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DESY 06-138ANL-HEP-PR-06-61Regularities in hadron systematis, Reggetrajetories and a string quark modelS.V. Chekanov a 1 and B.B. Levhenko ba DESY Laboratory, Notkestrasse 85, 22607, Hamburg, Germanyb Skobeltsyn Institute of Nulear Physis, Mosow State University,119992 Mosow, Russian FederationAbstratAn empirial priniple for the onstrution of a linear relationship betweenthe total angular momentum and squared-mass of baryons is proposed. In or-der to examine linearity of the trajetories, a rigorous least-squares regressionanalysis was performed. Unlike the standard Regge-Chew-Frautshi approah,the onstruted trajetories do not have non-linear behaviour. A similar reg-ularity may exist for lowest-mass mesons. The linear baryoni trajetoriesare well desribed by a semi-lassial piture based on a spinning relativististring with tension. The obtained numerial solution of this model was usedto extrat the (di)quark masses.
1On leave from HEP Division, Argonne National Laboratory, 9700 S.Cass Avenue, Argonne, IL60439 USA



1 IntrodutionIt has been aepted for a long time that hadrons from the same family lie on Reggetrajetories (the so-alled Chew-Frautshi onjeture [1℄), i.e.J = �(0) + �0M2; (1)where J is the total angular momentum and M is the mass of a hadron. Theinterept �(0) depends on hadron type, but the slope �0 is approximately the samefor all hadrons. Suh a relationship between J andM2, also known as the priniple ofexhange degeneray, is usually interpreted as a manifestation of the linear potentialof the strong fores between onstituent quarks. Reently this piture was disussedin terms of a relativisti diquark model based on a spinning string with a onstanttension [2{4℄ (see also referenes in [5℄).Experimentally, the validation of Eq. (1) remains to be a diÆult problem sinethe experimental data are sare. Aording to a reent lassi�ation of hadrons onthe (J;M2) plane [6℄, the overwhelming majority of the trajetories are supportedby a few data points only. For mesons, there exist �ve trajetories with three datapoints, while other trajetories were hypothesized from two or one data points. Forbaryons, only one trajetory was onstruted from four data points and �ve traje-tories were supported by three data points. Other trajetories were hypothesizedfrom the study of either one or two data points. Reently, it has been noted thatonly 9% (14%) of all trajetories in the mesoni (baryoni) setor are linear [7℄. Anon-linear harater of the Regge trajetories has also been pointed out in [4,8,9℄.In this artile we are not going to srutinize the linearity of the Regge trajetories;it is rather lear that the vast majority of suh trajetories are indeed non-linearand there is no neessity to re-analyse this fat again. Instead, using the mostreent PDG data [10℄, we would like to note that it is possible to �nd a presriptionwhih ould allow the onstrution of the trajetories whih an be lassi�ed asbeing perfetly linear and span over a signi�ant number of known baryons. Inorder to illustrate this, we use a rigorous weighted least-squares regression, whihis often missing in theoretial papers on this subjet. In Set. 2, we will disussour priniples for the onstrution of a linear relationship between the hadronimass squared M2 and the total angular momentum J . In Set. 3, our empirialobservation is disussed in more details. In partiular, we will explain what wouldhappen if the requirements proposed in Set. 2 are removed or weakened. In Set. 4and appendies, we will attempt to use our approah for validation of a relativistidiquark model based on a spinning string, whih is often disussed in the literature(see [4℄ for a reent disussion). Finally, we will briey disuss the mesoni setorin Set. 5. 1



2 Linear trajetories for baryonsAs a starting point in the onstrution of baryoni trajetories, we will onsider: (a)only stable or strongly deaying partiles from a ertain family; (b) only hadronsof the same family with a smallest mass, Mmin;J , for a given �xed J and spaeparity P ; () in addition to (a) and (b), we will use only suh baryons if there areno other baryons with smaller masses and with the opposite spae parity. At thismoment, we will use the assumptions above without any theoretial justi�ation.Below we will show that, without any exeption, suh requirements are suÆient forthe onstrution of perfetly linear baryoni trajetories.As a leading priniple for the seletion of hadrons, we will ignore partiles withpoor evidene of existene i.e. with one star in aordane with the PDG lassi�-ation [10℄. Furthermore, in several ases when PDG quotes only mass ranges, wewill use the entral values for the masses and their experimental errors as they aregiven by the most aurate and reent measurements1.We will attempt to desribe the mass dependene on J using a linear parame-terisation similar to Eq. (1): M2min;J = p0 + p1J; (2)where p0 and p1 are onstants. Hereafter we will use the notation M for Mmin;J ,unless otherwise stated. For onveniene of a linear-regression analysis, we preferto express M2 as a funtion of J sine the angular momentum does not have ex-perimental unertainties. The linear least-squares regression analysis is desribed inAppendix A.N baryons. First, let us onsider N baryons. Figure 1 shows all PDG N -baryons on the (J;M2) plane (the �lled and open symbols). There is a lear lineartrend for lowest-mass baryons with P = +1 shown by the �lled irles (the PDGnames of suh baryons are indiated). Sine suh baryons fully satisfy the riteriaproposed at the beginning of this setion, we will use them for a linear least-squaresregression. The result of this regression is shown with the solid line. The trajetoryis remarkably straight: the small value of �2=ndf shown in Fig. 1 fully supports thelinear �t.To hek a possible non-linearity of the N -baryon trajetory, a �t was performedusing a seond-order polynomial funtion. The inlusion of additional term to the�tting funtion leads to a small value (' 0:005) of the parameter responsible for thequadrati term. However, the quality of suh �t haraterized by �2=ndf = 0:15=1does not signi�antly improve. Two dashed lines shown in Fig. 1 indiate a 95%on�dene-level region for the linear regression, assuming that the experimentalunertainties on the masses are normally distributed. This illustrates the reliabilityof the linear relationship between the M2 and J values. From the two tests above,1This an be found in the omputer �les loated at the PDG web page [11℄.2



it an be onluded that there is no evidene for non-linearity of the N -baryontrajetory.It should be noted that we do not inlude theN(1990)(F17)�� baryon at J = 7=2to the �t. In priniple, the quality of the �t will not su�er if the quoted PDG mass(' 1990MeV) is used. However, if one uses the most reent measurement given bythe PDG [11℄, then theN(1990)(F17) point will move up to the loation indiated bythe small symbol at 2086�28MeV (Fig. 1). In this ase, this baryon will overlap onthe (J;M2) plane with a better established P = �1 baryon N(2190)(G17), whih hasa mass of 2190+10�90 MeV (again in aordane with the latest measurement). In thisase, N(1990)(F17) should not be used for the �t due to the \lowest-mass" exlusionpriniple. Sine there is no any objetive riteria for inlusion (or exlusion) of non-well established N(1990)(F17) baryon to (from) the �t, it was deided to exludeit. The situation with the lowest-mass P = �1 N baryons, shown in Fig. 1 (opensymbols), is more ompliated and will be disussed in Setion 3.� baryons. Now let us onsider the � baryons. Figure 2 shows the (J;M2)plane for all � baryons (�lled symbols). The �lled irles show the P = +1 baryonswith smallest masses at a given J (their PDG names are indiated). It should benoted that the PDG name for the �(2000) baryon with J = 5=2 is likely to beinappropriate sine most reent experimental studies have indiated that its massis either 1724 � 61MeV [12℄ or 1752 � 32MeV [13℄. For the linear �t, we use theformer mass, whih is also quoted in [11℄.The linear least-squares regression for the lowest-mass � baryons with P =+1 is shown in Fig. 2 by the solid line. The �2=ndf = 6:1=4 supports the linear�t, despite very small experimental unertainties on the measured masses and thesigni�ant range in J . The quality of the linear regression is impressive: The dashedlines indiate a 95% on�dene-level interval for the linear regression, whih is only170MeV wide even for J = 21=2. Both multiple r-squared and adjusted r-squaredare 0:9999 and the p-value is 6:2 �10�9. Furthermore, a possible non-linear trend washeked by using a seond-order polynomial funtion. Suh a �t has �2=ndf = 5:4=3,while the parameter for the quadrati term was onsistent with zero (0:014�0:017).Thus, one onludes again that there is no evidene for a non-linear behaviour.The linear regression has only one signi�ant residual at J = 5=2 where themeasured mass squared is 100MeV2 above the upper 95% on�dene-level line.However, as was noted above, the existene of the �(2000) baryon is not well settled(two PDG stars), and its mass needs to be determinedmore aurately. It should alsobe noted that only three baryons shown in Fig. 2, �(1232), �(1950) and �(2420),are fairly well studied.Using the priniples outline above, it is impossible to �nd a suÆient numberof � baryons with P = �1 for the linear regression �t. This will be disussed inSetion 3. 3



� baryons. Figure 3 shows the (J;M2) plane for all PDG � baryons (�lledsymbols). The �lled irles show the baryons with the smallest masses and with P =�1. Again, suh baryons are well desribed by the linear regression �t (�2=ndf =0:2=1).Figure 3 also shows the � baryons with smallest masses (their names are not indi-ated) and P = +1. The latter baryons (�(1115)(P01), �(1890)(P03), �(1820)(F05)and �(2350)(H09)) annot be used for the �t sine: 1) �(1115)(P01) deays weakly;2) the position with J = 3=2 is already �lled with the �(1520)(D03) baryon whihhas the opposite parity. We examine this further in Set. 3.Other baryons. For 
 and � baryons, the existing experimental data areinsuÆient for the onstrution of the trajetories with more than two data points.The � baryons will be disussed below.3 DisussionIt is rather onvining now that the method proposed at the beginning of Set. 2indeed works rather well: it allows the onstrution of three perfetly linear baryonitrajetories with more than two data points. The �t parameters are summarised inTable 1.Now, let us disuss what would happen if: 1) weakly deaying baryons will beinluded in the �t as well; 2) one onsiders baryoni trajetories for a ertain parityeven when there are baryons with the opposite parity with lower masses. In thisontext, we will also disuss hadrons with di�erent spae parity whih have beenomitted from the onsideration in Setion 2. We will not analyse the minimum-massrequirement itself sine, without it, the vast majority of baryoni trajetories willbe non-linear and idential to those studied elsewhere [5,7{9℄.First of all, let us inlude the lowest-mass weakly deaying � state shown by theopen symbol at J = 1=2 in Figure 3. We will exlude the �(1820)(F05) state atJ = 3=2, whih is also indiated with the open symbol, sine this hadron does notsatisfy to the minimum-mass riteria. The linear �t of the remaining three baryons,�(1115)(P01), �(1890)(P03) and �(2350)(H09), annot be onsidered as a perfetone sine �2=ndf = 3:2=1. Thus, the weakly deaying �(1115)(P01) state violatesthe linearity.There is a similar situation with the � baryons. Figure 4 shows the � baryonswith P = +1. There are only two points whih an be used to onstrut thetrajetory. If the lowest-mass weakly deaying �(P11) at J = 1=2 is inluded, thedata points annot be desribed by the linear �t.The open irles in Fig. 4 show two � baryons whose angular momenta areunknown, but their masses are reasonably well determined. The values of the angularmomenta were hypothesized assuming that suh baryons should by lose to the linedetermined by �(1385)(P13) and �(2030)(F17) baryons. At the same time, these4



new baryons should be above the �-trajetory whih bounds the entire baryonispetra at low masses.Now let us assume that the minimum-mass requirement for a given parity isnot essential in ases when there exist baryons with the opposite parity but withsmaller masses for a �xed J . First, let us onsider the N baryons with P = �1shown in Fig. 1(open symbols). For J = 3=2 and 11=2, one an use N(1520)(D13)and N(2600)(I111) baryons without any ambiguity. For J = 5=2 and J = 9=2,N(1675)(D15) and N(2250)(G19) baryons with P = �1 overlap in masses withthe N baryons of the opposite parity, i.e. N(1680)(F15) and N(2220)(H19). Ifone ignores the minimum-mass requirement, then all baryons indiated by the opensymbols should be onsidered for the regression. Obviously, the linear �t will fail inthis ase. However, a linear trajetory for the P = �1 baryons may still exist if theN(1675)(D15) and N(2250)(G19) states are removed from the onsideration on thebasis of the minimum-mass requirement.Now let us onsider strongly deaying � with P = +1 shown in Figure 3. It isevident that the data points shown with the open symbols annot be desribed bya linear funtion. Thus, it is essential to exlude �(1890)(P03) at J = 3=2 fromthe onsideration. This an indeed be done taking into aount the minimum massrequirement and noting the presene of the low-mass �(1520)(D03) state.There is another example: � baryons with P = �1 (see Fig. 5). Suh baryonsannot lie on the same line sine the linear �t is haraterised by �2=ndf = 11=3and a wide 95% on�dene interval. This an be explained as before: positions withJ = 3=2, 5=2 and 9=2 have already been �lled with the P = +1 baryons with lowermasses (shown in Fig. 5 with small �lled symbols). Therefore, there are only twobaryons left with J = 1=2 and 11=2, whih is insuÆient for the linear regressionanalysis.4 Towards extration of the diquark massIf our hypothesis is orret, then the present experimental data an be used forthe onstrution only three linear trajetories with more than two data points. Allother baryons lying above suh trajetories on the (J;M2) plane have additionalontributions to their masses from non-pure orbital rotations. Perhaps one an usethe term \intrinsi noise" [4℄ for suh states: all suh hadrons may have a non-linearrelationship between M2 and J [5,7{9℄.The linear trajetories proposed above an be used for the validation of a rela-tivisti model in whih a hadron an be treated as a rotating ux tube (or a string)with a quark and a diquark at the ends. Suh a string an be haraterised by aonstant tension T = �=2�. For small (di)quark masses, an approximate solutionof this model is given by the Selem-Wilzek (SW) expression [4℄:M ' p�J + 23 �1=2�3=2(�J)1=4 ; �3=2 = m3=21 +m3=22 ; (3)5



where m1 and m2 are the masses of diquark and quark onneted by a relativististring. The �tting funtion diretly follows from Eq. (3):M2 = �J + 43p��3 � (�J)1=4+ 49 ��3p�J : (4)This equation resembles the Chew-Frautshi relationship between M2 and J in thelimit of small masses.In order to test the model above, we will use the N baryons shown in Figure 1.The �t result using the SW funtion Eq. (4) is shown in Fig. 6 (solid line), whilethe two dashed lines illustrate the �t sensitivity to � (in this ase we keep theslope parameter � to be the same as for the nominal �t using Eq. (4)). The dottedline shows the linear �t as in Figure 1. The �t with the funtion given in Eq. (4)is strikingly good. The �t parameters are fully onstrained by the proton massat J = 1=2, sine this is exatly the region with a highest sensitivity to �. Theparameter � is 0:908GeV2, whih is lose to the slope value obtained from the linear�t shown in Figure 1. The extrated value of the mass parameter is � = 0:323GeV.Similar �ts have been performed using the � and � baryons shown in Figures 2and 3. For suh baryons, the �t with Eq. (4) did not onverge: the parameter �had a �tting error larger than its value and the �t had a signi�ant sensitivity toinitial �t values. The reason for this is rather simple: As seen from Fig. 6, the lastnon-linear term in Eq. (4) an only be onstrained by the region J < 1. However,� and � trajetories do not have a hadron at suh a small J . Even although suhbaryons annot onstrain the mass parameter �, their linear trajetories are stillonsistent with a fairly linear behaviour of Eq. (4) at large J .It should be noted that the solution given in Eq. (3) was obtained in the limitof negligible quark masses (� ! 0) and for large J . However, the obtained valuesof � and the range of J used to �t the data may lead to a worry that the aboveassumptions are not appropriate and the terms beyond O(�3=2) are neessary toonsider in Eq. (3). Therefore, we have made an attempt to solve the equationsof the diquark string model analytially by taking into aount high-order termsnegleted in the solution [4℄. We have obtained a relationship between the mass andJ using a full set of O(�3=2) terms and, in addition, some terms of order O(�5=2)(see Appendix B). It should be stressed that a ompleteO(�5=2) alulation requiresa solution of the appropriate quinti equation.Figure 7 shows the �t using the O(�5=2) solution given in Eq. (B-10) of Ap-pendix B. The �t, shown with the dashed line, was performed using three freeparameters, m1, m2 and �. It was assumed that the mass of the diquark (m1) islarger than that of the quark (m2) during the �t. The quality of the �t is fair. Itshould be noted that if only two parameters are used for the �t, i.e. � and � asin the SW ase, �2=ndf is smaller (= 2:2=2). In is interesting to observe that M2inreases when J dereases. In fat, this is an artifat of trunation of the series inEq. (B-11); high-order terms proportional to O(�7=2) and O(�9=2) have negativedontributions and thus turn to redue the inrease of M2 at small J .6



It is rather lear that in order to obtain a reliable model predition when themasses are not too small, it is essential to �nd a numerial solution of Eq. (B-5).The result of our numerial alulation2 used in a �2-minimisation proedure for theN -baryoni trajetory is shown in Figure 7 (the solid line). The �t was found to beexellent.Table 2 summarizes the �t parameters obtained using di�erent approximations.The numerial solution leads to very similar masses as for the analytial O(�5=2)alulation. Moreover, the parameter � ' 0:314GeV alulated from the extratedm1 and m2 is very similar to that from the SW �t shown in Figure 6. As before,the �t an only be onstrained by the J < 1 region, thus the N -baryon trajetoryis the most useful for the extration of the mass parameters and for the validationof this model.A few words about the preision on the extrated masses are neessary. Table 2shows the �t values with the neessary numerial preision to reprodue the �2=ndfand thus the proton mass, whih has a very small experimental unertainty. Theunertainties on the extrated parameters from the �ts are negligible, therefore, theyare not quoted (see Appendix A for details). We did not estimate the exat rangeof the �t parameters whih give an aeptable �t (i.e. with �2=ndf < 1) sine thiswill require a signi�ant omputational time. However, from several tests we did,we have onluded that the parameters are fairly lose to m1 ' 0:27 � 0:01GeV,m2 ' 0:11 � 0:01GeV and � ' 0:92 � 0:1GeV2 (the so-alled Fit I), with a verystrong and ompliated orrelation between the values.In addition to the solution given above, we have found another solution withm1 = 0:228GeV, m2 = 0:179GeV and � = 0:920GeV2 (Fit II, see Table C-1 ofAppendix C), whih also gives an aeptable �t, �2=ndf = 0:9=1. In this ase, bothmasses are rather similar, almost in the spirit of the expetations disussed in [4℄.This solution orresponds to a di�erent radius of the quark-diquark system (see adisussion in Appendix C). We would like to note that the obtained parametersmay not be the only solutions whih lead an aeptable �t with �2=ndf < 1, thusthe model unertainties are unknown yet. To �nd possible alternative solutions willrequire a signi�ant omputational time and, therefore, this is outside of the sopeof this paper. The model unertainties for the N -baryon trajetory are furtherdisussed in Appendix C.It was also veri�ed that if one sets m1 = m2 for the �t using the numerialsolution, then the �t annot be onsidered as a good one, �2=ndf ' 5=2. Obviously,the assumption m1 = m2 is more appropriate for mesons, and it is remarkable thatthe N -baryon trajetory does not support it.2We used the funtion DZERO from the CERNLIB FORTRAN library [14℄ to �nd a zero of areal-valued funtion for solving Eq. (B-5). Then suh a numerial solution was used in the �ttingfuntion using the MINUIT program, see Appendix A.7



5 MesonsIt would be interesting to see the appliability of Eq. (2) and the assumptionsdisussed in Set. 2 to the mesoni setor. We will mostly be interested in thelinearity of the trajetory whih bounds all known mesons on the (J;M2) plane atlow masses. This is very similar to the � baryons whih bound the entire baryonisetor at low masses by the straight trajetory shown in Fig. 2.Figure 8 shows the (J;M2) plane for all PDG mesons (�lled symbols). As before,the �lled irles show all mesons with lowest masses (for J � 1) whih were usedin the linear �t. It an be seen that suh mesons approximately lie on a straightline, and this an sarely be a oinidene. The �t has a signi�ant �2=ndf due tovery small experimental unertainties on the measured meson masses, thus one anjudge about the linearity only with a ertain aution. There is only one signi�antresidual at J = 5; however, it is not improbable that the X(2210) state may haveJ = 5 and thus it falls exatly on the linear �t. All other states indiated with theopen irles have unknown J and their loations were hypothesized.While the slope for the meson setor is somewhat lower, it should be notedthat the upper 95% on�dene-level line (p0 = �0:503; p1 = 1:099) approximatelyoinides with that for the baryoni setor.It is interesting to note that there is a lear periodiity in spae and hargeonjugation parity indiated as (P;C) for lowest-mass mesons whih bound themeson spetrum on the (J;M2) plane (see Fig. 8). This was already noted for thetrajetory of vetor mesons in [3℄. Based on this observation, we an predit thatthe C-parity of X(2750) is likely to be negative.6 ConlusionIn this paper, using the most reent experimental data, empirial rules have beenproposed whih are suÆient to reveal a strit linear relationship between the totalangular momentum and squared-mass of baryons. Using a least-squares regression,we did not �nd evidene for non-linearity of suh trajetories even when the moststringent statistial tests based on the �2 and 95% on�dene-level intervals wereused. In one ase, this onlusion was made after the analysis of a number of baryonsas large as six. This observation may provide the basis for a new systematization ofhadrons and ertainly require thoughtful theoretial investigation.The linearN -baryon trajetory an be well desribed by a semi-lassial approahbased on a spinning relativisti string with diquark and quark at the ends. We haveshown this baryoni trajetory is �2 onsistent with the exat numerial solution ofthis model (up to nine digits of the extrated model parameters). In this paper wehave determined the (di)quark masses from the �t of the N -baryon trajetory usingour solution.In priniple, this semi-lassial model is qualitatively onsistent with other linearbaryoni trajetories. However, in this paper, we did not attempt to verify this8



using our numerial alulations. Also, we did not analyse mesons as arefully asbaryons. However, it is interesting to observe that the meson spetrum on the(J;M2) plane is restrited at small masses by a linear trajetory formed by mesonswith S = C = B = 0 whih have periodiity in spae and harge onjugation parity.AknowledgementsWe thank Prof. E. Lohrmann for disussion of the results of this paper and A. Selemfor orrespondene and an explanation of some results of Ref. [4℄.
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APPENDIX AThe linear regression was performed using the weights w = 1=�2, where � is theexperimental unertainty on the mass squared of a hadron. In ase of asymmetriexperimental errors, we take the average of the upper and the lower experimentalunertainty.The least-square linear regression was arried out using the R program [15℄. TheR-pakage was also used to estimate on�dene-level intervals on the linear regres-sion. This pakage gives larger unertainties on the linear-regression parametersthan the MINUIT program from the CERNLIB FORTRAN library [14℄. The MI-NUIT parameter errors give information on the unertainty in the best �t valuesand are not meaningful when points do not have (or have very small) experimentalunertainties.In ontrast to the standard linear least-square regression analysis, the MINUITprogram was used for validation of the relativisti string model disussed in Se-tion 4. This simpli�es the �t proedure in ase of non-linear funtions, espeiallywhen their analyti form is unknown (as in ase of the numerial solution of thestring model disussed in Setion 4). The extrated �t parameters with the nees-sary numerial preision to reprodue the proton mass are shown in Table 2. TheMINUIT parameter errors are not shown, sine they are smaller than the last digit.APPENDIX BHere we will derive the funtions used to �t the N -baryon trajetory shown in Fig. 7.First, reall the main set of equations (8)-(9) of the string model [4℄:E = 2Xn=1 �mnn + T! arsin(�n)�; (B-1)J = 2Xn=1 hmn! �2nn + T2!2� arsin(�n)� �nn�i; (B-2)T = !mn�n2n; n = 1; 2: (B-3)Here, E is the energy of the quark-diquark system rotating with an angular momen-tum J , mn denotes the mass of a diquark (n = 1) and quark (n = 2), ! is angularveloity, T is a string tension and �n is a linear veloity. The fator n of a given(di)quark is de�ned as n = 1p1� !2r2n ;where rn is a distane from the enter of rotation.Our goal is to �nd a relationship between the energy E and J . Suh a relationshiphas to be expressed in terms of � = 2�T and mn. Exluding terms with arsin(�n)10



from Eq. (B-1) and using the representationarsin(�n) = �2 � 12 arsin�2�nn�;one gets from Eq. (B-1)-(B-3)E = 2!J + m11 + m22 ; (B-4)J = 12T �T!�2h� + 12 2Xn=1 �2�nn � arsin �2�nn ��i; (B-5)xn = 1�n2n ; n = 1; 2: (B-6)We use Eqs. (B-4)-(B-6) to �t theN -baryon trajetory and to extrat the parametersmn and � from the data. At �xed J , mn and �, the equation (B-5) an be solvedrelative to ! either numerially, or to some approximation, using a series expansion.Here, xn = mn!=T an be used as the expansion variable in the limit of small(di)quark masses.In terms of xn,1n = h 2xnxn +p4 + x2ni1=2 = x1=2n � 122x3=2n + 125x5=2n +O(x7=2n ); (B-7)�nn = 1xnh 2xnxn +p4 + x2ni3=2 = x1=2n � 322x3=2n + 925x5=2n +O(x7=2n ): (B-8)Using the expansionarsin�2�nn� = 2�nn + 43��nn�3 + 125 ��nn�5 +O(��nn�7);Eq. (B-5) beomesJ = 12T �T!�2h� � 23��11�3 � 23��22�3 � 65��11�5 � 65��22�5 +O(��nn�7)i: (B-9)Thus, substituting Eq. (B-7) and Eq. (B-8) in Eq. (B-4) and Eq. (B-9) and keepingonly terms up to order m5=2n , one obtains:E = ��T!�+ �3=213 �!T �1=2 + �5=2220 �!T �3=2 +O(�7=2); (B-10)J = �2T �T!�2 � �3=213T �!T ��1=2 + 320 �5=22T �!T �1=2 +O(�7=2) (B-11)with �3=21 = m3=21 +m3=22 and �5=22 = m5=21 +m5=22 .11



Let us denote V =p!=T and rewrite Eq. (B-11) as a quarti equationV 4 + aV 3 � b = 0; (B-12)with a = 2��3=213�J ; b = �2�J ;where the term proportional to �5=22 was negleted. To solve the quarti equation(B-12) we use the Ferrari method [16℄. The resolvent ubi of Eq. (B-12)U3 + 4bU + ba2 = 0; (B-13)transforms Eq. (B-12) to a quadrati equation:V 2 + �V + Æ� = 0 (B-14)with � = 12[a�pa2 + 4U ℄; Æ� = 12[U �pU2 + 4b℄; (B-15)where a real root of Eq. (B-13) (the Cardano formula) isU = 16h12bp81a4 + 768b � 108ba2i1=3 � 16h12bp81a4 + 768b + 108ba2i1=3: (B-16)Thus, a real and positive solution of Eq. (B-14) and therefore, of Eq. (B-12), isV = �!T �1=2 = 14nh(a2+4U)1=2�ai+rh(a2 + 4U)1=2 � ai2 + 8h(U2 + 4b)1=2 � Uio:(B-17)Substituting the above expression in Eq. (B-10), one obtains a desired relation-ship between the baryoni mass M = E and variables J , � and mn.APPENDIX CUsing a graphial representation of di�erent parts of Eqs. (B-4) and (B-5), it iseasy to demonstrate that the string model desribed by the system of equationsEqs. (B-4)-(B-6) allows several solutions for the (di)quark masses. Suh solutionshave trajetories with very small (but di�erent) non-linear behaviour.Let us denote by Zn the following variablesZn = 2�nn ; n = 1; 2 (C-1)and introdue a funtionF(Z1;Z2) = 2Xn=1 �Zn � arsin(Zn)� (C-2)12



whih represents the last term in Eq. (B-5). The variables Zn have values in theinterval [0; 1℄, and are related to the parameters mn, ! and T through the equationsEq. (B-6) and Eq. (B-8). The funtion F(Z1;Z2) takes values in the range [2��; 0℄.As shown in Fig. C-1(a), F(Z1;Z2) is symmetri with respet to the median lineZ1 = Z2 and a monotoni funtion of the both arguments. The main feature ofEq. (B-5) is that the equation F(Z1;Z2) = F , whereF is a onstant, de�nes an isolineon the surfae and at �xed J all the points fZ1;Z2g on this isoline orrespond tothe same angular veloity !. In Fig. C-1(a), the isolines are shown as lines betweenolored bands.
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(b)Figure C-1: F(Z1;Z2) as a funtion of Z1 and Z2 (left) and Zn shown as a funtionof the (di)quark veloity (right).Let us onsider the mass evolution equation (B-4) starting from a very high J .As follows from (B-5) and the de�nition of xn, a very high J an be obtained onlyat very small ! or xn. Then Eqs. (B-7) and (B-8) tells that n � 1, �n � 1, Zn � 0and F(Z1;Z2) � 0. Thus, at suh J , �n and !, the quark and di-quark are at largedistanes from the enter of rotation.Now, if J dereases and !, onsequently, inreases, the phase point (Z1;Z2) onthe surfae F(Z1;Z2) is moving along some path in the diretion of (Z1 = 1;Z2 = 1).A �t of the N -baryon trajetory �xes a partiular path passing at J = 1=2 througha point (Z1(f);Z2(f)) on the surfae given by F(Z1;Z2). If Zn funtion is plotted asa funtion of the (di)quark veloity �n, as shown in Fig. C-1(b), one �nds that thepoint is moving from � � 1 to a smaller �. The maximum Zn = 1 is reahed at13



Numerial solution Numerial solution limit Z1 = Z2 = 1,Parameters Fit I Fit II�2=ndf 0.9/1 0.9/1 -m1, GeV 0.271713 0.228808 0.18393m2, GeV 0.114134 0.179558 0.18393�, GeV2 0.923374 0.920000 1.12428J 1/2 1/2 1/2!, GeV 0.643476 0.628674 0.679332Z1(f) 0.935557 0.974606 1Z2(f) 0.975607 0.998309 1F(Z1(f);Z2(f)) -0.648139 -0.884682 2��x1 1.189721 0.982401 1/p2x2 0.499746 0.770943 1/p2�1 0.822549 0.782280 1/p2�2 0.780872 0.727369 1/p2r1, GeV�1 1.278291 1.244335 1.045218r2, GeV�1 1.213521 1.156988 1.045218Table C-1: The model parameters extrated from Eqs. (B-6)-(B-8).�0 = 1=p2.Table C-1 gives the model parameters3 extrated from Eqs. (B-6)-(B-8) usingmn and � found from Fit I and Fit II. First of all, let us note that all �n < 1=p2(or higher values of !) orrespond to a non-physial J < 1=2 and �n > 1=p2 holdsfor the both �ts.The baryon masses predited by the string model are degenerated with respetto ! and mn. Indeed, F(Z1;Z2) is negative and, therefore, there is a range of ! forwhih one obtains J1 = J2 at di�erent !1 and !2. If (B-5) is equated at di�erent !,then 1!21 [2� + F1℄ = 1!22 [2� + F2℄ (C-3)or F2 = �!2!1�2(2� + F1)� 2�: (C-4)Here F1 and F2 denotes F(Z1;Z2) at two phase-spae points (Z1;Z2)1;2. The ondi-tion 2� � � F2 � 0 (C-5)puts the following restrition on !2 (at a �xed !1):2 + �2� + F1 � �!2!1�2 � 2�2� + F1 : (C-6)3We have redued the numerial preision of the quoted �t values for representative purposes.The exat �t values an be found from Table 2.14



The ondition (C-6) ould mean that if one �nds a set of parameters fm1; m2; �g1with the evolution along a path f!; �1; �2g1, there should exist another solutionfm1; m2; �g2 with a di�erent path f!; �1; �2g2. The seond found solution for theN -baryon trajetory may on�rm suh interpretation. Thus, we onlude that themodel should have an intrinsi unertainty for the extrated masses depending onthe Z1 and Z2 values.Referenes[1℄ G. F. Chew, S. C. Frautshi, Phys. Rev. Lett. 7 (1961) 394;G. F. Chew, S. C. Frautshi, Phys. Rev. Lett. 8 (1962) 41;S. Frautshi, Regge Poles and S-Matrix Theory. Benjamin, New York, 1968.[2℄ Y. Kalashnikova, A. Nefediev, Y. Simonov, Phys. Rev. D 64 (2001) 014037;V. L. Morgunov, A. V. Nefediev, Y. A. Simonov, Phys. Lett. B 459 (1999) 653.[3℄ L. D. Soloviev, Phys. Rev. D 58 (1998) 035005.[4℄ A. Selem, F. Wilzek, Preprint hep-ph/0602128, 2006.[5℄ A. Inopin, G. S. Sharov, Phys. Rev. D 63 (2001) 054023.[6℄ V. Anisovih, et al., Quark Models and High Energy Collisions. World Sienti�Publishing Co. Pte. Ltd, 2004.[7℄ A. Inopin, Preprint hep-ph/0012248, 2000.[8℄ A. Tang, J. W. Norbury, Phys. Rev. D 62 (2000) 016006.[9℄ P. Desgrolard, et al., Eur. Phys. J. C 18 (2001) 555.[10℄ PARTICLE DATA GROUP Collaboration, S. Eidelman, et al., Phys. Lett.B 592 (2004) 1.[11℄ PARTICLE DATA GROUP Collaboration, S. Eidelman, et al., TheReview of partile physis. Computer �les (unpublished), available onhttp://pdg.lbl.gov/.[12℄ T. P. Vrana, S. A. Dytman, T. S. H. Lee, Phys. Rept. 328 (2000) 181.[13℄ D. M. Manley, E. M. Saleski, Phys. Rev. D 45 (1992) 4002.[14℄ CERNLIB, CERN Program Library (unpublished), available onhttp://ern.h/ernlib/.[15℄ R-library, R-environment for statistial omputing and graphis (unpublished),available on http://www.r-projet.org/.15



[16℄ E. W. Weisstein, Quarti Equation. From MathWorld:A Wolfram Web Resoure (unpublished), available onhttp://mathworld.wolfram.om/QuartiEquation.html.
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Partile family p0, GeV2 p1, GeV2 �2=ndfN baryons, P = +1 0:393 � 0:003 0:974 � 0:006 0.5/2� baryons, P = +1 �0:156 � 0:013 1:116 � 0:006 6.1/4� baryons, P = �1 0:746 � 0:007 1:042 � 0:004 0.2/1� baryons, P = +1 0:277 � 0:024 1:098 � 0:016 -mesons (lowest mass) �0:454 � 0:026 1:052 � 0:019 220/5Table 1: Fit parameters obtained using the linear parameterisationM2 = p0+ p1Jfor several hadroni families with the lowest masses on the (J;M2) plane. The�2=ndf for the � states is not given sine there are only two points for the linear �t(see the text).Parameters SW �t O(�3=2) O(�5=2) numerialsolution solution solution�, GeV2 0.908091023 0.889953024 0.902776942 0.923374256�, GeV 0.323158469 - - -m1, GeV - 0.302678728 0.280596424 0.271713077m2, GeV - 0.109731744 0.109180448 0.114133666�2=ndf 1.5/2 2.2/1 1.8/1 0.9/1Mp, GeVfrom Eq. (B-4) 0.938272037 0.938272031 0.938272034 0.938272048Mp, GeV [10℄ 0:938272029 � 0:000000080Table 2: Fit parameters obtained using di�erent solutions of the relativisti diquarkmodel (see the text). The N -baryon trajetory was used for the �t. The parameterunertainties are not shown (see Appendix A). The large number of digits, whih isneessary to reprodue the quoted �2=ndf , is due to a large experimental preisionon the N -baryon masses. The proton mass was alulated from Eq. (B-4) usingdi�erent approximations and ompared with the world average value.17
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