
*H
EP
-P
H/
06
08
27
8*

Revised Version  DESY 06-138
 ANL-HEP-PR-06-61

ar
X

iv
:h

ep
-p

h/
06

08
27

8 
v2

   
27

 O
ct

 2
00

6

DESY 06-138ANL-HEP-PR-06-61Regularities in hadron systemati
s, Reggetraje
tories and a string quark modelS.V. Chekanov a 1 and B.B. Lev
henko ba DESY Laboratory, Notkestrasse 85, 22607, Hamburg, Germanyb Skobeltsyn Institute of Nu
lear Physi
s, Mos
ow State University,119992 Mos
ow, Russian FederationAbstra
tAn empiri
al prin
iple for the 
onstru
tion of a linear relationship betweenthe total angular momentum and squared-mass of baryons is proposed. In or-der to examine linearity of the traje
tories, a rigorous least-squares regressionanalysis was performed. Unlike the standard Regge-Chew-Frauts
hi approa
h,the 
onstru
ted traje
tories do not have non-linear behaviour. A similar reg-ularity may exist for lowest-mass mesons. The linear baryoni
 traje
toriesare well des
ribed by a semi-
lassi
al pi
ture based on a spinning relativisti
string with tension. The obtained numeri
al solution of this model was usedto extra
t the (di)quark masses.
1On leave from HEP Division, Argonne National Laboratory, 9700 S.Cass Avenue, Argonne, IL60439 USA



1 Introdu
tionIt has been a

epted for a long time that hadrons from the same family lie on Reggetraje
tories (the so-
alled Chew-Frauts
hi 
onje
ture [1℄), i.e.J = �(0) + �0M2; (1)where J is the total angular momentum and M is the mass of a hadron. Theinter
ept �(0) depends on hadron type, but the slope �0 is approximately the samefor all hadrons. Su
h a relationship between J andM2, also known as the prin
iple ofex
hange degenera
y, is usually interpreted as a manifestation of the linear potentialof the strong for
es between 
onstituent quarks. Re
ently this pi
ture was dis
ussedin terms of a relativisti
 diquark model based on a spinning string with a 
onstanttension [2{4℄ (see also referen
es in [5℄).Experimentally, the validation of Eq. (1) remains to be a diÆ
ult problem sin
ethe experimental data are s
ar
e. A

ording to a re
ent 
lassi�
ation of hadrons onthe (J;M2) plane [6℄, the overwhelming majority of the traje
tories are supportedby a few data points only. For mesons, there exist �ve traje
tories with three datapoints, while other traje
tories were hypothesized from two or one data points. Forbaryons, only one traje
tory was 
onstru
ted from four data points and �ve traje
-tories were supported by three data points. Other traje
tories were hypothesizedfrom the study of either one or two data points. Re
ently, it has been noted thatonly 9% (14%) of all traje
tories in the mesoni
 (baryoni
) se
tor are linear [7℄. Anon-linear 
hara
ter of the Regge traje
tories has also been pointed out in [4,8,9℄.In this arti
le we are not going to s
rutinize the linearity of the Regge traje
tories;it is rather 
lear that the vast majority of su
h traje
tories are indeed non-linearand there is no ne
essity to re-analyse this fa
t again. Instead, using the mostre
ent PDG data [10℄, we would like to note that it is possible to �nd a pres
riptionwhi
h 
ould allow the 
onstru
tion of the traje
tories whi
h 
an be 
lassi�ed asbeing perfe
tly linear and span over a signi�
ant number of known baryons. Inorder to illustrate this, we use a rigorous weighted least-squares regression, whi
his often missing in theoreti
al papers on this subje
t. In Se
t. 2, we will dis
ussour prin
iples for the 
onstru
tion of a linear relationship between the hadroni
mass squared M2 and the total angular momentum J . In Se
t. 3, our empiri
alobservation is dis
ussed in more details. In parti
ular, we will explain what wouldhappen if the requirements proposed in Se
t. 2 are removed or weakened. In Se
t. 4and appendi
es, we will attempt to use our approa
h for validation of a relativisti
diquark model based on a spinning string, whi
h is often dis
ussed in the literature(see [4℄ for a re
ent dis
ussion). Finally, we will brie
y dis
uss the mesoni
 se
torin Se
t. 5. 1



2 Linear traje
tories for baryonsAs a starting point in the 
onstru
tion of baryoni
 traje
tories, we will 
onsider: (a)only stable or strongly de
aying parti
les from a 
ertain family; (b) only hadronsof the same family with a smallest mass, Mmin;J , for a given �xed J and spa
eparity P ; (
) in addition to (a) and (b), we will use only su
h baryons if there areno other baryons with smaller masses and with the opposite spa
e parity. At thismoment, we will use the assumptions above without any theoreti
al justi�
ation.Below we will show that, without any ex
eption, su
h requirements are suÆ
ient forthe 
onstru
tion of perfe
tly linear baryoni
 traje
tories.As a leading prin
iple for the sele
tion of hadrons, we will ignore parti
les withpoor eviden
e of existen
e i.e. with one star in a

ordan
e with the PDG 
lassi�-
ation [10℄. Furthermore, in several 
ases when PDG quotes only mass ranges, wewill use the 
entral values for the masses and their experimental errors as they aregiven by the most a

urate and re
ent measurements1.We will attempt to des
ribe the mass dependen
e on J using a linear parame-terisation similar to Eq. (1): M2min;J = p0 + p1J; (2)where p0 and p1 are 
onstants. Hereafter we will use the notation M for Mmin;J ,unless otherwise stated. For 
onvenien
e of a linear-regression analysis, we preferto express M2 as a fun
tion of J sin
e the angular momentum does not have ex-perimental un
ertainties. The linear least-squares regression analysis is des
ribed inAppendix A.N baryons. First, let us 
onsider N baryons. Figure 1 shows all PDG N -baryons on the (J;M2) plane (the �lled and open symbols). There is a 
lear lineartrend for lowest-mass baryons with P = +1 shown by the �lled 
ir
les (the PDGnames of su
h baryons are indi
ated). Sin
e su
h baryons fully satisfy the 
riteriaproposed at the beginning of this se
tion, we will use them for a linear least-squaresregression. The result of this regression is shown with the solid line. The traje
toryis remarkably straight: the small value of �2=ndf shown in Fig. 1 fully supports thelinear �t.To 
he
k a possible non-linearity of the N -baryon traje
tory, a �t was performedusing a se
ond-order polynomial fun
tion. The in
lusion of additional term to the�tting fun
tion leads to a small value (' 0:005) of the parameter responsible for thequadrati
 term. However, the quality of su
h �t 
hara
terized by �2=ndf = 0:15=1does not signi�
antly improve. Two dashed lines shown in Fig. 1 indi
ate a 95%
on�den
e-level region for the linear regression, assuming that the experimentalun
ertainties on the masses are normally distributed. This illustrates the reliabilityof the linear relationship between the M2 and J values. From the two tests above,1This 
an be found in the 
omputer �les lo
ated at the PDG web page [11℄.2



it 
an be 
on
luded that there is no eviden
e for non-linearity of the N -baryontraje
tory.It should be noted that we do not in
lude theN(1990)(F17)�� baryon at J = 7=2to the �t. In prin
iple, the quality of the �t will not su�er if the quoted PDG mass(' 1990MeV) is used. However, if one uses the most re
ent measurement given bythe PDG [11℄, then theN(1990)(F17) point will move up to the lo
ation indi
ated bythe small symbol at 2086�28MeV (Fig. 1). In this 
ase, this baryon will overlap onthe (J;M2) plane with a better established P = �1 baryon N(2190)(G17), whi
h hasa mass of 2190+10�90 MeV (again in a

ordan
e with the latest measurement). In this
ase, N(1990)(F17) should not be used for the �t due to the \lowest-mass" ex
lusionprin
iple. Sin
e there is no any obje
tive 
riteria for in
lusion (or ex
lusion) of non-well established N(1990)(F17) baryon to (from) the �t, it was de
ided to ex
ludeit. The situation with the lowest-mass P = �1 N baryons, shown in Fig. 1 (opensymbols), is more 
ompli
ated and will be dis
ussed in Se
tion 3.� baryons. Now let us 
onsider the � baryons. Figure 2 shows the (J;M2)plane for all � baryons (�lled symbols). The �lled 
ir
les show the P = +1 baryonswith smallest masses at a given J (their PDG names are indi
ated). It should benoted that the PDG name for the �(2000) baryon with J = 5=2 is likely to beinappropriate sin
e most re
ent experimental studies have indi
ated that its massis either 1724 � 61MeV [12℄ or 1752 � 32MeV [13℄. For the linear �t, we use theformer mass, whi
h is also quoted in [11℄.The linear least-squares regression for the lowest-mass � baryons with P =+1 is shown in Fig. 2 by the solid line. The �2=ndf = 6:1=4 supports the linear�t, despite very small experimental un
ertainties on the measured masses and thesigni�
ant range in J . The quality of the linear regression is impressive: The dashedlines indi
ate a 95% 
on�den
e-level interval for the linear regression, whi
h is only170MeV wide even for J = 21=2. Both multiple r-squared and adjusted r-squaredare 0:9999 and the p-value is 6:2 �10�9. Furthermore, a possible non-linear trend was
he
ked by using a se
ond-order polynomial fun
tion. Su
h a �t has �2=ndf = 5:4=3,while the parameter for the quadrati
 term was 
onsistent with zero (0:014�0:017).Thus, one 
on
ludes again that there is no eviden
e for a non-linear behaviour.The linear regression has only one signi�
ant residual at J = 5=2 where themeasured mass squared is 100MeV2 above the upper 95% 
on�den
e-level line.However, as was noted above, the existen
e of the �(2000) baryon is not well settled(two PDG stars), and its mass needs to be determinedmore a

urately. It should alsobe noted that only three baryons shown in Fig. 2, �(1232), �(1950) and �(2420),are fairly well studied.Using the prin
iples outline above, it is impossible to �nd a suÆ
ient numberof � baryons with P = �1 for the linear regression �t. This will be dis
ussed inSe
tion 3. 3



� baryons. Figure 3 shows the (J;M2) plane for all PDG � baryons (�lledsymbols). The �lled 
ir
les show the baryons with the smallest masses and with P =�1. Again, su
h baryons are well des
ribed by the linear regression �t (�2=ndf =0:2=1).Figure 3 also shows the � baryons with smallest masses (their names are not indi-
ated) and P = +1. The latter baryons (�(1115)(P01), �(1890)(P03), �(1820)(F05)and �(2350)(H09)) 
annot be used for the �t sin
e: 1) �(1115)(P01) de
ays weakly;2) the position with J = 3=2 is already �lled with the �(1520)(D03) baryon whi
hhas the opposite parity. We examine this further in Se
t. 3.Other baryons. For 
 and � baryons, the existing experimental data areinsuÆ
ient for the 
onstru
tion of the traje
tories with more than two data points.The � baryons will be dis
ussed below.3 Dis
ussionIt is rather 
onvin
ing now that the method proposed at the beginning of Se
t. 2indeed works rather well: it allows the 
onstru
tion of three perfe
tly linear baryoni
traje
tories with more than two data points. The �t parameters are summarised inTable 1.Now, let us dis
uss what would happen if: 1) weakly de
aying baryons will bein
luded in the �t as well; 2) one 
onsiders baryoni
 traje
tories for a 
ertain parityeven when there are baryons with the opposite parity with lower masses. In this
ontext, we will also dis
uss hadrons with di�erent spa
e parity whi
h have beenomitted from the 
onsideration in Se
tion 2. We will not analyse the minimum-massrequirement itself sin
e, without it, the vast majority of baryoni
 traje
tories willbe non-linear and identi
al to those studied elsewhere [5,7{9℄.First of all, let us in
lude the lowest-mass weakly de
aying � state shown by theopen symbol at J = 1=2 in Figure 3. We will ex
lude the �(1820)(F05) state atJ = 3=2, whi
h is also indi
ated with the open symbol, sin
e this hadron does notsatisfy to the minimum-mass 
riteria. The linear �t of the remaining three baryons,�(1115)(P01), �(1890)(P03) and �(2350)(H09), 
annot be 
onsidered as a perfe
tone sin
e �2=ndf = 3:2=1. Thus, the weakly de
aying �(1115)(P01) state violatesthe linearity.There is a similar situation with the � baryons. Figure 4 shows the � baryonswith P = +1. There are only two points whi
h 
an be used to 
onstru
t thetraje
tory. If the lowest-mass weakly de
aying �(P11) at J = 1=2 is in
luded, thedata points 
annot be des
ribed by the linear �t.The open 
ir
les in Fig. 4 show two � baryons whose angular momenta areunknown, but their masses are reasonably well determined. The values of the angularmomenta were hypothesized assuming that su
h baryons should by 
lose to the linedetermined by �(1385)(P13) and �(2030)(F17) baryons. At the same time, these4



new baryons should be above the �-traje
tory whi
h bounds the entire baryoni
spe
tra at low masses.Now let us assume that the minimum-mass requirement for a given parity isnot essential in 
ases when there exist baryons with the opposite parity but withsmaller masses for a �xed J . First, let us 
onsider the N baryons with P = �1shown in Fig. 1(open symbols). For J = 3=2 and 11=2, one 
an use N(1520)(D13)and N(2600)(I111) baryons without any ambiguity. For J = 5=2 and J = 9=2,N(1675)(D15) and N(2250)(G19) baryons with P = �1 overlap in masses withthe N baryons of the opposite parity, i.e. N(1680)(F15) and N(2220)(H19). Ifone ignores the minimum-mass requirement, then all baryons indi
ated by the opensymbols should be 
onsidered for the regression. Obviously, the linear �t will fail inthis 
ase. However, a linear traje
tory for the P = �1 baryons may still exist if theN(1675)(D15) and N(2250)(G19) states are removed from the 
onsideration on thebasis of the minimum-mass requirement.Now let us 
onsider strongly de
aying � with P = +1 shown in Figure 3. It isevident that the data points shown with the open symbols 
annot be des
ribed bya linear fun
tion. Thus, it is essential to ex
lude �(1890)(P03) at J = 3=2 fromthe 
onsideration. This 
an indeed be done taking into a

ount the minimum massrequirement and noting the presen
e of the low-mass �(1520)(D03) state.There is another example: � baryons with P = �1 (see Fig. 5). Su
h baryons
annot lie on the same line sin
e the linear �t is 
hara
terised by �2=ndf = 11=3and a wide 95% 
on�den
e interval. This 
an be explained as before: positions withJ = 3=2, 5=2 and 9=2 have already been �lled with the P = +1 baryons with lowermasses (shown in Fig. 5 with small �lled symbols). Therefore, there are only twobaryons left with J = 1=2 and 11=2, whi
h is insuÆ
ient for the linear regressionanalysis.4 Towards extra
tion of the diquark massIf our hypothesis is 
orre
t, then the present experimental data 
an be used forthe 
onstru
tion only three linear traje
tories with more than two data points. Allother baryons lying above su
h traje
tories on the (J;M2) plane have additional
ontributions to their masses from non-pure orbital rotations. Perhaps one 
an usethe term \intrinsi
 noise" [4℄ for su
h states: all su
h hadrons may have a non-linearrelationship between M2 and J [5,7{9℄.The linear traje
tories proposed above 
an be used for the validation of a rela-tivisti
 model in whi
h a hadron 
an be treated as a rotating 
ux tube (or a string)with a quark and a diquark at the ends. Su
h a string 
an be 
hara
terised by a
onstant tension T = �=2�. For small (di)quark masses, an approximate solutionof this model is given by the Selem-Wil
zek (SW) expression [4℄:M ' p�J + 23 �1=2�3=2(�J)1=4 ; �3=2 = m3=21 +m3=22 ; (3)5



where m1 and m2 are the masses of diquark and quark 
onne
ted by a relativisti
string. The �tting fun
tion dire
tly follows from Eq. (3):M2 = �J + 43p��3 � (�J)1=4+ 49 ��3p�J : (4)This equation resembles the Chew-Frauts
hi relationship between M2 and J in thelimit of small masses.In order to test the model above, we will use the N baryons shown in Figure 1.The �t result using the SW fun
tion Eq. (4) is shown in Fig. 6 (solid line), whilethe two dashed lines illustrate the �t sensitivity to � (in this 
ase we keep theslope parameter � to be the same as for the nominal �t using Eq. (4)). The dottedline shows the linear �t as in Figure 1. The �t with the fun
tion given in Eq. (4)is strikingly good. The �t parameters are fully 
onstrained by the proton massat J = 1=2, sin
e this is exa
tly the region with a highest sensitivity to �. Theparameter � is 0:908GeV2, whi
h is 
lose to the slope value obtained from the linear�t shown in Figure 1. The extra
ted value of the mass parameter is � = 0:323GeV.Similar �ts have been performed using the � and � baryons shown in Figures 2and 3. For su
h baryons, the �t with Eq. (4) did not 
onverge: the parameter �had a �tting error larger than its value and the �t had a signi�
ant sensitivity toinitial �t values. The reason for this is rather simple: As seen from Fig. 6, the lastnon-linear term in Eq. (4) 
an only be 
onstrained by the region J < 1. However,� and � traje
tories do not have a hadron at su
h a small J . Even although su
hbaryons 
annot 
onstrain the mass parameter �, their linear traje
tories are still
onsistent with a fairly linear behaviour of Eq. (4) at large J .It should be noted that the solution given in Eq. (3) was obtained in the limitof negligible quark masses (� ! 0) and for large J . However, the obtained valuesof � and the range of J used to �t the data may lead to a worry that the aboveassumptions are not appropriate and the terms beyond O(�3=2) are ne
essary to
onsider in Eq. (3). Therefore, we have made an attempt to solve the equationsof the diquark string model analyti
ally by taking into a

ount high-order termsnegle
ted in the solution [4℄. We have obtained a relationship between the mass andJ using a full set of O(�3=2) terms and, in addition, some terms of order O(�5=2)(see Appendix B). It should be stressed that a 
ompleteO(�5=2) 
al
ulation requiresa solution of the appropriate quinti
 equation.Figure 7 shows the �t using the O(�5=2) solution given in Eq. (B-10) of Ap-pendix B. The �t, shown with the dashed line, was performed using three freeparameters, m1, m2 and �. It was assumed that the mass of the diquark (m1) islarger than that of the quark (m2) during the �t. The quality of the �t is fair. Itshould be noted that if only two parameters are used for the �t, i.e. � and � asin the SW 
ase, �2=ndf is smaller (= 2:2=2). In is interesting to observe that M2in
reases when J de
reases. In fa
t, this is an artifa
t of trun
ation of the series inEq. (B-11); high-order terms proportional to O(�7=2) and O(�9=2) have negatived
ontributions and thus turn to redu
e the in
rease of M2 at small J .6



It is rather 
lear that in order to obtain a reliable model predi
tion when themasses are not too small, it is essential to �nd a numeri
al solution of Eq. (B-5).The result of our numeri
al 
al
ulation2 used in a �2-minimisation pro
edure for theN -baryoni
 traje
tory is shown in Figure 7 (the solid line). The �t was found to beex
ellent.Table 2 summarizes the �t parameters obtained using di�erent approximations.The numeri
al solution leads to very similar masses as for the analyti
al O(�5=2)
al
ulation. Moreover, the parameter � ' 0:314GeV 
al
ulated from the extra
tedm1 and m2 is very similar to that from the SW �t shown in Figure 6. As before,the �t 
an only be 
onstrained by the J < 1 region, thus the N -baryon traje
toryis the most useful for the extra
tion of the mass parameters and for the validationof this model.A few words about the pre
ision on the extra
ted masses are ne
essary. Table 2shows the �t values with the ne
essary numeri
al pre
ision to reprodu
e the �2=ndfand thus the proton mass, whi
h has a very small experimental un
ertainty. Theun
ertainties on the extra
ted parameters from the �ts are negligible, therefore, theyare not quoted (see Appendix A for details). We did not estimate the exa
t rangeof the �t parameters whi
h give an a

eptable �t (i.e. with �2=ndf < 1) sin
e thiswill require a signi�
ant 
omputational time. However, from several tests we did,we have 
on
luded that the parameters are fairly 
lose to m1 ' 0:27 � 0:01GeV,m2 ' 0:11 � 0:01GeV and � ' 0:92 � 0:1GeV2 (the so-
alled Fit I), with a verystrong and 
ompli
ated 
orrelation between the values.In addition to the solution given above, we have found another solution withm1 = 0:228GeV, m2 = 0:179GeV and � = 0:920GeV2 (Fit II, see Table C-1 ofAppendix C), whi
h also gives an a

eptable �t, �2=ndf = 0:9=1. In this 
ase, bothmasses are rather similar, almost in the spirit of the expe
tations dis
ussed in [4℄.This solution 
orresponds to a di�erent radius of the quark-diquark system (see adis
ussion in Appendix C). We would like to note that the obtained parametersmay not be the only solutions whi
h lead an a

eptable �t with �2=ndf < 1, thusthe model un
ertainties are unknown yet. To �nd possible alternative solutions willrequire a signi�
ant 
omputational time and, therefore, this is outside of the s
opeof this paper. The model un
ertainties for the N -baryon traje
tory are furtherdis
ussed in Appendix C.It was also veri�ed that if one sets m1 = m2 for the �t using the numeri
alsolution, then the �t 
annot be 
onsidered as a good one, �2=ndf ' 5=2. Obviously,the assumption m1 = m2 is more appropriate for mesons, and it is remarkable thatthe N -baryon traje
tory does not support it.2We used the fun
tion DZERO from the CERNLIB FORTRAN library [14℄ to �nd a zero of areal-valued fun
tion for solving Eq. (B-5). Then su
h a numeri
al solution was used in the �ttingfun
tion using the MINUIT program, see Appendix A.7



5 MesonsIt would be interesting to see the appli
ability of Eq. (2) and the assumptionsdis
ussed in Se
t. 2 to the mesoni
 se
tor. We will mostly be interested in thelinearity of the traje
tory whi
h bounds all known mesons on the (J;M2) plane atlow masses. This is very similar to the � baryons whi
h bound the entire baryoni
se
tor at low masses by the straight traje
tory shown in Fig. 2.Figure 8 shows the (J;M2) plane for all PDG mesons (�lled symbols). As before,the �lled 
ir
les show all mesons with lowest masses (for J � 1) whi
h were usedin the linear �t. It 
an be seen that su
h mesons approximately lie on a straightline, and this 
an s
ar
ely be a 
oin
iden
e. The �t has a signi�
ant �2=ndf due tovery small experimental un
ertainties on the measured meson masses, thus one 
anjudge about the linearity only with a 
ertain 
aution. There is only one signi�
antresidual at J = 5; however, it is not improbable that the X(2210) state may haveJ = 5 and thus it falls exa
tly on the linear �t. All other states indi
ated with theopen 
ir
les have unknown J and their lo
ations were hypothesized.While the slope for the meson se
tor is somewhat lower, it should be notedthat the upper 95% 
on�den
e-level line (p0 = �0:503; p1 = 1:099) approximately
oin
ides with that for the baryoni
 se
tor.It is interesting to note that there is a 
lear periodi
ity in spa
e and 
harge
onjugation parity indi
ated as (P;C) for lowest-mass mesons whi
h bound themeson spe
trum on the (J;M2) plane (see Fig. 8). This was already noted for thetraje
tory of ve
tor mesons in [3℄. Based on this observation, we 
an predi
t thatthe C-parity of X(2750) is likely to be negative.6 Con
lusionIn this paper, using the most re
ent experimental data, empiri
al rules have beenproposed whi
h are suÆ
ient to reveal a stri
t linear relationship between the totalangular momentum and squared-mass of baryons. Using a least-squares regression,we did not �nd eviden
e for non-linearity of su
h traje
tories even when the moststringent statisti
al tests based on the �2 and 95% 
on�den
e-level intervals wereused. In one 
ase, this 
on
lusion was made after the analysis of a number of baryonsas large as six. This observation may provide the basis for a new systematization ofhadrons and 
ertainly require thoughtful theoreti
al investigation.The linearN -baryon traje
tory 
an be well des
ribed by a semi-
lassi
al approa
hbased on a spinning relativisti
 string with diquark and quark at the ends. We haveshown this baryoni
 traje
tory is �2 
onsistent with the exa
t numeri
al solution ofthis model (up to nine digits of the extra
ted model parameters). In this paper wehave determined the (di)quark masses from the �t of the N -baryon traje
tory usingour solution.In prin
iple, this semi-
lassi
al model is qualitatively 
onsistent with other linearbaryoni
 traje
tories. However, in this paper, we did not attempt to verify this8



using our numeri
al 
al
ulations. Also, we did not analyse mesons as 
arefully asbaryons. However, it is interesting to observe that the meson spe
trum on the(J;M2) plane is restri
ted at small masses by a linear traje
tory formed by mesonswith S = C = B = 0 whi
h have periodi
ity in spa
e and 
harge 
onjugation parity.A
knowledgementsWe thank Prof. E. Lohrmann for dis
ussion of the results of this paper and A. Selemfor 
orresponden
e and an explanation of some results of Ref. [4℄.
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APPENDIX AThe linear regression was performed using the weights w = 1=�2, where � is theexperimental un
ertainty on the mass squared of a hadron. In 
ase of asymmetri
experimental errors, we take the average of the upper and the lower experimentalun
ertainty.The least-square linear regression was 
arried out using the R program [15℄. TheR-pa
kage was also used to estimate 
on�den
e-level intervals on the linear regres-sion. This pa
kage gives larger un
ertainties on the linear-regression parametersthan the MINUIT program from the CERNLIB FORTRAN library [14℄. The MI-NUIT parameter errors give information on the un
ertainty in the best �t valuesand are not meaningful when points do not have (or have very small) experimentalun
ertainties.In 
ontrast to the standard linear least-square regression analysis, the MINUITprogram was used for validation of the relativisti
 string model dis
ussed in Se
-tion 4. This simpli�es the �t pro
edure in 
ase of non-linear fun
tions, espe
iallywhen their analyti
 form is unknown (as in 
ase of the numeri
al solution of thestring model dis
ussed in Se
tion 4). The extra
ted �t parameters with the ne
es-sary numeri
al pre
ision to reprodu
e the proton mass are shown in Table 2. TheMINUIT parameter errors are not shown, sin
e they are smaller than the last digit.APPENDIX BHere we will derive the fun
tions used to �t the N -baryon traje
tory shown in Fig. 7.First, re
all the main set of equations (8)-(9) of the string model [4℄:E = 2Xn=1 �mn
n + T! ar
sin(�n)�; (B-1)J = 2Xn=1 hmn! �2n
n + T2!2� ar
sin(�n)� �n
n�i; (B-2)T = !mn�n
2n; n = 1; 2: (B-3)Here, E is the energy of the quark-diquark system rotating with an angular momen-tum J , mn denotes the mass of a diquark (n = 1) and quark (n = 2), ! is angularvelo
ity, T is a string tension and �n is a linear velo
ity. The fa
tor 
n of a given(di)quark is de�ned as 
n = 1p1� !2r2n ;where rn is a distan
e from the 
enter of rotation.Our goal is to �nd a relationship between the energy E and J . Su
h a relationshiphas to be expressed in terms of � = 2�T and mn. Ex
luding terms with ar
sin(�n)10



from Eq. (B-1) and using the representationar
sin(�n) = �2 � 12 ar
sin�2�n
n�;one gets from Eq. (B-1)-(B-3)E = 2!J + m1
1 + m2
2 ; (B-4)J = 12T �T!�2h� + 12 2Xn=1 �2�n
n � ar
sin �2�n
n ��i; (B-5)xn = 1�n
2n ; n = 1; 2: (B-6)We use Eqs. (B-4)-(B-6) to �t theN -baryon traje
tory and to extra
t the parametersmn and � from the data. At �xed J , mn and �, the equation (B-5) 
an be solvedrelative to ! either numeri
ally, or to some approximation, using a series expansion.Here, xn = mn!=T 
an be used as the expansion variable in the limit of small(di)quark masses.In terms of xn,1
n = h 2xnxn +p4 + x2ni1=2 = x1=2n � 122x3=2n + 125x5=2n +O(x7=2n ); (B-7)�n
n = 1xnh 2xnxn +p4 + x2ni3=2 = x1=2n � 322x3=2n + 925x5=2n +O(x7=2n ): (B-8)Using the expansionar
sin�2�n
n� = 2�n
n + 43��n
n�3 + 125 ��n
n�5 +O(��n
n�7);Eq. (B-5) be
omesJ = 12T �T!�2h� � 23��1
1�3 � 23��2
2�3 � 65��1
1�5 � 65��2
2�5 +O(��n
n�7)i: (B-9)Thus, substituting Eq. (B-7) and Eq. (B-8) in Eq. (B-4) and Eq. (B-9) and keepingonly terms up to order m5=2n , one obtains:E = ��T!�+ �3=213 �!T �1=2 + �5=2220 �!T �3=2 +O(�7=2); (B-10)J = �2T �T!�2 � �3=213T �!T ��1=2 + 320 �5=22T �!T �1=2 +O(�7=2) (B-11)with �3=21 = m3=21 +m3=22 and �5=22 = m5=21 +m5=22 .11



Let us denote V =p!=T and rewrite Eq. (B-11) as a quarti
 equationV 4 + aV 3 � b = 0; (B-12)with a = 2��3=213�J ; b = �2�J ;where the term proportional to �5=22 was negle
ted. To solve the quarti
 equation(B-12) we use the Ferrari method [16℄. The resolvent 
ubi
 of Eq. (B-12)U3 + 4bU + ba2 = 0; (B-13)transforms Eq. (B-12) to a quadrati
 equation:V 2 + 
�V + Æ� = 0 (B-14)with 
� = 12[a�pa2 + 4U ℄; Æ� = 12[U �pU2 + 4b℄; (B-15)where a real root of Eq. (B-13) (the Cardano formula) isU = 16h12bp81a4 + 768b � 108ba2i1=3 � 16h12bp81a4 + 768b + 108ba2i1=3: (B-16)Thus, a real and positive solution of Eq. (B-14) and therefore, of Eq. (B-12), isV = �!T �1=2 = 14nh(a2+4U)1=2�ai+rh(a2 + 4U)1=2 � ai2 + 8h(U2 + 4b)1=2 � Uio:(B-17)Substituting the above expression in Eq. (B-10), one obtains a desired relation-ship between the baryoni
 mass M = E and variables J , � and mn.APPENDIX CUsing a graphi
al representation of di�erent parts of Eqs. (B-4) and (B-5), it iseasy to demonstrate that the string model des
ribed by the system of equationsEqs. (B-4)-(B-6) allows several solutions for the (di)quark masses. Su
h solutionshave traje
tories with very small (but di�erent) non-linear behaviour.Let us denote by Zn the following variablesZn = 2�n
n ; n = 1; 2 (C-1)and introdu
e a fun
tionF(Z1;Z2) = 2Xn=1 �Zn � ar
sin(Zn)� (C-2)12



whi
h represents the last term in Eq. (B-5). The variables Zn have values in theinterval [0; 1℄, and are related to the parameters mn, ! and T through the equationsEq. (B-6) and Eq. (B-8). The fun
tion F(Z1;Z2) takes values in the range [2��; 0℄.As shown in Fig. C-1(a), F(Z1;Z2) is symmetri
 with respe
t to the median lineZ1 = Z2 and a monotoni
 fun
tion of the both arguments. The main feature ofEq. (B-5) is that the equation F(Z1;Z2) = F , whereF is a 
onstant, de�nes an isolineon the surfa
e and at �xed J all the points fZ1;Z2g on this isoline 
orrespond tothe same angular velo
ity !. In Fig. C-1(a), the isolines are shown as lines between
olored bands.
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(b)Figure C-1: F(Z1;Z2) as a fun
tion of Z1 and Z2 (left) and Zn shown as a fun
tionof the (di)quark velo
ity (right).Let us 
onsider the mass evolution equation (B-4) starting from a very high J .As follows from (B-5) and the de�nition of xn, a very high J 
an be obtained onlyat very small ! or xn. Then Eqs. (B-7) and (B-8) tells that 
n � 1, �n � 1, Zn � 0and F(Z1;Z2) � 0. Thus, at su
h J , �n and !, the quark and di-quark are at largedistan
es from the 
enter of rotation.Now, if J de
reases and !, 
onsequently, in
reases, the phase point (Z1;Z2) onthe surfa
e F(Z1;Z2) is moving along some path in the dire
tion of (Z1 = 1;Z2 = 1).A �t of the N -baryon traje
tory �xes a parti
ular path passing at J = 1=2 througha point (Z1(f);Z2(f)) on the surfa
e given by F(Z1;Z2). If Zn fun
tion is plotted asa fun
tion of the (di)quark velo
ity �n, as shown in Fig. C-1(b), one �nds that thepoint is moving from � � 1 to a smaller �. The maximum Zn = 1 is rea
hed at13



Numeri
al solution Numeri
al solution limit Z1 = Z2 = 1,Parameters Fit I Fit II�2=ndf 0.9/1 0.9/1 -m1, GeV 0.271713 0.228808 0.18393m2, GeV 0.114134 0.179558 0.18393�, GeV2 0.923374 0.920000 1.12428J 1/2 1/2 1/2!, GeV 0.643476 0.628674 0.679332Z1(f) 0.935557 0.974606 1Z2(f) 0.975607 0.998309 1F(Z1(f);Z2(f)) -0.648139 -0.884682 2��x1 1.189721 0.982401 1/p2x2 0.499746 0.770943 1/p2�1 0.822549 0.782280 1/p2�2 0.780872 0.727369 1/p2r1, GeV�1 1.278291 1.244335 1.045218r2, GeV�1 1.213521 1.156988 1.045218Table C-1: The model parameters extra
ted from Eqs. (B-6)-(B-8).�0 = 1=p2.Table C-1 gives the model parameters3 extra
ted from Eqs. (B-6)-(B-8) usingmn and � found from Fit I and Fit II. First of all, let us note that all �n < 1=p2(or higher values of !) 
orrespond to a non-physi
al J < 1=2 and �n > 1=p2 holdsfor the both �ts.The baryon masses predi
ted by the string model are degenerated with respe
tto ! and mn. Indeed, F(Z1;Z2) is negative and, therefore, there is a range of ! forwhi
h one obtains J1 = J2 at di�erent !1 and !2. If (B-5) is equated at di�erent !,then 1!21 [2� + F1℄ = 1!22 [2� + F2℄ (C-3)or F2 = �!2!1�2(2� + F1)� 2�: (C-4)Here F1 and F2 denotes F(Z1;Z2) at two phase-spa
e points (Z1;Z2)1;2. The 
ondi-tion 2� � � F2 � 0 (C-5)puts the following restri
tion on !2 (at a �xed !1):2 + �2� + F1 � �!2!1�2 � 2�2� + F1 : (C-6)3We have redu
ed the numeri
al pre
ision of the quoted �t values for representative purposes.The exa
t �t values 
an be found from Table 2.14



The 
ondition (C-6) 
ould mean that if one �nds a set of parameters fm1; m2; �g1with the evolution along a path f!; �1; �2g1, there should exist another solutionfm1; m2; �g2 with a di�erent path f!; �1; �2g2. The se
ond found solution for theN -baryon traje
tory may 
on�rm su
h interpretation. Thus, we 
on
lude that themodel should have an intrinsi
 un
ertainty for the extra
ted masses depending onthe Z1 and Z2 values.Referen
es[1℄ G. F. Chew, S. C. Frauts
hi, Phys. Rev. Lett. 7 (1961) 394;G. F. Chew, S. C. Frauts
hi, Phys. Rev. Lett. 8 (1962) 41;S. Frauts
hi, Regge Poles and S-Matrix Theory. Benjamin, New York, 1968.[2℄ Y. Kalashnikova, A. Nefediev, Y. Simonov, Phys. Rev. D 64 (2001) 014037;V. L. Morgunov, A. V. Nefediev, Y. A. Simonov, Phys. Lett. B 459 (1999) 653.[3℄ L. D. Soloviev, Phys. Rev. D 58 (1998) 035005.[4℄ A. Selem, F. Wil
zek, Preprint hep-ph/0602128, 2006.[5℄ A. Inopin, G. S. Sharov, Phys. Rev. D 63 (2001) 054023.[6℄ V. Anisovi
h, et al., Quark Models and High Energy Collisions. World S
ienti�
Publishing Co. Pte. Ltd, 2004.[7℄ A. Inopin, Preprint hep-ph/0012248, 2000.[8℄ A. Tang, J. W. Norbury, Phys. Rev. D 62 (2000) 016006.[9℄ P. Desgrolard, et al., Eur. Phys. J. C 18 (2001) 555.[10℄ PARTICLE DATA GROUP Collaboration, S. Eidelman, et al., Phys. Lett.B 592 (2004) 1.[11℄ PARTICLE DATA GROUP Collaboration, S. Eidelman, et al., TheReview of parti
le physi
s. Computer �les (unpublished), available onhttp://pdg.lbl.gov/.[12℄ T. P. Vrana, S. A. Dytman, T. S. H. Lee, Phys. Rept. 328 (2000) 181.[13℄ D. M. Manley, E. M. Saleski, Phys. Rev. D 45 (1992) 4002.[14℄ CERNLIB, CERN Program Library (unpublished), available onhttp://
ern.
h/
ernlib/.[15℄ R-library, R-environment for statisti
al 
omputing and graphi
s (unpublished),available on http://www.r-proje
t.org/.15



[16℄ E. W. Weisstein, Quarti
 Equation. From MathWorld:A Wolfram Web Resour
e (unpublished), available onhttp://mathworld.wolfram.
om/Quarti
Equation.html.
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Parti
le family p0, GeV2 p1, GeV2 �2=ndfN baryons, P = +1 0:393 � 0:003 0:974 � 0:006 0.5/2� baryons, P = +1 �0:156 � 0:013 1:116 � 0:006 6.1/4� baryons, P = �1 0:746 � 0:007 1:042 � 0:004 0.2/1� baryons, P = +1 0:277 � 0:024 1:098 � 0:016 -mesons (lowest mass) �0:454 � 0:026 1:052 � 0:019 220/5Table 1: Fit parameters obtained using the linear parameterisationM2 = p0+ p1Jfor several hadroni
 families with the lowest masses on the (J;M2) plane. The�2=ndf for the � states is not given sin
e there are only two points for the linear �t(see the text).Parameters SW �t O(�3=2) O(�5=2) numeri
alsolution solution solution�, GeV2 0.908091023 0.889953024 0.902776942 0.923374256�, GeV 0.323158469 - - -m1, GeV - 0.302678728 0.280596424 0.271713077m2, GeV - 0.109731744 0.109180448 0.114133666�2=ndf 1.5/2 2.2/1 1.8/1 0.9/1Mp, GeVfrom Eq. (B-4) 0.938272037 0.938272031 0.938272034 0.938272048Mp, GeV [10℄ 0:938272029 � 0:000000080Table 2: Fit parameters obtained using di�erent solutions of the relativisti
 diquarkmodel (see the text). The N -baryon traje
tory was used for the �t. The parameterun
ertainties are not shown (see Appendix A). The large number of digits, whi
h isne
essary to reprodu
e the quoted �2=ndf , is due to a large experimental pre
isionon the N -baryon masses. The proton mass was 
al
ulated from Eq. (B-4) usingdi�erent approximations and 
ompared with the world average value.17



J
0 1 2 3 4 5 6 7 8 9 10

)2
 (

G
eV

2
M

0

1

2

3

4

5

6

7

8

9

10

N baryonsN baryons

J
0 1 2 3 4 5 6 7 8 9 10

)2
 (

G
eV

2
M

0

1

2

3

4

5

6

7

8

9

10

N baryons

p(P11)

N(1680)(F15)

N(2220)(H19)

N(2700)(K113)

J
0 1 2 3 4 5 6 7 8 9 10

)2
 (

G
eV

2
M

0

1

2

3

4

5

6

7

8

9

10

N baryons

p(P11)

N(1680)(F15)

N(2220)(H19)

N(2700)(K113)

1.362

1.682

1.950

2.185

2.398

2.593

2.774

2.945

3.106

M (GeV)

=p0+p1*J2M

/ndf =  0.5/22χ

 0.003±p0 = 0.393 

 0.006±p1 = 0.974 

Used for the fit (P=+1)
Lowest mass N with P= -1
Linear fit
95% confidence level
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=0.2µFigure 6: The �t results for leading and daughter nu
leons with positive parity.Only baryons with the minimum mass requirement for a given J were used. Thesolid line indi
ated the �t by using Eq. (4) (the so-
alled SW �t) with two freeparameters, � and �. The parameter un
ertainties are negligible (not shown). Inorder to illustrate the �t sensitivity to �, the dashed lines show the same �t fun
tionbut with di�erent �. The dotted line shows the linear �t shown in Fig. 1.
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/ndf = 1.8/12χ
 = 0.280601m

 = 0.109182m

  = 0.90278σ

numerical solution:

/ndf = 0.9/12χ
 = 0.271711m

 = 0.114132m

  = 0.92337σFigure 7: The dotted line shows the SW �t as in Figure 6. The dashed line showsthe �t using the solution of the diquark string model 
al
ulated up to O(�5=2) terms,see Eq. (B-10) of Appendix B. The �t was performed using two mass parameters,m1 and m2 (m1 > m2) and a string tension �. The solid line shows the �t using theexa
t numeri
al solution (see the text). The parameter un
ertainties are negligible.Table 2 gives more exa
t numbers from the �ts.
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=p0+p1*J2M

/ndf =  220/52χ

 0.026±p0 = -0.454 

 0.019±p1 = 1.052 Figure 8: The (J;M2) plane for mesons. The �lled 
ir
les show the mesons withsmallest masses and J � 1 used for a weighted-least squares linear regression (thesolid line). The dashed lines indi
ate a 95% 
on�den
e-level interval for the linearregression. For ea
h meson used in the �t, spa
e parity (P ) and 
harge 
onjugationparity (C) are indi
ated in parentheses. Small �lled squares show all other PDGmesons and the open 
ir
les indi
ate guessed lo
ation of several high-mass mesonswith unknown J .
25


	Introduction
	Linear trajectories for baryons
	Discussion
	Towards extraction of the diquark mass
	Mesons
	Conclusion

