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ording to KoenigsChristian Gros
heII. Institut f�ur Theoretis
he PhysikUniversit�at Hamburg, Luruper Chaussee 14922761 Hamburg, Germany
Contribution to the \XII. International Conferen
e on Symmetry Methods inPhysi
s", July 3{8, Yerevan, Armenia.Abstra
tIn this 
ontribution I dis
uss a path integral approa
h for the quantum motion on two-dimensional spa
es a

ording to Koenigs, for short \Koenigs-Spa
es". Their 
onstru
tionis simple: One takes a Hamiltonian from two-dimensional 
at spa
e and divides it by a two-dimensional superintegrable potential. These superintegrable potentials are the isotropi
singular os
illator, the Holt-potential, and the Coulomb potential. In all 
ases a non-trivialspa
e of non-
onstant 
urvature is generated. We 
an study free motion and the motionwith an additional superintegrable potential. For possible bound-state solutions we �ndin all three 
ases an equation of eighth order in the energy E. The spe
ial 
ases of theDarboux spa
es are easily re
overed by 
hoosing the parameters a

ordingly.



1 Introdu
tionIn this 
ontribution I dis
uss the quantum motion on spa
es of non-
onstant 
urvaturea

ording to Koenigs [14℄, whi
h I will 
all for short \Koenigs-spa
es". The 
onstru
tionof su
h a spa
e is simple. One takes a two-dimensional 
at Hamiltonian,H, in
luding somepotential V , and dividesH by a potential f(x; y) (x; y 2 IR2) su
h that this potential takeson the form of a metri
: HKoenigs = Hf(x; y) : (1.1)Su
h a 
onstru
tion leads to a very ri
h stru
ture, and attempts to 
lassify su
h systemsare e.g. due to Kalnins et al. [11, 12℄ and Daskaloyannis and Ypsilantis [2℄. Simplerexamples of su
h spa
es are the Darboux spa
es, where one 
hooses the potential f(x; y)in su
h a way that it depends only on one variable [13℄. Another 
hoi
e 
onsists whetherone 
hooses for f(x; y) some arbitrary potential (or some superintegrable potential) andtaking into a

ount that the Poisson bra
ket stru
ture of the observables makes up areasonable simple algebra [2, 4, 13℄.In previous publi
ations we have analyzed the quantum motion on Darboux spa
es bymeans of the path integral [6, 8℄. The path integral approa
h [3, 10℄ serves as a powerfultool to 
al
ulate the propagator, respe
tively the Green fun
tion of the quantum motionin su
h a spa
e. In the present 
ontribution I apply the path integral te
hnique to threekinds of Koenigs-spa
es, where a spe
i�
 two-dimensional superintegrable potential [7℄ is
hosen. They are the two-dimensional isotropi
 singular os
illator (Se
tion II), the Holt-potential (se
tion III) and the two-dimensional Coulomb-potential (Se
tion IV). Se
tionV is devoted to a summary and a dis
ussion of the results a
hieved.2 Koenigs-Spa
e with Isotropi
 Singular Os
illatorWe start with the �rst example, where we take for the metri
 termds2 = fI(x; y)(dx2 + dy2) ; (2.1)fI(x; y) = �(x2 + y2) + �x2 + 
y2 + Æ ; (2.2)and �; �; 
; Æ are 
onstants. The 
lassi
al Hamiltonian and Lagrangian in IR2 with theisotropi
 singular os
illator as the superintegrable potential have the form:L = m2 �( _x2 + _y2)� !2(x2 + y2)�� ~22m�k2x � 14x2 + k2y � 14y2 � ; (2.3)H = p2x + p2y2m + m2 !2(x2 + y2) + ~22m�k2x � 14x2 + k2y � 14y2 � : (2.4)Counting 
onstants, there are seven independent 
onstants: �; �; 
; Æ, and !; kx; ky. Aneighth 
onstant 
an be added by adding a further 
onstant ~Æ into the potential of the1



Hamiltonian. It will be omitted in the following. The �rst Koenigs-spa
e K I is 
onstru
tedby 
onsidering HK I = HfI(x; y) ; (2.5)hen
e for the Lagrangian (with potential)LK I = m2 fI(x; y)( _x2 + _y2)� 1fI(x; y) "m2 !2(x2 + y2) + ~22m  k2x � 14x2 + k2y � 14y2 !# : (2.6)Setting the potential in square-bra
kets equal to zero yields the Lagrangian for the freemotion in K I. With this information we 
an set up the path integral in K I in
luding apotential. Be
ause the spa
e is two-dimensional, and the metri
 is diagonal, the additionalquantum potential / ~2 vanishes. The 
anoni
al momentum operators are 
onstru
ted bypxi = ~i � ��xi + �i2 � ; �i = ��xi lnpg ; (2.7)with x1 = x; x2 = y and g = det(gab), (gab) the metri
 tensor. For the path integral in theprodu
t latti
e de�nition [10℄ we obtainK(K I)(x00; x0; y00; y0;T ) = x(t00)=x00Zx(t0)=x0 Dx(t) y(t00)=y00Zy(t0)=y0 Dy(t)fI(x; y)= exp i~ Z t00t0 (m2 fI(x; y)( _x2 + _y2)� 1fI(x; y)"m2 !2(x2 + y2) + ~22m k2x � 14x2 + k2y � 14y2 !#)dt!G(K I)(x00; x0; y00; y0;E) = i~ Z 10 ds00K(K I)(x00; x0; y00; y0; s00)eiÆEs00=~ ; (2.8)with the time-transformed path integral K(K I)(s00) given by (e!2 = !2 � 2�E=m)K(K I)(x00; x0; y00; y0; s00)= x(s00)=x00Zx(0)=x0 Dx(s) y(s00)=y00Zy(0)=y0 Dy(s) exp( i~ Z s000 "m2 �( _x2 + _y2)� e!2(x2 + y2)�� ~22m k2x � 2m�E=~2 � 14x2 + k2y � 2m
E=~2 � 14y2 !#ds00) : (2.9)The path integrals in the variables x and y are both path integrals for the radial harmoni
os
illator, however with energy-dependent 
oeÆ
ients. By swit
hing to two-dimensionalpolar 
oordinates x = r 
os', y = r sin', the path integral in x; y gives one in r; '.Furthermore, we get x2 + y2 = r2, 1=x2 = 1=r2 
os2 ', and 1=y2 = 1=r2 sin2 '. Let usabbreviate ~k2x = k2x � 2m�E=~2, ~k2y = k2y � 2m
E=~2. In the variable ' we obtain a2



path integral for the P�os
hl{Potential, and in the variable r a radial path integral. Thesu

essive path integrations therefore yieldK(K I)(r00; r0; '00; '0; s00) =Xn' �(~ky;~kx)n' ('00)�(~ky;~kx)n' ('0)�me!pr0r00i~ sin e!s00 exp "� me!2i~ (r02 + r002) 
ot e!s00#I� me!r0r00i~ sin e!s00! : (2.10)Here � = 2n'+~kx+~ky+1, and the �(~ky ;~kx)n' (') are the wave-fun
tions for the P�os
hl-Tellerpotential [1, 10℄. I�(z) is the modi�ed Bessel fun
tion [5℄. Performing the s00-integrationfor obtaining the Green fun
tion G(E) yields [5, 10℄:G(K I)(r00; r0; '00; '0;E) =Xn' �(~ky ;~kx)n' ('00)�(~ky;~kx)n' ('0)��[12(1 + �� ÆE=~e!)℄~e!pr0r00 �(1 + �) WÆE=2e!;�=2�me!~ r2>�MÆE=2e!;�=2�me!~ r2<� : (2.11)M�;�(z) and W�;�(z) are Whittaker-fun
tions [5℄, and r<; r> is the smaller/larger of r0; r00.The poles of the �-fun
tion give the energy-levels of the bound states:12(1 + � � ÆE=~e!) = �nr ; (2.12)whi
h is equivalent to (N = nr + n' + 1 = 1; 2; : : :):ÆE = ~s!2 � 2�mE 0�2N +sk2x � 2m�~2 E +sk2y � 2m
~2 E 1A : (2.13)In general, this quantization 
ondition is an equation of eighth order in E. If we know thebound state energy EN , we 
an determine the wavefun
tions a

ording to	(K I)N (r; �) = NN�(~ky ;~kx)n' (')�(RHO;�)nr (r) ; (2.14)with the normalization 
onstant NN determined by evaluating the residuum in the Greenfun
tion (2.11), and the �(RHO;�)N (r) are the wave-fun
tions of the radial harmoni
 os
illator[10℄. We 
an re
over the 
at spa
e limit with � = � = 
 = 0 with the 
orre
t spe
trumEN = ~!(N + kx + ky)=Æ.Note that we also 
an obtain the quantization 
ondition by expli
itly inserting thewave-fun
tions in x and y in (2.9) and performing the s00-integration in (2.8). We do notdis
uss the 
ontinuous spe
trum.3 Koenigs-Spa
e with Holt-PotentialNext we 
onsider for the metri
 termds2 = fII(x; y)(dx2 + dy2) ; (3.1)fII(x; y) = �(x2 + 4y2) + �x2 + 
y + Æ (3.2)3



and �; �; 
; Æ are 
onstants. The 
lassi
al Hamiltonian and Lagrangian in IR2 with theHolt-potential as the superintegrable potential have the form:L = m2 �( _x2 + _y2)� !2(x2 + 4y2)�� kyy � ~22mk2x � 14x2 ; (3.3)H = p2x + p2y2m + m2 !2(x2 + 4y2) + kyy + ~22mk2x � 14x2 : (3.4)Counting 
onstants, there are seven independent 
onstants: �; �; 
; Æ, and !; kx; ky. Aneighth 
onstant 
an be added by adding a further 
onstant ~Æ into the potential of theHamiltonian, whi
h is omitted. The se
ond Koenigs-spa
e K II with potential is now
onstru
ted by 
onsidering H(V )K I = HfII(x; y) : (3.5)From the dis
ussion in the Se
tion II it is obvious how to 
onstru
t the path integral onK II. We pro
eed straightforward to the time-transformed path integral K(K II)(s00) whi
hhas the formK(K II)(x00; x0; y00; y0; s00) = x(s00)=x00Zx(0)=x0 Dx(s) y(s00)=y00Zy(0)=y0 Dy(s)� exp( i~ Z s000 "m2 �( _x2 + _y2)� e!2(x2 + 4y2)�� ~22m ~k2x � 14x2 � (ky � 
E)y#ds00) : (3.6)Again, e!2 = !2 � 2�E=m, ~k2x = k2x � 2m�E=~2. We have in the variable x a singularos
illator, and in the variable y a shifted os
illator with shift y ! y� (ky�
E)=(4me!2) �y�yE. However, in 
omparison to Se
tion II, we 
annot separate variables in an analogousway as for K I, be
ause the only separating 
oordinate systems for the Holt-potentialare the Cartesian and the paraboli
 systems, and only in Cartesian 
oordinates a 
losedsolution is possible. Therefore we must evaluate this path integral by another method.The �rst possibility 
onsists of writing down the Green fun
tions for the radial singularos
illator G(RHO;~kx)(E) and for the shifted harmoni
 os
illator G(HO;yE)(E), respe
tively.These solutions 
an be found in e.g. [10℄. The �nal result for the Green fun
tion G(K II)(E)then has the formG(K II)(E) = ~2�i Z dEG(RHO;~kx)x (E;x00; x0; E)G(HO;yE)y �E; y00; y0;�E � Æ + (ky � 
E)28me!2 � :(3.7)However, this is a very 
ompli
ated expression, mainly due to the fa
t that both the Greenfun
tions G(RHO)(E) and G(HO;shift)(E) 
onsist of produ
ts of Whittaker fun
tions andparaboli
 
ylinder fun
tions, respe
tively. A better way to analyze the spe
tral propertiesis to re-express ea
h kernel in its bound-state wave-fun
tions expansion. ThereforeK(K II)(x00; x0; y00; y0; s00) =Xnx 	(RHO;~kx)nx (x00)	(RHO;~kx)�nx (x0)Xny 	(HO;yE)ny (y00)	(HO;yE)�ny (y0)�e�is00(ky�
E)2=(8m~e!2)e�is00e!(nx+~kx+2ny+3=2) : (3.8)4



Here, the 	(HO;yE)ny (y) denote the wave-fun
tions of a shifted harmoni
 os
illator with shiftyE. Performing the s00-integration similarly as in (2.8) we get the quantization 
ondition(N = nx + 2ny + 3=2)8mÆE�!2 � 2�m E�� (ky � 
E)2 = ~�!2 � 2�m E�3=20�2N +sk2x � 2m�~2 E 1A : (3.9)In general, this is an equation of eighth order in E. The solution in terms of the wave-fun
tions then has the form	(K II)N (x; y) = NN	(RHO;~kx)nx (x)	(HO;yE)ny (y) ; (3.10)and the normalization 
onstant NN is determined by the residuum of (3.7) at the energyEN from (3.9). The 
orre
t 
at spa
e limit with � = � = 
 = 0 is easily re
overed withspe
trum EN = ~!(N + kx)=Æ + k2y=8mÆ!2. We do not dis
uss the 
ontinuous spe
trum.4 Koenigs-Spa
e with Coulomb-PotentialFor the last example we 
onsider a metri
 whi
h 
orresponds to the two-dimensionalCoulomb potential (r2 = x2 + y2)ds2 = fIII(x; y)(dx2 + dy2) ; (4.1)fIII(x; y) = ��1r + 14r2 �
os2 '2 + 
sin2 '2 !+ Æ (4.2)and �1; �; 
; Æ are 
onstants. The 
lassi
al Hamiltonian and Lagrangian in IR2 with theCoulomb potential as the superintegrable potential have the form:L = m2 ( _x2 + _y2) + �2r � ~28mr2 k21 � 14
os2 '2 + k22 � 14sin2 '2 ! ; (4.3)H = p2x + p2y2m � �2r + ~28mr2 k21 � 14
os2 '2 + k22 � 14sin2 '2 ! : (4.4)Counting 
onstants, there are seven independent 
onstants: �1; �; 
; Æ, and �2; k1; k2. Aneight 
onstants 
an be added by adding a further 
onstant ~Æ into the potential of theHamiltonian, whi
h is again omitted. The third Koenigs-spa
e K III is 
onstru
ted by
onsidering H(V )K I = HfIII(x; y) : (4.5)We pro
eed to the time-transformed path integral K(K III)(s00) whi
h has the formK(K III)(r00; r0; '00; '0; s00) = r(s00)=r00Zr(0)=r0 Dr(s) '(s00)='00Z'(0)='0 D'(s)r� exp( i~ Z s000 "m2 ( _r2 + r2 _'2)� ~�r � ~28mr2 ~k21 � 14
os2 '2 + ~k22 � 14sin2 '2 � 1!#ds00) : (4.6)5



Here, ~k21 = k21 � 2m�E=~2, ~k22 = k22 � 2m
E=~2, ~� = �2��1E. As in Se
tion II, it is bestto swit
h to two-dimensional polar 
oordinates, whi
h is straightforward. We obtain forthe Green fun
tion in polar 
oordinatesG(K III)(r00; r0; '00; '0;E) =Xn' �(~k2 ;~k1)n' ('002 )�(~k2;~k1)�n' ('02 )�1~r� m2ÆE �(12 + � � �)�(2� + 1) W�;� �p�8mÆE r>~ �M�;� �p�8mÆE r>~ � (4.7)�� = (~�=~)q�m=2ÆE, � = n' + ~k1=2 + ~k2=2 + 12�. The poles of the �-fun
tion gives thequantization 
ondition 1=2 + � � � = �nr, or more expli
itly1 + n' + nr + 12sk21 � 2m�~2 E + 12sk22 � 2m
~2 E = �2 � �1E~ r� m2ÆE : (4.8)This is again an equation of eighth order in E. A
tually, this quantization 
ondition hasthe same stru
ture as the quantization 
ondition for the third potential on Darboux Spa
eD II, 
.f. our re
ent publi
ation [8℄. We 
onsider the spe
ial 
ase k1 = k2 = 0. This gives(N = 1 + n' + nr):N = �2 � �1E~ r� m2ÆE � p�E2~ �q2m� +q2m
 � : (4.9)This is a quadrati
 equation in the energy E with solutionE� = � B2A � 12ApB2 � 4AC ; (4.10)A = m�1(a1 � 2) + 2mÆ �p� +p
 �2 ;B = 2Æ~2N2 + 2�2(m� �1) ; C = m�22 : 9=; (4.11)We 
onsider the limit N ! 1. In this 
ase, we take the +-sign of the square-rootexpression only, and obtainEN ' � m�222Æ~2N2 ; (N !1) ; (4.12)showing a Coulomb-behavior of the energy-levels. For the bound-states wave-fun
tion weget in the general 
ase (a = ~2=m~�):	(K III)N (r; ') = NNnr + � + 12s nr!a�(nr + 2� + 1) �(~k2;~k1)n' ('2 )� 2ra(nr + �+ 12)!� exp " � ra(nr + � + 12)#L(2�)nr  2ra(nr + �+ 12)! (4.13)(the L(�)n (z) are Laguerre polynomials [5℄). The wave-fun
tions in r are the well-knownCoulomb wave-fun
tions. Note that � = �(EN ). The normalization 
onstant NN is6



determined by taking the residuum in the Green fun
tion (4.7) for the 
orrespondingenergy EN from (4.8).We get another spe
ial 
ase if we set the potential in K III to zero, i.e., k1;2 = 12; �2 = 0.This yields together with the simpli�
ation � = 
N +s14 � 2m�E~2 = ��1E~ r� m2ÆE : (4.14)This is a quadrati
 equation in the energy E with solutionE� = � B2A � B2As1� 4ACB2 ; (4.15)A = m2~4 ��212Æ � 4�N�2 ; C = (N2 +N)2 � 4N2 ;B = 2m~2 "(N2 +N)��212Æ � 4�N�+ 8�# : 9>>>>=>>>>; (4.16)We see that even for zero potential, bound states are possible. For N ! 1, the leadingterm behaves a

ording to �B=2A ! ~2N=2m�, showing a os
illator-like behavior. Wedo not dis
uss the 
ontinuous spe
trum. This 
on
ludes the dis
ussion.5 Summary and Dis
ussionIn this 
ontribution I have dis
ussed a path integral approa
h for spa
es of non-
onstant
urvature a

ording to Koenigs, whi
h I have for short 
alled \Koenigs-spa
es" K I, K II,and K III, respe
tively. I have found a very ri
h stru
ture of the spe
tral properties of thequantum motion on Koenigs-spa
es. In the general 
ase with potential, in all three spa
esthe quantization 
ondition is determined by an equation of eighth order in the energy E.Su
h an equation 
annot be solved expli
itly, however spe
ial 
ases 
an be studied. Indeedin the spa
e K III we have found for su
h a spe
ial 
ase a Coulomb-like spe
trum for largequantum numbers. This is very satisfying, be
ause the 
at spa
e IR2 is 
ontained as aspe
ial 
ase of K III. Our systems are also superintegrable, be
ause they admit separationof variables in more that one 
oordinate system.Let us note a further feature of these spa
es. It is obvious that our solutions remainon a formal level. Neither have we spe
i�ed an embedding spa
e, nor have we spe
i�edboundary 
onditions on our spa
es. Let us 
onsider the spa
e K II: We set � = � = Æ = 0and 
 = 1. In this 
ase we obtain a metri
 whi
h 
orresponds to the Darboux spa
eD I (modulo 
hange of variables), as dis
ussed in [13℄. In D I boundary 
onditions andthe signature of the ambient spa
e is very important, be
ause 
hoosing a positive or anegative signature of the ambient spa
e 
hanges the boundary 
onditions, and hen
e thequantization 
onditions [8℄.Furthermore, we 
an re
over the Darboux spa
eD II [6, 8, 13℄ by setting in our examplesin the potential fun
tion f all 
onstant to zero ex
ept those 
orresponding to the 1=x2-singularity. However, we did not dis
uss these 
ases in detail.7



In our approa
h we have 
hosen examples of superintegrable potentials in two-dimen-sional spa
e, i.e. the isotropi
 singular os
illator, the Holt potential and the Coulombpotential, respe
tively. Other well-known potentials 
an also be in
luded, for instan
e theMorse-potential or the (modi�ed) P�os
hl{Teller potential. A
tually, the in
orporation ofthe Morse-potential leads to the Darboux spa
e D III, and the in
orporation of the P�os
hl{Teller potential to the Darboux spa
e D IV [13℄. The quantum motion without potentialhave been dis
ussed extensively in [6℄, and with potentials will be dis
ussed in [9℄. In these
ases, also 
ompli
ated quantization 
onditions are found.In the present 
ontribution I have omitted the dis
ussion of the 
ontinuous spe
trum.This is on the one hand side due to la
k of spa
e, and on the other the spe
i�
 ambientspa
e has to be taken into a

ount. For instan
e, in the Darboux spa
e D II we know thatthe 
ontinuous spe
trum has the form of Ep / (~2=2m)p2 + 
onstant. The wave-fun
tionsare proportional to K-Bessel fun
tions [6℄. However, in Darboux spa
e D I there is nosu
h 
onstant, and the wave-fun
tions have a di�erent form. Furthermore,D II 
ontains asspe
ial 
ases the two-dimensional Eu
lidean plane and the Hyperboli
 plane, respe
tively.In K II we 
an �nd these spa
es for a spe
ial 
hoi
e of parameters and the 
ontinuous wave-fun
tions are proportional to Whittaker-fun
tions (whi
h redu
e to K-Bessel fun
tions andparaboli
 
ylinder fun
tions for spe
i�
 parameters, respe
tively). Su
h a more detailedstudy will be presented elsewhere.A
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