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The Cabibbo-Kobayashi-Maskawa (CKM) [1℄ avor mixing matrix, whih rules theharged-urrent interations of the quark mass eigenstates and desribes how the heavierones deay to the lighter ones, is one of the fundamental ornerstones of the StandardModel of elementary partile physis and, in partiular, it is the key to our understand-ing why the weak interations are not invariant under simultaneous harge-onjugationand parity transformations. In fat, the detailed determination of this matrix is one ofthe major aims of reent experiments arried out at the B fatories [2℄, as well as theobjetive of a wide range of theoretial studies [2, 3℄. An important theoretial prob-lem assoiated with the CKM matrix is its renormalization. An early disussion, in thetwo-generation framework, was given in Ref. [4℄, fousing mostly on the anellation ofultraviolet divergenes. More reently, there have been a number of interesting papersthat address the renormalization of both the divergent and �nite ontributions at variouslevels of generality and omplexity [5℄.
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p(b)Figure 1: Fermion mixing self-energy diagrams. H and �� denote Higgs and hargedGoldstone bosons, respetively. Diagram (b) is inluded to anel the gauge dependenein the diagonal ontribution of diagrams (a).In this Letter we propose an expliit on-shell framework to renormalize the CKM ma-trix at the one-loop level, based on a novel proedure to separate the external-leg mixingorretions into gauge-independent \self-mass" (sm) and gauge-dependent \wave-funtionrenormalization" (wfr) ontributions, and to implement the on-shell renormalization ofthe former with non-diagonal mass ounterterm matries. This proedure may be re-garded as a simple generalization of Feynman's approah in Quantum Eletrodynamis(QED) [6℄. We reall that, in QED, the self-energy ontribution to an outgoing fermionis given by �Mleg = u(p)�(=p) 1=p �m; (1)�(=p) =A+B(=p�m) + ��n(=p); (2)where �(=p) is the self-energy, A and B are divergent onstants, and ��n(=p) is a �nitepart whih is proportional to (=p �m)2 in the viinity of =p = m and, therefore, vanisheswhen inserted in Eq. (1). The ontribution of A to Eq. (1) exhibits a pole at =p = mand is gauge independent, while that of B is regular at this point, but gauge dependent.They are referred to as sm and wfr ontributions, respetively. A is aneled by the2



mass ounterterm. On the other hand, sine the fator (=p �m) anels the propagator'ssingularity, in Feynman's approah B is ombinedwith the proper vertex diagrams leadingto a gauge-independent result.In the ase of the CKM matrix, one enounters not only diagonal terms as in Eq. (1),but also o�-diagonal external-leg ontributions generated by the Feynman diagrams ofFig. 1(a). As a onsequene, the self-energy orretions to an external leg are of the form�Mlegii0 = ui(p)�ii0(=p) 1=p�mi0 ; (3)where i denotes the external quark of momentum p and mass mi, and i0 the virtual quarkof mass mi0.We evaluate the ontributions of Fig. 1 in R� gauge, treating the i and i0 quarks onan equal footing. (A detailed aount of our analytial work will be presented in a later,longer manusript [7℄.) For example, we write2=pa� = =pa� + a+=p (4)= (=p�mi)a� + a+(=p�mi0) +mia� +mi0a+;where a� = (1 � 5)=2 are the hiral projetors. Using this approah, we �nd that theontributions of Fig. 1 an be lassi�ed in four lasses: (i) terms with a left fator (=p�mi);(ii) terms with a right fator (=p�mi0); (iii) terms with a left fator (=p �mi) and a rightfator (=p �mi0); and (iv) onstant terms not involving =p. When inserted in Eq. (3), theterms of lass (iii) obviously vanish, in analogy with ��n(=p) in Eqs. (1) and (2). Theterms of lasses (i) and (ii) ontain gauge-dependent parts but, when inserted in Eq. (3),they ombine to anel the propagator (=p �mi0)�1 in both the diagonal (i = i0) and o�-diagonal (i 6= i0) ontributions. Thus, they lead to expressions suitable for ombinationwith the proper vertex diagrams. In analogy with B in Eqs. (1) and (2), suh expressionsare identi�ed as wfr ontributions. They satisfy the following important property: allthe gauge-dependent and all the divergent wfr ontributions to the basi W ! qi + qjamplitude are independent of i0. Using the unitarity relation VilV yli0Vi0j = VilÆlj (sine theofator of this expression depends on ml, the summation over l is performed later), onethen �nds that the gauge-dependent and the divergent wfr ontributions to theW ! qi+qjamplitude are independent of CKM matrix elements, exept for an overall fator Vij, anddepend only on the external-quark masses mi and mj. Sine the one-loop proper vertexdiagrams also only depend on mi, mj, and an overall fator Vij , this observation impliesthat the proof of gauge independene and �niteness of the remaining one-loop orretionsto the W ! qi + qj amplitude is the same as in the unmixed, single-generation ase!In ontrast to the ontributions of lasses (i) and (ii) to Eq. (3), those of lass (iv) leadto a multiple of (=p�mi0)�1 with a ofator that involves a�, but is independent of =p. Thus,they are unsuitable to be ombined with the proper vertex diagrams and are expeted tobe separately gauge independent, as we indeed �nd. In analogy with A in Eqs. (1) and (2),they are identi�ed with sm ontributions. Spei�ally, in the ase of an outgoing up-type3



quark, the sm ontributions from Fig. 1 are given by the gauge-independent expression�Msmii0 = g232�2VilV yli0ui(p)(mi  1 + m2i2m2W �!+ "mia� +mi0a+ + mimi02m2W (mia+ +mi0a�)#� hI �m2i ;ml�� J �m2i ;ml�i� m2l2m2W (mia� +mi0a+) h3� + I �m2i ;ml�+ J �m2i ;ml�i) 1=p�mi0 ; (5)where g is the SU(2) gauge oupling, � = 1=(n � 4) + [E � ln(4�)℄=2 + ln(mW=�), n isthe spae-time dimension, � is the 't Hooft mass, E is Euler's onstant,fI(p2;ml);J(p2;ml)g = Z 10 dx f1;xg� ln m2lx+m2W (1� x)� p2x(1� x)� i"m2W ; (6)and ml are the masses of the virtual down-type quarks in Fig. 1(a). Terms independentof ml within the urly brakets of Eq. (5) lead to diagonal ontributions on aount ofVilV yli0 = Æii0. There are other sm ontributions involving virtual Z0, �0, , and H bosons,as well as additional tadpole diagrams, but these are again diagonal expressions of theusual kind.In order to generate mass ounterterms, we proeed as follows. In the weak-eigenstatebasis, the bare mass terms are of the form � 0QR m0Q0  0QL + h.., where  0QL and  0QR areleft- and right-handed olumn spinors involving the three up-type (Q = U) and down-type (Q = D) quarks, and m0Q0 are non-diagonal matries. Writing m0Q0 = m0Q � Æm0Q,where m0Q and Æm0Q are the renormalized and ounterterm mass matries, we onsider abiunitary transformation of the quark �elds that diagonalizes m0Q leading to diagonal andreal renormalized mass matries mQ and to new non-diagonal mass ounterterm matriesÆmQ. In the new framework, the mass term is given by� �m� Æm(�)a� � Æm(+)a+� = � R �m� Æm(�)� L �  L �m� Æm(+)� R; (7)where m is real, diagonal, and positive, and Æm(�) and Æm(+) are arbitrary non-diagonalmatries subjet to the hermitiity onstraintÆm(+) = Æm(�)y: (8)Here we have not exhibited the supersript Q, but it is understood thatm and Æm(�) standfor two di�erent sets of matries involving the up- and down-type quarks. As usual, the4



mass ounterterms are inluded in the interation Lagrangian. Their ontribution to theexternal-leg orretions is given by �ui(p) �Æm(�)ii0 a� + Æm(+)ii0 a+� =(=p � mi0). Next we adjust Æm(�)ii0 to anel, as muh as possible, the sm ontributionsgiven in Eq. (5). The anellation of the divergent parts is ahieved by hoosing�Æm(�)div�ii0 = g2mi64�2m2W � �Æii0m2i � 3VilV yli0m2l � ;�Æm(+)div�ii0 = g2mi064�2m2W � �Æii0m2i � 3VilV yli0m2l � ; (9)whih satis�es the hermitiity onstraint of Eq. (8). Beause the funtions I(p2;ml) andJ(p2;ml) are evaluated at p2 = m2i in the ii0 hannel (where i and i0 are the externaland virtual quarks, respetively) and at p2 = m2i0 in the i0i hannel (where i0 and i arethe external and virtual quarks, respetively), it is easy to see that it is not possible toanel all the �nite piees of Eq. (5) in all hannels without ontraditing Eq. (8). Inpartiular, we note that one the Æm(�)ii0 are hosen, the Æm(�)i0i are �xed by Eq. (8). Forthis reason, we employ the following renormalization presription: the mass ountertermsare hosen to exatly anel all the ontributions to Eq. (5) in the i0 = i, u, ut, andt hannels, and all the sm ontributions in the j0 = j, sd, bd, and bs hannels in theorresponding down-type-quark expression. (Here j and j 0 are the inoming and virtualdown-type quarks, respetively.) This implies that, after mass renormalization, thereare residual sm ontributions in the u, tu, t, ds, db, and sb hannels. However, theseresidual ontributions are �nite, gauge independent, and numerially very small. In fat,the frational orretions they indue in the real parts of Vij reah a maximum valueof O(4 � 10�6) for Vts, and they are muh smaller in the ase of several other CKMmatrix elements. Sine they are regular in the limits mi0 ! mi or mj0 ! mj, they maybe regarded as additional �nite and gauge-independent ontributions to wave-funtionrenormalization that happen to be very small.We emphasize that with this renormalization presription the sm orretions are fullyaneled in all hannels in whih the external partile is a u, u, d, or d quark. This isof partiular interest sine Vud, the parameter assoiated with W ! u+ d, is by far themost preisely determined CKM matrix element [3℄.It is also interesting to note that, sine Eq. (9) satis�es Eq. (8), the modi�ed minimal-subtration (MS) renormalization, in whih only the 1=(n � 4) + [E � ln(4�)℄=2 termsare subtrated, an be implemented in all non-diagonal hannels. More generally, onean onsider a renormalization presription that satis�es the hermitiity ondition in allhannels by hoosing the mass ounterterms to anel the o�-diagonal terms in Eq. (5) andthe orresponding down-type-quark expression with the funtions I(p2;ml) and J(p2;ml)evaluated at the same �xed p2 value for all avors. Sine Eq. (5) is expliitly gaugeindependent, in our formulation there is no restrition in the hoie of p2 other thanthat it should not generate imaginary parts in the integrals I(p2;ml) and J(p2;ml). Inpartiular, p2 an have any value p2 � m2W . Of ourse, sine it is desirable to anelthe sm ontributions as muh as possible, it is onvenient to hoose 0 � p2 � m2W . It5



should be pointed out, however, that the MS and �xed-p2 subtration presriptions ofmass renormalization are not on-shell shemes and lead to residual sm ontributions inall o�-diagonal hannels, whih diverge in the limits mi0 ! mi or mj0 ! mj.An alternative formulation, equivalent to the one disussed so far, is obtained bydiagonalizing the omplete mass matrix m � Æm(�)a� � Æm(+)a+ in Eq. (7). This isahieved by a biunitary transformation L = UL ̂L;  R = UR ̂R: (10)At the one-loop level, it is suÆient to approximateUL = 1 + ihL; UR = 1 + ihR; (11)where hL and hR are hermitian matries of O(g2). The diagonalization is implementedby hoosing i(hL)ii0 = miÆm(�)ii0 + Æm(+)ii0 mi0m2i �m2i0 (i 6= i0); (12)while i(hR)ii0 is obtained by exhanging Æm(�) $ Æm(+) in Eq. (12). Sine the only e�etof the diagonal terms of hL and hR on theWqiqj interation is to introdue phases that anbe absorbed in a rede�nition of the quark �elds, it is onvenient to set (hL)ii = (hR)ii = 0.This analysis is arried out separately to diagonalize the mass matries of the up- anddown-type quarks. Thus, we obtain two pairs of matries: hUL and hUR for the up-typequarks and hDL and hDR for the down-type quarks. Next we onsider the e�et of thisbiunitary transformation on the Wqiqj interationLWqiqj = � g0p2 ULV � DLW� + h..: (13)We readily �nd that LWqiqj = � g0p2  ̂UL(V � ÆV )� ̂DLW� + h..; (14)where ÆV = i �hULV � V hDL � : (15)It is important to note that V � ÆV satis�es the unitarity ondition through O(g2):(V � ÆV )y(V � ÆV ) = 1 +O(g4): (16)In the ( ̂L;  ̂R) basis, in whih the omplete quark mass matries are diagonal, ÆV andV0 = V � ÆV represent the ounterterm and bare CKM matries, respetively. Onereadily veri�es that the term ihULV in ÆV leads to the same o�-diagonal ontributionto the W ! qi + qj amplitude as ÆmU(�) and ÆmU(+) in our previous disussion in the( L;  R) basis. Similarly, the term �iV hDL leads to the same ontributions as ÆmD(�)and ÆmD(+). It is important to emphasize that this formulation is onsistent with the6



unitarity and gauge independene of both the renormalized and bare CKM matries, Vand V0, respetively.For ompleteness, we exhibit the CKM ounterterm matrix in omponent form:ÆVij = i ��hUL�ii0 Vi0j � Vij0 �hDL �j0j�= mUi ÆmU(�)ii0 + ÆmU(+)ii0 mUi0(mUi )2 � (mUi0 )2 Vi0j� Vij0mDj0ÆmD(�)j0j + ÆmD(+)j0j mDj�mDj0�2 � �mDj �2 ; (17)where it is understood that i0 6= i in the �rst term on the r.h.s. and j0 6= j in the seond,and ÆmU(�)ii0 and ÆmD(�)j0j are the o�-diagonal mass ounterterms determined by the on-shell renormalization presriptions proposed in our �rst formulation. The oeÆient of1=(n � 4) in Eq. (17) is, of ourse, ommon to all renormalization presriptions for theCKM matrix [5℄ and also appears in its renormalization group equation [8℄.In summary, after introduing a novel proedure to separate the external-leg mixingorretions into gauge-independent sm and gauge-dependent wfr ontributions, in analogywith Feynman's treatment in QED, we have implemented their renormalization in twoequivalent frameworks. The �rst one is arried out in a basis in whih the renormalizedquark matries are diagonal and the non-diagonal mass ountertermmatries are employedto anel all the divergent sm ontributions, and also their �nite parts up to hermitiityonstraints. In partiular, the sm orretions are fully aneled in the W ! u + damplitude, assoiated with Vud, the most aurately measured CKM parameter. Residual�nite ontributions in other hannels are very small. We have also pointed out that theproof of gauge independene and �niteness of the remaining one-loop orretions to theW ! qi+qj amplitude redues to that in the unmixed, single-generation ase. Alternativerenormalization presriptions that are \demorati," in the sense that they do not singleout partiular o�-diagonal hannels, were briey outlined. However, stritly speaking,they are not on-shell shemes and lead to residual sm ontributions in all o�-diagonalhannels, whih diverge in the limits mi0 ! mi or mj0 ! mj.The seond formulation was obtained by diagonalizing the omplete mass matries,namely the renormalized plus ounterterm mass matries derived in the �rst approah. Inthe seond framework a CKM ounterterm matrix ÆV was generated whih again anelsthe divergent and, to the extent allowed by the hermitiity onstraints, also the �nite partsof the o�-diagonal sm ontributions. As usual, the diagonal sm ontributions are aneledby the mass ounterterms, whih in this approah are also diagonal. An important featureis that this formulation is onsistent with the unitarity and gauge independene of boththe renormalized and bare CKM matries, V and V0 = V � ÆV , respetively.As is well known, an enduring diÆulty, thirty years old, in a satisfatory treatment ofthe one-loop eletroweak orretions to all harged-urrent proesses involving fermionsis due to the external o�-diagonal self-energy e�ets depited in Fig. 1(a). Sine themass renormalization of the usual, diagonal e�ets must neessarily involve a omplete7
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