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enarios, when 
onsidered in the orbifold (\upstairs") pi
ture, enjoys similar features: amodi�ed Bian
hi identity and a modi�ed supersymmetry transformation for the \orthogonal"part of the gauge �eld. Using a toy model with a 5D ve
tor multiplet in the bulk (like inMirabelli-Peskin model, but with an odd gauge �eld Am), we explain how these featuresarise from the super�eld formulation. We also show that the 
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ture requires introdu
tion of a spe
ial \
ompensator"(super)�eld.

mailto:dmitry.belyaev@desy.de


Contents1. Introdu
tion 22. Mirabelli-Peskin model with odd Am 32.1 5D ve
tor multiplet 32.2 OP, BP and N = 1 supersymmetry 42.3 N = 1 super�elds V2 and �2 52.4 Super�eld Lagrangian 53. Bulk-brane 
oupling in super�elds 63.1 Boundary pi
ture 63.2 OP with singular �2 83.3 OP with non-singular �2 94. Bulk-brane 
oupling in 
omponents 104.1 Boundary 
onditions 104.2 Compensator (super)�eld 114.3 Boundary pi
ture 114.4 OP with singular �elds 124.5 OP with singular A5 134.6 OP with non-singular �elds 155. On-shell 
oupling 155.1 Modi�ed Bian
hi identity 165.2 Boundary pi
ture 165.3 Orbifold pi
ture 175.4 Example 186. Summary and Con
lusions 197. Appendix 20A Super�eld 
omponents 20B V2 and �2 without WZ 21C Boundary 
onditions for supersymmetry 23{ 1 {



1. Introdu
tionThe last de
ade saw a revival of interest in theories with extra dimensions and brane-worlds
enarios. In 1996, Horava and Witten [1℄ showed that 11D supergravity on a manifold withboundary (or on S1=Z2 orbifold) arises as a low energy limit of the strongly 
oupled heteroti
string theory. Three years later, Randall and Sundrum [2℄ demonstrated that a simpler 5D
onstru
tion with a 
osmologi
al 
onstant in the bulk is suÆ
ient to naturally solve the gaugehierar
hy problem and leads to interesting phenomenologi
al 
onsequen
es.A minimal supersymmetri
 version of the Randall-Sundrum s
enario, with just the ten-sion terms on the branes, is by now well understood [3, 4, 5, 6℄. Some progress has beenmade in in
luding additional matter �elds on the branes (see ref. [7℄ and referen
es therein),but the 
onstru
tion is not yet 
omplete. One interesting observation of ref. [7℄ is that thesupersymmetri
 bulk-brane 
oupling (in the orbifold pi
ture) in both the 11D and 5D 
aseshas two basi
 features in 
ommon:1) the �eld strength of the bulk gauge �eld is shifted so that it satis�es a modi�ed Bian
hiidentity; and2) supersymmetry transformation of the \orthogonal" 
omponent of the gauge �eld (C11ABin 11D and B5 in 5D) is modi�ed a

ordingly.Besides these modi�
ations, the simplest version of the 
oupling (to the 2-Fermi order) re-quires only adding the Noether 
oupling term to the free brane Lagrangian.Supersymmetri
 bulk-brane 
oupling 
an be ni
ely formulated using 4D super�elds. Theoriginal idea is due to Mirabelli and Peskin [8℄ (who worked with supermultiplets insteadof super�elds); in the super�eld language, the method was developed and generalized todimensions higher than �ve in ref. [9℄. Although this method has already been widely used,the basi
 features of the bulk-brane 
oupling listed above have not yet been explained by it.In this paper, we will �ll in the gap.In our dis
ussion, we will use the toy (globally supersymmetri
) model of Mirabelli andPeskin, with an abelian 5D ve
tor multiplet in the bulk. In the orbifold pi
ture, the 4Dve
tor (Am) and the 4D s
alar (A5) 
omponents of the gauge �eld AM have opposite parities.Instead of 
hoosing Am to be even, as in ref. [8℄, we will 
hoose it to be odd to make 
onta
twith the supergravity 
onstru
tions (where CABC in 11D and Bm in 5D are odd). This also
ips the parities of the 4D super�elds used to des
ribe the 5D ve
tor multiplet, 
ompared torefs. [8, 9℄. We will �nd that this model reprodu
es the features of the supergravity bulk-brane
oupling surprisingly well.Our key results are as follows. In the orbifold pi
ture (OP), re
overing the right 
ompo-nent stru
ture of the 
oupling from its super�eld form requires a 
ertain �eld rede�nition thatmakes all bulk �elds ex
ept A5 non-singular. In the boundary pi
ture (BP), the singularityof A5 is repla
ed by the presen
e of a spe
ial boundary 
ompensator K. In both 
ases, theboundary 
ondition on the odd part of the gauge �eld is Am = Jm, where Jm is a fun
tion{ 2 {



of the brane/boundary �elds. This boundary 
ondition is required for supersymmetry of thea
tion in the BP, but not in the OP.The stru
ture of the paper is best seen from the Contents. We note here only that theagreement with the supergravity 
onstru
tions is a
hieved in Se
tion 4.5, and more expli
itlyin the example of Se
tion 5.4.2. Mirabelli-Peskin model with odd AmIn this se
tion, we review the essentials of the 5D gauge supermultiplet, both in the 
omponentformulation and using 4D N = 1 super�elds; OP and BP are de�ned here. Our 
onventionsare the same as in ref. [11℄; supersymmetry 
onventions follow 
losely those of Wess andBagger [13℄.2.1 5D ve
tor multipletThe abelian 5D gauge supermultiplet 
onsists of a gauge �eld AM (M = 0; 1; 2; 3; 5), a reals
alar �, a symple
ti
-Majorana spinor (gaugino) �i (i = 1; 2), and a triplet of real auxiliary�elds Xa (a = 1; 2; 3). The Lagrangian for this multiplet isL5 = �14FMNFMN � 12�M��M�� i2 e�i�M�M�i + 12XaXa : (2.1)The 
orresponding supersymmetry transformations areÆHAM = i eHi�M�iÆH� = i eHi�iÆHXa = eHi(�a)ij�M�M�jÆH�i = Æ0H�i + Æ00H�i; (2.2)where we made the following split,Æ0H�i = (�MNFMN + �M�M�)Hi; Æ00H�i = Xa(�a)ijHj ; (2.3)separating out the auxiliary part of the transformation. (The supersymmetry parameter Hiis a 
onstant symple
ti
-Majorana spinor.) Under the supersymmetry transformations, theLagrangian varies into a total derivative. This is to be 
ompared with the general variation,when one also �nds a total derivative plus terms that vanish only when equations of motion(EOM) are used. The total derivatives in these two 
ases are similar, but di�er in the fermioni
parts. In the 
ase at hand, we �ndÆL5 = (EOM) + �MKM ; ÆHL5 = �M eKM ; (2.4)where KM = �FMN ÆAN � Æ��M�� i2 e�i�MÆ�ieKM = �FMN ÆHAN � ÆH��M�+ i2 e�i�MÆ0H�i � i2 e�i�MÆ00H�i: (2.5)The total derivatives are irrelevant on the orbifold, but essential in the boundary pi
ture.{ 3 {



2.2 OP, BP and N = 1 supersymmetryIn the orbifold pi
ture (OP), the 5D spa
e is R1;4 with aZ2 symmetry realized as a re
e
tionx5 � z ! �z. The \�xed point" at z = 0 is a 4D plane that we 
all a \brane". In theboundary pi
ture (BP), the 5D spa
e is M = R1;3 � [0;+1), with boundary at z = 0. Inboth 
ases, it is 
onvenient to make the \5! 4" split, using M = fm; 5g (m = 0; 1; 2; 3), andto 
onvert symple
ti
-Majorana spinors into pairs of two-
omponent spinors: �i ! (�1; �2),Hi ! (�1; �2). This leads to the following form of the Lagrangian, 1L5 = �14FmnFmn � 12Fm5Fm5 � 12�m��m�� 12�5��5�+ 12X12X�12 + 12X23� � i2�1�m�m�1 + i2�2�m�m�2 + 12(�2�5�1 � �1�5�2) + h:
:� : (2.6)When a brane/boundary is present, we 
an preserve only a half of the N = 2 supersymmetryparametrized by �1 and �2. Without loss of generality, we set�1 = �; �2 = 0: (2.7)This gives the following N = 1 supersymmetry transformations,Æ�Am = i��m�1 + h:
:Æ�A5 = ���2+ h:
:Æ�� = �i��2+ h:
:Æ��1 = �mn�Fmn + i(X3� �5�)�Æ��2 = �i�m�Fm5 � �m��m�� iX12�Æ�X12 = 2i��5�1 � 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h:
: (2.8)In the orbifold pi
ture, we must 
hoose parity assignments for all �elds and parameters. Weare interested in the 
ase when �1 is even and Am is odd, whi
h leads to the following set ofassignments, 2 even : A5; �; �2; X12; �1 odd : Am; �1; X3; �2 : (2.9)With these assignments, the Lagrangian is even, whereas the equations of motion and super-symmetry transformations are parity 
ovariant.1In our notation, Fmn = �mAn � �nAm, Fm5 = �mA5 � �5Am, X12 = X1 + iX2.2Under the Z2 re
e
tion, ea
h �eld f(x; z) is mapped into f(x;�z) = P [f ℄f(x;+z) with P [f ℄ = �1. We
all P [f ℄ = +1 �elds \even" and P [f ℄ = �1 �elds \odd".{ 4 {



2.3 N = 1 super�elds V2 and �2N = 1 supersymmetry is most 
onveniently des
ribed in terms of N = 1 super�elds. Forthe 5D ve
tor multiplet, we need two 4D N = 1 super�elds: a gauge super�eld V2 and a
hiral super�eld �2. 3 If we take V2 in the Wess-Zumino (WZ) gauge (see Appendix Bfor a dis
ussion of this 
hoi
e), then the relation between the 
omponent bulk �elds and
omponents of the super�elds is given by [9, 10℄V2 = (0; 0; 0; Am; �1; X3 � �5�)�2 = (�+ iA5; �ip2�2; �X12): (2.10)Here and hen
eforth we represent super�elds by listing their 
omponents in a de�nite order(see Appendix A). The supersymmetry transformations (2.8) are reprodu
ed by the followingsuper�eld transformations,Æ�V2 = (�Q+ �Q)V2 +�2(�) +�2(�)yÆ��2 = (�Q+ �Q)�2 + 2�5�2(�); (2.11)where the 
ompensating gauge transformation (keeping V2 in the WZ gauge) is given by�2(�) = �0; 1p2�m�Am; �i��1� : (2.12)Similarly, the bulk U(1) gauge transformation,ÆuAM = �Mu , ÆuAm = �mu; ÆuA5 = �5u; (2.13)is reprodu
ed by the super�eld gauge transformationÆuV2 = �2(u) +�2(u)y; Æu�2 = 2�5�2(u) (2.14)with the following parameter, �2(u) = � i2u; 0; 0� : (2.15)2.4 Super�eld LagrangianThe Lagrangian L5 is gauge invariant and, therefore, should be 
onstru
ted out of gaugeinvariant super�elds. Two basi
 gauge invariant super�elds are 4Z2 = �5V2 � 12(�2 +�2y); �W2 = �14��DDD�V2 : (2.16)3The subs
ript \2" on V2 and �2 indi
ates that these are bulk super�elds. We reserve V and � fordenoting brane-lo
alized super�elds.4We hide the spinor index � on W2 by 
ontra
ting it with another spinor. For the de�nition of thesupersymmetry operator Q� and the 
ovariant superspa
e derivative D�, see ref. [13℄.{ 5 {



Their 
omponents are related to the bulk �elds in the following way,Z2 = � � �; �2; �iX12; �Fm5; �5�1; �5(X3 � �5�) ��W2 = � � i��1; 1p2��(X3 � �5�) + i�mn�Fmn�; ��m�m�1 �: (2.17)The super�eld Lagrangian that reprodu
es L5 up to a total derivative is given byL05 = 14 Z d2�W22 + h:
:+ Z d2�d2� Z22= Z d2�d2�h18V2D�DDD�V2 + Z22i; (2.18)where the se
ond form is parti
ularly suited for deriving super�eld equations of motion (andboundary 
onditions) and allows us to omit the overall superspa
e integration.5 Writing L05in 
omponents and 
omparing with L5, eq. (2.6), we �ndL05 = L5 � �5Y 0; Y 0 = �(X3 � �5�) + 12(�1�2 + h:
:): (2.19)In terms of the a
tions, on a manifold with boundary M = R1;3� [0;+1), we haveS05 = ZM L05; S5 = ZM L5 ) S 05 = S5 + Z�M Y 0: (2.20)3. Bulk-brane 
oupling in super�eldsIn this se
tion, we 
onstru
t supersymmetri
 
oupling of the bulk 5D gauge multiplet to thebrane/boundary. The 
oupling gives rise to a boundary 
ondition V2 +0= J, where J is afun
tion of brane lo
alized super�elds V, �, and a spe
ial 
ompensator super�eld K that, inthe orbifold pi
ture, 
orresponds to the singular part of �2.3.1 Boundary pi
tureIn the previous se
tion, we arrived at the following super�eld a
tion on a manifold withboundary M, S05 = ZM h18V2DD2DV2 + Z22i: (3.1)Its general variation givesÆS 05 = ZM h� Z2Æ�2 + h:
:+ �14DD2DV2 � 2�5Z2�ÆV2i � Z�M 2Z2ÆV2: (3.2)5The superspa
e integral R d2�d2� is impli
it in the expressions for a
tions and Lagrangians in the restof the paper. Note also that we omit total �m derivatives, as they are irrelevant in both the orbifold andboundary pi
tures. Total �5 derivatives, however, are kept.{ 6 {



The bulk equations of motion, therefore, are 6DDZ2 = 0; 14DD2DV2 � 2�5Z2 = 0; (3.3)while the natural boundary 
ondition, obtained by requiring the boundary pie
e of ÆS05 tovanish for arbitrary ÆV2, is 7 Z2 +0= 0: (3.4)This is the reason why S05 is the right a
tion for lifting on the orbifold with odd Z2 (that is,with even V2 and odd �2). Coupling bulk �elds to brane lo
alized matter would make thisboundary 
ondition inhomogeneous [11℄.In this paper, we are interested in the other 
ase, when V2 is odd and �2 is even(therefore, Z2 is even). The appropriate a
tion is easy to guess. We de�neS 005 = S 05 + Z�M 2Z2V2: (3.5)Its general variation gives the same equations of motion in the bulk, but the boundary termand, therefore, the natural boundary 
ondition are now di�erent:ÆS005 = (EOM) + Z�M 2V2ÆZ2 ) V2 +0= 0: (3.6)This shows that S005 is the right a
tion for lifting on the orbifold with odd V2.Adding boundary intera
tion that leads to the boundary 
ondition V2 +0= J is nowstraightforward. For the 
omplete bulk-plus-boundary a
tion we takeS = S005 + 12 Z�ML4 � Z�M 2Z2J= S05 + 12 Z�ML4 + Z�M 2Z2(V2 � J); (3.7)where L4 is a part of the boundary Lagrangian that does not depend on the bulk �elds and issupersymmetri
 on its own. The general variation of the a
tion gives the required boundary
ondition: ÆS = (EOM)+ Z�M 2(V2 � J)ÆZ2 ) V2 +0= J: (3.8)However, despite being written in terms of super�elds, the a
tion is not yet guaranteed to besupersymmetri
. Supersymmetry transformations of V2 and �2, given in eq. (2.11), are a6Equations of motion for 
hiral super�elds are found by applying DD to what 
omes out from the generalvariation. See ref. [13℄ for more details.7The symbol +0= is used to denote boundary 
onditions in both the boundary and orbifold pi
tures. In theorbifold pi
ture, it means \on the positive side of the brane", at z = +0.{ 7 {




ombination of the standard pie
e (with the linear supersymmetry operator a
ting on them)and a spe
ial gauge transformation. As a result, the a
tion 
an be supersymmetri
 only whenit is gauge invariant. With V2 appearing in the a
tion expli
itly, this 
an be a
hieved only ifthe gauge and supersymmetry transformations of J mat
h those of V2. That is, the a
tionis supersymmetri
 provided J transforms as follows,ÆuJ = �(+)2 (u) +�(+)2 (u)y; Æ�J = (�Q+ �Q)J+�(+)2 (�) +�(+)2 (�)y; (3.9)where the supers
ript \(+)" indi
ates restri
tion of the bulk quantity to the boundary.One 
an 
onstru
t J = J(V;�) with the above transformation laws. However, thisinevitably requires relating bulk and boundary gauge invarian
es and leads to a rather strangeform of the 
oupling. Another way to satisfy eq. (3.9), motivated by the orbifold pi
ture
onstru
tion (see below), is to introdu
e a spe
ial boundary super�eld K with the followingtransformation properties,ÆuK = �(+)2 (u); Æ�K = (�Q+ �Q)K+�(+)2 (�): (3.10)If we now de�ne J = K+Ky +G; (3.11)with G = G(V;�) transforming as a gauge invariant quantity,ÆuG = 0; Æ�G = (�Q+ �Q)G; (3.12)then J transforms pre
isely as in eq. (3.9). This way we do not need to relate the bulk gaugetransformation to a boundary one, whi
h means that introdu
ing the super�eld K in
reasesgauge symmetry of the a
tion. Therefore, we 
an 
all K a \
ompensator" super�eld.With the super�eld K present, we do not need a boundary gauge transformation, so that,for example, G = �y� is a valid 
hoi
e. Note also that K does not appear in L4, but 
omesonly with J. As a result, its equation of motion isDDZ2 +0= 0: (3.13)As this 
oin
ides with the restri
tion of the bulk equation of motion for �2, eq. (3.3), to theboundary, our 
onstru
tion is 
onsistent.3.2 OP with singular �2In the orbifold pi
ture, the bulk-plus-brane Lagrangian, 
orresponding to the bulk-plus-boundary a
tion (3.7), turns out to be given byL = 18V2DD2DV2 + hZ2 � 2GÆ(z)i2 + L4Æ(z): (3.14){ 8 {



The �rst part of it, expli
itly showing V2, is gauge invariant (up to a total �m derivative).As Z2 is gauge invariant, the brane-lo
alized term G must also be invariant under the bulkgauge transformation for the Lagrangian to be supersymmetri
.The full square stru
ture of the intera
tion is required to guarantee that equations ofmotion for the bulk and brane �elds are 
onsistent with ea
h other. We haveÆLÆV2 � 14DD2DV2 � 2�5hZ2 � 2GÆ(z)i = 0ÆLÆV � Æ(z)��4�Z2 � 2GÆ(z)�ÆGÆV + ÆL4ÆV � = 0 ; (3.15)so that both equations require Z2 to have the same singular part,Z2 = 2GÆ(z) + n.s.; (3.16)where \n.s." stands for non-singular terms. As Z2 = �5V2� 12(�2+�2y), the singular term
an arise from a jump in the odd super�eld V2,�5V2 = 2Æ(z)V2(+) + n.s.; (3.17)or from the even super�eld �2 having a singular part. If we write�2 = e�2 + 4KÆ(z); (3.18)with e�2 being non-singular, we �nd that eq. (3.16) gives rise to a boundary 
onditionV2 +0= J = K+Ky +G ; (3.19)whi
h 
oin
ides exa
tly with the boundary 
ondition found in the boundary pi
ture. More-over, the gauge transformation of�2, eq. (2.14), when split into the singular and non-singularparts, gives ÆuK = �(+)2 (u); Æu e�2 = 2�5�2(u)� 4�(+)2 (u)Æ(z); (3.20)whi
h implies that the gauge and supersymmetry transformations of K are exa
tly as ineq. (3.10). We 
on
lude, therefore, that the boundary 
ompensator K 
orresponds to thesingular part of �2 in the orbifold pi
ture.3.3 OP with non-singular �2There is another way to approa
h bulk-brane 
oupling in the orbifold pi
ture. Let us requirethat �2 be non-singular. This for
es us to modify gauge and supersymmetry transformationsof �2 in a way that makes them non-singular, whi
h givesÆ0u�2 = 2�5�2(u)� 4�(+)2 (u)Æ(z)Æ0��2 = (�Q+ �Q)�2 + 2�5�2(�)� 4�(+)2 (�)Æ(z): (3.21){ 9 {



With this modi�
ation, Z2 is no longer gauge invariantÆ0uZ2 = 2 h�2(+)(u) + ��2(+)(u)�yi Æ(z): (3.22)Therefore, the right bulk-plus-brane Lagrangian now isL = 18V2DD2DV2 + hZ2 � 2JÆ(z)i2 + L4Æ(z); (3.23)where J is required to transform as in eq. (3.9) in order for L to be supersymmetri
. As in theboundary pi
ture, we are lead to J of the form (3.11), expli
itly 
ontaining the 
ompensatorK. Note that, unlike the boundary pi
ture 
ase, we 
an make a repla
ement�2(+)(�) �! �J(�) � �2(+)(�)��V2=J (3.24)in the supersymmetry transformations of J, K, and �2, and the Lagrangian (3.23) wouldstill be supersymmetri
 without using boundary 
onditions.The two orbifold pi
ture 
onstru
tions are, obviously, related by the �eld rede�nition(3.18). The advantage of the formulation with a singular �2 is that it avoids expli
it appear-an
e of the 
ompensator K. We will see more expli
itly how the two approa
hes are relatedwhen we 
onsider the 
omponent formulation.4. Bulk-brane 
oupling in 
omponentsIn this se
tion, we show how to go from the super�eld bulk-brane 
oupling established in theprevious se
tion, to its 
omponent form. In the boundary pi
ture, we �nd that the Y -term ofref. [6℄ arises naturally from the extra super�eld boundary term in S 005 . In the orbifold pi
ture,we �nd that in order to arrive at the form of the 
oupling established for the Horava-Wittenand Randall-Sundrum s
enarios, one has to do a partial �eld rede�nition.4.1 Boundary 
onditionsIn both the boundary and orbifold pi
ture, the boundary 
ondition is given by eq. (3.19). AsJ is a real ve
tor super�eld, we write its 
omponents as follows (see Appendix A)J = (CJ ; �J ; MJ ; Jm; �J ; DJ ): (4.1)With V2 being in the WZ gauge and given by eq. (2.10), the boundary 
ondition (3.19)splits into two sets of 
omponent boundary 
onditions. The �rst set requires the three lowest
omponents of J to vanish: CJ = �J =MJ = 0: (4.2)The se
ond set gives the a
tual boundary 
onditions in the 
omponent formulation,Am +0= Jm; �1 +0= �J ; X3 � �5� +0= DJ : (4.3){ 10 {



4.2 Compensator (super)�eldThe set of restri
tions on J, given in eq. (4.2), �xes K up to a single real �eld K. To see howthis happens, we �rst de�ne the 
omponents of G and K in a general wayG = (CG; �G; MG; Gm; �G; DG); K = (�K ;  K ; FK): (4.4)Writing J = K+Ky +G in 
omponents, we �ndCJ = �K + ��K + CG; �J = �ip2 K + �G; MJ = �2iFK +MGJm = �i�m(�K � ��K) +Gm; �J = �G; DJ = DG: (4.5)The restri
tion (4.2) now gives three equations on the 
omponents of K, whi
h leave unde-termined only the imaginary part of its lowest 
omponent. Denoting the latter by K, wehave K = ��12CG + i2K; � ip2�G; � i2MG � : (4.6)With this de�nition of K, the non-zero 
omponents of J be
omeJm = Gm + �mK; �J = �G; DJ = DG: (4.7)Gauge and supersymmetry transformations of the 
omponents of K and G 
an be foundfrom the super�eld transformations given in eqs. (3.10) and (3.12), respe
tively. (For super-symmetry transformations, eq. (A.4) is useful.) We �nd, for example,Æu�K = i2u(+); Æ��K = p2� KÆuCG = 0; Æ�CG = i��G + h:
: (4.8)Applying these transformations to the lowest 
omponent of eq. (4.6), we obtain the followinggauge and supersymmetry transformations of K,ÆuK = u(+); Æ�K = ���G + h:
: (4.9)Analogous treatment of the other two 
omponents in eq. (4.6) reprodu
es the boundary
onditions (4.3) for Am and �1. Note that these boundary 
onditions would not arise here ifwe make the repla
ement (3.24) in the supersymmetry transformation of K.4.3 Boundary pi
tureThe boundary pi
ture a
tion S005 , eq. (3.5), appropriate for the odd Am, di�ers from theoriginal bulk a
tion S5 by a boundary term that we 
all Y -term [6, 11℄,S005 = S5 + Z�M Y 00: (4.10){ 11 {



This Y 00-term is a sum of the Y 0-term for the a
tion S05, eq. (2.20), and of the boundarysuper�eld term in eq. (3.5),Y 00 = Y 0 + 2(Z2V2)���2�2 = Fm5Am � 12(�1�2 + h:
:): (4.11)This way we reprodu
e the Y -term of the form suggested in ref. [6℄, with the Fm5Am termpresent. For the total bulk-plus-boundary a
tion (3.7), we �ndS = S5 + Z�M hFm5Am � 12(�1�2 + h:
:)i+12 Z�M hL4 + 2�DJ + 2(�2�J + h:
:)� 2Fm5Jmi: (4.12)As we will show in Se
tion 5.2, this a
tion is supersymmetri
 under the bulk supersymmetrytransformations (2.8) and appropriate transformations of the 
omponents of J. We will �nd,however, that showing this requires using the boundary 
ondition (4.3) for Am (and also theone for �1, unless we eliminate auxiliary �elds).We 
an simplify the form of the a
tion by expli
itly using some or all of the boundary
onditions (4.3). Using the one for Am, we obtainS1 = S5 + Z�M h � 12(�1�2 + h:
:)i+12 Z�M hL4 + 2�DJ + 2(�2�J + h:
:)i: (4.13)Using the boundary 
onditions for both Am and �1, we getS2 = S5 + 12 Z�M hL4 + 2�DJ + (�2�J + h:
:)i: (4.14)We will �nd that supersymmetry of S1 depends on using the boundary 
onditions for Am and�1, whereas S2 is supersymmetri
 provided the third boundary 
ondition in eq. (4.3) is alsoused. The reason for this is explained in Appendix C.4.4 OP with singular �eldsIn the orbifold pi
ture, all Æ(z)-dependent terms in the bulk-plus-brane Lagrangian (3.14)
ome from the following part�Z2 � 2GÆ(z)�2���2�2 =���2 � 2�GÆ(z)�h�5�1 � 2�GÆ(z) + i2�m�m��2 � 2�GÆ(z)�i+ h:
:���+ 2CGÆ(z)�h�5(X3 � �5�)� 2DGÆ(z)� 12�m�m��+ 2CGÆ(z)�i�12�Fm5 + 2GmÆ(z)�2 + 12�X12 � 2iMGÆ(z)��X�12 + 2iM�GÆ(z)�: (4.15){ 12 {



Dropping some total �5 derivatives, irrelevant in the orbifold pi
ture, the total Lagrangian
an be brought to the following formL = L5 + �L4 + B1�Æ(z) + B2Æ(z)2 + B3Æ0(z); (4.16)where B1 = 2�2�G + 2i�G�m�m�2 � iX�12MG + h:
:�2Fm5Gm + 2�DG + 2CG�m�m�B2 = �4�G�G � 2i�G�m�m�G + h:
:�2GmGm + 2CG�m�mCG + 4CGDG + 2MGM�GB3 = �2�G�1 + h:
:+ 2CG(X3 � �5�): (4.17)This Lagrangian, by 
onstru
tion, is supersymmetri
 under the original supersymmetry trans-formations (2.8) of the bulk �elds. However, its Æ(z)-dependent terms happen to be more
ompli
ated than those in the (more 
ompli
ated) supergravity theories. We will see nextthat this apparent paradox 
an be resolved by a simple �eld rede�nition.4.5 OP with singular A5From eq. (3.16), we know that Z2 � 2GÆ(z) is non-singular. Using the 
omponent forms ofZ2 and G, eqs. (2.17) and (4.4), respe
tively, we �nd that the following �elds,e� � �+ 2CGÆ(z)e�2 � �2 � 2�GÆ(z)eX12 � X12 � 2iMGÆ(z)eX3 � X3 + 2CGÆ0(z); (4.18)are non-singular.8 A glan
e at eq. (4.15) shows that transforming to the new �elds absorbsmost of the Æ(z) terms. Performing the �eld rede�nition, and omitting the tildes, we �ndL = L(F)5 + hL4 + 2�DG + 2(�2�G + h:
:)iÆ(z); (4.19)where L(F)5 is obtained from the original Lagrangian L5, eq. (2.6), by repla
ing Fm5 withFm5 = Fm5 + 2GmÆ(z): (4.20)8When we say that a �eld is non-singular, we mean that it is non-singular when equations of motion areused. Note that we reserve the word \on-shell" to mean \when auxiliary �elds are eliminated."{ 13 {



Performing the rede�nition (4.18) in the supersymmetry transformations (2.8) requires usingthe transformations of the 
omponents of G. Sin
e G transforms as in eq. (3.12), its 
om-ponents transform a

ording to eq. (A.4). After a short 
al
ulation, we �nd the followingmodi�ed supersymmetry transformations of the bulk �elds,Æ�Am = i��m�1 + h:
:Æ�A5 = ���2 � 2��GÆ(z) + h:
:Æ�� = �i��2+ h:
:Æ��1 = �mn�Fmn + i(X3 � �5�)�Æ��2 = �i�m��Fm5 + 2GmÆ(z)�� �m��m�� iX12�Æ�X12 = 2i���5�1 � 2�GÆ(z)�� 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h:
: (4.21)The modi�
ations 
an be summarized as follows: 1) repla
e Fm5 with Fm5, 2) modify thetransformation of A5 by adding the following singular pie
eÆ(s)� A5 = �2(��G + h:
:)Æ(z); (4.22)and 3) modify the transformation of X12 (the even auxiliary �eld) by terms that make it non-singular when the boundary 
onditions (4.3) are used. When auxiliary �elds are eliminated,we need only the �rst two pres
riptions. Therefore, in the on-shell formulation, we mat
h thesupergravity bulk-brane 
oupling 
onstru
tion of ref. [7℄.Note that after the rede�nition (4.18), we still have one singular �eld left: A5. Fromeq. (3.16) and the boundary 
onditions (4.3), we haveFm5 + 2GmÆ(z) = n:s:; Am +0= Gm + �mK ) A5 = 2KÆ(z) + n:s: (4.23)We see that the singular part of A5 is dire
tly related to the 
ompensator �eld K. If werede�ne A5 to make it non-singular, we �nd that its supersymmetry transformation alsobe
omes non-singular: eA5 = A5 � 2KÆ(z) ) Æ� eA5 = ���2 + h:
: (4.24)If we now repla
e A5 with eA5 in the expression for Fm5, eq. (4.20), we �nd that Gm getsrepla
ed by Jm = Gm + �mK:Fm5 = Fm5 + 2GmÆ(z) = eFm5 + 2JmÆ(z): (4.25)As we will see next, after this �nal �eld rede�nition we 
ome exa
tly to the 
onstru
tion inwhi
h the super�eld �2 is non-singular from the start.{ 14 {



4.6 OP with non-singular �eldsIn the 
ase with non-singular �2, the bulk-plus-brane Lagrangian is given by eq. (3.23). Asthe lowest 
omponents of J (unlike G) vanish, CJ = �J = MJ = 0, the 
omponent form ofthe Lagrangian is simple without any �eld rede�nitions:L = L(F)5 + hL4 + 2�DJ + 2(�2�J + h:
:)iÆ(z): (4.26)As before, we must repla
e Fm5 by Fm5 that is now given byFm5 = Fm5 + 2JmÆ(z): (4.27)Super�eld supersymmetry transformations are now di�erent from those in eq. (2.11). Theyare modi�ed as in eq. (3.21) so that the transformation of �2 is non-singular. We should,however, make the 
hoi
e: whether or not to make the repla
ement (3.24). Be
ause of thelast statement in Se
tion 4.2, the 
omponent Lagrangian will be supersymmetri
 withoutusing boundary 
onditions provided we do make the repla
ement (3.24). The 
omponentsupersymmetry transformations then be
omeÆ�Am = i��m�1 + h:
:Æ�A5 = ���2 + h:
:Æ�� = �i��2 + h:
:Æ��1 = �mn�Fmn + i(X3 � �5�)�Æ��2 = �i�m��Fm5 + 2JmÆ(z)�� �m��m�� iX12�Æ�X12 = 2i���5�1 � 2�JÆ(z)�� 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h:
: (4.28)This di�ers from the original transformations (2.8) by Æ(z)-dependent modi�
ations that arenow all 
overed by one simple rule [5, 6, 11℄: the modi�
ations must make the transformationsnon-singular when the boundary 
onditions are used.We 
on
lude that there are two alternative simple forms of the bulk-brane 
oupling inthe orbifold pi
ture: one with the 
ompensator K appearing expli
itly via Jm, and the otherwhere the role of the 
ompensator is played by the singular part of A5. The two formulationsare related to ea
h other by the rede�nition (4.24) of A5.5. On-shell 
ouplingIn this se
tion, we go on-shell (eliminate auxiliary �elds) and 
he
k expli
itly that the bulk-plus-brane/boundary a
tions we 
onstru
ted are indeed supersymmetri
. We �nd that someboundary 
onditions have to be used for supersymmetry in the boundary pi
ture. At theend of the se
tion, we give an expli
it example of a 
oupled bulk-brane system whi
h makes
onta
t with the supergravity 
onstru
tion of ref. [7℄.{ 15 {



5.1 Modi�ed Bian
hi identityAs we established, in the orbifold pi
ture, a part of the bulk-brane 
oupling pres
ription
onsists in repla
ing Fm5 with Fm5 both in the Lagrangian and in the supersymmetry trans-formations. Let us now generalize this to the following shiftFMN � �MAN � �NAM �! FMN = FMN + BMN : (5.1)On-shell (Xa = 0) and after the shift, the bulk Lagrangian (2.1) turns intoL(F)5 = �14FMNFMN � 12�M��M�� i2e�i�M�M�i ; (5.2)and the 
orresponding supersymmetry transformations be
omeÆHAM = i eHi�M�iÆH� = i eHi�iÆH�i = (�MNFMN + �M�M�)Hi: (5.3)Supersymmetry transformation of the bulk Lagrangian now produ
es not only the total deriva-tive, but also extra terms involving BMN :ÆHL5 = �M eKM � 12FMNÆHBMN � i2e�i�MNK�i�KFMNeKM = �FMNÆHAN � ÆH��M�+ i2 e�i�MÆH�i: (5.4)The last term in ÆHL5 is the famous 
ontribution due to the \modi�ed Bian
hi identity." Notethat in the boundary pi
ture, we have BMN = 0 and the total derivative term is important;in the orbifold pi
ture, BMN 6= 0 and the total derivative is irrelevant.5.2 Boundary pi
tureThe bulk-plus-boundary a
tion in the boundary pi
ture is given by eq. (3.7),S = S5 + Z�M hFm5Am � 12(�1�2 + h:
:)i+12 Z�M hL4 + 2�DJ + 2(�2�J + h:
:)� 2Fm5Jmi: (5.5)Supersymmetry variation of S5 produ
es the following boundary term,Æ�S5 = Z�M(� eK5) = Z�M �� Fm5Æ�Am + Æ���5�� 12(�2Æ��1 � �1Æ��2 + h:
:)�: (5.6)To �nd the variation of the total a
tion, we need to know supersymmetry transformationsof Jm, �J , and DJ . We know that 
omponents of G transform as in eq. (A.4), so that, in{ 16 {



parti
ular, 9 Æ�Gm = i��m�G + �m(��G) + h:
:Æ��G = �mn�Gmn + i�DGÆ�DG = ��m�m�G + h:
: (5.7)From eq. (4.7) and the supersymmetry transformation (4.9) of K, it then follows thatÆ�Jm = i��m�J + h:
:Æ��J = �mn�Jmn + i�DJÆ�DJ = ��m�m�J + h:
: (5.8)Using these transformations together with the ones for the bulk �elds, eq. (2.8), we �ndÆ�S = Z�M h��mn�2(Fmn � Jmn) + h:
:+ (Am � Jm)Æ�Fm5i: (5.9)For the a
tion (4.13), obtained from S by using the Am boundary 
ondition, we haveÆ�S1 = Z�M h��mn�2(Fmn � Jmn)� i��m(�1 � �J )Fm5 + h:
:i: (5.10)For the a
tion (4.14), obtained from S1 by using the �1 boundary 
ondition, we getÆ�S2 = Z�M h12��mn�2(Fmn � Jmn)� i2��m(�1 � �J )Fm5� i2��2(�5�+DJ)� 12��m(�1 � �J )�m�+ h:
:i: (5.11)We 
on
lude that ea
h a
tion is supersymmetri
, and in ea
h 
ase supersymmetry of thea
tion depends on using some boundary 
onditions. The basi
 pattern we observe is: themore boundary 
onditions are used to simplify the a
tion, the more of them are needed toprove its supersymmetry. The way to predi
t whi
h boundary 
onditions are needed in ea
h
ase is given in Appendix C.5.3 Orbifold pi
tureIn the orbifold pi
ture, with singular A5, we haveBmn = 0; Bm5 = �B5m = 2GmÆ(z)Fmn = Fmn; Fm5 = Fm5 + 2GmÆ(z): (5.12)The bulk-plus-brane Lagrangian is given by eq. (4.19),L = L(F)5 + L04Æ(z); L04 = L4 + 2�DG + 2(�2�G + h:
:): (5.13)9In our notation, vmn = �mvn � �nvm, Gmn = �mGn � �nGm, Jmn = �mJn � �nJm.{ 17 {



Supersymmetry variation of L(F)5 givesÆ�L(F)5 = n2(��mn�2 + h:
:)Gmn �Fm5h2Æ�Gm + �m(eÆ(s)� A5)ioÆ(z); (5.14)where the terms with Gm follow from the BMN terms in eq. (5.4), and the last term followsfrom the modi�
ation (4.22) in the supersymmetry transformation of A5 witheÆ(s)� A5 � �2��G + h:
: = 2Æ�K: (5.15)Note that the sum of the terms in the square bra
ket gives 2Æ�Jm. For L04, we �ndÆ�(�2�G + h:
:+�DG) = ���mn�2Gmn + i��m�GFm5 + h:
:; (5.16)from whi
h we 
on
lude that the total Lagrangian L is supersymmetri
, Æ�L = 0, withoutusing any boundary 
onditions.5.4 ExampleTo make 
onta
t with the supergravity 
onstru
tion of ref. [7℄, we 
onsider an example withone brane-lo
alized 
hiral super�eld � andG = �y�: (5.17)With � = (�;  ; F ), the 
omponents of G are given byCG = ����G = �ip2�� MG = �2iF��Gm = i(��m�� � ���m�) +  �m �G = p2�m �m�+ ip2 F �DG = 2FF � � 2�m��m�� � �i �m�m + h:
:�: (5.18)The supersymmetry transformation of the 
ompensator K, eq. (4.9), 
an now be written asfollows, 10 Æ�K = ip2��� + h:
: = i(��Æ��� �Æ���); (5.19)whi
h 
learly shows that we 
annot \gauge �x" the 
ompensator by making it a fun
tion ofthe matter �elds. To 
omplete the setup, we 
hooseL4 = Z d2�d2��y� = FF � � �m��m�� � � i2 �m�m + h:
:� : (5.20)10Note that this form of Æ�K implies Æ(s)� A5 = 2i(��Æ����Æ���)Æ(z), whi
h is remarkably similar to eÆC11ABin eq. (2.16) of the �rst paper in ref. [1℄. { 18 {



Plugging all the pie
es into the bulk-plus-brane Lagrangian (5.13), and eliminating the aux-iliary �eld F by its equation of motion,F = �2ip2(1 + 4�)�1�2 ; (5.21)we �nd that the on-shell Lagrangian is given by L = L(F)5 + L04Æ(z) withL04 = (1 + 4�) ���m��m�� �� i2 �m�m + h:
:��+2p2(�2�m �m�+ h:
:)� 8(1 + 4�)�1(�2 )(�2 ): (5.22)The bulk Lagrangian L(F)5 is obtained from L5 by repla
ing Fm5 withFm5 = Fm5 + 2GmÆ(z); Gm = i(��m�� � ���m�) +  �m : (5.23)The same substitution must be made in the supersymmetry transformations (2.8), and, inaddition, the transformation of A5 should be modi�ed by addingÆ(s)A5 = 2(Æ�K)Æ(z) = 2ip2��� Æ(z) + h:
: (5.24)With these modi�
ations, the total Lagrangian L is supersymmetri
 without using any bound-ary 
onditions.We observe that the whole 
onstru
tion is identi
al to the one in supergravity [7℄. It isalso amusing to note that the brane Lagrangian (5.22) appears to be very similar to the one insupergravity: (1+4�) plays the role of the indu
ed metri
, �2 is the \gravitino," �2�m �m�is the \Noether 
oupling" term, and (�2 )(�2 ) represents 4-Fermi terms.6. Summary and Con
lusionsIn this paper, we showed that the basi
 features of the supergravity bulk-brane 
oupling,present both in the Horava-Witten (11D) and Randall-Sundrum (5D) s
enarios, appear alsoin the simpli�ed globally supersymmetri
 model we 
onsidered (Mirabelli-Peskin model withodd Am). Using the 4D N = 1 super�eld formulation of the model, we showed that the fullsquare stru
ture [1℄ of the 
oupling in the orbifold pi
ture is present already on the super�eldlevel (see eq. (3.14)). In transition to the 
omponent formulation, one has to make some �eldrede�nitions (see eq. (4.18)) in order to arrive at the established form of the 
oupling. Afterthe rede�nition, the full square stru
ture remains only for the (Fm5+ 2GmÆ(z))2 term in theLagrangian (4.19). As the rede�ned �elds are non-singular, the shift Fm5 ! Fm5 + 2GmÆ(z)in supersymmetry transformations is required to make the transformations non-singular. Alltogether, we re
over the \modi�ed Bian
hi identity" pres
ription for the 
oupling [1℄.The only modi�
ation of the supersymmetry transformations, in the formulation ofrefs. [1, 7℄, that is not 
overed by the pres
ription \make them non-singular" [5, 6, 11℄ 
on-
erns the \orthogonal" 
omponent of the bulk gauge �eld. In fa
t, A5 is the only �eld in this{ 19 {



formulation whi
h is singular. We showed that there is another formulation, where all �eldsare non-singular, and where the singular part of A5 is repla
ed by a 
ompensator �eld K. Allmodi�
ations of the supersymmetry transformations are then 
overed by one simple rule.Although optional in the orbifold pi
ture, the presen
e of the 
ompensator K is un-avoidable in the boundary pi
ture 
onstru
tion. In both pi
tures, the boundary 
onditionfor the odd gauge �eld Am is Am +0= Jm = Gm + �mK. The gauge transformation of K,given in eq. (4.9) (
ompare also with eq. (13.7) of ref. [6℄), guarantees gauge invarian
e ofthe boundary 
ondition. On the other hand, its supersymmetry transformation (4.9) is su
hthat K together with CG, �G, and MG (the lowest 
omponents of G) 
ombine into one 
hiralsuper�eld (the 
ompensator super�eld K, eq. (4.6)).Our results shed some more light on the general stru
ture of the supersymmetri
 bulk-brane 
oupling. They should also be useful in obtaining a more expli
it (
omponent) form ofthe 
oupling in the supersymmetri
 Randall-Sundrum s
enario starting from the super�eldformulation developed in ref. [12℄.A
knowledgments. I would like to thank Hyun Min Lee and Christoph Ludeling for adis
ussion of an earlier version of this work.7. AppendixA Super�eld 
omponentsOur supersymmetry 
onventions follow 
losely those of ref. [13℄. For real ve
tor and 
hiralsuper�elds, we use the following shorthand notation,V = (C; �; M ; vm; �; D); � = (�;  ; F ); (A.1)
orresponding to the standard 
omponent expansions,V = i��+ i2�2M � i�2���+ i2�m�m��+ h:
:+C � ��m�vm + 12�2�2�D + 12�m�mC�� = �1 + i��m��m + 14�2�2�m�m��+p2�� + i2�2��m�m� + �2F : (A.2)When supersymmetry transformations have the standard form (without additional gaugetransformations), Æ�V = (�Q+ �Q)V; Æ�� = (�Q+ �Q)�; (A.3){ 20 {



the 
omponent transformations are as follows,Æ�C = i��+ h:
:Æ�� = �m�(�mC + ivm) + �MÆ�M = 2�(�+ i�m�m�)Æ�vm = i��m�+ �m(��) + h:
Æ�� = �mn�vmn + i�DÆ�D = �m(��m�+ h:
:)Æ�� = p2� Æ� = ip2�m��m�+p2�FÆ�F = �m(ip2��m ): (A.4)Components of gauge invariant super�elds, Z2, W2, and G, have exa
tly this form of super-symmetry transformations.B V2 and �2 without WZOur bulk super�elds transform under supersymmetry a

ording to eq. (2.11),Æ�V2 = (�Q+ �Q)V2 +�2(�) +�2(�)yÆ��2 = (�Q+ �Q)�2 + 2�5�2(�): (B.1)Let us pro
eed without imposing the WZ gauge. If we take the gauge parameter in its generalform, �2(�) = (a2; �2; f2) , the 
omponent transformations be
omeÆ�C2 = i��2 + a2 + h:
:Æ��2 = �m�(�mC2 + iv(2)m ) + �M2 � ip2�2Æ�M2 = 2�(�(2) + i�m�m�2)� 2if2Æ�v(2)m = i��m�(2) + �m(��2 � ia2) + h:
Æ��(2) = �mn�v(2)mn + i�D2Æ�D2 = �m(��m�(2) + h:
:)Æ��2 = p2� 2 + 2�5a2Æ� 2 = ip2�m��m�2 +p2�F2 + 2�5�2Æ�F2 = �m(ip2��m 2) + 2�5f2: (B.2)One 
an 
he
k that on �elds de�ned in the following way,Am = v(2)m ; �+ iA5 = ��5C2 + �2�1 = �(2); �2 = �5�2 + ip2 2X3 � �5� = D2; X12 = i�5M2 � F2; (B.3){ 21 {



the supersymmetry transformations take the formÆ�Am = i��m�1 + h:
:+ �mu(�)Æ�A5 = ���2+ h:
:+ �5u(�)Æ�� = �i��2+ h:
:Æ��1 = �mn�Fmn + i(X3� �5�)�Æ��2 = �i�m�Fm5 � �m��m�� iX12�Æ�X12 = 2i��5�1 � 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h:
:; (B.4)whi
h di�ers from eq. (2.8) only by the U(1) gauge transformation (2.13) withu(�) = ��2 + ��2 + 2 Im(a2): (B.5)(Note that Re(a2), �2, and f2 a�e
t only the transformations of C2, �2, and M2.) If it isrequired that we stay with the original �eld 
ontent, then the expli
it appearan
e of �2 is aproblem. To deal with it, we 
an 
hoose the extra super�eld gauge transformation in a waythat removes u(�). The simplest 
hoi
e that does this is given by�2(�) = �� i2(��2 + ��2); 0; 0� : (B.6)It a�e
ts supersymmetry transformations of only Am and A5, while leaving those of C2, �2and M2 un
hanged. A more involved 
hoi
e,�2(�) = ��i��2; � ip2h�m�(�mC2 + iAm) + �Mi; �i��1 + ��m�m�2� ; (B.7)makes C2, �2 and M2 supersymmetry invariant. Therefore, it allows setting these �elds tozero, whi
h would put us into the Wess-Zumino gauge, C2 = �2 = M2 = 0, while turning�2(�) into the 
ompensating gauge transformation (2.12).To summarize, the super�eld des
ription of the bulk 5D ve
tor multiplet uses two 4DN = 1 super�elds with the following 
omponents, 11V2 = (C2; �2; M2; Am; �1; X3 � �5�)�2 = (� + iA5 + �5C2; �ip2(�2 � �5�2); �X12 + i�5M2): (B.8)If the super�eld supersymmetry transformations do not involve a�2(�) gauge transformation,the 
omponent supersymmetry transformations di�er from the ones in eq. (2.8) by a �2-dependent U(1) gauge transformation. The latter 
an be eliminated by a proper 
hoi
e of�2(�). Imposing the WZ gauge 
orresponds to just one of many possible 
hoi
es.11This form of V2 and �2 
an be obtained from eq. (2.10) by a gauge transformation with the followingparameter: �2 = � 12C2; ip2�2; i2M2�. { 22 {



C Boundary 
onditions for supersymmetryDeriving the 
omponent form of the bulk-plus-boundary a
tion (3.7), with V2 and �2 as ineq. (B.8), we en
ounter the following terms,2Z2(V2 � J)���2�2 = ��(X3 � �5��DJ) + Fm5(Am � Jm)� ��2(�1 � �J) + h:
:�+ (C2 � CJ)��5(X3 � �5�)� �m�m��+ h i2X�12(M2 �MJ )� (�5�1 + i�m�m�2)(�2 � �J ) + h:
:i: (C.1)Without the WZ gauge imposed, the boundary a
tion then depends expli
itly on the gaugedegrees of freedom, C2, �2, and M2. The way to eliminate them without imposing a gauge isto use a part of the boundary 
onditions 
ontained in V2 +0= J,C2 +0= CJ ; �2 +0= �J ; M2 +0= MJ : (C.2)This way we arrive at the a
tion (4.12). Having used some of the boundary 
onditions in thea
tion, we expe
t that we would need to use boundary 
onditions in 
he
king supersymmetryof the simpli�ed a
tion. As (V2 � J) is a gauge invariant ve
tor super�eld, we haveÆ�(V2 � J) = (�Q+ �Q)(V2 � J); (C.3)so that its 
omponents vary a

ording to eq. (A.4). For example,Æ�(C2 � CJ) = i�(�2 � �J ) + h:
:Æ�(�2 � �J ) = �m���m(C2 � CJ) + i(Am � Jm)�+ �(M2 �MJ )Æ�(M2 �MJ ) = 2��(�1 � �J) + i�m�m(�2 � �J )�: (C.4)This implies that if we use the boundary 
onditions for C2 and �2 in the a
tion, then super-symmetry of the a
tion requires using the Am boundary 
ondition. Using the M2 boundary
ondition leads to the �1 boundary 
ondition. And so on. This is indeed the pattern weobserved in expli
it 
al
ulations. A �nal remark is that on-shell X12 = 0, whi
h lets us avoidusing the M2 boundary 
ondition. This is the reason why supersymmetry of the bulk-plus-boundary a
tion (4.12) requires the use of only the Am boundary 
ondition on-shell (seeeq. (5.9)).Referen
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