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1 IntrodutionIn reent years one has learned that many aspets of hadron struture an be desribed in theunifying framework of generalized parton distributions (GPDs). This framework allows one to ombineinformation whih omes from very di�erent soures in an eÆient and model-independent manner.The �eld was pioneered in [1, 2, 3℄ and has evolved to onsiderable omplexity, reviewed for instanein [4, 5, 6, 7℄. As GPDs an be analyzed using standard operator produt expansion tehniques[1, 8℄, their moments an be and have been alulated in lattie QCD [9℄. Lattie alulations of well-measured quantities an be used to hek the auray of the method, whih may then be employedto evaluate quantities that are muh harder to determine experimentally. This omplementarity isespeially valuable in the ontext of GPDs, beause experimental measurements as e.g. in [10℄ maynot be suÆient to determine these funtions of three kinemati variables in a model-independentway. Moreover, several moments of GPDs admit a physially intuitive interpretation in terms of thespatial and spin struture of hadrons, see e.g. [2, 11, 12, 13℄.A notorious problem of lattie QCD is the need for various extrapolations from the atual sim-ulations with �nite lattie spaing, �nite volume and unphysially heavy quarks to the ontinuum,in�nite volume and physial quark masses. Simple phenomenologial �ts are often still suÆient inview of the general size of unertainties, but with inreasing numerial preision more reliable meth-ods have to be applied. Chiral perturbation theory (ChPT) provides suh a method [14℄. Desribingthe exat low-energy limit of QCD it predits the funtional form for the dependene of observableson the �nite volume and the pion mass [15℄ and also the �nite lattie spaing [16℄. At a given or-der in the expansion parameter, ChPT de�nes a number of low-energy onstants whih determineeah of these limits. Some of these onstants are typially known from independent soures, and theremaining ones have to be determined from �ts to the lattie data. The task of ChPT is thus toprovide the orresponding funtional expressions for a suÆient number of observables. In this paperwe ontribute to this endeavor by analyzing the moments of the isosalar nuleon GPDs H , E, ~Hand ~E in one-loop order.The analysis of pion GPDs in ChPT has been performed in several papers [17, 18, 19℄. In the aseof the nuleon GPDs, the hiral orretions have been alulated for the lowest moments [20, 17, 21℄in the framework of heavy-baryon ChPT, whih performs an expansion in the inverse nuleon mass1=M . Due to the kinemati limit taken in this sheme, the sum and di�erene of the inoming andoutgoing nuleon momenta p� and p0� are of di�erent order in 1=M . As a onsequene, the nthmoment of a nuleon GPD ontains terms up to nth order in the 1=M expansion. Given the rapidlygrowing number of low-energy onstants in higher orders of ChPT, it has been assumed that thehiral orretions an only be alulated for the terms of lowest order in 1=M , i.e. for the form fatorsaompanied by the smallest number of vetors (p0 � p)�. This would be a serious setbak for theprogram skethed above. The aim of the present paper is to show that the situation is muh better. Inpartiular, we �nd that the orretions of order O(m�) and O(m2�) to all form fators parameterizingthe moments of hiral-even isosalar nuleon GPDs ome from one-loop diagrams in ChPT and theorresponding higher-order tree-level insertions.This paper is organized as follows. In Setion 2 we reall the relation between moments of nuleonGPDs and matrix elements of twist-two operators and rewrite it in a form suitable for the 1=Mexpansion. In Setion 3 we disuss the onstrution of twist-two operators in heavy-baryon ChPTand give a general power-ounting sheme for their ontribution to a given nuleon matrix element.In Setions 4 and 5 we identify the operators that ontribute to moments of GPDs at lowest order inthe hiral expansion and give the results of the orresponding loop alulations. We summarize our�ndings in Setion 6. 1



2 Generalized parton distributions in the nuleonThe nuleon GPDs an be introdued as matrix elements of nonloal operators. In this paper welimit ourselves to the hiral-even isosalar quark GPDs, whih are de�ned byZ d�4� eix�(aP )hp0j �q(�12�a) =a q(12�a) jpi = 12aP �u(p0) �=aH(x; �; t) + i���a���2M E(x; �; t) �u(p) ;Z d�4� eix�(aP )hp0j �q(�12�a) =a5 q(12�a) jpi = 12aP �u(p0) �=a5 eH(x; �; t) + a�2M5 eE(x; �; t)�u(p) ; (1)where a sum over u and d quark �elds on the l.h.s. is understood, so that H = Hu +Hd et. Herea is a light-like auxiliary vetor, M is the nuleon mass, and we use the standard notations for thekinematial variablesP = 12(p+ p0); � = p0 � p; t = �2; � = � �a2Pa : (2)As usual, Wilson lines between the quark �elds are to be inserted in (1) if one is not working in thelight-one gauge a�A� = 0. The x-moments of the nuleon GPDs are related to the matrix elementsof the loal twist-two operatorsO�1�2:::�n = S �q�1iD$�2 : : : iD$�n q ; eO�1�2:::�n = S �q�15 iD$�2 : : : iD$�n q ; (3)where D$� = 12(D!� �D �) and S denotes the symmetrization of all unontrated Lorentz indies andthe subtration of traes, e.g. S t�� = 12(t�� + t��)� 14 g�� t�� for a tensor of rank two. It is onvenientto ontrat all open Lorentz indies with the auxiliary vetor a,O�1:::�n ! On(a) = a�1 : : : a�n O�1 :::�n ; (4)and in analogy for eO. The matrix elements of the operators (3) an be parameterized as [4, 6℄hp0jOn(a)jpi = n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=aAn;k(t) + i���a���2M Bn;k(t)�u(p)+ mod(n+ 1; 2) (a�)n 1M �u(p0)u(p)Cn(t) ;hp0j eOn(a)jpi = n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=a5 eAn;k(t) + a�2M5 eBn;k(t)�u(p) : (5)The moments of the above GPDs are polynomials in �2,Z 1�1 dx xn�1H(x; �; t) = n�1Xk=0even(2�)kAn;k(t) + mod(n+ 1; 2) (2�)nCn(t) ;Z 1�1 dx xn�1E(x; �; t) = n�1Xk=0even(2�)kBn;k(t)�mod(n+ 1; 2) (2�)nCn(t) ;2



Z 1�1 dx xn�1 eH(x; �; t) = n�1Xk=0even(2�)k eAn;k(t) ;Z 1�1 dx xn�1 eE(x; �; t) = n�1Xk=0even(2�)k eBn;k(t) : (6)The restrition to even k in (5) and (6) is a onsequene of time reversal invariane.To alulate the hiral orretions to the nuleons form fators we shall use the formalism ofheavy-baryon hiral perturbation theory, whih treats the nuleon as an in�nitely heavy partile andperforms a orresponding non-relativisti expansion [22℄. The evaluation of nuleon form fators inheavy-baryon ChPT is simpli�ed if one works in the Breit frame [23℄. It is de�ned by the ondition~P = 0, so that the inoming and outgoing nuleons have opposite spatial momenta ~p 0 = �~p = ~�=2and the same energy p00 = p0 =M, where =p1��2=4M2 : (7)In the heavy-baryon formalism the baryon has a additional quantum number, the veloity v, whihin the Breit frame is v = (1; 0; 0; 0). The inoming and outgoing nuleon momenta are thus given byp =Mv ��=2 and p0 =Mv + �=2.The Dira algebra simpli�es onsiderably in the heavy-baryon formulation. All Dira bilinearsan be expressed in terms of the veloity v� and the spin operatorS� = i25��� v� : (8)Using that (v�) = (vS) = 0, one �nds in partiularu(p0)u(p) =  �uv(p0) uv(p) ;u(p0)�u(p) = v� �uv(p0) uv(p) + 1M �uv(p0) [S�; (S�)℄ uv(p) ;i2M u(p0) �����u(p) = v� �24M2 �uv(p0) uv(p) + 1M �uv(p0) [S�; (S�)℄ uv(p) ;u(p0)�5u(p) = 2 �uv(p0)S�uv(p) + ��2M2(1 + ) �uv(p0) (S�) uv(p) ;u(p0)5u(p) = 1M �uv(p0) (S�) uv(p) ; (9)where the spinorsuv(p) = N�1 1 + =v2 u(p); uv(p0) = N�1 1 + =v2 u(p0) (10)with N =rM + vp2M =rM + vp02M =r1 + 2 (11)3



are normalized as �uv(p; s0) uv(p; s) = 2MÆs0s. With (9) one obtains the following representation forthe matrix elements (5) in the Breit frame:hp0jOn(a)jpi = nXk=0(M)n�k�1 (av)n�k (a�)k�1� �uv(p0) h(a�)En;k(t) +  [(aS); (S�)℄Mn;k�1(t)i uv(p) ;hp0j eOn(a)jpi = nXk=1(M)n�k (av)n�k (a�)k�1� �uv(p0) �2 (aS) eEn;k�1(t) + (a�)(S�)2M2 fMn;k�1(t)�uv(p) ; (12)with En;k(t) = An;k(t) + �24M2Bn;k(t) for k < n ; En;n(t) = 2Cn(t) ;Mn;k(t) = An;k(t) + Bn;k(t) ;eEn;k(t) = eAn;k(t) ;fMn;k(t) = 11 +  eAn;k(t) + eBn;k : (13)The de�nition of the En and eEn is onventional but might be onfusing as En is not the nth momentof E(x; �; t) et. We nevertheless use this notation, in order to make it easier to ompare our resultswith those in the literature. Notie that aording to (5) the terms with En;k in (12) are only nonzeroif k is even, whereas those with Mn;k�1, eEn;k�1 and fMn;k�1 are only nonzero if k is odd. We willevaluate these form fators in heavy-baryon ChPT. It is straightforward to transform bak to theoriginal form fators usingAn;k(t) = 12 �En;k(t)� �24M2Mn;k(t)� ; Bn;k(t) = 12 hMn;k(t)� En;k(t)i ;eBn;k(t) = fMn;k(t)� 11 +  eEn;k(t) : (14)3 Twist-two matrix elements in heavy-baryon ChPTHeavy-baryon ChPT ombines the tehniques of hiral perturbation theory and of heavy-quark ef-fetive �eld theory [22℄ (for a detailed review see Ref. [24℄). The e�etive Lagrangian desribes thepion-nuleon interations in the limit when m�; q � M , where q is a generi momentum. In thissituation the veloity v of the nuleon is preserved in the proess. One introdues the nuleon �eldwith veloity v as [22℄ N(x) = e�iM0vx�Nv(x) + nv(x)� ; (15)where M0 is the nuleon mass in the hiral limit. The �elds Nv(x), nv(x) respetively ontain thelarge and small omponents of the nuleon �eld and satisfy =vNv = Nv, =vnv = �nv . Their Fouriertransform depends on the residual nuleon momentum, i.e. the original nuleon momentum minus4



M0v. Integrating out the �eld nv(x), one obtains an e�etive Lagrangian for the pion-nuleon systemwhih involves the nuleon �eld Nv(x) and pion �eld �(x),Le� = L� + L�N ; (16)where L� = L(2)� + L(4)� + : : : ; L�N = L(1)�N + L(2)�N + : : : (17)are expanded in powers of q. The expliit expressions for the lowest-order terms read [24℄L(2)� = F 24 Tr���U��Uy + (�yU + Uy�)� ;L(1)�N = Nv ni(vr) + gA(Su)oNv ;L(2)�N = Nv �(vr)2 �r22M0 � igA2M0 �(rS); (vu)	+ 1Tr�uy�uy + u�yu�+ �2 � g2A8M0�(vu)2 + 3 u�u� + �4 + 14M0�[S�; S� ℄ u�u��Nv (18)with U = u2 = expfi�a�a=Fg, the ovariant derivative r� = �� + ��, and�� = 12 �uy��u+ u��uy� = i4F 2 �ab �a ���b�  +O(�4) ;u� = i�uy��u� u��uy� = � 1F ���a�a + O(�3) : (19)The trae Tr and the Pauli matries �a refer to isospin spae. As is done in urrent lattie QCDalulations, we assume isospin symmetry to be exat here, negleting the di�erene between u- andd-quark masses. The leading-order parameters appearing in (18) are the pion deay onstant F(normalized to F � 92 MeV) and the nuleon axial-vetor oupling gA, both taken in the hiral limit.The �eld � implements the expliit breaking of hiral symmetry by the quark masses, and in theisospin limit an be replaed by �!m2 1l, where m is the bare pion and 1l the unit matrix in isospinspae. Estimates of the low-energy onstants i in the seond-order Lagrangian L(2)�N , whih are oforder 1=M , an be found in [25℄. We note that L(2)�N indues orretions to the nuleon propagator,whih we treat as insertions on a nuleon line. They read �i �(vl)2 � l2�Æ(2M0) and 4i1m2, wherel is the residual nuleon momentum, and are to be multiplied with a nuleon propagator i=(vl+ i0)from L(1)�N on either side. The pion-nuleon verties following from L(2)�N an be found in Appendix Aof [24℄.In the following subsetion we disuss how to onstrut the operators in the e�etive theorythat math the twist-two quark operators (3). Nuleon matrix elements in the Breit frame are thenobtained as [26℄ hp0jOjpi = N 2ZN uv(p0)GO(r0; r) uv(p) ; (20)with the spinors uv and normalization N given in (10) and (11). Here GO(r0; r) is the trunatedGreen funtion for external heavy-baryon �elds Nv, Nv and the operator O in the e�etive theory.The residual momenta of the inoming and outgoing nuleon are given byr = p�M0v = wv ��=2 ; r0 = p0 �M0v = wv + �=2 (21)5



with w =M( � 1) + ÆM = � �28M � 41m2 + O(q3) ; (22)where ÆM =M �M0 is the nuleon mass shift. Finally, ZN is the heavy-baryon �eld renormalizationonstant, ZN = 1� 3m2g2A2(4�F )2 � 9m2g2A4(4�F )2 log m2�2 � 8m2 dr28(�) + O(q3) ; (23)where dr28(�) is a low-energy onstant in the Lagrangian L(3)�N . As explained in [27℄ the orrespondingoperator is required for renormalization but does not appear in physial matrix elements. The valueof dr28(�) an therefore be hosen freely (with di�erent hoies resulting in di�erent values for otherlow-energy onstants), and in [26℄ it was hosen suh that it ompensates the log(m2=�2) term in (23)at the physial value of m. Sine we are interested in the pion mass dependene of matrix elements,we must expliitly keep the logarithmi term in ZN . For further disussion we refer to Setion 3.2.3.1 Constrution of e�etive operatorsWe now disuss how to onstrut the isosalar loal twist-two operators in the e�etive theory thatmath the quark-gluon operators O(a) de�ned in (3) and (4). The relevant operators in the e�etivetheory an be divided into two groups: operators O� whih ontain only pion �elds (and ouple tothe nuleon via pion loops) and operators O�N whih are bilinear in the nuleon �eld. The mathingof operators thus takes the formO(a) �= O�(a) + O�N (a) ; eO(a) �= eO�N (a) ; (24)where we have taken into aount that there is no isosalar pion operator of negative parity (i.e. noeO�(a)). The pion isosalar operators O�(a) have been analyzed in several papers [28, 17, 18, 19℄ andwe shall simply use their results.Let us now list the building bloks for onstruting the operators O�N (a) and eO�N (a), whih weolletively denote by Q(a), omitting the subsript �N for ease of writing. They should be bilinearin the nuleon �eld and should be tensors that have n indies ontrated with the auxiliary vetor aaording to (4). To build tensors we have the following objets with Lorentz indies at our disposal:the veloity vetor v�, the spin vetor S�, the derivative ��, and the antisymmetri tensor �����. Wereall that any Dira matrix struture an be redued to an expression ontaining the spin operatorS�, and that the metri tensor g�� an be omitted in the onstrution beause the twist-two operatorsare traeless. Using the identitiesfS�; S�g = 12(v�v� � g��) ; [S�; S� ℄ = i����� v�S� (25)we an impose that S� should appear at most linearly, or quadratially as the ommutator [S�; S�℄.Conerning the derivative ��, we �nd it useful to have it ating either on single nonlinear pion �eldsu, uy in the ombinations �� or u� given in (19), or as a total derivative on the produt of all �elds,or in the antisymmetri form �$� = 12(�!� � � �) on the produt of all �elds to its right or to its left.This will make it easy to keep trak of fators �� in the orresponding matrix elements, whih playa partiular role as we shall see. To give operators with the orret hiral transformation behavior,the derivative �$ must appear in the ovariant ombination r$� = �$� +��. The �elds and derivativesused in our onstrution are then any number of u�, r$� and �� = uy�uy�u�yu between the nuleon�elds Nv and Nv, and any number of total derivatives �� ating on the operator as a whole. In thesense of (19) we heneforth refer to ��, r$� and u� as \derivatives". They have hiral dimension 1,6



whereas �� has hiral dimension 2 and will not appear at the order of the hiral expansion we limitourselves to.We an deompose the pion-nuleon operators Qn(a) asQn(a) = nXk=0Mn�k�1 (av)n�kQn;k(a) ; (26)where Qn;k(a) = a�1 : : : a�k Q�1:::�kn does not ontain any fators (av). The k external vetors a inQn;k(a) an be ontrated only with derivatives ��, r$�, u� and the spin vetor S�, or with theantisymmetri tensor. There an be at most one fator (aS) as disussed after (25), so that Qn;k(a)has to ontain at least k � 1 derivatives. We an hene write1Qn;k =MQn;k;�1 + Qn;k;0 + 1M Qn;k;1 + : : : ; (27)where the operator Qn;k;i has hiral dimension k + i. Note that due to parity the number of fatorsS�, u� and ����� must be even for O and odd for eO. We remark that the ontration of a with the�-tensor involves at least two derivatives, given that we hose to replae its simultaneous ontrationwith v� and S� by [S�; S� ℄ using (25). As a onsequene, the antisymmetri tensor does not appearin the operators with lowest hiral dimension for a given k.3.2 Tree-level insertionsAt tree level, the matrix elements of the e�etive operators between two nuleon states are easy toalulate. Sine u� and �� involve at least one or two pion �elds aording to (19), derivatives inthe e�etive operators are to be replaed as �� ! i��, u� ! 0, and r$� ! �iwv� with w givenin (22). Notie that, while generially the derivative r$� ounts as O(q) in the hiral expansion,the kinematis of the external nuleon momenta fores wv� to be of order O(q2). As a result, theleading-order ontributions of the operator Qn;k to the form fators in (12) ome from the terms withmaximum number of fators �� and no fator wv�. With (26) one readily obtainshp0jOn;k(a)jpi LO= (a�)k�1 �uv(p0) h(a�)E(0)n;k + [(aS); (S�)℄M (0)n;k�1i uv(p) ;hp0j eOn;k(a)jpi LO= (a�)k�1 �uv(p0) �2M(aS) eE(0)n;k�1+ (a�)(S�)2M fM (0)n;k�1�uv(p) ; (28)where the supersript on eah form fator indiates the term of order O(q0) in its hiral expansion.At this order, the form fators En;k and Mn;k�1 of the vetor GPD are related to the matrix elementof the operator On;k;0, sine the nuleon matrix element of the operator On;k;�1 is zero at tree level.As explained above, this operator ontains a fator (aS), whih due to parity must be aompaniedby the axial �eld u� and hene does not ontribute to tree-level matrix elements without externalpions. For the axial vetor GPDs one �nds that the form fator eEn;k�1 (fMn;k�1) reeives its leadingontribution from the operator eOn;k;�1 ( eOn;k;1), given the required number of fators �� in (28).Beyond leading order, tree-level insertions ontribute to the form fators starting at order O(q2).Contributions proportional to �2 are due to operators with �2 or to a fator w from operators withr$, or to the kinemati fators  in (12) and N in (20). Contributions proportional to m2 are dueto operators with �+ or with r$ and from the wave funtion renormalization onstant ZN in (20).1Instead of M one ould also use M0 or F in (26) and (27), sine all are of the same order in hiral power ounting.We �nd powers of M most onvenient, beause they also appear in the form fator deompositions (12).7



In the results of the following setions we expliitly inlude the terms proportional to g2A in theexpansion (23) of ZN , whereas ontributions from dr28 are lumped into the oeÆients desribing them2 orretions due to tree-level insertions.3.3 Loop ontributionsLet us now onsider a loop diagram with the insertion of the operator Qn(a). One easily �nds thatthe termMn�k�1 (av)n�k Qn;k(a) in the sum (26) an ontribute to the form fators in (12) whih areaompanied by at least n�k powers of (av), i.e. to En;m, Mn;m�1, eEn;m�1 and fMn;m�1 with m � k.Chiral ounting determines whih terms an ontribute to a given order. Namely, the ontribution ofthe operator Qn;k;i in a loop diagram has hiral dimensionDk;i = 4L+ (k+ i) + N�Xj=1 dimV�(j) + N�NXj=1 dimV�N (j)� 2I� � IN ; (29)where L is the number of loops and (k + i) is the hiral dimension of the operator insertion. V�(j)and V�N (j) respetively denote the jth vertex from L� and L�N in the graph. N� and N�N arethe orresponding total numbers of verties, and I� and IN are the numbers of pion and nuleonpropagators.2 Using the relation L = I� + IN � N� �N�N (see e.g. [24℄) and the fat that for ourspei� diagrams IN = N�N , we an rewrite this expression as a sum of positive terms, whih makesit easy to identify the di�erent ontributions at a given order:Dk;i = 2L� 1 + k + (i+ 1) + N�Xj=1 �dimV�(j)� 2�+ N�NXj=1 �dimV�N (j)� 1� : (30)For eah vertex we an insert either the lowest or any higher order, i.e. dimV�(j) = 2; 4; ::: anddim V�N(j) = 1; 2; :::. Note that a loop diagram with hiral dimension Dk;i generates ontributions toa nuleon matrix element of order O(qd) with d � Dk;i. This is on one hand beause of the expliitfators N and ZN in (20), and on the other hand beause the sum r� + r0� = 2wv� is of order O(q2)and thus one order higher than the generi power assoiated with residual nuleon momenta.The form fators enter a matrix element multiplied by fators (a�) or (S�) as given in (12).Taking these into aount, one �nds that the hiral orretion from Qn;k;i to En;m and Mn;m�1 has atleast order Dk;i�m, while for the form fators eEn;m�1 and fMn;m�1 it has at least order Dk;i�m+1and Dk;i �m� 1, respetively. This is a main result of our paper and allows one to determine whihoperators need to be onsidered to alulate the orretions to a form fator to a given order in thehiral expansion. Beause Dk;i ontains a term k and beause of the onstraint k�m � 0, the numberof loops and the order of the hiral Lagrangian required to alulate the lowest-order orretions fora given form fator do not grow with m. Instead, a growing number of fators �� aompanying aform fator in the nuleon matrix element requires a growing number of derivatives in the operatorQn;k .As an appliation of our general result we �nd that the form fators En;m andMn;m�1 an reeiveorretions starting at order� O(q) from one-loop diagrams with insertion of the operator Qn;m;�1 and leading-order (LO)pion-nuleon verties,2Note that a nuleon propagator orretion from a higher-order Lagrangian ounts as one (nuleon-nuleon) vertexwith two nuleon propagators on either side, see the disussion after (19).8



Table 1: Four-vetors and their produts appearing in the numerators of the loop graphs of Fig. 1.NN verties (arising from nuleon propagator orretions) are not expliitly shown in the graphs.derivatives in operator insertion �� ��r$� l� and wv�u� l�verties �NN at LO Sl�NN at NLO (vl)(Sl)� (vl)(S�)NN at NLO (vl)2 � l2 � l���2=4� O(q2) from the one-loop diagrams with insertion of the operators Qn;m;0 and Qn;m+1;�1 and LOpion-nuleon verties, and from one-loop diagrams with insertion of the operator Qn;m;�1 andone next-to-leading order (NLO) pion-nuleon vertex or nuleon propagator orretion.In turn, the form fator eEn;m�1 reeives orretions starting at order O(q2) from one-loop diagramswith leading-order verties and insertion of the operator Qn;m;�1. For fMn;m�1 the disussion oforretions up to order O(q2) is more involved and will be given in Setion 4.1.To onlude the disussion of power ounting, we onsider the ontribution to the form fatorsEn;m and Mn;m�1 of loop graphs with the insertion of the pion operators O�(a), see (24). Repeatingthe above argument and taking into aount that now IN = N�N � 1, one �nds that suh diagramshave hiral dimensionD� = 2L� 1 + dimO� + N�Xj=1 �dim V�(j)� 2�+ N�NXj=1 �dim V�N(j)� 1� : (31)Given that the leading operator On�(a) ontributing to On(a) has the hiral dimension n, one �ndsthat it an ontribute to the form fators En;m and Mn;m�1 starting at order O(qn�m+1). Note thatbeause of harge onjugation invariane the isosalar pion operators On�(a) have even n and thatdue to time reversal invariane the form fators En;k and Mn;k vanish for odd k. Together with ourpower-ounting formula one thus �nds that En;n gets ontributions from On�(a) starting at order O(q)and Mn;n�2 starting at order O(q2). All other orretions from operators O�(a) to form fators En;kand Mn;k start at O(q3).Let us now take a loser look at the one-loop graphs with pion-nuleon operator insertions, whihare shown in Fig. 1. With our onstrution of operators explained in Setion 3.1 we an readily analyzethe origin of fators ��, whose number determines to whih form fator a graph will ontribute. Using(v�) = (vS) = 0 and the form (18) of the LO and NLO pion-nuleon Lagrangian, we �nd that thenumerators of the loop integrals are omposed as spei�ed in Table 1. The denominators of the pionand nuleon propagators respetively are (l2�m2+ i0) and (lv+w+ i0), so that the loop integrationturns tensors l�1 : : : l�j into tensors onstruted from v� and g�� . A fator �� that an be ontratedwith a� or S� (i.e. is not ontrated to �2) an hene only originate from total derivatives �� inthe operator insertion and from an NLO pion-nuleon vertex or nuleon propagator orretion. Wewill see that this redues onsiderably the number of operators ontributing to the leading hiralorretions of nuleon GPDs. 9



PSfrag replaements l ll wv � �2 wv � �2wv � �2 wv + �2wv + �2 wv + �2l + wv � �2l + wv � �2 l + wv + �2a b Figure 1: One-loop graphs with the insertion of a pion-nuleon operator O�N (a) or eO�N (a), denotedby a blak blob. Not shown is the analog of graph  with residual momentum l + wv + �=2 of theintermediate nuleon line.4 Chiral orretions up to order O(q2)4.1 Axial-vetor operatorsUsing the formalism developed in the previous setion, we now evaluate the form fators up to relativeorder O(q2). Let us start by giving the operators in eOn;k;i that have the maximum number of totalderivatives �� ontrated with a� or S�. It will turn out that these are required to produe the fatorsof (a�) and (S�) in the form fator deomposition (12). With the onstraints of parity invariane,we �nd eOn;k;�1(a) = ~bn;k (ia�)k�1Nv(aS)Nv + : : : ;eOn;k;1(a) = ~n;k (ia�)k(i��)Nv S�Nv + : : : ; (32)where the : : : stand for operators with fewer total derivatives. One has eE(0)n;k�1 = ~bn;k=2 and fM (0)n;k�1 =2~n;k for the tree-level ontributions at order O(q0). From the time-reversal onstraints on the formfators it follows that the low-energy onstants ~bn;k and ~n;k are zero for even k.As derived in Setion 3.3, the leading hiral orretions to eEn;k�1 ome from one-loop graphs withLO pion-nuleon verties and the operator eOn;k;�1. Sine this operator does not ontain pion �elds,one needs to alulate only graph a in Fig. 1. One �ndseEn;k(t) = eE(0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��+ eE(2;m)n;k m2 + eE(2;t)n;k t+ O(q3) ; (33)where the terms going with m2 and t originate from tree-level insertions as disussed at the end ofSetion 3.2. Here and in the following we use the subtration sheme of [14℄ for the loop graphs,subtrating 1=� + log(4�) +  (2) for eah 1=� pole in 4 � 2� dimensions. The renormalization saleis denoted by �, and the � dependene of the logarithm in (33) anels against the � dependene ofeE(2;m)n;k , whih we have not displayed for simpliity. Note that the bare parameters m, F , gA an bereplaed with their ounterparts at the physial point within the preision of our result. Sine thenonanalyti orretions in (33) are independent of the moment indies n and k, they apply to theentire nuleon GPD eH(x; �; t),eH(x; �; t) = eH(0)(x; �)�1� 3m2g2A(4�F )2 �log m2�2 + 1��+m2 eH(2;m)(x; �) + t eH(2;t)(x; �) +O(q3) : (34)10



Let us now onsider the hiral orretions for fMn;k�1. It follows from (12) that the relevantdiagrams have to produe a fator (a�)k(S�). By power ounting, the form fator fMn;k�1 ouldreeive orretions of order O(q0) from diagrams with LO verties and the operator insertion eOn;k;�1.Similarly, orretions of order O(q) ould ome from the diagrams with LO verties and insertion ofeOn;k+1;�1 or eOn;k;0, and from diagrams with insertion of eOn;k;�1 and one NLO pion-nuleon vertex ornuleon propagator orretion. One �nds no operator in eOn;k;0 that has k or more partial derivativesontrated with a� or S�, and the same holds of ourse for eOn;k;�1. Aording to our disussion inSetion 3.3 the graphs just disussed an thus produe at most k vetors �� (not ounting thoseappearing in �2) and hene do not ontribute to fMn;k�1. At order O(q2) there is a number ofpossibilities:1. graphs with LO verties and insertion of eOn;k+2;�1, eOn;k+1;0 or eOn;k;1. The insertion of eOn;k+1;0does not produe a suÆient number of fators ��, whereas insertion of eOn;k+2;�1 gives a fator(a�)k+1(aS), whih ontributes to the form fator eEn;k+1 but not to fMn;k�1. A orretion tofMn;k�1 is obtained from insertion of the operator eOn;k;1 given in (32), whih already provides thetree-level term of this form fator. Only the loop graph in Fig. 1a is nonzero for this insertion,and the result is analogous to the one for the ontribution of eOn;k;�1 to eEn;k�1.2. graphs with one NLO vertex or propagator orretion and insertion of eOn;k+1;�1 or eOn;k;0.Insertion of eOn;k;0 does again not provide enough fators of ��, whereas graphs with eOn;k+1;�1give zero due to time reversal invariane. This an be seen by diret alulation, or by notingthat fMn;k�1 is only nonzero for odd k, whereas the oeÆient ~bn;k+1 is only nonzero for even k,as remarked below (32).3. graphs with insertion of eOn;k;�1 and (i) two loops with LO verties, or (ii) one loop with twoNLO pion-nuleon verties or nuleon propagator orretions, or (iii) one loop with one NNLOpion-nuleon vertex or nuleon propagator orretion, or (iv) one loop with a pion propagatororretion from L(4)� . The operator insertion provides k � 1 fators of ��, so that two morefators must be provided by the verties or propagator orretions (without being ontratedto �2). This is not possible in ase (i), beause the LO pion-nuleon verties only involve pionmomenta and the pion momenta in a two-loop graph an be parameterized suh that they areindependent of � (as in the one-loop graphs of Fig. 1). Likewise, a pion propagator orretionin ase (iv) does not depend on � and an therefore not ontribute. In ases (ii) and (iii) oneobtains nonzero ontributions from the graph in Fig. 1a. The NNLO verties and propagatororretions follow from the Lagrangian L(3)�N given in [27℄. We �nd that the only term providingthe two required fators of �� is the �NN vertex generated by� gA4M20 Nv n(r S)(ur!) + (r u)(Sr!)oNv : (35)Note that this vertex does not introdue a new low-energy onstant, similarly to the termproportional to gA in L(2)�N , whih generates the �NN oupling at NLO. These terms arise fromthe 1=M0 expansion of the leading-order relativisti pion-nuleon Lagrangian N (i =r � M0 +12gA=u5)N , see e.g. [24℄.Putting everything together, we obtainfMn;k(t) = fM (0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��� eE(0)n;k m2g2A(4�F )2 log m2�2+ fM (2;m)n;k m2 + fM (2;t)n;k t +O(q3) ; (36)11



PSfrag replaementswv � �2 wv � �2wv + �2 wv + �2l + wv l + �2l + �2 l � �2l � �2a bFigure 2: One-loop graphs with the insertion of the pion operator On�(a), denoted by a blak blob.where the terms going with m2 and t are due to tree-level insertions. With (33), (6) and (14) one anwrite for the isosalar quark GPD eE(x; �; t)eE(x; �; t) = eE(0)(x; �) �1� 3m2g2A(4�F )2 �log m2�2 + 1��� eH(0)(x; �) m2g2A(4�F )2 log m2�2+m2 eE(2;m)(x; �) + t eE(2;t)(x; �) +O(q3) : (37)4.2 Vetor operatorsThe analysis of the vetor operators proeeds along similar lines. The operator On;k;0 readsOn;k;0(a) = bn;k (ia�)kNvNv + n;k (ia�)k�1 (i��)Nv [(Sa); S�℄Nv + : : : ; (38)where the : : : denote operators with fewer total derivatives. One �nds E(0)n;k = bn;k andM (0)n;k�1 = �n;kfor the leading-order tree-level insertions, whih implies bn;k = n;k+1 = 0 for odd k.Aording to (12) the graphs that give hiral orretions to En;k or Mn;k�1 must produe kfators of �� ontrated with a� or S�. With the onstraints from parity invariane one �nds thatthe operator On;k;�1 does not ontain terms whih have k � 1 or more total derivatives ontratedwith a� or S�. With the results of Setion 3.3 this implies that En;k and Mn;k�1 do not reeiveorretions from pion-nuleon operator insertions at order O(q), and that orresponding orretionsat order O(q2) an only ome from the diagram in Fig. 1a with LO verties. One �nds that theone-loop ontribution to the form fator En;k is aneled by the terms proportional to g2A in the wavefuntion renormalization onstant (23). For the form fator Mn;k one obtains a orretionM (0)n;k �1� 3m2g2A(4�F )2 log m2�2 � : (39)We note that for n = 1, k = 0 this implies a hiral logarithm for the isosalar magneti form fatorGM;s(t), GM;s(t) = �(0)s �1� 3m2g2A(4�F )2 log m2�2 �+G(2;m)M;s m2 + G(2;t)M;s t +O(q3) ; (40)where �(0)s is the isosalar magneti moment of the nuleon in the hiral limit and where we haveadded analyti terms due to tree-level insertions. The form (40) is onsistent with the result of therelativisti alulation in [29℄. 12



One �nally has to evaluate orretions due to the diagrams in Fig. 2 with insertion of the pionoperator On�(a), where n is even. We use the representation of this operator given in [19℄,3On�(a) = F 2 n�2Xk=0even ~an;k (ia�)k Tr h(aL) (2ia�$)n�k�2(aL) + (aR) (2ia�$)n�k�2(aR)i (41)with L� = Uy��U and R� = U��Uy. As disussed in Setion 3.3, the orretions to Mn;k startat order O(q2) for k = n � 2 and at higher order otherwise. They are due to diagrams with LOverties, so that only the graph in Fig. 2a ontributes. This is beause the leading-order ��NNvertex orresponds to an isovetor transition of the nuleon, as follows from (18) and the expansion of� in (19). Combining the result with the orretion in (39) and adding analyti terms from tree-levelinsertions, we obtainMn;k(t) =M (0)n;k �1� 3m2g2A(4�F )2 log m2�2 �+ Æk;n�2M (2;�)n (t) +M (2;m)n;k m2 +M (2;t)n;k t+ O(q3) ; (42)where k is even andM (2;�)n (t) = 3g2A(4�F )2 n�2Xj=0even ~an;n�j�2 Z 1�1 d� � �2��2 �j(1� �2)�m2(�) log m2(�)�2= 3g2A(4�F )2 nXj=2even2�jj(j � 1)A�(0)n;n�j Z 1�1 d� �j�2m2(�) log m2(�)�2 (43)with m2(�) = m2 � t4 (1� �2) : (44)Here A�(0)n;k is the hiral limit of the form fators A�n;k(t) desribing the moments of the pion isosalarGPD, Z 1�1 dx xn�1HI=0� (x; �; t) = nXk=0even(2�)kA�n;k(t): (45)The relation to the low-energy onstants ~an;k reads [19℄A�(0)n;k = 2n�k h~an;k�2 � ~an;ki ; (46)whih implies~an;n�k = � nXj=keven2�jA�(0)n;n�j for k > 0 ; nXj=0even2�jA�(0)n;n�j = 0 : (47)The orretions to En;k start at order O(q) for k = n and at order O(q3) or higher otherwise. At one-loop order we obtain O(q) orretions to En;n from graphs involving only LO verties. Corretions of3Note that the normalization of the twist-two operators (3) used here di�ers from that in [19℄ by a fator of 2. TheoeÆients ~an;k have the same normalization here and in [19℄.13



order O(q2) involve either graphs with one NLO vertex or propagator orretion, or graphs with LOverties and the subleading part wv of the residual nuleon momenta, see the disussion after (30).Our �nal result inluding analyti terms from tree-level insertions isEn;k(t) = E(0)n;k + Æn;khE(1;�)n (t) + E(2;�)n (t)i +E(2;m)n;k m2 +E(2;t)n;k t +O(q3) ; (48)where the order O(q) orretion readsE(1;�)n (t) = �M(2m2 � t) 3�g2A8(4�F )2 n�2Xj=0even ~an;n�j�2 Z 1�1 d� �j(1� �2)m(�)=M(2m2 � t) 3�g2A8(4�F )2 nXj=2even 2�j A�(0)n;n�j Z 1�1 d� 1� �jm(�) ; (49)and the order O(q2) term isE(2;�)n (t) = 3m2g2A(4�F )2 log m2�2 n�2Xj=0even ~an;n�j�2+ 6(4�F )2 n�2Xj=0even~an;n�j�2 Z 1�1 d� �j(1� �2)(g2A32 �2t�log m2(�)�2 + 1�� (t� 2m2)2m2(�) �+M �1m2�log m2(�)�2 + 1�� 342m2(�) log m2(�)�2 � 3m2(�)�log m2(�)�2 + 12��)=� 3m2g2A2(4�F )2 log m2�2 nXj=2even2�jj A�(0)n;n�j� 6(4�F )2 nXj=2even2�j A�(0)n;n�j Z 1�1 d� (1� �j)(g2A32 �2t�log m2(�)�2 + 1�� (t� 2m2)2m2(�) �+M �1m2�log m2(�)�2 + 1�� 342m2(�) log m2(�)�2 � 3m2(�)�log m2(�)�2 + 12��)(50)The integrals over � in (43), (49) and (50) are elementary, but we have not found a simple losed formof the result for general n. In the next setion we give expliit results for the values and derivativesat t = 0 of the form fators.Our result for the form fator fMn;k(t) disagrees with [30℄, where it was taken for granted thatthe only operators whih ontribute at order O(q2) are those whih already appear at tree-level inthe same form fator. As our analysis shows, this holds indeed in many ases but not in all. For allother form fators our results agree with [30℄ where omparable.4 For n = 2 our results for the vetoroperators also agree with those of Belitsky and Ji [21℄.54Note that [30℄ gives the orretion to En;n at order O(q) but not at order O(q2).5When omparing results, one must take into aount that [21℄ uses MS renormalization, where for eah pole in 4�2�dimensions one subtrats 1=� + log(4�) +  (1), whereas we use the sheme of [14℄ and subtrat 1=�+ log(4�) +  (2).14



5 Results for moments of GPDsWe now transform the results of the previous setion to the basis of the form fators An;k, Bn;k, Cnand eAn;k, eBn;k orresponding to moments of GPDs in the onventional parameterization. We givethe values and derivatives of these form fators at t = 0, whih allows us to obtain losed expressions.Furthermore, these quantities are of most immediate interest in studies of GPDs on the lattie.With our results (33), (36), (42), (48) and the onversion formulae (13), (14) one obtains for theform fators at t = 0eAn;k(0) = eA(0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��+ eA(2;m)n;k m2 + O(m3) ;eBn;k(0) = eB(0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��� eA(0)n;k m2g2A(4�F )2 log m2�2 + eB(2;m)n;k m2 +O(m3) ;An;k(0) = A(0)n;k +A(2;m)n;k m2 + O(m3) ;Bn;k(0) = B(0)n;k � �A(0)n;k + B(0)n;k� 3m2g2A(4�F )2 log m2�2 + Æk;n�2M (2;�)n (0) + B(2;m)n;k m2 +O(m3) ;Cn(0) = C(0)n +E(1;�)n (0) + E(2;�)n (0) + C(2;m)n m2 + O(m3) (51)with oeÆients related to those in Setion 4 by eA(0)n;k = eE(0)n;k, eB(0)n;k = fM (0)n;k � 12 eE(0)n;k, A(0)n;k = E(0)n;k,B(0)n;k = M (0)n;k � E(0)n;k, C(0)n = E(0)n;n and by analogous relations for the oeÆients with super-sript (2; m). Setting m, gA, F to their physial values and hoosing � = M , one �nds that theorretions from loop graphs with nuleon operator insertions in (51) are moderately large, with3m2g2A (4�F )�2 [ log(m2=�2) + 1℄ � �0:20 and m2g2A (4�F )�2 log(m2=�2) � �0:09. In the ase ofBn;k this loop orretion an be substantial if jBn;kj � jAn;kj, whih is empirially found for theeletromagneti form fators (i.e. the ase n = 1) and also in lattie evaluations [9℄ for the momentswith n = 2. The ontributions to Bn;n�2(0) and Cn(0) from loop graphs with pion operator insertionsareM (2;�)n (0) = 6m2g2A(4�F )2 log m2�2 nXj=2even2�jj A�(0)n;n�j ;E(1;�)n (0) = 3�mMg2A2(4�F )2 nXj=2even2�j jj + 1 A�(0)n;n�j ;E(2;�)n (0) = � 3m2g2A2(4�F )2 log m2�2 nXj=2even2�jj A�(0)n;n�j+ 12m2(4�F )2 �g2A8 �M �1�log m2�2 + 1�� 342 log m2�2 � 3�log m2�2 + 12��� nXj=2even2�j jj + 1 A�(0)n;n�j :(52)Setting M , m, gA, F to their physial values, hoosing � = M , and taking the estimates 1 ��0:9 GeV�1, 2 � 3:3 GeV�1, 3 � �4:7 GeV�1 from [25℄ we �nd M (2;�)2 (0) � �0:27A�(0)2;0 andE(1;�)2 (0)+E(2;�)2 (0) � (0:12+ 0:17)A�(0)2;0 . At the physial point, the order O(m) orretion is hene15



not very large. The full size of the order O(m2) orretions depends of ourse on the analyti termsin (51), whose values are not known.The derivatives of the form fators at t = 0 obtain nonanalyti ontributions only from the pionoperator insertions. Writing �tA(0) = � ��tA(t)� t=0 et. we have�t eAn;k(0) = eE(2;t)n;k +O(m) ;�t eBn;k(0) = fM (2;t)n;k � eE(2;t)n;k Æ2� eE(0)n;kÆ(32M2) + O(m) ;�tAn;k(0) = E(2;t)n;k � �M (0)n;k �E(0)n;k�Æ(4M2) + O(m) ;�tBn;k(0) = Æk;n�2 �tM (2;�)n (0) +M (2;t)n;k �E(2;t)n;k + �M (0)n;k � E(0)n;k�Æ(4M2) +O(m) ;�tCn(0) = �tE(1;�)n (0) + �tE(2;�)n (0) + E(2;t)n;n +E(0)n;nÆ(4M2) +O(m) (53)with�tM (2;�)n (0) = � 3g2A(4�F )2 �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j ;�tE(1;�)n (0) = � Mm �g2A8(4�F )2 nXj=2even2�j j (5j + 14)(j + 1)(j + 3) A�(0)n;n�j ;�tE(2;�)n (0) = � 3g2A4(4�F )2 �log m2�2 + 3� nXj=2even2�j jj + 1 A�(0)n;n�j+ 2(4�F )2 �g2A8 +M �1 � 342�log m2�2 + 1�� 3�log m2�2 + 32��� nXj=2even2�j j (j + 4)(j + 1)(j + 3) A�(0)n;n�j :(54)Note that in the hiral limit the derivative �tBn;n�2(0) � �tM (2;�)n (0) diverges as log(m2=�2) and�tCn(0) � �tE(1;�)n (0) as 1=m. With the parameters spei�ed above, one �nds �tM (2;�)2 (0) �1:7 GeV�2A�(0)2;0 and �tE(1;�)2 (0) + �tE(2;�)2 (0) � �(2:5 + 1:2) GeV�2A�(0)2;0 . Numerially, the term�tE(1;�)n (0) is thus important but not extremely large at the physial point.6 SummaryUsing heavy-baryon hiral perturbation theory, we have alulated the hiral orretions up to orderO(q2) for the form fators whih parameterize moments of nuleon GPDs. We have restrited ourselvesto vetor and axial-vetor quark distributions in the isosinglet ombination. Our results generalizetrivially to the orresponding gluon GPDs, whih have the same quantum numbers and therefore thesame orresponding operators in the e�etive theory (exept for the values of the mathing onstants).Our method is also appliable to operators of di�erent tensor or avor struture.The moments of GPDs ontain terms of di�erent order in 1=M , ranging fromMn�1 toM�1. Wehave shown that, due to the way in whih fators v� and �� arise in the alulation, the number ofloops and the order in the expansion of the e�etive Lagrangian required to alulate a form fator toa given order O(qd) does not grow with the number of fators �� that aompany the form fator in16
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