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DESY 06-121Two Loop QFT in the MakingStefano Atisa, Giampiero Passarinob, Sandro UiratibaDeutshes Elektronen-Synhrotron, Zeuthen, GermanybDipartimento di Fisia Teoria, Universit�a di Torino, ItalyINFN, Sezione di Torino, ItalyReent developments in the evaluation of two-loop pseudo-observables and observables are briey reviewed.1. IntrodutionThe omplete strategy to derive theoretial pre-ditions for pseudo-observables (PO) and observ-ables (O) up to two-loop auray is based on thefollowing steps: generation and manipulation ofdiagrams, renormalization, semi-numerial eval-uation of diagrams. We perform the �rst stepwith the help of the ode GraphShot (FORM3.1) [ 1℄ while the last is performed using theode LoopBak (FORTRAN 95) [ 2℄ whih makesextensive use of array handling, assignment over-loading, vetor/reursive funtions.2. Renormalization and UnitarityA keyword in renormalization is ounterterm;they are not stritly needed but are, neverthe-less, very useful when dealing with overlappingdivergenies. GraphShot generates all ountert-erms needed in the standard model and produesultraviolet (UV) �nite Green funtions. Anotherimportant keyword is skeleton expansion, mean-ing that the relevant objets in perturbation the-ory are dressed propagators. With their help wewant to onstrut a (�nite) renormalization pro-edure where a) the renormalized parameters arereal, b) �nite renormalization is the result of aonsistently trunated solution of renormalizationequations (RE), ) omplex poles arise naturallyafter dressing the propagators, but utting equa-tions remain valid to all orders. For an unstablepartile V de�ne��V = �V1��V �V V ; (1)

where � is the V (skeleton) self-energy. Cutting-equations and unitarity of the S -matrix an beproven: one uses two-loop �� in tree diagrams,one-loop �� in one-loop diagrams and tree prop-agators in two-loop diagrams. The proof is dueto Veltman [ 3℄: the ruial observation is that ��satis�es the K�allen - Lehmann representation,��+V (p2) = �(p0) h ��V (p2)i2 2 Im�V V (p2); (2)while, for a stable partile s, the pole term showsup as��+s (p2) = �(p0) h ��s(p2)i2 2 Im�ss(p2)+ 2 i � Æ(p2 +m2s): (3)One then expresses Im�V V in terms of ut self-energies, repeats ad libidum and derives that on-tributions from ut lines ome from stable parti-les only. Consider a toy model withLint = g2 �(x)�2(x); (4)and where � is unstable. We de�ne �� and ��aording to Eq.(1). An example of the skele-ton expansion for self-energies is given in Fig. 1:Im��� 6= 0 only due to the 3�partile ut of di-agram b) of Fig. 1 and only diagrams a) and )are retained in the expansion; in a) we use ��,at one-loop auray.In a gauge theory, however, there is a lash be-tween resummation and gauge invariane; usuallyonly the omplex pole is resummed [ 4℄. There-fore a one-loop self-energy with �� at one-loop1



2auray is equivalent to the 3 diagrams of Fig. 2omputed with ��(sM), whereZp = g216�2B0 (�sM ; m; m) : (5)The interplay of gauge parameter independene,Ward - Slavnov - Taylor identities and unitar-ity (whih is naturally satis�ed in the frameworkof dressed propagators) requires a more detailedanalysis, beyond the sope of this paper.To solve REs we need an input parameter set(IPS) inluding some notion of Mexp. In the paston-sell PO have been derived by �tting lineshapesfrom experiments [ 5℄ but we an use an on-shellMOS only at one-loop. Beyond this order theorret treatment requires introduing omplexpoles [ 6℄, sV = �2V � i V �V .If we want to use available data a transforma-tion is therefore needed: de�ne pole PO through = artan�OS=MOS: MP = MOS os and�P = �OS sin . One again, a hange of strategyis needed sine RE hange their struture at twoloops. It is a new perspetive: at one loop oneonsiders MOS as an input parameter indepen-dent of sP and derive sP . At two loop REs arewritten for real pR and solved in terms of (amongother things) experimental sP .In the framework of an order-by-order renor-malization, MR is a real solutions of trunatedREs onsistently with utting-equations and uni-tarity.2.1. Complex polesHere we give an example of the old fashionedone-loop tehnique: on-shell masses are inputand, having the Higgs boson in mind, we derivesH = �2H � i �H H ; numerial results for sH areshown in Tab. 1.The urrent fashion instead is to extrat sexpH =�2H � i �H H from data and to derive sthH = M2H �iMH �H . To see how it works we point out thedi�erene with previous two-loop alulations [ 7℄where one starts fromsV = m2 � �V V �sV ; m2 ; : : :� ; (6)and derives the omplex pole in terms of the(bare) renormalized masssV = m2 � �(1)V V �m2 ; m2 ; : : :�+ : : : (7)

Table 1One-loop sH(MOSH )MOSH [GeV℄ 120 300�H [GeV℄ 119:96 299:74H [GeV℄ 7:00 � 10�3 7:90To improve the quality of the result we onsiderthe relationsV = m2 � �V V �sV ; m2 ; fpg ; : : :� (8)where with fpg we denote additional, renormal-ized, parameters. We then solve REs and obtainm2 and fpg, i.e.m2 ; fpg = Re f (sV 1 ; sV 2 ; : : : ) ; (9)where sV i are experimental omplex poles. Notethat we never expand funtions depending onomplex POs whih means that we atually om-pute two-loop diagrams on the seond Riemannsheet. Furthermore, in our sheme the solutionof REs is used at the Born level in two-loop di-agrams, one-loop in one-loop diagrams, two-loopin tree diagrams. If V 62 fV1 ; V2 ; : : :g we havea genuine predition, otherwise we have a on-sisteny relation for loop orretions. Numerialresults for the two-loop sthH (sexpH ) are shown inTab. 2.Table 2Two-loop sthH (sexpH ). All entries in GeV.�H H MH �H300 4 299:96 8:374300 12 299:87 8:376500 40 500:17 63:37500 80 500:42 63:34



3Table 3Perentage two-loop orretions in RE Eq.(10).MOSH [GeV℄ 150 300 500GF �2W2�2 Æ(2)GÆ(1)G 18:29% 8:89% �24:62%2.2. Numbers & renormalizationConsider one of the REs, e.g.GFp2 = g28M2 (1 + �g); �g = ÆG +�gS; (10)relating g to the Fermi onstant GF ; �gS is theW self-energy part. A solution in perturbationtheory starts withg2 = 8GF �2W h1 + C(1)g GF�2 + : : :i;C(1)g = 12 hRe�(1)WW (sW )� �(1)WW (0)i: (11)Aording to an old result Æ(1)G is UV/IR �nite;we an add that Æ(2)G is �nite after one-loop renor-malization. Furthermore, we de�ne a proess in-dependent Fermi oupling at the two-loop levelG = GF n1� Æ(1)G GF �2W2�2 + h2 (Æ(1)G )2� 2�2W Æ(1)G C(1)g � Æ(2)G i �GF �2W2�2 �2o: (12)Therefore, starting from a RE likeX = x (1 + a1 x+ a2 x2);X = GF �2W2�2 ; x = g216�2 ; a1 = Æ(1)G + S(1);a2 = S(1) hÆ(1)G + S(1) i+ Æ(2)G + S(2); (13)we obtain the following solution:x = X +X2 (b1 + b2X); S(n) = �(n)WW (0)�2W : (14)The LO/NLO/NNLO terms are X; b1X2 andb2X3; results are shown in Tabs. 3{4 where onean see that perturbation theory beomes ques-tionable beyond 350 GeV.

Table 4Perentage two-loop orretions in RE Eq.(14).MOSH [GeV℄ 150 250 350NLO/LO (%) +3:31 �2:30 �7:85b1 +12:28 �8:51 �29:07b2X +0:25 �1:38 �9:26NNLO/NLO (%) +2:06 +16:16 +31:853. Running of �The role played by the running of � has beenruial in the development of preision tests of theSM. Underneath this onept there is the popularwisdom that universal orretions are the impor-tant ingredient while non-universal ones shouldbe made as small as possible; therefore, univer-sal orretions should be linked to a set of POsand data should be presented in the language ofPOs whih, in turn, is onneted with resum-mation, against gauge invariane. Admittedly,around MZ it has been easy to perform a dis-rimination, relevant vs. irrelevant terms, payinga little prie to gauge invariane. Well above thissale the situation is drastially di�erent. Thus,the natural question is about the de�nition of therunning of � at an arbitrary sale. One (fuzzy)idea is to import from QCD the onept of MSouplings and to express theoretial preditionsthrough MS ouplings [ 8℄. This idea is openfor ritiism: although the MS parameter seemsunambiguous it violates deoupling.There is another, well-known, solution: do thealulation in the R� gauge, selet a � - inde-pendent part of self-energies, perform resumma-tion while leaving the rest to ensure independenewhen ombined with verties and boxes. The ob-vious ritiism is: it violates uniqueness; however,it is only a matter of onventions.Ingredients for �MS are: a bosoni part, afermioni part with 3 lepton generations, a per-turbative quark ontribution (top or diagramswhere light quarks are oupled internally to mas-



4sive vetor bosons) and a non-perturbative onewith diagrams where a light quark ouples to aphoton (related to ��5had(M2Z )). We de�ne��1MS(s) = ��1 � 14� �MSQQ (0)����2=s: (15)Alternatively, we onsider � = 1 and de�ne��(s) = 1 +��(s) (16)Numerial results are shown in Tab. 5.4. Virtual infrared orretionsWe have been able to prove [ 9℄ that two-loopverties have an integral representationZ dCk(fxg) 1A hln�1 + AB� or Lin�AB�i; (17)where A;B are multivariate polynomials in fxg,the Feynman parameters. Two - loop diagramsare always reduible to ombinations of integralsof this type where the usual monomials thatappear in the integral representation of Nielsen- Gonharov generalized polylogarithms are re-plaed by multivariate polynomials of arbitrarydegree.Fig. 3 Example of IR divergent two-loop vertex.�P p1
p212 3mMV Ka

Our method is fully multi-sale, it allows for alassi�ation of infrared divergent on�gurations,for the evaluation of IR residues and IR �niteparts and is also suitable for ollinear regions. Toreah these objetives we had to extend Berstein -Sato - Tkahov funtional relations [ 11℄ to higherorder transendental funtions. Results for thediagram in Fig. 3 are shown in Tab. 6.
Table5:TheMSoupling
��1 MSand��(s)at200GeV.

m t=174:3GeVM H=15
0GeV
p s[GeV℄M Z
120160200
500

one-loop128:105
127:974127:839127:734
127:305

two-loop128:042
127:967127:891127:831
127:586

%
0:22

m t=179:3GeVM H=15
0GeV

one-loop128:113
127:982127:847127:742
127:313

two-loop128:048
127:980127:911127:857
127:636

%
0:25

m t=174:3GeVM H=30
0GeV

one-loop128:105
127:974127:839127:734
127:305

two-loop128:041
127:914127:784127:683
127:266

%
0:03��valueatp s=

200GeV
ReEW�0:003578(8) ImEW+0:002156(8) RepQCD�0:0005522(4) ImpQCD+0:0001178(3) �nren�0:0000977�0

:0000998i
Re�(s)0:0078782(2) Re��1 (s)126:933(4)



5Table 6Comparison with the results of Davydyhev -Kalmykov [ 10℄. Only the infrared �nite part isshown, in units of 10�8GeV�4.ps ReV0;K ImV0;KOur 400 5:1343(1) 1:94009(8)DK 5:13445 1:94008Our 300 5:68801 �1:61218DK 5:68801 �1:61218Our 200 9:36340 �2:84232DK 9:36340 �2:84232Our 100 29:4726 �9:74218DK 29:4726 �9:74218REFERENCES1. S. Atis, A. Ferroglia, G. Passarino, M.Passera and S. Uirati, GraphShot, work inprogress.2. G. Passarino and S. Uirati, LoopBak, workin progress.3. M. J. G. Veltman, Physia 29, 186 (1963).4. A. Denner, S. Dittmaier, M. Roth andL. H. Wieders, Nul. Phys. B 724 (2005) 247[arXiv:hep-ph/0505042℄.5. M. W. Grunewald et al., Four-fermionprodution in eletron positron ollisions,[arXiv:hep-ph/0005309℄.6. W. Beenakker et al., Nul. Phys. B 500(1997) 255 [arXiv:hep-ph/9612260℄.7. F. Jegerlehner, M. Y. Kalmykov and O.Veretin, Nul. Instrum. Meth. A 502, 618(2003).8. G. Degrassi and A. Viini, Phys. Rev. D 69,073007 (2004) [arXiv:hep-ph/0307122℄.9. G. Passarino and S. Uirati, Nul. Phys. B747 (2006) 113 [arXiv:hep-ph/0603121℄.10. A. I. Davydyhev and M. Y. Kalmykov, Nul.Phys. B 699 (2004) 3 [arXiv:hep-th/0303162℄.11. F. V. Tkahov, Nul. Instrum. Meth. A 389(1997) 309 [arXiv:hep-ph/9609429℄; J. Bern-stein, Funtional Analysis and its Applia-tions 5(1971); M. Sato, Nagoya Mat. J. 120(1990) 1.

Figure 1. Example of skeleton expansion.
a) skeleton

φ φ

b) Σ insertion

c) skeletonFigure 2. Rearranging perturbation theory in thepresene of omplex poles.
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