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1. IntrodutionThe last deade saw a revival of interest in theories with extra dimensions and brane-worldsenarios. In 1996, Horava and Witten [1℄ showed that 11D supergravity on a manifold withboundary (or on S1=Z2 orbifold) arises as a low energy limit of the strongly oupled heterotistring theory. Three years later, Randall and Sundrum [2℄ demonstrated that a simpler 5Donstrution with a osmologial onstant in the bulk is suÆient to naturally solve the gaugehierarhy problem and leads to interesting phenomenologial onsequenes.A minimal supersymmetri version of the Randall-Sundrum senario, with just the ten-sion terms on the branes, is by now well understood [3, 4, 5, 6℄. Some progress has beenmade in inluding additional matter �elds on the branes (see ref. [7℄ and referenes therein),but the onstrution is not yet omplete. One interesting observation of ref. [7℄ is that thesupersymmetri bulk-brane oupling (in the orbifold piture) in both the 11D and 5D aseshas two basi features in ommon:1) the �eld strength of the bulk gauge �eld is shifted so that it satis�es a modi�ed Bianhiidentity; and2) supersymmetry transformation of the \orthogonal" omponent of the gauge �eld (C11ABin 11D and B5 in 5D) is modi�ed aordingly.Besides these modi�ations, the simplest version of the oupling (to the 2-Fermi order) re-quires only adding the Noether oupling term to the free brane Lagrangian.Supersymmetri bulk-brane oupling an be niely formulated using 4D super�elds. Theoriginal idea is due to Mirabelli and Peskin [8℄ (who worked with supermultiplets insteadof super�elds); in the super�eld language, the method was developed and generalized todimensions higher than �ve in ref. [9℄. Although this method has already been widely used,the basi features of the bulk-brane oupling listed above have not yet been explained by it.In this paper, we will �ll in the gap.In our disussion, we will use the toy (globally supersymmetri) model of Mirabelli andPeskin, with an abelian 5D vetor multiplet in the bulk. In the orbifold piture, the 4Dvetor (Am) and the 4D salar (A5) omponents of the gauge �eld AM have opposite parities.Instead of hoosing Am to be even, as in ref. [8℄, we will hoose it to be odd to make ontatwith the supergravity onstrutions (where CABC in 11D and Bm in 5D are odd). This alsoips the parities of the 4D super�elds used to desribe the 5D vetor multiplet, ompared torefs. [8, 9℄. We will �nd that this model reprodues the features of the supergravity bulk-braneoupling surprisingly well.Our key results are as follows. In the orbifold piture (OP), reovering the right ompo-nent struture of the oupling from its super�eld form requires a ertain �eld rede�nition thatmakes all bulk �elds exept A5 non-singular. In the boundary piture (BP), the singularityof A5 is replaed by the presene of a speial boundary ompensator K. In both ases, theboundary ondition on the odd part of the gauge �eld is Am = Jm, where Jm is a funtion{ 2 {



of the brane/boundary �elds. This boundary ondition is required for supersymmetry of theation in the BP, but not in the OP.The struture of the paper is best seen from the Contents. We note here only that theagreement with the supergravity onstrutions is ahieved in Setion 4.5, and more expliitlyin the example of Setion 5.4.2. Mirabelli-Peskin model with odd AmIn this setion, we review the essentials of the 5D gauge supermultiplet, both in the omponentformulation and using 4D N = 1 super�elds; OP and BP are de�ned here. Our onventionsare the same as in ref. [11℄; supersymmetry onventions follow losely those of Wess andBagger [13℄.2.1 5D vetor multipletThe abelian 5D gauge supermultiplet onsists of a gauge �eld AM (M = 0; 1; 2; 3; 5), a realsalar �, a sympleti-Majorana spinor (gaugino) �i (i = 1; 2), and a triplet of real auxiliary�elds Xa (a = 1; 2; 3). The Lagrangian for this multiplet isL5 = �14FMNFMN � 12�M��M�� i2 e�i�M�M�i + 12XaXa : (2.1)The orresponding supersymmetry transformations areÆHAM = i eHi�M�iÆH� = i eHi�iÆHXa = eHi(�a)ij�M�M�jÆH�i = Æ0H�i + Æ00H�i; (2.2)where we made the following split,Æ0H�i = (�MNFMN + �M�M�)Hi; Æ00H�i = Xa(�a)ijHj ; (2.3)separating out the auxiliary part of the transformation. (The supersymmetry parameter Hiis a onstant sympleti-Majorana spinor.) Under the supersymmetry transformations, theLagrangian varies into a total derivative. This is to be ompared with the general variation,when one also �nds a total derivative plus terms that vanish only when equations of motion(EOM) are used. The total derivatives in these two ases are similar, but di�er in the fermioniparts. In the ase at hand, we �ndÆL5 = (EOM) + �MKM ; ÆHL5 = �M eKM ; (2.4)where KM = �FMN ÆAN � Æ��M�� i2 e�i�MÆ�ieKM = �FMN ÆHAN � ÆH��M�+ i2 e�i�MÆ0H�i � i2 e�i�MÆ00H�i: (2.5)The total derivatives are irrelevant on the orbifold, but essential in the boundary piture.{ 3 {



2.2 OP, BP and N = 1 supersymmetryIn the orbifold piture (OP), the 5D spae is R1;4 with aZ2 symmetry realized as a reetionx5 � z ! �z. The \�xed point" at z = 0 is a 4D plane that we all a \brane". In theboundary piture (BP), the 5D spae is M = R1;3 � [0;+1), with boundary at z = 0. Inboth ases, it is onvenient to make the \5! 4" split, using M = fm; 5g (m = 0; 1; 2; 3), andto onvert sympleti-Majorana spinors into pairs of two-omponent spinors: �i ! (�1; �2),Hi ! (�1; �2). This leads to the following form of the Lagrangian, 1L5 = �14FmnFmn � 12Fm5Fm5 � 12�m��m�� 12�5��5�+ 12X12X�12 + 12X23� � i2�1�m�m�1 + i2�2�m�m�2 + 12(�2�5�1 � �1�5�2) + h::� : (2.6)When a brane/boundary is present, we an preserve only a half of the N = 2 supersymmetryparametrized by �1 and �2. Without loss of generality, we set�1 = �; �2 = 0: (2.7)This gives the following N = 1 supersymmetry transformations,Æ�Am = i��m�1 + h::Æ�A5 = ���2+ h::Æ�� = �i��2+ h::Æ��1 = �mn�Fmn + i(X3� �5�)�Æ��2 = �i�m�Fm5 � �m��m�� iX12�Æ�X12 = 2i��5�1 � 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h:: (2.8)In the orbifold piture, we must hoose parity assignments for all �elds and parameters. Weare interested in the ase when �1 is even and Am is odd, whih leads to the following set ofassignments, 2 even : A5; �; �2; X12; �1 odd : Am; �1; X3; �2 : (2.9)With these assignments, the Lagrangian is even, whereas the equations of motion and super-symmetry transformations are parity ovariant.1In our notation, Fmn = �mAn � �nAm, Fm5 = �mA5 � �5Am, X12 = X1 + iX2.2Under the Z2 reetion, eah �eld f(x; z) is mapped into f(x;�z) = P [f ℄f(x;+z) with P [f ℄ = �1. Weall P [f ℄ = +1 �elds \even" and P [f ℄ = �1 �elds \odd".{ 4 {



2.3 N = 1 super�elds V2 and �2N = 1 supersymmetry is most onveniently desribed in terms of N = 1 super�elds. Forthe 5D vetor multiplet, we need two 4D N = 1 super�elds: a gauge super�eld V2 and ahiral super�eld �2. 3 If we take V2 in the Wess-Zumino (WZ) gauge (see Appendix Bfor a disussion of this hoie), then the relation between the omponent bulk �elds andomponents of the super�elds is given by [9, 10℄V2 = (0; 0; 0; Am; �1; X3 � �5�)�2 = (�+ iA5; �ip2�2; �X12): (2.10)Here and heneforth we represent super�elds by listing their omponents in a de�nite order(see Appendix A). The supersymmetry transformations (2.8) are reprodued by the followingsuper�eld transformations,Æ�V2 = (�Q+ �Q)V2 +�2(�) +�2(�)yÆ��2 = (�Q+ �Q)�2 + 2�5�2(�); (2.11)where the ompensating gauge transformation (keeping V2 in the WZ gauge) is given by�2(�) = �0; 1p2�m�Am; �i��1� : (2.12)Similarly, the bulk U(1) gauge transformation,ÆuAM = �Mu , ÆuAm = �mu; ÆuA5 = �5u; (2.13)is reprodued by the super�eld gauge transformationÆuV2 = �2(u) +�2(u)y; Æu�2 = 2�5�2(u) (2.14)with the following parameter, �2(u) = � i2u; 0; 0� : (2.15)2.4 Super�eld LagrangianThe Lagrangian L5 is gauge invariant and, therefore, should be onstruted out of gaugeinvariant super�elds. Two basi gauge invariant super�elds are 4Z2 = �5V2 � 12(�2 +�2y); �W2 = �14��DDD�V2 : (2.16)3The subsript \2" on V2 and �2 indiates that these are bulk super�elds. We reserve V and � fordenoting brane-loalized super�elds.4We hide the spinor index � on W2 by ontrating it with another spinor. For the de�nition of thesupersymmetry operator Q� and the ovariant superspae derivative D�, see ref. [13℄.{ 5 {



Their omponents are related to the bulk �elds in the following way,Z2 = � � �; �2; �iX12; �Fm5; �5�1; �5(X3 � �5�) ��W2 = � � i��1; 1p2��(X3 � �5�) + i�mn�Fmn�; ��m�m�1 �: (2.17)The super�eld Lagrangian that reprodues L5 up to a total derivative is given byL05 = 14 Z d2�W22 + h::+ Z d2�d2� Z22= Z d2�d2�h18V2D�DDD�V2 + Z22i; (2.18)where the seond form is partiularly suited for deriving super�eld equations of motion (andboundary onditions) and allows us to omit the overall superspae integration.5 Writing L05in omponents and omparing with L5, eq. (2.6), we �ndL05 = L5 � �5Y 0; Y 0 = �(X3 � �5�) + 12(�1�2 + h::): (2.19)In terms of the ations, on a manifold with boundary M = R1;3� [0;+1), we haveS05 = ZM L05; S5 = ZM L5 ) S 05 = S5 + Z�M Y 0: (2.20)3. Bulk-brane oupling in super�eldsIn this setion, we onstrut supersymmetri oupling of the bulk 5D gauge multiplet to thebrane/boundary. The oupling gives rise to a boundary ondition V2 +0= J, where J is afuntion of brane loalized super�elds V, �, and a speial ompensator super�eld K that, inthe orbifold piture, orresponds to the singular part of �2.3.1 Boundary pitureIn the previous setion, we arrived at the following super�eld ation on a manifold withboundary M, S05 = ZM h18V2DD2DV2 + Z22i: (3.1)Its general variation givesÆS 05 = ZM h� Z2Æ�2 + h::+ �14DD2DV2 � 2�5Z2�ÆV2i � Z�M 2Z2ÆV2: (3.2)5The superspae integral R d2�d2� is impliit in the expressions for ations and Lagrangians in the restof the paper. Note also that we omit total �m derivatives, as they are irrelevant in both the orbifold andboundary pitures. Total �5 derivatives, however, are kept.{ 6 {



The bulk equations of motion, therefore, are 6DDZ2 = 0; 14DD2DV2 � 2�5Z2 = 0; (3.3)while the natural boundary ondition, obtained by requiring the boundary piee of ÆS05 tovanish for arbitrary ÆV2, is 7 Z2 +0= 0: (3.4)This is the reason why S05 is the right ation for lifting on the orbifold with odd Z2 (that is,with even V2 and odd �2). Coupling bulk �elds to brane loalized matter would make thisboundary ondition inhomogeneous [11℄.In this paper, we are interested in the other ase, when V2 is odd and �2 is even(therefore, Z2 is even). The appropriate ation is easy to guess. We de�neS 005 = S 05 + Z�M 2Z2V2: (3.5)Its general variation gives the same equations of motion in the bulk, but the boundary termand, therefore, the natural boundary ondition are now di�erent:ÆS005 = (EOM) + Z�M 2V2ÆZ2 ) V2 +0= 0: (3.6)This shows that S005 is the right ation for lifting on the orbifold with odd V2.Adding boundary interation that leads to the boundary ondition V2 +0= J is nowstraightforward. For the omplete bulk-plus-boundary ation we takeS = S005 + 12 Z�ML4 � Z�M 2Z2J= S05 + 12 Z�ML4 + Z�M 2Z2(V2 � J); (3.7)where L4 is a part of the boundary Lagrangian that does not depend on the bulk �elds and issupersymmetri on its own. The general variation of the ation gives the required boundaryondition: ÆS = (EOM)+ Z�M 2(V2 � J)ÆZ2 ) V2 +0= J: (3.8)However, despite being written in terms of super�elds, the ation is not yet guaranteed to besupersymmetri. Supersymmetry transformations of V2 and �2, given in eq. (2.11), are a6Equations of motion for hiral super�elds are found by applying DD to what omes out from the generalvariation. See ref. [13℄ for more details.7The symbol +0= is used to denote boundary onditions in both the boundary and orbifold pitures. In theorbifold piture, it means \on the positive side of the brane", at z = +0.{ 7 {



ombination of the standard piee (with the linear supersymmetry operator ating on them)and a speial gauge transformation. As a result, the ation an be supersymmetri only whenit is gauge invariant. With V2 appearing in the ation expliitly, this an be ahieved only ifthe gauge and supersymmetry transformations of J math those of V2. That is, the ationis supersymmetri provided J transforms as follows,ÆuJ = �(+)2 (u) +�(+)2 (u)y; Æ�J = (�Q+ �Q)J+�(+)2 (�) +�(+)2 (�)y; (3.9)where the supersript \(+)" indiates restrition of the bulk quantity to the boundary.One an onstrut J = J(V;�) with the above transformation laws. However, thisinevitably requires relating bulk and boundary gauge invarianes and leads to a rather strangeform of the oupling. Another way to satisfy eq. (3.9), motivated by the orbifold pitureonstrution (see below), is to introdue a speial boundary super�eld K with the followingtransformation properties,ÆuK = �(+)2 (u); Æ�K = (�Q+ �Q)K+�(+)2 (�): (3.10)If we now de�ne J = K+Ky +G; (3.11)with G = G(V;�) transforming as a gauge invariant quantity,ÆuG = 0; Æ�G = (�Q+ �Q)G; (3.12)then J transforms preisely as in eq. (3.9). This way we do not need to relate the bulk gaugetransformation to a boundary one, whih means that introduing the super�eld K inreasesgauge symmetry of the ation. Therefore, we an all K a \ompensator" super�eld.With the super�eld K present, we do not need a boundary gauge transformation, so that,for example, G = �y� is a valid hoie. Note also that K does not appear in L4, but omesonly with J. As a result, its equation of motion isDDZ2 +0= 0: (3.13)As this oinides with the restrition of the bulk equation of motion for �2, eq. (3.3), to theboundary, our onstrution is onsistent.3.2 OP with singular �2In the orbifold piture, the bulk-plus-brane Lagrangian, orresponding to the bulk-plus-boundary ation (3.7), turns out to be given byL = 18V2DD2DV2 + hZ2 � 2GÆ(z)i2 + L4Æ(z): (3.14){ 8 {



The �rst part of it, expliitly showing V2, is gauge invariant (up to a total �m derivative).As Z2 is gauge invariant, the brane-loalized term G must also be invariant under the bulkgauge transformation for the Lagrangian to be supersymmetri.The full square struture of the interation is required to guarantee that equations ofmotion for the bulk and brane �elds are onsistent with eah other. We haveÆLÆV2 � 14DD2DV2 � 2�5hZ2 � 2GÆ(z)i = 0ÆLÆV � Æ(z)��4�Z2 � 2GÆ(z)�ÆGÆV + ÆL4ÆV � = 0 ; (3.15)so that both equations require Z2 to have the same singular part,Z2 = 2GÆ(z) + n.s.; (3.16)where \n.s." stands for non-singular terms. As Z2 = �5V2� 12(�2+�2y), the singular terman arise from a jump in the odd super�eld V2,�5V2 = 2Æ(z)V2(+) + n.s.; (3.17)or from the even super�eld �2 having a singular part. If we write�2 = e�2 + 4KÆ(z); (3.18)with e�2 being non-singular, we �nd that eq. (3.16) gives rise to a boundary onditionV2 +0= J = K+Ky +G ; (3.19)whih oinides exatly with the boundary ondition found in the boundary piture. More-over, the gauge transformation of�2, eq. (2.14), when split into the singular and non-singularparts, gives ÆuK = �(+)2 (u); Æu e�2 = 2�5�2(u)� 4�(+)2 (u)Æ(z); (3.20)whih implies that the gauge and supersymmetry transformations of K are exatly as ineq. (3.10). We onlude, therefore, that the boundary ompensator K orresponds to thesingular part of �2 in the orbifold piture.3.3 OP with non-singular �2There is another way to approah bulk-brane oupling in the orbifold piture. Let us requirethat �2 be non-singular. This fores us to modify gauge and supersymmetry transformationsof �2 in a way that makes them non-singular, whih givesÆ0u�2 = 2�5�2(u)� 4�(+)2 (u)Æ(z)Æ0��2 = (�Q+ �Q)�2 + 2�5�2(�)� 4�(+)2 (�)Æ(z): (3.21){ 9 {



With this modi�ation, Z2 is no longer gauge invariantÆ0uZ2 = 2 h�2(+)(u) + ��2(+)(u)�yi Æ(z): (3.22)Therefore, the right bulk-plus-brane Lagrangian now isL = 18V2DD2DV2 + hZ2 � 2JÆ(z)i2 + L4Æ(z); (3.23)where J is required to transform as in eq. (3.9) in order for L to be supersymmetri. As in theboundary piture, we are lead to J of the form (3.11), expliitly ontaining the ompensatorK. Note that, unlike the boundary piture ase, we an make a replaement�2(+)(�) �! �J(�) � �2(+)(�)��V2=J (3.24)in the supersymmetry transformations of J, K, and �2, and the Lagrangian (3.23) wouldstill be supersymmetri without using boundary onditions.The two orbifold piture onstrutions are, obviously, related by the �eld rede�nition(3.18). The advantage of the formulation with a singular �2 is that it avoids expliit appear-ane of the ompensator K. We will see more expliitly how the two approahes are relatedwhen we onsider the omponent formulation.4. Bulk-brane oupling in omponentsIn this setion, we show how to go from the super�eld bulk-brane oupling established in theprevious setion, to its omponent form. In the boundary piture, we �nd that the Y -term ofref. [6℄ arises naturally from the extra super�eld boundary term in S 005 . In the orbifold piture,we �nd that in order to arrive at the form of the oupling established for the Horava-Wittenand Randall-Sundrum senarios, one has to do a partial �eld rede�nition.4.1 Boundary onditionsIn both the boundary and orbifold piture, the boundary ondition is given by eq. (3.19). AsJ is a real vetor super�eld, we write its omponents as follows (see Appendix A)J = (CJ ; �J ; MJ ; Jm; �J ; DJ ): (4.1)With V2 being in the WZ gauge and given by eq. (2.10), the boundary ondition (3.19)splits into two sets of omponent boundary onditions. The �rst set requires the three lowestomponents of J to vanish: CJ = �J =MJ = 0: (4.2)The seond set gives the atual boundary onditions in the omponent formulation,Am +0= Jm; �1 +0= �J ; X3 � �5� +0= DJ : (4.3){ 10 {



4.2 Compensator (super)�eldThe set of restritions on J, given in eq. (4.2), �xes K up to a single real �eld K. To see howthis happens, we �rst de�ne the omponents of G and K in a general wayG = (CG; �G; MG; Gm; �G; DG); K = (�K ;  K ; FK): (4.4)Writing J = K+Ky +G in omponents, we �ndCJ = �K + ��K + CG; �J = �ip2 K + �G; MJ = �2iFK +MGJm = �i�m(�K � ��K) +Gm; �J = �G; DJ = DG: (4.5)The restrition (4.2) now gives three equations on the omponents of K, whih leave unde-termined only the imaginary part of its lowest omponent. Denoting the latter by K, wehave K = ��12CG + i2K; � ip2�G; � i2MG � : (4.6)With this de�nition of K, the non-zero omponents of J beomeJm = Gm + �mK; �J = �G; DJ = DG: (4.7)Gauge and supersymmetry transformations of the omponents of K and G an be foundfrom the super�eld transformations given in eqs. (3.10) and (3.12), respetively. (For super-symmetry transformations, eq. (A.4) is useful.) We �nd, for example,Æu�K = i2u(+); Æ��K = p2� KÆuCG = 0; Æ�CG = i��G + h:: (4.8)Applying these transformations to the lowest omponent of eq. (4.6), we obtain the followinggauge and supersymmetry transformations of K,ÆuK = u(+); Æ�K = ���G + h:: (4.9)Analogous treatment of the other two omponents in eq. (4.6) reprodues the boundaryonditions (4.3) for Am and �1. Note that these boundary onditions would not arise here ifwe make the replaement (3.24) in the supersymmetry transformation of K.4.3 Boundary pitureThe boundary piture ation S005 , eq. (3.5), appropriate for the odd Am, di�ers from theoriginal bulk ation S5 by a boundary term that we all Y -term [6, 11℄,S005 = S5 + Z�M Y 00: (4.10){ 11 {



This Y 00-term is a sum of the Y 0-term for the ation S05, eq. (2.20), and of the boundarysuper�eld term in eq. (3.5),Y 00 = Y 0 + 2(Z2V2)���2�2 = Fm5Am � 12(�1�2 + h::): (4.11)This way we reprodue the Y -term of the form suggested in ref. [6℄, with the Fm5Am termpresent. For the total bulk-plus-boundary ation (3.7), we �ndS = S5 + Z�M hFm5Am � 12(�1�2 + h::)i+12 Z�M hL4 + 2�DJ + 2(�2�J + h::)� 2Fm5Jmi: (4.12)As we will show in Setion 5.2, this ation is supersymmetri under the bulk supersymmetrytransformations (2.8) and appropriate transformations of the omponents of J. We will �nd,however, that showing this requires using the boundary ondition (4.3) for Am (and also theone for �1, unless we eliminate auxiliary �elds).We an simplify the form of the ation by expliitly using some or all of the boundaryonditions (4.3). Using the one for Am, we obtainS1 = S5 + Z�M h � 12(�1�2 + h::)i+12 Z�M hL4 + 2�DJ + 2(�2�J + h::)i: (4.13)Using the boundary onditions for both Am and �1, we getS2 = S5 + 12 Z�M hL4 + 2�DJ + (�2�J + h::)i: (4.14)We will �nd that supersymmetry of S1 depends on using the boundary onditions for Am and�1, whereas S2 is supersymmetri provided the third boundary ondition in eq. (4.3) is alsoused. The reason for this is explained in Appendix C.4.4 OP with singular �eldsIn the orbifold piture, all Æ(z)-dependent terms in the bulk-plus-brane Lagrangian (3.14)ome from the following part�Z2 � 2GÆ(z)�2���2�2 =���2 � 2�GÆ(z)�h�5�1 � 2�GÆ(z) + i2�m�m��2 � 2�GÆ(z)�i+ h::���+ 2CGÆ(z)�h�5(X3 � �5�)� 2DGÆ(z)� 12�m�m��+ 2CGÆ(z)�i�12�Fm5 + 2GmÆ(z)�2 + 12�X12 � 2iMGÆ(z)��X�12 + 2iM�GÆ(z)�: (4.15){ 12 {



Dropping some total �5 derivatives, irrelevant in the orbifold piture, the total Lagrangianan be brought to the following formL = L5 + �L4 + B1�Æ(z) + B2Æ(z)2 + B3Æ0(z); (4.16)where B1 = 2�2�G + 2i�G�m�m�2 � iX�12MG + h::�2Fm5Gm + 2�DG + 2CG�m�m�B2 = �4�G�G � 2i�G�m�m�G + h::�2GmGm + 2CG�m�mCG + 4CGDG + 2MGM�GB3 = �2�G�1 + h::+ 2CG(X3 � �5�): (4.17)This Lagrangian, by onstrution, is supersymmetri under the original supersymmetry trans-formations (2.8) of the bulk �elds. However, its Æ(z)-dependent terms happen to be moreompliated than those in the (more ompliated) supergravity theories. We will see nextthat this apparent paradox an be resolved by a simple �eld rede�nition.4.5 OP with singular A5From eq. (3.16), we know that Z2 � 2GÆ(z) is non-singular. Using the omponent forms ofZ2 and G, eqs. (2.17) and (4.4), respetively, we �nd that the following �elds,e� � �+ 2CGÆ(z)e�2 � �2 � 2�GÆ(z)eX12 � X12 � 2iMGÆ(z)eX3 � X3 + 2CGÆ0(z); (4.18)are non-singular.8 A glane at eq. (4.15) shows that transforming to the new �elds absorbsmost of the Æ(z) terms. Performing the �eld rede�nition, and omitting the tildes, we �ndL = L(F)5 + hL4 + 2�DG + 2(�2�G + h::)iÆ(z); (4.19)where L(F)5 is obtained from the original Lagrangian L5, eq. (2.6), by replaing Fm5 withFm5 = Fm5 + 2GmÆ(z): (4.20)8When we say that a �eld is non-singular, we mean that it is non-singular when equations of motion areused. Note that we reserve the word \on-shell" to mean \when auxiliary �elds are eliminated."{ 13 {



Performing the rede�nition (4.18) in the supersymmetry transformations (2.8) requires usingthe transformations of the omponents of G. Sine G transforms as in eq. (3.12), its om-ponents transform aording to eq. (A.4). After a short alulation, we �nd the followingmodi�ed supersymmetry transformations of the bulk �elds,Æ�Am = i��m�1 + h::Æ�A5 = ���2 � 2��GÆ(z) + h::Æ�� = �i��2+ h::Æ��1 = �mn�Fmn + i(X3 � �5�)�Æ��2 = �i�m��Fm5 + 2GmÆ(z)�� �m��m�� iX12�Æ�X12 = 2i���5�1 � 2�GÆ(z)�� 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h:: (4.21)The modi�ations an be summarized as follows: 1) replae Fm5 with Fm5, 2) modify thetransformation of A5 by adding the following singular pieeÆ(s)� A5 = �2(��G + h::)Æ(z); (4.22)and 3) modify the transformation of X12 (the even auxiliary �eld) by terms that make it non-singular when the boundary onditions (4.3) are used. When auxiliary �elds are eliminated,we need only the �rst two presriptions. Therefore, in the on-shell formulation, we math thesupergravity bulk-brane oupling onstrution of ref. [7℄.Note that after the rede�nition (4.18), we still have one singular �eld left: A5. Fromeq. (3.16) and the boundary onditions (4.3), we haveFm5 + 2GmÆ(z) = n:s:; Am +0= Gm + �mK ) A5 = 2KÆ(z) + n:s: (4.23)We see that the singular part of A5 is diretly related to the ompensator �eld K. If werede�ne A5 to make it non-singular, we �nd that its supersymmetry transformation alsobeomes non-singular: eA5 = A5 � 2KÆ(z) ) Æ� eA5 = ���2 + h:: (4.24)If we now replae A5 with eA5 in the expression for Fm5, eq. (4.20), we �nd that Gm getsreplaed by Jm = Gm + �mK:Fm5 = Fm5 + 2GmÆ(z) = eFm5 + 2JmÆ(z): (4.25)As we will see next, after this �nal �eld rede�nition we ome exatly to the onstrution inwhih the super�eld �2 is non-singular from the start.{ 14 {



4.6 OP with non-singular �eldsIn the ase with non-singular �2, the bulk-plus-brane Lagrangian is given by eq. (3.23). Asthe lowest omponents of J (unlike G) vanish, CJ = �J = MJ = 0, the omponent form ofthe Lagrangian is simple without any �eld rede�nitions:L = L(F)5 + hL4 + 2�DJ + 2(�2�J + h::)iÆ(z): (4.26)As before, we must replae Fm5 by Fm5 that is now given byFm5 = Fm5 + 2JmÆ(z): (4.27)Super�eld supersymmetry transformations are now di�erent from those in eq. (2.11). Theyare modi�ed as in eq. (3.21) so that the transformation of �2 is non-singular. We should,however, make the hoie: whether or not to make the replaement (3.24). Beause of thelast statement in Setion 4.2, the omponent Lagrangian will be supersymmetri withoutusing boundary onditions provided we do make the replaement (3.24). The omponentsupersymmetry transformations then beomeÆ�Am = i��m�1 + h::Æ�A5 = ���2 + h::Æ�� = �i��2 + h::Æ��1 = �mn�Fmn + i(X3 � �5�)�Æ��2 = �i�m��Fm5 + 2JmÆ(z)�� �m��m�� iX12�Æ�X12 = 2i���5�1 � 2�JÆ(z)�� 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h:: (4.28)This di�ers from the original transformations (2.8) by Æ(z)-dependent modi�ations that arenow all overed by one simple rule [5, 6, 11℄: the modi�ations must make the transformationsnon-singular when the boundary onditions are used.We onlude that there are two alternative simple forms of the bulk-brane oupling inthe orbifold piture: one with the ompensator K appearing expliitly via Jm, and the otherwhere the role of the ompensator is played by the singular part of A5. The two formulationsare related to eah other by the rede�nition (4.24) of A5.5. On-shell ouplingIn this setion, we go on-shell (eliminate auxiliary �elds) and hek expliitly that the bulk-plus-brane/boundary ations we onstruted are indeed supersymmetri. We �nd that someboundary onditions have to be used for supersymmetry in the boundary piture. At theend of the setion, we give an expliit example of a oupled bulk-brane system whih makesontat with the supergravity onstrution of ref. [7℄.{ 15 {



5.1 Modi�ed Bianhi identityAs we established, in the orbifold piture, a part of the bulk-brane oupling presriptiononsists in replaing Fm5 with Fm5 both in the Lagrangian and in the supersymmetry trans-formations. Let us now generalize this to the following shiftFMN � �MAN � �NAM �! FMN = FMN + BMN : (5.1)On-shell (Xa = 0) and after the shift, the bulk Lagrangian (2.1) turns intoL(F)5 = �14FMNFMN � 12�M��M�� i2e�i�M�M�i ; (5.2)and the orresponding supersymmetry transformations beomeÆHAM = i eHi�M�iÆH� = i eHi�iÆH�i = (�MNFMN + �M�M�)Hi: (5.3)Supersymmetry transformation of the bulk Lagrangian now produes not only the total deriva-tive, but also extra terms involving BMN :ÆHL5 = �M eKM � 12FMNÆHBMN � i2e�i�MNK�i�KFMNeKM = �FMNÆHAN � ÆH��M�+ i2 e�i�MÆH�i: (5.4)The last term in ÆHL5 is the famous ontribution due to the \modi�ed Bianhi identity." Notethat in the boundary piture, we have BMN = 0 and the total derivative term is important;in the orbifold piture, BMN 6= 0 and the total derivative is irrelevant.5.2 Boundary pitureThe bulk-plus-boundary ation in the boundary piture is given by eq. (3.7),S = S5 + Z�M hFm5Am � 12(�1�2 + h::)i+12 Z�M hL4 + 2�DJ + 2(�2�J + h::)� 2Fm5Jmi: (5.5)Supersymmetry variation of S5 produes the following boundary term,Æ�S5 = Z�M(� eK5) = Z�M �� Fm5Æ�Am + Æ���5�� 12(�2Æ��1 � �1Æ��2 + h::)�: (5.6)To �nd the variation of the total ation, we need to know supersymmetry transformationsof Jm, �J , and DJ . We know that omponents of G transform as in eq. (A.4), so that, in{ 16 {



partiular, 9 Æ�Gm = i��m�G + �m(��G) + h::Æ��G = �mn�Gmn + i�DGÆ�DG = ��m�m�G + h:: (5.7)From eq. (4.7) and the supersymmetry transformation (4.9) of K, it then follows thatÆ�Jm = i��m�J + h::Æ��J = �mn�Jmn + i�DJÆ�DJ = ��m�m�J + h:: (5.8)Using these transformations together with the ones for the bulk �elds, eq. (2.8), we �ndÆ�S = Z�M h��mn�2(Fmn � Jmn) + h::+ (Am � Jm)Æ�Fm5i: (5.9)For the ation (4.13), obtained from S by using the Am boundary ondition, we haveÆ�S1 = Z�M h��mn�2(Fmn � Jmn)� i��m(�1 � �J )Fm5 + h::i: (5.10)For the ation (4.14), obtained from S1 by using the �1 boundary ondition, we getÆ�S2 = Z�M h12��mn�2(Fmn � Jmn)� i2��m(�1 � �J )Fm5� i2��2(�5�+DJ)� 12��m(�1 � �J )�m�+ h::i: (5.11)We onlude that eah ation is supersymmetri, and in eah ase supersymmetry of theation depends on using some boundary onditions. The basi pattern we observe is: themore boundary onditions are used to simplify the ation, the more of them are needed toprove its supersymmetry. The way to predit whih boundary onditions are needed in eahase is given in Appendix C.5.3 Orbifold pitureIn the orbifold piture, with singular A5, we haveBmn = 0; Bm5 = �B5m = 2GmÆ(z)Fmn = Fmn; Fm5 = Fm5 + 2GmÆ(z): (5.12)The bulk-plus-brane Lagrangian is given by eq. (4.19),L = L(F)5 + L04Æ(z); L04 = L4 + 2�DG + 2(�2�G + h::): (5.13)9In our notation, vmn = �mvn � �nvm, Gmn = �mGn � �nGm, Jmn = �mJn � �nJm.{ 17 {



Supersymmetry variation of L(F)5 givesÆ�L(F)5 = n2(��mn�2 + h::)Gmn �Fm5h2Æ�Gm + �m(eÆ(s)� A5)ioÆ(z); (5.14)where the terms with Gm follow from the BMN terms in eq. (5.4), and the last term followsfrom the modi�ation (4.22) in the supersymmetry transformation of A5 witheÆ(s)� A5 � �2��G + h:: = 2Æ�K: (5.15)Note that the sum of the terms in the square braket gives 2Æ�Jm. For L04, we �ndÆ�(�2�G + h::+�DG) = ���mn�2Gmn + i��m�GFm5 + h::; (5.16)from whih we onlude that the total Lagrangian L is supersymmetri, Æ�L = 0, withoutusing any boundary onditions.5.4 ExampleTo make ontat with the supergravity onstrution of ref. [7℄, we onsider an example withone brane-loalized hiral super�eld � andG = �y�: (5.17)With � = (�;  ; F ), the omponents of G are given byCG = ����G = �ip2�� MG = �2iF��Gm = i(��m�� � ���m�) +  �m �G = p2�m �m�+ ip2 F �DG = 2FF � � 2�m��m�� � �i �m�m + h::�: (5.18)The supersymmetry transformation of the ompensator K, eq. (4.9), an now be written asfollows, 10 Æ�K = ip2��� + h:: = i(��Æ��� �Æ���); (5.19)whih learly shows that we annot \gauge �x" the ompensator by making it a funtion ofthe matter �elds. To omplete the setup, we hooseL4 = Z d2�d2��y� = FF � � �m��m�� � � i2 �m�m + h::� : (5.20)10Note that this form of Æ�K implies Æ(s)� A5 = 2i(��Æ����Æ���)Æ(z), whih is remarkably similar to eÆC11ABin eq. (2.16) of the �rst paper in ref. [1℄. { 18 {



Plugging all the piees into the bulk-plus-brane Lagrangian (5.13), and eliminating the aux-iliary �eld F by its equation of motion,F = �2ip2(1 + 4�)�1�2 ; (5.21)we �nd that the on-shell Lagrangian is given by L = L(F)5 + L04Æ(z) withL04 = (1 + 4�) ���m��m�� �� i2 �m�m + h::��+2p2(�2�m �m�+ h::)� 8(1 + 4�)�1(�2 )(�2 ): (5.22)The bulk Lagrangian L(F)5 is obtained from L5 by replaing Fm5 withFm5 = Fm5 + 2GmÆ(z); Gm = i(��m�� � ���m�) +  �m : (5.23)The same substitution must be made in the supersymmetry transformations (2.8), and, inaddition, the transformation of A5 should be modi�ed by addingÆ(s)A5 = 2(Æ�K)Æ(z) = 2ip2��� Æ(z) + h:: (5.24)With these modi�ations, the total Lagrangian L is supersymmetri without using any bound-ary onditions.We observe that the whole onstrution is idential to the one in supergravity [7℄. It isalso amusing to note that the brane Lagrangian (5.22) appears to be very similar to the one insupergravity: (1+4�) plays the role of the indued metri, �2 is the \gravitino," �2�m �m�is the \Noether oupling" term, and (�2 )(�2 ) represents 4-Fermi terms.6. Summary and ConlusionsIn this paper, we showed that the basi features of the supergravity bulk-brane oupling,present both in the Horava-Witten (11D) and Randall-Sundrum (5D) senarios, appear alsoin the simpli�ed globally supersymmetri model we onsidered (Mirabelli-Peskin model withodd Am). Using the 4D N = 1 super�eld formulation of the model, we showed that the fullsquare struture [1℄ of the oupling in the orbifold piture is present already on the super�eldlevel (see eq. (3.14)). In transition to the omponent formulation, one has to make some �eldrede�nitions (see eq. (4.18)) in order to arrive at the established form of the oupling. Afterthe rede�nition, the full square struture remains only for the (Fm5+ 2GmÆ(z))2 term in theLagrangian (4.19). As the rede�ned �elds are non-singular, the shift Fm5 ! Fm5 + 2GmÆ(z)in supersymmetry transformations is required to make the transformations non-singular. Alltogether, we reover the \modi�ed Bianhi identity" presription for the oupling [1℄.The only modi�ation of the supersymmetry transformations, in the formulation ofrefs. [1, 7℄, that is not overed by the presription \make them non-singular" [5, 6, 11℄ on-erns the \orthogonal" omponent of the bulk gauge �eld. In fat, A5 is the only �eld in this{ 19 {



formulation whih is singular. We showed that there is another formulation, where all �eldsare non-singular, and where the singular part of A5 is replaed by a ompensator �eld K. Allmodi�ations of the supersymmetry transformations are then overed by one simple rule.Although optional in the orbifold piture, the presene of the ompensator K is un-avoidable in the boundary piture onstrution. In both pitures, the boundary onditionfor the odd gauge �eld Am is Am +0= Jm = Gm + �mK. The gauge transformation of K,given in eq. (4.9) (ompare also with eq. (13.7) of ref. [6℄), guarantees gauge invariane ofthe boundary ondition. On the other hand, its supersymmetry transformation (4.9) is suhthat K together with CG, �G, and MG (the lowest omponents of G) ombine into one hiralsuper�eld (the ompensator super�eld K, eq. (4.6)).Our results shed some more light on the general struture of the supersymmetri bulk-brane oupling. They should also be useful in obtaining a more expliit (omponent) form ofthe oupling in the supersymmetri Randall-Sundrum senario starting from the super�eldformulation developed in ref. [12℄.Aknowledgments. I would like to thank Hyun Min Lee and Christoph Ludeling for adisussion of an earlier version of this work.7. AppendixA Super�eld omponentsOur supersymmetry onventions follow losely those of ref. [13℄. For real vetor and hiralsuper�elds, we use the following shorthand notation,V = (C; �; M ; vm; �; D); � = (�;  ; F ); (A.1)orresponding to the standard omponent expansions,V = i��+ i2�2M � i�2���+ i2�m�m��+ h::+C � ��m�vm + 12�2�2�D + 12�m�mC�� = �1 + i��m��m + 14�2�2�m�m��+p2�� + i2�2��m�m� + �2F : (A.2)When supersymmetry transformations have the standard form (without additional gaugetransformations), Æ�V = (�Q+ �Q)V; Æ�� = (�Q+ �Q)�; (A.3){ 20 {



the omponent transformations are as follows,Æ�C = i��+ h::Æ�� = �m�(�mC + ivm) + �MÆ�M = 2�(�+ i�m�m�)Æ�vm = i��m�+ �m(��) + h:Æ�� = �mn�vmn + i�DÆ�D = �m(��m�+ h::)Æ�� = p2� Æ� = ip2�m��m�+p2�FÆ�F = �m(ip2��m ): (A.4)Components of gauge invariant super�elds, Z2, W2, and G, have exatly this form of super-symmetry transformations.B V2 and �2 without WZOur bulk super�elds transform under supersymmetry aording to eq. (2.11),Æ�V2 = (�Q+ �Q)V2 +�2(�) +�2(�)yÆ��2 = (�Q+ �Q)�2 + 2�5�2(�): (B.1)Let us proeed without imposing the WZ gauge. If we take the gauge parameter in its generalform, �2(�) = (a2; �2; f2) , the omponent transformations beomeÆ�C2 = i��2 + a2 + h::Æ��2 = �m�(�mC2 + iv(2)m ) + �M2 � ip2�2Æ�M2 = 2�(�(2) + i�m�m�2)� 2if2Æ�v(2)m = i��m�(2) + �m(��2 � ia2) + h:Æ��(2) = �mn�v(2)mn + i�D2Æ�D2 = �m(��m�(2) + h::)Æ��2 = p2� 2 + 2�5a2Æ� 2 = ip2�m��m�2 +p2�F2 + 2�5�2Æ�F2 = �m(ip2��m 2) + 2�5f2: (B.2)One an hek that on �elds de�ned in the following way,Am = v(2)m ; �+ iA5 = ��5C2 + �2�1 = �(2); �2 = �5�2 + ip2 2X3 � �5� = D2; X12 = i�5M2 � F2; (B.3){ 21 {



the supersymmetry transformations take the formÆ�Am = i��m�1 + h::+ �mu(�)Æ�A5 = ���2+ h::+ �5u(�)Æ�� = �i��2+ h::Æ��1 = �mn�Fmn + i(X3� �5�)�Æ��2 = �i�m�Fm5 � �m��m�� iX12�Æ�X12 = 2i��5�1 � 2��m�m�2Æ�X3 = �i��5�2 � ��m�m�1 + h::; (B.4)whih di�ers from eq. (2.8) only by the U(1) gauge transformation (2.13) withu(�) = ��2 + ��2 + 2 Im(a2): (B.5)(Note that Re(a2), �2, and f2 a�et only the transformations of C2, �2, and M2.) If it isrequired that we stay with the original �eld ontent, then the expliit appearane of �2 is aproblem. To deal with it, we an hoose the extra super�eld gauge transformation in a waythat removes u(�). The simplest hoie that does this is given by�2(�) = �� i2(��2 + ��2); 0; 0� : (B.6)It a�ets supersymmetry transformations of only Am and A5, while leaving those of C2, �2and M2 unhanged. A more involved hoie,�2(�) = ��i��2; � ip2h�m�(�mC2 + iAm) + �Mi; �i��1 + ��m�m�2� ; (B.7)makes C2, �2 and M2 supersymmetry invariant. Therefore, it allows setting these �elds tozero, whih would put us into the Wess-Zumino gauge, C2 = �2 = M2 = 0, while turning�2(�) into the ompensating gauge transformation (2.12).To summarize, the super�eld desription of the bulk 5D vetor multiplet uses two 4DN = 1 super�elds with the following omponents, 11V2 = (C2; �2; M2; Am; �1; X3 � �5�)�2 = (� + iA5 + �5C2; �ip2(�2 � �5�2); �X12 + i�5M2): (B.8)If the super�eld supersymmetry transformations do not involve a�2(�) gauge transformation,the omponent supersymmetry transformations di�er from the ones in eq. (2.8) by a �2-dependent U(1) gauge transformation. The latter an be eliminated by a proper hoie of�2(�). Imposing the WZ gauge orresponds to just one of many possible hoies.11This form of V2 and �2 an be obtained from eq. (2.10) by a gauge transformation with the followingparameter: �2 = � 12C2; ip2�2; i2M2�. { 22 {



C Boundary onditions for supersymmetryDeriving the omponent form of the bulk-plus-boundary ation (3.7), with V2 and �2 as ineq. (B.8), we enounter the following terms,2Z2(V2 � J)���2�2 = ��(X3 � �5��DJ) + Fm5(Am � Jm)� ��2(�1 � �J) + h::�+ (C2 � CJ)��5(X3 � �5�)� �m�m��+ h i2X�12(M2 �MJ )� (�5�1 + i�m�m�2)(�2 � �J ) + h::i: (C.1)Without the WZ gauge imposed, the boundary ation then depends expliitly on the gaugedegrees of freedom, C2, �2, and M2. The way to eliminate them without imposing a gauge isto use a part of the boundary onditions ontained in V2 +0= J,C2 +0= CJ ; �2 +0= �J ; M2 +0= MJ : (C.2)This way we arrive at the ation (4.12). Having used some of the boundary onditions in theation, we expet that we would need to use boundary onditions in heking supersymmetryof the simpli�ed ation. As (V2 � J) is a gauge invariant vetor super�eld, we haveÆ�(V2 � J) = (�Q+ �Q)(V2 � J); (C.3)so that its omponents vary aording to eq. (A.4). For example,Æ�(C2 � CJ) = i�(�2 � �J ) + h::Æ�(�2 � �J ) = �m���m(C2 � CJ) + i(Am � Jm)�+ �(M2 �MJ )Æ�(M2 �MJ ) = 2��(�1 � �J) + i�m�m(�2 � �J )�: (C.4)This implies that if we use the boundary onditions for C2 and �2 in the ation, then super-symmetry of the ation requires using the Am boundary ondition. Using the M2 boundaryondition leads to the �1 boundary ondition. And so on. This is indeed the pattern weobserved in expliit alulations. A �nal remark is that on-shell X12 = 0, whih lets us avoidusing the M2 boundary ondition. This is the reason why supersymmetry of the bulk-plus-boundary ation (4.12) requires the use of only the Am boundary ondition on-shell (seeeq. (5.9)).Referenes[1℄ P. Horava and E. Witten, Nul. Phys. B 475, 94 (1996) [hep-th/9603142℄;P. Horava, Phys. Rev. D 54, 7561 (1996) [hep-th/9608019℄.[2℄ L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [hep-ph/9905221℄;Phys. Rev. Lett. 83, 4690 (1999) [hep-th/9906064℄.{ 23 {
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