string theory onAdS3�S3�T4. Models assoiated with a non-vanishing value of the RR ux an beobtained through a psu(1; 1j2) invariant marginal deformation of the WZNW modelon PSU(1; 1j2). We take this as a motivation to present a manifestly psu(1; 1j2)ovariant onstrution of the model at the Wess-Zumino point, orresponding toa purely NSNS bakground 3-form ux. At this point the model possesses an en-haneddpsu(1; 1j2) urrent algebra symmetry whose representation theory, inludingexpliit harater formulas, is developed systematially in the �rst part of the paper.The spae of vertex operators and a free fermion representation for their orrelationfuntions is our main subjet in the seond part. Contrary to a widespread laim,bosoni and fermioni �elds are neessarily oupled to eah other. The interationhanges the supersymmetry transformations, with drasti onsequenes for the mul-tiplets of loalized normalizable states in the model. It is only this fat whih allowsus to deompose the full state spae into multiplets of the global supersymmetry.We analyze these deompositions systematially as a preparation for a forthomingstudy of the RR deformation.
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1 IntrodutionString theory duals to superonformal �eld theories in various dimensions (see [1℄ for areview) an be related to 2D sigma models on supergroups and osets (see [2, 3, 4, 5, 6, 7℄for some early referenes). The preise relation depends on the partiular framework, i.e.whether the models arise within the Green-Shwarz formalism, the hybrid or the purespinor approah. These developments provide strong motivation to study world-sheetmodels with supermanifolds as target spaes. This applies in partiular to 1+1 dimen-sional sigma models on the superonformal group PSU(1; 1j2). In this ase, the hybridformalism developed by Berkovits, Vafa and Witten [4℄ furnishes a ovariant onstrutionof string theory on AdS3�S3. The main onstituent of their formulation is a sigma modelon PSU(1; 1j2).1Type IIB string theory on AdS3 � S3 has one rather peuliar feature, namely thatthe onditions on bakground �elds imposed by the string equations of motion may besolved by both RR and/or NSNS 3-form uxes. Hene, there exists a 2-parameter familyof AdS3� S3 bakgrounds with an unbroken PSU(1; 1j2) symmetry. It is well known thatmodels with pure NSNS bakground �elds are easiest to deal with and indeed string theoryin AdS3 � S3 has been solved for suh ases using the NSR formalism [13, 14℄, based onearlier work on the Eulidean model [15, 16, 17℄. Aording to ommon folklore, however,inorporating RR uxes in the NSR formulation is oneptually diÆult. This is wherethe hybrid approah omes in: it essentially removes the oneptual issues, but ertainlyleaves us with the hard task of solving the non-linear sigma model on PSU(1; 1j2).Though very little is known about sigma models on superspaes, there exist a fewinteresting results that are partiularly relevant in our present ontext. Most importantly,Bershadsky et al. [18℄ have argued that quantum theories with PSL(N jN) target spaeare onformally invariant even before inluding the familiar WZ term. Of ourse the lattermay then be added with any integer oeÆient, preserving onformal invariane. Suha behavior an ultimately be traed bak to the vanishing of the dual Coxeter numberof PSL(N jN) along with the uniqueness of the invariant rank 3 tensor. This observation�ts niely with the before-mentioned parametrization of AdS3�S3 bakgrounds. WZNWmodels on PSU(1; 1j2) at level k desribe pure NSNS bakgrounds with N = k + 2 units1The same model has been proposed to desribe plateau transitions in the integer quantum Hall e�et[8℄ (see also [9, 10℄ for some further studies in this ontext). Let us note that models with superalgebrasymmetries arise quite generally when systems with disorder are treated using Efetov's supersymmetrimethod [11℄ (see also [12℄ for a review). 1



of NSNS ux running through the 3-sphere. Varying the oeÆient of the kineti relativeto the WZ term orresponds to adding RR ux, see [4℄ for a preise relation between theparameters. Hene, the hybrid formulation o�ers a oneptually very simple desriptionof AdS3 � S3 bakgrounds with RR ux through marginal deformations of PSU(1; 1j2)WZNW models. Let us note that the parameter assoiated with RR uxes is ontinuousin perturbative string theory sine the mass of D5-branes is suppressed by a fator gsrelative to the mass of NS5-branes.Obviously, the onstrution of sigma models on PSU(1; 1j2) through marginal defor-mation of the WZNW theory remains a very diÆult tehnial problem. To begin with,surprisingly little is known even about WZNW models on supergroups. As we shalldemonstrate below, models with urrent superalgebra symmetries behave very di�erentlyfrom their bosoni ounterparts. The seond obstale arises with the RR deformationwhih is still tehnially hard to ontrol sine it breaks many of the loal symmetriesof the underlying world-sheet model. In fat, it was shown in [18℄ that swithing onthe deformation redues the hiral symmetries of the onformal �eld theory from a fullpsu(1; 1j2) urrent algebra to the hiral algebra generated by the so-alled Casimir �eldswhih is too small a symmetry to render the model solvable within a standard onfor-mal �eld theory analysis.2 Nevertheless, some onformal �eld theory tehniques, and inpartiular onformal perturbation theory, do o�er a promising approah to omputingertain spetra in the theory, even at generi points in the moduli spae. We shall omebak to this issue in a forthoming paper.The main fous of this work is on the psu(1; 1j2) ovariant onstrution of the WZNWmodel on the PSU(1; 1j2). We exploit and extend the insights whih have been gainedreently in [20℄ where the WZNW on GL(1j1) has been re-examined using a free �eldrepresentation. In omparison to the earlier solution of the GL(1j1) WZNW model byRozansky and Saleur [21℄, the new approah linked some of the peuliar properties ofthe �eld theory to harateristi features of super-geometry. In this geometri ontext, itan be argued in partiular that WZNW models on supergroups give rise to examples oflogarithmi onformal �eld theories (see e.g. [22, 23, 24, 25℄ and referenes therein). Theappearane of logarithmi singularities had been observed repeatedly before in the theoryof disordered systems (see e.g. [26, 27, 28℄). Another property of the GL(1j1) WZNW2In [18℄, the misnomer \Casimir algebra" was used for the generi hiral symmetry of the deformedmodels. This deviates from standard onventions. In fat, exept for very speial ases the Casimiralgebra is muh larger than the algebra of Casimir �elds (see [19℄ for a nie review).2



model that was also established in [20℄ is its symmetry with respet to a speial spetralow automorphism of the urrent superalgebra. We shall enounter the same features inthe PSU(1; 1j2) WZNW model, though the derivation is a bit di�erent due to the non-ompatness of the target spae. The logarithmi singularities turn out to a�et only thesetor of loalized normalizable states in the theory. It is a somewhat surprising outomeof this analysis that { ontrary to a widespread believe, see e.g. [9℄ { the WZNW modelon PSU(1; 1j2) does not simply fatorize into a produt of the usual bosoni subsetorand a bunh of free fermions. Suh a fatorization applies only to the free �eld theorythat is used in the onstrution, but reeives an interesting orretion due to a non-trivialsreening harge. The latter modi�es, in partiular, the transformation laws of �elds in arather non-trivial way. This fat beomes ruial for a suessful RR deformation of thetheory (see below and our forthoming paper).We have deided to separate the material of this paper into two parts. The �rstontains a rather omplete disussion of the representation theoreti foundations for boththe �nite dimensional Lie algebra psl(2j2) and its aÆne version psl(2j2)k. Speial attentionis devoted to in�nite dimensional representation of psl(2j2). Among the main new resultsare expliit harater formulas for all irreduible representations of psl(2j2)k belongingto �nite dimensional representations and the in�nite dimensional disrete and prinipalseries. The seond part then deals with the PSU(1; 1j2) WZNWmodel. After an extendeddisussion of the ation funtional, we study the state spae �rst in the minisuperspaeapproximation. It is shown that the Laplaian on PSU(1; 1j2) is non-diagonalizable, andthe struture of the Jordan bloks is disussed. In fat, we shall provide expliit formulasfor all its generalized eigenfuntions and study their transformation law wrt. the ationof psl(2j2). Following this disussion, we explain how orrelators of the WZNW model onPSU(1; 1j2) an be omputed starting from orrelation funtions for the WZNW model onthe bosoni base. We shall also see how the non-trivial properties of the minisuperspaetheory re-emerge in the �eld theory, giving rise to those features of the WZNW model wehave outlined in the previous paragraph. Finally, as an appliation of our main results, weshall address the Casimir deomposition of the state spae. More preisely, we desribean algorithm that allows to ount all the states of the theory whih transform in thesame representation with respet to the global symmetries. These results shall serve as astarting point for a forthoming analysis of the RR deformation.
3



Part I: Representation theory
The �rst part of this work is devoted to the representation theory of both the �nitedimensional Lie superalgebra psl(2j2) and its aÆne ounterpart. We shall disuss �niteand in�nite dimensional representations of psl(2j2) and the orresponding modules ofthe psl(2j2) urrent algebra. Some results on the �nite dimensional representations ofpsl(2j2) are fairly standard but they are inluded for ompleteness (see [29, 30, 31, 32℄ formore details and referenes). We believe that our analysis of representations of the aÆnealgebra and their haraters are new.2 Representation theory of psl(2j2)In this setion we shall disuss the Lie superalgebra psl(2j2) and its �nite and in�nitedimensional representations. The latter ome in two series, namely a prinipal ontinuousand a `disrete' series. We will not omment on the omplementary series sine it doesnot have any physial signi�ane in the ontext we are interested in.2.1 The Lie superalgebra psl(2j2)The Lie superalgebra g = psl(2j2) possesses six bosoni generators Kab = �Kba witha; b = 1; : : : ; 4. They form the Lie algebra so(4) whih is isomorphi to g(0) = sl(2)� sl(2).In addition, there are eight fermioni generators that we denote by Sa�. They split into twosets (� = 1; 2) eah of whih transform in the vetor representation of so(4) (a = 1; : : : ; 4)whih is the (1=2; 1=2) of sl(2)� sl(2). The relations of psl(2j2) are then given by[Kab; Kd℄ = i �ÆaKbd � ÆbKad � ÆadKb + ÆbdKa�[Kab; S℄ = i �ÆaSb � ÆbSa�[Sa�; Sb�℄ = i2 ��� �abdKd : (2.1)Here, ��� and �abd denote the usual ompletely antisymmetri �-symbols with �12 = 1 and�1234 = 1, respetively. An invariant metri is given byhKab; Kdi = ��abd hSa�; Sb�i = ���� Æab : (2.2)4



It is unique up to a salar fator. The signs have been hosen in view of the real formpsu(1; 1j2) whih will be onsidered below. In order to de�ne a root spae deompositionof psl(2j2) we split the fermions g(1) into two sets of four generatorsg(1)+ = spanfSa1g ; g(1)� = spanfSa2g :As indiated by the subsripts �, we shall think of the fermioni generators Sa1 as anni-hilation operators and of Sa2 as reation operators.In our disussion below we shall also employ a seond basis whih learly exhibits thesl(2)� sl(2) struture of the bosoni subalgebra. The two Cartan generators of this newbasis are given byK01 = 12�K12 +K34� K02 = 12�K12 �K34� : (2.3)These are supplemented by the bosoni raising and lowering operators of the formK�1 = 12�K14 +K23 � iK24 � iK13�K�2 = 12��K14 +K23 � iK24 � iK13� : (2.4)The elements K�� either ommute with K01 ; K02 or shift the orresponding eigenvalue by�1. Finally there are four fermioni raising and four fermioni lowering operators (�=1,2)S�1� = S1� � iS2� S�2� = S3� � iS4� ; (2.5)whih raise/lower the eigenvalues of K01 ; K02 by �1=2. A omplete set of relations betweenthe new generators of the Lie algebra psl(2j2) an be read o� from (3.1){(3.10) below.2.2 Ka modules and their haratersIn the present ase the bosoni subalgebra g(0) onsists of two ommuting opies of sl(2).The Ka modules [33℄ of psl(2j2) are then labelled by pairs (�; �) of representations �; �of sl(2). By onstrution, we delare that the orresponding representation spae V(�;�)is annihilated by Sa1 and then generate the Ka module [�; �℄ through appliation of theraising operators Sa2 ,[�; �℄ := Indgg(0)� g(1)+ V(�;�) = U(g)
g(0)� g(1)+ V(�;�) :5



Here, we have extended the g(0)-module V(�;�) to a representation of g(0) � g(1)+ by settingSa1V(�;�) = 0. Note that we an apply at most four fermioni generators to the states inV(�;�). When hoosing the labels �; � we silently agreed to identify the Cartan subalgebraof psl(2j2) with that of its maximal bosoni subalgebra.To eah of these Ka modules we an assoiate a superharater aording to thestandard presription3�[�;�℄(z1; z2) = strhzK011 zK022 i = trh(�1)F zK011 zK022 i = ��(z1)��(z2)�F (z1; z2) : (2.6)It enodes the omplete information about the weight ontent but not how the vetorsare linked internally. The symbols �� and �� denote sl(2)-haraters while the last fator�F stems from the ontribution of the fermioni generators and is independent of thehoie of � and �. For the de�nition of the superharaters we will always assume thatthe ground states, i.e. the states in the representation V(�;�) we started with, are bosoni.In order to determine the fermioni term �F in the haraters (2.6) we reall that thefermioni raising operators transform in the representation (1=2; 1=2) of sl(2)� sl(2) whileproduts of more than one generator transform in antisymmetrized produts thereof. Thisimplies that the fermioni ontribution to Ka modules has the bosoni ontent4VF = 2(0; 0)� 2(1=2; 1=2)� (1; 0)� (0; 1) : (2.7)From this we read o� immediately that�F (z1; z2) = 4 + z1 + z�11 + z2 + z�12 � 2(z 121 + z� 121 )(z 122 + z� 122 ) : (2.8)We introdued a speial symbol for this representation sine it will appear frequentlythroughout the text. Note that �F = �[0;0℄ oinides with the harater of the Kamodule generated from the trivial representation.Obviously, the bosoni ontributions to the haraters will strongly depend on thelabels � and �. In view of our appliations to the Lie supergroup PSL(2j2) we are in fatprimarily interested in representations for whih � = j2 = 0; 1=2; 1; : : : ; labels the �nitedimensional irreduible representations of sl(2) so that��(z2) = �j2(z2) = j2Xl=�j2 zl2 : (2.9)3We wish to emphasize that haraters and superharaters are related by the substitution z1=2 !�z1=2. Hene, they both enode preisely the same information. Some of the formulas below possess amore natural interpretation in terms of superharaters though.4Here and in the following the phrase \bosoni ontent" refers to the deomposition of a Lie superal-gebra module with respet to the maximal bosoni subalgebra.6



The �rst label �, on the other hand, will be allowed to run through three di�erent seriesof representations.Finite dimensional representations of psl(2j2) are obtained when we set � = j1 =0; 1=2; 1; : : : . In this ase, the ontribution to the haraters (2.6) is given by ��(z1) =�j1(z1) as de�ned in (2.9). Even though suh representations are not assoiated to unitaryrepresentations of su(1; 1) � su(2) unless j1 = j2 = 0, �nite dimensional representationsplay an important role, in partiular for the boundary WZNW model.Our seond series of psl(2j2) representations is aÆliated with the two disrete seriesof su(1; 1). In this ase, the label is � = (�; j1) with j1 < 0 any negative real number.5With our hoie of j1 and of the inde�nite metri (2.2), the value of the Casimir elementin (�; j1) is given by �j1(j1 + 1). By de�nition, the representations (+; j1) and (�; j1)have a lowest/highest weight with K01 eigenvalues �j1 > 0 and j1 < 0, respetively. Theorresponding haraters are given by�(�;j1)(z1) = 1Xn=0 z�j1�n1 = z�j111� z�11 : (2.10)In the last two lines the geometri series expression is valid for jz1j < 1 and jz1j > 1,respetively. Let us emphasize again that, in our onventions, the representations (+; j1)are atually labelled by a negative real number j1 although their lowest weight has apositive weight �j1.The last set of representations we need omes with the prinipal ontinuous seriesof su(1; 1). We label suh representations by tupels � = (j1; �) where 0 � � < 1 andj1 2 S = �1=2 + iR. Representations in the prinipal ontinuous series have neitherhighest nor lowest weight states. Eigenvalues of the Cartan element K01 take values on� + Z. Hene the haraters of the third series read�(j1;�)(z1) = Xn2Zz�+n1 : (2.11)Note that these haraters do not depend on the spin j1. Yet, the latter determines thevalue �j1(j1 + 1) of the quadrati Casimir.The importane of Ka modules stems from the fat that they are irreduible forgeneri values of the labels � and �. Nevertheless, for speial atypial hoies of (�; �), non-trivial invariant subspaes exist. A lose inspetion of the ation of fermioni generators on5 Our notation seems to deviate from the standard one but it appears to be loser to the atualonstrution of the modules and hene the formulas we enounter will be easier.7



Ka modules reveals that, starting with a bosoni highest or lowest weight representation,there is just one single atypiality ondition whih may be written in the form60 = (j2 � j1)(j1 + j2 + 1) = �j1(j1 + 1) + j2(j2 + 1) = C2(j1; j2) ; (2.12)i.e. the Ka module [�; �℄ possesses a non-trivial invariant submodule if and only if thequadrati Casimir of the bosoni subalgebra vanishes on the multiplet (�; �) from whihthe Ka module is generated. For �nite dimensional representations this happens when-ever j1 = j2. Similarly, the Ka modules �(�; j1); j2� ease to be irreduible if and only ifj1 = �j2 � 1. In the following we shall study the atypial ases in muh more detail.In ase of the prinipal ontinuous series, �nally, the atypially ondition (2.12) doesnot apply. But sine the value of the quadrati Casimir is diretly determined by the labelof the bosoni highest weight multiplet and idential on the whole representation generatedfrom it we an give a neessary ondition for the deoupling of a bosoni subrepresentation�(j 01; �0); j 02� of the Ka module �(j1; �); j2�: The eigenvalues of the Casimir operatorhave to agree. A areful analysis of this ondition inluding the disussion of possibledeomposition series then shows that the Ka modules �(j1; �); j2� are always irreduible.2.3 Finite dimensional atypial representationsAs desribed in the previous subsetion, �nite dimensional Ka modules of psl(2j2) arelabelled by pairs [j1; j2℄ with ji = 0; 1=2; 1; : : : . A Ka module [j1; j2℄ is irreduible when-ever j1 6= j2. In ase j1 = j2, however, Ka modules turn out to be indeomposableomposites of smaller irreduible building bloks (short multiplets). We shall desribe thelatter in the next paragraph before disussing the new lass of so-alled projetive overs.These are maximal indeomposable omposites of short multiplets. In some sense that weshall make more preise below, the projetive overs should be onsidered as the naturalreplaement of Ka modules in ase we are dealing with atypial representations.2.3.1 Atypial Ka modules and irreduible representationsAs we have mentioned several times, the Ka modules [j; j℄ ontain non-trivial invariantsubspaes. For j � 1 the struture of the Ka module an be enoded in the followinghain [j; j℄ : [j℄ ! [j + 12 ℄� [j � 12 ℄ ! [j℄ ; (2.13)6This onditions arises if one tries to return from the state S12S22S32S42 jj1; j2i on the fourth fermionlevel to the original highest weight state jj1; j2i. 8



where [j℄ denote irreduible atypial representations (short multiplets) of psl(2j2). Thestruture of the reduible Ka modules an also be depited by a planar diagram in whihthe vertial diretion refers to the spin j of the atypial onstituents,[j; j℄ : [j + 12 ℄
%%KK

KK[j℄
$$HH

HH

::vvvv [j℄ :[j � 12 ℄ 99ssss

(2.14)
Sine pitures of this type will appear frequently throughout this text, let us pause herefor a moment and explain arefully how to deode their information. We read the diagram(2.13) from right to left. The rightmost entry in our hain ontains the so-alled soleof the indeomposable representation, i.e. the largest fully reduible invariant submodulewe an �nd. In the ase of our Ka module, the sole happens to be irreduible and it isgiven by the atypial representation [j℄. If we divide the Ka module by the submodule[j℄, we obtain a new indeomposable representation of our Lie superalgebra. Its diagramis obtained from the one above by removing the last entry and all arrows onneted to it.The sole of this quotient is a diret sum of the two atypial representations [j�1=2℄. It israther obvious how to iterate this proedure until the entire indeomposable representationis split up into oors with only diret sums of irreduible representations appearing oneah oor.There are two speial ases for whih the deomposition of the Ka module does notfollow the generi pattern as desribed in eq. (2.13). These are the ases j = 0 andj = 1=2, [0; 0℄ : [0℄ ! [ 12 ℄! [0℄ ; (2.15)[ 12 ; 12 ℄ : [ 12 ℄ ! [1℄ ! [0℄� [0℄ ! [ 12 ℄ : (2.16)The irreduible onstituents [0℄ and [1=2℄ are the trivial one-dimensional representationand the 14-dimensional adjoint representation of psl(2j2).The superharaters of short multiplets an be dedued from those of the orrespond-ing Ka modules and the omposition patterns (2.13), (2.15) and (2.16). They possessthe form�[j℄(z1; z2) = 2�j(z1)�j(z2)� �j+ 12 (z1)�j� 12 (z2)� �j� 12 (z1)�j+ 12 (z2) (2.17)9



for all j > 0. We would like to stress that these superharaters do not ontain thefermioni fator �F that appears in all superharaters of typial irreduible representa-tions.2.3.2 Projetive overs of [j℄In the previous subsetion we have seen the �rst examples of representations whih arebuilt out of several short multiplets. Ka modules are only one example of suh ompositesand we shall indeed need another lass of indeomposables as we proeed, the so-alledprojetive overs Pj. By de�nition, these are the largest indeomposables whose soleonsists of a single atypial representation [j℄. General results imply that suh a maximalindeomposable extension of [j℄ exists and is unique [29℄. In ase of j � 3=2, the strutureof Pj is enoded in the following diagramPj : [j℄ �! 2[j + 12 ℄� 2[j � 12 ℄ �! [j + 1℄� 4[j℄� [j � 1℄ �! (2.18)�! 2[j + 12 ℄� 2[j � 12 ℄ �! [j℄ :Note that Pj ontains an entire Ka module as a proper submodule. In this sense, theKa modules are extendable. We also observe one rather generi feature of projetiveovers: they are built up from di�erent Ka modules in a way that resembles the patternin whih Ka modules are onstruted out of irreduibles (see eq. (2.13)).7 One may seethis even more learly if Pj is displayed as a 2-dimensional diagram in whih the additionaldiretion keeps trak of the spin j of the atypial onstituents [j℄,Pj : [j + 1℄
((PPPP2[j + 1=2℄
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(2.19)
We will ontinue to swith between suh planar pitures and diagrams of the form (2.18).The remaining ases j = 0; 1=2; 1 have to be listed separately. When j = 1 the piture isvery similar only that we have to insert 2[0℄ in plae of [j � 1℄,P1 : [1℄ �! 2[ 32 ℄� 2[ 12 ℄ �! [2℄� 4[1℄� 2[0℄ �! 2[ 32 ℄� 2[ 12 ℄ �! [1℄ : (2.20)7In mathematis this statement is known as a generalization of the BGG duality theorem [29℄.10



The projetive over of the atypial representation [1=2℄ is obtained from the generi aseby the formal substitution 2[j � 1=2℄! 3[0℄,P 12 : [ 12 ℄ �! 2[1℄� 3[0℄ �! [ 32 ℄� 4[ 12 ℄ �! 2[1℄� 3[0℄ �! [ 12 ℄ : (2.21)Finally, the projetive over P0 of the trivial representation is given by,P0 : [0℄ �! 3[ 12 ℄ �! 2[1℄� 6[0℄ �! 3[ 12 ℄ �! [0℄ : (2.22)The reader is invited to onvert the last three formulas into planar pitures.This onludes our list of the projetive overs of �nite dimensional representations.The representations Pj appear in the operator produts of ertain open string vertexoperators in the WZNW model, when we onsider boundary onditions orresponding toa point-like brane. Together, typial representations and the projetive overs of atypialsform the subset of so-alled projetive representations. What makes this lass partiularlyinteresting is its behavior under tensor produts. In fat, it is well-known that projetiverepresentations of a Lie superalgebra form an ideal in the fusion ring. This means thatthe produt of a projetive representation with any other representation, no matter howompliated it is, an be deomposed into projetives. We shall later see that this propertyof projetive representations (along with the fat that they are easy to list) has invaluableonsequenes.It is moreover relevant to observe that, unlike for the atypials themselves, the har-aters of their projetive overs ontain the full fermioni harater �F as a fator. To bepreise one has�Pj = h2�j(z1)�j(z2)� �j+ 12 (z1)�j+ 12 (z2)� �jj� 12 j(z1)�jj� 12 j(z2)i�F (z1; z2) : (2.23)This property puts projetive overs on an equal footing with typial irreduibles. Even-tually, it will even allow us to ome up with a version of the familiar Raah-Speiser al-gorithm whih holds for projetive representations of Lie superalgebras. We refer readersinterested in further details to setion 7.1 below.2.4 In�nite dimensional atypial representationsLet us now turn to the theory of in�nite dimensional atypial representations of psl(2j2).As we have remarked before, atypials appear only in the disrete series and if the labels(�; �) = �(�; j1); j2� satisfy the ondition j1 + j2 + 1 = 0. The plan of this subsetion11



follows the same logi as our disussion of �nite dimensional atypials, i.e. we shall studyatypial Ka modules and irreduibles �rst and then turn to the projetive overs. Butsine some of the results below seem to be less known, we will be a bit more detailedabout their derivation.2.4.1 Atypial Ka modules and irreduible representationsKa modules of the form �(�;�j � 1); j� fail to be irreduible. In order to understandthe struture of the resulting Ka modules let us �rst have a look at the bosoni ontentof typial representations,�(�;�j � 1); j���sl(2)�sl(2) = �(�;�j � 1); j�
 VF ; (2.24)where VF denotes the fermioni ontributions as spei�ed in (2.7). This tensor produtan be evaluated using the familiar rules for sl(2) and the additional formula(�;�j � 1)
 k = �j�1+kMl=�j�1�k (�; l) ; (2.25)whih holds as long as j � 0 and k � j, or more generally as long as the sum on the righthand side does not ontain ontributions with non-negative half-integer or integer l. It isstraightforward to see that in �(�;�j�1); j� the bosoni representations �(�;�j�1); j�,�(�;�j � 12); j � 12� and �(�;�j � 32); j + 12� deouple. After dividing out the induedinvariant submodules we are left with the irreduible representation [j℄� whose bosoniontent reads[j℄���sl(2)�sl(2) = 2�(�;�j � 1); j�� �(�;�j � 32); j � 12�� �(�;�j � 12); j + 12� (2.26)for j 6= 0. We also infer that the struture of the degenerate Ka modules is desribed bythe omposition series�(�;�j � 1); j� : [j℄� ! [j + 12 ℄� � [j � 12 ℄� ! [j℄� : (2.27)Again, we assumed that j 6= 0. Formally this formula is idential to the one whih isobtained for �nite dimensional representations [32℄.So far we have avoided to investigate the speial ase j = 0. The haraters of the irre-duible representations [0℄� are easily obtained from the above sine these representationsarise as building bloks of the Ka modules �(�;�3=2); 1=2�,[0℄���sl(2)�sl(2) = 2�(�;�1); 0�� �(�;�1=2); 1=2� : (2.28)12



Conerning the struture of the speial Ka modules �(�;�1); 0� we note that theirbosoni ontent is given by�(�;�1); 0���sl(2)�sl(2) = 2�(�;�1); 0�� 2�(�;�3=2); 1=2�� 2�(�;�1=2); 1=2��R((�;�1);0) � �(�;�2); 0�� �(�;�1); 1� : (2.29)Let us stress that it ontains an indeomposable bosoni representation R((�;�1);0) whihhas the deomposition seriesR((�;�1);0) : �(�;�1); 0�! (0; 0)! �(�;�1); 0� : (2.30)The struture of the Ka module may be summarized in the deomposition series�(�;�1); 0� : [0℄� ! [0℄� [1=2℄� ! [0℄� : (2.31)It is interesting to �nd a �nite dimensional representation in the deomposition serieseven though we started with an in�nite dimensional representation.For later appliations we shall draw an important onlusion from the deompositionformulas (2.27) and (2.31) of Ka modules. Note that they allow us to express thesuperharater of the atypial trivial representation [0℄ formally as in in�nite sum oversuperharaters of Ka modules,8�[0℄(z1; z2) = 1Xn=0 (n+ 1)�[(�;�n=2�1);n=2℄(z1; z2) : (2.32)Indeed, one an show by straightforward diret omputation that the terms on the righthand side sum up to �[0℄ = 1. If the superharaters of the Ka modules are deomposedinto a sum of bosoni haraters as enoded in formulas (2.27) and (2.31), then all butthe ontribution from the trivial representation anel eah other.2.4.2 Projetive overs of [j℄�In ase of �nite dimensional representations, the projetive overs are built up from Kamodules and there exists a rather simple rule to determine the number of Ka modulesof any type within a given projetive over [29℄. If we extrapolate this rule to our present8We have �rst learned this trik and its generalization to aÆne superharaters from Hubert Saleur[34℄, see also [35℄ for a very simple version thereof.
13



setup, we arrive at the following omposition series for the projetive overs of the disreterepresentationsP�j : [j℄� �! 2[j + 12 ℄� � 2[j � 12 ℄� �! [j + 1℄� � 4[j℄� � [j � 1℄��! 2[j + 12 ℄� � 2[j � 12 ℄� �! [j℄�for j � 1. The same expression may be used for j = 1=2 if we formally replae [� 12 ℄�by the trivial representation [0℄. The struture of the projetive overs of [0℄� does notfollow the generi pattern. Instead it is given byP�0 : [0℄� �! [0℄� 2[ 12 ℄� �! 3[0℄� � [1℄� �! [0℄� 2[ 12 ℄� �! [0℄� :Needless to stress that the haraters of these projetive overs ontain the fator �F asin the �nite dimensional ase.
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3 Representation theory of the aÆne superalgebraIrreduible representations of the aÆne psl(2j2) superalgebra an be built over all theirreduible representations of the psl(2j2) algebra that we disussed above. The latteran be either �nite or in�nite dimensional. We shall address the in�nite dimensional ones�rst and then turn to the �nite dimensional representations in the seond subsetion.3.1 The aÆne psl(2j2) algebra and spetral owsHere we display the de�nition of the urrent algebra psl(2j2)k �rst. In terms of raisingand lowering operators (2.3){(2.5) it may be written as[K01;m; K�1;n℄ = �K�1;m+n [K02;m; K�2;n℄ = �K�2;m+n (3.1)[K01;m; S�1�;n℄ = �12 S�1�;m+n [K01;m; S�2�;n℄ = �12 S�2�;m+n (3.2)[K02;m; S�1�;n℄ = �12 S�1�;m+n [K02;m; S�2�;n℄ = �12 S�2�;m+n (3.3)fS�1�;m; S�2�;ng = �2���K�1;m+n fS�1�;m; S�2�;ng = �2��� K�2;m+n (3.4)[K�1;m; S�1�;n℄ = �S�2�;m+n [K�1;m; S�2�;n℄ = �S�1�;m+n (3.5)[K�2;m; S�1�;n℄ = �S�2�;m+n [K�2;m; S�2�;n℄ = �S�1�;m+n : (3.6)In addition, there are six relations involving the level k of the psl(2j2) urrent algebra.These read as follows,[K01;m; K01;n℄ = �k2 mÆm+n;0 [K02;m; K02;n℄ = k2 mÆm+n;0 (3.7)[K+1;m; K�1;n℄ = 2K01;m+n �mk Æm+n;0 [K+2;m; K�2;n℄ = 2K02;m+n +mk Æm+n;0 (3.8)fS+1�;m; S�1�;ng = 2����K01;m+n �K02;m+n�� 2mk ��� Æm+n;0 (3.9)fS+2�;m; S�2�;ng = 2����K01;m+n +K02;m+n�� 2mk ��� Æm+n;0 : (3.10)The algebra de�ned by eqs. (3.1){(3.10) possesses a two-parameter family (w1;w2) ofautomorphisms. It is indued from the following two-parameter family of automorphismsfor the bosoni subalgebra bsl(2)�k � bsl(2)k(w1;w2)(K01;n) = K01;n � k2 w1 Æn0 (w1;w2)(K�1;n) = K�1;n�w1 (3.11)(w1;w2)(K02;n) = K02;n + k2 w2 Æn0 (w1;w2)(K�2;n) = K�2;n�w2 : (3.12)15



One may easily hek that these maps extend to the whole algebra psl(2j2)k through(w1;w2)(S�1�;n) = S�1�;n�w1+w22 (w1;w2)(S�2�;n) = S�2�;n�w1�w22 : (3.13)Appliation of these automorphisms maps representations of the urrent algebra onto eahother. They therefore play a ruial role in the representations theory of psl(2j2)k.3.1.1 Free �eld onstrution of the aÆne algebraFollowing [36, 4℄ we an onstrut psl(2j2)k out of four pairs of fermions pa (of weighth = 1) and �a (with h = 0) whih satisfypa(z) �b(w) = Æabz � w : (3.14)and the aÆne sl(2)�k�2 � sl(2)k�2 algebra that is generated by urrents jab with thefollowing operator produt expansionjab(z) jd(w) = �k �abd + 2(ÆaÆbd � ÆadÆb)(z � w)2 + i�Æajbd � Æadjb � Æbjad + Æbdja�z � w :(3.15)Based on this struture we now obtain the psl(2j2)k algebra viaKab = jab � i��apb � �bpa� ; Sa2 = paSa1 = k ��a + i2 �abd ��bjd � i�b�pd� : (3.16)It is straightforward to show that the �elds K and Sa� obey the orret relations followingfrom eqs. (2.1) and (2.2).One of the main ingredients in the representation theory of psl(2j2)k are the spetralow automorphisms whih have been de�ned in eqs. (3.11)-(3.13). We would like to showthat the spetral ows of the full aÆne Lie superalgebra are inherited from those whihmay be de�ned for sl(2)�k�2�sl(2)k�2 and the fermions pa and �a. For the bosoni urrentalgebra we have the standard transformations(w1;w2)(J01;n) = J01;n � k + 22 w1 Æn0 (w1;w2)(J�1;n) = J�1;n�w1 (3.17)(w1;w2)(J02;n) = J02;n + k � 22 w2 Æn0 (w1;w2)(J�2;n) = J�2;n�w2 : (3.18)In view of the shemati struture K = J + (p�) of the urrents appearing in the fullsuperalgebra we also need to implement a non-trivial transformation on the fermions. A16



suitable basis is p�1 = p1 � ip2 = S�12 p�2 = p3 � ip4 = S�22 (3.19)��1 = �1 � i�2 ��2 = �3 � i�4 : (3.20)Starting from the de�ning relation �pam; �bn	 = ÆabÆm+n;0 there remain the following non-vanishing anti-ommutators�p�1;m; ��1;n	 = 2Æm+n;0 �p�2;m; ��2;n	 = 2Æm+n;0 : (3.21)Employing (3.11) and (3.13), a natural and onsistent andidate for the spetral ow onthe fermions is(w1;w2)(p�1;n) = p�1;n�w1+w22 (w1;w2)(p�2;n) = p�2;n�w1�w22 (3.22)(w1;w2)(��1;n) = ��1;n�w1+w22 (w1;w2)(��2;n) = ��2;n�w1�w22 : (3.23)One an easily hek that this transformation leaves (3.21) invariant. The onsisteny ofthe ation of (w1;w2) on jab and the fermions p and � with the spetral ow on K�1;n, K�1;n,K01;m and K02;m given in (3.11) and (3.12) an be veri�ed by expressing the latter in termsof the (p�; ��)-basis and taking are about normal ordering.3.2 Typial representations and their superharatersIn the following we shall be onerned with the various representations of the aÆne algebrapsl(2j2)k. Without further mentioning we shall always assume that the level k is an integerk � 3. The standard representations are obtained by ating with generators of negativemode number n on ground states whih an transform in the various representations of thezero mode algebra psl(2j2). Hene, generi representations [�; �℄^ of the urrent algebraare labelled by the same pairs of sl(2) representation labels �; � as the modules [�; �℄ ofpsl(2j2), with some additional k-dependent trunations on the possible range of the spinlabels.As before we take the seond label � = j2 = 0; 1=2; 1; : : : to be a half-integer. Weshall also require that j2 � k=2� 1. As for the �rst label, there are again three di�erentseries orresponding to � = (�; j1) (for �12 > j1 > �k+12 ) or � = (j1; �) (for j1 2 S =�12 + iR) for representations with an in�nite number of ground states and to � = j1 =17



0; 1=2; 1; k=2+ 1 when the number of ground states is �nite. In terms of these labels, theground states of the assoiated representations possess onformal dimension9h[(�;j1);j2℄ = ��j1(j1 + 1) + j2(j2 + 1)�=k :Our aim is to desribe the singular vetors in the Verma modules and to provide theassoiated formulas for the superharaters�R(q; z1; z2) := strR � qL0� 24 zK011 zK022 �of irreduible representations sine these are the basi building bloks of any type ofrepresentation. We de�ne typial representations to be those whih result from Vermamodules in whih all the singular vetors are inherited from the bosoni subalgebra. As aonsequene, these typial representations have a very nie representation in terms of thefree �eld onstrution (3.16). In order to larify this statement we reall that the pairsof fermions have a unique representation F if we restrit ourselves to integer moding.10Given any irreduible representation V(�;�) of bsl(2)�k�2 � bsl(2)k�2 we may then de�ne anation of psl(2j2)k on the generalized Fok moduleV[�;�℄ = V(�;�) 
F (3.24)using the free fermion realization. Our terminology ensures that this representation isirreduible if and only if it is typial. This follows from the analysis of the Ka-Kazhdandeterminant, see appendix A. Hene, the superharater of an irreduible typial repre-sentation takes the form�[�;�℄(q; z1; z2) = 1�4(q) Ya;b=�1 #1(za=21 zb=22 ; q) ��k�2� (q; z1) �k�2� (q; z2) (3.25)where #1(y; q) = �iy1=2q1=8 1Yn=1 (1� qn)(1� yqn)(1� y�1qn�1) : (3.26)The �rst fators #1=� in the harater (3.25) arise from the four pairs of fermioni �eldspa and �a in the free �eld onstrution.Atypial Ka modules are obtained when j1�j2 = nk or j1+j2+1 = nk for some n 2 Zand they possess additional singular vetors resulting from the appliation of fermioni9 We will omit the hat in aÆne representations if this interpretation is lear from the ontext.10With non-integer moding global supersymmetry annot be realized in the WZNW model we areaiming at. 18



generators, see appendix A. Given the physial k-dependent bounds on the spins it iseasy to see that the only atypiality onditions whih apply are j1 = j2 and j1+j2+1 = 0,just as in the zero mode setor. Hene all the aÆne submodules originate from singularvetors on the level of the ground states. The orresponding irreduible representationsof psl(2j2)k are denoted by [j℄^ and [j℄�̂, respetively. In the following we shall presentexpliit formulas for the superharaters of all these representations.3.3 Representations with an in�nite number of ground statesTo begin with we shall present formulas for the superharaters of the disrete and prin-ipal ontinuous series representations of the aÆne algebra psl(2j2)k. In the former seriesspeial attention will be paid to the atypial ases. In this setor the haraters may beexpressed in terms of in�nite sums of haraters of typial representations, see [35℄ for the�rst formula of this type in the ontext of gl(1j1) and unpublished work of Hubert Saleur[34℄ for a more elaborate appliation.3.3.1 Typial disrete series representationsPhysially relevant typial representations of the disrete series are labelled by j1 and j2with j1+j2+1 6= 0 and j1 < �1=2. We shall also keep our restrition to values j1 � �(k+1)=2. Furthermore, j2 are ertainly taken from the usual set j2 = 0; 1=2; 1; : : : ; k=2 � 1.The haraters of the orresponding representations of psl(2j2)k read,�[(�;j1);j2℄(q; z1; z2) = 1�4(q) Y�;�=� #1(z�=21 z�=22 ; q) ��k�2(�;j1)(q; z1) �k�2j2 (q; z2) (3.27)where j1 + j2 + 1 6= 0. Let us reall that the relevant bsl(2) haraters are given by��k�2(�;j1)(q; z1) = �iq� (j1+1=2)2k z�(j1+1=2)1 #1(q; z1)�1 (3.28)�k�2j2 (q; z2) = iq (j2+1=2)2k zj2+1=22 #1(q; z2)�1 	kj2(q; z2) (3.29)where 	kj2(q; z2) = Xa2Z qka2+2a(j2+1=2) �zak2 � z�ak�2(j2+1=2)2 � : (3.30)We amend eq. (3.28) by the presription to expand the funtion # in powers of z1 for thepositive sign and in powers of 1=z1 for the negative sign. Similarly, an expansion in 1=z2is to be used in equation (3.29). In the following we shall use the symbol �(�; j1); j2�^ forthese irreduible representations of the aÆne algebra psl(2j2)k.19



3.3.2 Atypial disrete series representationsNothing keeps us from evaluating the haraters we introdued in the previous subsetionat the speial points where j1 + j2 + 1 = 0. At these points, the Verma modules over therepresentations �(�;�j� 1); j� develop new fermioni singular vetors. The latter are allto be found among the ground states so that the omposition of the atypial module fromirreduibles is idential to the one for the orresponding Ka modules of the horizontalsubalgebra psl(2j2). For the haraters this implies�[(�;j+1);j℄(q; z1; z2) = 2�[j℄�(q; z1; z2)� �[j+1=2℄�(q; z1; z2)� �[j�1=2℄�(q; z1; z2)�[(�;1);0℄(q; z1; z2) = 2�[0℄�(q; z1; z2)� �[1=2℄�(q; z1; z2)� �[0℄(q; z1; z2) : (3.31)Note that the harater �[0℄ that appears in the last line is the harater of the vauumrepresentation. The formulas (3.31) an be used to solve for the haraters of atypialrepresentations from the disrete series. In fat, formula (2.32) suggests that�[j℄�(q; z1; z2) = � 1Xn=0 (n+ 1)�[(�;�(j+3=2+n=2));j+1=2+n=2℄(q; z1; z2)= � 1�4(q)#1(q; z1)#1(q; z2) Y�;�=� #1(z�=21 z�=22 ; q)	�j (q; z1; z2) (3.32)with 	�j (q; z1; z2) = Xa2Z qka2+2a(j+1)  z�j�11 zak+j+12(1� qaz�1=21 z1=22 )2 � z�j�11 z�ak�(j+1)2(1� qaz�1=21 z�1=22 )2! :One may hek that these haraters indeed obey the relations (3.31). In view of theequation (2.32) we an also formally use the previous formula for the value j = �1=2 todetermine the vauum harater of the psl(2j2) urrent algebra�[0℄(q; z1; z2) = � 1�4(q)#1(q; z1)#1(q; z2) Y�;�=� #1(z�=21 z�=22 ; q)	0(q; z1; z2) (3.33)with 	0 = Xa2Z qka2+az�1=21  zak+1=22(1� qaz�1=21 z1=22 )2 � z�ak�1=22(1� qaz�1=21 z�1=22 )2! :This should be onsidered as an expansion in 1=z1 and 1=z2. Note that 	0 = 	+�1=2 =	��1=2. The funtions 	 an be expressed as a derivative of higher level Appell funtions[37℄, as in the ase of sl(2j1) [38℄. For an expliit evaluation we proeed as follows: We�rst divide the sum over a 2 Z in two domains, a � 0 and a < 0. For a � 0 weexpand the denominator as it stands while for a < 0 we �rst multiply both numerator20



and denominator with q�2a in order to obtain an expansion in positive powers of q. Theresulting expressions have been veri�ed to reprodue the struture of singular vetors ofthe module [0℄^ for k = 1; 2; : : : ; 7 and energies smaller or equal to h = 4.The formulas we have proposed also pass some more general non-trivial onsistenyheks. To begin with there is a simple relation between the haraters of representationsfrom the disrete series,�[(�;j1);j2℄(q; z1; z2) = �[(�;j1);j2℄(q; z�11 ; z2) ; �[j℄�(q; z1; z2) = �[j℄�(q; z�11 ; z2) :This property expresses a manifest symmetry of the orresponding representations. Infat, under the reetion K01 ! �K01 and an orresponding ation on the fermions whihpromotes this transformation into an automorphism, the representations from the twodi�erent disrete series are mapped onto eah other.Our seond ruial observation onerns the behavior of the haraters under spe-tral ow. We onsider the spetral ow automorphisms � = (�1;1). Note that thesegenerate all spetral ows that do not interpolate between Ramond and Neveu-Shwarzrepresentations, i.e. that map integer mode numbers to integer mode numbers. On thezero modes L0; K01 � K01;0 and K02 � K02;0 they at aording to�(L0) = L0 +K02 �K01 ; �(K01) = K01 � k=2 ; �(K02 ) = K02 + k=2 :On haraters of representations, the ation of the spetral ow an be expressed as����(q; z1; z2)� = z�k=21 zk=22 ��(q; q�1z1; qz2) :It is rather easy to see that this ation is onsistent with the following behavior of irre-duible representations,[(�; j1); j2℄^ ���! [(�;�k=2� 1� j1; k=2� 1� j2℄^ ; [j℄�̂ ���! [k=2� 1� j℄�̂ :Combining all these observations we obtain the following equation in the ase that thelevel k is evenzk=21 zk=22 �[k=4�1=2℄�(q; q�1z1; qz2) = �[k=4�1=2℄+(q; q�1z1; qz2) = �[k=4�1=2℄�(q; z�11 ; z2) :A short omputation shows that our formula (3.32) for the haraters of disrete seriesrepresentations provides a funtion �[k=4�1=2℄� with the desired property. This onstitutesa rather strong test for the expression we proposed.21



3.3.3 The ontinuous series representationsAs we have disussed above, the Lie superalgebra psl(2j2) possesses another type of in�nitedimensional irreduible representations, the prinipal ontinuous series. These represen-tations are labelled by pairs �(j1; �); j2�^ where j1 2 S= 1=2 + iR and 0 � � < 1. Theserepresentations give rise to typial representations of the aÆne Lie superalgebra. Theirharaters are,�[(j1;�);j2℄(q; z1; z2) = 1�4(q) Y�;�=� #1(z�=21 z�=22 ; q) ��k�2(j1;�)(q; z1) �k�2j2 (q; z2) (3.34)where ��k�2(j1;�)(q; z1) = �iq� (j1�1=2)2k �(j;�)(z1) (z1=21 � z�1=21 )#1(q; z1)�1 : (3.35)These haraters will be the most important building bloks for the partition sum of thebulk PSU(1; 1j2) WZNW model.3.4 Representations with a �nite number of ground statesFinally, we turn to representations with �nite number of ground states. These do notappear in the bulk spetrum of the PSU(1; 1j2) WZNW model but are expeted to furnishthe building blok for the boundary spetra assoiated with instantoni branes. Speialattention is devoted to the atypial representations.3.4.1 Typial representationsThe free �eld onstrution we have reviewed above suggests that generi representationshave no singular vetors exept from the ones that arise through the representations ofthe two bosoni bsl(2) urrent algebra at levels �k � 2. This is indeed the ase. Thestatement implies a preise expression for the haraters of typial representations�[j1;j2℄(q; z1; z2) = 1�4(q) Y�;�=� #1(q; z�=21 z�=22 ) ��k�2j1 (q; z1)�k�2j2 (q; z2) (3.36)where j1 6= j2 and j1 � k=2+1. The funtion #1 was de�ned in eq. (3.25) above. We alsoreall that the bsl(2) haraters for negative level are given by��k�2j1 (q; z1) = iq� (j1+1=2)2k �zj1+1=21 � z�j1�1=21 � #1(q; z1)�1 (3.37)We shall use the symbol [j1; j2℄^ for these irreduible representations of the aÆne algebra.22



3.4.2 Atypial representationsNothing prevents us from evaluating the previous harater formulas at the points j1 =j = j2. But the resulting funtions turn out to be the haraters of indeomposablerepresentations [j; j℄^ whih ontain fermioni singular multiplets. The latter lie all withinthe spae of ground states and hene the deomposition follows exatly the deompositionformulas (2.13,2.15,2.16) for Ka modules of the Lie superalgebra psl(2j2)�[j;j℄(q; z1; z2) = 2�[j℄(q; z1; z2)� �[j+1=2℄(q; z1; z2)� �[j�1=2℄(q; z1; z2)�[1=2;1=2℄(q; z1; z2) = 2�[1=2℄(q; z1; z2)� �[1℄(q; z1; z2)� 2�[0℄(q; z1; z2)�[0;0℄(q; z1; z2) = 2�[0℄(q; z1; z2)� �[1=2℄(q; z1; z2) : (3.38)In the �rst row we assumed j � 1. The relative sign between the two terms on the righthand side is due to the fermioni nature of the singular vetors. Even though equation(3.38) is not a losed formula for the haraters of atypial representations, it an beused to onstrut the latter reursively as a sum of the funtions �[j;j℄ and of the vauumharater �[0℄. We have determined the latter in the previous subsetion and hene knowall haraters, at least impliitly.We an do a little better, though, and provide expliit expressions for the atypialharaters. To this end we observe that the typial representations obey�[j1;j2℄(q; z1; z2) = �[(�;j1+1);j2℄(q; z1; z2)� �[(+;j1+1);j2℄(q; z1; z2) ;where we silently agreed to formally expand both haraters on the right hand side in pow-ers of z1. Using this observation, we dedue that the haraters of atypial representations[j℄^; j � 1=2; must be given by�[j℄(q; z1; z2) = � 1Xn=0 (n + 1)�[j+1=2+n=2;j+1=2+n=2℄(q; z1; z2)= �[j℄+(q; z1; z2)� �[j℄�(q; z1; z2) for j � 12 : (3.39)It is somewhat umbersome but rather straightforward to hek that these haratersindeed obey the relations (3.38). Note that formula (3.39) should only be used for j � 1=2.The vauum harater is not given by expression (3.39) but rather by formula (3.33).
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Part II: Solution of the WZNWmodel
After all the representation theoreti preparations we an now address the WZNW modelon the supergroup PSU(1; 1j2). We shall start with a disussion of the Lagrangian beforewe proeed to the partile limit and analyze its state spae in some detail. We shall show,in partiular, that the Laplaian on the supergroup PSU(1; 1j2) is non-diagonalizable andobtain expliit formulas for all its generalized eigenfuntions. Afterwards we turn to thefull �eld theory. The latter will be solved through a free �eld representation. We disusshow the non-diagonalizability of the Laplaian is naturally inherited by the zero-mode ofthe energy momentum tensor. Hene, the PSU(1; 1j2) WZNWmodel provides an exampleof a logarithmi onformal �eld theory. As an appliation of our results on the strutureof the state spae, we �nally propose an algorithm that allows to ount the numberof states that possess the same transformation law under the global symmetries. Theresulting formulas will only be used in our forthoming analysis of the RR deformation.Nevertheless, some omments on the latter are inluded at the end of this part.4 The WZNW LagrangianBefore we spell out the WZNW model we are about to onsider, we would like to realla few basi fats on supergroups. Let us begin with the supergroup GL(mjn). ElementsS 2 GL(mjn) an be represented through invertible matries of the formS = �A �� B� (4.1)where A and B are elements of GL(m) and GL(n), respetively, with Grassmann-evenmatrix elements. The symbols � and �, on the other hand, denote retangular matri-es with Grassmann-odd entries. We pass from GL(mjn) to SL(mjn) by imposing theadditional ondition sdet(S) = 1 on the superdeterminant of S,sdet(S) = det(A� �B�1�)det(B) = det(A)det(B � �A�1�) != 1 : (4.2)When n = m, the onstrution of the superdeterminant implies that SL(njn) possesses anon-trivial enter onsisting of salar multiples of the identity matrix. In desending to24



PSL(njn), we identify supermatries in SL(njn) that di�er by a salar multiple. Further-more, we introdue the following unitarity ondition for supermatries S 2 GL(mjn),S � Sy = � (4.3)where � = diag(�1; 1; : : : ; 1) is the m + n dimensional Minkowski metri. SupermatriesS 2 SL(mjn) obeying the ondition (4.3) form the supergroup SU(1; m � 1jn). Identi�-ation of salar multiples �nally leads to PSU(1; m� 1jn).We are now prepared to spell out the ation funtional for the WZNW model onPSU(1; 1j2) at level k. Sine there is no fundamental representation of this group we willinstead work with SU(1; 1j2) and show that the Lagrangian atually does not depend onthe additional degree of freedom orresponding to multiples of the identity element. Forall S 2 SU(1; 1j2) we thus de�neSSU(1;1j2)k [S℄ = � k2� Z d2z str �S�1�SS�1 ��S�� k12� Z str��S�1dS�3� (4.4)with a suitably normalized supertrae str. For supermatries S of the form (4.1), thesupertrae is given by str(S) = tr(A)� tr(D). Using the Polyakov-Wiegmann identity forWZNW models,SSU(1;1j2)k [S1S2℄ = SSU(1;1j2)k [S1℄ + SSU(1;1j2)k [S2℄ + k2� Z d2z str �S�11 ��S1�S2S�12 � ; (4.5)one may easily show that the ation SSU(1;1j2)k remains invariant if we multiply the super-matrix S 2 SU(1; 1j2) with a salar fator exp�, i.e.SSU(1;1j2)k [e�S℄ = SSU(1;1j2)k [S℄ :This relation ensures that the funtional form of the WZNW ation for PSU(1; 1j2) isidential to the WZNW ation for SU(1; 1j2). In partiular we like to stress that no expliitgauge proedure is required, in ontrast to what has been proposed in [9℄. As in all WZNWmodels the Lagrangian de�ned in (4.4) leads to two hiral sets of urrents J�(z) and �J�(�z)whih generate two (anti)ommuting opies of the aÆne Lie superalgebra dpsu(1; 1j2)k.Their preise relations an easily be reonstruted from its zero-mode subsuperalgebra(2.1) and the metri (2.2).Our aim is to show that the introdution of auxiliary �elds allows to deouple bosoniand fermioni degrees of freedom to a large extent. The result will be a sum of tworenormalized bosoni WZNW models, the ation for a holomorphi and anti-holomorphi25



set of sympleti fermions and an interation term whih mixes the two. Our derivationis motivated by the ideas given in [9℄ but the fermions are treated di�erently, along thelines of [20℄. The �rst step is to rewrite our ation with the help of the following produtdeomposition of SU(1; 1j2) supermatries,S = e��id 0� id� � �A 00 B� � �id �0 id� = e�� A A��A �A�+B� (4.6)where the fator exp� is hosen suh that the matries A and B are uni-modular. Usingone more the Polyakov-Wiegmann identity (4.5) for supergroups, we �nd thatSPSU(1;1j2)k [S℄ = SPSU(1;1j2)k ��id 0� id��+ SPSU(1;1j2)k ��A 00 B��+ SPSU(1;1j2)k ��id �0 id� �+ k2� Z d2z str� 0 0����AA�1 ���A��B�1� (4.7)The �rst and third term vanishes due to the fat that the only ontributions to supertraesome from non-trivial bosoni submatries. Hene, we are left with only two terms. Takinginto aount the inde�nite struture of the metri the result an now we rewritten asSPSU(1;1j2)k [S℄ = SAdS3k [A℄ + SSU(2)k [B℄� k2� Z d2z trh���A��B�1i (4.8)where SAdS3k and SSU(2)k denote the usual bosoni WZNW ations. It is easy to see thatthe previous ation is equivalent to the funtionalSPSU(1;1j2)k [S; p; �℄ = SAdS3k+2 [A℄ + SSU(2)k�2 [B℄ + 12�k Z d2z tr�k(p���+�p���)+A�1pB�p	 (4.9)where the �elds have been deoupled to a large extent. Integrating out the auxiliary�elds p and �p one indeed arrives at the original ation if one imposes the identi�ations� = � and �� = �. The shift of the levels arises from the modi�ation of the path integralmeasure.5 The minisuperspae theoryIn this setion we would like to analyse the spae of (generalized) eigenfuntions of theLaplae operator on the supergroup PSU(1; 1j2). We shall set up the problem in the�rst subsetion. Expliit formulas for all the generalized eigenfuntions are derived inthe seond subsetion. Their transformation behaviour with respet to the left and rightregular ation of psl(2j2) is �nally investigated in the last subsetion.26



5.1 The Laplaian on the Supergroup PSU(1;1j2)On the supergroup PSU(1; 1j2) we an introdue various di�erent oordinates. For ourpurposes in the next subsetion, a preferred set of oordinates is de�ned through thedeomposition, G = ei�aSa2 g ei��aSa1 = ei�aSa2 eixabKab ei��aSa1 : (5.1)In these oordinates, we an easily express the di�erential operators implementing theleft and right regular representation. In the following, we denote the generators of thebosoni subalgebra on the bosoni subgroup by Lab0 and Rab0 , respetively. For the leftregular ation we �nd (see also [39℄)La2 = �a ; Lab = Lab0 � i(�a�b � �b�a) (5.2)La1 = �Dab(g) ��b + ~La1 where ~La1 = i2 �abd ��bLd0 � i�b��d� : (5.3)Here, the partial derivatives �a and ��a denote di�erentiation with respet to the fermionioordinates �a and ��a, respetively, and the matrix Dab(g) of funtions on the bosonisubgroup is obtained by evaluation of elements g in the (1=2; 1=2) representation. Byonstrution, it satis�es the following di�erential equationsLab0 Dd(g) = i�ÆaDbd(g)� ÆbDad(g)� ; Rab0 Dd(g) = i�ÆadDb(g)� ÆbdDa(g)� :To hek the ommutation relations is straightforward, though a bit umbersome. Theright regular representation is obtained similarly, with the two types of fermioni gen-erators exhanged, ��a replaing �a et. Needless to stress that the left and right ation(anti-)ommute.A short and straightforward omputation of the quadrati Casimir element C2 =��abdKabKd=4 + ���Sa�Sa� in the left or right regular representation gives the followingexpliit formula for the Laplaian � on the supergroup� = L(C2) = R(C2) = �0 +Q where Q = 2 �aDab(g)��b (5.4)and �0 is the usual Laplae operator on the bosoni subgroup, i.e. on AdS3 � S3. Ouraim is to �nd generalized eigenfuntions of this operator. Let us reall that a funtion  is alled a generalized eigenfuntion of � for eigenvalue � if(�� �)n  = 0 for some n > 0 : (5.5)27



 is an eigenfuntion if this equation is satis�ed for n = 1 (and hene for all other valuesof n). We shall see in the next subsetion that generalized eigenfuntions of � with � 6= 0are in fat true eigenfuntions. For � = 0, on the other hand, non-trivial generalizedeigenfuntions do appear. This means that the Laplaian on the supergroup PSU(1; 1j2)an only be brought into Jordan normal form. The Jordan ells turn out to possess arank up to �ve. By onstrution, the individual spaes of generalized eigenfuntions omeequipped with the left and right regular ation of the Lie superalgebra psl(2j2). We shalldesribe its deomposition into indeomposables in the seond subsetion.5.2 Generalized eigenfuntions of the LaplaianIn this subsetion we show that generalized eigenfuntions of the Laplaian on PSU(1; 1j2)are in one-to-one orrespondene with elements of the following auxiliary spaeH0 := L2�AdS3 � SU(2)�
 �(�; ��) (5.6)of Grassmann valued funtions whose oeÆients are square integrable funtions on thebosoni subgroup. Under favorable irumstanes, i.e. when the fermioni generators ofthe Lie superalgebra transform in a unitary representation of its bosoni subgroup G, thespae of Grassmann valued funtions on G oinides with the spae of generalized eigen-funtions. This is the ase e.g. for the GL(1j1) model studied in [20℄, but the key examplewe have in mind here is PSL(2j2) with a real form that removes all non-trivial �nitedimensional representations of the bosoni subalgebra, and in partiular the (1=2; 1=2)representation, from the list of unitaries.The key idea in the subsequent onstrution of generalized eigenfuntions is to onsiderthe elements  0 of H0 as `leading ontributions'. More preisely, we shall show that alleigenfuntions of the bosoni Laplaian an be turned into generalized eigenfuntions byadding appropriate terms with lower fermion number. To this end, let us rewrite equation(5.5) in the following form(�� �)n � = �(�0 � �)n + An(�)� � = 0 :The operators An(�) are lengthy ombinations of Q and (�0 � �) whih an be workedout expliitly. What is most important is to note that eah term in An(�) ontains a leastone Q. Hene, the operators An(�) are nilpotent.28



A short and formal manipulation shows that generalized eigenfuntions for the eigen-value � at order n possess the general form (n)� = �(n)�  �0 = 1X�=0��(�0 � �)�nAn(�)�� �0where  �0 2 H0 is an eigenfuntion of �0 with eigenvalue �, i.e. �0 �0 = � �0 . Sine An(�)ontains anti-ommuting fermioni derivatives, the sum on the right hand side trunatesafter a �nite number of terms at � = 4. On the other hand, the formula requires to invertthe operator �0 � �. Hene the operator �(n)� need not be well de�ned for all  �0 . Toanalyze this issue further, we note that �(n)� = �(5)� = �� is independent of n for n � 5and ompute � = �� �0 =  �0 � 1(�0 � �)Q0� �0 + � 1(�0 � �)Q0��2  �0 + 1(�0 � �)2Q0�Q00� �0 + : : :where Q = Q0� +Q00� = �1� P0(�)�Q+ P0(�)Q (5.7)and P0(�) is the projetor on eigenstates of �0 with eigenvalue �. We have not displayedthe third and fourth order terms in Q beause the expression would be rather bulky(there are 14 suh terms). Let us observe that the inverse powers of (�0 � �) only at inombination with Q0�, i.e. after appliation of the projetion 1�P0(�). This ontinues tohold for the higher order terms and hene  � is well de�ned for all  �0 . Sine P0(�)�� = id,we onlude that generalized eigenfuntions are indeed in one-to-one orrespondene withelements  0 2 H0.It is instrutive to ontrast these �ndings with results on the true eigenvetors of theLaplaian. Our general formula (5.5) applied to the speial ase n = 1 shows that suheigenfuntions must be of the form (1)� = �(1)�  �0 = 1X�=0 ��(�0 � �)�1Q��  �0 (5.8)=  �0 � 1(�0 � �)Q �0 + � 1(�0 � �)Q�2  �0 + : : :In order for  (1)� to be well de�ned it is obviously neessary that Q00� �0 = P0(�)Q �0 = 0.11Note that the ondition automatially ensures that our expression for the eigenfuntion11The ondition is also suÆient, though this requires a slightly more elaborate argument.29



 (1)� agrees with the formula for generalized eigenfuntions above. It is easy to see thatP0(�)Q �0 = 0 for eigenfuntions  �0 of �0 with eigenvalue � 6= 0 : (5.9)Hene, we onlude that all generalized eigenfuntions of the Laplaian on PSU(1; 1j2)with nonzero eigenvalue are true eigenfuntions. For � = 0, on the other hand, non-trivialgeneralized eigenfuntions exist. These are in one-to-one orrespondene with funtions �0 for whih P0(0)Q �0 6= 0.Our laim (5.9) an be established as follows: suppose that  �0 transforms in the rep-resentation (j1; j2) of the bosoni subalgebra. Then, after appliation of Q, the resultingstate Q �0 deomposes into four omposents aording to the four di�erent representations(j1�1=2; j2�1=2) and (j1�1=2; j2�1=2) that arise after multipliation with the funtionsDab(g) in the (1=2; 1=2) representations. The resulting possible eigenvalues of the bosoniLaplaian are Æ� = �� (j1� j2) and Æ� = �� (j1+ j2�1) with � = j1(j1+1)� j2(j2+1).Hene, we onlude that P0(�)Q �0 = 0, unless j1 = j2 or j1 + 1 = �j2. The latteronditions on the hoie of (j1; j2) are equivalent to requiring � = 0. This proves ourlaim and onludes this subsetion.5.3 Regular ation on generalized eigenfuntionsSine the Laplaian ommutes with both the left and the right regular representation, Land R provide two (anti-)ommuting ations of the Lie superalgebra psl(2j2) on general-ized eigenfuntions  2 H � �H0.In order to spell out the behavior of states  2 H under the right regular ation weintrodue the following new representationsB(�; �) := Indgg(0)V(�;�) = U(g)
g(0) V(�;�) :By onstrution, these representations have a dimension 162 �dim(�; �) and ertainly noneof them is irreduible. All the representations an be deomposed into a sum of projetiverepresentations [29℄. Generially, B(�; �) deomposes into a sum of typial Ka modulesaording to B(�; �) �= M(�0;�0) �[�; �℄ : (�0; � 0)� � [�0; � 0℄ (5.10)where �[�; �℄ : (�0; � 0)� denotes the multipliity of the bosoni multiplet (�0; � 0) insidethe Ka module [�; �℄. The formula applies whenever the summation extends only over30



bosoni representations (�0; � 0) with non-vanishing Casimir. More expliitly, we an usethe above formula for all representations (�; �) = �(j1; �); j2� from the ontinuous seriesand for disrete series representations (�; �) = �(�; j1); j2� as long as j1 + j2 + 1 6= 0;�1.In the remaining ases, projetive overs of atypial representations appear,B�(�;�j � 1); j� �= 2 � P�j � : : : (5.11)B�(�;�j � 12); j + 12� �= P�j� 12 � : : : (5.12)B�(�;�j � 32); j � 12� �= P�j+ 12 � : : : (5.13)where the dots : : : stand for a sum of typial Ka modules that an be determinedthrough the rule (5.10) if we remember to omit all terms that orrespond to an atypialrepresentation.It is relatively easy to see that the spae H of generalized eigenfuntions possessesthe following deomposition with respet to the asymmetri ation of the subsymmetryg(0)L � gR, H �= 1M2J=0 ZSdj Z 10 d� �(j; �); J�+L 
 B�(j; �); J�R �� 1M2J=0M�=� Z 112 dj �(�;�j); J�+L 
 B�(�;�j); J�R :The domain of the �rst integral is given by S = �1=2 + iR, as usual for the prinipalontinuous series representations. In order to justify the deomposition, let us note thatthe ground states from whih the representations B(�; �) are generated, an be identi�edwith those states  � in H whose top omponent P0(�) � has maximal fermion number.In order to rewrite our deomposition formula in terms of indeomposables, we needto insert the formulas (5.10)-(5.13). We then ollet all terms that give rise to the sameprojetive representation of gR. On the subspae Htyp � H of states with non-zeroeigenvalue �, the bosoni multiplets of of the g(0)L ation turn out to ombine into a Kamodule for the Lie superalgebra gL, i.e.Htyp �= 1M2J=0 ZSdj Z 10 d� �(j; �); J�+L 
 �(j; �); J�R �� 1M2J=0M�=� Z 112 ;j 6=J+1 dj �(�;�j); J�+L 
 �(�;�j); J�R :31



Another way to arrive at this result is by noting that our operator � provides an inter-twiner between the ation of L and R on Htyp and some simpli�ed ation ~L and ~R ofpsl(2j2) on the subspae H0;typ � H0 of eigenfuntions with non-zero eigenvalues of �0.The ation ~L, for example, is generated by the operator ~La1 de�ned in formula (5.3) alongwith ~La2 = La2 ; ~Lab = Lab : (5.14)A similar onstrution gives ~R. With respet to these two ations of psl(2j2), the spaeH0 is easily seen to deompose into an integral over left and right Ka modules. Thisapplies even to the subspae on whih �0 vanishes. But on the latter � eases to be anintertwiner between the trunated ations ~L; ~R and the full regular ation L;R. In thenext setion we shall see that the ~L� ~R module H0 models the spae of vertex operatorsin the free �eld representation. The full L�R ation onH, on the other hand, agrees withations of psl(2j2) on the ground states of the full interating theory. The disrepanybetween the two ations in the atypial setor will have remarkable onsequenes whihat the end ulminate in the logarithmi behavior of the WZNW theory.As for the atypial setor Hatyp of generalized eigenfuntions with vanishing eigenvalue�, it is built up from projetive overs only when onsidered with respet to the right (orleft) regular ation. The assoiated multipliity spaes possess the same g(0)L representa-tion ontent as the atypial irreduible psl(2j2) representations from the disrete series.But this time, enhaning the left ation from the bosoni subalgebra to the full psl(2j2)has more drasti e�ets than simply to promote the multipliity spaes into represen-tations of the Lie superalgebra. Note that suh a behavior would obviously violate thesymmetry between left and right regular transformations and hene annot be the rightanswer. Instead, as a gL � gR module, the atypial setor H is built from non-hiral in-deomposables whih enompass an in�nite number of atypial onstituents muh in thesame way as it happens for GL(1j1) (see [20℄). We refrain from working out the detailshere.This gives us a fairly omplete piture of the spae of wave funtions for a partilemoving on PSU(1; 1j2) and a very good basis to disuss how �eld theoreti orretionsa�et the struture of the state spae. In the full �eld theory, there will be two newphenomena whih have to be taken into aount. First of all there will be a ut-o�assoiated with the �niteness of the level k. Moreover, the aÆne Lie superalgebra admitsa family of spetral ow automorphisms whih has to be taken into aount properly.32



6 Vertex operators and orrelation funtionsNow that we obtained a profound knowledge about the partile limit of the sigma modelon PSU(1; 1j2), we are �nally in a position to return to the solution of the full quantumtheory. Our starting point is the Lagrangian (4.9),SPSU(1;1j2)k = S0 + Sint = SAdS3k+2 + SSU(2)k�2 + Sferm + Sint ; (6.1)onsisting of a deoupled system with a purely bosoni WZNW model on AdS3 � SU(2)and a set of free fermions as well as an interation term oupling bosoni and fermionidegrees of freedom. Following the general strategy adopted in [20℄ we will start with ananalysis of the deoupled theory and onsider the additional term as a perturbation. Ourmain aim is to �nd the vertex operators of the full supergroup WZNW theory and tosketh the alulation of their orrelation funtions.The state spae Ĥ0 of the deoupled theory desribed by S0 is ompletely knownusing standard results in onformal �eld theory. For reasons to beome lear below werestrit ourselves to fermions with integer moding. Under this assumption there existsa unique representation F 
 �F for the fermions. It is generated from a ground stateby the appliation of the modes �a�n and pa�(n+1) for n � 0 and similarly for the anti-holomorphi �elds. The SU(2)k�2 WZNW model is desribed by a harge onjugatepartition funtion involving unitary representations with spin 2J = 0; 1; : : : ; k�2 [40℄. Inthe AdS3 WZNW model on the other hand two di�erent kinds of representations of theunderlying aÆne algebra bsl(2;R)k+2 ontribute [13℄: the prinipal ontinuous series (j; �)for j 2 S = �12 + iR and � 2 [0; 1) and the disrete series (�; j) for �12 > j > �k+12 .Moreover, one has to take into aount the spetral ow automorphism whih mapsordinary highest weight modules to twisted ones. This leads to an additional quantumnumber w whih has to be attahed to the representations of bsl(2;R)k+2 . The preisede�nition of the spetral ow automorphism has been given in (3.17).Based on the previous remarks we an spell out the spae of the deoupled system,12Ĥ0 �= k�2M2J=0Mw2ZZSdj Z 10 d� hV((j;�)w ;J) 
Fi
 hV((j;�)w;J)+ 
 �Fi� k�2M2J=0Mw2ZZ k+1212 dj hV((+;�j)w;J) 
Fi
 hV((+;�j)w;J)+ 
 �Fi : (6.2)12We remind the reader that the orbit of representations (+; j)w inludes representations based on(�; j0). 33



Nevertheless we are not yet done. Sine we intend to desribe a supersymmetri theory wehave to ast the state spae in a manifestly ovariant form. In addition we have to makeontat to the minisuperspae analysis presented in setion 5. In order to ahieve thesegoals we must �nd a realization of eah, the holomorphi and anti-holomorphi aÆne Liesuperalgebras dpsu(1; 1j2)k, on Ĥ0. Moreover their zero mode ation on the ground stateshas to resemble that of the di�erential operators ~L and ~R on H0, respetively. This spaeand the orresponding operators have been introdued in (5.6) and (5.14).In fat, a realization of the aÆne Lie superalgebra dpsu(1; 1j2)k in terms of the sym-metry generators jab and the fermions p and � of the deoupled system (and their anti-holomorphi analogues) has already been presented in (3.16). In this ase the zero modesetor of the orresponding expressions indeed redues to the tilded di�erential operators(5.14) ating on the spae H0 if we identify the auxiliary �elds p and �p with the fermioniderivatives as usual. For the identi�ation to hold it is ruial that in the �rst term ��ain Sa1 the zero mode of the oordinate �eld � is eliminated by the ation of the derivative.Needless to say, similar onsiderations apply for the anti-holomorphi setor.After having established the struture of Ĥ0 as a representation spae with respet todpsu(1; 1j2)k �dpsu(1; 1j2)k it is just a small step to spell out the proposalĤ0 �= k�2M2J=0Mw2ZZSdj Z 10d�V[(j;�);J ℄w
V[(j;�);J℄+w � k�2M2J=0Mw2ZZ k+1212 dj V[(+;�j);J℄w
V[(+;�j);J℄+w :(6.3)This spae meets all the requirements stated above. First of all, it is indeed a fully ovari-ant version of the spae (6.2). This is immediately obvious in view of our disussion ofaÆne Lie superalgebra representations in setion 3.2 and, in partiular, given the de�ni-tion (3.24). Only the treatment of spetral ow requires a few omments sine a spetralow whih exlusively ats in the AdS3 setor annot be lifted to the full superalgebraPSU(1; 1j2) in general. Indeed, as an be inferred from (3.17) the only spetral ow au-tomorphisms whih solely at on the AdS fator are of the form (w;0). But in order tokeep the integer moding of the fermions whih is required for the implementation of theglobal supersymmetry one would have to hoose w even, resulting in the ommission ofevery seond representation. The simple way out is to onsider the spetral ows (w;w)for all w 2 Z. In this ase the moding of the fermions stays invariant and the ation onthe SU(2) setor an be absorbed in a relabeling of the orresponding integrable weights.Spetral ow automorphisms that respet the fermioni boundary onditions were found34



in [20℄ to be exat symmetries of the WZNW model on the supergroup GL(1j1). We be-lieve that this observation generalizes to arbitrary supergroups. In the ase of PSU(1; 1j2)it is indeed onsistent with the results of Maldaena and Ooguri [13℄.On the other hand, beside being supersymmetri, the state spae (6.3) an be shownto be a straightforward aÆnization of the minisuperspae result H0. In order to establishthis orrespondene we onsider the semi-lassial limit k ! 1 in whih the urvatureof the supergroup beomes small and the trunation of the spetrum an be negleted.We are moreover only interested in the light states whose onformal dimension approahzero. This fores us to disard all the spetral ow representations.13 We are thus leftwith the ground states of the aÆne modules V[�;�℄ and these obviously transform in theKa module V[�;�℄. This onludes our treatment of the deoupled theory.Now we turn our attention again to the full WZNW model as de�ned in eq. (6.1),inluding the interation term Sint. Let us remind the reader that the spae H0 just hasbeen an auxiliary spae whih helped analyzing the spae H = �H0 on whih the trueleft and right regular ations of psu(1; 1j2) have been de�ned. The same happens in thefull PSU(1; 1j2) �eld theory where the regular ations are promoted to loal symmetries.Roughly speaking, the presene of the additional term Sint imitates the ation of theoperator � : H0 ! H and modi�es the de�nition of the aÆne urrents. This means thatthe true state spae of the PSU(1; 1j2) WZNW model is given by a spae Ĥ whih di�ersfrom Ĥ0 in the way the aÆne urrents at. Without going into details we symboliallyintrodue the map �̂ : Ĥ0 ! Ĥ whih intertwines the ations in the typial setor.It is important, however, to emphasize that the representation ontent of Ĥ0 and Ĥis not isomorphi. In partiular, the atypial setor in Ĥ may not be written as theprodut of holomorphi and anti-holomorphi representations sine the zero modes L0and �L0 of the energy momentum tensors, the aÆne analogues of the Laplae operatordisussed in setion 5, are not diagonalizable. Modular invariane then enfores that thedi�erene of the nilpotent part vanishes on the state spae and this is only possible if therepresentations do not fatorize. Another onsequene of the previous statements is theourene of logarithmi orrelation funtions in the PSU(1; 1j2) WZNW model.Let us onlude this setion with a brief sketh of the alulation of orrelation fun-tions. Given any vertex operator �(z; �z) orresponding to a state in the full Hilbert spaeĤ { with or without spetral ow { we an �nd a vertex operator �0(z; �z) in the deou-13We should obviously keep those whih map (+; j) to (�; j0).35



pled theory suh that �(z; �z) = �̂�0(z; �z). As in the minisuperspae theory the ationof �̂ basially adds subleading ontributions to the full vertex operator. The orrelationfuntions are then easily determined using the desription
�(z1; �z1) � � ��(zn; �zn)�PSU(1;1j2)k = 
�0(z1; �z1) � � ��0(zn; �zn) e�Sint�S0 : (6.4)In order to make sense out of this expression it is neessary to ast the interation termin a form whih may be evaluated in the deoupled theory. It is not diÆult to onvineoneself that the orresponding alternative form of the interation term in (4.9) is givenby Sint � 12�k Z d2z pa(z)Dab(z; �z) �pb(�z) : (6.5)The operators Dab(z; �z) are non-hiral vertex operators of the AdS3 � S3 WZNW theorywhih transforms in the (1=2; 1=2)�(1=2; 1=2) representation with respet to the holomor-phi and anti-holomorphi bosoni urrents. Given the knowledge of orrelation funtionsin the deoupled theory [41, 14℄ it is now a tedious but algorithmi exerise to alulatethe right hand side of (6.4). It is worth notiing that due to the presene of the fermionsp and �p the expansion will terminate after a �nite number of terms. The only aveatonerns the insertion of the vertex operators Dab in the orrelation funtions of the AdS3WZNW model sine these do not exist in the physial spetrum of the bosoni theorybut are rather assoiated with non-normalizable degenerate �elds. It is well known thatorrelation funtions with insertions of suh degenerate �elds an be determined from thephysial ones by analyti ontinuation. In fat, a reversal of this argument was a ruialingredient in the solution of the two best understood non-rational onformal �eld theories,i.e. Liouville theory [42℄ and the (eulidean) AdS3 model [16℄. Hene, all the ingedientsfor the omputation of orrelators in the WZNW model on the supergroup are determinedby the solution of the bosoni model, as we have laimed several times before.7 Casimir deomposition of the state spaeThe entral result of the following setion an be onsidered as a orollary of our ob-servation that the ground states of the �eld theory all transform aording to projetiverepresentations. As we shall explain below, this implies that one an ount the numberof �eld theoreti states in any given psl(2j2) representation through some variant of theRaah-Speiser algorithm. The results play a entral role for the study of the RR deforma-tion. Though we shall publish this investigation in a separate paper, we deided to inlude36



a short disussion of the RR deformation and its relation to Casimir deompositions atthe end of this setion.7.1 The psl(2j2) symmetry and its branhing funtionsBy onstrution, the RR deformation preserves both global left and right psl(2j2) ation.Hene, the state spae of the perturbed theory will ontinue to arry a representationof these two ommuting psl(2j2) transformations. In order to study the perturbation, itseems worthwhile to deompose the state spae of the model expliitly with respet tothe preserved symmetries, in partiular with respet to the left and right psl(2j2) ation.Sine this is a bit umbersome to write down for the full state spae of the bulk theory,we shall explain the main idea in a simpler example that is relevant for the study ofinstantoni point-like branes in the PSU(1; 1j2) model.Naively, one might expet that the spetrum of open strings on suh branes ontainsno zero modes and hene possesses a unique ground state that transforms in the trivialrepresentation of the preserved psl(2j2) of the boundary theory. If this was true, the de-omposition of the boundary spetrum into representations of psl(2j2) would be extremelydiÆult, if not impossible. In fat, states of the boundary theory would then transformaording to all those representations that appear in some tensor power of the adjointrepresentation. Our investigations show [32℄ that very exoti indeomposable representa-tions an emerge in this way. Sine the adjoint representation of psl(2j2) is atypial andnot projetive, tensor powers are spei�ally not deomposable into projetives. The in-deomposables that arise in this way annot even be listed easily so that the bookkeepingof the possible states and their transformation laws appears as a daunting task.Fortunately, the boundary spetrum of a maximally symmetri point-like brane in ourWZNW model does possess zero modes. In fat, a thorough investigation of the gluingondition shows that while suh branes are loalized in the bosoni oordinates they mustneessarily be deloalized in all fermioni diretions (details will be published elsewhere).Sine there are eight fermioni oordinates, eah ontributing one zero mode, we onludethat the ground states transform aording to the representationB(0; 0) �= P0 � [1; 0℄ � [0; 1℄ ;i.e. as a sum of projetive representations. Exited states therefore transform in represen-tations that emerge from a produt of a projetive representation with some power of the37



adjoint and whih, by abstrat mathematial results, an be deomposed into projetives.This result is one more a on�rmation of what we saw in the bulk theory: the physi-al states of the PSU(1; 1j2) WZNW model all transform in projetive representations,i.e. they either form typial long multiplets or they sit in maximally extended atypialrepresentations.In the �rst part of this work we listed expliitly all the (�nite dimensional) projetiverepresentations of psl(2j2). Our aim now is to ompute the branhing funtions for astate spae of the WZNW model into psl(2j2) representations. We shall �rst show thatthere is an eÆient algorithm that determines this branhing expliitly and then we shallstate the results for one example. Note that the branhing funtions an be onsideredas haraters of the so-alled Casimir algebra [19℄.7.1.1 The Raah-Speiser algorithmIn its original form, the Raah-Speiser algorithm is a powerful tool whih allows to deom-pose tensor produts of representations of semi-simple Lie algebras. The only knowledgerequired is the weight ontent of one of the representations involved and the ation of theWeyl group. In this paper we will use it in a slightly di�erent setup. We assume thatwe have given a set of weights belonging to some �nite dimensional representation R.The weight ontent an be enoded in some generating funtion, the harater of R. Inthe ase of ordinary bosoni Lie algebras R an be written as a diret sum of irreduiblerepresentations Ri. The Raah-Speiser algorithm allows us to determine the Ri and theirmultipliities by just analyzing the original weight system. Consequently, the haraterof R an be expressed through the haraters of the irreduible representations Ri.It is lear that for prinipal reasons the algorithm annot be extended to Lie superal-gebras. This is due to the presene of not fully reduible representations: there an existseveral inequivalent representations whih have the same weight ontent. Our laim, how-ever, is that the Raah-Speiser algorithm may be extended to Lie superalgebras as longas one is just dealing with projetive representations. In fat, projetive representationsshare the ruial property that their haraters always ontain the fermioni fator VF(see eq. (2.7)) multiplied by some representations of the bosoni subalgebra. Hene, theproblem of reonstruting the representation ontent of a projetive representation out ofits weight system is redued to a problem onerning the bosoni subalgebra. This state-ment also allows to alulate tensor produts of projetive representations using harater38



methods. One ould thus say that indeomposable projetive representations { typialirreduibles and projetive overs { play a similar role for (simple) Lie superalgebras asirreduible ones play for ordinary (simple) bosoni Lie algebras.Before we start to disuss ompliations arising in the super ase it is onvenient toexplain the idea of the original Raah-Speiser algorithm in the example of the Lie algebrasl(2). Suppose we are given some (�nite dimensional) representation R of sl(2) with aharater of the form �R(z) = X2l2Z al zl : (7.1)The oeÆients al give the multipliity of states with isospin l. For onsisteny they haveto satisfy al = a�l. It is easy to see that we may rewrite the previous expression in termsof haraters of irreduible representations as�R(z) = Xj�0�aj � aj+1��j(z) : (7.2)Due to the linearity of the problem it is enough to prove this relation on the level ofharaters of irreduible representations where it is obvious. Basially the formula ountsthe number of weights with isospin j and heks how many still exist for j+1. The latterobviously do not belong to the spin j representation and have to be subtrated. TheRaah-Speiser trik provides a very simple way e.g. to derive the Casimir haraters ofbsu(2)k, see [43℄, after splitting the algebra into parafermions and a û(1) part.In this paper we are interested in the Casimir haraters of psl(2j2)k. As we will seein the following setion this problem may be redued to one solely involving the bosonisubalgebra sl(2)� sl(2). Applying formula (7.2) to this new situation with two fators we�nd �R(z1; z2) = X2l1;2l22Z al1l2 zl11 zl22= Xj1;j2�0 �aj1;j2 � aj1+1;j2 � aj1;j2+1 + aj1+1;j2+1��j1(z1)�j2(z2) : (7.3)In the intended appliation of this formula to aÆne modules the multipliities of theweights are in�nite. In that ase we let the oeÆients al1l2 depend on a formal variableq in order to be able to distinguish the energy of the states and to resolve the in�nities.The previous formulas are obvious even without using fany tehnology and reruitinggreat names. Yet, sine our ideas for the alulation of Casimir haraters are likely to39



apply for more ompliated Lie superalgebras we would like to make lear from the startthat our onsiderations easily may be generalized. In that ase one has to use the shiftedation of the Weyl group w � � = w(�+ �)� � in order to map the given weights into thefundamental domain, taking into aount the sign of the transformation. The result willthen be a sum over the orresponding highest weight vetors, and these in turn an bereplaed by haraters of irreduible representations.7.1.2 Example: Branhing rules for P0As we have announed before, our goal is to deompose the spae of physial states of thePSU(1; 1j2) WZNW model with respet to the horizontal subalgebra. For simpliity weshall fous on one partiular building blok of the open string spetrum on a point-likebrane, namely on the deomposition of the representation P̂0 of the aÆne psl(2j2). Theresults an easily be extended to the other two piees [0; 1℄^ and [1; 0℄^ whih appear inthe brane's spetrum (see above).14The representation P̂0 is built on top of the �nite dimensional projetive over P0by ating with the negative modes of the urrent algebra, followed by the removal of allbosoni singular vetors, i.e. all the singular vetors that do not appear among the groundstates. As we observed above the states at higher energy levels transform in the tensorprodut of P0 with (symmetrized) tensor produts of the adjoint representation of psl(2j2)with itself. Sine the tensor produts of arbitrary representations with a projetive oneare projetive again, the aÆne representation may be written asP̂0��psl(2j2) = Xj1 6=j2 aj1j2(q) [j1; j2℄ +Xj bj(q)Pj : (7.4)This should be read as a formal deomposition of the aÆne representation into represen-tations of the horizontal subalgebra. The multipliities on eah energy level are ontainedin the generating funtions aj1j2(q) and bj(q) whih an be onsidered as haraters of theCasimir algebra.Now we employ our knowledge about the bosoni ontent of projetive representationsas stated in eq. (2.23). If we denote by �F the harater of the fermioni zero modes, asbefore, then the harater of P̂0 is given by�P̂0 = " Xj1 6=j2 aj1j2(q)�(j1;j2) +Xj bj(q)�2�(j;j) � �(j+ 12 ;j+ 12 ) � �(jj� 12 j;jj� 12 j)�#�F : (7.5)14It is also rather straightforward to �nd the generalization to in�nite dimensional representations likethose that appear in the bulk spetrum. 40



All the relevant notations have been introdued in the �rst part of this work. Given thesuperharater on the left hand side we an then in priniple derive the oeÆients aj1j2(q)and bj(q) using a re�ned version of the Raah-Speiser algorithm. From part I of this workwe reall that �P̂0(q; z1; z2) = 2�[0;0℄(q; z1; z2)� 2�[1=2;1=2℄(q; z1; z2) : (7.6)Expliit formulas for the superharaters on the right hand side were provided in eq. (3.25).What is most important for us is that the superharater of P̂0 possesses an overall fator�F as any projetive representation. By expansion into powers of z1 and z2 and omparisonwe are thus able to uniquely determine the funtions aj1j2(q) and bj(q). To this end letus onsider the previous expression as a generating funtion for the q-series mn(q),�P̂0(q; z1; z2) = X2m;2n2Zmn(q) zm1 zn2 �F (z1; z2) : (7.7)Then the funtions aj1j2(q) are determined by the Raah-Speiser trik,aj1j2(q) = j1;j2(q)� j1+1;j2(q)� j1;j2+1(q) + j1+1;j2+1(q) : (7.8)These quantities also have meaning for j1 = j2. Yet, in that ase they do not ount \real"representations but just the Ka modules whih sit inside the projetive representations.We �nda00 = 2b0 + b 12 a 12 12 = 2b0 + 2b 12 + b1 ajj = bj� 12 + 2bj + bj+ 12 : (7.9)This relation needs to be inverted to �nd the values of the bj. For a �xed energy level thisinversion is almost trivial, one just has to start from the ontributions with highest spinin order to �nd the orresponding projetive overs. The desribed proedure may seem abit abstrat, but it is straightforward to implement the expansions and the Raah-Speisertrik on the omputer. In this way the branhing funtions a(q) and b(q) an in priniplebe determined to any desired order. For large values of the level k one �nds for instaneP̂0(q) = P0 � qh4P 12 � 6�[1; 0℄� [0; 1℄�� 2�( 32 ; 12)� ( 12 ; 32)�i� q2hP0 � 16P 12 � 4P1 � 4�[2; 1℄� [1; 2℄�� 6�[2; 0℄� [0; 2℄�� 24�[1; 0℄� [0; 1℄�� 2�( 52 ; 12)� ( 12 ; 52)�� 18�( 32 ; 12)� ( 12 ; 32)�i� � � � : (7.10)With a bit more work one might also be able to write down losed formulas.41



Before we onlude this subsetion, let us stress one more that the whole proedurerelied extremely on the fat that only projetive representations ourred in the aÆneharater. If there had been non-projetive atypials in addition to the projetive ones,knowledge of the haraters would have been insuÆient to determine the deomposition.7.2 Some remarks on the RR deformationThe RR deformation of the AdS3 bakground orresponds to adding the the followingextra to the ation of the WZNW modelSPSL(2j2)RR;� = � �2� Z d2z tr �S�1�SS�1 ��S� :We an rewrite the perturbation in terms of the �elds we have studied above. To thisend, we shall need the left and right invariant (anti-)holomorphi urrents J�(z) and�J�(�z) along with some degenerate primary �elds ���(z; �z) that transform in the (atypial)adjoint representation [1=2℄ of psl(2j2), i.e.J�(z)���(w; �w) = if���z � w ���(w; �w) + : : : ;�J�(�z)���(w; �w) = if����z � �w ���(w; �w) + : : : : (7.11)It is then easy to identify the RR perturbation with the one that is generated by theomposite �eld �(z; �z) = : J�(z)���(z; �z) �J�(�z) : : (7.12)By onstrution, the �eld � has onformal weights h = �h = 1 in the WZNW model but inpriniple its dimension ould hange when we perturb the theory. Aording to [18℄ (seealso [44, 45℄ for related studies), however, � is truly marginal, i.e. its dimension remains ath = �h = 1 in all orders of perturbation theory. Note that the perturbation with the �eld �resales the kineti term of the WZNWmodel and thus alters the relative normalization ofkineti and Wess-Zumino term. The resulting moduli spae and its physial interpretationis summarized in �gure 1.We do not want to re-derive the onformal invariane of the RR deformation here, butinstead will disuss a somewhat more general assertion. To begin with, it follows fromthe marginality of � that the deformed theory possesses the usual (anti-)holomorphiVirasoro �eld. The latter is psl(2j2) invariant and hene ats as a symmetry within thebranhing spaes of the deomposition (7.4). The true hiral symmetry of the deformed42



Deformed WZW model:mixture of NS and RR uxk � 2��
WZW model: pure NS uxPrinipal hiral model: pure RR uxkFigure 1: The moduli spae of string theory on PSU(1; 1j2). The vertial axis gives thenormalization of the kineti term, the horizontal the normalization of the Wess-Zuminoterm. The lines with � 6= 0 orrespond to marginal deformations of the WZNW model.theory is larger. In fat, it was laimed in [18℄ that all the Casimir �elds in the urrentalgebra provide hiral �elds of the deformed model, i.e. that all �elds of the formW (n) = t�1����n J�1 � � �J�n (7.13)involving ontrations with an invariant, symmetri and traeless tensor t are holomorphieven after a �nite deformation with �. We would like to establish this in �rst orderperturbation theory. Let us emphasize that the symmetry and traelessness of t implythat on the right hand side no partiular normal ordering presription has to be spei�ed.To begin with, we analyze the behaviour of a single urrent. An insertion of the latterinto a orrelation funtion orresponds to the perturbative expansion
J�(z; �z) � � ��� = 
J�(z) � � � �0 � �DJ�(z) � � �Z d2w�(w; �w)E0 + � � � : (7.14)The integral may easily be evaluated with the help of the operator produt expansionJ�(z) �(w; �w) = k : ��� �J� : (w; �w)(z � w)2 = k : ��� �J� : (z; �z)(z � w)2 � k : ���� �J� : (z; �z)z � w : (7.15)The seond expansion where the argument w is replaed by z is more suitable for thealulation of the integral. Introduing the usual step funtion ut-o� whih restrits theintegration to the domain jz � wj2 > a2 we �nd, following an argument of Cardy [46℄,��J� = �� k : ���� �J� : + � � � = �2�i� k f��� : J���� �J� : + � � � : (7.16)This equation is the quantum analogue of the lassial relation ��J = (k; �)[J; g �Jg�1℄whih an be derived from the equations of motion of the perturbed Lagrangian in on-netion with the Maurer-Cartan equation. We believe that the higher order terms in �43



reprodue preisely the lassial equation, i.e. that ��J� is proportional to f��� : J���� �J� :and that the �-dependent prefator oinides with the lassial expression (k; �).We are now �nally prepared to investigate the hiral properties of the Casimir urrentsW (n). Taking the derivative will produe a number of terms but we an move the urrentwith the derivative to the last position. This is beause the di�erene between two di�erentnormal orderings of the urrents and their derivatives always involves the metri or thestruture onstants with two open indies. Upon ontration with t these terms vanishby assumption. Together with the result (7.16) this implies��W (n) = �2�i� k f�n�� t�1����n J�1 � � �J�n�1J���� �J� : (7.17)In this equation the normal ordering again is not relevant. This is basially due to thesame reasons as above, ombined with the fat that operator produts of urrents withthe �eld � give rise to a single term involving the struture onstants f . In addition wehave to use the vanishing of the dual Coxeter number of psl(2j2) in order to get rid ofmultiple f -ontrations. Reordering and relabeling the urrents we then �nd the desiredresult ��W (n) = 0 due to the invariane of the tensor t.Having established the holomorphiity of Casimir �elds, it seems important to adda few omments on denominations. It would be tempting to baptize the hiral algebrathat is generated by the Casimir �elds as Casimir algebra. But this is not how the latterterm is used. By de�nition, the psl(2j2) Casimir algebra is the hiral algebra whoseharaters are given by the branhing funtions we omputed in the previous subsetion[47, 48℄. These are not the same as the haraters of the hiral algebra that is generatedby the Casimir �elds [19℄. In fat, haraters of the latter may be alulated using thequantum Drinfeld-Sokolov redution [49, 50℄ and they only appear as building bloks forthe branhing funtions above, but in most ases the preise relation is highly involved.Put di�erently, the hiral algebra generated by the Casimir �elds is muh smaller thanthe Casimir algebra. Roughly, the di�erene is that the Casimir �elds are obtained asinvariant ombinations of urrents whereas the Casimir algebra also ontains invariant�elds involving derivatives of urrents. The �rst �eld in the Casimir algebra that isnot a Casimir �eld appears at onformal weight h = 4 and it is given by str(�J�J).In this sense, the deompositions disussed in the previous subsetion would not seemsuÆient in order to ontrol the deformation away from the WZNW point. On the otherhand, the spetra possess a higher degree of degeneray whih annot be explained bythe hiral symmetries we have desribed. Take, for example, the urrent itself: it does44



not stay holomorphi beyond the WZ point, yet its onformal weight rests at h = 1 allalong the line of marginal deformations. Suh additional degeneraies may possibly beattributed to some new symmetry whose algebrai struture remains to be unovered.15In a forthoming paper, we shall suggest a di�erent piture that is intimately related toCasimir algebras.8 Outlook and onlusionsIn this work we presented a omplete solution of the WZNW model on the supergroupPSU(1; 1j2) in terms of a free fermion onstrution whih kept the bosoni symmetrymanifest. After a thorough disussion of the representation theoreti foundations in part Iwe derived the preise form of the spetrum based on methods of harmoni analysis. It wasfound that the state spae splits into two parts. The typial (non-BPS) setor behavesniely and deomposes into tensor produts of hiral irreduible representations. Onthe other hand, there exists an atypial (BPS) setor related to states with vanishingonformal dimension where our intuition from purely bosoni WZNW models breaksdown. Here we found non-hiral indeomposable representations on whih the zero-modeof the energy momentum tensor is not diagonalizable. Although we just provided a briefsketh of how orrelation funtions may be alulated it is thus established that thePSU(1; 1j2) WZNW model is a logarithmi onformal �eld theory.We would like to stress that the logarithms only arise beause the WZNW model onthe supergroup PSU(1; 1j2) does not fatorize into a produt of fermioni and bosonisubsetors, ontrary to a widespread laim. In the minisuperspae theory, the ouplingmay be asribed to the existene of the nilpotent term Q in the Laplaian. The operatorQis a di�erential operator in the fermioni diretions with oeÆients whih vary along thebosoni base. Compared to the fatorized theory, this additional term alters the strutureof the eigenfuntions along with their transformation law under psl(2j2). As a result,all the states transform in projetive representations only, both in the partile limit andthe full �eld theory. It is worthwhile to emphasize that without the oupling the �eldtheory ground states would have transformed as (a produt of) Ka modules, even in theatypial setor where the modules degenerate. Hene, the interation between bosons andfermions drastially hanges the embedding struture of the fermioni singular vetors in15Additional Yangian symmetries (see [51, 52℄ for a review) are known to exist in these models, see e.g.[53℄. See also [54, 55, 56, 57, 58, 59, 60℄ for some losely related studies and results.45



our state spae.As in usual free �eld onstrutions for purely bosoni WZNW models one might betempted to set all singular vetors to zero and to work with irreduible representationsonly. But in the ase of supergroup WZNW models, the fermioni singular vetors annotbe deoupled, at least for generi values of the level k. An investigation of the relevantKnizhnik-Zamolodhikov equations similar to the one in [21℄ shows indeed that generiallyloal solutions ontain logarithms. Hene, at least some of the fermioni singular vetorsare needed for onsisteny. There are also other ways to argue that fermioni singularvetors have a very di�erent status from their bosoni ounterparts. In partiular, itis unavoidable that the states on higher energy levels in aÆne modules { irreduible ornot { transform in reduible but indeomposable representations of the horizontal super-algebra. Therefore it seems unnatural to insist on removing fermioni singular vetorsamong the ground states and to work with irreduible aÆne representations only. Evenworse, in atypial irreduible aÆne modules or the assoiated Ka modules we have littleor no hane to ever ontrol the behavior of all exited states under global psu(1; 1j2)transformations.It is in this ontext that projetivity of representations omes to our resue. Indeed,for aÆne modules based on a projetive representation of psu(1; 1j2) � psu(1; 1j2) allthe exited states transform in projetive representations. Moreover, the Raah-Speiseralgorithm allows to determine the deomposition rather expliitly. Sine the psu(1; 1j2)symmetry is an important part of the symmetry that remains unbroken when we turn onRR ux, the ourrene of projetive representations is the best we ould hope for if weare interested in getting a handle on the �-model desribing AdS3 � S3 with a mixtureof NS and RR uxes. Hene, we think that even in ases where it might not be stritlyneessary for reasons of onsisteny it is muh preferable to de�ne the WZNW modelsuh that it inludes all the fermioni singular vetors. This is also suggested by theminisuperspae analysis in whih fermioni singular vetors appear naturally among theeigenstates of the Laplaian.Another remarkable onsequene of the oupling of bosons and fermions is that thenaive algebra of funtions on PSU(1; 1j2) { generated by the produt of funtions on itsbody AdS3 � S3 with monomials in the fermioni variables { does not furnish the appro-priate model for the representation spae of the global supersymmetry transformations.The origin of this surprising fat is that the fermions transform in a �nite dimensional46



non-unitary representation of the bosoni subgroup. In fat, along with the two super-symmetry transformation laws { one for the deoupled theory and one for the full theory{ we have to distinguish two di�erent models for the representation spaes. While in thedeoupled theory we are indeed working with the naive algebra of funtions, this is nottrue anymore in the full, oupled system. The operator � derived from Q (or analogouslythe interation term16 in the full WZW model) mediates between these two inequivalentrepresentation spaes. As part of this proess the operator � entangles the two hiralsubsetors of the free fermion theory by adding subleading ontributions to the free �eldvertex operators. These in turn hange the normalizability properties with respet tothe bosoni subgroup and explain why the naive algebra of funtions did not provide theproper representation spae for the full theory.Though the observations we have listed in the last few paragraphs emerged from thestudy of the WZNW model on PSU(1; 1j2), it is lear that they extend to a muh largerlass of models. Let us point out that the minisuperspae analysis is not at all restrited tothe WZ-point and hene most of our remarks onerning the struture and importane offermioni singular vetors apply to more general sigma models, in partiular to prinipalhiral models on a large lass of supergroups. Similarly, subtleties suh as the ouplingof bosoni and fermioni degrees of freedom { whih eventually lead to the ourreneof indeomposable non-hiral representations and logarithmi orrelation funtions { arebound to arise in more general setups. In fat, the same features are ommon to mostrelativisti theories with a global target spae superalgebra symmetry.Supergroups and osets thereof appear naturally in all attempts to quantize super-string theory in a manifestly target spae supersymmetri way. On the orrespondingbakgrounds, the supersymmetry transformations are realized geometrially as an isome-try or, more preisely, as the left and (for the group ase) right ation of the supergroup onitself. This statement holds in partiular for all supersymmetri AdS-spaes whih an beexpressed as (right) osets based on superonformal groups suh as PSU(N;N j2N) [2, 5℄,higher dimensional relatives of the supergroup onsidered here. Due to the presene ofRamond-Ramond uxes the quantization of these bakgrounds has been a notoriouslydiÆult task.In the ase of AdS3 bakgrounds, the hybrid approah of [4℄ provides one way toresolve the oneptual issues. As we stressed several times before, it involves the sigma16One ould also refer to it as sreening harge but it should be kept in mind that no BRST proedureis implied in our desription. 47



model on PSU(1; 1j2). Conerning higher dimensional bakgrounds, the quantization ofstring bakgrounds using pure spinors [6℄ may be onsidered the most promising reentdevelopment, see also [61, 62℄ for some results on AdS5 bakgrounds that were obtainedin this formalism. Yet, one drawbak of the original formulation was the neessity ofsolving the pure spinor onstraint expliitly using a suitable hoie of oordinates. Thisin turn partly ruined the manifest Lorentz ovariane. The problem was overome in[63℄ upon introdution of new additional ghost systems. In follow up papers the entralrole of a speial aÆne Lie superalgebra has been emphasized [64, 65℄ (see also [66℄). Theexistene of loal and global superalgebra symmetries onnets these developments withthe tehnial aspets of our work, even though we have not been onerned with imposingthe physial state onditions.AknowledgementsWe would like to thank Giuseppe d'Appollonio, Denis Bernard, Matthias Gaberdiel,J�erôme Germoni, Niall MaKay, Yaron Oz, Soo-Jong Rey, Sylvain Ribault, Hubert Saleur,Kareljan Shoutens, Didina Serban, Vera Serganova, Paul Sorba, Anne Taormina, J�orgTeshner, Alexei Tsvelik, G�erard Watts, Kay Wiese and Charles Young for useful andinspiring disussions during various stages of this projet. We are also grateful for thehospitality at the ESI during the workshop \String theory in urved bakgrounds" whihstimulated the present work. Moreover, Thomas Quella aknowledges the kind hospitalityof the SPhT in Salay and at the DESY in Hamburg during numerous visits.This work was partially supported by the EU Researh Training Network grants\Eulid", ontrat number HPRN-CT-2002-00325, \Superstring Theory", ontrat num-ber MRTN-CT-2004-512194, and \ForesUniverse", ontrat number MRTN-CT-2004-005104. Until September 2006 Thomas Quella has been funded by a PPARC postdotoralfellowship under referene PPA/P/S/2002/00370. He also reeived partial support by thePPARC rolling grant PP/C507145/1.
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�1�2rootsnegative positive roots
Figure 2: The root diagram of psl(2j2).A On the irreduibility of generalized Fok spaesThe Ka-Kazhdan formula enodes the preise struture of singular vetors in a Vermamodule, inluding their multipliities [67, 68℄. This in turns allows one to representthe haraters of irreduible representations as alternating sums of haraters of Vermamodules [69℄. In this setion we are going to disuss the singular vetors of Verma modulesover psl(2j2) and show that their irreduible quotients are typially isomorphi to thegeneralized Fok modules introdued in setion 3.2. Instead of working diretly with theKa-Kazhdan determinant, we are taking a more diret and physially more intuitive routehere, whih to the best of our knowledge should be ompletely equivalent. Neverthelesswe have to introdue a bit of notation �rst.The set of all pairs (�1; �2) with �i 2 Z forms the weight lattie of psl(2j2). The twoentries orrespond to weights in the individual fators of sl(2)� sl(2), respetively (let usreall that the weight is twie the spin). Due to the embedding into the supersymmetrisetup we have the slightly unusual salar produt
(�1; �2); (�1; �2)� = �12 ��1�1 � �2�2� : (A.1)In order to desribe the root system of the Lie superalgebra psl(2j2) at least one of thetwo simple roots has to be hosen fermioni. It turns out to be useful to work with a rootsystem whose simple roots orrespond to �1 = (1;�1) and �2 = (0; 2). The remainingpositive roots are then given by �1 + �2 = (1; 1) and 2�1 + �2 = (2; 0). The fermioniroots have multipliity two while the bosoni ones just have multipliity one. A sketh ofthe root diagram an be found in �gure 2.If we denote the Weyl vetor as � = (1; 1) as usual then the onformal dimension of a49



highest weight representation � is given byh� = h�; �+ 2�i2k : (A.2)Note that the onformal dimension is invariant under the transformationw � � = w(�+ �)� � ; (A.3)where w refers to an element of the bosoni Weyl group, i.e. a pair of elements of theWeyl group of sl(2) (the statement holds in general though). This may be traed bakto the fat that the orresponding Weyl transformations leave the metri h�; �i invariant.Reetions perpendiular to the fermioni roots, however, hange the sign. Thereforethey should not be used in the formula above.After these remarks we are �nally prepared to disuss the struture of Verma modulesover psl(2j2). We will onsider a Verma module that is based on a highest weight (�; h�)where we inluded the eigenvalue of L0, the onformal weight, for ompleteness. Singularvetors (�; h�) an just our if the di�erene (� � �; h� � h�) is a linear ombinationof aÆne simple roots with non-negative oeÆients. This in partiular implies that theonformal weights have to satisfy the relationh� = h� + n (A.4)with a non-negative integer n. Note that the onformal dimension of a singular vetorindeed is �xed to be h� as in (A.2) for algebrai reasons and annot be hosen arbitrarily.Moreover, the di�erene �� � has to be an element of the root lattie of psl(2j2) (in fatthe atual ondition is more restritive). In the following we will assume that every weightwhih aording to the previous riteria has the potential to desribe a singular vetorin fat is singular. This seems to be a straightforward onsequene of the Ka-Kazhdanformula [67, 68℄. It is even enough to restrit the analysis to the ase where the aÆneweights di�er by a multiple of a simple root. The other states whih deouple are justdesendents of the ones obtained through the latter.To illustrate the deoupling onditions we have to speify the aÆne simple roots �rst.The bosoni simple roots are given by the set�(�;�n) ��� 2 �(0) ; n > 0	 [ �(�2; 0)	 : (A.5)The seond label in eah tupel refers to the energy of the roots, i.e. to the mode number.The remaining simple roots are fermioni,�(�;�n) ��� 2 �(1) ; n > 0	 [ �(�1; 0)	 : (A.6)50



In the previous de�nitions �(0) and �(1) refer to the bosoni and fermioni roots ofpsl(2j2). �1 and �2 have been spei�ed above. Let us stress that they do not oinidewith the simple roots of sl(2)� sl(2).Let us disuss the bosoni deoupling onditions �rst. For the m-fold appliation ofthe root �(�2; 0); n� the deoupling ondition readsh(�1�2m;�2) != h(�1;�2) +mn ) �(�1 + 1) = nk +m : (A.7)This equation annot be solved for m (for positive level k and due to the restritions on�1), thus proving the absene of bosoni singular vetors with respet to the �rst fatorbsl(2)�k. On the other hand the m-fold appliation of the root �(0;�2); n� yieldsh(�1;�2�2m) != h(�1;�2) +mn ) �(�2 + 1) = nk �m : (A.8)In this ase the equation may always be solved for m (for positive level k). Consequently,all Verma modules of psl(2j2)k possess bosoni singular vetors.The situation is di�erent for the fermioni simple roots beause they just may beapplied one, i.e. m is bound to be one. The orresponding four deoupling onditionsare h(�1+1;�2+1) != h(�1;�2) + n ) �1 � �2 = �2nk (A.9a)h(�1+1;�2�1) != h(�1;�2) + n ) �1 + �2 + 2 = �2nk (A.9b)h(�1�1;�2+1) != h(�1;�2) + n ) �1 + �2 + 2 = 2nk (A.9)h(�1�1;�2�1) != h(�1;�2) + n ) �1 � �2 = 2nk : (A.9d)In this ase none of these equations neessarily possesses a solution. We thus realize thatthe existene of fermioni singular vetors is a rather speial inidene, related to thefatual absene of the variable m. It is thus sensible to introdue the notion of a typialVerma module. This is a Verma module in whih none of the fermioni vetors deouples.In other words: The highest weight has to violate all the onditions (A.9a)-(A.9d).The analysis above has to be slightly re�ned for n = 0. The reason is that for n = 0we are bound to use the positive roots of psl(2j2) in the equations above but the negativeones have to be disarded. Thus just half of the equations above will orrespond to avalid deoupling ondition under these irumstanes.After the rather formal disussion of the previous paragraphs we are now prepared toprove the �rst important mathematial result.51



Lemma 1. Let � be the highest weight of a typial Verma module. Then every singularvetor � in this Verma module is again typial.Proof. Sine singular vetors an just our in the seond fator of bsl(2)�k� bsl(2)k we justhave to distinguish two ases, orresponding to the two di�erent signs in (A.8). In the\�"-ase one �nds (�1; �2) = ��1;��2 + 2(nk � 1)� : (A.10)The onditions for the existene of a singular vetor in the submodule � on the otherhand read ��1 + �2 = ��1 � �2 � 2 + 2nk ?= 2lk (A.11)��1 � �2 � 2 = ��1 + �2 � 2nk ?= 2lk : (A.12)Eah of them ould only be satis�ed if � was atypial. Similar onsiderations apply tothe \+"-ase.Basially the previous Lemma implies that for typial modules the omplete strutureof singular vetors is aptured by the bosoni singular vetors. It should moreover benoted that for psl(2j2)k the deoupling onditions for the bosoni roots are preisely thosethat one obtains in Verma modules over bsl(2)�k�2 � bsl(2)k�2. As a result we have theConjeture 1. The haraters of the generalized Fok module based on a typial weight �and that of the orresponding irreduible module obtained from the Verma module oinide.In partiular the Fok module is irreduible itself.In order to promote this onjeture to a theorem one would have to disuss the mul-tipliities of zeroes in the Ka-Kazhdan determinant [67, 68℄ but we refrain from doingso here. For atypial modules one has to work a bit harder to obtain the haraters ofirreduible modules, see setion 3 for details. We onlude by expressing our expeta-tion that the reasoning of this appendix generalizes to more general lasses of aÆne Liesuperalgebras.Referenes[1℄ O. Aharony, S. S. Gubser, J. M. Maldaena, H. Ooguri and Y. Oz, Large N �eldtheories, string theory and gravity, Phys. Rept. 323 (2000) 183{386[hep-th/9905111℄. 52
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