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AbstratWe use the transfer matrix formalism to derive non-perturbative sum rules in Wilson'slattie QCD with Nf avours of quarks. The disretization errors on these identities aretreated in detail. As an appliation, it is shown how the sum rules an be exploited togive improved estimates of the ontinuum spetrum and stati potential.



1 IntrodutionAlthough relatively old, the subjet of lattie sum rules [1, 2℄ in d = 4 SU(N) gaugetheories has reeived only sporadi attention sine it was initiated by C. Mihael [3℄. Inessene, these identities relate the derivative with respet to a bare lattie parameter ofa physial quantity to a higher order orrelation funtion. A prototype sum rule statesthat the �-dependene of an energy level is determined by the expetation value of theLagrangian on that state.In Monte-Carlo simulations, sum rules were �rst applied as a ross-hek in formfator alulations at zero-momentum transfer [4℄, and in measurements of the ux-tube pro�le in the stati Q �Q system [5℄. Later they were used to determine lattiebeta-funtions non-perturbatively [6, 7℄. On the theory side, they have also led to someinsight into the relative ontribution to the mass of a glueball of the omponent T00 ofthe traeless energy-momentum tensor and of the trae anomaly [8℄.Here we shall generalize the sum rules to the ase where Nf avours of Wilson quarksare present. We do so by invoking the transfer matrix, in our view the most elegantapproah. It also makes it lear that the identities derived do not depend on boundaryonditions or on whih phase the system is in | be it a �nite-temperature phase, aparity-broken phase or other. Let us reall the Wilson ation, whih has two parameters(�; �):Sg = �Xp �p; �p = 1N ReTr f1� U(p)g; (1)Sf = Xx � (x) (x)� �P�h � (x)U�(x)(1� �) (x+a�̂)+ � (x+a�̂)Uy�(x)(1 + �) (x)i(2)where in Eq. 1 the sum extends over all unoriented plaquettes.It is well-known that uto� e�ets are of O(a) in Wilson's formulation. In reenttimes, most large-sale numerial alulations have made use of the O(a) improvementprogram to redue these e�ets (with some notable exeptions [11, 12℄). We presentan idea to exploit lattie sum rules in order to extrat additional information on thelattie spaing dependene of the spetrum, and further how its lattie artefats an beredued.The idea is also appliable to the energy levels in the presene of a Q �Q pair, whereone is typially interested in their derivatives with respet to the stati quark separation.The stati fore, and the e�etive entral harge in the pure gauge ase, are a�eted bydisretization errors whih an be large ompared to the statistial preision one is ableto ahieve.In setion 2 we rederive some of the known results in the pure gauge theory, wherepartiular attention is paid to disretization errors. In setion 3 the sum rules arederived for full QCD. Conrete appliations are proposed in both setions. We makesome onluding remarks in setion 4.2 Transfer matrix and sum rules in the pure gauge theoryWe start with a brief reminder on the transfer formalism and how sum rules are derivedin the pure gauge theory. Some familiarity with the lattie regularization is assumed.1



For dimensionful quantities in lattie units we use the notation L = �La et.If V is the set of spatial link variables in a time-slie, let �[V ℄ 2 HG be a square-integrable wave funtion with respet to the Haar measure of the gauge group. Thetransfer matrix T� ats as follows [13, 14, 15℄:(T� �)[V ℄ = Z Yx Q3k=1 dV 0k(x) K�[V; V 0℄ �[V 0℄; (3)with kernel K�[V; V 0℄ = Z Yx dW (x) exp ����S[V;W; V 0℄� ; (4)�S[V;W;V 0℄ = Xx nPk�0k[V;W; V 0℄ + 12Pk<l(�kl[V ℄ + �kl[V 0℄)o (5)�0k[V;W; V 0℄ � 1N ReTr f1� V 0k(x)W (x+ak)Vk(x)�1W (x)�1g: (6)In words, �S is the restrition of the ation to the region of spae-time between x0 andx0 + a, with a weight of 1/2 given to the terms living on the boundary. When the fullgauge system is de�ned with periodi boundary onditions in the time diretion, thepartition funtion is given by Z(�) = Tr fT� �L0g.We de�ne the magneti-plaquette operator �̂kl to at as in Eq. 3 with K� replaedby Kkl[V; V 0℄ = Æ(V � V 0) �kl(0;x)[V ℄: (7)The kernel orresponding to the eletri plaquette operator �̂0k is de�ned asK0k[V; V 0℄ = Z Yx dW (x) exp ����S[V;W; V 0℄� �0k [V;W;V 0℄: (8)Then, if Tj�i = �j�i,� �� �(�) = � ��h�jT� j�i = �h�j �� T� j�i = �(�)h�jPk<l�̂klj�i+ h�jPk�̂0kj�i:(9)Sine j�i an be any eigenstate of the transfer matrix, we an hoose it to be suessivelythe vauum and a glueball state. The spatial volume is assumed to be large enoughfor the �nite-volume e�ets on the mass gap to be negligible. Subtrating the twoorresponding rules givesd �Md� =Pk<lh�j�̂kl�i � h
j�̂kl
i + Pke �M h�j�̂0kj�i � e �E
h
j�̂0kj
i: (10)Here �M = � log�=�
 is the mass of the glueball in lattie units. One might be surprisedto see the vauum energy appear in this expression, but as we shall see shortly, omputingthe expetation value of an eletri plaquette in the usual ensemble yields preiselye �E
h
jP̂0kj
i.Following [1℄, we an use the fat that d=da( �M=a) = 0 in the ontinuum limit toonlude�M = d�d log anPk<lh�j�̂klj�i�h
j�̂klj
i+Pke �M h�j�̂0kj�i�e �E
h
j�̂0kj
io[1+O(a2)℄:(11)2



To translate the matrix elements appearing on the right-hand side into Eulideanorrelators, for � the lightest state in its symmetry hannel one may hoose a zero-momentum linear ombination �(x0) of magneti loops in that hannel, and omputethe orrelatorh��(x0 + a) 12�Pk<l Pkl(x0=2) + Pkl(x0=2 + a)� ��(0)ih��(x0 + a) ��(0)i x0!1! Xk<lh�j�̂klj�i; (12)where ��(x0) = �(x0)� h�i (take x0=a even). And similarlyh��(x0 + 1) Pk P0k(x0=2) ��(0)ih��(x0 + a) ��(0)i x0!1! e �M(�)Xk h�j�̂0kj�i: (13)2.1 Improved estimators of the ontinuum spetrumWe use the shorthand notation d �Md� = ��
 for Eq. 10 from now on. In view of takingthe ontinuum limit, we use a referene length `0 whih sets the sale of the theory.Typial examples are ��1=2, where � is the string tension and r0, the Sommer referenesale [19℄. We assume that for every �, �̀0 � `0=a an be determined, so that �(�̀0),whih is assumed to be monotoni in the range of interest, andd�d log a � � d�(�̀0)d log �̀0 (14)are well-de�ned. For the ase `0 = r0, �̀0(�) is known with one perent preision orbetter [18℄. Thus on a line of onstant physis, a funtion of � an just as well beregarded as a funtion of �̀0, and vie versa.The dimensionless quantity z � `0M has a ontinuum limit, and we an express itsderivative with respet to the lattie spaing exatly:dzd�̀0 = �M � d�d loga ��
: (15)This information on the slope an be inluded in the ontinuum extrapolation if data atseveral lattie spaings is available. Even if not, it an be used to provide an improvedestimate of the ontinuum limit of z if we assume a partiular form of the disretiza-tion errors. In pratie z is usually observed to approah the ontinuum with O(a2)orretions within statistial errors; suh orretions an be removed aording to:zimpr � z(�̀0) + 12 �̀0 dzd�̀0 = 32z(�̀0)� �̀02 d�d log a ��
: (16)In what sense is this an improved estimate of the ontinuum limit? Suppose the trueanalyti form of z is [21, 9℄z(�̀0) = zont + 1�̀20 NXn=0 n lognf1=�̀0g+ O(1=�̀40): (17)3



Then zimpr = zont � 12�̀20 N�1Xn=0 (n+ 1)n+1 lognf1=�̀0g+ O(1=�̀40): (18)Sine the series of logarithms is asymptoti, if N = 1 yields the best auray at thelattie spaing one is working at, then j0j � j1 logf1=�̀0gj � j1j, so that zimpr hasredued disretization errors, although it is not a full O(a2) improvement. Note that itis essential in (16) to use the quantity `0 that appears elsewhere in the formula to de�ned�d loga , as in Eq. (14).2.2 States depending on an external length saleWe now onsider an eigenstate of a transfer matrix whih, in addition of depending on �,also depends on a physial length sale `, and the latter an take only integer multiplesof some quantum �s: s = n �s; n 2 N: (19)Examples are zero-momentum states in �nite volume (where s = L; �s = a), but alsolarge-volume states with non-vanishing momentum (s = p; �s = 2�=L). The sum rulethen reads � �E�� (n; �) = ��(n)
 � �n
: (20)We shall make use of the standard notation for disrete di�erenes�nf(n) = f(n+ 1)� f(n); ��nf(n) = f(n)� f(n� 1) (21)e�nf(n) = 12(f(n+ 1)� f(n� 1)); �nf(n) = f(n+ 1)� 2f(n) + f(n� 1):Let us onsider again the quantity z = �̀0 �E, whih has a ontinuum limit. Forde�niteness take the ase of a zero-momentum state in �nite volume, so that L = na.For a given ouple (n; �), we hoose an auxiliary n0 lose to but di�erent from n; there isa �0 suh that n0=n = �̀0(�0)=�̀0(�); that is, the box sizes are mathed in physial units.Then we an write�̀0 �E(n; �) = �̀0(�0) �E(n0; �0)[1 + O(a2)℄ (22)= �̀0 n0n h �E(n0; �) + d�d loga logfn=n0g�n0
 (�) + 12 log2fn=n0gf(n0; �)i [1 + O(a2)℄where f(n0; �) = d2�d(loga)2 �� �E(n0; �) + ��2E(n0�)( d�d log a)2. This seond order term isneessary to eliminate O(a) uto� e�ets. We now hoose n0 = n � 1 and then shiftn! n+ 1, obtaining Eq. (a); seondly we hoose n0 = n+ 1 and then shift n! n� 1,obtaining Eq. (b). Note that the funtion f(n; �) is evaluated at the same argumentsin (a) and (b). Therefore we an eliminate that term by taking the linear ombinationlog2(1� 1=n) � (a)� log2(1 + 1=n) � (b). This results in:d�d loga �n
[1 + O(a2)℄ = �E(n) + ne�n �E(n) (23)where we dropped the � dependene and used the freedom to trade one disretizationsheme for another that is equivalent to O(a2). This is one of the Mihael-Rothe sum4



rules [1, 2℄. We have however kept trak of the disretization errors arefully so as not tointrodue O(a) e�ets. This sum rule allows one to extrat the derivative of the torelonenergy with respet to its length without having to perform an independent simulation.In partiular the e�etive entral harge an be omputed viae�(L = na; �̀0) = 12 d�d log a�n
 � n �E(n): (24)2.3 The stati potential aseThe sum rule (20) also holds if stati harges are inserted at points 0 and x, x =rk̂. Indeed the kernel of the transfer matrix then projets onto states ���::: whih,under a gauge transformation U ! U�, transform with �(0) and �(x) aording tothe representation of these harges. For a fundamental-antifundamental pair, we haveexpliitly: ���[U�℄ = (�(0)�)� �(x)�Æ �Æ[U ℄: (25)The transfer matrix kernel isK��ÆN�
N = Z Yx x dW (x) exp ����S[V;W;V 0℄� (W (0)��)� W (x)Æ (26)and the omposition rule is(T2N�
N)��Æ = (TN�
N)��� (TN�
N)���Æ: (27)Thus the partition funtion in the presene of the stati harges isZN�
N = 1N2 X�; Tr f(T�L0N�
N)��g (28)In partiular, the Polyakov loop orrelator evaluates to [16℄ hP (0)� P (x)i = ZN�
N=Z .The energies at two di�erent separations r must be subtrated in order to remove thedivergent self-energy of the stati quarks. The quantity �̀20(�)�n �E(n; �) has a ontinuumlimit. We de�ne �n = n+ 12 +O(a2) where the O(a2) need not be spei�ed presently, andhoose two integers n; n0 � 1; jn � n0j = O(1) and a partiular value of �. Now thereexists an auxiliary �0 suh thatna(�) = n0a(�0); i:e: n�̀0(�0) = n0 �̀0(�):We an write �̀20(�)�n �E(n; �) = �̀20(�0)�n0 �E(n0; �0)[1+O(a2)℄ and then Taylor-expand in� to obtain in the same way as in the previous setionn�n �E(n) + 2e�n �E(n) = d�d loga�n+1n�1 [1 + O(a2)℄: (29)We use the notation �n+1n�1 � �n+1
 ��n
. Again a symmetri �nite-di�erene sheme isneessary and suÆient to remove the O(a) disretization errors.5



2.3.1 An improved estimate of r20F (r)We now show how one an also use the lattie sum rule to redue uto� e�ets on thestati fore. Disretization errors are by far the dominant soure of unertainty on thisquantity [16℄. `0 := r0 and z(�; �r0) := �r20F (r = �r0; �r0): (30)A diret measurement of the fore isF (na; �r0) = �nE(n; �r0): (31)This de�ne the stati fore at a disrete set of points. To de�ne it for all distanes, aninterpolation formula between neighbouring points must be used. Whih formula is amatter of hoie (di�erent de�nitions of the fore at �nite lattie spaing will then di�erby O(a2)).For illustration we hoose a linear interpolation between the two nearest diret mea-surements of the stati fore:z(�; �r0) = �r20n� n � 1�(��r0 � n � 1)�n �E(n; �r0) + (n� ��r0)��n �E(n; �r0)� (32)With this preise de�nition and Eq. 20, �z=��r0 an be evaluated at �xed � exatly. Animproved estimate of the ontinuum z readszimpr(�; �r0) = z(�; �r0) + 12 �r0 �z��r0 ; (33)whih is improved in the same sense as the glueball mass in setion 2.1. Expliitly, usingEq. 20, we getzimpr(�; �r0) = 2z(�; �r0) + 12 �r20n� n � 1 � (34)���r0�nE(n; �r0)� d�d loga�(��r0 � n� 1)�n+1n + (n� ��r0)�nn�1��It is important to realize that the improvement is not merely a higher order di�erenesheme for the stati fore, rather it ontains non-perturbative information about itslattie spaing dependene. Formula (35) may be numerially useful sine all termson the right-hand side an be evaluated in the same simulation. Note that the idea isappliable to more ompliated interpolation shemes for any partiular de�nition of n,and also to the e�etive entral harge e�(r) = �12r3d2V=dr2.2.4 Anisotropi ouplingsSum rules in the pure gauge theory derived by varying the lattie spaings in the fourspae-time diretions independently around the isotropi point an be found in [1℄. Wehave little to add to this subjet, exept to say that the sum rules involving an externalsale, suh as a lattie size dependene, must be expressed with a symmetri �nite-di�erene sheme to avoid O(a) disretization errors. Here is a nie appliation: for atorelon in the diretion 1̂, the energy density in the transverse plane is diretly sensitive6



to quantum string orretions, as already noted in [1℄, and an e�etive entral hargean be de�ned viae�(L = na; �̀0) = n2 (U � S) h�02 +�03 � 2�23���n
: (35)The de�nition of the anisotropi derivatives U and S will be given in setion 3.2; wenote that (U � S)=2 = � � N(� � � ), where the oeÆients �; � were determinedin [17℄ (see also Ref. therein) for a few � values. The e�etive entral harge extratedin this way will di�er by O(a2) terms from Eq. 24.3 Lattie sum rules with Wilson fermionsWe start by realling some essential fats about Wilson fermions and their transfermatrix. We shall use x;y for three-omponent spatial vetors, indies �; �; : : : for olorand �; �; : : : for spinor indies. A spinor omponent is written as  �(x; �); for simpliitywe onsider the one-avour theory for the moment, but the extension to several avoursis trivial, as we shall see. We use a set of Eulidean Dira matries, f�; �g = 2Æ�� ,as well as the projetors P� = 12(1 � 0). Whenever there is a risk of onfusion, weuse a hat to distinguish a quantum mehanial operator from a Eulidean -number orGrassmann variable. The full Hilbert spae H is now the tensor produt of the gaugeHilbert spae HG and a fermioni Hilbert spae HF .An important objet is the olor-ovariant, nearest-neighbour transport operator for�elds transforming in the fundamental representation:D�k (x; �;y; �) = Uk(x)�� Æx+k̂;y � Uyk(y)�� Æy+k̂;x; k = 1; 2; 3: (36)Two spatial �nite-di�erene operators will be used:B = 1� �Xk D+k (37)C = 12Xk D�k 
 k: (38)B is hermitian and stritly positive for 0 < � < 1=6, while C is anti-hermitian , for anygauge �eld on�guration [14℄.The fermioni Hilbert spae is the Fok spae built from a olletion of �̂ operators,whih enjoy anonial antiommutation relations (f�̂�(x; �); �̂y�0(y; �)g = Æxy Æ��0 Æ��et.). One further de�nes [14℄ ̂� = B�1=2 �̂�  ̂y� = �̂y� (B�1=2)t; (39)that turn out to be the operators assoiated with the Grassmann variables ( � ;  ).The transfer matrix in the temporal gauge A0 = 0 was obtained in terms of the �̂operators in [14, 15℄. The kernel of the transfer matrix in the path integral form is givenin [20℄, Eq. 4.26:K[V; � ;  ; V 0; � 0;  0℄ = detfBB0g1=2 Z Yx dW (x) e��S[V;W;V 0 ℄ (40)expf�2( � P+�C � � P+�W�1 0 � � 0WP�� + � 0P��C 0 0)g;7



where B0; C 0 are funtionals of V 0. The salar produt of two funtionals of ( � ;  ) istaken with respet to Grassman integration with a measure e� � B = detB. The deter-minant arises beause of the hange of basis (39).We an now derive a sum rule in the same fashion as in the pure gauge ase. Let �be a normalized eigenstate of the transfer matrix with eigenvalue �. We �nd1�� � = ��h�jT(�; �)j�i= 2 Z DVD � D detfBg�1=2 e� � B �[V; � ;  ℄�Z DV 0D � 0D 0 detfB0g�1=2 e� � 0B0 0 �[V 0; � 0;  0℄Z DW e��S[V;W;V 0 ℄ � � P+W�1 0 + � 0WP� � �expf�2( � P+�C � � P+�W�1 0 � � 0WP�� + � 0P��C 0 0)g+ � Z DVD � D e� � B detB j�[V; � ;  ℄j2� � ( 1�(1� B)� 2C) � (41)In the last line, � multiplies the expetation value on the state � of an equal-timeoperator Âs, while the rest of the expression is the expetation value on the state � ofan integral operator Ât. Following the disussion of the pure gauge ase, we thus have� �� �E(�; �) = h�jÂsj�i � h
jÂsj
i+ e �Eh�jÂtj�i � e �E
h
jÂtj
i � hj�
: (42)To evaluate this matrix element in a Monte-Carlo simulation, one would use an inter-polating �eld ' for the state �. If it is the lightest in its symmetry hannel,h�jÂsj�i = limx0!1 fs(x0); e �Eh�jÂtj�i = limx0!1 ft(x0) (43)with (for x0=a even)fs(x0) = h �'(0) 12 (As(x0=2)+As(x0=2+a)) �'(x0+a)ih �'(0) �'(x0+a)i ; ft(x0) = h�'(0)At(x0=2)�'(x0+a)ih�'(0) �'(x0+a)i (44)and As(x0) = Xx;k � (x)Uk(x)(1� k) (x+ ak̂) + � (x+ ak̂)Uk(x)�1(1 + k) (x) (45)At(x0) = Xx � (x)U0(x)(1� 0) (x+ a0̂) + � (x+ a0̂)(1 + 0)U0(x)�1 (x): (46)These are the hopping terms of the Wilson-Dira ation; they are the terms one wouldobtain by naively di�erentiating the Boltzmann fator. It is also lear now that equa-tions (41) and (45, 46) hold for Nf degenerate avours, provided an impliit summationover avours is understood in (45, 46). In pratie, one the fermion �elds are inte-grated out, the three-point funtions involve all-to-all propagators within one time-slie.A stohasti estimator is then required, as used in previous thermodynamis applia-tions [24℄.1It may be useful to note that if T (x; y) = T �(y; x), � = R w(x)dxw(y)dy��(x)T (x; y)�(y)and R ��(x)�(x)w(x)dx = 1, where T , � and w all depend on a parameter �, then �� � =R w(x)dxw(y)dy��(x)(�� T (x; y))�(y) + � R (��w(x))dxj�(x)j2.8



3.1 AppliationsWe now present some appliations of the sum rule just established. We fous on the aseof Nf degenerate avours. Let us assume for now the spatial volume to be large enoughfor the state � to su�er negligible �nite volume e�ets (for a stable one-partile state,they are exponentially small). Given the existene of the ontinuum limit, we have, upto uto� e�ets,0 = dda [ �Ea (�(a); �(a))℄ ) �E = �� �E d�d log a + �� �E d�d log a: (47)But atually, � = �(�(a)): on a line of `onstant physis' � must be tuned as a funtionof �. Hene �E = d�d loga ���
 � d�d� hj�
� [1 + O(a)℄: (48)where we have used Eq. 10 and Eq. 42. Reall that d�d log a � �4Nb0 is universal in theontinuum limit (b0 = 13(4�)2 (11N � 2Nf)). A partiularly interesting ase arises forNf � 2 in the hiral limit, � = �. The `pion' mass then vanishes and hened�d� = ��
hj�
 � [1 + O(a)℄ (49)Note that at no stage in the derivation of the sum rules did we need to make an as-sumption on the extent of the time diretion { only the spatial lattie size was assumedto be essentially in�nite. Hene this equation also holds in the Shr�odinger funtional {where one an atually simulate at �. Relation (49) an now be inserted into the sumrule for the only other stable partile, the nuleon:�Mnul = d�d logah�nul
 � hjnul
hj�
 ��
i [1 + O(a)℄: (50)As in the pure gauge theory, we an give an improved estimate of the ontinuumz � �̀0 �M , assuming now that the leading orretions to the spetrum are O(a). Here�̀0(�; �(�)) is the quantity evaluated in the hiral limit; onrete examples are r0jm�=0,��1MS or Lmax, de�ned by �g2(1=Lmax) = x, where x is a partiular numerial value and�g2 the renormalized Shr�odinger funtional oupling [23℄. We getzimpr(�̀0) � z(�̀0) + dz=d log �̀0 = 2z(�̀0)� �̀0 d�d loga���
 � d�d� hj�
� (51)We expet the O(a) uto� e�ets to be substantially redued on this estimator. Note thatfor this formula to yield an improvement, d�d log a must be de�ned through the quantity`0, as in Eq. (14).If the volume dependene of the energy level annot be negleted, Eq. 48 beomes�E(f�Lkg) +Xk �Lk e��Lk �E = d�d log ah� � d�d� h����(fLkg)
 [1 + O(a)℄: (52)9



The derivation is idential to the one for the orresponding relation in the pure gaugease. The �nite-di�erene sheme used here in the derivative is formally irrelevant, sinethe sum rule holds with O(a) orretions anyhow; however we still expet the symmetrisheme to yield somewhat smaller disretization errors. This formula may be useful tostudy the volume dependene of the pion mass, and also of the state whih is a mixtureof a two-pion state and the � resonane. The latter volume dependene allows one toextrat the sattering lengths of pions in the elasti regime and the � width [22℄.3.2 Anisotropi lattieWe onsider the Wilson theory with Nf degenerate avours. If one assigns an indepen-dent hopping parameter in the spae diretions from the time diretion, then one anderive the equations � � �E��� = e �Eh�jÂtj�i � e �E
h
jÂtj
i � htj�
 (53)� � �E��� = h�jÂsj�i � h
jÂsj
i � hsj�
 (54)To exploit these relations in a useful way, we must understand how the theory withparameters (�s; �t; �s; �t) is renormalized. As independent `physial' variables, the mostintuitive hoie is (�̀0; �; x), where � is the anisotropy as=at and x essentially sets thequark masses (e.g. x = mPS=mV). The ontinuum limit is then taken with �̀�10 ! 0 at�xed � and x. One an alternatively hoose the set (at; as; x) as independent variables.Sine there are four lattie parameters, it is only on a hypersurfae in that parameterspae that the lattie theory desribes QCD at all. The ontinuum limit orresponds toa partiular urve on that hypersurfae where � and x are onstant.Imagine momentarily using four independent lattie spaings, so that (a0; a1; a2; a3; x)are a set of independent variables. Introdue one hopping parameter �� for eah dire-tion, ��� for eah plaquette orientation and let G � ��0=� log a0 and H � ��0=� log ak .Now loking a1 = a2 = a3 = as, the following relations hold at the isotropi point as = at:��k=�at = H ��k=�as = G+ 2H��0=�at = G ��0=�as = 3H: (55)Similarly, if S = ��0k=� log a0 and U � ��kl=� log a0, then in the a1 = a2 = a3 = astheory, we have at the isotropi point as = at [1℄:�0k=� log at = S �0k=� log as = S + 2U�kl=� log at = U �kl=� log as = 2S + U (56)In this way the number of funtions has been redued by a fator two. However, to ourknowledge the derivatives U; S;G;H have not yet been determined individually in theNf = 2 theory.By writing the renormalization group equations ddas;t �Eat = 0, and taking suitablelinear ombinations thereof, one reovers Eq. 48 (or more generally Eq. 52) under the10



onsisteny onditions2(S + U) = d�d loga G+ 3H = d�d� ; (57)and obtains the independent sum rule�E� 13Xk �Lk e��Lk �E = ��23(U�S)hXk �0k�Xk<l �kl����
+ 13(G�H)h3ht�hs����
�[1+O(a)℄:(58)The vauum matrix elements vanish in this ase by spae-time symmetry.In thermodynami studies of QCD using the Wilson regularization [24℄, the energydensity � and the pressure p are extrated in the so-alled derivative method by omput-ing derivatives with respet to � and � of the partition funtion. Sine Z = Tr fT�L0g,where the temperature T is equal to L�10 , one �nds that aV (� � 3p), the `interationmeasure', is given by a thermal average (with Boltzmann measure e�E=T ) over the eigen-states of the transfer matrix of expression (52). Similarly the expression orrespondingto aV (�+ p) is Eq. (58).4 ConlusionWe have extended the known set of lattie sum rules by inluding the e�ets of Wilsonfermions. Our derivation in the transfer matrix formalism kept trak of disretizationerrors. The main results are Eq. (52) and (58).We have also presented new appliations of the sum rules. Sine they allow us toompute the derivative of an energy level with respet to the lattie spaing, we haveproposed to exploit this to redue uto� e�ets on the spetrum and on the stati po-tential. One may inlude the information on the slope in the ontinuum extrapolation,if one disposes of data at several lattie spaings. Alternatively, one an form an im-proved estimate of the ontinuum limit from data at a single lattie spaing under theassumption of a funtional form for the leading disretization errors, suh as the onepredited by Symanzik's e�etive theory [21℄.Of ourse these appliations are only of pratial interest if the three-point funtionsan be omputed aurately in numerial simulations. This an probably be ahieved forthe stati potential in the pure gauge theory using a suitable multi-level algorithm [25℄.It also seems realisti in Nf � 2 theories in the pseudosalar setor, although high statis-tis and eÆient all-to-all tehniques will be needed. We remark that higher order sumrules may be derived straightforwardly by taking additional derivatives of the trans-fer matrix with respet to the bare parameters, but the n-point funtions are boundto beome more diÆult to evaluate numerially with inreasing n. It is neverthelessoneptually pleasing that loally the lattie artefats an be determined at �xed barelattie parameters.I am happy to thank Karl Jansen and Rainer Sommer for reading and ommentingon the manusript. 11
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