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Abstract

We investigate chiral symmetry breaking and color symmetry breaking in QCD. The ef-
fective potential of the corresponding scalar condensates is discussed in the presence of
non-perturbative contributions from the semiclassical one-instanton sector. We concen-
trate on a color singlet scalar background which can describe chiral condensation, as well
as a color octet scalar background which can generate mass for the gluons. Whereas a
non-vanishing singlet chiral field is favored by the instantons, we have found no indication
for a preference of color octet backgrounds.



1 Introduction

Instantons, being pseudo-particles associated with tunneling processes, generate genuine

non-perturbative effects in QCD. In the seminal work of 't Hooft [l it was realized that
they mediate an effective interaction between (light) quarks [l L B, B B B & B. This
“instanton interaction” is attractive in the color singlet channel; hence, instantons pre-
sumably play a role in the mechanism of chiral symmetry breaking [B [, ). In addition,

they also provide for an interaction in color octet channels or in color triplet and sextet
“diquark” channels. Mean-field computations based on a point-like instanton interaction
have been employed as a central tool for investigations of color superconductivity at high
baryon density [ B3, I 3, B0, or for a description the baryon and meson spectrum and
interactions in the vacuum in a Higgs picture with spontaneous color symmetry breaking
[E2 [ £5]. This phenomenologically quite successful scenario requires a quark-anti-quark
condensate in the color octet channel, giving rise to the question as to whether instantons
support quark condensation in this channel.

Symmetry breaking by a condensation phenomenon requires an interaction that lowers
the free energy if condensates are formed. The bosonic condensates can be quark bilinears
or even higher-order composites. In the case of instantons, a rich interaction structure is
indeed provided: for Ny light quarks, instantons typically induce an interaction between
2Nt quark fields, which can be paired in many ways. This is one of the reasons why
instanton-induced multi-fermion interactions have often been used as a starting point
for investigations in the mean-field approximation. However, in the approximation of
a point-like multi-fermion interaction, mean-field theory is ambiguous: by means of a
Fierz transformation, the quarks can be grouped in different ways. For example, prod-
ucts involving color non-singlet Lorentz scalars can be exchanged by products of color
singlets in vector or tensor representations of the Lorentz group and vice versa. In view
of this ambiguity, the relative strength between color octet and singlet channels remains
undetermined, since the color octet channels can be completely removed or enhanced by
suitable re-orderings [ld]. Similar problems arise for the other colored channels used in
the high-density computations.

For further progress towards reliable computations, the Fierz ambiguity of the mean-
field computation has to be resolved. This can be done in different ways. A first possibility
explicitly includes the fluctuations of composite bosons after partial bosonization. Then,
the dependence on the particular choice of bosonization (Fierz ambiguity) gets substan-
tially reduced, as demonstrated by functional renormalization group techniques [E]. A
second approach attempts to resolve the ambiguity by explicitly taking the momentum
dependence of the instanton-induced vertex into account. Finally, we propose a third
method in this article that avoids altogether the use of the multi-fermion vertex and
rather computes directly the instanton contribution to the free energy in the presence of
selected condensates. The various approaches have different strengths and shortcomings,
and a reliable picture will probably only emerge by a combination of them.

The advantage of a study of the momentum dependence of the instanton-induced



vertex is based on the observation that pole-like structures which arise from the effective
exchange of quark—anti-quark or quark—quark bound states can be associated to the given
channel of the bound state. In contrast to a point-like interaction, such pole structures can
no longer be moved to another channel by Fierz reordering. Momentum-dependent vertex
functions can be dealt with using functional methods, such as Dyson-Schwinger equations,
NPT effective actions, functional renormalization group (RG) or suitable combinations. In
particular, we envisage the functional RG as a promising approach towards a quantitative
study for the condensation phenomena at hand, for reviews see [Zl EA E3 E4). The
computation of the flow equations involves only a narrow momentum range around a
given renormalization scale k, thus reducing the impact of an incomplete knowledge of
the detailed momentum dependence of the full propagators and vertices; see, e.g., [E3,
70, 20, 24, 29, Its application to the present problem requires an implementation for the
non-perturbative sector of gauge theories, e.g. [Z, E, B3, B, Bl P8, 7, also employing
bosonization techniques as developed in [E4 E3 EO B4 E4], or NPI- and NPPI-flows
as discussed in [E3, B3, BB, EA4]. In particular, the Fierz-type ambiguity of the present
problem can be resolved within a 2PPl-effective-action approach, since all possible (local)
fermionic pairings are effectively taken into account by this approach [I9)].

In this work, we consider a more direct approach to instanton-induced color symme-
try breaking by taking advantage of the following observation: possible condensates can
be viewed as background fields that are coupled to quarks and gluons via Yukawa and
gauge interactions. We concentrate here on scalar color singlet and octet condensates.
In presence of a singlet condensate, all three light quarks become massive, thus influ-
encing the weight of the fermion determinant in the instanton calculation. Additional
octet condensates induce a mass split between an octet of fermions (here associated with
the baryon octet) and a singlet. Furthermore, all gluons acquire mass through the Higgs
mechanism. Both effects modify the instanton contribution to the free energy. In partic-
ular, the effective condensate-dependent gluon mass acts as an effective infrared cutoff,
strongly suppressing the contribution of instantons of size larger than the inverse gluon
mass. Furthermore, the infrared cutoff stops the running of the gauge coupling such that
the gauge coupling remains small for sufficiently large octet condensates, and perturbation
theory becomes applicable. By computing the instanton contribution to the free energy
in presence of the condensates, we get access to those parts of the effective potential that
violate the axial U(1)y symmetry. Under the hypothesis that these parts dominate the
octet dependence of the potential, we may try to draw conclusions if the minimum occurs
for vanishing or non-vanishing octet condensate. Our computation of this response is
based on two theoretical concepts: on the one hand, the full functional integral is evalu-
ated in the semiclassical one-instanton approximation. On the other hand, the decoupling
of massive modes is taken care of by a proper threshold behavior of the running coupling,
as 1t is suggested by the functional RG.

Our method needs assumptions how the non-vanishing singlet and octet condensates
influence the masses of quarks and gluons. In practice, this is done by an ansatz for the
effective action which describes the couplings of quarks and gluons to the color singlet and
octet condensates. Apart from the restrictions imposed by color and flavor symmetry, the



details of this effective action are not known. This is one of the most severe restrictions on
the quantitative reliability of our computation. Nevertheless, the qualitative features of
mass generation for quarks and gluons can be captured in a simple picture. We consider
here a local interaction with low powers of the condensates, in particular the chiral color
singlet scalar o,, with flavor indices a,b,... and the color octet scalar x,;;; with non-
trivial structure for flavor and color (7,7,...). Our ansatz for the interactions between
the condensate fields, quarks and gluons can be summarized in the following Fuclidean
effective Lagrangian [I],
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Here, we have included all power-counting relevant and marginal interaction operators as
well as an effective potential for the background fields for completeness. In Eq. (), we
treat o and y;; as 3 x 3 matrices in flavor space and contract over the flavor indices of
the quarks. A successful phenomenology of QCD based on an effective Lagrangian of this
form has been worked out in [, I3, EY].

Obviously, the reliability of our conclusions will depend on whether the ansatz (EX)
gives a qualitatively correct picture for the response to non-vanishing condensates. We
therefore present a few additional arguments for its motivation. Associating the con-
densates o, v with corresponding fermion composites ~ 1, the interactions of the type
specified in Eq. (&) arise naturally from fundamental QCD, as can be studied with tech-
niques developed in [E4 B3, EI EO, BA]. In particular, box diagrams of the type shown in
Fig. @l play an important role. In this work, we choose the viewpoint that these effective
interactions are present in the dominant momentum region for the instanton contribution,
being generated by U(1)a-preserving interactions, also partly at higher momentum scales.
We do not attempt here to compute the parameters appearing in the effective action ()
except for the gauge coupling. For a qualitative study, we treat the Yukawa couplings
h,h as well as the wave function renormalization factors Zyy Ly, Zy as free parameters.

In presence of non-vanishing background fields o chiral symmetry is broken, whereas
Y acts like the Higgs scalar, giving masses to gluons and quarks. For the present purpose,
it suffices to investigate in detail the following two directions in field space:

1 1
Oab = T0ah, Xabyij = %X(Csm@b — §5¢j5ab)- (1.2)

These configurations correspond to the condensates of standard chiral symmetry breaking
and a color-flavor locked [Bd] combination of quarks and anti-quarks, respectively. In this

background, all fermions aquire mass,
M, = ho + 8 h Ms=h !
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Figure 1: Box diagrams with fundamental QCD interactions (left two diagrams) generate
effective (nonlocal) four fermion interactions (middle). Using rebosonization [E2] these can
be translated to (approximately local) Yukawa interactions interactions with propagating
composite bosons (right).

with a split between the octet mass My and the singlet mass M; for y # 0. The fermion
determinant in the instanton contribution depends only on Mg and M;. We use the
freedom of scaling of the fields ¢ and y to set h = h = 1. In this normalization, o
and y are directly related to the masses. In the Higgs picture of the QCD vacuum, the
expectation value for Mg should be associated with the mass of the lowest baryon octet and
M; with a baryon singlet, possibly A(1405), yielding [BI] Ms = 1.15GeV, M; = —1.4GeV
or oo = 866MeV, yo = —2.08GeV. In our approach, we treat ¢ and x as free variables.
The octet condensate in (E) provides for an equal mass for all eight gluons,

M, = Z/%g|x|. (1.4)

Here, g is the renormalized coupling taken at an appropriate scale. The x dependence of
g will be discussed in detail below. Then Z, remains the only undetermined parameter
of our ansatz. The phenomenological ansatz of [, B9 associates M, with the average

mass of the lowest spin-one meson octet, M, ~ 850MeV and suggests Zi/Z ~ 1/15.

The paper is organized as follows. In Sect. B we discuss the various effects of the
quark and gluon masses on the instanton integral. In the subsequent Sect. B we dis-
cuss the asymptotic behavior of the instanton contribution to the free energy. In Sect.
B we investigate which condensate backgrounds are preferred by the instantons. Our
conclusions are presented in Sect. B

2 Effective potential in one instanton approximation

Consider a given background of scalar fields o and y, as introduced above. Our aim is to
compute the instanton contribution to the effective potential for o and y in the presence
of fluctuating quarks and gluons. For homogeneous o and Yy, the effective action I' thus
decomposes into

Llo, ] = QU (o, x) = Q (Us(0, X) + Unst (7, X) + Ui (7, X)), (2.1)

where () denotes the spacetime volume. The non-anomalous contribution Uy(e, y) con-
serves the axial U(1)y symmetry and will not be computed here. The anomalous contri-
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bution Uy is induced by configurations with non-trivial topology, mediating also U(1)4
violation [EM]. We determine this part in semi-classical approximation based on instan-
ton methods. In particular, we resort to the approximation of a gas of dilute instantons
in which Ujng. can be expressed by an integral over the instanton size p and the prod-
uct of gluonic (incl. ghosts) and fermionic fluctuation determinants in a one-instanton

background (see Appendix B,

1 o0
Upnst = —— / dp exp(—87/¢*(p)) Aa(x, p) det My ;. (2.2)
0

Q
Here, the exponential factor reflects the classical action of the instanton, and Ay sum-
marizes the contributions from gluons and ghosts in the instanton background. The last
factor, with

My = —Pij + obij + i (2.3)

represents the fermion determinant which is of central interest to our work. In particular,
it contains the zero modes of the Dirac operator which are responsible for anomalous
contributions and give rise to a strong o and y dependence even for small values of these

fields.

It is useful to decompose Eq. (BE2) into a factor (,(o, v, p) arising from the fermionic
zero modes, and another non-zero-mode factor (,(o, x, p) that summarizes all remaining
(classical, gluonic, fermionic) contributions:

Uinst(0, ) = —/d,o Calo, X, p) Glo, X, p). (2.4)

All contributions have been studied frequently in the literature, beginning with the seminal
work of 't Hooft [l]. As important new aspects, we include the color octet scalar and take
the threshold behavior due to decoupling of massive modes into account.

2.1 Lowest order in the background fields
Assuming that ¢ and y are small compared to all other scales, their main influence arises

from the zero-mode contribution. In particular, the non-zero-mode factor ¢, does not
depend on the scalar fields to lowest order. For an SU(N.) gauge theory with Nt flavors,

G reads! [,
o (G ()

Here, Dg is a scheme-dependent constant. A discussion of the scheme dependence includ-

ing the difference between massive and massless regularization schemes can be found in
Appendix B Our scheme has been motivated by the functional RG which generically

In Appendix Bl we briefly review the contributions from the zero and the non-zero modes starting
from results given in [l EE3]. Moreover, we use this appendix to introduce our regularization scheme.



provides for mass-dependent schemes that automatically account for a proper decoupling
of massive modes. This is a convenient feature of our RG-inspired scheme; however, we
observe no qualitative scheme dependencies of our results. For example, to zeroth or-
der in the fields, Dg in our RG regularization scheme is given by (see [EA E3 EO] and

Appendix )

2exp(3)
72(N. — DI(N, — 2)!

Dre = Dy = exp(—1.51137N, +0.29175N;) = 6.005 x 1072, (2.6)

where the last equality holds for N, = Ny = 3.

As discussed in the Appendices B Bl our RG scheme is constructed such that it
matches the MS scheme in the small mass limit. It was demonstrated in [B] that the
MS scheme gives satisfactory agreement with lattice data in the ultraviolet. Without a
color-flavor mixing mass matrix (x = 0), the eigenmodes of J) are also eigenmodes of M,
and we are led to [ B

CZ(10707X) = <<det ﬂav0r<¢0(a7i)|M¢7iJ|¢0(bvj)>>SU(3) = _prV(07X)7 (2'7)

where the inner angled brackets denote the scalar product of the zero modes g, and
the outer angled brackets denote a group average over all possible directions for the
instanton in color space. In the last step, we have separated off the simple p dependence
~ p™ and defined the auxiliary potential V(o, ). We have also used the persistence of
(quasi-)zero modes in the presence of the regularization [B]. For x # 0, [ and M, do
not commute in general, e.g. for condensates x with (). The eigenmodes of ) and M,
do not agree anymore for x # 0. Therefore, strictly speaking, Eq. (BE&l) does not hold in
general. However, in leading order of an expansion in y and o it holds true, as shown in
Appendix B Inserting these findings into Eq. (), we obtain

V(%) = V(0. X) / dp pNCalp) =2 C V(0 X). (2.8)

For Ny < 4, ( is a finite number for physically admissible running couplings from the UV
to the IR as discussed in Appendix B For small o and vy, the potential V (o, y) carries
all dependence on the scalar condensates.

So far our discussion has made no use of a specific color or flavor structure for the
background fields. Let us now specialize to the condensates specified in Eq. (E). Using
the gauge-group averages computed in [B] we find (see Appendix [ for details)

1 1 1 1
Vie,x)= -0+ —ox? + = (o4 —=\)* o — —=Y). 2.9
(7, x) 27Xt e ( 6\/6X)( 3\/6X) (2.9)
In this crude approximation where U(o, x) = (V(o, y) with ¢ being a field-independent
constant, we observe two flat directions, o = —61%)( and o = ﬁx, but no global min-

imum. In fact, V(o, x) is unbounded from below, similar to the findings in [E]. In the
present case, this simply signals the breakdown of the approximation of small o and Y.



V(X) 0.4
0.2
O = ~
\
-0.2 \
\
-0.4 N
-3 -2 -1 0 1

X

Figure 2: Schematic plot of V(o, x) at fixed o > 0. Without higher-order corrections,
the potential is unbounded from below (solid line) with a local minimum at y = 0. If
the cutoff mechanism provided by the higher-order corrections is strong (dotted line) the
global minimum remains at y = 0. However, if the suppression sets in only at rather large
values of x (dashed line) we have a global minimum at x # 0 in addition to a local one
at x = 0.

Let us assume for a moment that the potential becomes stable beyond this approxi-
mation or by the inclusion of Uy(o, x) (cf. Eq. (BE2l)). Then one might speculate that the
first flat direction, o = —ﬁx, which is a line of local minima for o < 0, characterizes a
global minimum (the second flat direction is not even a local minimum). However, in this

case, the ratio r = ‘%

= ﬁ ~ 0.068 is far from the phenomenologically reasonable range

r ~ 0.4 [B9]. Since V is completely determined by the zero modes of the massless Dirac
operator, this flat direction will not be lifted by the inclusion of higher order corrections
in the bosonic fields in the 1-instanton approximation, as long as the split into zero- and
non-zero-mode parts remains justified. A similar flat direction was also found in [I9)].

Let us furthermore assume that, for instance, Uy induces a nonzero VEV for o. Since
V(o, x) prefers a positive o, the resulting potential V (o, x) in the x direction looks like
the solid line sketched in Fig. B The case of no color octet condensate, y = 0, then
is a local minimum. For larger y, the higher-order corrections from the non-zero-mode
contribution and the threshold effects will set in, stabilizing the potential in y direction.
Now it is a dynamical question as to whether this stabilization sets in early, i.e., for rather
small y, such that no other minimum is induced (dotted line). Or stabilization could only
modify the region of large x (dashed) line, such that the y* term of Eq. (BH) wins out in
between and induce a color octet condensate.

The second scenario of color octet condensate formation seems more difficult to be
realized, since the ~ ¢® term and the ~ ox? are of opposite sign and the coefficient of the
x> term is rather small. Unfortunately, the small coefficients in front of ox? and y? in the
potential () will limit even the qualitative reliability of our investigation. As an effect
of the color averaging, the potential in the y direction is almost flat for a given value of
o, in contrast to the pronounced potential in the o direction. For a given o, the weak
dependence of V on the “direction” y/o could easily be overwhelmed by corrections in
higher orders in ¢ and y that are much more difficult to control. Despite this caveat, a
quantitative analysis remains interesting and will be presented in the next sections.



Let us close this lowest-order consideration with the remark that o and y, in general,
are complex fields. However, complex field values typically lead to large CP violation,
making them phenomenologically unacceptable; this is the reason why we restricted our
analysis to real field values. If a non-trivial phase between the octet and singlet conden-
sates is favored in case of non-vanishing |y|, this may lead to an argument against the
formation of color octet condensates in general. In order to demonstrate this point we
assume for a moment that the effective potential for the relative phase between y and o
is dominated by the small field instanton contribution U & (V/(o, x). Then, real positive
values of ¢ would be preferred due to the instanton contribution. This would in turn
lead to a positive “mass term” ~ x? (cf. Fig. m, originating from the oy? term in
(BE3); for imaginary y = i|x/|, this turns into —c|x|®. Combining this with the small \*
term, the relative minimum of V(o y) for fixed o > 0, |y| > 0 would occur for a complex
CP-violating y. Unfortunately, the impact of this observation is weakened by the very
small coefficients of the oy? and x? terms arising in our approximation. The approximate
flatness in the y direction makes the potential influence of other effects large. In this
context we observe that the U(1)4-conserving part Uy in (B also contributes to the
effective potential for the phase between y and o, for example with terms ~ o**y? + c.c..
Only the common phase of y and o is protected by the U(1)4-symmetry and is uniquely
determined by the instanton part.

2.2 Beyond small condensates

As demonstrated in the preceding section, the instanton-induced effective potential can,
in principle, support a mechanism for spontaneous color-octet condensation. Whether or
not this mechanism is realized, however, requires a study that is valid for larger values of
o and x. The consequences of large condensates are twofold. First, the fermion masses
are no longer small. This affects the non-zero-mode contribution (;, as well as the running
of the gauge coupling. Also a mixing between zero modes and non-zero modes is induced.
Second, a color non-singlet field gives an effective mass to the gauge fields, which again
modifies the running of the gauge coupling (now the pure gauge contribution). In addition,
it provides for an effective infrared cutoff for the p integration.

2.2.1 Effects on the running gauge coupling

Fermion and effective gauge boson masses exert an immediate influence on the running of
the gauge coupling. For momenta smaller than the mass of a given quark or gluon degree
of freedom, the corresponding fluctuations of this degree of freedom are suppressed. As
a consequence, these fluctuations do no longer contribute to the running of the coupling.
This decoupling of massive modes can directly be implemented in the g function for the
running coupling, which we write as

d 1 11 Mz 2 | Mg|? k
Pz kg = gt N — TN t=In" 2.1
0T =MGRs = "5 (3 o)~ g )>’ ny (210



where M, and My are the gluon and the octet masses given in Eqs. (E),(E), and k&
denotes an RG momentum scale. The threshold functions l, ((2) approach unity for small
argument, [, ¢(0) = 1, corresponding to the fact that the physical or effective masses play
no role in the UV k — co. For large argument, i.e., for momentum scales £ below a given
mass, the threshold functions drop to zero rapidly, [ ¢(x > 1) — 0, which implements the
decoupling of massive modes from the renormalization flow. The threshold functions are
not universal but regularization scheme dependent. For generic mass-dependent schemes,
the threshold functions interpolate smoothly between the two limits.? For the explicit
computations, we set the threshold functions equal, [,(z) = lf(x) = [(z), and use

1

()= —. 2.11

@) = 37 (211)
This is a typical form for a threshold function, occurring in calculations based on the
functional RG. Of course, the one-loop form used in Eq. () only serves as an example.
A similar analysis of mass threshold behavior applies to any loop order and even fully
non-perturbatively. We would like to stress that it is this threshold behavior where the

additional free parameter 7, enters via M, cf. Eq. ().

As a result of this decoupling mechanism, the effective running coupling is now field de-
pendent, g(k, o, x). Inserting this into Eqs. (B), (B results in an additional field depen-
dence of the effective potential. Qualitatively, the gauge boson mass weakens the increase
of the gauge coupling. Owing to the exponential of the classical action ~ exp(—872/g?)
in Eq. (B3, this leads to a total suppression of the instanton contribution. The fermion
threshold behavior has the opposite effect due to the minus sign in the 3 function, reflect-
ing their charge-screening nature.

2.2.2 Effect on the instanton determinant

The condensates give masses to fermions and gluons, hence the corresponding fluctuation
determinants have to be evaluated for this massive case. Let us first consider the massive
fermion determinant, i.e., the non-vanishing shift of the fermionic (non-zero) eigenmodes
due to the effective fermion mass Eq. (E). This problem has been solved recently using
an efficient method to perform the mode sum [E3, E&]. The result interpolates smoothly
between the analytically known small and large mass expansions [I ES]. These calcula-
tions have been performed with a color singlet quark mass m in the MS scheme. Here, we
neglect the difference in the effect of the singlet and octet quark mass and approximate

1
m = g\/|z\41|2+8|z\48|2. (2.12)

?For mass-independent schemes such as the MS scheme, threshold functions do not appear directly;
but in order to describe the physics above and below a mass threshold adequately, theories with the
correspondingly different particle content have to be matched at the mass threshold. This can equally be
described by an effective threshold function which changes its slope discontinuously at a mass threshold.
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Figure 3: The solid line gives the interpolating function K'(x), smoothly connecting the
small mass (dashed) and the large mass approximations [0, 3, E5].

For our purposes, we have to adapt the results of B8, B3, BY] to our massive RG regular-
ization scheme, as derived in Appendix Bl and use the following interpolating function

NiK(z) := Indet'(—P + m)

RG
- —§Nf(H(x) + Z) Findet'(=p +m)|
[— In(z) —ay + In(e) + a1 — aza” - a3:1;4]

14 aq2? 4+ asat + aga®

(2.13)

I
=

with @ = pm. The function H(z) is defined in Eq. (EX), and
@ = 0.792, ap =358, a5 = 0.0842, ay = 0.00115, as=23.5, as=9.28,

The primed determinant det’ in (&) is that in the space of non-zero modes. As shown
in Fig. @ this function interpolates smoothly between the small- and large-mass regimes.

A similar behavior as for the fermion determinant is expected for the non-vanishing
gluon mass in the gluon determinant. However, this effect is sub-leading, the dominant

effect being the modification of the classical action at the minimum, see e.g. [l H]: for
constant y, this gives a contribution to the classical action ASy = —67%Z, |x[*p? and
therefore a factor of (cf. Eq. (E2))

exp(=87*/g"(p)) Aa(x, p) — exp(—87*/g*(p) — 67°Z, |X|*p*) Aa(p) (2.14)

in the integral (BE). To summarize, the full inclusion of o and yx in the fermion determi-
nant and the Higgs-type of contribution to the classical action result in our final formula
for the effective potential (N, = Ny = 3):

Ui Dggh (U X)/d/)/)_2 ( s >6eXP (— b — 677 |X|2,02 —|—3K(m0)>
nst G 9 2( ) 2( ) X 9

where K is given in Eq. (), and Dgg is defined in Eq. (). Once the running of the
gauge coupling is specified, e.g., using the one-loop form of Eq. (B2) and identifying the
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RG scale with the inverse instanton radius, k& = 1/p, we can investigate the landscape of
the instanton-induced contribution to the effective potential for o and y. For fixed o, an
additional y dependence arises from the explicit term ~ |y|* in the “classical part”, the
dependence of g(p) on x and the threshold effect K (mp). Our approximation of K (mp)
reflects probably only poorly the dependence on the ratio x /o, and we have also neglected
the mixing between the fermionic zero modes and non-zero modes which would modify

Vi(a, x).

3 Asymptotic behavior of the effective potential

In order to obtain a more analytic understanding of the effective potential Uy, let us
investigate its asymptotic behavior for the different regimes of small and large fields o
and y. Of particular interest is the interplay between this asymptotic behavior and the
running of the gauge coupling. As an important caveat, it should be kept in mind that
our derivation of the effective potential is based on the semi-classical instanton gas ap-
proximation. This approximation implicitly assumes that the one-instanton contribution
is small, which translates into a small value of Uj,g. Therefore, whenever a large asymp-
totic behavior of Ui, is encountered, this may not necessarily reflect the true behavior
but rather signal the breakdown of the instanton-gas approximation.

Our derivation of Eq. (BEE) so far made use of the specific one-loop running of the
gauge coupling given in Eq. (E). Assuming that the functional dependence on the
running coupling holds also in the general case, we use the form of Eq. (&) also for other
theoretically or phenomenologically motivated running gauge couplings. For definiteness,
we will use gauge couplings with the following infrared (p — o) properties

const fixed point
| In(p) |Pros logarithmic divergence
9 ~ {3.1)
prree prrover power law divergence
Goer(P)O(Aqep — %) + @(% — Aqep)oo  perturbative

with positive constants pioe and ppower; €ach infrared behavior will be adapted to show the
same decoupling properties for massive modes as displayed in Eqs. (EEH) and (E2X). For
simplicity, we assume that this IR behavior does not depend on the number of fermions.
These running couplings and the corresponding resulting instanton densities at vanishing
external fields are shown in Fig. Bin Appendix B

The effective potential for non-vanishing o and y is strongly influenced by fermion
and gauge boson mass effects, respectively. Hence, the effective potential is expected
to behave differently in the various directions of the o, v plane. For definiteness, let us
investigate four cases: (1) o small, x = 0; (2) 0 = o0, x = 0; (3) 0 =0, y small and (4)
oc=10,y— oo.
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The p integration can be performed analytically by splitting the integration domain
into several intervals, each of them dominated by a different effect. For case (1), for in-
stance, there is a UV regime (0, ppert) Where the running coupling is well approximated by
one-loop perturbation theory without the influence of mass thresholds. In the consecutive
interval, (pper, =) (with ¢ being some constant O(1)) the gauge coupling is dominated by
non-perturbative dynamics, but fermion masses still do not play an important role. Fi-
nally, in the interval (£, 00) the fermions are heavy compared to the scale 1/p, and pure
gluodynamics dominates the running coupling. Neglecting logarithmic dependencies on
o or x, we find,

Aot 4 Byott2Neppover (1) 1 g small, x =0

. a(1-52)
Agot=Po 4 Boo ™ B0 (2): 0 =00, x=0

4Nchower
Utnse( 0, X) ~ Asx ™M + B3X4+ ZHrpover - (3): o =0, y small ’ (3.2)

Agx*Po, (4): 0=0, x =

where all terms with coefficients A; arise from the perturbative interval p € (0, ppert), and
those with coefficients B; arise from the various non-perturbative intervals. Of course,
only the B; terms depend on the form of the running coupling specified in Eq. (E);
in fact, By and Bs vanish for the "perturbative” gauge coupling of Eq. (EI). Further-
more, 3y = 13—1NC — %Nf is the one-loop coefficient of the 8 function with fermions, and
By = % denotes the one-loop coefficient for pure gluodynamics. Not surprisingly, the
logarithmically divergent and the fixed-point coupling yield the same results on this level
of accuracy; hence the parameter py,, of Eq. (EZ) does not enter Eq. (EX).

For Ny > 442N ppower, the small-o and small-y behavior may significantly be modified
compared to the perturbative expectation o™V, Y. Here the possible dependence on the
infrared behavior of the gauge coupling appears to be important. However, this simply
reflects the fact that naive IR convergence in the p integration is lost for Ny > 4, as we have
already noted before. In this case, the convergence is now restored by a combination of
the suppression due to the finite fermion mass exp(—N¢K (mp)) and the suppression from

2N
the gauge coupling <g827(rz)> at the expense of a direct dependence on the IR behavior

of the gauge coupling.

In the large-field regime, the potential grows faster than o*, y* only if 3y < 0 which
corresponds to theories without asymptotic freedom. Conversely, for asymptotically free
theories, the instanton-induced potential will not dominate over the non-anomalous part
of the potential U/; which can be expected to exhibit a o*, v* growth for reasons of univer-
sality. In view of the caveat mentioned in the beginning of this subsection, we interpret
this result as a successful self-consistency check of the instanton-gas approximation. Fur-
thermore, for N, = Ny = 3 and fixed o, the instanton contribution vanishes Uj,g ~ x°
for large y. The instanton potential is therefore stabilized in the y direction.

12
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Figure 4: Sections of the instanton potential Upnsi(o,0) (left panel) and Uiee(0, ) (right
panel) in units of Aqep. The different large-field behavior is clearly visible: the potential
in the positive o direction goes to —oo whereas it rapidly approaches 0 for large |x]|.
Note the different scales of the potential itself for the o and the y direction. (Both plots
use Zim = 1/15 and a gauge coupling approaching an IR fixed point g3 = 100. The
renormalization-scheme-dependent constant Ds is scaled out.)

4 Numerical analysis of the effective potential

Guided by the analytic knowledge obtained so far for the effective potential, let us study
our full result for the instanton-induced effective potential Uist(0o, ) obtained numerically
from Eq. (BE). For definiteness, we use — as an example — a one-loop form for the gauge
coupling modified such that it approaches an IR fixed point at g2 = 100 in absence
of condensates; this is in the ball park of IR results from RG flow equations [Ell]. Our
conclusions remain similar for all other running couplings proposed in Eq. (EJI).

Let us first confirm the asymptotic behavior obtained analytically above along the o
and y axes. As is visible in Fig. displaying U(o,0), the potential along the o axis
is unbounded from below for ¢ — oo. In particular, for Ny = N, = 3, the resulting
asymptotics of Eq.(BE2) yielding |U(c,0)] ~ o1 is confirmed. Let us stress that the
overall sign of the potential is negative for positive o, since the integral in Eq. ()
is always positive and the prefactor V(c,0) = —o” is negative. From this, we draw
two conclusions: first, the instanton potential favors chiral symmetry breaking, but the
value of the condensate is not determined by the instanton potential alone (at least in our
simple one-instanton approximation). Second, the complete instanton potential Uiyst(0, x)
cannot have a global minimum since there is a direction in which the potential always
decreases.

Next we consider a pure y field. Figure [[[b] shows that the instanton potential
becomes flat rather rapidly for large y, as expected from Eq. (BEZ). Negative y are
clearly preferred.? From Fig. we can read off the location of the minimum: Yy, ~

3Let us stress that the relative sign of ¢ and y is indeed important, since it changes the parity of
some particles in the spectrum of the model (l=2). Moreover, owing to the U(1)5 anomaly, it is not clear

13
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Figure 5: Effective potential Uinst(o, x) for different fixed o. The left panel displays the
cases of o = 0, 0.06, 0.128, 0.20Aqgcp in green, black, red and blue, respectively. We
observe that for values of o > oui &~ 0.128Agcp (red curve) the trivial minimum in
the y direction becomes the global minimum. The right panel shows the potential for
realistic values of 0 = 1,2,4Aqcp in red, green and blue, respectively (descending order),
clearly demonstrating the absence of an instanton-induced color octet condensate. The
parameters are chosen as in Fig. lland all numbers refer to units of Agep.

4.26Aqgcp ~ 1.4GeV for Agep = 330MeV. This results in an encouraging M, ~ 350MeV.

Nevertheless, it is important to observe that the potential in the y direction is rather
shallow compared to the o direction, the relative height being ~ 1072, This is a direct
consequence of the relative prefactors in the potential V (o, y) of Eq. (EH). The depen-
dence of the absolute value of y on our remaining free parameter Z, is strong, whereas
it remains weak for M,. This is in agreement with the expectation that, in the octet
direction, the threshold effect of the gluon mass M, is much stronger than that of the

quark masses ~ y. For our quantitative results, we use the value Zim = 1/15 which is in
the phenomenologically acceptable range [, E9].

Finally, let us study the complete potential depending on both fields ¢ and y. Even
though we have already observed that the instanton contribution alone does not have
a global minimum, it is nevertheless worthwhile to look for a local one. Such a local
minimum indeed exists at (o, x) ~ (—0.27, —4.2)Aqcp with the absolute depth of the
potential being U(c, \)|ioc. min. & —1.42 Dg & 0.009 in units of Aqep (and using Dyg ~
6 x 1072). Since this minimum has a too small |o| ~ 90 MeV and is extremely shallow,
it is not physically acceptable. Any generic non-anomalous contribution Uy is likely to
remove this minimum.

Since the local minimum is not acceptable and a purely instanton-induced global
minimum does not exist, let us redo our analysis with one additional assertion: we assume
that the non-anomalous contribution Uy(o, y) to the effective potential supports scalar
singlet condensation via spontaneous symmetry breaking for sufficiently strong gauge
coupling (in fact, this has been shown to happen generically in QCD-like theories in [EJ]).

whether the sign in the Yukawa couplings can be rotated away by a chiral transformation.
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Figure 6: Unst(o, x) for negative fixed o. On the left panel, we choose o =
0, —0.06, —0.12Aqcp (green, red and blue). The global minimum then is always at non-
vanishing (negative) y. On the right panel, we depict the behavior for somewhat more
negative o = —0.1, —0.27, —0.44, —0.61Aqcp (green, red, blue and black). After increas-
ing up to o &~ —0.27TAqcp (red curve) the minimum in the y direction becomes more and
more shallow with decreasing . The parameters are chosen as in Fig. [l

In order to introduce as few parameters as possible, we simply assume that Uy fixes a non-
zero value of o, leaving the detailed form of Uy aside. Now, since Uy is of non-anomalous
origin, its form reflects the full chiral symmetry (even though it can exhibit a symmetry-
breaking minimum), implying its invariance under o — —o. Hence, Uy does not prefer
a particular sign of . By contrast, Ui, does prefer positive values of o as displayed in
Fig.

The instanton potential for small positive o is depicted in Fig. We observe that
the global minimum for y is non-vanishing only for very small values of o. Beyond the
critical value of o ~ 0.128Agcp < 50MeV the global minimum is at x = 0. This holds,
in particular, for realistic values of ¢ = 1...4Aqcp, which is plotted in Fig. m For
o 2 Aqep the dominant feature of the y dependence of Ui, 1s simply the vanishing of
Uinst for large x which results in a relative minimum at y = 0. Figure m summearizes
one of our main results, namely, that the instanton-induced potential appears incapable
of giving rise to an octet condensate in the present instanton-gas approximation.

Incidentally, the us study the potential also for negative fixed o. Even though positive
values are clearly preferred by Ujst, observation only constrains the modulus of o to be
in the realistic range |o| ~ 1...4. Negative sigma indeed always give rise to a global
minimum at x # 0, i.e. supporting a color octet; see Fig ll However, for realistic values
of o, the instanton-induced potential is extremely shallow again, such that this minimum
is likely to be washed out by the non-anomalous part (unless the latter is either fine-tuned
or supports an octet condensate itself).
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5 Conclusions

We have calculated the one-instanton contribution to the effective potential in a back-
ground of classical bosonic fields coupled to quarks and gluons. One field, o, has the
structure of the typical singlet chiral condensate and the other, v, exhibits a color-flavor-
locking structure, as conjectured for the scenario of spontaneous color symmetry breaking
in the vacuum. Beyond leading order in the background fields, we have included effects
of quark masses on the running gauge coupling and the quark determinant. In addition,
the color octet condensate works as a Higgs field for the gluons, providing for an extra x-
dependent contribution to the classical instanton action. We work in a massive regulator
scheme which makes threshold behavior more transparent.

For the realistic case of Ny = 3 light quark flavors, the instanton potential is unbounded
from below for a pure singlet chiral condensate, favoring a non-trivial value of this con-
densate and chiral symmetry breaking. Although there exists a local extremum with
non-vanishing octet contribution, it is rather shallow and thus likely to be washed out by
non-instanton effects. Moreover, this extremum has a nearly vanishing value for the chiral
condensate, making it phenomenologically unacceptable. As the potential is unbounded
from below along the o direction, a global minimum of the instanton potential alone is
excluded. Other stabilizing effects are typically expected from the U(1)-preserving sec-
tor. Therefore, we have investigated if a color octet condensate is favored at fixed singlet
chiral condensate. For realistic positive values of the chiral field o ~ 1Agep, x = 0 is the
global minimum in the color octet direction. For negative o with a similar absolute value,
there exists a minimum with non-vanishing octet condensate. However, this minimum
is also unnaturally shallow and thus will presumably be washed out by non-instanton
effects. Moreover, the negative sign of ¢ is disfavored by the instanton contribution.

An analytic insight into the effective potential can be gained from its asymptotic
behavior for large background fields. It is interesting to note that the behavior for very
large fields is inherently connected to asymptotic freedom. For instance, large color octet
condensates lead to a high-scale decoupling, such that any non-perturbative IR behavior is
screened; in this large-y direction, the flattening of the potential can directly be related to
the perturbative approach to asymptotic freedom. Another extreme example is provided
by the case where asymptotic freedom is lost, e.g., owing to too many fermion species;
in this case, the potential may go to —oo faster than the fourth power of the fields,
preventing stabilization by a renormalizable non-instanton potential for the bosonic fields.
On the other hand, we observe a strong qualitative dependence on the non-perturbative
IR behavior of the coupling only for very small fields and more than four light fermion
species: here, the increase of the instanton amplitude depends strongly on the infrared

details of the gauge coupling and may be changed from the naive o™V, y M.

In conclusion, barring large higher-order, e.g., multi-instanton, effects, we find that
chiral symmetry breaking is supported by instanton effects. On the other hand, the
issue of color octet condensation remains inconclusive. In our approximation, we find no
evidence that instantons favor a color condensation in the vacuum.
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A The one-instanton approximation and the instan-
ton gas

Here we recall the computation of the instanton-induced effective action I' within the
dilute-gas approximation. In a dilute and weakly interacting instanton gas, the dominat-
ing contribution to the generating functional is the one-instanton and one-anti-instanton
contribution. It reads

Zy=—4Q (UI(07X) + UI*(07X)) (Al)

where () denotes the 4-Volume, and U; is the effective potential corresponding to the
product of functional determinants of the fluctuating fields in this background. The anti-
instanton contributes with Uxi(o, x) = Uf(o, x). Within the dilute-gas approximation,
%. This leads to the the

the contribution of the |n|-instanton sector is given by 7, =

(o] (o] Zn
Z:;Zn:;(nl!)

where we have normalized the zero-instanton amplitude to one. To lowest order in the
bosonic background fields, this holds because we included the influence of the fields
(masses for the fermions) only for the zero modes. However, in the absence of gauge
fields, the Dirac operator has no zero modes. Beyond this approximation, this normaliza-
tion corresponds to a modification of the non-instanton U(1)4-symmetric contribution to
U(o,x). From (BX), we read off the effective action in the classical background of o, x,

full amplitude

= exp(/1), (A.2)

[=—InZ=—2, (A.3)

which serves as the starting point of our investigation in the main text.

B Different regularization schemes

In this appendix, we discuss how to switch between regularization schemes. We shall
use a scheme which manifestly exhibits the decoupling of massive modes. It has been
shown in [H] that topological effects persist within the RG framework used in the present
work. This applies, in particular, to the existence of zero modes [H]. Moreover, at leading
order one only has to take into account the explicit mass or regulator dependence. This
amounts to using the well-known zero modes [f].
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For non-perturbative problems involving mass threshold effects, as they are induced
by the background fields in our case, such schemes are highly advantageous. Following
M B9, a change of the renormalization scheme can be understood by comparing two
integrals,

d* 1 d* 4
h= [ b= [ b (B.1)
(2m)* (¢* + m?)? (2m)* (q* + m?)*
in the different regularization schemes. Here, [; appears in connection with the zero

modes and [, with non-zero modes. Therefore, we can easily keep track of these terms.
For example, the Pauli Villars scheme gives

Y = /(d4q [( L ! }:(4;)2(21n(/\pv)—21n(m)), (B.2)

20)* (@ + P @+ AR

PV _ d'q q' B q' 1 n —2ln(m)) = IV
L™ = /(2@4 {(q2+m2)4 (q2+A%v)4] = (47T)2(21 (Apy) — 2In(m)) = IV,

whereas we find in dimensional regularization

[dreg _ /,L4_”/ dnq 1
1 ) (1 P

_ (4;)2 {ﬁ +2In(p) = 2In(m) — 7 + In(47) + O(4 —n)|  (B3)
dreg | 9
I, >+ 96? (B.4)

Comparing Egs. (BEX) and (B3), the substitutions for a change from Pauli-Villars to

dimensional regularization read

1 1

I o In(Apy) — e +1In(p) — 37 + §1n(47r), (B.5)
1 1 5

I - In(Apy) — g +1In(p) — 37 + §ln(47r) ~ 17

Using Eq. (B3)), it is easy to check that, starting from Eqs. (), (E=0), we can obtain

the corresponding result in dimensional regularization as given, e.g., in [H.

Both schemes discussed so far are mass independent. This originates from the fact that
for fixed cutoff i or fixed dimensionality 4 — n, the integrals I¥Y and /9%°8 do not vanish
in the limit m — oo. A mass-dependent regularization scheme should implement this
decoupling: massive modes should not contribute to physics below the mass threshold.
For m > p the integrals [; and [, should become small and vanish in the above limit u

fixed, m — oo. This can be implemented by defining ¢ = IS with

A 2 1 A2 2mZA? + 3A4
[RG = ek () 2 (e ) 2 o B.
o= <W> <M¥[n<*vﬁ> a0 (PO
1
(o) = —
W)= dyop
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In fact, this is not an arbitrary definition, but receives motivation from various sources.
First, it is very convenient to have I} = [, since, when changing from the common Pauli—
Villars scheme to our scheme it is not necessary to distinguish between the different
contributions from /; and ;. The main reason, however, is the simple form of the one-
loop flow equation for the gauge coupling in Eq. () which results from this choice.
Finally, a deeper reason for the choice is that it corresponds to a simplified version of a
typical functional RG scheme regularization (for more details see, e.g. [Ef]). Indeed,

dk dq d 1
M6 = B.
/ / 27 )* dk )(q2 +m? + Ri(q?))? (B.7)

is a typical expression for [; when one defines perturbation theory from a flow equa-

tion with regulator function Ri(¢*). In a consequent RG calculation several different
threshold functions similar to {(w) appear. For simplicity we put I; = [5. This is not
an approximation but simply an implicit definition of the related regulator function Ry.
For computations beyond the present qualitative setting we suggest using an optimized
regulator [BIL, B

Ri(q") = (K —¢*) O(1 — &), (B.8)
and its upgrades suitable for momentum-dependent approximations [Z.

From Eq. (B3), it is easy to find the relation between Pauli-Villars regularization and
our scheme,

dk 1 2m?A? + 3A4
In(Apy) — In(m) —I—/0 - { <k2> = §ln(m2 + A2) _ m (B.9)

We emphasize that Eq. (B3) depends on the cutoff A as well as on the mass m of the
particle in question. For large m, the mass acts similar to the cutoff A. This implements
the decoupling of heavy modes.

Finally, we exploit the freedom of redefining the coupling constant at one-loop order,
such that it absorbs part of the finite changes discussed above,
82 82
= ——~ +Cg. (B.10)
gp)  #lp)

modifying the perturbative expression for g% only at order ¢g*. This is often used to simplify
expressions, e.g., in the transition from MS to MS, or to ensure direct comparability
between different schemes. We will use this freedom below in Appendix l to facilitate
comparisons between our scheme and the MS scheme in which most results are given in
the literature.

C Assembling the instanton integral

In this appendix, we put together all the various pieces of the instanton size p integral,
taking care of our mass-dependent regularization scheme. At fixed instanton size and
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using Pauli-Villars regularization, the following functions contribute to the renormalized
integrand:

; (—Sa) = exp(———) ()
a = exp(—Sa) = exp(— , .
! P P
1 Ne 1
fnonzero = ¢eXp _gNC hl(/«‘ﬂ) - Oé(l) + ? ln(lup) + 2Nf0é(§) ” (02)
4 ar "
f auge — g ( ) 4Nc7 C.3
gaug ,05 92(/“‘) (/,L,O) ( )
M
ffermion = ,MNf 9 (C 4)
2(Nc—1)
N = 4 7 (C.5)

72 (N. — DI(N. — 2)"

where MM represents V (e, ) as defined in Eq. (E=l) and reduces to m™ if the bosonic
sources only lead to a simple mass term m.

Here f. is the contribution from the classical action, fionzero summarizes all effects
from the non-zero modes, fgauge is the contribution from the gauge and fiermion from the
fermion zero modes. N collects some normalization factors and the group averaging.
Combining all these contributions, we find the well known result,

2

Nl;[fx = Dpyp "t ( o ) exp (-;TW;) + Bo 1H(MP)> (C.6)

g* (1)

872 872
b (e (2.
g*(i) giv(p)

where we have used the one-loop relation between ¢?(1) and ¢*(p) in the last step, and
D is given in the Pauli-Villars scheme as,

1 1
Dpy = exp (—a(l) —2(N, — 2)@(5) + 2Nf0[(§) = 1.1506, (C.7)
1 1 17 1 16
—) = 2R — —In(2) — — = 0.1459 1)=8R =—-In(2) — — =0.4433
1 1 <= In(s)
R = S(n(2r)+7) + ﬁ; - = 0.2488

We point out that we still have ¢*(u) in the prefactor of the exponential which is an
artifact of the one loop calculation. This will be rectified by higher-loop orders where
the bare’ g?(u) in the prefactor is replaced by its running counterpart evaluated at the
scale p (also at one loop order less than the corresponding one in the exponential). Since
replacing ¢*() — ¢*(p) is the main effect of higher loop orders (apart from possible
changes in the factor D), we account for these prefactors as well as for the term in the
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exponential by hand without further calculation. In this way, we already arrive at Egs.

(), (BE3) (at least naively in the Pauli-Villars scheme),

2 2
NH = Dpv,o—5+Nf ( bl ) exp (—i> } (C.8)

Q%V(P) Q%V(P)

The final task now is to change from the mass-independent Pauli-Villars scheme to our
mass-dependent RG scheme. Starting from Eq. (BE3), this is immediately done using
(B3), resulting in an additional multiplicative factor,

3 4 222

(C.9)

11 2 1
RG(Myp. o) = exp (N () = ENell () ) () = 5 nf12)-

where M, and my¢ are the gauge-boson and fermion masses, respectively.
Finally, we make a last change and define a modified RG scheme via Eq. (BH) with

RG(0,0)Dpy
Crorg = —In <—(DM_2 > )

where Dy is defined in (BEH). By construction, this establishes that our coupling con-

(C.10)

stant is equal to the one-loop MS coupling, also including the constant in the instanton
integral. But most importantly, we have not absorbed the mass-dependent contributions.
Therefore, our scheme is still mass-dependent and provides for decoupling of heavy modes.

D Calculation of the Zero-Mode Part

The Dirac operator ) in the background of an instanton has Ny = 3 zero modes, being
flavor copies of a fundamental zero mode. We show that in leading order

Go(p. o, x) = (det fayor(o(a, )| My |10 (b, 5)))su) = —p™ V(0. X)), (D.1)

where

(My,ij)ap = ((=Pii)as + (00i5 + Xii)ap) , (D.2)
with mass matrix o+, where y introduces color-flavor mixing. The eigenvalues of M, are
An (o, x) with eigenfunctions ¢, (o, x). The color-flavor mixing term y does not commute

with ) and the ¢, are not eigenfunctions of J) for y # 0, leaving (K& a non-trivial
identity. The mass matrix reads more explicitly

1 1
(0ab0ij + Xabij)0ap = |:0'5ab(sij + 76)( <5az’5bj — g&b%)] das (D.3)
where we have already absorbed the Yukawa couplings into the fields and used the color-

flavor structure (E) for the condensates. For clarity we have explicitly written out the
spin indices «, 8. Using the group averages in (E) [ B2, we arrive at

Glpy o, x) = p (0 + %X)z (0 — ﬁx) : (D.4)
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It is left to prove (EE). With trivial flavor structure, x,;; = 0, the determinant factorizes
trivially,

det My = G (p, o, x) det,MdJ ) (D.5)

where det’ stands for the determinant on the non-zero mode space. For non-vanishing
x (E=3) holds up to terms ™. This is shown in an expansion about the determinant of
— P+ o with eigenvalues A, (c,0) = A,(0,0) 4+ ¢ and eigenfunctions ¢ (o,0) = ,,(0,0). We
label the zero modes of ) with ,,, no = 1,2,3 with eigenvalues A, (s = 0) = 0. There
is no term linear in y as the only invariant is trgavery = 0. The quadratic term has the
structure ouy(o)y?* with finite limit «(0). Tt is evaluated as

% 92 det(—P+o+s\)| _, = %zﬂ:(agxn) I 2+ D @)@ T &s (D6

m#n m<n l#n,m
where the limit s = 0 on the right-hand side of (EE) is understood. The term proportional
to 02\, has the coefficient Hmin Am containing at least two of the eigenvalues A, (s =
0) = o of the zero modes 1,,,. Hence it only contributes to sub-leading terms like pa® 2.

The term proportional to (9sA)? has, apart from sub-leading terms, one contribution
proportional to Hl;éno mo A1 Temoving two zero modes from the product. Thus we have

NN = NN (0,000 ) (DA, ) det' My, + O(a”y?) (D.7)

mo<ng

us(o)

where det’My = [[,’Ai, the primed product involves only the non-zero eigenvalues of ).
The s derivatives in (EZ) follow as

IsAn(s = 0) = 05| (= P+ o + sx)[0n) = (a|x[¥n) + A Os(nlt0n) = (ulx[0n) . (D.8)
where we have used that (050, |(— P+ 0)|n) = (Ostn|tbn) An and (Y, |(— P+ 0)|0st)y,) =
An{0,]0st0,). We arrive at

UQ(O)XQ = Z <¢no|X|¢no><¢mo|X|¢mo> det 'Mw- (D.Q)

mo<no

Equation (I extends to general w,(0)y™ with n < N;. We are specifically interested in
Nt = 3 with the remaining cubic term us(o)o™M=3\* = uz(a)y?, in leading order,

us(0)y* = (H<¢no|x|¢no>) det'M, . (D.10)

no

This proves (EE). We can also directly use Eqs. (EE),([EZH) to compute the x* and y*

coefficients as group averages (u2)su(s), (us)su(s) with the help of [E2]. We arrive at

3 /1 1
?<H<¢NO|X|¢NO>> = Ev
SU(3)

n0:1

n0:1

1/ 1
v < H <¢noX¢no>>SU(3) = 648V (D.11)
leading to (EE3).
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Figure 7: Instanton density (right panel) for various types of infrared behavior for the
gauge coupling (left panel). Red: g ~ const., green: g ~ In(p), blue: g ~ p*, black: one
loop behavior with ¢ = oo for % < Aqep. Strong non-perturbative behavior is modeled to
set in at roughly ¢* ~ 30. We note that the integral over the instanton size remains finite.
More quantitatively, this holds if the plotted quantity on the right panel vanishes faster
than /)1_6 with € > 0 in the infrared. Most importantly, the constant ( occurring in our
lowest order approximation to the effective potential, Eq. (BE3), remains a finite number.

E IR running coupling effects in the lowest-order ap-
proximation

Here we demonstrate that the qualitative features of the instanton-induced effective po-
tential to lowest order in the scalar condensates is largely independent of the behavior of
the running coupling. This can be deduced from a study of the p integration in Eq. (E3).
For constant ¢*(p) = ¢* and Np < 4, the p integral is infrared (p — 00) convergent, but
has a (naive) UV divergence. The one-loop running removes this UV divergence, because
of asymptotic freedom. Then, the integration kernel behaves as ~ ,013_1NC+%Nf_5(1n(,0))2NC
for small p, rendering the integral convergent in this regime. In the infrared, the situation
is less clear, since one-loop running is certainly not a valid approximation for the gauge
coupling. Nevertheless, the restrictions on the behavior of ¢*(p) for p — oo are rather
mild. Indeed, for positive and well-defined ¢?(p) there are no restrictions at all for N¢ < 4
(massless flavors). We can even allow for a diverging coupling at a finite infrared scale
pdiv- In this case, it is reasonable to assume that the coupling remains infinite for even
larger distance scales, such that the integrand remains exactly zero for all p > pgiy. In
Fig. @ we plot the integrand for running couplings with different infrared behavior. It
is our main conclusion that all reasonable forms for the running coupling in the infrared
imply a finite constant ¢ in Eq. (BE3).
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