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Abstra
tWe use the transfer matrix formalism to derive non-perturbative sum rules in Wilson'slatti
e QCD with Nf 
avours of quarks. The dis
retization errors on these identities aretreated in detail. As an appli
ation, it is shown how the sum rules 
an be exploited togive improved estimates of the 
ontinuum spe
trum and stati
 potential.



1 Introdu
tionAlthough relatively old, the subje
t of latti
e sum rules [1, 2℄ in d = 4 SU(N) gaugetheories has re
eived only sporadi
 attention sin
e it was initiated by C. Mi
hael [3℄. Inessen
e, these identities relate the derivative with respe
t to a bare latti
e parameter ofa physi
al quantity to a higher order 
orrelation fun
tion. A prototype sum rule statesthat the �-dependen
e of an energy level is determined by the expe
tation value of theLagrangian on that state.In Monte-Carlo simulations, sum rules were �rst applied as a 
ross-
he
k in formfa
tor 
al
ulations at zero-momentum transfer [4℄, and in measurements of the 
ux-tube pro�le in the stati
 Q �Q system [5℄. Later they were used to determine latti
ebeta-fun
tions non-perturbatively [6, 7℄. On the theory side, they have also led to someinsight into the relative 
ontribution to the mass of a glueball of the 
omponent T00 ofthe tra
eless energy-momentum tensor and of the tra
e anomaly [8℄.Here we shall generalize the sum rules to the 
ase where Nf 
avours of Wilson quarksare present. We do so by invoking the transfer matrix, in our view the most elegantapproa
h. It also makes it 
lear that the identities derived do not depend on boundary
onditions or on whi
h phase the system is in | be it a �nite-temperature phase, aparity-broken phase or other. Let us re
all the Wilson a
tion, whi
h has two parameters(�; �):Sg = �Xp �p; �p = 1N ReTr f1� U(p)g; (1)Sf = Xx � (x) (x)� �P�h � (x)U�(x)(1� 
�) (x+a�̂)+ � (x+a�̂)Uy�(x)(1 + 
�) (x)i(2)where in Eq. 1 the sum extends over all unoriented plaquettes.It is well-known that 
uto� e�e
ts are of O(a) in Wilson's formulation. In re
enttimes, most large-s
ale numeri
al 
al
ulations have made use of the O(a) improvementprogram to redu
e these e�e
ts (with some notable ex
eptions [11, 12℄). We presentan idea to exploit latti
e sum rules in order to extra
t additional information on thelatti
e spa
ing dependen
e of the spe
trum, and further how its latti
e artefa
ts 
an beredu
ed.The idea is also appli
able to the energy levels in the presen
e of a Q �Q pair, whereone is typi
ally interested in their derivatives with respe
t to the stati
 quark separation.The stati
 for
e, and the e�e
tive 
entral 
harge in the pure gauge 
ase, are a�e
ted bydis
retization errors whi
h 
an be large 
ompared to the statisti
al pre
ision one is ableto a
hieve.In se
tion 2 we rederive some of the known results in the pure gauge theory, whereparti
ular attention is paid to dis
retization errors. In se
tion 3 the sum rules arederived for full QCD. Con
rete appli
ations are proposed in both se
tions. We makesome 
on
luding remarks in se
tion 4.2 Transfer matrix and sum rules in the pure gauge theoryWe start with a brief reminder on the transfer formalism and how sum rules are derivedin the pure gauge theory. Some familiarity with the latti
e regularization is assumed.1



For dimensionful quantities in latti
e units we use the notation L = �La et
.If V is the set of spatial link variables in a time-sli
e, let �[V ℄ 2 HG be a square-integrable wave fun
tion with respe
t to the Haar measure of the gauge group. Thetransfer matrix T� a
ts as follows [13, 14, 15℄:(T� �)[V ℄ = Z Yx Q3k=1 dV 0k(x) K�[V; V 0℄ �[V 0℄; (3)with kernel K�[V; V 0℄ = Z Yx dW (x) exp ����S[V;W; V 0℄� ; (4)�S[V;W;V 0℄ = Xx nPk�0k[V;W; V 0℄ + 12Pk<l(�kl[V ℄ + �kl[V 0℄)o (5)�0k[V;W; V 0℄ � 1N ReTr f1� V 0k(x)W (x+ak)Vk(x)�1W (x)�1g: (6)In words, �S is the restri
tion of the a
tion to the region of spa
e-time between x0 andx0 + a, with a weight of 1/2 given to the terms living on the boundary. When the fullgauge system is de�ned with periodi
 boundary 
onditions in the time dire
tion, thepartition fun
tion is given by Z(�) = Tr fT� �L0g.We de�ne the magneti
-plaquette operator �̂kl to a
t as in Eq. 3 with K� repla
edby Kkl[V; V 0℄ = Æ(V � V 0) �kl(0;x)[V ℄: (7)The kernel 
orresponding to the ele
tri
 plaquette operator �̂0k is de�ned asK0k[V; V 0℄ = Z Yx dW (x) exp ����S[V;W; V 0℄� �0k [V;W;V 0℄: (8)Then, if Tj�i = �j�i,� �� �(�) = � ��h�jT� j�i = �h�j �� T� j�i = �(�)h�jPk<l�̂klj�i+ h�jPk�̂0kj�i:(9)Sin
e j�i 
an be any eigenstate of the transfer matrix, we 
an 
hoose it to be su

essivelythe va
uum and a glueball state. The spatial volume is assumed to be large enoughfor the �nite-volume e�e
ts on the mass gap to be negligible. Subtra
ting the two
orresponding rules givesd �Md� =Pk<lh�j�̂kl�i � h
j�̂kl
i + Pke �M h�j�̂0kj�i � e �E
h
j�̂0kj
i: (10)Here �M = � log�=�
 is the mass of the glueball in latti
e units. One might be surprisedto see the va
uum energy appear in this expression, but as we shall see shortly, 
omputingthe expe
tation value of an ele
tri
 plaquette in the usual ensemble yields pre
iselye �E
h
jP̂0kj
i.Following [1℄, we 
an use the fa
t that d=da( �M=a) = 0 in the 
ontinuum limit to
on
lude�M = d�d log anPk<lh�j�̂klj�i�h
j�̂klj
i+Pke �M h�j�̂0kj�i�e �E
h
j�̂0kj
io[1+O(a2)℄:(11)2



To translate the matrix elements appearing on the right-hand side into Eu
lidean
orrelators, for � the lightest state in its symmetry 
hannel one may 
hoose a zero-momentum linear 
ombination �(x0) of magneti
 loops in that 
hannel, and 
omputethe 
orrelatorh��(x0 + a) 12�Pk<l Pkl(x0=2) + Pkl(x0=2 + a)� ��(0)ih��(x0 + a) ��(0)i x0!1! Xk<lh�j�̂klj�i; (12)where ��(x0) = �(x0)� h�i (take x0=a even). And similarlyh��(x0 + 1) Pk P0k(x0=2) ��(0)ih��(x0 + a) ��(0)i x0!1! e �M(�)Xk h�j�̂0kj�i: (13)2.1 Improved estimators of the 
ontinuum spe
trumWe use the shorthand notation d �Md� = ��
 for Eq. 10 from now on. In view of takingthe 
ontinuum limit, we use a referen
e length `0 whi
h sets the s
ale of the theory.Typi
al examples are ��1=2, where � is the string tension and r0, the Sommer referen
es
ale [19℄. We assume that for every �, �̀0 � `0=a 
an be determined, so that �(�̀0),whi
h is assumed to be monotoni
 in the range of interest, andd�d log a � � d�(�̀0)d log �̀0 (14)are well-de�ned. For the 
ase `0 = r0, �̀0(�) is known with one per
ent pre
ision orbetter [18℄. Thus on a line of 
onstant physi
s, a fun
tion of � 
an just as well beregarded as a fun
tion of �̀0, and vi
e versa.The dimensionless quantity z � `0M has a 
ontinuum limit, and we 
an express itsderivative with respe
t to the latti
e spa
ing exa
tly:dzd�̀0 = �M � d�d loga ��
: (15)This information on the slope 
an be in
luded in the 
ontinuum extrapolation if data atseveral latti
e spa
ings is available. Even if not, it 
an be used to provide an improvedestimate of the 
ontinuum limit of z if we assume a parti
ular form of the dis
retiza-tion errors. In pra
ti
e z is usually observed to approa
h the 
ontinuum with O(a2)
orre
tions within statisti
al errors; su
h 
orre
tions 
an be removed a

ording to:zimpr � z(�̀0) + 12 �̀0 dzd�̀0 = 32z(�̀0)� �̀02 d�d log a ��
: (16)In what sense is this an improved estimate of the 
ontinuum limit? Suppose the trueanalyti
 form of z is [21, 9℄z(�̀0) = z
ont + 1�̀20 NXn=0 
n lognf1=�̀0g+ O(1=�̀40): (17)3



Then zimpr = z
ont � 12�̀20 N�1Xn=0 (n+ 1)
n+1 lognf1=�̀0g+ O(1=�̀40): (18)Sin
e the series of logarithms is asymptoti
, if N = 1 yields the best a

ura
y at thelatti
e spa
ing one is working at, then j
0j � j
1 logf1=�̀0gj � j
1j, so that zimpr hasredu
ed dis
retization errors, although it is not a full O(a2) improvement. Note that itis essential in (16) to use the quantity `0 that appears elsewhere in the formula to de�ned�d loga , as in Eq. (14).2.2 States depending on an external length s
aleWe now 
onsider an eigenstate of a transfer matrix whi
h, in addition of depending on �,also depends on a physi
al length s
ale `, and the latter 
an take only integer multiplesof some quantum �s: s = n �s; n 2 N: (19)Examples are zero-momentum states in �nite volume (where s = L; �s = a), but alsolarge-volume states with non-vanishing momentum (s = p; �s = 2�=L). The sum rulethen reads � �E�� (n; �) = ��(n)
 � �n
: (20)We shall make use of the standard notation for dis
rete di�eren
es�nf(n) = f(n+ 1)� f(n); ��nf(n) = f(n)� f(n� 1) (21)e�nf(n) = 12(f(n+ 1)� f(n� 1)); �nf(n) = f(n+ 1)� 2f(n) + f(n� 1):Let us 
onsider again the quantity z = �̀0 �E, whi
h has a 
ontinuum limit. Forde�niteness take the 
ase of a zero-momentum state in �nite volume, so that L = na.For a given 
ouple (n; �), we 
hoose an auxiliary n0 
lose to but di�erent from n; there isa �0 su
h that n0=n = �̀0(�0)=�̀0(�); that is, the box sizes are mat
hed in physi
al units.Then we 
an write�̀0 �E(n; �) = �̀0(�0) �E(n0; �0)[1 + O(a2)℄ (22)= �̀0 n0n h �E(n0; �) + d�d loga logfn=n0g�n0
 (�) + 12 log2fn=n0gf(n0; �)i [1 + O(a2)℄where f(n0; �) = d2�d(loga)2 �� �E(n0; �) + ��2E(n0�)( d�d log a)2. This se
ond order term isne
essary to eliminate O(a) 
uto� e�e
ts. We now 
hoose n0 = n � 1 and then shiftn! n+ 1, obtaining Eq. (a); se
ondly we 
hoose n0 = n+ 1 and then shift n! n� 1,obtaining Eq. (b). Note that the fun
tion f(n; �) is evaluated at the same argumentsin (a) and (b). Therefore we 
an eliminate that term by taking the linear 
ombinationlog2(1� 1=n) � (a)� log2(1 + 1=n) � (b). This results in:d�d loga �n
[1 + O(a2)℄ = �E(n) + ne�n �E(n) (23)where we dropped the � dependen
e and used the freedom to trade one dis
retizations
heme for another that is equivalent to O(a2). This is one of the Mi
hael-Rothe sum4



rules [1, 2℄. We have however kept tra
k of the dis
retization errors 
arefully so as not tointrodu
e O(a) e�e
ts. This sum rule allows one to extra
t the derivative of the torelonenergy with respe
t to its length without having to perform an independent simulation.In parti
ular the e�e
tive 
entral 
harge 
an be 
omputed via
e�(L = na; �̀0) = 12 d�d log a�n
 � n �E(n): (24)2.3 The stati
 potential 
aseThe sum rule (20) also holds if stati
 
harges are inserted at points 0 and x, x =rk̂. Indeed the kernel of the transfer matrix then proje
ts onto states ���::: whi
h,under a gauge transformation U ! U�, transform with �(0) and �(x) a

ording tothe representation of these 
harges. For a fundamental-antifundamental pair, we haveexpli
itly: ���[U�℄ = (�(0)�
)� �(x)�Æ �
Æ[U ℄: (25)The transfer matrix kernel isK��
ÆN�
N = Z Yx x dW (x) exp ����S[V;W;V 0℄� (W (0)��)� W (x)
Æ (26)and the 
omposition rule is(T2N�
N)��
Æ = (TN�
N)��
� (TN�
N)���Æ: (27)Thus the partition fun
tion in the presen
e of the stati
 
harges isZN�
N = 1N2 X�;
 Tr f(T�L0N�
N)��

g (28)In parti
ular, the Polyakov loop 
orrelator evaluates to [16℄ hP (0)� P (x)i = ZN�
N=Z .The energies at two di�erent separations r must be subtra
ted in order to remove thedivergent self-energy of the stati
 quarks. The quantity �̀20(�)�n �E(n; �) has a 
ontinuumlimit. We de�ne �n = n+ 12 +O(a2) where the O(a2) need not be spe
i�ed presently, and
hoose two integers n; n0 � 1; jn � n0j = O(1) and a parti
ular value of �. Now thereexists an auxiliary �0 su
h thatna(�) = n0a(�0); i:e: n�̀0(�0) = n0 �̀0(�):We 
an write �̀20(�)�n �E(n; �) = �̀20(�0)�n0 �E(n0; �0)[1+O(a2)℄ and then Taylor-expand in� to obtain in the same way as in the previous se
tionn�n �E(n) + 2e�n �E(n) = d�d loga�n+1n�1 [1 + O(a2)℄: (29)We use the notation �n+1n�1 � �n+1
 ��n
. Again a symmetri
 �nite-di�eren
e s
heme isne
essary and suÆ
ient to remove the O(a) dis
retization errors.5



2.3.1 An improved estimate of r20F (r)We now show how one 
an also use the latti
e sum rule to redu
e 
uto� e�e
ts on thestati
 for
e. Dis
retization errors are by far the dominant sour
e of un
ertainty on thisquantity [16℄. `0 := r0 and z(�; �r0) := �r20F (r = �r0; �r0): (30)A dire
t measurement of the for
e isF (na; �r0) = �nE(n; �r0): (31)This de�ne the stati
 for
e at a dis
rete set of points. To de�ne it for all distan
es, aninterpolation formula between neighbouring points must be used. Whi
h formula is amatter of 
hoi
e (di�erent de�nitions of the for
e at �nite latti
e spa
ing will then di�erby O(a2)).For illustration we 
hoose a linear interpolation between the two nearest dire
t mea-surements of the stati
 for
e:z(�; �r0) = �r20n� n � 1�(��r0 � n � 1)�n �E(n; �r0) + (n� ��r0)��n �E(n; �r0)� (32)With this pre
ise de�nition and Eq. 20, �z=��r0 
an be evaluated at �xed � exa
tly. Animproved estimate of the 
ontinuum z readszimpr(�; �r0) = z(�; �r0) + 12 �r0 �z��r0 ; (33)whi
h is improved in the same sense as the glueball mass in se
tion 2.1. Expli
itly, usingEq. 20, we getzimpr(�; �r0) = 2z(�; �r0) + 12 �r20n� n � 1 � (34)���r0�nE(n; �r0)� d�d loga�(��r0 � n� 1)�n+1n + (n� ��r0)�nn�1��It is important to realize that the improvement is not merely a higher order di�eren
es
heme for the stati
 for
e, rather it 
ontains non-perturbative information about itslatti
e spa
ing dependen
e. Formula (35) may be numeri
ally useful sin
e all termson the right-hand side 
an be evaluated in the same simulation. Note that the idea isappli
able to more 
ompli
ated interpolation s
hemes for any parti
ular de�nition of n,and also to the e�e
tive 
entral 
harge 
e�(r) = �12r3d2V=dr2.2.4 Anisotropi
 
ouplingsSum rules in the pure gauge theory derived by varying the latti
e spa
ings in the fourspa
e-time dire
tions independently around the isotropi
 point 
an be found in [1℄. Wehave little to add to this subje
t, ex
ept to say that the sum rules involving an externals
ale, su
h as a latti
e size dependen
e, must be expressed with a symmetri
 �nite-di�eren
e s
heme to avoid O(a) dis
retization errors. Here is a ni
e appli
ation: for atorelon in the dire
tion 1̂, the energy density in the transverse plane is dire
tly sensitive6



to quantum string 
orre
tions, as already noted in [1℄, and an e�e
tive 
entral 
harge
an be de�ned via
e�(L = na; �̀0) = n2 (U � S) h�02 +�03 � 2�23���n
: (35)The de�nition of the anisotropi
 derivatives U and S will be given in se
tion 3.2; wenote that (U � S)=2 = � � N(
� � 
� ), where the 
oeÆ
ients 
�; 
� were determinedin [17℄ (see also Ref. therein) for a few � values. The e�e
tive 
entral 
harge extra
tedin this way will di�er by O(a2) terms from Eq. 24.3 Latti
e sum rules with Wilson fermionsWe start by re
alling some essential fa
ts about Wilson fermions and their transfermatrix. We shall use x;y for three-
omponent spatial ve
tors, indi
es �; �; : : : for 
olorand �; �; : : : for spinor indi
es. A spinor 
omponent is written as  �(x; �); for simpli
itywe 
onsider the one-
avour theory for the moment, but the extension to several 
avoursis trivial, as we shall see. We use a set of Eu
lidean Dira
 matri
es, f
�; 
�g = 2Æ�� ,as well as the proje
tors P� = 12(1 � 
0). Whenever there is a risk of 
onfusion, weuse a hat to distinguish a quantum me
hani
al operator from a Eu
lidean 
-number orGrassmann variable. The full Hilbert spa
e H is now the tensor produ
t of the gaugeHilbert spa
e HG and a fermioni
 Hilbert spa
e HF .An important obje
t is the 
olor-
ovariant, nearest-neighbour transport operator for�elds transforming in the fundamental representation:D�k (x; �;y; �) = Uk(x)�� Æx+k̂;y � Uyk(y)�� Æy+k̂;x; k = 1; 2; 3: (36)Two spatial �nite-di�eren
e operators will be used:B = 1� �Xk D+k (37)C = 12Xk D�k 
 
k: (38)B is hermitian and stri
tly positive for 0 < � < 1=6, while C is anti-hermitian , for anygauge �eld 
on�guration [14℄.The fermioni
 Hilbert spa
e is the Fo
k spa
e built from a 
olle
tion of �̂ operators,whi
h enjoy 
anoni
al anti
ommutation relations (f�̂�(x; �); �̂y�0(y; �)g = Æxy Æ��0 Æ��et
.). One further de�nes [14℄ ̂� = B�1=2 �̂�  ̂y� = �̂y� (B�1=2)t; (39)that turn out to be the operators asso
iated with the Grassmann variables ( � ;  ).The transfer matrix in the temporal gauge A0 = 0 was obtained in terms of the �̂operators in [14, 15℄. The kernel of the transfer matrix in the path integral form is givenin [20℄, Eq. 4.26:K[V; � ;  ; V 0; � 0;  0℄ = detfBB0g1=2 Z Yx dW (x) e��S[V;W;V 0 ℄ (40)expf�2( � P+�C � � P+�W�1 0 � � 0WP�� + � 0P��C 0 0)g;7



where B0; C 0 are fun
tionals of V 0. The s
alar produ
t of two fun
tionals of ( � ;  ) istaken with respe
t to Grassman integration with a measure e� � B = detB. The deter-minant arises be
ause of the 
hange of basis (39).We 
an now derive a sum rule in the same fashion as in the pure gauge 
ase. Let �be a normalized eigenstate of the transfer matrix with eigenvalue �. We �nd1�� � = ��h�jT(�; �)j�i= 2 Z DVD � D detfBg�1=2 e� � B �[V; � ;  ℄�Z DV 0D � 0D 0 detfB0g�1=2 e� � 0B0 0 �[V 0; � 0;  0℄Z DW e��S[V;W;V 0 ℄ � � P+W�1 0 + � 0WP� � �expf�2( � P+�C � � P+�W�1 0 � � 0WP�� + � 0P��C 0 0)g+ � Z DVD � D e� � B detB j�[V; � ;  ℄j2� � ( 1�(1� B)� 2C) � (41)In the last line, � multiplies the expe
tation value on the state � of an equal-timeoperator Âs, while the rest of the expression is the expe
tation value on the state � ofan integral operator Ât. Following the dis
ussion of the pure gauge 
ase, we thus have� �� �E(�; �) = h�jÂsj�i � h
jÂsj
i+ e �Eh�jÂtj�i � e �E
h
jÂtj
i � hj�
: (42)To evaluate this matrix element in a Monte-Carlo simulation, one would use an inter-polating �eld ' for the state �. If it is the lightest in its symmetry 
hannel,h�jÂsj�i = limx0!1 fs(x0); e �Eh�jÂtj�i = limx0!1 ft(x0) (43)with (for x0=a even)fs(x0) = h �'(0) 12 (As(x0=2)+As(x0=2+a)) �'(x0+a)ih �'(0) �'(x0+a)i ; ft(x0) = h�'(0)At(x0=2)�'(x0+a)ih�'(0) �'(x0+a)i (44)and As(x0) = Xx;k � (x)Uk(x)(1� 
k) (x+ ak̂) + � (x+ ak̂)Uk(x)�1(1 + 
k) (x) (45)At(x0) = Xx � (x)U0(x)(1� 
0) (x+ a0̂) + � (x+ a0̂)(1 + 
0)U0(x)�1 (x): (46)These are the hopping terms of the Wilson-Dira
 a
tion; they are the terms one wouldobtain by naively di�erentiating the Boltzmann fa
tor. It is also 
lear now that equa-tions (41) and (45, 46) hold for Nf degenerate 
avours, provided an impli
it summationover 
avours is understood in (45, 46). In pra
ti
e, on
e the fermion �elds are inte-grated out, the three-point fun
tions involve all-to-all propagators within one time-sli
e.A sto
hasti
 estimator is then required, as used in previous thermodynami
s appli
a-tions [24℄.1It may be useful to note that if T (x; y) = T �(y; x), � = R w(x)dxw(y)dy��(x)T (x; y)�(y)and R ��(x)�(x)w(x)dx = 1, where T , � and w all depend on a parameter �, then �� � =R w(x)dxw(y)dy��(x)(�� T (x; y))�(y) + � R (��w(x))dxj�(x)j2.8



3.1 Appli
ationsWe now present some appli
ations of the sum rule just established. We fo
us on the 
aseof Nf degenerate 
avours. Let us assume for now the spatial volume to be large enoughfor the state � to su�er negligible �nite volume e�e
ts (for a stable one-parti
le state,they are exponentially small). Given the existen
e of the 
ontinuum limit, we have, upto 
uto� e�e
ts,0 = dda [ �Ea (�(a); �(a))℄ ) �E = �� �E d�d log a + �� �E d�d log a: (47)But a
tually, � = �(�(a)): on a line of `
onstant physi
s' � must be tuned as a fun
tionof �. Hen
e �E = d�d loga ���
 � d�d� hj�
� [1 + O(a)℄: (48)where we have used Eq. 10 and Eq. 42. Re
all that d�d log a � �4Nb0 is universal in the
ontinuum limit (b0 = 13(4�)2 (11N � 2Nf)). A parti
ularly interesting 
ase arises forNf � 2 in the 
hiral limit, � = �
. The `pion' mass then vanishes and hen
ed�
d� = ��
hj�
 � [1 + O(a)℄ (49)Note that at no stage in the derivation of the sum rules did we need to make an as-sumption on the extent of the time dire
tion { only the spatial latti
e size was assumedto be essentially in�nite. Hen
e this equation also holds in the S
hr�odinger fun
tional {where one 
an a
tually simulate at �
. Relation (49) 
an now be inserted into the sumrule for the only other stable parti
le, the nu
leon:�Mnu
l = d�d logah�nu
l
 � hjnu
l
hj�
 ��
i [1 + O(a)℄: (50)As in the pure gauge theory, we 
an give an improved estimate of the 
ontinuumz � �̀0 �M , assuming now that the leading 
orre
tions to the spe
trum are O(a). Here�̀0(�; �
(�)) is the quantity evaluated in the 
hiral limit; 
on
rete examples are r0jm�=0,��1MS or Lmax, de�ned by �g2(1=Lmax) = x, where x is a parti
ular numeri
al value and�g2 the renormalized S
hr�odinger fun
tional 
oupling [23℄. We getzimpr(�̀0) � z(�̀0) + dz=d log �̀0 = 2z(�̀0)� �̀0 d�d loga���
 � d�d� hj�
� (51)We expe
t the O(a) 
uto� e�e
ts to be substantially redu
ed on this estimator. Note thatfor this formula to yield an improvement, d�d log a must be de�ned through the quantity`0, as in Eq. (14).If the volume dependen
e of the energy level 
annot be negle
ted, Eq. 48 be
omes�E(f�Lkg) +Xk �Lk e��Lk �E = d�d log ah� � d�d� h����(fLkg)
 [1 + O(a)℄: (52)9



The derivation is identi
al to the one for the 
orresponding relation in the pure gauge
ase. The �nite-di�eren
e s
heme used here in the derivative is formally irrelevant, sin
ethe sum rule holds with O(a) 
orre
tions anyhow; however we still expe
t the symmetri
s
heme to yield somewhat smaller dis
retization errors. This formula may be useful tostudy the volume dependen
e of the pion mass, and also of the state whi
h is a mixtureof a two-pion state and the � resonan
e. The latter volume dependen
e allows one toextra
t the s
attering lengths of pions in the elasti
 regime and the � width [22℄.3.2 Anisotropi
 latti
eWe 
onsider the Wilson theory with Nf degenerate 
avours. If one assigns an indepen-dent hopping parameter in the spa
e dire
tions from the time dire
tion, then one 
anderive the equations � � �E��� = e �Eh�jÂtj�i � e �E
h
jÂtj
i � htj�
 (53)� � �E��� = h�jÂsj�i � h
jÂsj
i � hsj�
 (54)To exploit these relations in a useful way, we must understand how the theory withparameters (�s; �t; �s; �t) is renormalized. As independent `physi
al' variables, the mostintuitive 
hoi
e is (�̀0; �; x), where � is the anisotropy as=at and x essentially sets thequark masses (e.g. x = mPS=mV). The 
ontinuum limit is then taken with �̀�10 ! 0 at�xed � and x. One 
an alternatively 
hoose the set (at; as; x) as independent variables.Sin
e there are four latti
e parameters, it is only on a hypersurfa
e in that parameterspa
e that the latti
e theory des
ribes QCD at all. The 
ontinuum limit 
orresponds toa parti
ular 
urve on that hypersurfa
e where � and x are 
onstant.Imagine momentarily using four independent latti
e spa
ings, so that (a0; a1; a2; a3; x)are a set of independent variables. Introdu
e one hopping parameter �� for ea
h dire
-tion, ��� for ea
h plaquette orientation and let G � ��0=� log a0 and H � ��0=� log ak .Now lo
king a1 = a2 = a3 = as, the following relations hold at the isotropi
 point as = at:��k=�at = H ��k=�as = G+ 2H��0=�at = G ��0=�as = 3H: (55)Similarly, if S = ��0k=� log a0 and U � ��kl=� log a0, then in the a1 = a2 = a3 = astheory, we have at the isotropi
 point as = at [1℄:�0k=� log at = S �0k=� log as = S + 2U�kl=� log at = U �kl=� log as = 2S + U (56)In this way the number of fun
tions has been redu
ed by a fa
tor two. However, to ourknowledge the derivatives U; S;G;H have not yet been determined individually in theNf = 2 theory.By writing the renormalization group equations ddas;t �Eat = 0, and taking suitablelinear 
ombinations thereof, one re
overs Eq. 48 (or more generally Eq. 52) under the10




onsisten
y 
onditions2(S + U) = d�d loga G+ 3H = d�d� ; (57)and obtains the independent sum rule�E� 13Xk �Lk e��Lk �E = ��23(U�S)hXk �0k�Xk<l �kl����
+ 13(G�H)h3ht�hs����
�[1+O(a)℄:(58)The va
uum matrix elements vanish in this 
ase by spa
e-time symmetry.In thermodynami
 studies of QCD using the Wilson regularization [24℄, the energydensity � and the pressure p are extra
ted in the so-
alled derivative method by 
omput-ing derivatives with respe
t to � and � of the partition fun
tion. Sin
e Z = Tr fT�L0g,where the temperature T is equal to L�10 , one �nds that aV (� � 3p), the `intera
tionmeasure', is given by a thermal average (with Boltzmann measure e�E=T ) over the eigen-states of the transfer matrix of expression (52). Similarly the expression 
orrespondingto aV (�+ p) is Eq. (58).4 Con
lusionWe have extended the known set of latti
e sum rules by in
luding the e�e
ts of Wilsonfermions. Our derivation in the transfer matrix formalism kept tra
k of dis
retizationerrors. The main results are Eq. (52) and (58).We have also presented new appli
ations of the sum rules. Sin
e they allow us to
ompute the derivative of an energy level with respe
t to the latti
e spa
ing, we haveproposed to exploit this to redu
e 
uto� e�e
ts on the spe
trum and on the stati
 po-tential. One may in
lude the information on the slope in the 
ontinuum extrapolation,if one disposes of data at several latti
e spa
ings. Alternatively, one 
an form an im-proved estimate of the 
ontinuum limit from data at a single latti
e spa
ing under theassumption of a fun
tional form for the leading dis
retization errors, su
h as the onepredi
ted by Symanzik's e�e
tive theory [21℄.Of 
ourse these appli
ations are only of pra
ti
al interest if the three-point fun
tions
an be 
omputed a

urately in numeri
al simulations. This 
an probably be a
hieved forthe stati
 potential in the pure gauge theory using a suitable multi-level algorithm [25℄.It also seems realisti
 in Nf � 2 theories in the pseudos
alar se
tor, although high statis-ti
s and eÆ
ient all-to-all te
hniques will be needed. We remark that higher order sumrules may be derived straightforwardly by taking additional derivatives of the trans-fer matrix with respe
t to the bare parameters, but the n-point fun
tions are boundto be
ome more diÆ
ult to evaluate numeri
ally with in
reasing n. It is nevertheless
on
eptually pleasing that lo
ally the latti
e artefa
ts 
an be determined at �xed barelatti
e parameters.I am happy to thank Karl Jansen and Rainer Sommer for reading and 
ommentingon the manus
ript. 11
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