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DESY 06-122HD-THEP 06-17Do Instantons Like a Colorful Bakground?Holger Gies1, Joerg Jaekel2, Jan M. Pawlowski1 and Christof Wetterih11Institut fuer Theoretishe Physik, Philosophenweg 16, D-69120 Heidelberg, Germany2Deutshes Elektronen-Synhrotron DESY, Notkestrasse 85, D-22607 Hamburg, GermanyH.Gies�thphys.uni-heidelberg.de, joerg.jaekel�desy.de,J.Pawlowski�thphys.uni-heidelberg.de, C.Wetterih�thphys.uni-heidelberg.deAbstratWe investigate hiral symmetry breaking and olor symmetry breaking in QCD. The ef-fetive potential of the orresponding salar ondensates is disussed in the presene ofnon-perturbative ontributions from the semilassial one-instanton setor. We onen-trate on a olor singlet salar bakground whih an desribe hiral ondensation, as wellas a olor otet salar bakground whih an generate mass for the gluons. Whereas anon-vanishing singlet hiral �eld is favored by the instantons, we have found no indiationfor a preferene of olor otet bakgrounds.



1 IntrodutionInstantons, being pseudo-partiles assoiated with tunneling proesses, generate genuinenon-perturbative e�ets in QCD. In the seminal work of 't Hooft [1℄ it was realized thatthey mediate an e�etive interation between (light) quarks [1, 2, 3, 4, 5, 6, 7, 8℄. This\instanton interation" is attrative in the olor singlet hannel; hene, instantons pre-sumably play a role in the mehanism of hiral symmetry breaking [9, 10, 11℄. In addition,they also provide for an interation in olor otet hannels or in olor triplet and sextet\diquark" hannels. Mean-�eld omputations based on a point-like instanton interationhave been employed as a entral tool for investigations of olor superondutivity at highbaryon density [12, 13, 14, 15, 16℄, or for a desription the baryon and meson spetrum andinterations in the vauum in a Higgs piture with spontaneous olor symmetry breaking[17, 7, 18℄. This phenomenologially quite suessful senario requires a quark{anti-quarkondensate in the olor otet hannel, giving rise to the question as to whether instantonssupport quark ondensation in this hannel.Symmetry breaking by a ondensation phenomenon requires an interation that lowersthe free energy if ondensates are formed. The bosoni ondensates an be quark bilinearsor even higher-order omposites. In the ase of instantons, a rih interation struture isindeed provided: for Nf light quarks, instantons typially indue an interation between2Nf quark �elds, whih an be paired in many ways. This is one of the reasons whyinstanton-indued multi-fermion interations have often been used as a starting pointfor investigations in the mean-�eld approximation. However, in the approximation ofa point-like multi-fermion interation, mean-�eld theory is ambiguous: by means of aFierz transformation, the quarks an be grouped in di�erent ways. For example, prod-uts involving olor non-singlet Lorentz salars an be exhanged by produts of olorsinglets in vetor or tensor representations of the Lorentz group and vie versa. In viewof this ambiguity, the relative strength between olor otet and singlet hannels remainsundetermined, sine the olor otet hannels an be ompletely removed or enhaned bysuitable re-orderings [19℄. Similar problems arise for the other olored hannels used inthe high-density omputations.For further progress towards reliable omputations, the Fierz ambiguity of the mean-�eld omputation has to be resolved. This an be done in di�erent ways. A �rst possibilityexpliitly inludes the utuations of omposite bosons after partial bosonization. Then,the dependene on the partiular hoie of bosonization (Fierz ambiguity) gets substan-tially redued, as demonstrated by funtional renormalization group tehniques [20℄. Aseond approah attempts to resolve the ambiguity by expliitly taking the momentumdependene of the instanton-indued vertex into aount. Finally, we propose a thirdmethod in this artile that avoids altogether the use of the multi-fermion vertex andrather omputes diretly the instanton ontribution to the free energy in the presene ofseleted ondensates. The various approahes have di�erent strengths and shortomings,and a reliable piture will probably only emerge by a ombination of them.The advantage of a study of the momentum dependene of the instanton-indued1



vertex is based on the observation that pole-like strutures whih arise from the e�etiveexhange of quark{anti-quark or quark{quark bound states an be assoiated to the givenhannel of the bound state. In ontrast to a point-like interation, suh pole strutures anno longer be moved to another hannel by Fierz reordering. Momentum-dependent vertexfuntions an be dealt with using funtional methods, suh as Dyson-Shwinger equations,NPI e�etive ations, funtional renormalization group (RG) or suitable ombinations. Inpartiular, we envisage the funtional RG as a promising approah towards a quantitativestudy for the ondensation phenomena at hand, for reviews see [21, 22, 23, 24℄. Theomputation of the ow equations involves only a narrow momentum range around agiven renormalization sale k, thus reduing the impat of an inomplete knowledge ofthe detailed momentum dependene of the full propagators and verties; see, e.g., [25,26, 27, 24, 28℄. Its appliation to the present problem requires an implementation for thenon-perturbative setor of gauge theories, e.g. [21, 29, 25, 30, 31, 26, 27℄, also employingbosonization tehniques as developed in [32, 33, 20, 34, 24℄, or NPI- and NPPI-owsas disussed in [23, 35, 36, 24℄. In partiular, the Fierz-type ambiguity of the presentproblem an be resolved within a 2PPI-e�etive-ation approah, sine all possible (loal)fermioni pairings are e�etively taken into aount by this approah [19℄.In this work, we onsider a more diret approah to instanton-indued olor symme-try breaking by taking advantage of the following observation: possible ondensates anbe viewed as bakground �elds that are oupled to quarks and gluons via Yukawa andgauge interations. We onentrate here on salar olor singlet and otet ondensates.In presene of a singlet ondensate, all three light quarks beome massive, thus inu-ening the weight of the fermion determinant in the instanton alulation. Additionalotet ondensates indue a mass split between an otet of fermions (here assoiated withthe baryon otet) and a singlet. Furthermore, all gluons aquire mass through the Higgsmehanism. Both e�ets modify the instanton ontribution to the free energy. In parti-ular, the e�etive ondensate-dependent gluon mass ats as an e�etive infrared uto�,strongly suppressing the ontribution of instantons of size larger than the inverse gluonmass. Furthermore, the infrared uto� stops the running of the gauge oupling suh thatthe gauge oupling remains small for suÆiently large otet ondensates, and perturbationtheory beomes appliable. By omputing the instanton ontribution to the free energyin presene of the ondensates, we get aess to those parts of the e�etive potential thatviolate the axial U(1)A symmetry. Under the hypothesis that these parts dominate theotet dependene of the potential, we may try to draw onlusions if the minimum oursfor vanishing or non-vanishing otet ondensate. Our omputation of this response isbased on two theoretial onepts: on the one hand, the full funtional integral is evalu-ated in the semilassial one-instanton approximation. On the other hand, the deouplingof massive modes is taken are of by a proper threshold behavior of the running oupling,as it is suggested by the funtional RG.Our method needs assumptions how the non-vanishing singlet and otet ondensatesinuene the masses of quarks and gluons. In pratie, this is done by an ansatz for thee�etive ation whih desribes the ouplings of quarks and gluons to the olor singlet andotet ondensates. Apart from the restritions imposed by olor and avor symmetry, the2



details of this e�etive ation are not known. This is one of the most severe restritions onthe quantitative reliability of our omputation. Nevertheless, the qualitative features ofmass generation for quarks and gluons an be aptured in a simple piture. We onsiderhere a loal interation with low powers of the ondensates, in partiular the hiral olorsinglet salar �ab with avor indies a; b; : : : and the olor otet salar �ab;ij with non-trivial struture for avor and olor (i; j; : : : ). Our ansatz for the interations betweenthe ondensate �elds, quarks and gluons an be summarized in the following Eulideane�etive Lagrangian [18℄,L = iZ � iD=ij  j + 12 F ��ij Fji;�� (1.1)+Z� tr f(D��)yij(D��)ijg+ Z� tr f���y���g�iZ � i�(h�Æij + ~h�ij)1 + 52 + (h�yÆij + ~h�yji)1� 52 � j+U0(�; �):Here, we have inluded all power-ounting relevant and marginal interation operators aswell as an e�etive potential for the bakground �elds for ompleteness. In Eq. (1.1), wetreat � and �ij as 3 � 3 matries in avor spae and ontrat over the avor indies ofthe quarks. A suessful phenomenology of QCD based on an e�etive Lagrangian of thisform has been worked out in [17, 18, 38℄.Obviously, the reliability of our onlusions will depend on whether the ansatz (1.1)gives a qualitatively orret piture for the response to non-vanishing ondensates. Wetherefore present a few additional arguments for its motivation. Assoiating the on-densates �; � with orresponding fermion omposites � �  , the interations of the typespei�ed in Eq. (1.1) arise naturally from fundamental QCD, as an be studied with teh-niques developed in [32, 33, 20, 36, 34℄. In partiular, box diagrams of the type shown inFig. 1 play an important role. In this work, we hoose the viewpoint that these e�etiveinterations are present in the dominant momentum region for the instanton ontribution,being generated by U(1)A-preserving interations, also partly at higher momentum sales.We do not attempt here to ompute the parameters appearing in the e�etive ation (1.1)exept for the gauge oupling. For a qualitative study, we treat the Yukawa ouplingsh; ~h as well as the wave funtion renormalization fators Z , Z�, Z� as free parameters.In presene of non-vanishing bakground �elds � hiral symmetry is broken, whereas� ats like the Higgs salar, giving masses to gluons and quarks. For the present purpose,it suÆes to investigate in detail the following two diretions in �eld spae:�ab = �Æab; �ab;ij = 1p6�(ÆiaÆjb � 13ÆijÆab): (1.2)These on�gurations orrespond to the ondensates of standard hiral symmetry breakingand a olor-avor loked [37℄ ombination of quarks and anti-quarks, respetively. In thisbakground, all fermions aquire mass,M1 = h� + 83p6~h�; M8 = h� � 13p6~h�; (1.3)3



+ ! !Figure 1: Box diagrams with fundamental QCD interations (left two diagrams) generatee�etive (nonloal) four fermion interations (middle). Using rebosonization [32℄ these anbe translated to (approximately loal) Yukawa interations interations with propagatingomposite bosons (right).with a split between the otet mass M8 and the singlet mass M1 for � 6= 0. The fermiondeterminant in the instanton ontribution depends only on M8 and M1. We use thefreedom of saling of the �elds � and � to set h = ~h = 1. In this normalization, �and � are diretly related to the masses. In the Higgs piture of the QCD vauum, theexpetation value forM8 should be assoiated with the mass of the lowest baryon otet andM1 with a baryon singlet, possibly �(1405), yielding [39℄M8 = 1:15GeV,M1 = �1:4GeVor �0 = 866MeV, �0 = �2:08GeV. In our approah, we treat � and � as free variables.The otet ondensate in (1.3) provides for an equal mass for all eight gluons,Mg = Z1=2� gj�j: (1.4)Here, g is the renormalized oupling taken at an appropriate sale. The � dependene ofg will be disussed in detail below. Then Z� remains the only undetermined parameterof our ansatz. The phenomenologial ansatz of [18, 39℄ assoiates Mg with the averagemass of the lowest spin-one meson otet, Mg ' 850MeV and suggests Z1=2� ' 1=15.The paper is organized as follows. In Set. 2, we disuss the various e�ets of thequark and gluon masses on the instanton integral. In the subsequent Set. 3, we dis-uss the asymptoti behavior of the instanton ontribution to the free energy. In Set.4, we investigate whih ondensate bakgrounds are preferred by the instantons. Ouronlusions are presented in Set. 5.2 E�etive potential in one instanton approximationConsider a given bakground of salar �elds � and �, as introdued above. Our aim is toompute the instanton ontribution to the e�etive potential for � and � in the preseneof utuating quarks and gluons. For homogeneous � and �, the e�etive ation � thusdeomposes into�[�; �℄ � 
U(�; �) = 
 �U0(�; �) + Uinst(�; �) + U�inst(�; �)�; (2.1)where 
 denotes the spaetime volume. The non-anomalous ontribution U0(�; �) on-serves the axial U(1)A symmetry and will not be omputed here. The anomalous ontri-4



bution Uinst is indued by on�gurations with non-trivial topology, mediating also U(1)Aviolation [40℄. We determine this part in semi-lassial approximation based on instan-ton methods. In partiular, we resort to the approximation of a gas of dilute instantonsin whih Uinst. an be expressed by an integral over the instanton size � and the prod-ut of gluoni (inl. ghosts) and fermioni utuation determinants in a one-instantonbakground (see Appendix A),Uinst = � 1
 Z 10 d� exp(�8�2=g2(�))�gl(�; �) det M ;ij: (2.2)Here, the exponential fator reets the lassial ation of the instanton, and �gl sum-marizes the ontributions from gluons and ghosts in the instanton bakground. The lastfator, with M ;ij = �D= ij + �Æij + �ij; (2.3)represents the fermion determinant whih is of entral interest to our work. In partiular,it ontains the zero modes of the Dira operator whih are responsible for anomalousontributions and give rise to a strong � and � dependene even for small values of these�elds.It is useful to deompose Eq. (2.2) into a fator �z(�; �; �) arising from the fermionizero modes, and another non-zero-mode fator �n(�; �; �) that summarizes all remaining(lassial, gluoni, fermioni) ontributions:Uinst(�; �) = �Z d� �n(�; �; �) �z(�; �; �): (2.4)All ontributions have been studied frequently in the literature, beginning with the seminalwork of 't Hooft [1℄. As important new aspets, we inlude the olor otet salar and takethe threshold behavior due to deoupling of massive modes into aount.2.1 Lowest order in the bakground �eldsAssuming that � and � are small ompared to all other sales, their main inuene arisesfrom the zero-mode ontribution. In partiular, the non-zero-mode fator �n does notdepend on the salar �elds to lowest order. For an SU(N) gauge theory with Nf avors,�n reads1 [1℄, �n(�) = DS��5� 8�2g2(�)�2N exp�� 8�2g2(�)� : (2.5)Here, DS is a sheme-dependent onstant. A disussion of the sheme dependene inlud-ing the di�erene between massive and massless regularization shemes an be found inAppendix B. Our sheme has been motivated by the funtional RG whih generially1In Appendix C, we briey review the ontributions from the zero and the non-zero modes startingfrom results given in [1, 41℄. Moreover, we use this appendix to introdue our regularization sheme.5



provides for mass-dependent shemes that automatially aount for a proper deouplingof massive modes. This is a onvenient feature of our RG-inspired sheme; however, weobserve no qualitative sheme dependenies of our results. For example, to zeroth or-der in the �elds, DS in our RG regularization sheme is given by (see [42, 43, 40℄ andAppendix C)DRG = DMS = 2 exp(56)�2(N � 1)!(N � 2)! exp(�1:51137N+0:29175Nf) = 6:005�10�3 ; (2.6)where the last equality holds for N = Nf = 3.As disussed in the Appendies B, C, our RG sheme is onstruted suh that itmathes the MS sheme in the small mass limit. It was demonstrated in [44℄ that theMS sheme gives satisfatory agreement with lattie data in the ultraviolet. Without aolor-avor mixing mass matrix (� = 0), the eigenmodes of D= are also eigenmodes of M and we are led to [1, 6℄�z(�; �; �) = hhdet avorh 0(a; i)jM ;ijj 0(b; j)iiSU(3) =: ��NfV (�; �); (2.7)where the inner angled brakets denote the salar produt of the zero modes  0, andthe outer angled brakets denote a group average over all possible diretions for theinstanton in olor spae. In the last step, we have separated o� the simple � dependene� �Nf and de�ned the auxiliary potential V (�; �). We have also used the persistene of(quasi-)zero modes in the presene of the regularization [6℄. For � 6= 0, D= and M donot ommute in general, e.g. for ondensates � with (1.2). The eigenmodes of D= and M do not agree anymore for � 6= 0. Therefore, stritly speaking, Eq. (2.7) does not hold ingeneral. However, in leading order of an expansion in � and � it holds true, as shown inAppendix D. Inserting these �ndings into Eq. (2.4), we obtainUinst(�; �) = V (�; �)Z d� �Nf�n(�) =: � V (�; �): (2.8)For Nf < 4, � is a �nite number for physially admissible running ouplings from the UVto the IR as disussed in Appendix E. For small � and �, the potential V (�; �) arriesall dependene on the salar ondensates.So far our disussion has made no use of a spei� olor or avor struture for thebakground �elds. Let us now speialize to the ondensates spei�ed in Eq. (1.2). Usingthe gauge-group averages omputed in [2℄ we �nd (see Appendix D for details)V (�; �) = ��3 + 172��2 + 1648p6�3 = �(� + 16p6�)2(� � 13p6�): (2.9)In this rude approximation where U(�; �) = �V (�; �) with � being a �eld-independentonstant, we observe two at diretions, � = � 16p6� and � = 13p6�, but no global min-imum. In fat, V (�; �) is unbounded from below, similar to the �ndings in [19℄. In thepresent ase, this simply signals the breakdown of the approximation of small � and �.6
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Figure 2: Shemati plot of V (�; �) at �xed � > 0. Without higher-order orretions,the potential is unbounded from below (solid line) with a loal minimum at � = 0. Ifthe uto� mehanism provided by the higher-order orretions is strong (dotted line) theglobal minimum remains at � = 0. However, if the suppression sets in only at rather largevalues of � (dashed line) we have a global minimum at � 6= 0 in addition to a loal oneat � = 0.Let us assume for a moment that the potential beomes stable beyond this approxi-mation or by the inlusion of U0(�; �) (f. Eq. (2.1)). Then one might speulate that the�rst at diretion, � = � 16p6�, whih is a line of loal minima for � < 0, haraterizes aglobal minimum (the seond at diretion is not even a loal minimum). However, in thisase, the ratio r = �������� = 16p6 � 0:068 is far from the phenomenologially reasonable ranger � 0:4 [39℄. Sine V is ompletely determined by the zero modes of the massless Diraoperator, this at diretion will not be lifted by the inlusion of higher order orretionsin the bosoni �elds in the 1-instanton approximation, as long as the split into zero- andnon-zero-mode parts remains justi�ed. A similar at diretion was also found in [19℄.Let us furthermore assume that, for instane, U0 indues a nonzero VEV for �. SineV (�; �) prefers a positive �, the resulting potential V (�; �) in the � diretion looks likethe solid line skethed in Fig. 2. The ase of no olor otet ondensate, � = 0, thenis a loal minimum. For larger �, the higher-order orretions from the non-zero-modeontribution and the threshold e�ets will set in, stabilizing the potential in � diretion.Now it is a dynamial question as to whether this stabilization sets in early, i.e., for rathersmall �, suh that no other minimum is indued (dotted line). Or stabilization ould onlymodify the region of large � (dashed) line, suh that the �3 term of Eq. (2.9) wins out inbetween and indue a olor otet ondensate.The seond senario of olor otet ondensate formation seems more diÆult to berealized, sine the � �3 term and the � ��2 are of opposite sign and the oeÆient of the�3 term is rather small. Unfortunately, the small oeÆients in front of ��2 and �3 in thepotential (2.9) will limit even the qualitative reliability of our investigation. As an e�etof the olor averaging, the potential in the � diretion is almost at for a given value of�, in ontrast to the pronouned potential in the � diretion. For a given �, the weakdependene of V on the \diretion" �=� ould easily be overwhelmed by orretions inhigher orders in � and � that are muh more diÆult to ontrol. Despite this aveat, aquantitative analysis remains interesting and will be presented in the next setions.7



Let us lose this lowest-order onsideration with the remark that � and �, in general,are omplex �elds. However, omplex �eld values typially lead to large CP violation,making them phenomenologially unaeptable; this is the reason why we restrited ouranalysis to real �eld values. If a non-trivial phase between the otet and singlet onden-sates is favored in ase of non-vanishing j�j, this may lead to an argument against theformation of olor otet ondensates in general. In order to demonstrate this point weassume for a moment that the e�etive potential for the relative phase between � and �is dominated by the small �eld instanton ontribution U � �V (�; �). Then, real positivevalues of � would be preferred due to the instanton ontribution. This would in turnlead to a positive \mass term" � �2 (f. Fig. 5(b)), originating from the ��2 term in(2.9); for imaginary � = ij�j, this turns into ��j�j2. Combining this with the small �3term, the relative minimum of V (�; �) for �xed � > 0; j�j > 0 would our for a omplexCP-violating �. Unfortunately, the impat of this observation is weakened by the verysmall oeÆients of the ��2 and �3 terms arising in our approximation. The approximateatness in the � diretion makes the potential inuene of other e�ets large. In thisontext we observe that the U(1)A-onserving part U0 in (2.1) also ontributes to thee�etive potential for the phase between � and �, for example with terms � ��2�2+ ::.Only the ommon phase of � and � is proteted by the U(1)A-symmetry and is uniquelydetermined by the instanton part.2.2 Beyond small ondensatesAs demonstrated in the preeding setion, the instanton-indued e�etive potential an,in priniple, support a mehanism for spontaneous olor-otet ondensation. Whether ornot this mehanism is realized, however, requires a study that is valid for larger values of� and �. The onsequenes of large ondensates are twofold. First, the fermion massesare no longer small. This a�ets the non-zero-mode ontribution �n as well as the runningof the gauge oupling. Also a mixing between zero modes and non-zero modes is indued.Seond, a olor non-singlet �eld gives an e�etive mass to the gauge �elds, whih againmodi�es the running of the gauge oupling (now the pure gauge ontribution). In addition,it provides for an e�etive infrared uto� for the � integration.2.2.1 E�ets on the running gauge ouplingFermion and e�etive gauge boson masses exert an immediate inuene on the running ofthe gauge oupling. For momenta smaller than the mass of a given quark or gluon degreeof freedom, the orresponding utuations of this degree of freedom are suppressed. Asa onsequene, these utuations do no longer ontribute to the running of the oupling.This deoupling of massive modes an diretly be implemented in the � funtion for therunning oupling, whih we write as�tg2 � k ddkg2 = � 18�2 g4�113 N lg(M2gk2 )� 23Nf lf( jM8j2k2 )� ; t � ln k� ; (2.10)8



where Mg and M8 are the gluon and the otet masses given in Eqs. (1.3),(1.4), and kdenotes an RG momentum sale. The threshold funtions lg,f(x) approah unity for smallargument, lg,f(0) = 1, orresponding to the fat that the physial or e�etive masses playno role in the UV k !1. For large argument, i.e., for momentum sales k below a givenmass, the threshold funtions drop to zero rapidly, lg,f(x� 1)! 0, whih implements thedeoupling of massive modes from the renormalization ow. The threshold funtions arenot universal but regularization sheme dependent. For generi mass-dependent shemes,the threshold funtions interpolate smoothly between the two limits.2 For the expliitomputations, we set the threshold funtions equal, lg(x) = lf(x) = l(x), and usel(x) = 1(1 + x)3 : (2.11)This is a typial form for a threshold funtion, ourring in alulations based on thefuntional RG. Of ourse, the one-loop form used in Eq. (2.10) only serves as an example.A similar analysis of mass threshold behavior applies to any loop order and even fullynon-perturbatively. We would like to stress that it is this threshold behavior where theadditional free parameter Z� enters via Mg, f. Eq. (1.4).As a result of this deoupling mehanism, the e�etive running oupling is now �eld de-pendent, g(k; �; �). Inserting this into Eqs. (2.5), (2.8) results in an additional �eld depen-dene of the e�etive potential. Qualitatively, the gauge boson mass weakens the inreaseof the gauge oupling. Owing to the exponential of the lassial ation � exp(�8�2=g2)in Eq. (2.5), this leads to a total suppression of the instanton ontribution. The fermionthreshold behavior has the opposite e�et due to the minus sign in the � funtion, reet-ing their harge-sreening nature.2.2.2 E�et on the instanton determinantThe ondensates give masses to fermions and gluons, hene the orresponding utuationdeterminants have to be evaluated for this massive ase. Let us �rst onsider the massivefermion determinant, i.e., the non-vanishing shift of the fermioni (non-zero) eigenmodesdue to the e�etive fermion mass Eq. (1.3). This problem has been solved reently usingan eÆient method to perform the mode sum [45, 46℄. The result interpolates smoothlybetween the analytially known small and large mass expansions [47, 48℄. These alula-tions have been performed with a olor singlet quark mass m in the MS sheme. Here, weneglet the di�erene in the e�et of the singlet and otet quark mass and approximatem = 13pjM1j2 + 8jM8j2: (2.12)2For mass-independent shemes suh as the MS sheme, threshold funtions do not appear diretly;but in order to desribe the physis above and below a mass threshold adequately, theories with theorrespondingly di�erent partile ontent have to be mathed at the mass threshold. This an equally bedesribed by an e�etive threshold funtion whih hanges its slope disontinuously at a mass threshold.9
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Figure 3: The solid line gives the interpolating funtion K(x), smoothly onneting thesmall mass (dashed) and the large mass approximations [46, 45, 48℄.For our purposes, we have to adapt the results of [46, 45, 48℄ to our massive RG regular-ization sheme, as derived in Appendix C, and use the following interpolating funtionNfK(x) := ln det 0(�D= +m)���RG= �23Nf(H(x) + 34) + ln det 0(�D= +m)���MS (2.13)' Nf �� ln(x)� a1 + ln(x) + a1 � a2x2 � a3x41 + a4x2 + a5x4 + a6x6 � ;with x = �m. The funtion H(x) is de�ned in Eq. (C.9), anda1 = 0:792; a2 = 3:58; a3 = 0:0842; a4 = 0:00115; a5 = 23:5; a6 = 9:28;The primed determinant det 0 in (2.13) is that in the spae of non-zero modes. As shownin Fig. 3, this funtion interpolates smoothly between the small- and large-mass regimes.A similar behavior as for the fermion determinant is expeted for the non-vanishinggluon mass in the gluon determinant. However, this e�et is sub-leading, the dominante�et being the modi�ation of the lassial ation at the minimum, see e.g. [1, 6℄: foronstant �, this gives a ontribution to the lassial ation �Sl = �6�2Z�j�j2�2 andtherefore a fator of (f. Eq. (2.2))exp(�8�2=g2(�))�gl(�; �)! exp(�8�2=g2(�)� 6�2Z�j�j2�2)�gl(�) (2.14)in the integral (2.8). To summarize, the full inlusion of � and � in the fermion determi-nant and the Higgs-type of ontribution to the lassial ation result in our �nal formulafor the e�etive potential (N = Nf = 3):Uinst = DRGV (�; �)Z d� ��2� 8�2g2(�)�6 exp�� 8�2g2(�) � 6�2Z�j�j2�2 + 3K(m�)� ;(2.15)where K is given in Eq. (2.13), and DRG is de�ned in Eq. (2.6). One the running of thegauge oupling is spei�ed, e.g., using the one-loop form of Eq. (2.10) and identifying the10



RG sale with the inverse instanton radius, k = 1=�, we an investigate the landsape ofthe instanton-indued ontribution to the e�etive potential for � and �. For �xed �, anadditional � dependene arises from the expliit term � j�j2 in the \lassial part", thedependene of g(�) on � and the threshold e�et K(m�). Our approximation of K(m�)reets probably only poorly the dependene on the ratio �=�, and we have also negletedthe mixing between the fermioni zero modes and non-zero modes whih would modifyV (�; �).3 Asymptoti behavior of the e�etive potentialIn order to obtain a more analyti understanding of the e�etive potential Uinst, let usinvestigate its asymptoti behavior for the di�erent regimes of small and large �elds �and �. Of partiular interest is the interplay between this asymptoti behavior and therunning of the gauge oupling. As an important aveat, it should be kept in mind thatour derivation of the e�etive potential is based on the semi-lassial instanton gas ap-proximation. This approximation impliitly assumes that the one-instanton ontributionis small, whih translates into a small value of Uinst. Therefore, whenever a large asymp-toti behavior of Uinst is enountered, this may not neessarily reet the true behaviorbut rather signal the breakdown of the instanton-gas approximation.Our derivation of Eq. (2.15) so far made use of the spei� one-loop running of thegauge oupling given in Eq. (2.10). Assuming that the funtional dependene on therunning oupling holds also in the general ase, we use the form of Eq. (2.15) also for othertheoretially or phenomenologially motivated running gauge ouplings. For de�niteness,we will use gauge ouplings with the following infrared (�!1) propertiesg2(�)����!1 � 8>>>>>>><>>>>>>>: onst �xed pointj ln(�)jplog logarithmi divergene�ppower power law divergeneg2pert(�)�(�QCD � 1�) + �(1� � �QCD)1 perturbative 9>>>>>>>=>>>>>>>; ;(3.1)with positive onstants plog and ppower; eah infrared behavior will be adapted to show thesame deoupling properties for massive modes as displayed in Eqs. (2.10) and (2.11). Forsimpliity, we assume that this IR behavior does not depend on the number of fermions.These running ouplings and the orresponding resulting instanton densities at vanishingexternal �elds are shown in Fig. 7 in Appendix E.The e�etive potential for non-vanishing � and � is strongly inuened by fermionand gauge boson mass e�ets, respetively. Hene, the e�etive potential is expetedto behave di�erently in the various diretions of the �; � plane. For de�niteness, let usinvestigate four ases: (1) � small; � = 0; (2) � !1; � = 0; (3) � = 0; � small and (4)� = 0; �!1. 11



The � integration an be performed analytially by splitting the integration domaininto several intervals, eah of them dominated by a di�erent e�et. For ase (1), for in-stane, there is a UV regime (0; �pert) where the running oupling is well approximated byone-loop perturbation theory without the inuene of mass thresholds. In the onseutiveinterval, (�pert; � ) (with  being some onstant O(1)) the gauge oupling is dominated bynon-perturbative dynamis, but fermion masses still do not play an important role. Fi-nally, in the interval ( � ;1) the fermions are heavy ompared to the sale 1=�, and puregluodynamis dominates the running oupling. Negleting logarithmi dependenies on� or �, we �nd,Uinst(�; �) �8>>>>>><>>>>>>: A1�Nf +B1�4+2Nppower; (1) : � small; � = 0A2�4��0 +B2�4(1��0�00 ); (2) : � !1; � = 0A3�Nf +B3�4+ 4Nppower2+ppower ; (3) : � = 0; � smallA4�4��0; (4) : � = 0; �!1 ; (3.2)where all terms with oeÆients Ai arise from the perturbative interval � 2 (0; �pert), andthose with oeÆients Bi arise from the various non-perturbative intervals. Of ourse,only the Bi terms depend on the form of the running oupling spei�ed in Eq. (3.1);in fat, B1 and B3 vanish for the "perturbative" gauge oupling of Eq. (3.1). Further-more, �0 = 113 N � 23Nf is the one-loop oeÆient of the � funtion with fermions, and�00 = 11N3 denotes the one-loop oeÆient for pure gluodynamis. Not surprisingly, thelogarithmially divergent and the �xed-point oupling yield the same results on this levelof auray; hene the parameter plog of Eq. (3.1) does not enter Eq. (3.2).For Nf > 4+2Nppower, the small-� and small-� behavior may signi�antly be modi�edompared to the perturbative expetation �Nf; �Nf. Here the possible dependene on theinfrared behavior of the gauge oupling appears to be important. However, this simplyreets the fat that naive IR onvergene in the � integration is lost for Nf > 4, as we havealready noted before. In this ase, the onvergene is now restored by a ombination ofthe suppression due to the �nite fermion mass exp(�NfK(m�)) and the suppression fromthe gauge oupling � 8�2g2(�)�2N at the expense of a diret dependene on the IR behaviorof the gauge oupling.In the large-�eld regime, the potential grows faster than �4; �4 only if �0 < 0 whihorresponds to theories without asymptoti freedom. Conversely, for asymptotially freetheories, the instanton-indued potential will not dominate over the non-anomalous partof the potential U0 whih an be expeted to exhibit a �4; �4 growth for reasons of univer-sality. In view of the aveat mentioned in the beginning of this subsetion, we interpretthis result as a suessful self-onsisteny hek of the instanton-gas approximation. Fur-thermore, for N = Nf = 3 and �xed �, the instanton ontribution vanishes Uinst � ��5for large �. The instanton potential is therefore stabilized in the � diretion.12



-1.5 -1 -0.5 0 0.5 1 1.5
-150

-100

-50

0

50

100

150 �=�QCDU(�)DS (a) -15 -10 -5 0 5 10 15

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 �=�QCDU(�)DS (b)Figure 4: Setions of the instanton potential Uinst(�; 0) (left panel) and Uinst(0; �) (rightpanel) in units of �QCD. The di�erent large-�eld behavior is learly visible: the potentialin the positive � diretion goes to �1 whereas it rapidly approahes 0 for large j�j.Note the di�erent sales of the potential itself for the � and the � diretion. (Both plotsuse Z1=2� = 1=15 and a gauge oupling approahing an IR �xed point g2�x = 100. Therenormalization-sheme-dependent onstant DS is saled out.)4 Numerial analysis of the e�etive potentialGuided by the analyti knowledge obtained so far for the e�etive potential, let us studyour full result for the instanton-indued e�etive potential Uinst(�; �) obtained numeriallyfrom Eq. (2.15). For de�niteness, we use { as an example { a one-loop form for the gaugeoupling modi�ed suh that it approahes an IR �xed point at g2�x = 100 in abseneof ondensates; this is in the ball park of IR results from RG ow equations [31℄. Ouronlusions remain similar for all other running ouplings proposed in Eq. (3.1).Let us �rst on�rm the asymptoti behavior obtained analytially above along the �and � axes. As is visible in Fig. 4(a), displaying U(�; 0), the potential along the � axisis unbounded from below for � ! 1. In partiular, for Nf = N = 3, the resultingasymptotis of Eq.(3.2) yielding jU(�; 0)j � � 811 is on�rmed. Let us stress that theoverall sign of the potential is negative for positive �, sine the integral in Eq. (2.15)is always positive and the prefator V (�; 0) = ��3 is negative. From this, we drawtwo onlusions: �rst, the instanton potential favors hiral symmetry breaking, but thevalue of the ondensate is not determined by the instanton potential alone (at least in oursimple one-instanton approximation). Seond, the omplete instanton potential Uinst(�; �)annot have a global minimum sine there is a diretion in whih the potential alwaysdereases.Next we onsider a pure � �eld. Figure 4(b) shows that the instanton potentialbeomes at rather rapidly for large �, as expeted from Eq. (3.2). Negative � arelearly preferred.3 From Fig. 4(a), we an read o� the loation of the minimum: �min �3Let us stress that the relative sign of � and � is indeed important, sine it hanges the parity ofsome partiles in the spetrum of the model (1.1). Moreover, owing to the U(1)A anomaly, it is not lear13
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5 ConlusionsWe have alulated the one-instanton ontribution to the e�etive potential in a bak-ground of lassial bosoni �elds oupled to quarks and gluons. One �eld, �, has thestruture of the typial singlet hiral ondensate and the other, �, exhibits a olor-avor-loking struture, as onjetured for the senario of spontaneous olor symmetry breakingin the vauum. Beyond leading order in the bakground �elds, we have inluded e�etsof quark masses on the running gauge oupling and the quark determinant. In addition,the olor otet ondensate works as a Higgs �eld for the gluons, providing for an extra �-dependent ontribution to the lassial instanton ation. We work in a massive regulatorsheme whih makes threshold behavior more transparent.For the realisti ase of Nf = 3 light quark avors, the instanton potential is unboundedfrom below for a pure singlet hiral ondensate, favoring a non-trivial value of this on-densate and hiral symmetry breaking. Although there exists a loal extremum withnon-vanishing otet ontribution, it is rather shallow and thus likely to be washed out bynon-instanton e�ets. Moreover, this extremum has a nearly vanishing value for the hiralondensate, making it phenomenologially unaeptable. As the potential is unboundedfrom below along the � diretion, a global minimum of the instanton potential alone isexluded. Other stabilizing e�ets are typially expeted from the U(1)A-preserving se-tor. Therefore, we have investigated if a olor otet ondensate is favored at �xed singlethiral ondensate. For realisti positive values of the hiral �eld � � 1�QCD, � = 0 is theglobal minimum in the olor otet diretion. For negative � with a similar absolute value,there exists a minimum with non-vanishing otet ondensate. However, this minimumis also unnaturally shallow and thus will presumably be washed out by non-instantone�ets. Moreover, the negative sign of � is disfavored by the instanton ontribution.An analyti insight into the e�etive potential an be gained from its asymptotibehavior for large bakground �elds. It is interesting to note that the behavior for verylarge �elds is inherently onneted to asymptoti freedom. For instane, large olor otetondensates lead to a high-sale deoupling, suh that any non-perturbative IR behavior issreened; in this large-� diretion, the attening of the potential an diretly be related tothe perturbative approah to asymptoti freedom. Another extreme example is providedby the ase where asymptoti freedom is lost, e.g., owing to too many fermion speies;in this ase, the potential may go to �1 faster than the fourth power of the �elds,preventing stabilization by a renormalizable non-instanton potential for the bosoni �elds.On the other hand, we observe a strong qualitative dependene on the non-perturbativeIR behavior of the oupling only for very small �elds and more than four light fermionspeies: here, the inrease of the instanton amplitude depends strongly on the infrareddetails of the gauge oupling and may be hanged from the naive �Nf; �Nf.In onlusion, barring large higher-order, e.g., multi-instanton, e�ets, we �nd thathiral symmetry breaking is supported by instanton e�ets. On the other hand, theissue of olor otet ondensation remains inonlusive. In our approximation, we �nd noevidene that instantons favor a olor ondensation in the vauum.16



AknowledgmentThe authors are grateful to G.V. Dunne, H. Min, and A. Ringwald for disussions. HG, JJ,and JMP aknowledge support by the DFG under Gi 328/1-3 (Emmy-Noether program).A The one-instanton approximation and the instan-ton gasHere we reall the omputation of the instanton-indued e�etive ation � within thedilute-gas approximation. In a dilute and weakly interating instanton gas, the dominat-ing ontribution to the generating funtional is the one-instanton and one-anti-instantonontribution. It reads Z1 = �
 (UI(�; �) + U�I (�; �)) (A.1)where 
 denotes the 4-Volume, and UI is the e�etive potential orresponding to theprodut of funtional determinants of the utuating �elds in this bakground. The anti-instanton ontributes with UAI(�; �) = U?I (�; �). Within the dilute-gas approximation,the ontribution of the jnj-instanton setor is given by Zn = (Z1)nn! . This leads to the thefull amplitude Z = 1Xn=0 Zn = 1Xn=0 (Z1)nn! = exp(Z1); (A.2)where we have normalized the zero-instanton amplitude to one. To lowest order in thebosoni bakground �elds, this holds beause we inluded the inuene of the �elds(masses for the fermions) only for the zero modes. However, in the absene of gauge�elds, the Dira operator has no zero modes. Beyond this approximation, this normaliza-tion orresponds to a modi�ation of the non-instanton U(1)A-symmetri ontribution toU(�; �). From (A.2), we read o� the e�etive ation in the lassial bakground of �, �,� = � lnZ = �Z1; (A.3)whih serves as the starting point of our investigation in the main text.B Di�erent regularization shemesIn this appendix, we disuss how to swith between regularization shemes. We shalluse a sheme whih manifestly exhibits the deoupling of massive modes. It has beenshown in [6℄ that topologial e�ets persist within the RG framework used in the presentwork. This applies, in partiular, to the existene of zero modes [6℄. Moreover, at leadingorder one only has to take into aount the expliit mass or regulator dependene. Thisamounts to using the well-known zero modes [1℄.17



For non-perturbative problems involving mass threshold e�ets, as they are induedby the bakground �elds in our ase, suh shemes are highly advantageous. Following[1, 49℄, a hange of the renormalization sheme an be understood by omparing twointegrals, I1 = Z d4q(2�)4 1(q2 +m2)2 ; I2 = Z d4q(2�)4 q4(q2 +m2)4 ; (B.1)in the di�erent regularization shemes. Here, I1 appears in onnetion with the zeromodes and I2 with non-zero modes. Therefore, we an easily keep trak of these terms.For example, the Pauli Villars sheme givesIPV1 = Z d4q(2�)4 � 1(q2 +m2)2 � 1(q2 + �2PV)2� = 1(4�)2 (2 ln(�PV)� 2 ln(m)); (B.2)IPV2 = Z d4q(2�)4 � q4(q2 +m2)4 � q4(q2 + �2PV)4� = 1(4�)2 (2 ln(�PV)� 2 ln(m)) = IPV1 ;whereas we �nd in dimensional regularizationIdreg1 = �4�n Z dnq(2�)n 1(q2 +m2)2= 1(4�)2 � 24� n + 2 ln(�)� 2 ln(m)�  + ln(4�) +O(4 � n)� (B.3)= Idreg2 + 596�2 : (B.4)Comparing Eqs. (B.2) and (B.4), the substitutions for a hange from Pauli-Villars todimensional regularization readI1 : ln(�PV)! 14� n + ln(�)� 12 + 12 ln(4�); (B.5)I2 : ln(�PV)! 14� n + ln(�)� 12 + 12 ln(4�)� 512 :Using Eq. (B.5), it is easy to hek that, starting from Eqs. (2.5), (2.7), we an obtainthe orresponding result in dimensional regularization as given, e.g., in [1℄.Both shemes disussed so far are mass independent. This originates from the fat thatfor �xed uto� � or �xed dimensionality 4� n, the integrals IPV and Idreg do not vanishin the limit m ! 1. A mass-dependent regularization sheme should implement thisdeoupling: massive modes should not ontribute to physis below the mass threshold.For m� � the integrals I1 and I2 should beome small and vanish in the above limit ��xed, m!1. This an be implemented by de�ning IRG1 != IRG2 withIRG1 = Z �0 dk k�1 l�m2k2 � = 1(4�)2 �ln�1 + �2m2�� 2m2�2 + 3�42(m2 + �2)2 � ; (B.6)l(!) = 1(1 + !)3 : 18



In fat, this is not an arbitrary de�nition, but reeives motivation from various soures.First, it is very onvenient to have I1 = I2, sine, when hanging from the ommon Pauli{Villars sheme to our sheme it is not neessary to distinguish between the di�erentontributions from I1 and I2. The main reason, however, is the simple form of the one-loop ow equation for the gauge oupling in Eq. (2.10) whih results from this hoie.Finally, a deeper reason for the hoie is that it orresponds to a simpli�ed version of atypial funtional RG sheme regularization (for more details see, e.g. [36℄). Indeed,IRG1 = �Z �0 dkk Z d4q(2�)4 ddkRk(q2) 1(q2 +m2 +Rk(q2))3 ; (B.7)is a typial expression for I1 when one de�nes perturbation theory from a ow equa-tion with regulator funtion Rk(q2). In a onsequent RG alulation several di�erentthreshold funtions similar to l(!) appear. For simpliity we put I1 = I2. This is notan approximation but simply an impliit de�nition of the related regulator funtion Rk.For omputations beyond the present qualitative setting we suggest using an optimizedregulator [50, 51℄ Rk(q2) = (k2 � q2)�(1 � q2k2 ) ; (B.8)and its upgrades suitable for momentum-dependent approximations [24℄.From Eq. (B.6), it is easy to �nd the relation between Pauli{Villars regularization andour sheme,ln(�PV)! ln(m) + Z �0 dkk l�m2k2 � = 12 ln(m2 + �2)� 2m2�2 + 3�44(m2 + �2)2 : (B.9)We emphasize that Eq. (B.9) depends on the uto� � as well as on the mass m of thepartile in question. For large m, the mass ats similar to the uto� �. This implementsthe deoupling of heavy modes.Finally, we exploit the freedom of rede�ning the oupling onstant at one-loop order,suh that it absorbs part of the �nite hanges disussed above,8�2g2S(�) = 8�2g2S(�) + CSS: (B.10)modifying the perturbative expression for g2 only at order g4. This is often used to simplifyexpressions, e.g., in the transition from MS to MS, or to ensure diret omparabilitybetween di�erent shemes. We will use this freedom below in Appendix C to failitateomparisons between our sheme and the MS sheme in whih most results are given inthe literature.C Assembling the instanton integralIn this appendix, we put together all the various piees of the instanton size � integral,taking are of our mass-dependent regularization sheme. At �xed instanton size and19



using Pauli-Villars regularization, the following funtions ontribute to the renormalizedintegrand: fl = exp(�Sl) = exp(� 8�2g2(�)); (C.1)fnonzero = exp��13N ln(��)� �(1) + Nf3 ln(��) + 2Nf�(12)� ; (C.2)fgauge = 4�5 � 4�g2(�)�2N (��)4N; (C.3)ffermion = MNf�Nf ; (C.4)N = 4�2 �2(N�1)(N � 1)!(N � 2)!; (C.5)where MNf represents V (�; �) as de�ned in Eq. (2.7) and redues to mNf if the bosonisoures only lead to a simple mass term m.Here fl is the ontribution from the lassial ation, fnonzero summarizes all e�etsfrom the non-zero modes, fgauge is the ontribution from the gauge and ffermion from thefermion zero modes. N ollets some normalization fators and the group averaging.Combining all these ontributions, we �nd the well known result,NYx fx = DPV��5+Nf � 8�2g2(�)� exp�� 8�2g2(�) + �0 ln(��)� (C.6)= DPV��5+Nf � 8�2g2(�)� exp�� 8�2g2PV(�)� ;where we have used the one-loop relation between g2(�) and g2(�) in the last step, andD is given in the Pauli-Villars sheme as,DPV = exp���(1)� 2(N � 2)�(12) + 2Nf�(12)� = 1:1506; (C.7)�(12) = 2R � 16 ln(2) � 1772 = 0:1459; �(1) = 8R = 13 ln(2)� 169 = 0:4433;R = 112(ln(2�) + ) + 12�2 1Xs=2 ln(s)s2 = 0:2488:We point out that we still have g2(�) in the prefator of the exponential whih is anartifat of the one loop alulation. This will be reti�ed by higher-loop orders wherethe 'bare' g2(�) in the prefator is replaed by its running ounterpart evaluated at thesale � (also at one loop order less than the orresponding one in the exponential). Sinereplaing g2(�) ! g2(�) is the main e�et of higher loop orders (apart from possiblehanges in the fator D), we aount for these prefators as well as for the term in the20



exponential by hand without further alulation. In this way, we already arrive at Eqs.(2.5), (2.8) (at least naively in the Pauli-Villars sheme),NYx = DPV��5+Nf � 8�2g2PV(�)� exp�� 8�2g2PV(�)� : (C.8)The �nal task now is to hange from the mass-independent Pauli-Villars sheme to ourmass-dependent RG sheme. Starting from Eq. (C.8), this is immediately done using(B.9), resulting in an additional multipliative fator,RG(Mg�;mf�) = exp�113 NH(Mg�)� 23NfH(mf�)� ; H(x) = 12 ln(1+x2)� 3 + 2x24(1 + x2)2 ;(C.9)where Mg and mf are the gauge-boson and fermion masses, respetively.Finally, we make a last hange and de�ne a modi�ed RG sheme via Eq. (B.10) withCRGRG = � ln�RG(0; 0)DPVDMS � ; (C.10)where DMS is de�ned in (2.6). By onstrution, this establishes that our oupling on-stant is equal to the one-loop MS oupling, also inluding the onstant in the instantonintegral. But most importantly, we have not absorbed the mass-dependent ontributions.Therefore, our sheme is still mass-dependent and provides for deoupling of heavy modes.D Calulation of the Zero-Mode PartThe Dira operator D= in the bakground of an instanton has Nf = 3 zero modes, beingavor opies of a fundamental zero mode. We show that in leading order�z(�; �; �) = hdet avorh 0(a; i)jM ;ijj 0(b; j)iiSU(3) =: ��NfV (�; �); (D.1)where (M ;ij)�� = ((�D= ij)�� + (�Æij + �ij)Æ��) ; (D.2)with mass matrix �+�, where � introdues olor-avor mixing. The eigenvalues ofM are�n(�; �) with eigenfuntions  n(�; �). The olor-avor mixing term � does not ommutewith D= and the  n are not eigenfuntions of D= for � 6= 0, leaving (D.1) a non-trivialidentity. The mass matrix reads more expliitly(�abÆij + �ab;ij)Æ�� = ��ÆabÆij + 1p6��ÆaiÆbj � 13ÆabÆij�� Æ��; (D.3)where we have already absorbed the Yukawa ouplings into the �elds and used the olor-avor struture (1.2) for the ondensates. For larity we have expliitly written out thespin indies �; �. Using the group averages in (D.1) [2, 52℄, we arrive at�z(�; �; �) = �Nf �� + 16p6��2�� � 13p6�� : (D.4)21



It is left to prove (D.1). With trivial avor struture, �ij = 0, the determinant fatorizestrivially, detM = �z(�; �; �) det 0M ; (D.5)where det 0 stands for the determinant on the non-zero mode spae. For non-vanishing� (D.5) holds up to terms �Nf. This is shown in an expansion about the determinant of�D=+� with eigenvalues �n(�; 0) = �n(0; 0)+� and eigenfuntions  (�; 0) =  n(0; 0). Welabel the zero modes of D= with  n0, n0 = 1; 2; 3 with eigenvalues �n0 (s = 0) = �. Thereis no term linear in � as the only invariant is travor� = 0. The quadrati term has thestruture �u2(�)�2 with �nite limit u(0). It is evaluated as12 �2s det(�D=+ � + s�)��s=0 = 12Xn (�2s�n) Ym6=n �m +Xm<n(�s�n)(�s�m) Yl6=n;m �l ; (D.6)where the limit s = 0 on the right-hand side of (D.6) is understood. The term proportionalto �2s�n has the oeÆient Qm6=n �m ontaining at least two of the eigenvalues �n0(s =0) = � of the zero modes  n0 . Hene it only ontributes to sub-leading terms like ��2�2.The term proportional to (�s�)2 has, apart from sub-leading terms, one ontributionproportional to Ql6=n0 ;m0 �l removing two zero modes from the produt. Thus we haveu2(�)�Nf�2�2 = �Nf�2 Xm0<n0(�s�n0 )(�s�m0) det 0M +O(�2�2) ; (D.7)where det 0M = Ql 0�l, the primed produt involves only the non-zero eigenvalues of D= .The s derivatives in (D.7) follow as�s�n(s = 0) = �sh nj(�D=+ � + s�)j ni = h nj�j ni + �n�sh nj ni = h nj�j ni ; (D.8)where we have used that h�s nj(�D= + �)j ni = h�s nj ni�n and h nj(�D= + �)j�s ni =�nh nj�s ni. We arrive atu2(0)�2 = Xm0<n0h n0 j�j n0ih m0 j�j m0i det 0M : (D.9)Equation (D.9) extends to general un(0)�n with n � Nf. We are spei�ally interested inNf = 3 with the remaining ubi term u3(�)�Nf�3�3 = u3(�)�3, in leading order,u3(0)�3 =  Yn0 h n0 j�j n0i! det 0M : (D.10)This proves (D.1). We an also diretly use Eqs. (D.9),(D.10) to ompute the �2 and �3oeÆients as group averages hu2iSU(3), hu3iSU(3) with the help of [52℄. We arrive at3�2 * 2Yn0=1h n0 j�j n0i+SU(3) = 172 ;1�3 * 3Yn0=1h n0 j�j n0i+SU(3) = 1648p6 ; (D.11)leading to (2.8). 22



10.1 10

10

100

1000

10000

100000. 1=�g2(1�) (a) 0.1 1 10
10- 15

10- 12

10- 9

10- 6

0.001

1 1=��dninstd� (b)Figure 7: Instanton density (right panel) for various types of infrared behavior for thegauge oupling (left panel). Red: g � onst., green: g � ln(�), blue: g � �2, blak: oneloop behavior with g =1 for 1� < �QCD. Strong non-perturbative behavior is modeled toset in at roughly g2 � 30. We note that the integral over the instanton size remains �nite.More quantitatively, this holds if the plotted quantity on the right panel vanishes fasterthan 1�� with � > 0 in the infrared. Most importantly, the onstant � ourring in ourlowest order approximation to the e�etive potential, Eq. (2.8), remains a �nite number.E IR running oupling e�ets in the lowest-order ap-proximationHere we demonstrate that the qualitative features of the instanton-indued e�etive po-tential to lowest order in the salar ondensates is largely independent of the behavior ofthe running oupling. This an be dedued from a study of the � integration in Eq. (2.8).For onstant g2(�) = g2 and Nf < 4, the � integral is infrared (� ! 1) onvergent, buthas a (naive) UV divergene. The one-loop running removes this UV divergene, beauseof asymptoti freedom. Then, the integration kernel behaves as � � 113 N+ 13Nf�5(ln(�))2Nfor small �, rendering the integral onvergent in this regime. In the infrared, the situationis less lear, sine one-loop running is ertainly not a valid approximation for the gaugeoupling. Nevertheless, the restritions on the behavior of g2(�) for � ! 1 are rathermild. Indeed, for positive and well-de�ned g2(�) there are no restritions at all for Nf < 4(massless avors). We an even allow for a diverging oupling at a �nite infrared sale�div. In this ase, it is reasonable to assume that the oupling remains in�nite for evenlarger distane sales, suh that the integrand remains exatly zero for all � > �div. InFig. 7 we plot the integrand for running ouplings with di�erent infrared behavior. Itis our main onlusion that all reasonable forms for the running oupling in the infraredimply a �nite onstant � in Eq. (2.8).Referenes[1℄ G. 't Hooft, Phys. Rev. D 14 (1976) 3432 [Erratum-ibid. D 18 (1978) 2199℄.[2℄ M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nul. Phys. B 163 (1980) 46.23



[3℄ C. G. Callan, R. F. Dashen and D. J. Gross, Phys. Rev. D 17 (1978) 2717.[4℄ E. V. Shuryak, Nul. Phys. B 203 (1982) 140.[5℄ T. Shaefer and E. V. Shuryak, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451℄.[6℄ J. M. Pawlowski, Phys. Rev. D 58 (1998) 045011 [hep-th/9605037℄.[7℄ C. Wetterih, Phys. Lett. B 525 (2002) 277 [hep-ph/0011076℄.[8℄ E. Meggiolaro and C. Wetterih, Nul. Phys. B 606 (2001) 337 [hep-ph/0012081℄.[9℄ D. Diakonov and V. Y. Petrov, Phys. Lett. B 147 (1984) 351.[10℄ D. Diakonov and V. Y. Petrov, Nul. Phys. B 272 (1986) 457.[11℄ G. W. Carter and D. Diakonov, hep-ph/9905465.[12℄ D. Bailin and A. Love, Phys. Rept. 107 (1984) 325.[13℄ M. G. Alford, K. Rajagopal and F.Wilzek, Phys. Lett. B 422 (1998) 247 [hep-ph/9711395℄.[14℄ R. Rapp, T. Shaefer, E. V. Shuryak and M. Velkovsky, Phys. Rev. Lett. 81 (1998) 53[hep-ph/9711396℄.[15℄ M. G. Alford, K. Rajagopal and F. Wilzek, Nul. Phys. B 537 (1999) 443[hep-ph/9804403℄.[16℄ J. Berges and K. Rajagopal, Nul. Phys. B 538 (1999) 215 [hep-ph/9804233℄.[17℄ C. Wetterih, Phys. Lett. B 462 (1999) 164 [hep-th/9906062℄.[18℄ C. Wetterih, Phys. Rev. D 64 (2001) 036003 [hep-ph/0008150℄.[19℄ J. Jaekel and C. Wetterih, Nul. Phys. A 733 (2004) 113 [hep-ph/0309101℄.[20℄ J. Jaekel and C. Wetterih, Phys. Rev. D 68 (2003) 025020 [hep-ph/0207094℄.[21℄ D. F. Litim and J. M. Pawlowski, in The Exat Renormalization Group, Eds. Krasnitz etal, World Si (1999) 168 [hep-th/9901063℄.[22℄ J. Berges, N. Tetradis and C. Wetterih, Phys. Rept. 363 (2002) 223 [hep-ph/0005122℄.[23℄ J. Polonyi, Central Eur. J. Phys. 1 (2004) 1 [hep-th/0110026℄.[24℄ J. M. Pawlowski, hep-th/0512261.[25℄ U. Ellwanger, M. Hirsh and A. Weber, Z. Phys. C 69 (1996) 687 [hep-th/9506019℄.[26℄ J. M. Pawlowski, D. F. Litim, S. Nedelko and L. von Smekal, Phys. Rev. Lett. 93 (2004)152002 [hep-th/0312324℄.[27℄ C. S. Fisher and H. Gies, JHEP 0410 (2004) 048 [hep-ph/0408089℄.[28℄ J. P. Blaizot, R. Mendez Galain and N. Wshebor, Phys. Lett. B 632 (2006) 571[hep-th/0503103℄.[29℄ M. Reuter and C. Wetterih, Nul. Phys. B 417 (1994) 181.[30℄ F. Freire, D. F. Litim and J. M. Pawlowski, Phys. Lett. B 495 (2000) 256 [hep-th/0009110℄.[31℄ H. Gies, Phys. Rev. D 66 (2002) 025006 [hep-th/0202207℄.[32℄ H. Gies and C. Wetterih, Phys. Rev. D 65 (2002) 065001 [hep-th/0107221℄.[33℄ H. Gies and C. Wetterih, Phys. Rev. D 69 (2004) 025001 [hep-th/0209183℄.[34℄ H. Gies and J. Jaekel, Eur. Phys. J. C 46 (2006) 433 [hep-ph/0507171℄.[35℄ C. Wetterih, ond-mat/0208361.[36℄ J. Jaekel, hep-ph/0309090.[37℄ T. Shafer and F. Wilzek, Phys. Rev. Lett. 82 (1999) 3956 [hep-ph/9811473℄.24

http://arxiv.org/abs/hep-ph/9610451
http://arxiv.org/abs/hep-th/9605037
http://arxiv.org/abs/hep-ph/0011076
http://arxiv.org/abs/hep-ph/0012081
http://arxiv.org/abs/hep-ph/9905465
http://arxiv.org/abs/hep-ph/9711395
http://arxiv.org/abs/hep-ph/9711396
http://arxiv.org/abs/hep-ph/9804403
http://arxiv.org/abs/hep-ph/9804233
http://arxiv.org/abs/hep-th/9906062
http://arxiv.org/abs/hep-ph/0008150
http://arxiv.org/abs/hep-ph/0309101
http://arxiv.org/abs/hep-ph/0207094
http://arxiv.org/abs/hep-th/9901063
http://arxiv.org/abs/hep-ph/0005122
http://arxiv.org/abs/hep-th/0110026
http://arxiv.org/abs/hep-th/0512261
http://arxiv.org/abs/hep-th/9506019
http://arxiv.org/abs/hep-th/0312324
http://arxiv.org/abs/hep-ph/0408089
http://arxiv.org/abs/hep-th/0503103
http://arxiv.org/abs/hep-th/0009110
http://arxiv.org/abs/hep-th/0202207
http://arxiv.org/abs/hep-th/0107221
http://arxiv.org/abs/hep-th/0209183
http://arxiv.org/abs/hep-ph/0507171
http://arxiv.org/abs/cond-mat/0208361
http://arxiv.org/abs/hep-ph/0309090
http://arxiv.org/abs/hep-ph/9811473


[38℄ C. Wetterih, Eur. Phys. J. C 18 (2001) 577 [hep-ph/9908514℄.[39℄ C. Wetterih, AIP Conf. Pro. 739 (2005) 123 [hep-ph/0410057℄.[40℄ G. 't Hooft, Phys. Rept. 142 (1986) 357.[41℄ C. W. Bernard, Phys. Rev. D 19 (1979) 3013.[42℄ M. Lusher, Nul. Phys. B 205 (1982) 483.[43℄ A. Hasenfratz and P. Hasenfratz, Nul. Phys. B 193 (1981) 210.[44℄ A. Ringwald and F. Shrempp, Phys. Lett. B 459 (1999) 249 [hep-lat/9903039℄.[45℄ G. V. Dunne, J. Hur, C. Lee and H. Min, Phys. Lett. B 600 (2004) 302 [hep-th/0407222℄.[46℄ G. V. Dunne, J. Hur, C. Lee and H. Min, Phys. Rev. Lett. 94 (2005) 072001[hep-th/0410190℄.[47℄ R. D. Carlitz and D. B. Creamer, Annals Phys. 118 (1979) 429.[48℄ O. K. Kwon, C. k. Lee and H. Min, hep-th/0003040.[49℄ G. 't Hooft, Nul. Phys. B 62 (1973) 444.[50℄ D. F. Litim, Phys. Lett. B 486 (2000) 92 [hep-th/0005245℄.[51℄ D. F. Litim, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195℄.[52℄ M. Creutz, Quarks, Gluons And Latties, Cambridge, Univ. Pr. ( 1983).

25

http://arxiv.org/abs/hep-ph/9908514
http://arxiv.org/abs/hep-ph/0410057
http://arxiv.org/abs/hep-lat/9903039
http://arxiv.org/abs/hep-th/0407222
http://arxiv.org/abs/hep-th/0410190
http://arxiv.org/abs/hep-th/0003040
http://arxiv.org/abs/hep-th/0005245
http://arxiv.org/abs/hep-th/0103195

	Introduction
	Effective potential in one instanton approximation
	Lowest order in the background fields
	Beyond small condensates
	Effects on the running gauge coupling
	Effect on the instanton determinant


	Asymptotic behavior of the effective potential
	Numerical analysis of the effective potential
	Conclusions
	The one-instanton approximation and the instanton gas
	Different regularization schemes
	Assembling the instanton integral
	Calculation of the Zero-Mode Part
	IR running coupling effects in the lowest-order approximation

