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Chiral perturbation theory fornu
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al Physi
s, Sankt-Petersburg State University, St.-Petersburg, RussiaAbstra
tWe analyze the moments of the isosinglet generalized parton distributions H , E, ~H, ~E ofthe nu
leon in one-loop order of heavy-baryon 
hiral perturbation theory. We dis
uss indetail the 
onstru
tion of the operators in the e�e
tive theory that are required to obtain all
orre
tions to a given order in the 
hiral power 
ounting. The results will serve to improvethe extrapolation of latti
e results to the 
hiral limit.
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1 Introdu
tionIn re
ent years one has learned that many aspe
ts of hadron stru
ture 
an be des
ribed in theunifying framework of generalized parton distributions (GPDs). This framework allows one to 
ombineinformation whi
h 
omes from very di�erent sour
es in an eÆ
ient and model-independent manner.The �eld was pioneered in [1, 2, 3℄ and has evolved to 
onsiderable 
omplexity, reviewed for instan
ein [4, 5, 6, 7℄. As GPDs 
an be analyzed using standard operator produ
t expansion te
hniques[1, 8℄, their moments 
an be and have been 
al
ulated in latti
e QCD [9℄. Latti
e 
al
ulations of well-measured quantities 
an be used to 
he
k the a

ura
y of the method, whi
h may then be employedto evaluate quantities that are mu
h harder to determine experimentally. This 
omplementarity isespe
ially valuable in the 
ontext of GPDs, be
ause experimental measurements as e.g. in [10℄ maynot be suÆ
ient to determine these fun
tions of three kinemati
 variables in a model-independentway. Moreover, several moments of GPDs admit a physi
ally intuitive interpretation in terms of thespatial and spin stru
ture of hadrons, see e.g. [2, 11, 12, 13℄.A notorious problem of latti
e QCD is the need for various extrapolations from the a
tual sim-ulations with �nite latti
e spa
ing, �nite volume and unphysi
ally heavy quarks to the 
ontinuum,in�nite volume and physi
al quark masses. Simple phenomenologi
al �ts are often still suÆ
ient inview of the general size of un
ertainties, but with in
reasing numeri
al pre
ision more reliable meth-ods have to be applied. Chiral perturbation theory (ChPT) provides su
h a method [14℄. Des
ribingthe exa
t low-energy limit of QCD it predi
ts the fun
tional form for the dependen
e of observableson the �nite volume and the pion mass [15℄ and also the �nite latti
e spa
ing [16℄. At a given or-der in the expansion parameter, ChPT de�nes a number of low-energy 
onstants whi
h determineea
h of these limits. Some of these 
onstants are typi
ally known from independent sour
es, and theremaining ones have to be determined from �ts to the latti
e data. The task of ChPT is thus toprovide the 
orresponding fun
tional expressions for a suÆ
ient number of observables. In this paperwe 
ontribute to this endeavor by analyzing the moments of the isos
alar nu
leon GPDs H , E, ~Hand ~E in one-loop order.The analysis of pion GPDs in ChPT has been performed in several papers [17, 18, 19℄. In the 
aseof the nu
leon GPDs, the 
hiral 
orre
tions have been 
al
ulated for the lowest moments [20, 17, 21℄in the framework of heavy-baryon ChPT, whi
h performs an expansion in the inverse nu
leon mass1=M . Due to the kinemati
 limit taken in this s
heme, the sum and di�eren
e of the in
oming andoutgoing nu
leon momenta p� and p0� are of di�erent order in 1=M . As a 
onsequen
e, the nthmoment of a nu
leon GPD 
ontains terms up to nth order in the 1=M expansion. Given the rapidlygrowing number of low-energy 
onstants in higher orders of ChPT, it has been assumed that the
hiral 
orre
tions 
an only be 
al
ulated for the terms of lowest order in 1=M , i.e. for the form fa
torsa

ompanied by the smallest number of ve
tors (p0 � p)�. This would be a serious setba
k for theprogram sket
hed above. The aim of the present paper is to show that the situation is mu
h better. Inparti
ular, we �nd that the 
orre
tions of order O(m�) and O(m2�) to all form fa
tors parameterizingthe moments of 
hiral-even isos
alar nu
leon GPDs 
ome from one-loop diagrams in ChPT and the
orresponding higher-order tree-level insertions.This paper is organized as follows. In Se
tion 2 we re
all the relation between moments of nu
leonGPDs and matrix elements of twist-two operators and rewrite it in a form suitable for the 1=Mexpansion. In Se
tion 3 we dis
uss the 
onstru
tion of twist-two operators in heavy-baryon ChPTand give a general power-
ounting s
heme for their 
ontribution to a given nu
leon matrix element.In Se
tions 4 and 5 we identify the operators that 
ontribute to moments of GPDs at lowest order inthe 
hiral expansion and give the results of the 
orresponding loop 
al
ulations. We summarize our�ndings in Se
tion 6. 1



2 Generalized parton distributions in the nu
leonThe nu
leon GPDs 
an be introdu
ed as matrix elements of nonlo
al operators. In this paper welimit ourselves to the 
hiral-even isos
alar quark GPDs, whi
h are de�ned byZ d�4� eix�(aP )hp0j �q(�12�a) =a q(12�a) jpi = 12aP �u(p0) �=aH(x; �; t) + i���a���2M E(x; �; t) �u(p) ;Z d�4� eix�(aP )hp0j �q(�12�a) =a
5 q(12�a) jpi = 12aP �u(p0) �=a
5 eH(x; �; t) + a�2M
5 eE(x; �; t)�u(p) ; (1)where a sum over u and d quark �elds on the l.h.s. is understood, so that H = Hu +Hd et
. Herea is a light-like auxiliary ve
tor, M is the nu
leon mass, and we use the standard notations for thekinemati
al variablesP = 12(p+ p0); � = p0 � p; t = �2; � = � �a2Pa : (2)As usual, Wilson lines between the quark �elds are to be inserted in (1) if one is not working in thelight-
one gauge a�A� = 0. The x-moments of the nu
leon GPDs are related to the matrix elementsof the lo
al twist-two operatorsO�1�2:::�n = S �q
�1iD$�2 : : : iD$�n q ; eO�1�2:::�n = S �q
�1
5 iD$�2 : : : iD$�n q ; (3)where D$� = 12(D!� �D �) and S denotes the symmetrization of all un
ontra
ted Lorentz indi
es andthe subtra
tion of tra
es, e.g. S t�� = 12(t�� + t��)� 14 g�� t�� for a tensor of rank two. It is 
onvenientto 
ontra
t all open Lorentz indi
es with the auxiliary ve
tor a,O�1:::�n ! On(a) = a�1 : : : a�n O�1 :::�n ; (4)and in analogy for eO. The matrix elements of the operators (3) 
an be parameterized as [4, 6℄hp0jOn(a)jpi = n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=aAn;k(t) + i���a���2M Bn;k(t)�u(p)+ mod(n+ 1; 2) (a�)n 1M �u(p0)u(p)Cn(t) ;hp0j eOn(a)jpi = n�1Xk=0even(aP )n�k�1 (a�)k �u(p0) �=a
5 eAn;k(t) + a�2M
5 eBn;k(t)�u(p) : (5)The moments of the above GPDs are polynomials in �2,Z 1�1 dx xn�1H(x; �; t) = n�1Xk=0even(2�)kAn;k(t) + mod(n+ 1; 2) (2�)nCn(t) ;Z 1�1 dx xn�1E(x; �; t) = n�1Xk=0even(2�)kBn;k(t)�mod(n+ 1; 2) (2�)nCn(t) ;2



Z 1�1 dx xn�1 eH(x; �; t) = n�1Xk=0even(2�)k eAn;k(t) ;Z 1�1 dx xn�1 eE(x; �; t) = n�1Xk=0even(2�)k eBn;k(t) : (6)The restri
tion to even k in (5) and (6) is a 
onsequen
e of time reversal invarian
e.To 
al
ulate the 
hiral 
orre
tions to the nu
leons form fa
tors we shall use the formalism ofheavy-baryon 
hiral perturbation theory, whi
h treats the nu
leon as an in�nitely heavy parti
le andperforms a 
orresponding non-relativisti
 expansion [22℄. The evaluation of nu
leon form fa
tors inheavy-baryon ChPT is simpli�ed if one works in the Breit frame [23℄. It is de�ned by the 
ondition~P = 0, so that the in
oming and outgoing nu
leons have opposite spatial momenta ~p 0 = �~p = ~�=2and the same energy p00 = p0 =M
, where
 =p1��2=4M2 : (7)In the heavy-baryon formalism the baryon has a additional quantum number, the velo
ity v, whi
hin the Breit frame is v = (1; 0; 0; 0). The in
oming and outgoing nu
leon momenta are thus given byp =M
v ��=2 and p0 =M
v + �=2.The Dira
 algebra simpli�es 
onsiderably in the heavy-baryon formulation. All Dira
 bilinears
an be expressed in terms of the velo
ity v� and the spin operatorS� = i2
5��� v� : (8)Using that (v�) = (vS) = 0, one �nds in parti
ularu(p0)u(p) = 
 �uv(p0) uv(p) ;u(p0)
�u(p) = v� �uv(p0) uv(p) + 1M �uv(p0) [S�; (S�)℄ uv(p) ;i2M u(p0) �����u(p) = v� �24M2 �uv(p0) uv(p) + 1M �uv(p0) [S�; (S�)℄ uv(p) ;u(p0)
�
5u(p) = 2
 �uv(p0)S�uv(p) + ��2M2(1 + 
) �uv(p0) (S�) uv(p) ;u(p0)
5u(p) = 1M �uv(p0) (S�) uv(p) ; (9)where the spinorsuv(p) = N�1 1 + =v2 u(p); uv(p0) = N�1 1 + =v2 u(p0) (10)with N =rM + vp2M =rM + vp02M =r1 + 
2 (11)3



are normalized as �uv(p; s0) uv(p; s) = 2MÆs0s. With (9) one obtains the following representation forthe matrix elements (5) in the Breit frame:hp0jOn(a)jpi = nXk=0(M
)n�k�1 (av)n�k (a�)k�1� �uv(p0) h(a�)En;k(t) + 
 [(aS); (S�)℄Mn;k�1(t)i uv(p) ;hp0j eOn(a)jpi = nXk=1(M
)n�k (av)n�k (a�)k�1� �uv(p0) �2
 (aS) eEn;k�1(t) + (a�)(S�)2M2 fMn;k�1(t)�uv(p) ; (12)with En;k(t) = An;k(t) + �24M2Bn;k(t) for k < n ; En;n(t) = 
2Cn(t) ;Mn;k(t) = An;k(t) + Bn;k(t) ;eEn;k(t) = eAn;k(t) ;fMn;k(t) = 11 + 
 eAn;k(t) + eBn;k : (13)The de�nition of the En and eEn is 
onventional but might be 
onfusing as En is not the nth momentof E(x; �; t) et
. We nevertheless use this notation, in order to make it easier to 
ompare our resultswith those in the literature. Noti
e that a

ording to (5) the terms with En;k in (12) are only nonzeroif k is even, whereas those with Mn;k�1, eEn;k�1 and fMn;k�1 are only nonzero if k is odd. We willevaluate these form fa
tors in heavy-baryon ChPT. It is straightforward to transform ba
k to theoriginal form fa
tors usingAn;k(t) = 1
2 �En;k(t)� �24M2Mn;k(t)� ; Bn;k(t) = 1
2 hMn;k(t)� En;k(t)i ;eBn;k(t) = fMn;k(t)� 11 + 
 eEn;k(t) : (14)3 Twist-two matrix elements in heavy-baryon ChPTHeavy-baryon ChPT 
ombines the te
hniques of 
hiral perturbation theory and of heavy-quark ef-fe
tive �eld theory [22℄ (for a detailed review see Ref. [24℄). The e�e
tive Lagrangian des
ribes thepion-nu
leon intera
tions in the limit when m�; q � M , where q is a generi
 momentum. In thissituation the velo
ity v of the nu
leon is preserved in the pro
ess. One introdu
es the nu
leon �eldwith velo
ity v as [22℄ N(x) = e�iM0vx�Nv(x) + nv(x)� ; (15)where M0 is the nu
leon mass in the 
hiral limit. The �elds Nv(x), nv(x) respe
tively 
ontain thelarge and small 
omponents of the nu
leon �eld and satisfy =vNv = Nv, =vnv = �nv . Their Fouriertransform depends on the residual nu
leon momentum, i.e. the original nu
leon momentum minus4



M0v. Integrating out the �eld nv(x), one obtains an e�e
tive Lagrangian for the pion-nu
leon systemwhi
h involves the nu
leon �eld Nv(x) and pion �eld �(x),Le� = L� + L�N ; (16)where L� = L(2)� + L(4)� + : : : ; L�N = L(1)�N + L(2)�N + : : : (17)are expanded in powers of q. The expli
it expressions for the lowest-order terms read [24℄L(2)� = F 24 Tr���U��Uy + (�yU + Uy�)� ;L(1)�N = Nv ni(vr) + gA(Su)oNv ;L(2)�N = Nv �(vr)2 �r22M0 � igA2M0 �(rS); (vu)	+ 
1Tr�uy�uy + u�yu�+ �
2 � g2A8M0�(vu)2 + 
3 u�u� + �
4 + 14M0�[S�; S� ℄ u�u��Nv (18)with U = u2 = expfi�a�a=Fg, the 
ovariant derivative r� = �� + ��, and�� = 12 �uy��u+ u��uy� = i4F 2 �ab
 �a ���b� 
 +O(�4) ;u� = i�uy��u� u��uy� = � 1F ���a�a + O(�3) : (19)The tra
e Tr and the Pauli matri
es �a refer to isospin spa
e. As is done in 
urrent latti
e QCD
al
ulations, we assume isospin symmetry to be exa
t here, negle
ting the di�eren
e between u- andd-quark masses. The leading-order parameters appearing in (18) are the pion de
ay 
onstant F(normalized to F � 92 MeV) and the nu
leon axial-ve
tor 
oupling gA, both taken in the 
hiral limit.The �eld � implements the expli
it breaking of 
hiral symmetry by the quark masses, and in theisospin limit 
an be repla
ed by �!m2 1l, where m is the bare pion and 1l the unit matrix in isospinspa
e. Estimates of the low-energy 
onstants 
i in the se
ond-order Lagrangian L(2)�N , whi
h are oforder 1=M , 
an be found in [25℄. We note that L(2)�N indu
es 
orre
tions to the nu
leon propagator,whi
h we treat as insertions on a nu
leon line. They read �i �(vl)2 � l2�Æ(2M0) and 4i
1m2, wherel is the residual nu
leon momentum, and are to be multiplied with a nu
leon propagator i=(vl+ i0)from L(1)�N on either side. The pion-nu
leon verti
es following from L(2)�N 
an be found in Appendix Aof [24℄.In the following subse
tion we dis
uss how to 
onstru
t the operators in the e�e
tive theorythat mat
h the twist-two quark operators (3). Nu
leon matrix elements in the Breit frame are thenobtained as [26℄ hp0jOjpi = N 2ZN uv(p0)GO(r0; r) uv(p) ; (20)with the spinors uv and normalization N given in (10) and (11). Here GO(r0; r) is the trun
atedGreen fun
tion for external heavy-baryon �elds Nv, Nv and the operator O in the e�e
tive theory.The residual momenta of the in
oming and outgoing nu
leon are given byr = p�M0v = wv ��=2 ; r0 = p0 �M0v = wv + �=2 (21)5



with w =M(
 � 1) + ÆM = � �28M � 4
1m2 + O(q3) ; (22)where ÆM =M �M0 is the nu
leon mass shift. Finally, ZN is the heavy-baryon �eld renormalization
onstant, ZN = 1� 3m2g2A2(4�F )2 � 9m2g2A4(4�F )2 log m2�2 � 8m2 dr28(�) + O(q3) ; (23)where dr28(�) is a low-energy 
onstant in the Lagrangian L(3)�N . As explained in [27℄ the 
orrespondingoperator is required for renormalization but does not appear in physi
al matrix elements. The valueof dr28(�) 
an therefore be 
hosen freely (with di�erent 
hoi
es resulting in di�erent values for otherlow-energy 
onstants), and in [26℄ it was 
hosen su
h that it 
ompensates the log(m2=�2) term in (23)at the physi
al value of m. Sin
e we are interested in the pion mass dependen
e of matrix elements,we must expli
itly keep the logarithmi
 term in ZN . For further dis
ussion we refer to Se
tion 3.2.3.1 Constru
tion of e�e
tive operatorsWe now dis
uss how to 
onstru
t the isos
alar lo
al twist-two operators in the e�e
tive theory thatmat
h the quark-gluon operators O(a) de�ned in (3) and (4). The relevant operators in the e�e
tivetheory 
an be divided into two groups: operators O� whi
h 
ontain only pion �elds (and 
ouple tothe nu
leon via pion loops) and operators O�N whi
h are bilinear in the nu
leon �eld. The mat
hingof operators thus takes the formO(a) �= O�(a) + O�N (a) ; eO(a) �= eO�N (a) ; (24)where we have taken into a

ount that there is no isos
alar pion operator of negative parity (i.e. noeO�(a)). The pion isos
alar operators O�(a) have been analyzed in several papers [28, 17, 18, 19℄ andwe shall simply use their results.Let us now list the building blo
ks for 
onstru
ting the operators O�N (a) and eO�N (a), whi
h we
olle
tively denote by Q(a), omitting the subs
ript �N for ease of writing. They should be bilinearin the nu
leon �eld and should be tensors that have n indi
es 
ontra
ted with the auxiliary ve
tor aa

ording to (4). To build tensors we have the following obje
ts with Lorentz indi
es at our disposal:the velo
ity ve
tor v�, the spin ve
tor S�, the derivative ��, and the antisymmetri
 tensor �����. Were
all that any Dira
 matrix stru
ture 
an be redu
ed to an expression 
ontaining the spin operatorS�, and that the metri
 tensor g�� 
an be omitted in the 
onstru
tion be
ause the twist-two operatorsare tra
eless. Using the identitiesfS�; S�g = 12(v�v� � g��) ; [S�; S� ℄ = i����� v�S� (25)we 
an impose that S� should appear at most linearly, or quadrati
ally as the 
ommutator [S�; S�℄.Con
erning the derivative ��, we �nd it useful to have it a
ting either on single nonlinear pion �eldsu, uy in the 
ombinations �� or u� given in (19), or as a total derivative on the produ
t of all �elds,or in the antisymmetri
 form �$� = 12(�!� � � �) on the produ
t of all �elds to its right or to its left.This will make it easy to keep tra
k of fa
tors �� in the 
orresponding matrix elements, whi
h playa parti
ular role as we shall see. To give operators with the 
orre
t 
hiral transformation behavior,the derivative �$ must appear in the 
ovariant 
ombination r$� = �$� +��. The �elds and derivativesused in our 
onstru
tion are then any number of u�, r$� and �� = uy�uy�u�yu between the nu
leon�elds Nv and Nv, and any number of total derivatives �� a
ting on the operator as a whole. In thesense of (19) we hen
eforth refer to ��, r$� and u� as \derivatives". They have 
hiral dimension 1,6



whereas �� has 
hiral dimension 2 and will not appear at the order of the 
hiral expansion we limitourselves to.We 
an de
ompose the pion-nu
leon operators Qn(a) asQn(a) = nXk=0Mn�k�1 (av)n�kQn;k(a) ; (26)where Qn;k(a) = a�1 : : : a�k Q�1:::�kn does not 
ontain any fa
tors (av). The k external ve
tors a inQn;k(a) 
an be 
ontra
ted only with derivatives ��, r$�, u� and the spin ve
tor S�, or with theantisymmetri
 tensor. There 
an be at most one fa
tor (aS) as dis
ussed after (25), so that Qn;k(a)has to 
ontain at least k � 1 derivatives. We 
an hen
e write1Qn;k =MQn;k;�1 + Qn;k;0 + 1M Qn;k;1 + : : : ; (27)where the operator Qn;k;i has 
hiral dimension k + i. Note that due to parity the number of fa
torsS�, u� and ����� must be even for O and odd for eO. We remark that the 
ontra
tion of a with the�-tensor involves at least two derivatives, given that we 
hose to repla
e its simultaneous 
ontra
tionwith v� and S� by [S�; S� ℄ using (25). As a 
onsequen
e, the antisymmetri
 tensor does not appearin the operators with lowest 
hiral dimension for a given k.3.2 Tree-level insertionsAt tree level, the matrix elements of the e�e
tive operators between two nu
leon states are easy to
al
ulate. Sin
e u� and �� involve at least one or two pion �elds a

ording to (19), derivatives inthe e�e
tive operators are to be repla
ed as �� ! i��, u� ! 0, and r$� ! �iwv� with w givenin (22). Noti
e that, while generi
ally the derivative r$� 
ounts as O(q) in the 
hiral expansion,the kinemati
s of the external nu
leon momenta for
es wv� to be of order O(q2). As a result, theleading-order 
ontributions of the operator Qn;k to the form fa
tors in (12) 
ome from the terms withmaximum number of fa
tors �� and no fa
tor wv�. With (26) one readily obtainshp0jOn;k(a)jpi LO= (a�)k�1 �uv(p0) h(a�)E(0)n;k + [(aS); (S�)℄M (0)n;k�1i uv(p) ;hp0j eOn;k(a)jpi LO= (a�)k�1 �uv(p0) �2M(aS) eE(0)n;k�1+ (a�)(S�)2M fM (0)n;k�1�uv(p) ; (28)where the supers
ript on ea
h form fa
tor indi
ates the term of order O(q0) in its 
hiral expansion.At this order, the form fa
tors En;k and Mn;k�1 of the ve
tor GPD are related to the matrix elementof the operator On;k;0, sin
e the nu
leon matrix element of the operator On;k;�1 is zero at tree level.As explained above, this operator 
ontains a fa
tor (aS), whi
h due to parity must be a

ompaniedby the axial �eld u� and hen
e does not 
ontribute to tree-level matrix elements without externalpions. For the axial ve
tor GPDs one �nds that the form fa
tor eEn;k�1 (fMn;k�1) re
eives its leading
ontribution from the operator eOn;k;�1 ( eOn;k;1), given the required number of fa
tors �� in (28).Beyond leading order, tree-level insertions 
ontribute to the form fa
tors starting at order O(q2).Contributions proportional to �2 are due to operators with �2 or to a fa
tor w from operators withr$, or to the kinemati
 fa
tors 
 in (12) and N in (20). Contributions proportional to m2 are dueto operators with �+ or with r$ and from the wave fun
tion renormalization 
onstant ZN in (20).1Instead of M one 
ould also use M0 or F in (26) and (27), sin
e all are of the same order in 
hiral power 
ounting.We �nd powers of M most 
onvenient, be
ause they also appear in the form fa
tor de
ompositions (12).7



In the results of the following se
tions we expli
itly in
lude the terms proportional to g2A in theexpansion (23) of ZN , whereas 
ontributions from dr28 are lumped into the 
oeÆ
ients des
ribing them2 
orre
tions due to tree-level insertions.3.3 Loop 
ontributionsLet us now 
onsider a loop diagram with the insertion of the operator Qn(a). One easily �nds thatthe termMn�k�1 (av)n�k Qn;k(a) in the sum (26) 
an 
ontribute to the form fa
tors in (12) whi
h area

ompanied by at least n�k powers of (av), i.e. to En;m, Mn;m�1, eEn;m�1 and fMn;m�1 with m � k.Chiral 
ounting determines whi
h terms 
an 
ontribute to a given order. Namely, the 
ontribution ofthe operator Qn;k;i in a loop diagram has 
hiral dimensionDk;i = 4L+ (k+ i) + N�Xj=1 dimV�(j) + N�NXj=1 dimV�N (j)� 2I� � IN ; (29)where L is the number of loops and (k + i) is the 
hiral dimension of the operator insertion. V�(j)and V�N (j) respe
tively denote the jth vertex from L� and L�N in the graph. N� and N�N arethe 
orresponding total numbers of verti
es, and I� and IN are the numbers of pion and nu
leonpropagators.2 Using the relation L = I� + IN � N� �N�N (see e.g. [24℄) and the fa
t that for ourspe
i�
 diagrams IN = N�N , we 
an rewrite this expression as a sum of positive terms, whi
h makesit easy to identify the di�erent 
ontributions at a given order:Dk;i = 2L� 1 + k + (i+ 1) + N�Xj=1 �dimV�(j)� 2�+ N�NXj=1 �dimV�N (j)� 1� : (30)For ea
h vertex we 
an insert either the lowest or any higher order, i.e. dimV�(j) = 2; 4; ::: anddim V�N(j) = 1; 2; :::. Note that a loop diagram with 
hiral dimension Dk;i generates 
ontributions toa nu
leon matrix element of order O(qd) with d � Dk;i. This is on one hand be
ause of the expli
itfa
tors N and ZN in (20), and on the other hand be
ause the sum r� + r0� = 2wv� is of order O(q2)and thus one order higher than the generi
 power asso
iated with residual nu
leon momenta.The form fa
tors enter a matrix element multiplied by fa
tors (a�) or (S�) as given in (12).Taking these into a

ount, one �nds that the 
hiral 
orre
tion from Qn;k;i to En;m and Mn;m�1 has atleast order Dk;i�m, while for the form fa
tors eEn;m�1 and fMn;m�1 it has at least order Dk;i�m+1and Dk;i �m� 1, respe
tively. This is a main result of our paper and allows one to determine whi
hoperators need to be 
onsidered to 
al
ulate the 
orre
tions to a form fa
tor to a given order in the
hiral expansion. Be
ause Dk;i 
ontains a term k and be
ause of the 
onstraint k�m � 0, the numberof loops and the order of the 
hiral Lagrangian required to 
al
ulate the lowest-order 
orre
tions fora given form fa
tor do not grow with m. Instead, a growing number of fa
tors �� a

ompanying aform fa
tor in the nu
leon matrix element requires a growing number of derivatives in the operatorQn;k .As an appli
ation of our general result we �nd that the form fa
tors En;m andMn;m�1 
an re
eive
orre
tions starting at order� O(q) from one-loop diagrams with insertion of the operator Qn;m;�1 and leading-order (LO)pion-nu
leon verti
es,2Note that a nu
leon propagator 
orre
tion from a higher-order Lagrangian 
ounts as one (nu
leon-nu
leon) vertexwith two nu
leon propagators on either side, see the dis
ussion after (19).8



Table 1: Four-ve
tors and their produ
ts appearing in the numerators of the loop graphs of Fig. 1.NN verti
es (arising from nu
leon propagator 
orre
tions) are not expli
itly shown in the graphs.derivatives in operator insertion �� ��r$� l� and wv�u� l�verti
es �NN at LO Sl�NN at NLO (vl)(Sl)� (vl)(S�)NN at NLO (vl)2 � l2 � l���2=4� O(q2) from the one-loop diagrams with insertion of the operators Qn;m;0 and Qn;m+1;�1 and LOpion-nu
leon verti
es, and from one-loop diagrams with insertion of the operator Qn;m;�1 andone next-to-leading order (NLO) pion-nu
leon vertex or nu
leon propagator 
orre
tion.In turn, the form fa
tor eEn;m�1 re
eives 
orre
tions starting at order O(q2) from one-loop diagramswith leading-order verti
es and insertion of the operator Qn;m;�1. For fMn;m�1 the dis
ussion of
orre
tions up to order O(q2) is more involved and will be given in Se
tion 4.1.To 
on
lude the dis
ussion of power 
ounting, we 
onsider the 
ontribution to the form fa
torsEn;m and Mn;m�1 of loop graphs with the insertion of the pion operators O�(a), see (24). Repeatingthe above argument and taking into a

ount that now IN = N�N � 1, one �nds that su
h diagramshave 
hiral dimensionD� = 2L� 1 + dimO� + N�Xj=1 �dim V�(j)� 2�+ N�NXj=1 �dim V�N(j)� 1� : (31)Given that the leading operator On�(a) 
ontributing to On(a) has the 
hiral dimension n, one �ndsthat it 
an 
ontribute to the form fa
tors En;m and Mn;m�1 starting at order O(qn�m+1). Note thatbe
ause of 
harge 
onjugation invarian
e the isos
alar pion operators On�(a) have even n and thatdue to time reversal invarian
e the form fa
tors En;k and Mn;k vanish for odd k. Together with ourpower-
ounting formula one thus �nds that En;n gets 
ontributions from On�(a) starting at order O(q)and Mn;n�2 starting at order O(q2). All other 
orre
tions from operators O�(a) to form fa
tors En;kand Mn;k start at O(q3).Let us now take a 
loser look at the one-loop graphs with pion-nu
leon operator insertions, whi
hare shown in Fig. 1. With our 
onstru
tion of operators explained in Se
tion 3.1 we 
an readily analyzethe origin of fa
tors ��, whose number determines to whi
h form fa
tor a graph will 
ontribute. Using(v�) = (vS) = 0 and the form (18) of the LO and NLO pion-nu
leon Lagrangian, we �nd that thenumerators of the loop integrals are 
omposed as spe
i�ed in Table 1. The denominators of the pionand nu
leon propagators respe
tively are (l2�m2+ i0) and (lv+w+ i0), so that the loop integrationturns tensors l�1 : : : l�j into tensors 
onstru
ted from v� and g�� . A fa
tor �� that 
an be 
ontra
tedwith a� or S� (i.e. is not 
ontra
ted to �2) 
an hen
e only originate from total derivatives �� inthe operator insertion and from an NLO pion-nu
leon vertex or nu
leon propagator 
orre
tion. Wewill see that this redu
es 
onsiderably the number of operators 
ontributing to the leading 
hiral
orre
tions of nu
leon GPDs. 9
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Figure 1: One-loop graphs with the insertion of a pion-nu
leon operator O�N (a) or eO�N (a), denotedby a bla
k blob. Not shown is the analog of graph 
 with residual momentum l + wv + �=2 of theintermediate nu
leon line.4 Chiral 
orre
tions up to order O(q2)4.1 Axial-ve
tor operatorsUsing the formalism developed in the previous se
tion, we now evaluate the form fa
tors up to relativeorder O(q2). Let us start by giving the operators in eOn;k;i that have the maximum number of totalderivatives �� 
ontra
ted with a� or S�. It will turn out that these are required to produ
e the fa
torsof (a�) and (S�) in the form fa
tor de
omposition (12). With the 
onstraints of parity invarian
e,we �nd eOn;k;�1(a) = ~bn;k (ia�)k�1Nv(aS)Nv + : : : ;eOn;k;1(a) = ~
n;k (ia�)k(i��)Nv S�Nv + : : : ; (32)where the : : : stand for operators with fewer total derivatives. One has eE(0)n;k�1 = ~bn;k=2 and fM (0)n;k�1 =2~
n;k for the tree-level 
ontributions at order O(q0). From the time-reversal 
onstraints on the formfa
tors it follows that the low-energy 
onstants ~bn;k and ~
n;k are zero for even k.As derived in Se
tion 3.3, the leading 
hiral 
orre
tions to eEn;k�1 
ome from one-loop graphs withLO pion-nu
leon verti
es and the operator eOn;k;�1. Sin
e this operator does not 
ontain pion �elds,one needs to 
al
ulate only graph a in Fig. 1. One �ndseEn;k(t) = eE(0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��+ eE(2;m)n;k m2 + eE(2;t)n;k t+ O(q3) ; (33)where the terms going with m2 and t originate from tree-level insertions as dis
ussed at the end ofSe
tion 3.2. Here and in the following we use the subtra
tion s
heme of [14℄ for the loop graphs,subtra
ting 1=� + log(4�) +  (2) for ea
h 1=� pole in 4 � 2� dimensions. The renormalization s
aleis denoted by �, and the � dependen
e of the logarithm in (33) 
an
els against the � dependen
e ofeE(2;m)n;k , whi
h we have not displayed for simpli
ity. Note that the bare parameters m, F , gA 
an berepla
ed with their 
ounterparts at the physi
al point within the pre
ision of our result. Sin
e thenonanalyti
 
orre
tions in (33) are independent of the moment indi
es n and k, they apply to theentire nu
leon GPD eH(x; �; t),eH(x; �; t) = eH(0)(x; �)�1� 3m2g2A(4�F )2 �log m2�2 + 1��+m2 eH(2;m)(x; �) + t eH(2;t)(x; �) +O(q3) : (34)10



Let us now 
onsider the 
hiral 
orre
tions for fMn;k�1. It follows from (12) that the relevantdiagrams have to produ
e a fa
tor (a�)k(S�). By power 
ounting, the form fa
tor fMn;k�1 
ouldre
eive 
orre
tions of order O(q0) from diagrams with LO verti
es and the operator insertion eOn;k;�1.Similarly, 
orre
tions of order O(q) 
ould 
ome from the diagrams with LO verti
es and insertion ofeOn;k+1;�1 or eOn;k;0, and from diagrams with insertion of eOn;k;�1 and one NLO pion-nu
leon vertex ornu
leon propagator 
orre
tion. One �nds no operator in eOn;k;0 that has k or more partial derivatives
ontra
ted with a� or S�, and the same holds of 
ourse for eOn;k;�1. A

ording to our dis
ussion inSe
tion 3.3 the graphs just dis
ussed 
an thus produ
e at most k ve
tors �� (not 
ounting thoseappearing in �2) and hen
e do not 
ontribute to fMn;k�1. At order O(q2) there is a number ofpossibilities:1. graphs with LO verti
es and insertion of eOn;k+2;�1, eOn;k+1;0 or eOn;k;1. The insertion of eOn;k+1;0does not produ
e a suÆ
ient number of fa
tors ��, whereas insertion of eOn;k+2;�1 gives a fa
tor(a�)k+1(aS), whi
h 
ontributes to the form fa
tor eEn;k+1 but not to fMn;k�1. A 
orre
tion tofMn;k�1 is obtained from insertion of the operator eOn;k;1 given in (32), whi
h already provides thetree-level term of this form fa
tor. Only the loop graph in Fig. 1a is nonzero for this insertion,and the result is analogous to the one for the 
ontribution of eOn;k;�1 to eEn;k�1.2. graphs with one NLO vertex or propagator 
orre
tion and insertion of eOn;k+1;�1 or eOn;k;0.Insertion of eOn;k;0 does again not provide enough fa
tors of ��, whereas graphs with eOn;k+1;�1give zero due to time reversal invarian
e. This 
an be seen by dire
t 
al
ulation, or by notingthat fMn;k�1 is only nonzero for odd k, whereas the 
oeÆ
ient ~bn;k+1 is only nonzero for even k,as remarked below (32).3. graphs with insertion of eOn;k;�1 and (i) two loops with LO verti
es, or (ii) one loop with twoNLO pion-nu
leon verti
es or nu
leon propagator 
orre
tions, or (iii) one loop with one NNLOpion-nu
leon vertex or nu
leon propagator 
orre
tion, or (iv) one loop with a pion propagator
orre
tion from L(4)� . The operator insertion provides k � 1 fa
tors of ��, so that two morefa
tors must be provided by the verti
es or propagator 
orre
tions (without being 
ontra
tedto �2). This is not possible in 
ase (i), be
ause the LO pion-nu
leon verti
es only involve pionmomenta and the pion momenta in a two-loop graph 
an be parameterized su
h that they areindependent of � (as in the one-loop graphs of Fig. 1). Likewise, a pion propagator 
orre
tionin 
ase (iv) does not depend on � and 
an therefore not 
ontribute. In 
ases (ii) and (iii) oneobtains nonzero 
ontributions from the graph in Fig. 1a. The NNLO verti
es and propagator
orre
tions follow from the Lagrangian L(3)�N given in [27℄. We �nd that the only term providingthe two required fa
tors of �� is the �NN vertex generated by� gA4M20 Nv n(r S)(ur!) + (r u)(Sr!)oNv : (35)Note that this vertex does not introdu
e a new low-energy 
onstant, similarly to the termproportional to gA in L(2)�N , whi
h generates the �NN 
oupling at NLO. These terms arise fromthe 1=M0 expansion of the leading-order relativisti
 pion-nu
leon Lagrangian N (i =r � M0 +12gA=u
5)N , see e.g. [24℄.Putting everything together, we obtainfMn;k(t) = fM (0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��� eE(0)n;k m2g2A(4�F )2 log m2�2+ fM (2;m)n;k m2 + fM (2;t)n;k t +O(q3) ; (36)11



PSfrag repla
ementswv � �2 wv � �2wv + �2 wv + �2l + wv l + �2l + �2 l � �2l � �2a bFigure 2: One-loop graphs with the insertion of the pion operator On�(a), denoted by a bla
k blob.where the terms going with m2 and t are due to tree-level insertions. With (33), (6) and (14) one 
anwrite for the isos
alar quark GPD eE(x; �; t)eE(x; �; t) = eE(0)(x; �) �1� 3m2g2A(4�F )2 �log m2�2 + 1��� eH(0)(x; �) m2g2A(4�F )2 log m2�2+m2 eE(2;m)(x; �) + t eE(2;t)(x; �) +O(q3) : (37)4.2 Ve
tor operatorsThe analysis of the ve
tor operators pro
eeds along similar lines. The operator On;k;0 readsOn;k;0(a) = bn;k (ia�)kNvNv + 
n;k (ia�)k�1 (i��)Nv [(Sa); S�℄Nv + : : : ; (38)where the : : : denote operators with fewer total derivatives. One �nds E(0)n;k = bn;k andM (0)n;k�1 = �
n;kfor the leading-order tree-level insertions, whi
h implies bn;k = 
n;k+1 = 0 for odd k.A

ording to (12) the graphs that give 
hiral 
orre
tions to En;k or Mn;k�1 must produ
e kfa
tors of �� 
ontra
ted with a� or S�. With the 
onstraints from parity invarian
e one �nds thatthe operator On;k;�1 does not 
ontain terms whi
h have k � 1 or more total derivatives 
ontra
tedwith a� or S�. With the results of Se
tion 3.3 this implies that En;k and Mn;k�1 do not re
eive
orre
tions from pion-nu
leon operator insertions at order O(q), and that 
orresponding 
orre
tionsat order O(q2) 
an only 
ome from the diagram in Fig. 1a with LO verti
es. One �nds that theone-loop 
ontribution to the form fa
tor En;k is 
an
eled by the terms proportional to g2A in the wavefun
tion renormalization 
onstant (23). For the form fa
tor Mn;k one obtains a 
orre
tionM (0)n;k �1� 3m2g2A(4�F )2 log m2�2 � : (39)We note that for n = 1, k = 0 this implies a 
hiral logarithm for the isos
alar magneti
 form fa
torGM;s(t), GM;s(t) = �(0)s �1� 3m2g2A(4�F )2 log m2�2 �+G(2;m)M;s m2 + G(2;t)M;s t +O(q3) ; (40)where �(0)s is the isos
alar magneti
 moment of the nu
leon in the 
hiral limit and where we haveadded analyti
 terms due to tree-level insertions. The form (40) is 
onsistent with the result of therelativisti
 
al
ulation in [29℄. 12



One �nally has to evaluate 
orre
tions due to the diagrams in Fig. 2 with insertion of the pionoperator On�(a), where n is even. We use the representation of this operator given in [19℄,3On�(a) = F 2 n�2Xk=0even ~an;k (ia�)k Tr h(aL) (2ia�$)n�k�2(aL) + (aR) (2ia�$)n�k�2(aR)i (41)with L� = Uy��U and R� = U��Uy. As dis
ussed in Se
tion 3.3, the 
orre
tions to Mn;k startat order O(q2) for k = n � 2 and at higher order otherwise. They are due to diagrams with LOverti
es, so that only the graph in Fig. 2a 
ontributes. This is be
ause the leading-order ��NNvertex 
orresponds to an isove
tor transition of the nu
leon, as follows from (18) and the expansion of� in (19). Combining the result with the 
orre
tion in (39) and adding analyti
 terms from tree-levelinsertions, we obtainMn;k(t) =M (0)n;k �1� 3m2g2A(4�F )2 log m2�2 �+ Æk;n�2M (2;�)n (t) +M (2;m)n;k m2 +M (2;t)n;k t+ O(q3) ; (42)where k is even andM (2;�)n (t) = 3g2A(4�F )2 n�2Xj=0even ~an;n�j�2 Z 1�1 d� � �2��2 �j(1� �2)�m2(�) log m2(�)�2= 3g2A(4�F )2 nXj=2even2�jj(j � 1)A�(0)n;n�j Z 1�1 d� �j�2m2(�) log m2(�)�2 (43)with m2(�) = m2 � t4 (1� �2) : (44)Here A�(0)n;k is the 
hiral limit of the form fa
tors A�n;k(t) des
ribing the moments of the pion isos
alarGPD, Z 1�1 dx xn�1HI=0� (x; �; t) = nXk=0even(2�)kA�n;k(t): (45)The relation to the low-energy 
onstants ~an;k reads [19℄A�(0)n;k = 2n�k h~an;k�2 � ~an;ki ; (46)whi
h implies~an;n�k = � nXj=keven2�jA�(0)n;n�j for k > 0 ; nXj=0even2�jA�(0)n;n�j = 0 : (47)The 
orre
tions to En;k start at order O(q) for k = n and at order O(q3) or higher otherwise. At one-loop order we obtain O(q) 
orre
tions to En;n from graphs involving only LO verti
es. Corre
tions of3Note that the normalization of the twist-two operators (3) used here di�ers from that in [19℄ by a fa
tor of 2. The
oeÆ
ients ~an;k have the same normalization here and in [19℄.13



order O(q2) involve either graphs with one NLO vertex or propagator 
orre
tion, or graphs with LOverti
es and the subleading part wv of the residual nu
leon momenta, see the dis
ussion after (30).Our �nal result in
luding analyti
 terms from tree-level insertions isEn;k(t) = E(0)n;k + Æn;khE(1;�)n (t) + E(2;�)n (t)i +E(2;m)n;k m2 +E(2;t)n;k t +O(q3) ; (48)where the order O(q) 
orre
tion readsE(1;�)n (t) = �M(2m2 � t) 3�g2A8(4�F )2 n�2Xj=0even ~an;n�j�2 Z 1�1 d� �j(1� �2)m(�)=M(2m2 � t) 3�g2A8(4�F )2 nXj=2even 2�j A�(0)n;n�j Z 1�1 d� 1� �jm(�) ; (49)and the order O(q2) term isE(2;�)n (t) = 3m2g2A(4�F )2 log m2�2 n�2Xj=0even ~an;n�j�2+ 6(4�F )2 n�2Xj=0even~an;n�j�2 Z 1�1 d� �j(1� �2)(g2A32 �2t�log m2(�)�2 + 1�� (t� 2m2)2m2(�) �+M �
1m2�log m2(�)�2 + 1�� 34
2m2(�) log m2(�)�2 � 
3m2(�)�log m2(�)�2 + 12��)=� 3m2g2A2(4�F )2 log m2�2 nXj=2even2�jj A�(0)n;n�j� 6(4�F )2 nXj=2even2�j A�(0)n;n�j Z 1�1 d� (1� �j)(g2A32 �2t�log m2(�)�2 + 1�� (t� 2m2)2m2(�) �+M �
1m2�log m2(�)�2 + 1�� 34
2m2(�) log m2(�)�2 � 
3m2(�)�log m2(�)�2 + 12��)(50)The integrals over � in (43), (49) and (50) are elementary, but we have not found a simple 
losed formof the result for general n. In the next se
tion we give expli
it results for the values and derivativesat t = 0 of the form fa
tors.Our result for the form fa
tor fMn;k(t) disagrees with [30℄, where it was taken for granted thatthe only operators whi
h 
ontribute at order O(q2) are those whi
h already appear at tree-level inthe same form fa
tor. As our analysis shows, this holds indeed in many 
ases but not in all. For allother form fa
tors our results agree with [30℄ where 
omparable.4 For n = 2 our results for the ve
toroperators also agree with those of Belitsky and Ji [21℄.54Note that [30℄ gives the 
orre
tion to En;n at order O(q) but not at order O(q2).5When 
omparing results, one must take into a

ount that [21℄ uses MS renormalization, where for ea
h pole in 4�2�dimensions one subtra
ts 1=� + log(4�) +  (1), whereas we use the s
heme of [14℄ and subtra
t 1=�+ log(4�) +  (2).14



5 Results for moments of GPDsWe now transform the results of the previous se
tion to the basis of the form fa
tors An;k, Bn;k, Cnand eAn;k, eBn;k 
orresponding to moments of GPDs in the 
onventional parameterization. We givethe values and derivatives of these form fa
tors at t = 0, whi
h allows us to obtain 
losed expressions.Furthermore, these quantities are of most immediate interest in studies of GPDs on the latti
e.With our results (33), (36), (42), (48) and the 
onversion formulae (13), (14) one obtains for theform fa
tors at t = 0eAn;k(0) = eA(0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��+ eA(2;m)n;k m2 + O(m3) ;eBn;k(0) = eB(0)n;k �1� 3m2g2A(4�F )2 �log m2�2 + 1��� eA(0)n;k m2g2A(4�F )2 log m2�2 + eB(2;m)n;k m2 +O(m3) ;An;k(0) = A(0)n;k +A(2;m)n;k m2 + O(m3) ;Bn;k(0) = B(0)n;k � �A(0)n;k + B(0)n;k� 3m2g2A(4�F )2 log m2�2 + Æk;n�2M (2;�)n (0) + B(2;m)n;k m2 +O(m3) ;Cn(0) = C(0)n +E(1;�)n (0) + E(2;�)n (0) + C(2;m)n m2 + O(m3) (51)with 
oeÆ
ients related to those in Se
tion 4 by eA(0)n;k = eE(0)n;k, eB(0)n;k = fM (0)n;k � 12 eE(0)n;k, A(0)n;k = E(0)n;k,B(0)n;k = M (0)n;k � E(0)n;k, C(0)n = E(0)n;n and by analogous relations for the 
oeÆ
ients with super-s
ript (2; m). Setting m, gA, F to their physi
al values and 
hoosing � = M , one �nds that the
orre
tions from loop graphs with nu
leon operator insertions in (51) are moderately large, with3m2g2A (4�F )�2 [ log(m2=�2) + 1℄ � �0:20 and m2g2A (4�F )�2 log(m2=�2) � �0:09. In the 
ase ofBn;k this loop 
orre
tion 
an be substantial if jBn;kj � jAn;kj, whi
h is empiri
ally found for theele
tromagneti
 form fa
tors (i.e. the 
ase n = 1) and also in latti
e evaluations [9℄ for the momentswith n = 2. The 
ontributions to Bn;n�2(0) and Cn(0) from loop graphs with pion operator insertionsareM (2;�)n (0) = 6m2g2A(4�F )2 log m2�2 nXj=2even2�jj A�(0)n;n�j ;E(1;�)n (0) = 3�mMg2A2(4�F )2 nXj=2even2�j jj + 1 A�(0)n;n�j ;E(2;�)n (0) = � 3m2g2A2(4�F )2 log m2�2 nXj=2even2�jj A�(0)n;n�j+ 12m2(4�F )2 �g2A8 �M �
1�log m2�2 + 1�� 34
2 log m2�2 � 
3�log m2�2 + 12��� nXj=2even2�j jj + 1 A�(0)n;n�j :(52)Setting M , m, gA, F to their physi
al values, 
hoosing � = M , and taking the estimates 
1 ��0:9 GeV�1, 
2 � 3:3 GeV�1, 
3 � �4:7 GeV�1 from [25℄ we �nd M (2;�)2 (0) � �0:27A�(0)2;0 andE(1;�)2 (0)+E(2;�)2 (0) � (0:12+ 0:17)A�(0)2;0 . At the physi
al point, the order O(m) 
orre
tion is hen
e15



not very large. The full size of the order O(m2) 
orre
tions depends of 
ourse on the analyti
 termsin (51), whose values are not known.The derivatives of the form fa
tors at t = 0 obtain nonanalyti
 
ontributions only from the pionoperator insertions. Writing �tA(0) = � ��tA(t)� t=0 et
. we have�t eAn;k(0) = eE(2;t)n;k +O(m) ;�t eBn;k(0) = fM (2;t)n;k � eE(2;t)n;k Æ2� eE(0)n;kÆ(32M2) + O(m) ;�tAn;k(0) = E(2;t)n;k � �M (0)n;k �E(0)n;k�Æ(4M2) + O(m) ;�tBn;k(0) = Æk;n�2 �tM (2;�)n (0) +M (2;t)n;k �E(2;t)n;k + �M (0)n;k � E(0)n;k�Æ(4M2) +O(m) ;�tCn(0) = �tE(1;�)n (0) + �tE(2;�)n (0) + E(2;t)n;n +E(0)n;nÆ(4M2) +O(m) (53)with�tM (2;�)n (0) = � 3g2A(4�F )2 �log m2�2 + 1� nXj=2even 2�j jj + 1 A�(0)n;n�j ;�tE(1;�)n (0) = � Mm �g2A8(4�F )2 nXj=2even2�j j (5j + 14)(j + 1)(j + 3) A�(0)n;n�j ;�tE(2;�)n (0) = � 3g2A4(4�F )2 �log m2�2 + 3� nXj=2even2�j jj + 1 A�(0)n;n�j+ 2(4�F )2 �g2A8 +M �
1 � 34
2�log m2�2 + 1�� 
3�log m2�2 + 32��� nXj=2even2�j j (j + 4)(j + 1)(j + 3) A�(0)n;n�j :(54)Note that in the 
hiral limit the derivative �tBn;n�2(0) � �tM (2;�)n (0) diverges as log(m2=�2) and�tCn(0) � �tE(1;�)n (0) as 1=m. With the parameters spe
i�ed above, one �nds �tM (2;�)2 (0) �1:7 GeV�2A�(0)2;0 and �tE(1;�)2 (0) + �tE(2;�)2 (0) � �(2:5 + 1:2) GeV�2A�(0)2;0 . Numeri
ally, the term�tE(1;�)n (0) is thus important but not extremely large at the physi
al point.6 SummaryUsing heavy-baryon 
hiral perturbation theory, we have 
al
ulated the 
hiral 
orre
tions up to orderO(q2) for the form fa
tors whi
h parameterize moments of nu
leon GPDs. We have restri
ted ourselvesto ve
tor and axial-ve
tor quark distributions in the isosinglet 
ombination. Our results generalizetrivially to the 
orresponding gluon GPDs, whi
h have the same quantum numbers and therefore thesame 
orresponding operators in the e�e
tive theory (ex
ept for the values of the mat
hing 
onstants).Our method is also appli
able to operators of di�erent tensor or 
avor stru
ture.The moments of GPDs 
ontain terms of di�erent order in 1=M , ranging fromMn�1 toM�1. Wehave shown that, due to the way in whi
h fa
tors v� and �� arise in the 
al
ulation, the number ofloops and the order in the expansion of the e�e
tive Lagrangian required to 
al
ulate a form fa
tor toa given order O(qd) does not grow with the number of fa
tors �� that a

ompany the form fa
tor in16



the nu
leon matrix element. A general power-
ounting formula is given after (30). In the 
ase of theform fa
tors fMn;k(t), 
al
ulation of the order O(q2) 
orre
tion requires the pion-nu
leon Lagrangianup to third order.We have found that the form fa
tors eEn;k(t) and fMn;k(t) re
eive 
orre
tions of order O(q2) whi
h,apart from analyti
 terms, are independent of the moment indi
es and independent of t. The sameholds for the one-loop 
orre
tions toMn;k(t) with k < n�2, whereas the 
orresponding 
orre
tions forEn;k with k < n are zero. The form fa
torsMn;n�2 re
eive additional 
orre
tions at order O(q2) fromone-loop graphs with the insertion of pion operators, and En;n re
eives 
orresponding 
ontributionsstarting at order O(q).For the form fa
tors parameterizing moments of isos
alar GPDs, we �nd that Bn;k, eAn;k andeBn;k at t = 0 re
eive nonanalyti
 
orre
tions of the form m2 log(m2=�2) from loops with nu
leonoperator insertions. No su
h 
orre
tions are found for An;k and Cn. The form fa
tors Bn;n�2 at t = 0re
eive in addition m2 log(m2=�2) 
orre
tions from loop graphs with pion operator insertions, andthe 
orresponding nonanalyti
 
ontributions to Cn give a term proportional to m. To leading 
hiralorder, loop graphs with pion operator insertions are the only sour
e of nonanalyti
 m2 dependen
efor the derivatives of the form fa
tors at t = 0. The derivative of Mn;n�2 diverges like log(m2=�2) inthe 
hiral limit, and the derivative of Cn like 1=m.A
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