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DESY preprint: DESY 06-143Edinburgh preprint: Edinburgh 2006/19TUM preprint: TUM/T39-06-07Probing Nuleon Struture on the LattieM. G�okeler1, Ph. H�agler2, R. Horsley3, Y. Nakamura4, D. Pleiter4, P.E.L. Rakow5, A. Sh�afer1, G. Shierholz4;6,W. Shroers4 , H. St�uben7, and J.M. Zanotti3a(QCDSF/UKQCD Collaboration)1 Institut f�ur Theoretishe Physik, Universit�at Regensburg, 93040 Regensburg, Germany2 Institut f�ur Theoretishe Physik T39, Physik-Department der TU M�unhen, 85747 Garhing, Germany3 Shool of Physis, University of Edinburgh, Edinburgh EH9 3JZ, UK4 John von Neumann-Institut f�ur Computing NIC/DESY, 15738 Zeuthen, Germany5 Theoretial Physis Division, Dep. of Math. Sienes, University of Liverpool, Liverpool L69 3BX, UK6 Deutshes Elektronen-Synhrotron DESY, 22603 Hamburg, Germany7 Konrad-Zuse-Zentrum f�ur Informationstehnik Berlin, 14195 Berlin, GermanyReeived: date / Revised version: dateAbstrat. The QCDSF/UKQCD ollaboration has an ongoing program to alulate nuleon matrix ele-ments with two avours of dynamial O(a) improved Wilson fermions. Here we present reent results onthe eletromagneti form fators, the quark momentum fration hxi and the �rst three moments of thenuleon's spin-averaged and spin-dependent generalised parton distributions, inluding preliminary resultswith pion masses as low as 320 MeV.PACS. 12.38.G Lattie QCD alulations { 13.40.Gp Eletromagneti form fators1 IntrodutionThe ability of generalised parton distributions (GPDs) [1℄to desribe both exlusive and inlusive proesses has ledto an enormous amount of interest in these funtions bothexperimentally and theoretially. Not only do GPDs en-ompass the ordinary eletromagneti form fators andparton distribution funtions, but they also allow for theomputation of the total quark ontribution to the nuleonspin [2℄ as well as revealing important information on thetransverse struture of the nuleon [3,4℄. A full mappingof the parameter spae spanned by GPDs is an extremelyextensive task whih needs support from non-perturbativetehniques like lattie simulations.Substantial progress has already been made in om-puting the �rst three moments of unpolarised, polarised[5,6,7℄ and tensor [8℄ GPDs on the lattie.In this paper we present reent results from the QCDSF/UKQCD ollaboration. In setion 2 we investigate the q2dependene of the Dira and Pauli eletromagneti formfators, while setion 3 ontains preliminary results forthe average fration of the nuleon's momentum arriedby the quarks, hxi. Finally, in setion 4 we present resultsfor the �rst three moments of the GPDs H and ~H.2 Eletromagneti form fatorsThe study of the eletromagneti properties of hadronsprovides important insights into the non-perturbative stru-a Presented by J.M. Zanotti. at PAVI '06, Milos, Greee.

ture of QCD. The EM form fators reveal important infor-mation on the internal struture of hadrons inluding theirsize, harge distribution and magnetisation. Phenomeno-logial interest in these form fators has been revived byreent Je�erson Lab polarisation experiments [9℄ measur-ing the ratio of the proton eletri to magneti form fa-tors, �(p)G(p)e (q2)=G(p)m (q2). These experiments show thatthis ratio unexpetedly dereases almost linearly with in-reasing q2, indiating that the proton's eletri form fa-tor falls o� faster than the magneti form fator.A lattie alulation of the q2 dependene of the pro-ton's eletromagneti form fators an not only allow for aomparison with experiment, but also help in the under-standing of the asymptoti behaviour of these form fa-tors. Suh a lattie alulation would also allow for theextration of other phenomenologially interesting quan-tities suh as magneti and eletri harge radii and mag-neti moments.2.1 Lattie TehniquesOn the lattie, we determine the form fators F1(q2) andF2(q2) by alulating the following matrix element of theeletromagneti urrenthp0; s0jj�jp; si = �u(p0; s0)��F1(q2)+ i��� q�2mN F2(q2)�u(p; s) ; (1)



2 M. G�okeler et al.: Probing Nuleon Struture on the Lattiewhere u(p; s) is a Dira spinor with momentum p andspin polarisation s, q = p0 � p is the momentum transferwith Q2 = �q2, mN is the nuleon mass and j� is theeletromagneti urrent.The form fators of the proton are obtained by usingj(p)� = 23 �u�u� 13 �d�d ; (2)while for iso-vetor (i.e. proton � neutron) form fatorsjv� = �u�u� �d�d : (3)It is ommon to rewrite the form fators F1 and F2 asGe(q2) = F1(q2) + q2(2mN )2F2(q2); (4)Gm(q2) = F1(q2) + F2(q2); (5)whih are known as the eletri and magneti Sahs formfators, respetively.At zero momentum transfer, F1(0) = Ge(0) gives theeletri harge (e.g. 1 for the proton), whileG(p)m (0) = �(p) = 1 + �(p) ; (6)gives the magneti moment, where F (p)2 (0) = �(p) is theanomalous magneti moment.In order to extrat the non-forward matrix elementsfrom our lattie simulations, we ompute ratios of three-and two-point funtionsR(t; � ;p 0;p;O) = C� (t; � ;p 0;p;O)C2(t;p 0) (7)� �C2(�;p 0)C2(t;p 0)C2(t� �;p )C2(�;p )C2(t;p )C2(t� �;p 0) � 12whih for large time separations, 0� � � t . 12LT , whereLT is the temporal extent of our lattie, is proportionalto the matrix element we are interested in, hp0jOqjpi. Thenuleon two- and three-point funtions are given, respe-tively, by C2(�;p) = Tr ��unpolhB(�;p)B(0;p)i� ;C� (t; � ;p 0;p;O) = Tr �� hB(t;p 0)O(� )B(0;p)i� : (8)Here t and � are the Eulidean times of the nuleon sinkand operator insertion, respetively, p 0 (p) is the nuleonmomentum at the sink (soure), and O is the loal vetorurrent O(� ) =  (� )� (� ) ; (9)whih we renormalise non-perturbatively [10℄. The trae inEq. (8) is over spinor indies and the � matrix determinesthe polarisation of the nuleon with �unpol = 12(1 + 4).We note here that in the alulation of nuleon matrixelements, we neglet ontributions oming from dison-neted quark diagrams as these are extremely omputa-tionally demanding. Hene, in the following we mainly re-strit ourselves to the alulation of iso-vetor matrix ele-ments where the disonneted quark ontributions anel.Finally, we use the Sommer parameter, r0, to set thesale with r0 = 0:5 fm.
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a=0.085 fm
a=0.080 fm
a=0.068 fmFig. 1. pQ2 F2=F1 form fator ratio on three datasets withthe same pion mass (� 550 MeV), but with di�erent lattiespaings, a = 0:085; 0:080; 0:068 fm.2.2 ResultsOf partiular interest is the need to understand the be-haviour of the form fator F2(Q2). The question ariseswhih is the best way to �t the form fator sine suh a�tting funtion also allows an extrapolation of the formfator to Q2 = 0. This is a neessary ingredient to �ndthe anomalous magneti moment of the nuleon, �.Based on perturbative QCD, F1 should sale asymp-totially as 1=Q4, while F2 � 1=Q6 [11,12℄. It is diÆultto obtain lattie data with high enough preision over alarge enough range of Q2 values to distinguish between adipole or tripole behaviour. It may, however, be instru-tive to onsider the form fator ratio F2(Q2)=F1(Q2) sineasymptotially this ratio should sale as 1=Q2. Spin po-larisation experiments have instead found that the data isompatible with F2(Q2)F1(Q2) � 1pQ2 : (10)To investigate the asymptoti behaviour of the formfator ratio F2(Q2)=F1(Q2), we plot in Fig. 1 the resultsfor pQ2F2=F1 obtained at three working points with ap-proximately the same pion mass, but with di�erent valuesof the lattie spaing. Here we observe the lattie data tobe onsistent with a onstant for Q2 > 1:5GeV2, similarto the experimental data. Multiplying these results by anextra fator of pQ2, as suggested by perturbative QCD,would learly destroy the plateau. Quantitatively, though,the lattie data is higher than the orresponding experi-mental ratios, f [13℄. This shows that the lattie simula-tions are able to reprodue the qualitative features of theexperimental data, but for a quantitative reprodution thepion mass is still unrealistially large.In the following we �t F1 and F2 with a dipole ansatzF (v)i (q2) = Fi(0)(1� q2=M2i )2 (11)where F (v)1 (0) = 1, F (v)2 (0) = �(v) and Mi is the �tteddipole mass for the form fator, i.
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