
*H
EP
-P
H/
06
08
30
6*

Revised Version  DESY 06-141
 MPP-2006-108

 NYU-TH/06/08/29
ar

X
iv

:h
ep

-p
h/

06
08

30
6 

v2
   

20
 O

ct
 2

00
6

DESY 06-141 ISSN 0418-9833MPP-2006-108NYU-TH/06/08/29hep-ph/0608306August 2006Simple Approa
h to Renormalize theCabibbo-Kobayashi-Maskawa MatrixBernd A. Kniehl� and Alberto SirlinyMax-Plan
k-Institut f�ur Physik (Werner-Heisenberg-Institut),F�ohringer Ring 6, 80805 Muni
h, GermanyAbstra
tWe present an on-shell s
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edure to separate the external-leg mixing
orre
tions into gauge-independent self-mass and gauge-dependent wave-fun
tionrenormalization 
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The Cabibbo-Kobayashi-Maskawa (CKM) [1℄ 
avor mixing matrix, whi
h rules the
harged-
urrent intera
tions of the quark mass eigenstates and des
ribes how the heavierones de
ay to the lighter ones, is one of the fundamental 
ornerstones of the StandardModel of elementary parti
le physi
s and, in parti
ular, it is the key to our understand-ing why the weak intera
tions are not invariant under simultaneous 
harge-
onjugationand parity transformations. In fa
t, the detailed determination of this matrix is one ofthe major aims of re
ent experiments 
arried out at the B fa
tories [2℄, as well as theobje
tive of a wide range of theoreti
al studies [2, 3℄. An important theoreti
al prob-lem asso
iated with the CKM matrix is its renormalization. An early dis
ussion, in thetwo-generation framework, was given in Ref. [4℄, fo
using mostly on the 
an
ellation ofultraviolet divergen
es. More re
ently, there have been a number of interesting papersthat address the renormalization of both the divergent and �nite 
ontributions at variouslevels of generality and 
omplexity [5℄.
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p(b)Figure 1: Fermion mixing self-energy diagrams. H and �� denote Higgs and 
hargedGoldstone bosons, respe
tively. Diagram (b) is in
luded to 
an
el the gauge dependen
ein the diagonal 
ontribution of diagrams (a).In this Letter we propose an expli
it on-shell framework to renormalize the CKM ma-trix at the one-loop level, based on a novel pro
edure to separate the external-leg mixing
orre
tions into gauge-independent \self-mass" (sm) and gauge-dependent \wave-fun
tionrenormalization" (wfr) 
ontributions, and to implement the on-shell renormalization ofthe former with non-diagonal mass 
ounterterm matri
es. This pro
edure may be re-garded as a simple generalization of Feynman's approa
h in Quantum Ele
trodynami
s(QED) [6℄. We re
all that, in QED, the self-energy 
ontribution to an outgoing fermionis given by �Mleg = u(p)�(=p) 1=p �m; (1)�(=p) =A+B(=p�m) + ��n(=p); (2)where �(=p) is the self-energy, A and B are divergent 
onstants, and ��n(=p) is a �nitepart whi
h is proportional to (=p �m)2 in the vi
inity of =p = m and, therefore, vanisheswhen inserted in Eq. (1). The 
ontribution of A to Eq. (1) exhibits a pole at =p = mand is gauge independent, while that of B is regular at this point, but gauge dependent.They are referred to as sm and wfr 
ontributions, respe
tively. A is 
an
eled by the2



mass 
ounterterm. On the other hand, sin
e the fa
tor (=p �m) 
an
els the propagator'ssingularity, in Feynman's approa
h B is 
ombinedwith the proper vertex diagrams leadingto a gauge-independent result.In the 
ase of the CKM matrix, one en
ounters not only diagonal terms as in Eq. (1),but also o�-diagonal external-leg 
ontributions generated by the Feynman diagrams ofFig. 1(a). As a 
onsequen
e, the self-energy 
orre
tions to an external leg are of the form�Mlegii0 = ui(p)�ii0(=p) 1=p�mi0 ; (3)where i denotes the external quark of momentum p and mass mi, and i0 the virtual quarkof mass mi0.We evaluate the 
ontributions of Fig. 1 in R� gauge, treating the i and i0 quarks onan equal footing. (A detailed a

ount of our analyti
al work will be presented in a later,longer manus
ript [7℄.) For example, we write2=pa� = =pa� + a+=p (4)= (=p�mi)a� + a+(=p�mi0) +mia� +mi0a+;where a� = (1 � 
5)=2 are the 
hiral proje
tors. Using this approa
h, we �nd that the
ontributions of Fig. 1 
an be 
lassi�ed in four 
lasses: (i) terms with a left fa
tor (=p�mi);(ii) terms with a right fa
tor (=p�mi0); (iii) terms with a left fa
tor (=p �mi) and a rightfa
tor (=p �mi0); and (iv) 
onstant terms not involving =p. When inserted in Eq. (3), theterms of 
lass (iii) obviously vanish, in analogy with ��n(=p) in Eqs. (1) and (2). Theterms of 
lasses (i) and (ii) 
ontain gauge-dependent parts but, when inserted in Eq. (3),they 
ombine to 
an
el the propagator (=p �mi0)�1 in both the diagonal (i = i0) and o�-diagonal (i 6= i0) 
ontributions. Thus, they lead to expressions suitable for 
ombinationwith the proper vertex diagrams. In analogy with B in Eqs. (1) and (2), su
h expressionsare identi�ed as wfr 
ontributions. They satisfy the following important property: allthe gauge-dependent and all the divergent wfr 
ontributions to the basi
 W ! qi + qjamplitude are independent of i0. Using the unitarity relation VilV yli0Vi0j = VilÆlj (sin
e the
ofa
tor of this expression depends on ml, the summation over l is performed later), onethen �nds that the gauge-dependent and the divergent wfr 
ontributions to theW ! qi+qjamplitude are independent of CKM matrix elements, ex
ept for an overall fa
tor Vij, anddepend only on the external-quark masses mi and mj. Sin
e the one-loop proper vertexdiagrams also only depend on mi, mj, and an overall fa
tor Vij , this observation impliesthat the proof of gauge independen
e and �niteness of the remaining one-loop 
orre
tionsto the W ! qi + qj amplitude is the same as in the unmixed, single-generation 
ase!In 
ontrast to the 
ontributions of 
lasses (i) and (ii) to Eq. (3), those of 
lass (iv) leadto a multiple of (=p�mi0)�1 with a 
ofa
tor that involves a�, but is independent of =p. Thus,they are unsuitable to be 
ombined with the proper vertex diagrams and are expe
ted tobe separately gauge independent, as we indeed �nd. In analogy with A in Eqs. (1) and (2),they are identi�ed with sm 
ontributions. Spe
i�
ally, in the 
ase of an outgoing up-type3



quark, the sm 
ontributions from Fig. 1 are given by the gauge-independent expression�Msmii0 = g232�2VilV yli0ui(p)(mi  1 + m2i2m2W �!+ "mia� +mi0a+ + mimi02m2W (mia+ +mi0a�)#� hI �m2i ;ml�� J �m2i ;ml�i� m2l2m2W (mia� +mi0a+) h3� + I �m2i ;ml�+ J �m2i ;ml�i) 1=p�mi0 ; (5)where g is the SU(2) gauge 
oupling, � = 1=(n � 4) + [
E � ln(4�)℄=2 + ln(mW=�), n isthe spa
e-time dimension, � is the 't Hooft mass, 
E is Euler's 
onstant,fI(p2;ml);J(p2;ml)g = Z 10 dx f1;xg� ln m2lx+m2W (1� x)� p2x(1� x)� i"m2W ; (6)and ml are the masses of the virtual down-type quarks in Fig. 1(a). Terms independentof ml within the 
urly bra
kets of Eq. (5) lead to diagonal 
ontributions on a

ount ofVilV yli0 = Æii0. There are other sm 
ontributions involving virtual Z0, �0, 
, and H bosons,as well as additional tadpole diagrams, but these are again diagonal expressions of theusual kind.In order to generate mass 
ounterterms, we pro
eed as follows. In the weak-eigenstatebasis, the bare mass terms are of the form � 0QR m0Q0  0QL + h.
., where  0QL and  0QR areleft- and right-handed 
olumn spinors involving the three up-type (Q = U) and down-type (Q = D) quarks, and m0Q0 are non-diagonal matri
es. Writing m0Q0 = m0Q � Æm0Q,where m0Q and Æm0Q are the renormalized and 
ounterterm mass matri
es, we 
onsider abiunitary transformation of the quark �elds that diagonalizes m0Q leading to diagonal andreal renormalized mass matri
es mQ and to new non-diagonal mass 
ounterterm matri
esÆmQ. In the new framework, the mass term is given by� �m� Æm(�)a� � Æm(+)a+� = � R �m� Æm(�)� L �  L �m� Æm(+)� R; (7)where m is real, diagonal, and positive, and Æm(�) and Æm(+) are arbitrary non-diagonalmatri
es subje
t to the hermiti
ity 
onstraintÆm(+) = Æm(�)y: (8)Here we have not exhibited the supers
ript Q, but it is understood thatm and Æm(�) standfor two di�erent sets of matri
es involving the up- and down-type quarks. As usual, the4



mass 
ounterterms are in
luded in the intera
tion Lagrangian. Their 
ontribution to theexternal-leg 
orre
tions is given by �ui(p) �Æm(�)ii0 a� + Æm(+)ii0 a+� =(=p � mi0). Next we adjust Æm(�)ii0 to 
an
el, as mu
h as possible, the sm 
ontributionsgiven in Eq. (5). The 
an
ellation of the divergent parts is a
hieved by 
hoosing�Æm(�)div�ii0 = g2mi64�2m2W � �Æii0m2i � 3VilV yli0m2l � ;�Æm(+)div�ii0 = g2mi064�2m2W � �Æii0m2i � 3VilV yli0m2l � ; (9)whi
h satis�es the hermiti
ity 
onstraint of Eq. (8). Be
ause the fun
tions I(p2;ml) andJ(p2;ml) are evaluated at p2 = m2i in the ii0 
hannel (where i and i0 are the externaland virtual quarks, respe
tively) and at p2 = m2i0 in the i0i 
hannel (where i0 and i arethe external and virtual quarks, respe
tively), it is easy to see that it is not possible to
an
el all the �nite pie
es of Eq. (5) in all 
hannels without 
ontradi
ting Eq. (8). Inparti
ular, we note that on
e the Æm(�)ii0 are 
hosen, the Æm(�)i0i are �xed by Eq. (8). Forthis reason, we employ the following renormalization pres
ription: the mass 
ountertermsare 
hosen to exa
tly 
an
el all the 
ontributions to Eq. (5) in the i0 = i, u
, ut, and
t 
hannels, and all the sm 
ontributions in the j0 = j, sd, bd, and bs 
hannels in the
orresponding down-type-quark expression. (Here j and j 0 are the in
oming and virtualdown-type quarks, respe
tively.) This implies that, after mass renormalization, thereare residual sm 
ontributions in the 
u, tu, t
, ds, db, and sb 
hannels. However, theseresidual 
ontributions are �nite, gauge independent, and numeri
ally very small. In fa
t,the fra
tional 
orre
tions they indu
e in the real parts of Vij rea
h a maximum valueof O(4 � 10�6) for Vts, and they are mu
h smaller in the 
ase of several other CKMmatrix elements. Sin
e they are regular in the limits mi0 ! mi or mj0 ! mj, they maybe regarded as additional �nite and gauge-independent 
ontributions to wave-fun
tionrenormalization that happen to be very small.We emphasize that with this renormalization pres
ription the sm 
orre
tions are fully
an
eled in all 
hannels in whi
h the external parti
le is a u, u, d, or d quark. This isof parti
ular interest sin
e Vud, the parameter asso
iated with W ! u+ d, is by far themost pre
isely determined CKM matrix element [3℄.It is also interesting to note that, sin
e Eq. (9) satis�es Eq. (8), the modi�ed minimal-subtra
tion (MS) renormalization, in whi
h only the 1=(n � 4) + [
E � ln(4�)℄=2 termsare subtra
ted, 
an be implemented in all non-diagonal 
hannels. More generally, one
an 
onsider a renormalization pres
ription that satis�es the hermiti
ity 
ondition in all
hannels by 
hoosing the mass 
ounterterms to 
an
el the o�-diagonal terms in Eq. (5) andthe 
orresponding down-type-quark expression with the fun
tions I(p2;ml) and J(p2;ml)evaluated at the same �xed p2 value for all 
avors. Sin
e Eq. (5) is expli
itly gaugeindependent, in our formulation there is no restri
tion in the 
hoi
e of p2 other thanthat it should not generate imaginary parts in the integrals I(p2;ml) and J(p2;ml). Inparti
ular, p2 
an have any value p2 � m2W . Of 
ourse, sin
e it is desirable to 
an
elthe sm 
ontributions as mu
h as possible, it is 
onvenient to 
hoose 0 � p2 � m2W . It5



should be pointed out, however, that the MS and �xed-p2 subtra
tion pres
riptions ofmass renormalization are not on-shell s
hemes and lead to residual sm 
ontributions inall o�-diagonal 
hannels, whi
h diverge in the limits mi0 ! mi or mj0 ! mj.An alternative formulation, equivalent to the one dis
ussed so far, is obtained bydiagonalizing the 
omplete mass matrix m � Æm(�)a� � Æm(+)a+ in Eq. (7). This isa
hieved by a biunitary transformation L = UL ̂L;  R = UR ̂R: (10)At the one-loop level, it is suÆ
ient to approximateUL = 1 + ihL; UR = 1 + ihR; (11)where hL and hR are hermitian matri
es of O(g2). The diagonalization is implementedby 
hoosing i(hL)ii0 = miÆm(�)ii0 + Æm(+)ii0 mi0m2i �m2i0 (i 6= i0); (12)while i(hR)ii0 is obtained by ex
hanging Æm(�) $ Æm(+) in Eq. (12). Sin
e the only e�e
tof the diagonal terms of hL and hR on theWqiqj intera
tion is to introdu
e phases that 
anbe absorbed in a rede�nition of the quark �elds, it is 
onvenient to set (hL)ii = (hR)ii = 0.This analysis is 
arried out separately to diagonalize the mass matri
es of the up- anddown-type quarks. Thus, we obtain two pairs of matri
es: hUL and hUR for the up-typequarks and hDL and hDR for the down-type quarks. Next we 
onsider the e�e
t of thisbiunitary transformation on the Wqiqj intera
tionLWqiqj = � g0p2 ULV 
� DLW� + h.
.: (13)We readily �nd that LWqiqj = � g0p2  ̂UL(V � ÆV )
� ̂DLW� + h.
.; (14)where ÆV = i �hULV � V hDL � : (15)It is important to note that V � ÆV satis�es the unitarity 
ondition through O(g2):(V � ÆV )y(V � ÆV ) = 1 +O(g4): (16)In the ( ̂L;  ̂R) basis, in whi
h the 
omplete quark mass matri
es are diagonal, ÆV andV0 = V � ÆV represent the 
ounterterm and bare CKM matri
es, respe
tively. Onereadily veri�es that the term ihULV in ÆV leads to the same o�-diagonal 
ontributionto the W ! qi + qj amplitude as ÆmU(�) and ÆmU(+) in our previous dis
ussion in the( L;  R) basis. Similarly, the term �iV hDL leads to the same 
ontributions as ÆmD(�)and ÆmD(+). It is important to emphasize that this formulation is 
onsistent with the6



unitarity and gauge independen
e of both the renormalized and bare CKM matri
es, Vand V0, respe
tively.For 
ompleteness, we exhibit the CKM 
ounterterm matrix in 
omponent form:ÆVij = i ��hUL�ii0 Vi0j � Vij0 �hDL �j0j�= mUi ÆmU(�)ii0 + ÆmU(+)ii0 mUi0(mUi )2 � (mUi0 )2 Vi0j� Vij0mDj0ÆmD(�)j0j + ÆmD(+)j0j mDj�mDj0�2 � �mDj �2 ; (17)where it is understood that i0 6= i in the �rst term on the r.h.s. and j0 6= j in the se
ond,and ÆmU(�)ii0 and ÆmD(�)j0j are the o�-diagonal mass 
ounterterms determined by the on-shell renormalization pres
riptions proposed in our �rst formulation. The 
oeÆ
ient of1=(n � 4) in Eq. (17) is, of 
ourse, 
ommon to all renormalization pres
riptions for theCKM matrix [5℄ and also appears in its renormalization group equation [8℄.In summary, after introdu
ing a novel pro
edure to separate the external-leg mixing
orre
tions into gauge-independent sm and gauge-dependent wfr 
ontributions, in analogywith Feynman's treatment in QED, we have implemented their renormalization in twoequivalent frameworks. The �rst one is 
arried out in a basis in whi
h the renormalizedquark matri
es are diagonal and the non-diagonal mass 
ountertermmatri
es are employedto 
an
el all the divergent sm 
ontributions, and also their �nite parts up to hermiti
ity
onstraints. In parti
ular, the sm 
orre
tions are fully 
an
eled in the W ! u + damplitude, asso
iated with Vud, the most a

urately measured CKM parameter. Residual�nite 
ontributions in other 
hannels are very small. We have also pointed out that theproof of gauge independen
e and �niteness of the remaining one-loop 
orre
tions to theW ! qi+qj amplitude redu
es to that in the unmixed, single-generation 
ase. Alternativerenormalization pres
riptions that are \demo
rati
," in the sense that they do not singleout parti
ular o�-diagonal 
hannels, were brie
y outlined. However, stri
tly speaking,they are not on-shell s
hemes and lead to residual sm 
ontributions in all o�-diagonal
hannels, whi
h diverge in the limits mi0 ! mi or mj0 ! mj.The se
ond formulation was obtained by diagonalizing the 
omplete mass matri
es,namely the renormalized plus 
ounterterm mass matri
es derived in the �rst approa
h. Inthe se
ond framework a CKM 
ounterterm matrix ÆV was generated whi
h again 
an
elsthe divergent and, to the extent allowed by the hermiti
ity 
onstraints, also the �nite partsof the o�-diagonal sm 
ontributions. As usual, the diagonal sm 
ontributions are 
an
eledby the mass 
ounterterms, whi
h in this approa
h are also diagonal. An important featureis that this formulation is 
onsistent with the unitarity and gauge independen
e of boththe renormalized and bare CKM matri
es, V and V0 = V � ÆV , respe
tively.As is well known, an enduring diÆ
ulty, thirty years old, in a satisfa
tory treatment ofthe one-loop ele
troweak 
orre
tions to all 
harged-
urrent pro
esses involving fermionsis due to the external o�-diagonal self-energy e�e
ts depi
ted in Fig. 1(a). Sin
e themass renormalization of the usual, diagonal e�e
ts must ne
essarily involve a 
omplete7



subtra
tion of the sm 
ontributions to avoid the propagator's singularity [see Eq. (1)℄,it is natural to follow the same strategy in the o�-diagonal 
ontributions. Thus, an on-shell renormalization pro
edure to treat all these e�e
ts is highly desirable and stronglymotivated. Su
h an obje
tive has been a
hieved for the �rst time in this Letter in a waythat the following important properties are manifestly satis�ed: the CKM 
ountertermmatrix is gauge independent, preserves unitarity, and leads to renormalized amplitudesthat are non-singular in the limit in whi
h any two fermions be
ome mass degenerate.Be
ause of the 
lose analogy with QED and the fa
t that our de
omposition pro
edure isalgebrai
 in nature, it is likely that this approa
h 
an be naturally generalized to higherorders.We are grateful to the Max Plan
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s in Muni
h for the hospitalityduring a visit when this manus
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