
*Q
UA
NT
-P
H/
06
08
23
∣*

 DESY 06-140
ar

X
iv

:q
ua

nt
-p

h/
06

08
23

1 
v1

   
29

 A
ug

 2
00

6

DESY 06{140 ISSN 0418 - 9833August 2006Path Integral Approah for Quantum Motionon Spaes of Non-onstant CurvatureAording to KoenigsChristian GrosheII. Institut f�ur Theoretishe PhysikUniversit�at Hamburg, Luruper Chaussee 14922761 Hamburg, Germany
Contribution to the \XII. International Conferene on Symmetry Methods inPhysis", July 3{8, Yerevan, Armenia.AbstratIn this ontribution I disuss a path integral approah for the quantum motion on two-dimensional spaes aording to Koenigs, for short \Koenigs-Spaes". Their onstrutionis simple: One takes a Hamiltonian from two-dimensional at spae and divides it by a two-dimensional superintegrable potential. These superintegrable potentials are the isotropisingular osillator, the Holt-potential, and the Coulomb potential. In all ases a non-trivialspae of non-onstant urvature is generated. We an study free motion and the motionwith an additional superintegrable potential. For possible bound-state solutions we �ndin all three ases an equation of eighth order in the energy E. The speial ases of theDarboux spaes are easily reovered by hoosing the parameters aordingly.



1 IntrodutionIn this ontribution I disuss the quantum motion on spaes of non-onstant urvatureaording to Koenigs [14℄, whih I will all for short \Koenigs-spaes". The onstrutionof suh a spae is simple. One takes a two-dimensional at Hamiltonian,H, inluding somepotential V , and dividesH by a potential f(x; y) (x; y 2 IR2) suh that this potential takeson the form of a metri: HKoenigs = Hf(x; y) : (1.1)Suh a onstrution leads to a very rih struture, and attempts to lassify suh systemsare e.g. due to Kalnins et al. [11, 12℄ and Daskaloyannis and Ypsilantis [2℄. Simplerexamples of suh spaes are the Darboux spaes, where one hooses the potential f(x; y)in suh a way that it depends only on one variable [13℄. Another hoie onsists whetherone hooses for f(x; y) some arbitrary potential (or some superintegrable potential) andtaking into aount that the Poisson braket struture of the observables makes up areasonable simple algebra [2, 4, 13℄.In previous publiations we have analyzed the quantum motion on Darboux spaes bymeans of the path integral [6, 8℄. The path integral approah [3, 10℄ serves as a powerfultool to alulate the propagator, respetively the Green funtion of the quantum motionin suh a spae. In the present ontribution I apply the path integral tehnique to threekinds of Koenigs-spaes, where a spei� two-dimensional superintegrable potential [7℄ ishosen. They are the two-dimensional isotropi singular osillator (Setion II), the Holt-potential (setion III) and the two-dimensional Coulomb-potential (Setion IV). SetionV is devoted to a summary and a disussion of the results ahieved.2 Koenigs-Spae with Isotropi Singular OsillatorWe start with the �rst example, where we take for the metri termds2 = fI(x; y)(dx2 + dy2) ; (2.1)fI(x; y) = �(x2 + y2) + �x2 + y2 + Æ ; (2.2)and �; �; ; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR2 with theisotropi singular osillator as the superintegrable potential have the form:L = m2 �( _x2 + _y2)� !2(x2 + y2)�� ~22m�k2x � 14x2 + k2y � 14y2 � ; (2.3)H = p2x + p2y2m + m2 !2(x2 + y2) + ~22m�k2x � 14x2 + k2y � 14y2 � : (2.4)Counting onstants, there are seven independent onstants: �; �; ; Æ, and !; kx; ky. Aneighth onstant an be added by adding a further onstant ~Æ into the potential of the1



Hamiltonian. It will be omitted in the following. The �rst Koenigs-spae K I is onstrutedby onsidering HK I = HfI(x; y) ; (2.5)hene for the Lagrangian (with potential)LK I = m2 fI(x; y)( _x2 + _y2)� 1fI(x; y) "m2 !2(x2 + y2) + ~22m  k2x � 14x2 + k2y � 14y2 !# : (2.6)Setting the potential in square-brakets equal to zero yields the Lagrangian for the freemotion in K I. With this information we an set up the path integral in K I inluding apotential. Beause the spae is two-dimensional, and the metri is diagonal, the additionalquantum potential / ~2 vanishes. The anonial momentum operators are onstruted bypxi = ~i � ��xi + �i2 � ; �i = ��xi lnpg ; (2.7)with x1 = x; x2 = y and g = det(gab), (gab) the metri tensor. For the path integral in theprodut lattie de�nition [10℄ we obtainK(K I)(x00; x0; y00; y0;T ) = x(t00)=x00Zx(t0)=x0 Dx(t) y(t00)=y00Zy(t0)=y0 Dy(t)fI(x; y)= exp i~ Z t00t0 (m2 fI(x; y)( _x2 + _y2)� 1fI(x; y)"m2 !2(x2 + y2) + ~22m k2x � 14x2 + k2y � 14y2 !#)dt!G(K I)(x00; x0; y00; y0;E) = i~ Z 10 ds00K(K I)(x00; x0; y00; y0; s00)eiÆEs00=~ ; (2.8)with the time-transformed path integral K(K I)(s00) given by (e!2 = !2 � 2�E=m)K(K I)(x00; x0; y00; y0; s00)= x(s00)=x00Zx(0)=x0 Dx(s) y(s00)=y00Zy(0)=y0 Dy(s) exp( i~ Z s000 "m2 �( _x2 + _y2)� e!2(x2 + y2)�� ~22m k2x � 2m�E=~2 � 14x2 + k2y � 2mE=~2 � 14y2 !#ds00) : (2.9)The path integrals in the variables x and y are both path integrals for the radial harmoniosillator, however with energy-dependent oeÆients. By swithing to two-dimensionalpolar oordinates x = r os', y = r sin', the path integral in x; y gives one in r; '.Furthermore, we get x2 + y2 = r2, 1=x2 = 1=r2 os2 ', and 1=y2 = 1=r2 sin2 '. Let usabbreviate ~k2x = k2x � 2m�E=~2, ~k2y = k2y � 2mE=~2. In the variable ' we obtain a2



path integral for the P�oshl{Potential, and in the variable r a radial path integral. Thesuessive path integrations therefore yieldK(K I)(r00; r0; '00; '0; s00) =Xn' �(~ky;~kx)n' ('00)�(~ky;~kx)n' ('0)�me!pr0r00i~ sin e!s00 exp "� me!2i~ (r02 + r002) ot e!s00#I� me!r0r00i~ sin e!s00! : (2.10)Here � = 2n'+~kx+~ky+1, and the �(~ky ;~kx)n' (') are the wave-funtions for the P�oshl-Tellerpotential [1, 10℄. I�(z) is the modi�ed Bessel funtion [5℄. Performing the s00-integrationfor obtaining the Green funtion G(E) yields [5, 10℄:G(K I)(r00; r0; '00; '0;E) =Xn' �(~ky ;~kx)n' ('00)�(~ky;~kx)n' ('0)��[12(1 + �� ÆE=~e!)℄~e!pr0r00 �(1 + �) WÆE=2e!;�=2�me!~ r2>�MÆE=2e!;�=2�me!~ r2<� : (2.11)M�;�(z) and W�;�(z) are Whittaker-funtions [5℄, and r<; r> is the smaller/larger of r0; r00.The poles of the �-funtion give the energy-levels of the bound states:12(1 + � � ÆE=~e!) = �nr ; (2.12)whih is equivalent to (N = nr + n' + 1 = 1; 2; : : :):ÆE = ~s!2 � 2�mE 0�2N +sk2x � 2m�~2 E +sk2y � 2m~2 E 1A : (2.13)In general, this quantization ondition is an equation of eighth order in E. If we know thebound state energy EN , we an determine the wavefuntions aording to	(K I)N (r; �) = NN�(~ky ;~kx)n' (')�(RHO;�)nr (r) ; (2.14)with the normalization onstant NN determined by evaluating the residuum in the Greenfuntion (2.11), and the �(RHO;�)N (r) are the wave-funtions of the radial harmoni osillator[10℄. We an reover the at spae limit with � = � =  = 0 with the orret spetrumEN = ~!(N + kx + ky)=Æ.Note that we also an obtain the quantization ondition by expliitly inserting thewave-funtions in x and y in (2.9) and performing the s00-integration in (2.8). We do notdisuss the ontinuous spetrum.3 Koenigs-Spae with Holt-PotentialNext we onsider for the metri termds2 = fII(x; y)(dx2 + dy2) ; (3.1)fII(x; y) = �(x2 + 4y2) + �x2 + y + Æ (3.2)3



and �; �; ; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR2 with theHolt-potential as the superintegrable potential have the form:L = m2 �( _x2 + _y2)� !2(x2 + 4y2)�� kyy � ~22mk2x � 14x2 ; (3.3)H = p2x + p2y2m + m2 !2(x2 + 4y2) + kyy + ~22mk2x � 14x2 : (3.4)Counting onstants, there are seven independent onstants: �; �; ; Æ, and !; kx; ky. Aneighth onstant an be added by adding a further onstant ~Æ into the potential of theHamiltonian, whih is omitted. The seond Koenigs-spae K II with potential is nowonstruted by onsidering H(V )K I = HfII(x; y) : (3.5)From the disussion in the Setion II it is obvious how to onstrut the path integral onK II. We proeed straightforward to the time-transformed path integral K(K II)(s00) whihhas the formK(K II)(x00; x0; y00; y0; s00) = x(s00)=x00Zx(0)=x0 Dx(s) y(s00)=y00Zy(0)=y0 Dy(s)� exp( i~ Z s000 "m2 �( _x2 + _y2)� e!2(x2 + 4y2)�� ~22m ~k2x � 14x2 � (ky � E)y#ds00) : (3.6)Again, e!2 = !2 � 2�E=m, ~k2x = k2x � 2m�E=~2. We have in the variable x a singularosillator, and in the variable y a shifted osillator with shift y ! y� (ky�E)=(4me!2) �y�yE. However, in omparison to Setion II, we annot separate variables in an analogousway as for K I, beause the only separating oordinate systems for the Holt-potentialare the Cartesian and the paraboli systems, and only in Cartesian oordinates a losedsolution is possible. Therefore we must evaluate this path integral by another method.The �rst possibility onsists of writing down the Green funtions for the radial singularosillator G(RHO;~kx)(E) and for the shifted harmoni osillator G(HO;yE)(E), respetively.These solutions an be found in e.g. [10℄. The �nal result for the Green funtion G(K II)(E)then has the formG(K II)(E) = ~2�i Z dEG(RHO;~kx)x (E;x00; x0; E)G(HO;yE)y �E; y00; y0;�E � Æ + (ky � E)28me!2 � :(3.7)However, this is a very ompliated expression, mainly due to the fat that both the Greenfuntions G(RHO)(E) and G(HO;shift)(E) onsist of produts of Whittaker funtions andparaboli ylinder funtions, respetively. A better way to analyze the spetral propertiesis to re-express eah kernel in its bound-state wave-funtions expansion. ThereforeK(K II)(x00; x0; y00; y0; s00) =Xnx 	(RHO;~kx)nx (x00)	(RHO;~kx)�nx (x0)Xny 	(HO;yE)ny (y00)	(HO;yE)�ny (y0)�e�is00(ky�E)2=(8m~e!2)e�is00e!(nx+~kx+2ny+3=2) : (3.8)4



Here, the 	(HO;yE)ny (y) denote the wave-funtions of a shifted harmoni osillator with shiftyE. Performing the s00-integration similarly as in (2.8) we get the quantization ondition(N = nx + 2ny + 3=2)8mÆE�!2 � 2�m E�� (ky � E)2 = ~�!2 � 2�m E�3=20�2N +sk2x � 2m�~2 E 1A : (3.9)In general, this is an equation of eighth order in E. The solution in terms of the wave-funtions then has the form	(K II)N (x; y) = NN	(RHO;~kx)nx (x)	(HO;yE)ny (y) ; (3.10)and the normalization onstant NN is determined by the residuum of (3.7) at the energyEN from (3.9). The orret at spae limit with � = � =  = 0 is easily reovered withspetrum EN = ~!(N + kx)=Æ + k2y=8mÆ!2. We do not disuss the ontinuous spetrum.4 Koenigs-Spae with Coulomb-PotentialFor the last example we onsider a metri whih orresponds to the two-dimensionalCoulomb potential (r2 = x2 + y2)ds2 = fIII(x; y)(dx2 + dy2) ; (4.1)fIII(x; y) = ��1r + 14r2 �os2 '2 + sin2 '2 !+ Æ (4.2)and �1; �; ; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR2 with theCoulomb potential as the superintegrable potential have the form:L = m2 ( _x2 + _y2) + �2r � ~28mr2 k21 � 14os2 '2 + k22 � 14sin2 '2 ! ; (4.3)H = p2x + p2y2m � �2r + ~28mr2 k21 � 14os2 '2 + k22 � 14sin2 '2 ! : (4.4)Counting onstants, there are seven independent onstants: �1; �; ; Æ, and �2; k1; k2. Aneight onstants an be added by adding a further onstant ~Æ into the potential of theHamiltonian, whih is again omitted. The third Koenigs-spae K III is onstruted byonsidering H(V )K I = HfIII(x; y) : (4.5)We proeed to the time-transformed path integral K(K III)(s00) whih has the formK(K III)(r00; r0; '00; '0; s00) = r(s00)=r00Zr(0)=r0 Dr(s) '(s00)='00Z'(0)='0 D'(s)r� exp( i~ Z s000 "m2 ( _r2 + r2 _'2)� ~�r � ~28mr2 ~k21 � 14os2 '2 + ~k22 � 14sin2 '2 � 1!#ds00) : (4.6)5



Here, ~k21 = k21 � 2m�E=~2, ~k22 = k22 � 2mE=~2, ~� = �2��1E. As in Setion II, it is bestto swith to two-dimensional polar oordinates, whih is straightforward. We obtain forthe Green funtion in polar oordinatesG(K III)(r00; r0; '00; '0;E) =Xn' �(~k2 ;~k1)n' ('002 )�(~k2;~k1)�n' ('02 )�1~r� m2ÆE �(12 + � � �)�(2� + 1) W�;� �p�8mÆE r>~ �M�;� �p�8mÆE r>~ � (4.7)�� = (~�=~)q�m=2ÆE, � = n' + ~k1=2 + ~k2=2 + 12�. The poles of the �-funtion gives thequantization ondition 1=2 + � � � = �nr, or more expliitly1 + n' + nr + 12sk21 � 2m�~2 E + 12sk22 � 2m~2 E = �2 � �1E~ r� m2ÆE : (4.8)This is again an equation of eighth order in E. Atually, this quantization ondition hasthe same struture as the quantization ondition for the third potential on Darboux SpaeD II, .f. our reent publiation [8℄. We onsider the speial ase k1 = k2 = 0. This gives(N = 1 + n' + nr):N = �2 � �1E~ r� m2ÆE � p�E2~ �q2m� +q2m � : (4.9)This is a quadrati equation in the energy E with solutionE� = � B2A � 12ApB2 � 4AC ; (4.10)A = m�1(a1 � 2) + 2mÆ �p� +p �2 ;B = 2Æ~2N2 + 2�2(m� �1) ; C = m�22 : 9=; (4.11)We onsider the limit N ! 1. In this ase, we take the +-sign of the square-rootexpression only, and obtainEN ' � m�222Æ~2N2 ; (N !1) ; (4.12)showing a Coulomb-behavior of the energy-levels. For the bound-states wave-funtion weget in the general ase (a = ~2=m~�):	(K III)N (r; ') = NNnr + � + 12s nr!a�(nr + 2� + 1) �(~k2;~k1)n' ('2 )� 2ra(nr + �+ 12)!� exp " � ra(nr + � + 12)#L(2�)nr  2ra(nr + �+ 12)! (4.13)(the L(�)n (z) are Laguerre polynomials [5℄). The wave-funtions in r are the well-knownCoulomb wave-funtions. Note that � = �(EN ). The normalization onstant NN is6



determined by taking the residuum in the Green funtion (4.7) for the orrespondingenergy EN from (4.8).We get another speial ase if we set the potential in K III to zero, i.e., k1;2 = 12; �2 = 0.This yields together with the simpli�ation � = N +s14 � 2m�E~2 = ��1E~ r� m2ÆE : (4.14)This is a quadrati equation in the energy E with solutionE� = � B2A � B2As1� 4ACB2 ; (4.15)A = m2~4 ��212Æ � 4�N�2 ; C = (N2 +N)2 � 4N2 ;B = 2m~2 "(N2 +N)��212Æ � 4�N�+ 8�# : 9>>>>=>>>>; (4.16)We see that even for zero potential, bound states are possible. For N ! 1, the leadingterm behaves aording to �B=2A ! ~2N=2m�, showing a osillator-like behavior. Wedo not disuss the ontinuous spetrum. This onludes the disussion.5 Summary and DisussionIn this ontribution I have disussed a path integral approah for spaes of non-onstanturvature aording to Koenigs, whih I have for short alled \Koenigs-spaes" K I, K II,and K III, respetively. I have found a very rih struture of the spetral properties of thequantum motion on Koenigs-spaes. In the general ase with potential, in all three spaesthe quantization ondition is determined by an equation of eighth order in the energy E.Suh an equation annot be solved expliitly, however speial ases an be studied. Indeedin the spae K III we have found for suh a speial ase a Coulomb-like spetrum for largequantum numbers. This is very satisfying, beause the at spae IR2 is ontained as aspeial ase of K III. Our systems are also superintegrable, beause they admit separationof variables in more that one oordinate system.Let us note a further feature of these spaes. It is obvious that our solutions remainon a formal level. Neither have we spei�ed an embedding spae, nor have we spei�edboundary onditions on our spaes. Let us onsider the spae K II: We set � = � = Æ = 0and  = 1. In this ase we obtain a metri whih orresponds to the Darboux spaeD I (modulo hange of variables), as disussed in [13℄. In D I boundary onditions andthe signature of the ambient spae is very important, beause hoosing a positive or anegative signature of the ambient spae hanges the boundary onditions, and hene thequantization onditions [8℄.Furthermore, we an reover the Darboux spaeD II [6, 8, 13℄ by setting in our examplesin the potential funtion f all onstant to zero exept those orresponding to the 1=x2-singularity. However, we did not disuss these ases in detail.7



In our approah we have hosen examples of superintegrable potentials in two-dimen-sional spae, i.e. the isotropi singular osillator, the Holt potential and the Coulombpotential, respetively. Other well-known potentials an also be inluded, for instane theMorse-potential or the (modi�ed) P�oshl{Teller potential. Atually, the inorporation ofthe Morse-potential leads to the Darboux spae D III, and the inorporation of the P�oshl{Teller potential to the Darboux spae D IV [13℄. The quantum motion without potentialhave been disussed extensively in [6℄, and with potentials will be disussed in [9℄. In theseases, also ompliated quantization onditions are found.In the present ontribution I have omitted the disussion of the ontinuous spetrum.This is on the one hand side due to lak of spae, and on the other the spei� ambientspae has to be taken into aount. For instane, in the Darboux spae D II we know thatthe ontinuous spetrum has the form of Ep / (~2=2m)p2 + onstant. The wave-funtionsare proportional to K-Bessel funtions [6℄. However, in Darboux spae D I there is nosuh onstant, and the wave-funtions have a di�erent form. Furthermore,D II ontains asspeial ases the two-dimensional Eulidean plane and the Hyperboli plane, respetively.In K II we an �nd these spaes for a speial hoie of parameters and the ontinuous wave-funtions are proportional to Whittaker-funtions (whih redue to K-Bessel funtions andparaboli ylinder funtions for spei� parameters, respetively). Suh a more detailedstudy will be presented elsewhere.AknowledgmentsThis work was supported by the Heisenberg{Landau program.The author is grateful to Ernie Kalnins for fruitful and pleasant disussions on super-integrability and separating oordinate systems. I also would like to thank the organizers,in partiular G.Pogosyan, of the \XII. International Conferene on Symmetry Methods inPhysis", July 3{8, Yerevan, Armenia, for the warm hospitality during my stay in Yerevan.Referenes[1℄ B�ohm, M., Junker, G.: Path Integration Over Compat and Nonompat Rotation Groups.J.Math. Phys. 28 (1987) 1978{1994.Duru, I.H.: Path Integrals Over SU(2) Manifold and Related Potentials. Phys. Rev. D 30 (1984)2121{2127.[2℄ Daskaloyannis, C., Ypsilantis, K.: Uni�ed Treatment and Classi�ation of Superintegrable Systemswith Integrals Quadrati in Momenta on a Two Dimensional Manifold. J.Math. Phys. 45 (2006)042904.[3℄ Feynman, R.P., Hibbs, A.: Quantum Mehanis and Path Integrals. MGraw Hill, New York, 1965.Kleinert, H.: Path Integrals in Quantum Mehanis, Statistis and Polymer Physis. World Sienti�,Singapore, 1990.Shulman, L.S.: Tehniques and Appliations of Path Integration. John Wiley & Sons, New York,1981. 8
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