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tWe investigate 
hiral symmetry breaking and 
olor symmetry breaking in QCD. The ef-fe
tive potential of the 
orresponding s
alar 
ondensates is dis
ussed in the presen
e ofnon-perturbative 
ontributions from the semi
lassi
al one-instanton se
tor. We 
on
en-trate on a 
olor singlet s
alar ba
kground whi
h 
an des
ribe 
hiral 
ondensation, as wellas a 
olor o
tet s
alar ba
kground whi
h 
an generate mass for the gluons. Whereas anon-vanishing singlet 
hiral �eld is favored by the instantons, we have found no indi
ationfor a preferen
e of 
olor o
tet ba
kgrounds.



1 Introdu
tionInstantons, being pseudo-parti
les asso
iated with tunneling pro
esses, generate genuinenon-perturbative e�e
ts in QCD. In the seminal work of 't Hooft [1℄ it was realized thatthey mediate an e�e
tive intera
tion between (light) quarks [1, 2, 3, 4, 5, 6, 7, 8℄. This\instanton intera
tion" is attra
tive in the 
olor singlet 
hannel; hen
e, instantons pre-sumably play a role in the me
hanism of 
hiral symmetry breaking [9, 10, 11℄. In addition,they also provide for an intera
tion in 
olor o
tet 
hannels or in 
olor triplet and sextet\diquark" 
hannels. Mean-�eld 
omputations based on a point-like instanton intera
tionhave been employed as a 
entral tool for investigations of 
olor super
ondu
tivity at highbaryon density [12, 13, 14, 15, 16℄, or for a des
ription the baryon and meson spe
trum andintera
tions in the va
uum in a Higgs pi
ture with spontaneous 
olor symmetry breaking[17, 7, 18℄. This phenomenologi
ally quite su

essful s
enario requires a quark{anti-quark
ondensate in the 
olor o
tet 
hannel, giving rise to the question as to whether instantonssupport quark 
ondensation in this 
hannel.Symmetry breaking by a 
ondensation phenomenon requires an intera
tion that lowersthe free energy if 
ondensates are formed. The bosoni
 
ondensates 
an be quark bilinearsor even higher-order 
omposites. In the 
ase of instantons, a ri
h intera
tion stru
ture isindeed provided: for Nf light quarks, instantons typi
ally indu
e an intera
tion between2Nf quark �elds, whi
h 
an be paired in many ways. This is one of the reasons whyinstanton-indu
ed multi-fermion intera
tions have often been used as a starting pointfor investigations in the mean-�eld approximation. However, in the approximation ofa point-like multi-fermion intera
tion, mean-�eld theory is ambiguous: by means of aFierz transformation, the quarks 
an be grouped in di�erent ways. For example, prod-u
ts involving 
olor non-singlet Lorentz s
alars 
an be ex
hanged by produ
ts of 
olorsinglets in ve
tor or tensor representations of the Lorentz group and vi
e versa. In viewof this ambiguity, the relative strength between 
olor o
tet and singlet 
hannels remainsundetermined, sin
e the 
olor o
tet 
hannels 
an be 
ompletely removed or enhan
ed bysuitable re-orderings [19℄. Similar problems arise for the other 
olored 
hannels used inthe high-density 
omputations.For further progress towards reliable 
omputations, the Fierz ambiguity of the mean-�eld 
omputation has to be resolved. This 
an be done in di�erent ways. A �rst possibilityexpli
itly in
ludes the 
u
tuations of 
omposite bosons after partial bosonization. Then,the dependen
e on the parti
ular 
hoi
e of bosonization (Fierz ambiguity) gets substan-tially redu
ed, as demonstrated by fun
tional renormalization group te
hniques [20℄. Ase
ond approa
h attempts to resolve the ambiguity by expli
itly taking the momentumdependen
e of the instanton-indu
ed vertex into a

ount. Finally, we propose a thirdmethod in this arti
le that avoids altogether the use of the multi-fermion vertex andrather 
omputes dire
tly the instanton 
ontribution to the free energy in the presen
e ofsele
ted 
ondensates. The various approa
hes have di�erent strengths and short
omings,and a reliable pi
ture will probably only emerge by a 
ombination of them.The advantage of a study of the momentum dependen
e of the instanton-indu
ed1



vertex is based on the observation that pole-like stru
tures whi
h arise from the e�e
tiveex
hange of quark{anti-quark or quark{quark bound states 
an be asso
iated to the given
hannel of the bound state. In 
ontrast to a point-like intera
tion, su
h pole stru
tures 
anno longer be moved to another 
hannel by Fierz reordering. Momentum-dependent vertexfun
tions 
an be dealt with using fun
tional methods, su
h as Dyson-S
hwinger equations,NPI e�e
tive a
tions, fun
tional renormalization group (RG) or suitable 
ombinations. Inparti
ular, we envisage the fun
tional RG as a promising approa
h towards a quantitativestudy for the 
ondensation phenomena at hand, for reviews see [21, 22, 23, 24℄. The
omputation of the 
ow equations involves only a narrow momentum range around agiven renormalization s
ale k, thus redu
ing the impa
t of an in
omplete knowledge ofthe detailed momentum dependen
e of the full propagators and verti
es; see, e.g., [25,26, 27, 24, 28℄. Its appli
ation to the present problem requires an implementation for thenon-perturbative se
tor of gauge theories, e.g. [21, 29, 25, 30, 31, 26, 27℄, also employingbosonization te
hniques as developed in [32, 33, 20, 34, 24℄, or NPI- and NPPI-
owsas dis
ussed in [23, 35, 36, 24℄. In parti
ular, the Fierz-type ambiguity of the presentproblem 
an be resolved within a 2PPI-e�e
tive-a
tion approa
h, sin
e all possible (lo
al)fermioni
 pairings are e�e
tively taken into a

ount by this approa
h [19℄.In this work, we 
onsider a more dire
t approa
h to instanton-indu
ed 
olor symme-try breaking by taking advantage of the following observation: possible 
ondensates 
anbe viewed as ba
kground �elds that are 
oupled to quarks and gluons via Yukawa andgauge intera
tions. We 
on
entrate here on s
alar 
olor singlet and o
tet 
ondensates.In presen
e of a singlet 
ondensate, all three light quarks be
ome massive, thus in
u-en
ing the weight of the fermion determinant in the instanton 
al
ulation. Additionalo
tet 
ondensates indu
e a mass split between an o
tet of fermions (here asso
iated withthe baryon o
tet) and a singlet. Furthermore, all gluons a
quire mass through the Higgsme
hanism. Both e�e
ts modify the instanton 
ontribution to the free energy. In parti
-ular, the e�e
tive 
ondensate-dependent gluon mass a
ts as an e�e
tive infrared 
uto�,strongly suppressing the 
ontribution of instantons of size larger than the inverse gluonmass. Furthermore, the infrared 
uto� stops the running of the gauge 
oupling su
h thatthe gauge 
oupling remains small for suÆ
iently large o
tet 
ondensates, and perturbationtheory be
omes appli
able. By 
omputing the instanton 
ontribution to the free energyin presen
e of the 
ondensates, we get a

ess to those parts of the e�e
tive potential thatviolate the axial U(1)A symmetry. Under the hypothesis that these parts dominate theo
tet dependen
e of the potential, we may try to draw 
on
lusions if the minimum o

ursfor vanishing or non-vanishing o
tet 
ondensate. Our 
omputation of this response isbased on two theoreti
al 
on
epts: on the one hand, the full fun
tional integral is evalu-ated in the semi
lassi
al one-instanton approximation. On the other hand, the de
ouplingof massive modes is taken 
are of by a proper threshold behavior of the running 
oupling,as it is suggested by the fun
tional RG.Our method needs assumptions how the non-vanishing singlet and o
tet 
ondensatesin
uen
e the masses of quarks and gluons. In pra
ti
e, this is done by an ansatz for thee�e
tive a
tion whi
h des
ribes the 
ouplings of quarks and gluons to the 
olor singlet ando
tet 
ondensates. Apart from the restri
tions imposed by 
olor and 
avor symmetry, the2



details of this e�e
tive a
tion are not known. This is one of the most severe restri
tions onthe quantitative reliability of our 
omputation. Nevertheless, the qualitative features ofmass generation for quarks and gluons 
an be 
aptured in a simple pi
ture. We 
onsiderhere a lo
al intera
tion with low powers of the 
ondensates, in parti
ular the 
hiral 
olorsinglet s
alar �ab with 
avor indi
es a; b; : : : and the 
olor o
tet s
alar �ab;ij with non-trivial stru
ture for 
avor and 
olor (i; j; : : : ). Our ansatz for the intera
tions betweenthe 
ondensate �elds, quarks and gluons 
an be summarized in the following Eu
lideane�e
tive Lagrangian [18℄,L = iZ � iD=ij  j + 12 F ��ij Fji;�� (1.1)+Z� tr f(D��)yij(D��)ijg+ Z� tr f���y���g�iZ � i�(h�Æij + ~h�ij)1 + 
52 + (h�yÆij + ~h�yji)1� 
52 � j+U0(�; �):Here, we have in
luded all power-
ounting relevant and marginal intera
tion operators aswell as an e�e
tive potential for the ba
kground �elds for 
ompleteness. In Eq. (1.1), wetreat � and �ij as 3 � 3 matri
es in 
avor spa
e and 
ontra
t over the 
avor indi
es ofthe quarks. A su

essful phenomenology of QCD based on an e�e
tive Lagrangian of thisform has been worked out in [17, 18, 38℄.Obviously, the reliability of our 
on
lusions will depend on whether the ansatz (1.1)gives a qualitatively 
orre
t pi
ture for the response to non-vanishing 
ondensates. Wetherefore present a few additional arguments for its motivation. Asso
iating the 
on-densates �; � with 
orresponding fermion 
omposites � �  , the intera
tions of the typespe
i�ed in Eq. (1.1) arise naturally from fundamental QCD, as 
an be studied with te
h-niques developed in [32, 33, 20, 36, 34℄. In parti
ular, box diagrams of the type shown inFig. 1 play an important role. In this work, we 
hoose the viewpoint that these e�e
tiveintera
tions are present in the dominant momentum region for the instanton 
ontribution,being generated by U(1)A-preserving intera
tions, also partly at higher momentum s
ales.We do not attempt here to 
ompute the parameters appearing in the e�e
tive a
tion (1.1)ex
ept for the gauge 
oupling. For a qualitative study, we treat the Yukawa 
ouplingsh; ~h as well as the wave fun
tion renormalization fa
tors Z , Z�, Z� as free parameters.In presen
e of non-vanishing ba
kground �elds � 
hiral symmetry is broken, whereas� a
ts like the Higgs s
alar, giving masses to gluons and quarks. For the present purpose,it suÆ
es to investigate in detail the following two dire
tions in �eld spa
e:�ab = �Æab; �ab;ij = 1p6�(ÆiaÆjb � 13ÆijÆab): (1.2)These 
on�gurations 
orrespond to the 
ondensates of standard 
hiral symmetry breakingand a 
olor-
avor lo
ked [37℄ 
ombination of quarks and anti-quarks, respe
tively. In thisba
kground, all fermions aquire mass,M1 = h� + 83p6~h�; M8 = h� � 13p6~h�; (1.3)3



+ ! !Figure 1: Box diagrams with fundamental QCD intera
tions (left two diagrams) generatee�e
tive (nonlo
al) four fermion intera
tions (middle). Using rebosonization [32℄ these 
anbe translated to (approximately lo
al) Yukawa intera
tions intera
tions with propagating
omposite bosons (right).with a split between the o
tet mass M8 and the singlet mass M1 for � 6= 0. The fermiondeterminant in the instanton 
ontribution depends only on M8 and M1. We use thefreedom of s
aling of the �elds � and � to set h = ~h = 1. In this normalization, �and � are dire
tly related to the masses. In the Higgs pi
ture of the QCD va
uum, theexpe
tation value forM8 should be asso
iated with the mass of the lowest baryon o
tet andM1 with a baryon singlet, possibly �(1405), yielding [39℄M8 = 1:15GeV,M1 = �1:4GeVor �0 = 866MeV, �0 = �2:08GeV. In our approa
h, we treat � and � as free variables.The o
tet 
ondensate in (1.3) provides for an equal mass for all eight gluons,Mg = Z1=2� gj�j: (1.4)Here, g is the renormalized 
oupling taken at an appropriate s
ale. The � dependen
e ofg will be dis
ussed in detail below. Then Z� remains the only undetermined parameterof our ansatz. The phenomenologi
al ansatz of [18, 39℄ asso
iates Mg with the averagemass of the lowest spin-one meson o
tet, Mg ' 850MeV and suggests Z1=2� ' 1=15.The paper is organized as follows. In Se
t. 2, we dis
uss the various e�e
ts of thequark and gluon masses on the instanton integral. In the subsequent Se
t. 3, we dis-
uss the asymptoti
 behavior of the instanton 
ontribution to the free energy. In Se
t.4, we investigate whi
h 
ondensate ba
kgrounds are preferred by the instantons. Our
on
lusions are presented in Se
t. 5.2 E�e
tive potential in one instanton approximationConsider a given ba
kground of s
alar �elds � and �, as introdu
ed above. Our aim is to
ompute the instanton 
ontribution to the e�e
tive potential for � and � in the presen
eof 
u
tuating quarks and gluons. For homogeneous � and �, the e�e
tive a
tion � thusde
omposes into�[�; �℄ � 
U(�; �) = 
 �U0(�; �) + Uinst(�; �) + U�inst(�; �)�; (2.1)where 
 denotes the spa
etime volume. The non-anomalous 
ontribution U0(�; �) 
on-serves the axial U(1)A symmetry and will not be 
omputed here. The anomalous 
ontri-4



bution Uinst is indu
ed by 
on�gurations with non-trivial topology, mediating also U(1)Aviolation [40℄. We determine this part in semi-
lassi
al approximation based on instan-ton methods. In parti
ular, we resort to the approximation of a gas of dilute instantonsin whi
h Uinst. 
an be expressed by an integral over the instanton size � and the prod-u
t of gluoni
 (in
l. ghosts) and fermioni
 
u
tuation determinants in a one-instantonba
kground (see Appendix A),Uinst = � 1
 Z 10 d� exp(�8�2=g2(�))�gl(�; �) det M ;ij: (2.2)Here, the exponential fa
tor re
e
ts the 
lassi
al a
tion of the instanton, and �gl sum-marizes the 
ontributions from gluons and ghosts in the instanton ba
kground. The lastfa
tor, with M ;ij = �D= ij + �Æij + �ij; (2.3)represents the fermion determinant whi
h is of 
entral interest to our work. In parti
ular,it 
ontains the zero modes of the Dira
 operator whi
h are responsible for anomalous
ontributions and give rise to a strong � and � dependen
e even for small values of these�elds.It is useful to de
ompose Eq. (2.2) into a fa
tor �z(�; �; �) arising from the fermioni
zero modes, and another non-zero-mode fa
tor �n(�; �; �) that summarizes all remaining(
lassi
al, gluoni
, fermioni
) 
ontributions:Uinst(�; �) = �Z d� �n(�; �; �) �z(�; �; �): (2.4)All 
ontributions have been studied frequently in the literature, beginning with the seminalwork of 't Hooft [1℄. As important new aspe
ts, we in
lude the 
olor o
tet s
alar and takethe threshold behavior due to de
oupling of massive modes into a

ount.2.1 Lowest order in the ba
kground �eldsAssuming that � and � are small 
ompared to all other s
ales, their main in
uen
e arisesfrom the zero-mode 
ontribution. In parti
ular, the non-zero-mode fa
tor �n does notdepend on the s
alar �elds to lowest order. For an SU(N
) gauge theory with Nf 
avors,�n reads1 [1℄, �n(�) = DS��5� 8�2g2(�)�2N
 exp�� 8�2g2(�)� : (2.5)Here, DS is a s
heme-dependent 
onstant. A dis
ussion of the s
heme dependen
e in
lud-ing the di�eren
e between massive and massless regularization s
hemes 
an be found inAppendix B. Our s
heme has been motivated by the fun
tional RG whi
h generi
ally1In Appendix C, we brie
y review the 
ontributions from the zero and the non-zero modes startingfrom results given in [1, 41℄. Moreover, we use this appendix to introdu
e our regularization s
heme.5



provides for mass-dependent s
hemes that automati
ally a

ount for a proper de
ouplingof massive modes. This is a 
onvenient feature of our RG-inspired s
heme; however, weobserve no qualitative s
heme dependen
ies of our results. For example, to zeroth or-der in the �elds, DS in our RG regularization s
heme is given by (see [42, 43, 40℄ andAppendix C)DRG = DMS = 2 exp(56)�2(N
 � 1)!(N
 � 2)! exp(�1:51137N
+0:29175Nf) = 6:005�10�3 ; (2.6)where the last equality holds for N
 = Nf = 3.As dis
ussed in the Appendi
es B, C, our RG s
heme is 
onstru
ted su
h that itmat
hes the MS s
heme in the small mass limit. It was demonstrated in [44℄ that theMS s
heme gives satisfa
tory agreement with latti
e data in the ultraviolet. Without a
olor-
avor mixing mass matrix (� = 0), the eigenmodes of D= are also eigenmodes of M and we are led to [1, 6℄�z(�; �; �) = hhdet 
avorh 0(a; i)jM ;ijj 0(b; j)iiSU(3) =: ��NfV (�; �); (2.7)where the inner angled bra
kets denote the s
alar produ
t of the zero modes  0, andthe outer angled bra
kets denote a group average over all possible dire
tions for theinstanton in 
olor spa
e. In the last step, we have separated o� the simple � dependen
e� �Nf and de�ned the auxiliary potential V (�; �). We have also used the persisten
e of(quasi-)zero modes in the presen
e of the regularization [6℄. For � 6= 0, D= and M donot 
ommute in general, e.g. for 
ondensates � with (1.2). The eigenmodes of D= and M do not agree anymore for � 6= 0. Therefore, stri
tly speaking, Eq. (2.7) does not hold ingeneral. However, in leading order of an expansion in � and � it holds true, as shown inAppendix D. Inserting these �ndings into Eq. (2.4), we obtainUinst(�; �) = V (�; �)Z d� �Nf�n(�) =: � V (�; �): (2.8)For Nf < 4, � is a �nite number for physi
ally admissible running 
ouplings from the UVto the IR as dis
ussed in Appendix E. For small � and �, the potential V (�; �) 
arriesall dependen
e on the s
alar 
ondensates.So far our dis
ussion has made no use of a spe
i�
 
olor or 
avor stru
ture for theba
kground �elds. Let us now spe
ialize to the 
ondensates spe
i�ed in Eq. (1.2). Usingthe gauge-group averages 
omputed in [2℄ we �nd (see Appendix D for details)V (�; �) = ��3 + 172��2 + 1648p6�3 = �(� + 16p6�)2(� � 13p6�): (2.9)In this 
rude approximation where U(�; �) = �V (�; �) with � being a �eld-independent
onstant, we observe two 
at dire
tions, � = � 16p6� and � = 13p6�, but no global min-imum. In fa
t, V (�; �) is unbounded from below, similar to the �ndings in [19℄. In thepresent 
ase, this simply signals the breakdown of the approximation of small � and �.6
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Figure 2: S
hemati
 plot of V (�; �) at �xed � > 0. Without higher-order 
orre
tions,the potential is unbounded from below (solid line) with a lo
al minimum at � = 0. Ifthe 
uto� me
hanism provided by the higher-order 
orre
tions is strong (dotted line) theglobal minimum remains at � = 0. However, if the suppression sets in only at rather largevalues of � (dashed line) we have a global minimum at � 6= 0 in addition to a lo
al oneat � = 0.Let us assume for a moment that the potential be
omes stable beyond this approxi-mation or by the in
lusion of U0(�; �) (
f. Eq. (2.1)). Then one might spe
ulate that the�rst 
at dire
tion, � = � 16p6�, whi
h is a line of lo
al minima for � < 0, 
hara
terizes aglobal minimum (the se
ond 
at dire
tion is not even a lo
al minimum). However, in this
ase, the ratio r = �������� = 16p6 � 0:068 is far from the phenomenologi
ally reasonable ranger � 0:4 [39℄. Sin
e V is 
ompletely determined by the zero modes of the massless Dira
operator, this 
at dire
tion will not be lifted by the in
lusion of higher order 
orre
tionsin the bosoni
 �elds in the 1-instanton approximation, as long as the split into zero- andnon-zero-mode parts remains justi�ed. A similar 
at dire
tion was also found in [19℄.Let us furthermore assume that, for instan
e, U0 indu
es a nonzero VEV for �. Sin
eV (�; �) prefers a positive �, the resulting potential V (�; �) in the � dire
tion looks likethe solid line sket
hed in Fig. 2. The 
ase of no 
olor o
tet 
ondensate, � = 0, thenis a lo
al minimum. For larger �, the higher-order 
orre
tions from the non-zero-mode
ontribution and the threshold e�e
ts will set in, stabilizing the potential in � dire
tion.Now it is a dynami
al question as to whether this stabilization sets in early, i.e., for rathersmall �, su
h that no other minimum is indu
ed (dotted line). Or stabilization 
ould onlymodify the region of large � (dashed) line, su
h that the �3 term of Eq. (2.9) wins out inbetween and indu
e a 
olor o
tet 
ondensate.The se
ond s
enario of 
olor o
tet 
ondensate formation seems more diÆ
ult to berealized, sin
e the � �3 term and the � ��2 are of opposite sign and the 
oeÆ
ient of the�3 term is rather small. Unfortunately, the small 
oeÆ
ients in front of ��2 and �3 in thepotential (2.9) will limit even the qualitative reliability of our investigation. As an e�e
tof the 
olor averaging, the potential in the � dire
tion is almost 
at for a given value of�, in 
ontrast to the pronoun
ed potential in the � dire
tion. For a given �, the weakdependen
e of V on the \dire
tion" �=� 
ould easily be overwhelmed by 
orre
tions inhigher orders in � and � that are mu
h more diÆ
ult to 
ontrol. Despite this 
aveat, aquantitative analysis remains interesting and will be presented in the next se
tions.7



Let us 
lose this lowest-order 
onsideration with the remark that � and �, in general,are 
omplex �elds. However, 
omplex �eld values typi
ally lead to large CP violation,making them phenomenologi
ally una

eptable; this is the reason why we restri
ted ouranalysis to real �eld values. If a non-trivial phase between the o
tet and singlet 
onden-sates is favored in 
ase of non-vanishing j�j, this may lead to an argument against theformation of 
olor o
tet 
ondensates in general. In order to demonstrate this point weassume for a moment that the e�e
tive potential for the relative phase between � and �is dominated by the small �eld instanton 
ontribution U � �V (�; �). Then, real positivevalues of � would be preferred due to the instanton 
ontribution. This would in turnlead to a positive \mass term" � �2 (
f. Fig. 5(b)), originating from the ��2 term in(2.9); for imaginary � = ij�j, this turns into ��j�j2. Combining this with the small �3term, the relative minimum of V (�; �) for �xed � > 0; j�j > 0 would o

ur for a 
omplexCP-violating �. Unfortunately, the impa
t of this observation is weakened by the verysmall 
oeÆ
ients of the ��2 and �3 terms arising in our approximation. The approximate
atness in the � dire
tion makes the potential in
uen
e of other e�e
ts large. In this
ontext we observe that the U(1)A-
onserving part U0 in (2.1) also 
ontributes to thee�e
tive potential for the phase between � and �, for example with terms � ��2�2+ 
:
:.Only the 
ommon phase of � and � is prote
ted by the U(1)A-symmetry and is uniquelydetermined by the instanton part.2.2 Beyond small 
ondensatesAs demonstrated in the pre
eding se
tion, the instanton-indu
ed e�e
tive potential 
an,in prin
iple, support a me
hanism for spontaneous 
olor-o
tet 
ondensation. Whether ornot this me
hanism is realized, however, requires a study that is valid for larger values of� and �. The 
onsequen
es of large 
ondensates are twofold. First, the fermion massesare no longer small. This a�e
ts the non-zero-mode 
ontribution �n as well as the runningof the gauge 
oupling. Also a mixing between zero modes and non-zero modes is indu
ed.Se
ond, a 
olor non-singlet �eld gives an e�e
tive mass to the gauge �elds, whi
h againmodi�es the running of the gauge 
oupling (now the pure gauge 
ontribution). In addition,it provides for an e�e
tive infrared 
uto� for the � integration.2.2.1 E�e
ts on the running gauge 
ouplingFermion and e�e
tive gauge boson masses exert an immediate in
uen
e on the running ofthe gauge 
oupling. For momenta smaller than the mass of a given quark or gluon degreeof freedom, the 
orresponding 
u
tuations of this degree of freedom are suppressed. Asa 
onsequen
e, these 
u
tuations do no longer 
ontribute to the running of the 
oupling.This de
oupling of massive modes 
an dire
tly be implemented in the � fun
tion for therunning 
oupling, whi
h we write as�tg2 � k ddkg2 = � 18�2 g4�113 N
 lg(M2gk2 )� 23Nf lf( jM8j2k2 )� ; t � ln k� ; (2.10)8



where Mg and M8 are the gluon and the o
tet masses given in Eqs. (1.3),(1.4), and kdenotes an RG momentum s
ale. The threshold fun
tions lg,f(x) approa
h unity for smallargument, lg,f(0) = 1, 
orresponding to the fa
t that the physi
al or e�e
tive masses playno role in the UV k !1. For large argument, i.e., for momentum s
ales k below a givenmass, the threshold fun
tions drop to zero rapidly, lg,f(x� 1)! 0, whi
h implements thede
oupling of massive modes from the renormalization 
ow. The threshold fun
tions arenot universal but regularization s
heme dependent. For generi
 mass-dependent s
hemes,the threshold fun
tions interpolate smoothly between the two limits.2 For the expli
it
omputations, we set the threshold fun
tions equal, lg(x) = lf(x) = l(x), and usel(x) = 1(1 + x)3 : (2.11)This is a typi
al form for a threshold fun
tion, o

urring in 
al
ulations based on thefun
tional RG. Of 
ourse, the one-loop form used in Eq. (2.10) only serves as an example.A similar analysis of mass threshold behavior applies to any loop order and even fullynon-perturbatively. We would like to stress that it is this threshold behavior where theadditional free parameter Z� enters via Mg, 
f. Eq. (1.4).As a result of this de
oupling me
hanism, the e�e
tive running 
oupling is now �eld de-pendent, g(k; �; �). Inserting this into Eqs. (2.5), (2.8) results in an additional �eld depen-den
e of the e�e
tive potential. Qualitatively, the gauge boson mass weakens the in
reaseof the gauge 
oupling. Owing to the exponential of the 
lassi
al a
tion � exp(�8�2=g2)in Eq. (2.5), this leads to a total suppression of the instanton 
ontribution. The fermionthreshold behavior has the opposite e�e
t due to the minus sign in the � fun
tion, re
e
t-ing their 
harge-s
reening nature.2.2.2 E�e
t on the instanton determinantThe 
ondensates give masses to fermions and gluons, hen
e the 
orresponding 
u
tuationdeterminants have to be evaluated for this massive 
ase. Let us �rst 
onsider the massivefermion determinant, i.e., the non-vanishing shift of the fermioni
 (non-zero) eigenmodesdue to the e�e
tive fermion mass Eq. (1.3). This problem has been solved re
ently usingan eÆ
ient method to perform the mode sum [45, 46℄. The result interpolates smoothlybetween the analyti
ally known small and large mass expansions [47, 48℄. These 
al
ula-tions have been performed with a 
olor singlet quark mass m in the MS s
heme. Here, wenegle
t the di�eren
e in the e�e
t of the singlet and o
tet quark mass and approximatem = 13pjM1j2 + 8jM8j2: (2.12)2For mass-independent s
hemes su
h as the MS s
heme, threshold fun
tions do not appear dire
tly;but in order to des
ribe the physi
s above and below a mass threshold adequately, theories with the
orrespondingly di�erent parti
le 
ontent have to be mat
hed at the mass threshold. This 
an equally bedes
ribed by an e�e
tive threshold fun
tion whi
h 
hanges its slope dis
ontinuously at a mass threshold.9
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Figure 3: The solid line gives the interpolating fun
tion K(x), smoothly 
onne
ting thesmall mass (dashed) and the large mass approximations [46, 45, 48℄.For our purposes, we have to adapt the results of [46, 45, 48℄ to our massive RG regular-ization s
heme, as derived in Appendix C, and use the following interpolating fun
tionNfK(x) := ln det 0(�D= +m)���RG= �23Nf(H(x) + 34) + ln det 0(�D= +m)���MS (2.13)' Nf �� ln(x)� a1 + ln(x) + a1 � a2x2 � a3x41 + a4x2 + a5x4 + a6x6 � ;with x = �m. The fun
tion H(x) is de�ned in Eq. (C.9), anda1 = 0:792; a2 = 3:58; a3 = 0:0842; a4 = 0:00115; a5 = 23:5; a6 = 9:28;The primed determinant det 0 in (2.13) is that in the spa
e of non-zero modes. As shownin Fig. 3, this fun
tion interpolates smoothly between the small- and large-mass regimes.A similar behavior as for the fermion determinant is expe
ted for the non-vanishinggluon mass in the gluon determinant. However, this e�e
t is sub-leading, the dominante�e
t being the modi�
ation of the 
lassi
al a
tion at the minimum, see e.g. [1, 6℄: for
onstant �, this gives a 
ontribution to the 
lassi
al a
tion �S
l = �6�2Z�j�j2�2 andtherefore a fa
tor of (
f. Eq. (2.2))exp(�8�2=g2(�))�gl(�; �)! exp(�8�2=g2(�)� 6�2Z�j�j2�2)�gl(�) (2.14)in the integral (2.8). To summarize, the full in
lusion of � and � in the fermion determi-nant and the Higgs-type of 
ontribution to the 
lassi
al a
tion result in our �nal formulafor the e�e
tive potential (N
 = Nf = 3):Uinst = DRGV (�; �)Z d� ��2� 8�2g2(�)�6 exp�� 8�2g2(�) � 6�2Z�j�j2�2 + 3K(m�)� ;(2.15)where K is given in Eq. (2.13), and DRG is de�ned in Eq. (2.6). On
e the running of thegauge 
oupling is spe
i�ed, e.g., using the one-loop form of Eq. (2.10) and identifying the10



RG s
ale with the inverse instanton radius, k = 1=�, we 
an investigate the lands
ape ofthe instanton-indu
ed 
ontribution to the e�e
tive potential for � and �. For �xed �, anadditional � dependen
e arises from the expli
it term � j�j2 in the \
lassi
al part", thedependen
e of g(�) on � and the threshold e�e
t K(m�). Our approximation of K(m�)re
e
ts probably only poorly the dependen
e on the ratio �=�, and we have also negle
tedthe mixing between the fermioni
 zero modes and non-zero modes whi
h would modifyV (�; �).3 Asymptoti
 behavior of the e�e
tive potentialIn order to obtain a more analyti
 understanding of the e�e
tive potential Uinst, let usinvestigate its asymptoti
 behavior for the di�erent regimes of small and large �elds �and �. Of parti
ular interest is the interplay between this asymptoti
 behavior and therunning of the gauge 
oupling. As an important 
aveat, it should be kept in mind thatour derivation of the e�e
tive potential is based on the semi-
lassi
al instanton gas ap-proximation. This approximation impli
itly assumes that the one-instanton 
ontributionis small, whi
h translates into a small value of Uinst. Therefore, whenever a large asymp-toti
 behavior of Uinst is en
ountered, this may not ne
essarily re
e
t the true behaviorbut rather signal the breakdown of the instanton-gas approximation.Our derivation of Eq. (2.15) so far made use of the spe
i�
 one-loop running of thegauge 
oupling given in Eq. (2.10). Assuming that the fun
tional dependen
e on therunning 
oupling holds also in the general 
ase, we use the form of Eq. (2.15) also for othertheoreti
ally or phenomenologi
ally motivated running gauge 
ouplings. For de�niteness,we will use gauge 
ouplings with the following infrared (�!1) propertiesg2(�)����!1 � 8>>>>>>><>>>>>>>: 
onst �xed pointj ln(�)jplog logarithmi
 divergen
e�ppower power law divergen
eg2pert(�)�(�QCD � 1�) + �(1� � �QCD)1 perturbative 9>>>>>>>=>>>>>>>; ;(3.1)with positive 
onstants plog and ppower; ea
h infrared behavior will be adapted to show thesame de
oupling properties for massive modes as displayed in Eqs. (2.10) and (2.11). Forsimpli
ity, we assume that this IR behavior does not depend on the number of fermions.These running 
ouplings and the 
orresponding resulting instanton densities at vanishingexternal �elds are shown in Fig. 7 in Appendix E.The e�e
tive potential for non-vanishing � and � is strongly in
uen
ed by fermionand gauge boson mass e�e
ts, respe
tively. Hen
e, the e�e
tive potential is expe
tedto behave di�erently in the various dire
tions of the �; � plane. For de�niteness, let usinvestigate four 
ases: (1) � small; � = 0; (2) � !1; � = 0; (3) � = 0; � small and (4)� = 0; �!1. 11



The � integration 
an be performed analyti
ally by splitting the integration domaininto several intervals, ea
h of them dominated by a di�erent e�e
t. For 
ase (1), for in-stan
e, there is a UV regime (0; �pert) where the running 
oupling is well approximated byone-loop perturbation theory without the in
uen
e of mass thresholds. In the 
onse
utiveinterval, (�pert; 
� ) (with 
 being some 
onstant O(1)) the gauge 
oupling is dominated bynon-perturbative dynami
s, but fermion masses still do not play an important role. Fi-nally, in the interval ( 
� ;1) the fermions are heavy 
ompared to the s
ale 1=�, and puregluodynami
s dominates the running 
oupling. Negle
ting logarithmi
 dependen
ies on� or �, we �nd,Uinst(�; �) �8>>>>>><>>>>>>: A1�Nf +B1�4+2N
ppower; (1) : � small; � = 0A2�4��0 +B2�4(1��0�00 ); (2) : � !1; � = 0A3�Nf +B3�4+ 4N
ppower2+ppower ; (3) : � = 0; � smallA4�4��0; (4) : � = 0; �!1 ; (3.2)where all terms with 
oeÆ
ients Ai arise from the perturbative interval � 2 (0; �pert), andthose with 
oeÆ
ients Bi arise from the various non-perturbative intervals. Of 
ourse,only the Bi terms depend on the form of the running 
oupling spe
i�ed in Eq. (3.1);in fa
t, B1 and B3 vanish for the "perturbative" gauge 
oupling of Eq. (3.1). Further-more, �0 = 113 N
 � 23Nf is the one-loop 
oeÆ
ient of the � fun
tion with fermions, and�00 = 11N
3 denotes the one-loop 
oeÆ
ient for pure gluodynami
s. Not surprisingly, thelogarithmi
ally divergent and the �xed-point 
oupling yield the same results on this levelof a

ura
y; hen
e the parameter plog of Eq. (3.1) does not enter Eq. (3.2).For Nf > 4+2N
ppower, the small-� and small-� behavior may signi�
antly be modi�ed
ompared to the perturbative expe
tation �Nf; �Nf. Here the possible dependen
e on theinfrared behavior of the gauge 
oupling appears to be important. However, this simplyre
e
ts the fa
t that naive IR 
onvergen
e in the � integration is lost for Nf > 4, as we havealready noted before. In this 
ase, the 
onvergen
e is now restored by a 
ombination ofthe suppression due to the �nite fermion mass exp(�NfK(m�)) and the suppression fromthe gauge 
oupling � 8�2g2(�)�2N
 at the expense of a dire
t dependen
e on the IR behaviorof the gauge 
oupling.In the large-�eld regime, the potential grows faster than �4; �4 only if �0 < 0 whi
h
orresponds to theories without asymptoti
 freedom. Conversely, for asymptoti
ally freetheories, the instanton-indu
ed potential will not dominate over the non-anomalous partof the potential U0 whi
h 
an be expe
ted to exhibit a �4; �4 growth for reasons of univer-sality. In view of the 
aveat mentioned in the beginning of this subse
tion, we interpretthis result as a su

essful self-
onsisten
y 
he
k of the instanton-gas approximation. Fur-thermore, for N
 = Nf = 3 and �xed �, the instanton 
ontribution vanishes Uinst � ��5for large �. The instanton potential is therefore stabilized in the � dire
tion.12
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tions of the instanton potential Uinst(�; 0) (left panel) and Uinst(0; �) (rightpanel) in units of �QCD. The di�erent large-�eld behavior is 
learly visible: the potentialin the positive � dire
tion goes to �1 whereas it rapidly approa
hes 0 for large j�j.Note the di�erent s
ales of the potential itself for the � and the � dire
tion. (Both plotsuse Z1=2� = 1=15 and a gauge 
oupling approa
hing an IR �xed point g2�x = 100. Therenormalization-s
heme-dependent 
onstant DS is s
aled out.)4 Numeri
al analysis of the e�e
tive potentialGuided by the analyti
 knowledge obtained so far for the e�e
tive potential, let us studyour full result for the instanton-indu
ed e�e
tive potential Uinst(�; �) obtained numeri
allyfrom Eq. (2.15). For de�niteness, we use { as an example { a one-loop form for the gauge
oupling modi�ed su
h that it approa
hes an IR �xed point at g2�x = 100 in absen
eof 
ondensates; this is in the ball park of IR results from RG 
ow equations [31℄. Our
on
lusions remain similar for all other running 
ouplings proposed in Eq. (3.1).Let us �rst 
on�rm the asymptoti
 behavior obtained analyti
ally above along the �and � axes. As is visible in Fig. 4(a), displaying U(�; 0), the potential along the � axisis unbounded from below for � ! 1. In parti
ular, for Nf = N
 = 3, the resultingasymptoti
s of Eq.(3.2) yielding jU(�; 0)j � � 811 is 
on�rmed. Let us stress that theoverall sign of the potential is negative for positive �, sin
e the integral in Eq. (2.15)is always positive and the prefa
tor V (�; 0) = ��3 is negative. From this, we drawtwo 
on
lusions: �rst, the instanton potential favors 
hiral symmetry breaking, but thevalue of the 
ondensate is not determined by the instanton potential alone (at least in oursimple one-instanton approximation). Se
ond, the 
omplete instanton potential Uinst(�; �)
annot have a global minimum sin
e there is a dire
tion in whi
h the potential alwaysde
reases.Next we 
onsider a pure � �eld. Figure 4(b) shows that the instanton potentialbe
omes 
at rather rapidly for large �, as expe
ted from Eq. (3.2). Negative � are
learly preferred.3 From Fig. 4(a), we 
an read o� the lo
ation of the minimum: �min �3Let us stress that the relative sign of � and � is indeed important, sin
e it 
hanges the parity ofsome parti
les in the spe
trum of the model (1.1). Moreover, owing to the U(1)A anomaly, it is not 
lear13



-20 -10 0 10 20

-1

-0.5

0

0.5

1 �=�QCDU(�)DS (a) -15 -10 -5 0 5 10 15

-500

-400

-300

-200

-100

0 �=�QCDU(�)DS (b)Figure 5: E�e
tive potential Uinst(�; �) for di�erent �xed �. The left panel displays the
ases of � = 0; 0:06; 0:128; 0:20�QCD in green, bla
k, red and blue, respe
tively. Weobserve that for values of � > �
rit � 0:128�QCD (red 
urve) the trivial minimum inthe � dire
tion be
omes the global minimum. The right panel shows the potential forrealisti
 values of � = 1; 2; 4�QCD in red, green and blue, respe
tively (des
ending order),
learly demonstrating the absen
e of an instanton-indu
ed 
olor o
tet 
ondensate. Theparameters are 
hosen as in Fig. 4 and all numbers refer to units of �QCD.4:26�QCD � 1:4GeV for �QCD = 330MeV. This results in an en
ouraging Mg � 350MeV.Nevertheless, it is important to observe that the potential in the � dire
tion is rathershallow 
ompared to the � dire
tion, the relative height being � 10�3. This is a dire
t
onsequen
e of the relative prefa
tors in the potential V (�; �) of Eq. (2.9). The depen-den
e of the absolute value of � on our remaining free parameter Z� is strong, whereasit remains weak for Mg. This is in agreement with the expe
tation that, in the o
tetdire
tion, the threshold e�e
t of the gluon mass Mg is mu
h stronger than that of thequark masses � �. For our quantitative results, we use the value Z1=2� = 1=15 whi
h is inthe phenomenologi
ally a

eptable range [18, 39℄.Finally, let us study the 
omplete potential depending on both �elds � and �. Eventhough we have already observed that the instanton 
ontribution alone does not havea global minimum, it is nevertheless worthwhile to look for a lo
al one. Su
h a lo
alminimum indeed exists at (�; �) � (�0:27;�4:2)�QCD with the absolute depth of thepotential being U(�; �)jlo
. min. � �1:42DS � 0:009 in units of �QCD (and using DMS �6 � 10�3). Sin
e this minimum has a too small j�j � 90MeV and is extremely shallow,it is not physi
ally a

eptable. Any generi
 non-anomalous 
ontribution U0 is likely toremove this minimum.Sin
e the lo
al minimum is not a

eptable and a purely instanton-indu
ed globalminimumdoes not exist, let us redo our analysis with one additional assertion: we assumethat the non-anomalous 
ontribution U0(�; �) to the e�e
tive potential supports s
alarsinglet 
ondensation via spontaneous symmetry breaking for suÆ
iently strong gauge
oupling (in fa
t, this has been shown to happen generi
ally in QCD-like theories in [33℄).whether the sign in the Yukawa 
ouplings 
an be rotated away by a 
hiral transformation.14
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hoose � =0; �0:06; �0:12�QCD (green, red and blue). The global minimum then is always at non-vanishing (negative) �. On the right panel, we depi
t the behavior for somewhat morenegative � = �0:1;�0:27;�0:44;�0:61�QCD (green, red, blue and bla
k). After in
reas-ing up to � � �0:27�QCD (red 
urve) the minimum in the � dire
tion be
omes more andmore shallow with de
reasing �. The parameters are 
hosen as in Fig. 4.In order to introdu
e as few parameters as possible, we simply assume that U0 �xes a non-zero value of �, leaving the detailed form of U0 aside. Now, sin
e U0 is of non-anomalousorigin, its form re
e
ts the full 
hiral symmetry (even though it 
an exhibit a symmetry-breaking minimum), implying its invarian
e under � ! ��. Hen
e, U0 does not prefera parti
ular sign of �. By 
ontrast, Uinst does prefer positive values of � as displayed inFig. 4(a).The instanton potential for small positive � is depi
ted in Fig. 5(a). We observe thatthe global minimum for � is non-vanishing only for very small values of �. Beyond the
riti
al value of �
rit � 0:128�QCD < 50MeV the global minimum is at � = 0. This holds,in parti
ular, for realisti
 values of � = 1 : : : 4�QCD, whi
h is plotted in Fig. 5(b). For� & �QCD the dominant feature of the � dependen
e of Uinst is simply the vanishing ofUinst for large � whi
h results in a relative minimum at � = 0. Figure 5(b) summarizesone of our main results, namely, that the instanton-indu
ed potential appears in
apableof giving rise to an o
tet 
ondensate in the present instanton-gas approximation.In
identally, the us study the potential also for negative �xed �. Even though positivevalues are 
learly preferred by Uinst, observation only 
onstrains the modulus of � to bein the realisti
 range j�j � 1 : : : 4. Negative sigma indeed always give rise to a globalminimum at � 6= 0, i.e. supporting a 
olor o
tet; see Fig 6. However, for realisti
 valuesof �, the instanton-indu
ed potential is extremely shallow again, su
h that this minimumis likely to be washed out by the non-anomalous part (unless the latter is either �ne-tunedor supports an o
tet 
ondensate itself). 15



5 Con
lusionsWe have 
al
ulated the one-instanton 
ontribution to the e�e
tive potential in a ba
k-ground of 
lassi
al bosoni
 �elds 
oupled to quarks and gluons. One �eld, �, has thestru
ture of the typi
al singlet 
hiral 
ondensate and the other, �, exhibits a 
olor-
avor-lo
king stru
ture, as 
onje
tured for the s
enario of spontaneous 
olor symmetry breakingin the va
uum. Beyond leading order in the ba
kground �elds, we have in
luded e�e
tsof quark masses on the running gauge 
oupling and the quark determinant. In addition,the 
olor o
tet 
ondensate works as a Higgs �eld for the gluons, providing for an extra �-dependent 
ontribution to the 
lassi
al instanton a
tion. We work in a massive regulators
heme whi
h makes threshold behavior more transparent.For the realisti
 
ase of Nf = 3 light quark 
avors, the instanton potential is unboundedfrom below for a pure singlet 
hiral 
ondensate, favoring a non-trivial value of this 
on-densate and 
hiral symmetry breaking. Although there exists a lo
al extremum withnon-vanishing o
tet 
ontribution, it is rather shallow and thus likely to be washed out bynon-instanton e�e
ts. Moreover, this extremum has a nearly vanishing value for the 
hiral
ondensate, making it phenomenologi
ally una

eptable. As the potential is unboundedfrom below along the � dire
tion, a global minimum of the instanton potential alone isex
luded. Other stabilizing e�e
ts are typi
ally expe
ted from the U(1)A-preserving se
-tor. Therefore, we have investigated if a 
olor o
tet 
ondensate is favored at �xed singlet
hiral 
ondensate. For realisti
 positive values of the 
hiral �eld � � 1�QCD, � = 0 is theglobal minimum in the 
olor o
tet dire
tion. For negative � with a similar absolute value,there exists a minimum with non-vanishing o
tet 
ondensate. However, this minimumis also unnaturally shallow and thus will presumably be washed out by non-instantone�e
ts. Moreover, the negative sign of � is disfavored by the instanton 
ontribution.An analyti
 insight into the e�e
tive potential 
an be gained from its asymptoti
behavior for large ba
kground �elds. It is interesting to note that the behavior for verylarge �elds is inherently 
onne
ted to asymptoti
 freedom. For instan
e, large 
olor o
tet
ondensates lead to a high-s
ale de
oupling, su
h that any non-perturbative IR behavior iss
reened; in this large-� dire
tion, the 
attening of the potential 
an dire
tly be related tothe perturbative approa
h to asymptoti
 freedom. Another extreme example is providedby the 
ase where asymptoti
 freedom is lost, e.g., owing to too many fermion spe
ies;in this 
ase, the potential may go to �1 faster than the fourth power of the �elds,preventing stabilization by a renormalizable non-instanton potential for the bosoni
 �elds.On the other hand, we observe a strong qualitative dependen
e on the non-perturbativeIR behavior of the 
oupling only for very small �elds and more than four light fermionspe
ies: here, the in
rease of the instanton amplitude depends strongly on the infrareddetails of the gauge 
oupling and may be 
hanged from the naive �Nf; �Nf.In 
on
lusion, barring large higher-order, e.g., multi-instanton, e�e
ts, we �nd that
hiral symmetry breaking is supported by instanton e�e
ts. On the other hand, theissue of 
olor o
tet 
ondensation remains in
on
lusive. In our approximation, we �nd noeviden
e that instantons favor a 
olor 
ondensation in the va
uum.16
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all the 
omputation of the instanton-indu
ed e�e
tive a
tion � within thedilute-gas approximation. In a dilute and weakly intera
ting instanton gas, the dominat-ing 
ontribution to the generating fun
tional is the one-instanton and one-anti-instanton
ontribution. It reads Z1 = �
 (UI(�; �) + U�I (�; �)) (A.1)where 
 denotes the 4-Volume, and UI is the e�e
tive potential 
orresponding to theprodu
t of fun
tional determinants of the 
u
tuating �elds in this ba
kground. The anti-instanton 
ontributes with UAI(�; �) = U?I (�; �). Within the dilute-gas approximation,the 
ontribution of the jnj-instanton se
tor is given by Zn = (Z1)nn! . This leads to the thefull amplitude Z = 1Xn=0 Zn = 1Xn=0 (Z1)nn! = exp(Z1); (A.2)where we have normalized the zero-instanton amplitude to one. To lowest order in thebosoni
 ba
kground �elds, this holds be
ause we in
luded the in
uen
e of the �elds(masses for the fermions) only for the zero modes. However, in the absen
e of gauge�elds, the Dira
 operator has no zero modes. Beyond this approximation, this normaliza-tion 
orresponds to a modi�
ation of the non-instanton U(1)A-symmetri
 
ontribution toU(�; �). From (A.2), we read o� the e�e
tive a
tion in the 
lassi
al ba
kground of �, �,� = � lnZ = �Z1; (A.3)whi
h serves as the starting point of our investigation in the main text.B Di�erent regularization s
hemesIn this appendix, we dis
uss how to swit
h between regularization s
hemes. We shalluse a s
heme whi
h manifestly exhibits the de
oupling of massive modes. It has beenshown in [6℄ that topologi
al e�e
ts persist within the RG framework used in the presentwork. This applies, in parti
ular, to the existen
e of zero modes [6℄. Moreover, at leadingorder one only has to take into a

ount the expli
it mass or regulator dependen
e. Thisamounts to using the well-known zero modes [1℄.17



For non-perturbative problems involving mass threshold e�e
ts, as they are indu
edby the ba
kground �elds in our 
ase, su
h s
hemes are highly advantageous. Following[1, 49℄, a 
hange of the renormalization s
heme 
an be understood by 
omparing twointegrals, I1 = Z d4q(2�)4 1(q2 +m2)2 ; I2 = Z d4q(2�)4 q4(q2 +m2)4 ; (B.1)in the di�erent regularization s
hemes. Here, I1 appears in 
onne
tion with the zeromodes and I2 with non-zero modes. Therefore, we 
an easily keep tra
k of these terms.For example, the Pauli Villars s
heme givesIPV1 = Z d4q(2�)4 � 1(q2 +m2)2 � 1(q2 + �2PV)2� = 1(4�)2 (2 ln(�PV)� 2 ln(m)); (B.2)IPV2 = Z d4q(2�)4 � q4(q2 +m2)4 � q4(q2 + �2PV)4� = 1(4�)2 (2 ln(�PV)� 2 ln(m)) = IPV1 ;whereas we �nd in dimensional regularizationIdreg1 = �4�n Z dnq(2�)n 1(q2 +m2)2= 1(4�)2 � 24� n + 2 ln(�)� 2 ln(m)� 
 + ln(4�) +O(4 � n)� (B.3)= Idreg2 + 596�2 : (B.4)Comparing Eqs. (B.2) and (B.4), the substitutions for a 
hange from Pauli-Villars todimensional regularization readI1 : ln(�PV)! 14� n + ln(�)� 12
 + 12 ln(4�); (B.5)I2 : ln(�PV)! 14� n + ln(�)� 12
 + 12 ln(4�)� 512 :Using Eq. (B.5), it is easy to 
he
k that, starting from Eqs. (2.5), (2.7), we 
an obtainthe 
orresponding result in dimensional regularization as given, e.g., in [1℄.Both s
hemes dis
ussed so far are mass independent. This originates from the fa
t thatfor �xed 
uto� � or �xed dimensionality 4� n, the integrals IPV and Idreg do not vanishin the limit m ! 1. A mass-dependent regularization s
heme should implement thisde
oupling: massive modes should not 
ontribute to physi
s below the mass threshold.For m� � the integrals I1 and I2 should be
ome small and vanish in the above limit ��xed, m!1. This 
an be implemented by de�ning IRG1 != IRG2 withIRG1 = Z �0 dk k�1 l�m2k2 � = 1(4�)2 �ln�1 + �2m2�� 2m2�2 + 3�42(m2 + �2)2 � ; (B.6)l(!) = 1(1 + !)3 : 18



In fa
t, this is not an arbitrary de�nition, but re
eives motivation from various sour
es.First, it is very 
onvenient to have I1 = I2, sin
e, when 
hanging from the 
ommon Pauli{Villars s
heme to our s
heme it is not ne
essary to distinguish between the di�erent
ontributions from I1 and I2. The main reason, however, is the simple form of the one-loop 
ow equation for the gauge 
oupling in Eq. (2.10) whi
h results from this 
hoi
e.Finally, a deeper reason for the 
hoi
e is that it 
orresponds to a simpli�ed version of atypi
al fun
tional RG s
heme regularization (for more details see, e.g. [36℄). Indeed,IRG1 = �Z �0 dkk Z d4q(2�)4 ddkRk(q2) 1(q2 +m2 +Rk(q2))3 ; (B.7)is a typi
al expression for I1 when one de�nes perturbation theory from a 
ow equa-tion with regulator fun
tion Rk(q2). In a 
onsequent RG 
al
ulation several di�erentthreshold fun
tions similar to l(!) appear. For simpli
ity we put I1 = I2. This is notan approximation but simply an impli
it de�nition of the related regulator fun
tion Rk.For 
omputations beyond the present qualitative setting we suggest using an optimizedregulator [50, 51℄ Rk(q2) = (k2 � q2)�(1 � q2k2 ) ; (B.8)and its upgrades suitable for momentum-dependent approximations [24℄.From Eq. (B.6), it is easy to �nd the relation between Pauli{Villars regularization andour s
heme,ln(�PV)! ln(m) + Z �0 dkk l�m2k2 � = 12 ln(m2 + �2)� 2m2�2 + 3�44(m2 + �2)2 : (B.9)We emphasize that Eq. (B.9) depends on the 
uto� � as well as on the mass m of theparti
le in question. For large m, the mass a
ts similar to the 
uto� �. This implementsthe de
oupling of heavy modes.Finally, we exploit the freedom of rede�ning the 
oupling 
onstant at one-loop order,su
h that it absorbs part of the �nite 
hanges dis
ussed above,8�2g2S(�) = 8�2g2S(�) + CSS: (B.10)modifying the perturbative expression for g2 only at order g4. This is often used to simplifyexpressions, e.g., in the transition from MS to MS, or to ensure dire
t 
omparabilitybetween di�erent s
hemes. We will use this freedom below in Appendix C to fa
ilitate
omparisons between our s
heme and the MS s
heme in whi
h most results are given inthe literature.C Assembling the instanton integralIn this appendix, we put together all the various pie
es of the instanton size � integral,taking 
are of our mass-dependent regularization s
heme. At �xed instanton size and19



using Pauli-Villars regularization, the following fun
tions 
ontribute to the renormalizedintegrand: f
l = exp(�S
l) = exp(� 8�2g2(�)); (C.1)fnonzero = exp��13N
 ln(��)� �(1) + Nf3 ln(��) + 2Nf�(12)� ; (C.2)fgauge = 4�5 � 4�g2(�)�2N
 (��)4N
; (C.3)ffermion = MNf�Nf ; (C.4)N = 4�2 �2(N
�1)(N
 � 1)!(N
 � 2)!; (C.5)where MNf represents V (�; �) as de�ned in Eq. (2.7) and redu
es to mNf if the bosoni
sour
es only lead to a simple mass term m.Here f
l is the 
ontribution from the 
lassi
al a
tion, fnonzero summarizes all e�e
tsfrom the non-zero modes, fgauge is the 
ontribution from the gauge and ffermion from thefermion zero modes. N 
olle
ts some normalization fa
tors and the group averaging.Combining all these 
ontributions, we �nd the well known result,NYx fx = DPV��5+Nf � 8�2g2(�)� exp�� 8�2g2(�) + �0 ln(��)� (C.6)= DPV��5+Nf � 8�2g2(�)� exp�� 8�2g2PV(�)� ;where we have used the one-loop relation between g2(�) and g2(�) in the last step, andD is given in the Pauli-Villars s
heme as,DPV = exp���(1)� 2(N
 � 2)�(12) + 2Nf�(12)� = 1:1506; (C.7)�(12) = 2R � 16 ln(2) � 1772 = 0:1459; �(1) = 8R = 13 ln(2)� 169 = 0:4433;R = 112(ln(2�) + 
) + 12�2 1Xs=2 ln(s)s2 = 0:2488:We point out that we still have g2(�) in the prefa
tor of the exponential whi
h is anartifa
t of the one loop 
al
ulation. This will be re
ti�ed by higher-loop orders wherethe 'bare' g2(�) in the prefa
tor is repla
ed by its running 
ounterpart evaluated at thes
ale � (also at one loop order less than the 
orresponding one in the exponential). Sin
erepla
ing g2(�) ! g2(�) is the main e�e
t of higher loop orders (apart from possible
hanges in the fa
tor D), we a

ount for these prefa
tors as well as for the term in the20



exponential by hand without further 
al
ulation. In this way, we already arrive at Eqs.(2.5), (2.8) (at least naively in the Pauli-Villars s
heme),NYx = DPV��5+Nf � 8�2g2PV(�)� exp�� 8�2g2PV(�)� : (C.8)The �nal task now is to 
hange from the mass-independent Pauli-Villars s
heme to ourmass-dependent RG s
heme. Starting from Eq. (C.8), this is immediately done using(B.9), resulting in an additional multipli
ative fa
tor,RG(Mg�;mf�) = exp�113 N
H(Mg�)� 23NfH(mf�)� ; H(x) = 12 ln(1+x2)� 3 + 2x24(1 + x2)2 ;(C.9)where Mg and mf are the gauge-boson and fermion masses, respe
tively.Finally, we make a last 
hange and de�ne a modi�ed RG s
heme via Eq. (B.10) withCRGRG = � ln�RG(0; 0)DPVDMS � ; (C.10)where DMS is de�ned in (2.6). By 
onstru
tion, this establishes that our 
oupling 
on-stant is equal to the one-loop MS 
oupling, also in
luding the 
onstant in the instantonintegral. But most importantly, we have not absorbed the mass-dependent 
ontributions.Therefore, our s
heme is still mass-dependent and provides for de
oupling of heavy modes.D Cal
ulation of the Zero-Mode PartThe Dira
 operator D= in the ba
kground of an instanton has Nf = 3 zero modes, being
avor 
opies of a fundamental zero mode. We show that in leading order�z(�; �; �) = hdet 
avorh 0(a; i)jM ;ijj 0(b; j)iiSU(3) =: ��NfV (�; �); (D.1)where (M ;ij)�� = ((�D= ij)�� + (�Æij + �ij)Æ��) ; (D.2)with mass matrix �+�, where � introdu
es 
olor-
avor mixing. The eigenvalues ofM are�n(�; �) with eigenfun
tions  n(�; �). The 
olor-
avor mixing term � does not 
ommutewith D= and the  n are not eigenfun
tions of D= for � 6= 0, leaving (D.1) a non-trivialidentity. The mass matrix reads more expli
itly(�abÆij + �ab;ij)Æ�� = ��ÆabÆij + 1p6��ÆaiÆbj � 13ÆabÆij�� Æ��; (D.3)where we have already absorbed the Yukawa 
ouplings into the �elds and used the 
olor-
avor stru
ture (1.2) for the 
ondensates. For 
larity we have expli
itly written out thespin indi
es �; �. Using the group averages in (D.1) [2, 52℄, we arrive at�z(�; �; �) = �Nf �� + 16p6��2�� � 13p6�� : (D.4)21



It is left to prove (D.1). With trivial 
avor stru
ture, �ij = 0, the determinant fa
torizestrivially, detM = �z(�; �; �) det 0M ; (D.5)where det 0 stands for the determinant on the non-zero mode spa
e. For non-vanishing� (D.5) holds up to terms �Nf. This is shown in an expansion about the determinant of�D=+� with eigenvalues �n(�; 0) = �n(0; 0)+� and eigenfun
tions  (�; 0) =  n(0; 0). Welabel the zero modes of D= with  n0, n0 = 1; 2; 3 with eigenvalues �n0 (s = 0) = �. Thereis no term linear in � as the only invariant is tr
avor� = 0. The quadrati
 term has thestru
ture �u2(�)�2 with �nite limit u(0). It is evaluated as12 �2s det(�D=+ � + s�)��s=0 = 12Xn (�2s�n) Ym6=n �m +Xm<n(�s�n)(�s�m) Yl6=n;m �l ; (D.6)where the limit s = 0 on the right-hand side of (D.6) is understood. The term proportionalto �2s�n has the 
oeÆ
ient Qm6=n �m 
ontaining at least two of the eigenvalues �n0(s =0) = � of the zero modes  n0 . Hen
e it only 
ontributes to sub-leading terms like ��2�2.The term proportional to (�s�)2 has, apart from sub-leading terms, one 
ontributionproportional to Ql6=n0 ;m0 �l removing two zero modes from the produ
t. Thus we haveu2(�)�Nf�2�2 = �Nf�2 Xm0<n0(�s�n0 )(�s�m0) det 0M +O(�2�2) ; (D.7)where det 0M = Ql 0�l, the primed produ
t involves only the non-zero eigenvalues of D= .The s derivatives in (D.7) follow as�s�n(s = 0) = �sh nj(�D=+ � + s�)j ni = h nj�j ni + �n�sh nj ni = h nj�j ni ; (D.8)where we have used that h�s nj(�D= + �)j ni = h�s nj ni�n and h nj(�D= + �)j�s ni =�nh nj�s ni. We arrive atu2(0)�2 = Xm0<n0h n0 j�j n0ih m0 j�j m0i det 0M : (D.9)Equation (D.9) extends to general un(0)�n with n � Nf. We are spe
i�
ally interested inNf = 3 with the remaining 
ubi
 term u3(�)�Nf�3�3 = u3(�)�3, in leading order,u3(0)�3 =  Yn0 h n0 j�j n0i! det 0M : (D.10)This proves (D.1). We 
an also dire
tly use Eqs. (D.9),(D.10) to 
ompute the �2 and �3
oeÆ
ients as group averages hu2iSU(3), hu3iSU(3) with the help of [52℄. We arrive at3�2 * 2Yn0=1h n0 j�j n0i+SU(3) = 172 ;1�3 * 3Yn0=1h n0 j�j n0i+SU(3) = 1648p6 ; (D.11)leading to (2.8). 22
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onstant � o

urring in ourlowest order approximation to the e�e
tive potential, Eq. (2.8), remains a �nite number.E IR running 
oupling e�e
ts in the lowest-order ap-proximationHere we demonstrate that the qualitative features of the instanton-indu
ed e�e
tive po-tential to lowest order in the s
alar 
ondensates is largely independent of the behavior ofthe running 
oupling. This 
an be dedu
ed from a study of the � integration in Eq. (2.8).For 
onstant g2(�) = g2 and Nf < 4, the � integral is infrared (� ! 1) 
onvergent, buthas a (naive) UV divergen
e. The one-loop running removes this UV divergen
e, be
auseof asymptoti
 freedom. Then, the integration kernel behaves as � � 113 N
+ 13Nf�5(ln(�))2N
for small �, rendering the integral 
onvergent in this regime. In the infrared, the situationis less 
lear, sin
e one-loop running is 
ertainly not a valid approximation for the gauge
oupling. Nevertheless, the restri
tions on the behavior of g2(�) for � ! 1 are rathermild. Indeed, for positive and well-de�ned g2(�) there are no restri
tions at all for Nf < 4(massless 
avors). We 
an even allow for a diverging 
oupling at a �nite infrared s
ale�div. In this 
ase, it is reasonable to assume that the 
oupling remains in�nite for evenlarger distan
e s
ales, su
h that the integrand remains exa
tly zero for all � > �div. InFig. 7 we plot the integrand for running 
ouplings with di�erent infrared behavior. Itis our main 
on
lusion that all reasonable forms for the running 
oupling in the infraredimply a �nite 
onstant � in Eq. (2.8).Referen
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