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Abstra
tThe in
lusive produ
tion of jets in the 
entral region of rapidity is studiedin kT {fa
torization at next{to{leading order (NLO) in QCD perturba-tion theory. Cal
ulations are performed in the Regge limit making useof the NLO BFKL results. A jet 
one de�nition is introdu
ed and aproper phase{spa
e separation into multi{Regge and quasi{multi{Reggekinemati
 regions is 
arried out. Two situations are dis
ussed: s
atter-ing of highly virtual photons, whi
h requires a symmetri
 energy s
ale toseparate the impa
t fa
tors from the gluon Green's fun
tion, and hadron{hadron 
ollisions, where a non{symmetri
 s
ale 
hoi
e is needed.1 Introdu
tionThe understanding of the physi
s behind jet produ
tion in the 
ontext of per-turbative QCD is an essential ingredient in phenomenologi
al studies at presentand future 
olliders. At high energies the theoreti
al study of multijet eventsbe
omes an in
reasingly important task. In the 
ontext of 
ollinear fa
torizationthe 
al
ulation of multijet produ
tion is 
ompli
ated be
ause of the large num-ber of 
ontributing diagrams. There is, however, a region of phase spa
e whereit is indeed possible to des
ribe the produ
tion of a large number of jets: theRegge asymptoti
s (small{x region) of s
attering amplitudes. This 
orrespondsto the 
ase where the 
enter{of{mass energy in the pro
ess under study, s, 
anbe 
onsidered asymptoti
ally larger than any other parti
ipating s
ale. In thislimit the dominating diagrams are those with gluons being ex
hanged in thet{
hannel. A perturbative analysis of these diagrams shows that it is possible1



to resum 
ontributions of the form (�s ln s)n to all orders, with �s being the
oupling 
onstant for the strong intera
tion. This 
an be a
hieved by means ofthe Balitsky{Fadin{Kuraev{Lipatov (BFKL) equation [1℄.An essential ingredient in the BFKL approa
h is the 
on
ept of the Reggeizedgluon or Reggeon. In Regge asymptoti
s 
olour o
tet ex
hange 
an be e�e
tivelydes
ribed by a t{
hannel gluon with its propagator being modi�ed by a mul-tipli
ative fa
tor depending on a power of s. This power, also known as gluonRegge traje
tory, depends on the transverse momenta of the gluon and is notinfrared �nite. However, when real emissions are in
luded using gauge invariantReggeon{Reggeon{gluon 
ouplings, the divergen
es 
an
el out. It is then possi-ble to des
ribe s
attering amplitudes with any number of parti
les (jets) in the�nal state. The (�s ln s)n resummation is known as leading{order (LO) approx-imation and provides a simple pi
ture of the underlying physi
s. Neverthelessit is not free of drawba
ks, the main two being that, at LO, both �s and thefa
tor s
aling the energy s in the resummed logarithms, s0, are free parametersnot determined by the theory. These limitations 
an be removed if the a

ura
yin the 
al
ulation is in
reased, and next{to{leading (NLO) terms of the form�s (�s ln s)n are taken into a

ount [2℄. When this is done, diagrams 
ontribut-ing to the running of the 
oupling have to be in
luded, and also s0 is not longerundetermined. As an example, in the 
ontext of Mueller{Navelet jets, the in-trodu
tion of NLO e�e
ts in the kernel has been re
ently shown to have a largephenomenologi
al impa
t, in parti
ular, for azimuthal angle de
orrelations [3℄.At LO every Reggeon{Reggeon{gluon vertex 
orresponds to one single gluonemission, and the produ
ed gluon 
an form a single jet. At NLO the situationis more 
ompli
ated sin
e the emission vertex also 
ontains Reggeon{Reggeon{gluon{gluon and Reggeon{Reggeon{quark{antiquark 
ontributions. In the presentwork we are interested in the des
ription of the in
lusive produ
tion of one jetin the BFKL formalism at NLO. This means that the relevant events are thosewith only one jet produ
ed in the 
entral rapidity region of the dete
tor. Inorder to �nd the probability of produ
tion of a single jet it is ne
essary to intro-du
e a jet de�nition in the emission vertex. This is simple at LO, but at NLO weshould 
arefully study the possibility of a double emission in the same region ofrapidity, leading to the produ
tion of one or two jets. This will be the main goalof the present paper. Our aim is to 
learly separate the di�erent 
ontributionsto the 
ross se
tion, and to explain in detail whi
h s
ales are relevant. Parti
u-lar attention is given to the separation of multi{Regge and quasi{multi{Reggekinemati
s. An earlier analysis has been presented in Ref. [4℄. We have inde-pendently repeated these 
al
ulations, and we have found several dis
repan
ieswhi
h will be explained in the text.Our analysis will be done in two di�erent 
ases: in
lusive jet produ
tion inthe s
attering of two photons with large and similar virtualities, and in hadron{hadron 
ollisions. In the former 
ase the 
ross se
tion has a fa
torized formin terms of the photon impa
t fa
tors and of the gluon Green's fun
tion whi
his valid in the Regge limit. In the latter 
ase, sin
e the momentum s
ale ofthe hadron is substantially lower than the typi
al kT entering the produ
tionvertex, the gluon Green's fun
tion for hadron{hadron 
ollisions has a slightly2



di�erent BFKL kernel whi
h, in parti
ular, also in
orporates some kT {evolutionfrom the nonperturbative, and model dependent, proton impa
t fa
tor to theperturbative jet produ
tion vertex. We provide analyti
 formul� for these twopro
esses, and the numeri
al analysis is left for a future publi
ation.In the 
ase of hadron{hadron s
attering, our 
ross se
tion formul� 
ontainsan unintegrated gluon density whi
h, in addition to the usual dependen
e onthe longitudinal momentum fra
tion typi
al of 
ollinear fa
torization, 
arries anexpli
it dependen
e on the transverse momentum kT . This s
heme is known askT {fa
torization. So far, no systemati
 attempt has been made to generalizethis framework beyond LO a

ura
y. In the small{x region, where this typeof fa
torization has attra
ted parti
ular interest, the BFKL framework o�ersthe possibility to formulate, in a systemati
 way, the generalization of the kT {fa
torization to NLO. We therefore interpret our analysis also as a 
ontributionto the more general question of how to formulate the unintegrated gluon densityand the kT {fa
torization s
heme at NLO: our results 
an be 
onsidered as thesmall{x limit of a more general formulation.After this short introdu
tion, in Se
tion 2 we de�ne, 
losely following Ref. [5℄,our notations for the des
ription of a general 
ross se
tion in the BFKL ap-proa
h. We also introdu
e multi{Regge kinemati
s (MRK) and the iterativestru
ture of the 
ross se
tions at LO. In Se
tion 3 we des
ribe the basi
 ele-ments 
ontributing at NLO. The linearity of the BFKL equation remains thesame while the emission kernel now has several pie
es su
h as virtual 
ontribu-tions to one gluon emission and double emissions. We des
ribe them in somedetail, in
luding a pro
edure to avoid double 
ounting when the MRK is sep-arated from the quasi{multi{Regge kinemati
s (QMRK). The dis
ussion of in-
lusive jet produ
tion starts with a LO des
ription in Se
tion 4. Following thisintrodu
tory part, we present, in Se
tion 5, a de�nition of the NLO jet vertex.We separate the di�erent regions of phase spa
e in su
h a way that the 
an-
ellation of infrared divergen
es is expli
it for the two 
ases above{mentioned:in
lusive jet produ
tion in 
�
� and in hadron{hadron intera
tions. We willalso dis
uss the de�nition of a NLO unintegrated gluon distribution valid in thesmall{x regime. To 
lose we study in Se
tion 6 the rôle of the s
ale separatingMRK from QMRK and show how, even with the jet de�nition, it is possible toprove that the dependen
e on this s
ale is power suppressed. Finally, we drawour Con
lusions and suggest future lines of resear
h.2 General stru
ture of BFKL 
ross se
tionsFor the sake of 
larity, in the present se
tion we introdu
e the notation wewill follow in the rest of this study. BFKL 
ross se
tions present a fa
torizedstru
ture in terms of a universal Green's fun
tion, whi
h 
arries the dependen
eon s, and impa
t fa
tors, whi
h have to be 
al
ulated for ea
h pro
ess of interest.This fa
torization remains un
hanged in the transition from LO to NLO. Westart by de�ning our normalizations at LO in the following.Lets 
onsider the 
ase of the total 
ross se
tion �AB in the s
attering of two3



parti
les A and B. It is 
onvenient to work with the Mellin transformF(!; s0) = Z 1s0 dss � ss0��! �AB; (1)a
ting on the 
enter{of{mass energy s. The dependen
e on the s
aling fa
-tor s0 belongs to the NLO approximation sin
e the LO 
al
ulation is formallyindependent of s0.If we denote the matrix element for the transition A+B! ~A+~B+n produ
edparti
les with momenta ki (i = 1; : : : ; n) as A~A~B+n, and the 
orrespondingelement of phase spa
e as d�~A~B+n, then we 
an write�AB = 12s 1Xn=0 Z d�~A~B+njA~A~B+nj2: (2)As we mentioned in the Introdu
tion we are interested in the Regge limit wheres is asymptoti
ally larger than any other s
ale in the s
attering pro
ess. In thisregion the s
attering amplitudes are dominated by the produ
tion of partonswidely separated in rapidity from ea
h other. This parti
ular 
on�guration ofphase spa
e is known as multi{Regge kinemati
s (MRK). In MRK produ
ed par-ti
les are strongly ordered in rapidity but there is no ordering of the transversemomenta whi
h are only assumed not to be growing with energy.We �x our notation in Fig. 1: qi 
orrespond to the momenta of those parti
lesex
hanged in the t{
hannel while the subenergies si�1;i = (ki�1+ki)2 are relatedto the rapidity di�eren
e between 
onse
utive s{
hannel partons. Eu
lideantwo{dimensional transverse momenta are denoted in bold. For future dis
ussionwe use the Sudakov de
omposition ki = �i pA+�i pB + ki? for the momenta ofemitted parti
les.In MRK the 
enter{of{mass energy for the in
oming external parti
les 
anbe expressed in terms of the internal subenergies ass ' "n+1Yi=1 si�1;i#" nYi=1k2i #�1 'qq21q2n+1 n+1Yi=1 si�1;iqk2i�1k2i ; (3)where we have used the fa
t that in Regge kinemati
s s is mu
h larger than �tand, therefore, �0 ' �n+1 ' 1, k20 ' q21 and k2n+1 ' q2n+1. To write down themeasure of phase spa
e we use dimensional regularization with D = 4+2 �, i.e.ds d�~A~B+n = 2� n+1Yi=1 dsi�1;i2 si�1;i dD�2qi(2�)D�1 : (4)The matrix element A~A~B+n of Eq. (2) 
an be written in MRK in the fa
torizedformA~A~B+n2 s = �A " nYi=1 1q2i �si�1;isR �!i 
(qi; qi+1)# 1q2n+1 �sn;n+1sR �!n+1 �B ; (5)4
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sn,n+1Figure 1: Notation for parti
le produ
tion in MRK.with �P being the 
ouplings of the Reggeon to the external parti
les, !i = !(q2i )the gluon Regge traje
tory depending on the momentum 
arried by the Reggeon,and 
(qi; qi+1) the gauge invariant e�e
tive Reggeon{Reggeon{gluon verti
es.At LO the s
ale sR is a free parameter.Gathering all these elements together it is possible to write the Mellin trans-form of Eq. (1) as the sumF(!; s0) = 1Xn=0F (n)(!; s0); (6)with the 
ontributions from the emission of n s{
hannel gluons beingF (n)(!; s0)(2�)2�D = Z 24n+1Yi=1 dD�2qi dsi�1;isi�1;i �si�1;isR �2!i 0� si�1;iqk2i�1k2i 1A�!35�0� s0qq21q2n+11A! �A(q1)q21 " nYi=1Kr(qi;qi+1)# �B(qn+1)q2n+1 : (7)The impa
t fa
tors �P and the real emission kernel for Reggeon{Reggeon intoa s{
hannel gluon Kr 
an be written in terms of the square of the verti
es �Pand 
, respe
tively. The kernel Kr (qi;qi+1) is de�ned su
h that it in
ludesone gluon propagator on ea
h side: �q2iq2i+1��1. The integration over si�1;i inEq. (7) takes pla
e from a �nite s0 to in�nity. At LO terms of the form ! lnk2ior !i ln sR 
an be negle
ted when the integrand is expanded in �s. Therefore,5



at this a

ura
y, Eq. (7) givesF (n)(!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi! � 2!i# �A(q1)q 21 " nYi=1Kr(qi;qi+1)# �B(qn+1)q2n+1 ; (8)where the poles in the 
omplex !{plane 
orrespond to Reggeon propagators.This simple stru
ture is a 
onsequen
e of the linearity of the integral equation forthe gluon Green's fun
tion. We will see below that Eq. (8) holds very similarlyat NLO. This fa
t has been useful in the study of di�erent NLO BFKL 
rossse
tions using numeri
al te
hniques in re
ent years (see Ref. [6℄).After this brief introdu
tion to the stru
ture of BFKL 
ross se
tions andits iterative expression we now turn to the NLO 
ase. The fa
torization intoimpa
t fa
tors and Green's fun
tion will remain, while the kernel and traje
torywill be more 
omplex than at LO. We dis
uss these points in the next se
tion.3 Di�erent 
ontributions at NLOTo dis
uss the various 
ontributions to NLO BFKL 
ross se
tions we followRef. [5℄. We 
omment in more detail those points whi
h will turn out to bemore relevant for our later dis
ussion of in
lusive jet produ
tion. Our startingpoint are Eqs. (1) to (4), whi
h remain un
hanged. Sin
e at NLO the sR s
aleis no longer a free parameter, we should modify Eq. (5) to readA~A~B+n2 s = �(sR;0;1)A " nYi=1 1q2i � si�1;isR;i�1;i�!i 
(sR;i�1;i;sR;i;i+1)(qi; qi+1)#� 1q2n+1 � sn;n+1sR;n;n+1�!n+1 �(sR;n;n+1)B : (9)The propagation of a Reggeized gluon with momentum qi in MRK takes pla
ebetween two emissions with momenta ki�1 and ki (see Fig. 1). Therefore, atNLO, the term sR, whi
h s
ales the invariant energy si�1;i, does depend onthese two 
onse
utive emissions and, in general, will be written as sR;i�1;i. Itis important to note that the produ
tion amplitudes should be independent ofthe energy s
ale 
hosen and, therefore,�(sR;0;1)A = �(s0R;0;1)A  sR;0;1s0R;0;1!!12 ; �(sR;n;n+1)B = �(s0R;n;n+1)B  sR;n;n+1s0R;n;n+1!!n+12 (10)for the parti
le{parti
le{Reggeon verti
es and
(sR;i�1;i;sR;i;i+1) (qi; qi+1) = 
(s0R;i�1;i;s00R;i;i+1) (qi; qi+1)� sR;i�1;is0R;i�1;i!!i2  sR;i;i+1s00R;i;i+1!!i+12 (11)6



for the Reggeon{Reggeon{gluon produ
tion verti
es.At NLO, besides the two{loop 
orre
tions to the gluon Regge traje
tory,there are four other 
ontributions whi
h a�e
t the real emission vertex. The�rst one 
onsists of virtual 
orre
tions to the one gluon produ
tion vertex. These
ond stems from the fa
t that in a 
hain of emissions widely separated inrapidity two of them are allowed to be nearby in this variable, this is knownas quasi{multi{Regge kinemati
s (QMRK). A third sour
e is obtained by per-turbatively expanding the Reggeon propagators in Eq. (9) while keeping MRKand every vertex at LO. A �nal fourth 
ontribution is that of the produ
tion ofquark{antiquark pairs. The 
ommon feature of all of these new NLO elementsis that they generate an extra power in the 
oupling 
onstant without buildingup a 
orresponding logarithm of energy so that �s (�s ln s)n terms are takeninto a

ount.With the idea of introdu
ing a jet de�nition later on, it is important tounderstand the properties of the produ
tion vertex whi
h we now des
ribe insome detail.Lets start with the virtual 
orre
tions to the single{gluon emission vertex.These are rather simple and 
orrespond to Eq. (8) with the insertion of a singlekernel or impa
t fa
tor with NLO virtual 
ontributions (noted as (v)) whileleaving the rest of the expression at Born level (written as (B)). More expli
itly:F (n)virtual(!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi(! � 2!i)#�(�(B)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(v)B (qn+1)q2n+1+�(v)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(B)B (qn+1)q2n+1+�(B)A (q1)q21 nXj=1 "j�1Yi=1 K(B)r (qi;qi+1)#K(v)r (qj ;qj+1)�24 nYi=j+1K(B)r (qi;qi+1)35 �(B)B (qn+1)q2n+1 ): (12)Now we turn to the dis
ussion of how to de�ne QMRK. For this purposethe introdu
tion of an extra s
ale is mandatory in order to de�ne a separationin rapidity spa
e between di�erent emissions. As in Ref. [5℄ we 
all this news
ale s�. At LO MRK implies that all sij = (ki + kj)2 are larger than s�. Inrapidity spa
e this means that their rapidity di�eren
e jyi � yj j is larger thanln s�pk2ik2j . As we stated earlier, in QMRK one single pair of emissions is allowedto be 
lose in rapidity. When any of these two emissions is one of the externalparti
les ~A or ~B it 
ontributes as a real 
orre
tion to the 
orresponding impa
tfa
tor. If this is not the 
ase it quali�es as a real 
orre
tion to the kernel. This7



is summarized in the following expression where we write real 
orre
tions to theimpa
t fa
tors as (r):F (n+1)QMRK(!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi(! � 2!i)#�(�(B)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(r)B (qn+1)q2n+1+�(r)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(B)B (qn+1)q2n+1+�(B)A (q1)q21 nXj=1 "j�1Yi=1 K(B)r (qi;qi+1)#KQMRK(qj ;qj+1)�24 nYi=j+1K(B)r (qi;qi+1)35 �(B)B (qn+1)q2n+1 ): (13)The modi�
ations due to QMRK belonging to the kernel or to the impa
t fa
torsare, respe
tively, KQMRK and �(r)P , i.e.KQMRK(qi;qi+1) = (N2
 � 1) Z dŝ IRR �RR!GG(ŝ) �(s� � ŝ)(2�)D q2i q2i+1 ; (14)�(r)P (k) = pN2
 � 1Z dŝ IPR �PR!PG(ŝ) �(s� � ŝ)(2�) s : (15)In both 
ases ŝ denotes the invariant mass of the two emissions in QMRK. TheHeaviside fun
tions are used to separate the regions of phase spa
e where theemissions are at a relative rapidity separation smaller than s�. It is within thisregion where the LO emission kernel is modi�ed. �RR!GG and �PR!PG are thetotal 
ross se
tions for two Reggeons into two gluons, and an external parti
leand a Reggeon into an external parti
le and a gluon, respe
tively. I stands forthe invariant 
ux and N
 for the number of 
olours.For those se
tors remaining in the MRK we use a Heaviside fun
tion tokeep si�1;i > s�, in this way MRK is 
learly separated from QMRK. We thenfollow the same steps as at LO and use Eq. (7) with the modi�
ations alreadyintrodu
ed in Eq. (9), i.e.F (n+1)MRK (!; s0)(2�)2�D= Z 24n+2Yi=1 dD�2qi dsi�1;isi�1;i � si�1;isR;i�1;i�2!i 0� si�1;iqk2i�1k2i 1A�! �(si�1;i � s�)35�0� s0qq21q2n+21A! �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2 : (16)8



After performing the integration over the si�1;i variables the following interest-ing dependen
e on s� arises:F (n+1)MRK (!; s0)(2�)2�D = Z 24n+2Yi=1 dD�2qi(! � 2!i) � s�sR;i�1;i�2!i 0� s�qk2i�1k2i 1A�!35�0� s0qq21q2n+21A! �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2 : (17)It is now 
onvenient to go ba
k to Eq. (1) and write the lower limit s0 ofthe Mellin transform as a generi
 produ
t of two s
ales related to the externalimpa
t fa
tors, i.e. s0 = ps0;A s0;B . By expanding in �s the fa
tors with powersin ! and !i it is then possible to identify the NLO terms:F (n+1)MRK (!; s0)(2�)2�D = Z "n+2Yi=1 dD�2qi(! � 2!i)# �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2�(1� !2 ln s2�k21s0;A + !1 ln s2�s2R;0;1 � n+1Xi=2 "!2 ln s2�k2i�1k2i � !i ln s2�s2R;i�1;i #� !2 ln s2�k2n+1s0;B + !n+2 ln s2�s2R;n+1;n+2): (18)To 
ombine this expression with that of the QMRK 
ontribution we shouldmake a 
hoi
e for sR. The most 
onvenient one is sR;i;j = psR;i sR;j , wherefor intermediate Reggeon propagation we use sR;i = k2i , and for the 
onne
tionwith the external parti
les sR;0 = s0;A and sR;n+2 = s0;B . We 
an then writeF (n+1)MRK (!; s0)(2�)2�D = Z "n+2Yi=1 dD�2qi(! � 2!i)# �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2�(1� (! � 2!1)2 ln s2�k21s0;A � n+1Xi=2 � (! � 2!i)2 ln s2�k2i�1k2i �� (! � 2!n+2)2 ln s2�k2n+1s0;B): (19)This 
orresponds to the LO result for F (n+1) plus additional terms where the! � 2!i fa
tor 
an
els, in su
h a way that they 
an be 
ombined with the LOresult of F (n).The quark 
ontribution 
an be in
luded in a straightforward manner sin
ebetween the quark{antiquark emissions there is no propagation of a Reggeized
9



gluon. In this way one 
an simply writeF (n+1)Q �Q (!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi(! � 2!i)# �(B)A (q1)q21 �(B)B (qn+1)q2n+1� nXj=1 "j�1Yi=1K(B)r (qi;qi+1)#KQ �Q(qj ;qj+1)24 nYi=j+1K(B)r (qi;qi+1)35 : (20)The produ
tion kernel 
an be written asKQ �Q(qi;qi+1) = (N2
 � 1) Z dŝ IRR �RR!Q �Q(ŝ)(2�)D q2i q2i+1 ; (21)with �RR!Q �Q being the total 
ross se
tion for two Reggeons produ
ing thequark{antiquark pair with an invariant mass ŝ.The 
ombination of all the NLO 
ontributions together generates the follow-ing expression for the NLO 
ross se
tion:F(!; s0)AB = 1Xn=0 1(2�)D�2 Z "n+1Yi=1 dD�2qi(! � 2!i)#��A(q1; s0;A)q21 " nYi=1Kr(qi;qi+1)# �B(qn+1; s0;B)q2n+1 ; (22)where the NLO real emission kernel 
ontains several terms:Kr(qi;qi+1) = �K(B)r +K(NLO)r � (qi;qi+1)= �K(B)r +K(v)r +KGG +KQ �Q� (qi;qi+1); (23)with KQ �Q given by Eq. (21). The two gluon produ
tion kernel KGG is the
ombination of KQMRK of Eq. (14) and the MRK 
ontribution in Eq. (19). Itexpli
itly readsKGG(qi;qi+1) = (N2
 � 1) Z dŝIRR�RR!GG(ŝ) �(s� � ŝ)(2�)D q2i q2i+1� Z dD�2~q K(B)r (qi; ~q)K(B)r (~q;qi+1)12 ln� s2�(qi � ~q)2(qi+1 � ~q)2� : (24)Below we will show that when s� is taken to in�nity the se
ond term of this ex-pression subtra
ts the logarithmi
 divergen
e of the �rst one. When 
omputingthe total 
ross se
tion it is natural to remove the dependen
e on the parameters� in this way. For our jet produ
tion 
ross se
tion, however, we prefer to retainthe dependen
e upon s�. 10



For the impa
t fa
tors a similar expression in
luding virtual and MRK 
or-re
tions as in Eq. (15) arises:�P (q1; s0;P ) = �(B)P +�(v)P +pN2
 � 1Z dŝIPR �PR(ŝ) �(s� � ŝ)(2�) s� Z dD�2~q �(B)P (~q)K(B)r (~q;q1)12 ln� s2�(q1 � ~q)2s0;P � : (25)From this expression it is now 
lear why to 
hoose the fa
torized form s0 =ps0;A s0;B : in this way ea
h of the impa
t fa
tors �A;B 
arry its own s0;A;Bterm at NLO independently of the 
hoi
e of s
ale in the other.To 
on
lude this se
tion, for the sake of 
larity, the di�erent 
ontributionsto the NLO BFKL kernelCONTRIBUTION NUMBER OF EMISSIONS Fig.2MRK � LO n (a)Virtual n (b)QMRK n+ 1 (
)MRK � NLO n+ 1 (d)Quark{antiquark pair n+ 1 (e)are pi
torially represented in Fig. 2.
(a) (b) (c) (d) (e)Figure 2: Contributions to real emission kernel at LO (a) and NLO (b-e).As a �nal remark we would like to indi
ate that the divergen
es present in thegluon traje
tories !i (see Ref. [2℄) are all 
an
elled inside the in
lusive terms.We will see how the soft and 
ollinear divergen
es of the produ
tion vertex areeither 
an
elled amongst its di�erent 
omponents or are regularized by the jetde�nition.After having introdu
ed the notation and highlighted the di�erent 
on-stituents of a BFKL produ
tion kernel at NLO, in the 
oming se
tion we des
ribehow to 
al
ulate the in
lusive produ
tion of jets in two di�erent environments.The �rst one is the 
ase of the intera
tion between two small and perturba-tive obje
ts, highly virtual photons, and the se
ond will be the 
ollision of twolarge and non{perturbative external parti
les su
h as the ones taking pla
e athadron{hadron 
olliders. 11



4 In
lusive jet produ
tion at LOAs MRK relies on the transverse s
ales of the emissions and internal lines beingof the same order it is natural to think that pro
esses 
hara
terized by two largeand similar transverse momenta are the ideal environment for BFKL dynami
sto show up. Moreover, as the resummation is based on perturbative degrees offreedom, these large s
ales asso
iated to the external parti
les should favor thea

ura
y of the predi
tions. An ideal s
enario is the intera
tion between twophotons with large virtualities Q21;2 in the Regge limit s� jtj � Q21 � Q22. Thetotal 
ross se
tion for this pro
ess has been investigated in a large number ofpapers in re
ent years. Here we are interested in the in
lusive produ
tion ofa single jet in the 
entral region of rapidity in this pro
ess. We will 
onsiderthe 
ase where the transverse momentum of the jet is of the same order as thevirtualities of the photons.As a starting point we review single jet produ
tion at LO a

ura
y. Asusual the total 
ross se
tion 
an be written as a 
onvolution of the photonimpa
t fa
tors with the gluon Green's fun
tion, i.e.�(s) = Z d2ka2�k2a Z d2kb2�k2b �A(ka) �B(kb) Z Æ+i1Æ�i1 d!2�i � ss0�! f!(ka;kb): (26)A 
ommon 
hoi
e for the energy s
ale is s0 = jkaj jkbj whi
h naturally introdu
esthe rapidities y ~A and y ~B of the emitted parti
les with momenta p ~A and p ~B sin
e� ss0�! = e!(y ~A�y ~B): (27)Let us remark that a 
hange in this s
ale 
an be treated as a rede�nition ofthe impa
t fa
tors and, if s0 is 
hosen to depend only on ka or only on kb, thekernel as well. This treatment lies beyond LO and will be dis
ussed in the nextse
tion. The gluon Green's fun
tion f! 
orresponds to the solution of the BFKLequation !f!(ka;kb) = Æ2(ka � kb) + Z d2k K(ka;k)f!(k;kb); (28)K(ka;k) = 2!(k2a) Æ2(ka � k) +Kr(ka;k); (29)where the kernel K 
ontains a term related to the Reggeized gluon propagator,the traje
tory !(k2a), and the real emission kernel, Kr.For the in
lusive produ
tion of a single jet we assign to it a rapidity yJand a transverse momentum kJ , as shown in Fig. 3. In this way, if kJ =�JpA + �JpB + kJ? the 
orresponding rapidity is yJ = 12 ln �J�J . Using its on{shell 
ondition we 
an writekJ =rk2Js eyJpA +rk2Js e�yJpB + kJ?: (30)12



ka ↓

kb ↑

qb ↑

qa ↓

ka ↓

kb ↑

qb ↑

qa ↓

kJ

Figure 3: Total 
ross se
tion and in
lusive one jet produ
tion in the BFKLapproa
h.It is possible to single out one gluon emission by extra
ting its emissionprobability from the BFKL kernel. The di�erential 
ross se
tion in terms of thejet variables 
an then be 
onstru
ted in the following way:d�d2kJdyJ = Z d2ka2�k2a Z d2kb2�k2b �A(ka) �B(kb)� Z d2qa Z d2qb Z Æ+i1Æ�i1 d!2�i �sAJs0 �! f!(ka;qa)� V(qa;qb;kJ ; yJ) Z Æ+i1Æ�i1 d!02�i �sBJs00 �!0 f!0(�qb;�kb) (31)with the LO emission vertex beingV(qa;qb;kJ ; yJ) = K(B)r (qa;�qb) Æ(2) (qa + qb � kJ) : (32)By sele
ting one emission to be ex
lusive we have fa
torized the gluon Green'sfun
tion into two 
omponents. Ea
h of them 
onne
ts one of the external par-ti
les to the jet vertex. In the notation of Eq. (31) the energies of these blo
ksare sAJ =(pA + qb)2; sBJ =(pB + qa)2: (33)In a symmetri
 situation, where the jet provides a hard s
ale as well as theimpa
t fa
tors, a natural 
hoi
e for the s
ales is similar to that in the total 
ross13



se
tion s0 =jkaj jkJ j; s00 =jkJ j jkbj: (34)These 
hoi
es 
an now be related to the relative rapidity between the jet andthe external parti
les. To set the ground for the NLO dis
ussion of the nextse
tion we introdu
e an additional integration over the rapidity � of the 
entralsystem:d�d2kJdyJ = Z d2qa Z d2qb Z d�� "Z d2ka2�k2a �A(ka) Z Æ+i1Æ�i1 d!2�ie!(yA��)f!(ka;qa)# V(qa;qb; �;kJ ; yJ)� "Z d2kb2�k2b �B(kb) Z Æ+i1Æ�i1 d!02�ie!0(��yB)f!0(�qb;�kb)# (35)with the LO emission vertex beingV(qa;qb; �;kJ ; yJ) = K(B)r (qa;�qb) Æ(2) (qa + qb � kJ ) Æ(� � yJ): (36)Eqs. (35) and (36) will be the starting point for the NLO jet produ
tion in thesymmetri
 
on�gurations.Let us now swit
h to the asymmetri
 
ase. In general we 
an write qa andqb as qa =�apA + �apB + qa? qb =�bpA + �bpB + qb?: (37)The strong ordering in the rapidity of emissions translates into the 
onditions�a � �b and �b � �a. This, together with momentum 
onservation qa + qb =kJ , leads us to �J = �a + �b � �a, �J = �a + �b � �b andsAJ =�Js; sBJ =�Js: (38)While the longitudinal momentum of qa(qb) is a linear 
ombination of pA andpB we see that only its 
omponent along pA(pB) matters.If the 
olliding external parti
les provide no perturbative s
ale as it is the
ase in hadron{hadron 
ollisions, then the jet is the only hard s
ale in the pro
essand we have to deal with an asymmetri
 situation. Thus the s
ales s0 and s00should be 
hosen as k2J alone. At LO a

ura
y s0 is arbitrary and we are indeedfree to make this 
hoi
e. Then the arguments of the gluon Green's fun
tions
an be written as sAJs0 = 1�a ; sBJs0 = 1�b : (39)The des
ription in terms of these longitudinal 
omponents is parti
ularly usefulif one is interested in jet produ
tion in a hadroni
 environment. Here one 
an14



introdu
e the 
on
ept of unintegrated gluon density in the hadron. This rep-resents the probability of resolving a gluon 
arrying a longitudinal momentumfra
tion x from the in
oming hadron, and with a 
ertain transverse momentumkT . With the help of Eq. (39) a LO unintegrated gluon distribution g 
an bede�ned from Eq. (31) asg(x;k) = Z d2q2�q2 �P (q) Z Æ+i1Æ�i1 d!2�i x�!f!(q;k): (40)Then we 
an rewrite Eq. (31) asd�d2kJdyJ = Z d2qa Z dx1 Z d2qb Z dx2� g(x1;qa)g(x2;qb)V(qa; x1;qb; x2;kJ ; yJ); (41)with the LO jet vertex for the asymmetri
 situation beingV(qa; x1;qb; x2;kJ ; yJ) = K(B)r (qa;�qb)� Æ(2) (qa + qb � kJ ) Æ x1 �rk2Js eyJ! Æ x2 �rk2Js e�yJ! : (42)Having presented our framework for the LO 
ase, in both 
�
� and hadron{hadron 
ollisions, we now pro
eed to explain in detail what 
orre
tions areneeded to de�ne our 
ross se
tions at NLO. Spe
ial attention should be put intothe treatment of those s
ales with do not enter the LO dis
ussion but are 
ru
ialat higher orders.5 In
lusive jet produ
tion at NLOA similar approa
h to that shown in Se
tion 4 remains valid when jet produ
tionis 
onsidered at NLO. The 
ru
ial step in this dire
tion is to modify the LO jetvertex of Eq. (36) and Eq. (42) to in
lude new 
on�gurations present at NLO. Weshow how this is done in the following �rst subse
tion. In the se
ond subse
tionwe implement this vertex in the symmetri
 
�
� 
ase, and we repeat the stepsfrom Eq. (26) to Eq. (38), 
arefully des
ribing the 
hoi
e of energy s
ale at ea
hof the sub
hannels. In the third subse
tion hadron{hadron s
attering is takeninto 
onsideration, and we extend the 
on
ept of unintegrated gluon density ofEq. (40) to NLO a

ura
y. Most importantly, it is shown that a 
orre
t 
hoi
eof intermediate energy s
ales in this 
ase implies a modi�
ation of the impa
tfa
tors, the jet vertex, and the evolution kernel.5.1 The NLO jet vertexFor those parts of the NLO kernel responsible for one gluon produ
tion wepro
eed in exa
tly the same way as at LO. The treatment of those terms related15



to two parti
le produ
tion is more 
ompli
ated sin
e for them it is ne
essaryto introdu
e a jet algorithm. In general terms, if the two emissions generatedby the kernel are nearby in phase spa
e they will be 
onsidered as one singlejet, otherwise one of them will be identi�ed as the jet whereas the other willbe absorbed as an untagged in
lusive 
ontribution. Hadronization e�e
ts inthe �nal state are negle
ted and we simply de�ne a 
one of radius R0 in therapidity{azimuthal angle spa
e su
h that two parti
les form a single jet if R12 �p(�1 � �2)2 + (y1 � y2)2 < R0. As long as only two emissions are involved thisis equivalent to the kT {
lustering algorithm.To introdu
e the jet de�nition in the 2 ! 2 
omponents of the kernel it is
onvenient to start by 
onsidering the gluon and quark matrix elements together:�KQMRK +KQ �Q� (qa;�qb) = Z dD�2k2 Z dy2�� jA2g(qa;qb;k1;k2)j2 �(s� � s12) + jA2q(qa;qb;k1;k2)j2 �;(43)with A2P being the two parti
le produ
tion amplitudes of whi
h only the gluoni
one also 
ontributes to MRK. This is why a step fun
tion is needed to separateit from MRK. Momentum 
onservation implies that k1 = qa + qb � k2.The expression (43) is not 
omplete as it stands sin
e we should also in
ludethe MRK 
ontribution as it was previously done in Eq. (24):�KGG +KQ �Q� (qa;�qb) � Z dD�2k2 Z dy2 jB(qa;qb;k1;k2)j2=Z dD�2k2 Z dy2( jA2g(qa;qb;k1;k2)j2 �(s� � s12)�K(B)(qa;qa � k1)K(B)(qa � k1;�qb) 12 ��ln s�k22 � y2� ��y2 � ln k21s��+ jA2q(qa;qb;k1;k2)j2): (44)We are now ready to introdu
e the jet de�nition for the double emissions. The

16



NLO versions of Eq. (36) and Eq. (42) then read, respe
tively,V(qa;qb; �;kJ ; yJ) =�K(B)r +K(v)r � (qa;�qb)���[y℄(a)+ Z dD�2k2 dy2 jB(qa;qb;kJ � k2;k2)j2 �(R0 �R12)���[y℄(b)+ 2 Z dD�2k2 dy2 jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���[y℄(
); (45)V(qa; x1;qb; x2;kJ ; yJ) =�K(B)r +K(v)r � (qa;�qb)���[x℄(a)+ Z dD�2k2 dy2 jB(qa;qb;kJ � k2;k2)j2 �(R0 �R12)���[x℄(b)+ 2 Z dD�2k2 dy2 jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���[x℄(
): (46)In these two expressions we have introdu
ed the notation���[y℄(a;b) = Æ(2) (qa + qb � kJ ) Æ(� � y(a;b)); (47)���[y℄(
) = Æ(2) (qa + qb � kJ � k2) Æ �� � y(
)� ; (48)���[x℄(a;b) = Æ(2) (qa + qb � kJ ) Æ �x1 � x(a;b)1 � Æ �x2 � x(a;b)2 � ; (49)���[x℄(
) = Æ(2) (qa + qb � kJ � k2) Æ �x1 � x(
)1 � Æ �x2 � x(
)2 � : (50)The various jet 
on�gurations demand di�erent y and x 
on�gurations. Theseare related to the properties of the produ
ed jet in di�erent ways depending onthe origin of the jet: if only one gluon was produ
ed in MRK this 
orrespondsto the 
on�guration (a) in the table below, if two parti
les in QMRK form a jetthen we have the 
ase (b), and �nally 
ase (
) if the jet is produ
ed out of one ofthe partons in QMRK. The fa
tor of 2 in the last term of Eq. (45) and Eq. (46)a

ounts for the possibility that either emitted parti
le 
an form the jet. Justby kinemati
s we get the expli
it expressions for the di�erent x 
on�gurationslisted in the following table:JET y 
on�gurations x 
on�gurationsa) y(a) = yJ x(a)1 = jkJ jps eyJ x(a)2 = jkJ jps e�yJb) y(b) = yJ x(b)1 = p�ps eyJ x(b)2 = p�ps e�yJ
) y(
) = 12 ln x(
)1x(
)2 x(
)1 = jkJ jps eyJ + jk2jps ey2 x(
)2 = jkJ jps e�yJ + jk2jps e�y2The variable � is de�ned below in Eq. (58). Due to the analogue treatmentof the emission vertex either expressed in terms of rapidities or longitudinal17



momentum fra
tions in the remaining of this se
tion we will imply the sameanalysis for both. In parti
ular, we will not expli
itly mention these argumentswhen we 
ome to Eqs. (68, 69).The introdu
tion of the jet de�nition divides the phase spa
e into di�erentse
tors. It is now needed to show that the �nal result is indeed free of anyinfrared divergen
es. In the following we pro
eed to independently 
al
ulateseveral 
ontributions to the kernel to be able, in this way, to study its singularitystru
ture.The NLO virtual 
orre
tion to the one{gluon emission kernel, K(v), wasoriginally 
al
ulated in Ref. [7, 8, 9℄. Its expression readsK(v)r (qa;�qb) = �g4���2��1+��(1� �) 4�2(2��2�2 ���� 1�2 + �22 � 2 � �(3)�+ �0N
 1� + 3�2q2a � q2b ln�q2aq2b �� ln2�q2aq2b �+ �1� nfN
�� �2q2a � q2b �1� �2(q2a + q2b � 4qaqb)3(q2a � q2b)2 � ln�q2aq2b �� �26q2aq2b (qa � qb)2 + �4 (q2a + q2b)6q2aq2b(q2a � q2b)2 (q2a + q2b � 4qaqb)�); (51)with �0 = (11N
 � 2nf )=3, �(n) = P1k=1 k�n and � = qa + qb. �g� 
an beexpressed in terms of the renormalized 
oupling 
onstant g� in the MS renor-malization s
heme by the relation �g2� = g2�N
 �(1� �) (4�)�2��. Note that theexpression for the virtual 
ontribution given in [4℄ la
ks the log squared.Those pie
es related to two{gluon produ
tion in QMRK 
an be rewritten interms of their 
orresponding matrix elements asKQMRK(qa;�qb) = Z dD�2k2 Z dy2 jA2g(qa;qb;k1;k2)j2 �(s� � s12)= g2���2�N2
�(2�)D+1q2aq2b Z dD�2k2�2�(2�)D�4 Z dy2 Agluons �(s� � s12); (52)and those related to quark{antiquark produ
tion areKQ �Q(qa;�qb) = Z dD�2k2 Z dy2 jA2q(qa;qb;k1;k2)j2= g2���2�N2
�(2�)D+1q2aq2b Z dD�2k2�2�(2�)D�4 Z dy2 Aquarks: (53)We have 
al
ulated the 
orresponding amplitudes, using the Mandelstam invari-
18



ants ŝ, t̂, and û, and our results areAgluons = q2aq2b(� 1̂tû + 14t̂û q2aq2bk21k22 � 14 �1� xx 1k22 t̂ + x1� x 1k21û�+ 14k21k22+ 1�"� 1̂s �2 +� 1̂t � 1̂u��1� xx k21 � x1� xk22��+ 14 � �̂s + 1���1� xx 1k22 + x1� x 1k21�� q2b4ŝ � 1(1� x)t̂ + 1xû��q2a4ŝ ��1 + x1� x k22k21 � 1̂t + �1 + 1� xx k21k22 � 1̂u�#)+ D � 24 (� (k1 � qa)2(k2 � qa)2 � k21k22t̂û �2�14  (k2 � qa)2 � x1�xk22û + Ês !� (k1 � qa)2 � 1�xx k21t̂ � Ês �);(54)Aquarks = nf4N
(q2aq2bŝ� �2 +� 1̂t � 1̂u��1� xx k21 � x1� xk22����(k1 � qa)2(k2 � qa)2 � k21k22t̂û �2+12  (k2 � qa)2 � x1�xk22û + Ês !� (k1 � qa)2 � 1�xx k21t̂ � Ês �)+ nf4N3
 (� (k1 � qa)2(k2 � qa)2 � k21k22t̂û �2 � q2aq2bt̂û ): (55)These expressions are in agreement with the 
orresponding ones obtained inRef. [4℄. The following notation has been used:x = jk1jjk1j+ jk2je�y ; (56)� = (1� x)k1 � xk2; (57)� = ŝ+�2 = �2x(1� x) +�2; (58)E = 2(2x� 1)q2a + 4�qa + 1� 2xx(1� x)�2� 2x(1� x) �(2x� 1)�2 + 2��� q2ax(1� x)�2 +�2 : (59)We now study those terms whi
h 
ontribute to generate soft and 
ollinear di-vergen
es after integration over the two{parti
le phase spa
e. They should be19



able to 
an
el the � poles of the virtual 
ontributions in Eq. (51), i.e.K(v)singular (qa;qb) = �g4���2��1+��(1� �) 4�2(��2�2 ���� 2�2�+ �0N
 1�): (60)Here we identify those pie
es responsible for the generation of these poles.One of the divergent regions is de�ned by the two emissions with momentak1 = �1pA+�1pB + k1? and k2 = �2pA+�2pB + k2? be
oming 
ollinear. Thismeans that, for a real parameter �, k1 ' � k2, i.e. k1? ' � k2?, �1 ' ��2 andthus �2k1? � �1k2? ' 0. Sin
e x = �1�1+�2 this is equivalent to the 
ondition� ' 0. In the 
ollinear region ŝ = �2x(1�x) tends to zero and the dominant
ontributions whi
h are purely 
ollinear areAsingulargluons ���
ollinear =� q2aq2b� 2̂s + D � 216 E2ŝ2 � A(1) +A(2); (61)Asingularquarks ���
ollinear = nf2N
 q2aq2bŝ� � nf8N
 E2ŝ2 : (62)The quark{antiquark produ
tion does not generate divergen
es when k1 or k2be
ome soft, therefore we have that the only purely soft divergen
e isAsingulargluons ���soft = q2aq2b 14t̂û q2aq2bk21k22 + 14k21k22! � A(3) +A(4) ! 2A(4); (63)where we have used the property that, in the soft limit, the t̂û produ
t tendsto q2aq2b . We will see that these terms will be responsible for simple poles in �.The double poles will be generated by the regions with simultaneous soft and
ollinear divergen
es. They are only present in the gluon{gluon produ
tion 
aseand 
an be written asAsingulargluons ���soft&
ollinear = q2aq2b4ŝ �1� xx 1k22 + x1� x 1k21 ��q2aq2b4ŝ� "q2b � 1(1� x)t̂ + 1xû�+ q2a��1 + x1� x k22k21 � 1̂t + �1 + 1� xx k21k22 � 1̂u�#:= A(5) +A(6): (64)Fo
using on the divergent stru
ture it turns out that in the soft and 
ollinearregion the �rst line of Eq. (64), A(5), has exa
tly the same limit as the se
ondline, A(6). This is very 
onvenient sin
e we 
an then simply writeAsingulargluons ���soft&
ollinear ! q2aq2b2ŝ �1� xx 1k22 + x1� x 1k21� = 2A(5): (65)The MRK 
ontribution of Eq. (44) has the form AMRK = �4A(4) and when20



added to all the other singular terms we get the expressionZ dD�2k2 Z dy2 jBs(qa;qb;k2;k1)j2 �g2���2�N2
�(2�)D+1q2aq2b Z dD�2k2�2�(2�)D�4 Z dy2 nAsingulargluons �(s� � s12) +Asingularquarks o; (66)withAsingulargluons �(s� � s12) +Asingularquarks =8>>><>>>:�q2aq2b� 2̂s| {z }Gluonj
oll1 + D � 216 E2ŝ2| {z }Gluonj
oll2 � q2aq2b2k21k22| {z }Gluonjsoft+ q2aq2b2ŝ �1� xx 1k22 + x1� x 1k21�| {z }Gluonjsoft&
oll 9>>>=>>>; �(s� � s12)+ nf2N
 q2aq2bŝ�| {z }Quarkj
oll1 � nf8N3
 E2ŝ2| {z }Quarkj
oll2 :: (67)We have labeled the di�erent terms to study how ea
h of them produ
es the �poles. We will do this in Se
tion 6.With the singularity stru
ture well identi�ed we now 
ome ba
k to Eqs. (45,46) and show how they are free of any divergen
es. Only if the divergent termsbelong to the same 
on�guration this 
an
ellation 
an be shown analyti
ally.With this in mind we add the singular parts of the two parti
le produ
tion ofEq. (66) in the 
on�guration (a) multiplied by 0 = 1��(R0�R12)��(R12�R0):V = ��K(B)r +K(v)r � (qa;�qb)+ Z dD�2k2 dy2 jBs(qa;qb;kJ � k2;k2)j2 ����(a)+ Z dD�2k2 dy2� jB(qa;qb;kJ � k2;k2)j2 ���(b)� jBs(qa;qb;kJ � k2;k2)j2 ���(a)��(R0 �R12)+ �2 Z dD�2k2 dy2 jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���(
)� Z dD�2k2 dy2 jBs(qa;qb;kJ � k2;k2)j2 �(R12 �R0)���(a)�: (68)The 
an
ellation of divergen
es within the �rst two lines is now the same asin the 
al
ulation of the full NLO kernel. In Se
tion 6 we will show how the�rst two lines of Eq. (68) are free of any singularities in the form of � poles. Indoing so we will go into the details of the rôle of s�. The third and fourth lines21



are also expli
itly free of divergen
es sin
e these have been subtra
ted out. Thesixth line has a k1 $ k2 symmetry whi
h allows us to writeV = ��K(B)r +K(v)r � (qa;�qb)+ Z dD�2k2 dy2 jBs(qa;qb;kJ � k2;k2)j2 ����(a)+ Z dD�2k2 dy2� jB(qa;qb;kJ � k2;k2)j2 ���(b)� jBs(qa;qb;kJ � k2;k2)j2 ���(a)��(R0 �R12)+ 2 Z dD�2k2 dy2� jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���(
)� jBs(qa;qb;kJ � k2;k2)j2 �(R12 �R0)�(jk1j � jk2j)���(a)�: (69)We 
an now see that the remaining possible divergent regions of the last lineare regulated by the 
one radius R0.It is worth noting that, apart from an overall ��2s(�2) fa
tor, the NLO terms inthe last four lines in Eq. (69) do not 
arry any renormalization s
ale dependen
esin
e they are �nite when � is set to zero. The situation is di�erent for the �rsttwo lines sin
e V 
ontains a logarithm of �2 in the formV = V(B)�1� �s(�2)4� �0N
 ln k2J�2�+�V : (70)where �V 
ontains the third to sixth lines and the �{independent part of the�rst two lines of (69). It is then natural to absorb this term in a rede�nitionof the running of the 
oupling and repla
e �s(�2) by �s(k2J ). For a expli
itderivation of this term we refer the reader to Se
tion 6.Therefore we now have a �nite expression for the jet vertex suitable fornumeri
al integration. This numeri
al analysis will be performed elsewhere sin
ehere we are mainly 
on
erned with the formal introdu
tion of the jet de�nitionand the 
orre
t separation of the di�erent 
ontributions to the kernel.What remains to be proven is the 
an
ellation of divergen
es between Eq. (60)and Eq. (66). This will be performed in Se
tion 6. Before doing so, in the nexttwo subse
tions, we indi
ate how to introdu
e our vertex in the de�nition of thedi�erential 
ross se
tion. Espe
ial 
are must be taken in the treatment of theenergy s
ale in the Reggeized gluon propagators sin
e in the symmetri
 
ase itis dire
tly related to the rapidity di�eren
e between subsequent emissions, as wewill show in the next subse
tion, but in the asymmetri
 
ase of hadron{hadron
ollisions it depends on the longitudinal momentum fra
tions of the t{
hannelReggeons. 22



5.2 Produ
tion of jets in 
�
� s
atteringWe now have all the ingredients required to des
ribe the in
lusive single jetprodu
tion in a symmetri
 pro
ess at NLO. To be de�nite, we 
onsider 
�
�s
attering with the virtualities of the two photons being large and of the sameorder. All we need is to take Eq. (31) for the di�erential 
ross se
tion as afun
tion of the transverse momentum and rapidity of the jet. The vertex V tobe used is that of Eq. (69) in the representation based on rapidity variables ofEq. (45). The rapidities of the emitted parti
les are the natural variables to
hara
terize the partoni
 evolution and s{
hannel produ
tion sin
e we assumethat all transverse momenta are of the same order.Let us note that the rapidity di�eren
e between two emissions 
an be writtenas yi � yi+1 = ln si;i+1qk2i k2i+1 (71)whi
h supports the 
hoi
e sR;i;i+1 =qk2ik2i+1 in Eq. (9). This is also te
hni
allymore 
onvenient sin
e it simpli�es the �nal expression for the 
ross se
tion inEq. (19).In Fig. 4 we illustrate the di�erent s
ales parti
ipating in the s
atteringand the variables of evolution. We write down the 
onditions for MRK: alltransverse momenta are of similar size and mu
h larger than the 
on�ning s
ale,the rapidities are strongly ordered in the evolution from one external parti
leto the other. At ea
h stage of the evolution the propagation of the Reggeizedgluons, whi
h generates rapidity gaps, takes pla
e between two real emissions.There are many 
on�gurations 
ontributing to the di�erential 
ross se
tion, ea
hof them with a di�erent weight. Eq. (31) represents the sum of these produ
tionpro
esses.5.3 The unintegrated gluon density and jet produ
tion inhadron{hadron 
ollisionsIn this subse
tion we now turn to the 
ase of hadron 
ollisions where MRK hasto be ne
essarily modi�ed to in
lude some evolution in the transverse momenta,sin
e the momentum of the jet will be mu
h larger than the typi
al transverses
ale asso
iated to the hadron.In the LO 
ase we have already explained that, in order to move from thesymmetri
 
ase to the asymmetri
 one, it is needed to 
hange the energy s
alefrom Eq. (34) to Eq. (39). This is equivalent to 
hanging the des
ription ofthe evolution in terms of rapidity di�eren
es between emissions to longitudinalmomentum fra
tions of the Reggeized gluons in the t{
hannel. Whereas inLO this 
hange of s
ales has no 
onsequen
es, in NLO a

ura
y it leads tomodi�
ations, not only of the jet emission vertex but also of the evolution23



MRK: p2~A � p2~B � k2i � k2j � �2QCD; y ~A = y0 � y1 � � � � � yn � yn+1 = y ~BpA p ~A k20 = sR;0
k2j = sR;j

pB p ~B k2n+1 = sR;n+1

q1 k21 = sR;1q2 k22 = sR;2� � �qj k2j�1 = sR;j�1qj+1 � � � k2j+1 = sR;j+1qn k2n�1 = sR;n�1qn+1 k2n = sR;n

� s0;1sR;0;1=pk20k21�! = e!(y0�y1)� s1;2sR;1;2=pk21k22�! = e!(y1�y2)� sj�1;jsR;j�1;j=pk2j�1k2j �! = e!(yj�1�yj)� sj;j+1sR;j;j+1=pk2jk2j+1�!0 = e!0(yj�yj+1)� sn�1;nsR;n�1;n=pk2n�1k2n�!0 = e!0(yn�1�yn)� sn;n+1sR;n;n+1=pk2nk2n+1�!0 = e!0(yn�yn+1)Figure 4: Momenta for 2 ! 2 + (n � 1) + jet amplitude in the symmetri

on�guration with MRK. The produ
ed jet has rapidity yJ = yj and transversemomentum kJ = kj .kt{ordered MRK:�2QCD � p2~A � k21 � : : :� k2j�1 � k2j (Jet) k2j � k2j+1 � � � � k2n � p2~B � �2QCDy ~A = y0 � y1 � : : :� yj�1 � yj � yj+1 � � � � yn � yn+1 = y ~BpA p ~Ak20 = sR;0
k2j = sR;j

pB p ~Bk2n+1 = sR;n+1

q1 k21 = sR;1q2 k22 = sR;2� � �qj k2j�1 = sR;j�1qj+1� � � k2j+1 = sR;j+1qn k2n�1 = sR;n�1qn+1 k2n = sR;n

To impa
t fa
tor To kernel)�q21q2�!2 )�q2jk2j �!2 �q2j+1k2j �!02To emission vertex� s0;1sR;0;1=k21�! = e!(y0�y1) �k20q21�!2up �q21k21 �!2down� s1;2sR;1;2=k22�! = e!(y1�y2) �k21q22�!2up �q22k22 �!2down� sj�1;jsR;j�1;j=k2j �! = e!(yj�1�yj) �k2j�1q2j �!2up �q2jk2j �!2down� sj;j+1sR;j;j+1=k2j �!0 = e!0(yj�yj+1) �k2j+1q2j+1�!02down �q2j+1k2j �!02up� sn�1;nsR;n�1;n=k2n�1�!0 = e!0(yn�1�yn) �k2nq2n�!02down � q2nk2n�1�!02up� sn;n+1sR;n;n+1=k2n�!0 = e!0(yn�yn+1) �k2n+1q2n+1�!02down �q2n+1k2n �!02upFigure 5: Momenta for 2 ! 2 + (n � 1) + jet amplitude in the asymmetri

on�guration with kt{ordered MRK. 24



kernels above and below the jet vertex. These new de�nitions will allow the
ross se
tion still to be written in a fa
torizable way and the evolution of thegluon Green's fun
tion still to be des
ribed by an integral equation.To understand this in detail we start by writing the solution to the NLOBFKL equation iteratively, i.e.Z d2kaf!(ka;qa) = 1! 1Xj=1 "j�1Yi=1 Z d2qi 1!K(qi;qi+1)# ; (72)where q1 = ka and qj = qa. We now fo
us on one side of the evolution towardsthe hard s
ale sin
e the other side is similar and use Fig. 5 as a graphi
alreferen
e. Starting with the symmetri
 
ase the di�erential 
ross se
tion for jetprodu
tion 
ontains the following evolution between parti
le A and the jet:d�d2kJdyJ = Z d2qa Z d2ka�A(ka)2�k2a� Z d!2�if!(ka;qa) sAJpk2ak2J!! V(qa;qb;kJ ; yJ) : : : (73)In the asymmetri
 situation where k2J � k2a the s
ale pk2ak2J should berepla
ed by k2J . In order to do so we rewrite the term related to the 
hoi
e ofenergy s
ale. To be 
onsistent with Fig. 5 we take kj = kJ , k0 = �ka = �q1and qj = qa. To start with it is 
onvenient to introdu
e a 
hain of s
ale 
hangesin every kernel:  sAJpk2ak2J !! = " jYi=1� k2ik2i�1�!2 #�sAJk2J �! ; (74)whi
h 
an alternatively be written in terms of the t{
hannel momenta as sAJpk2ak2J!! = "j�1Yi=1 �q2i+1q2i �!2 #�k2Jq2a�!2 �sAJk2J �! : (75)For 
ompleteness note that we are indeed 
hanging the variable of evolutionfrom a di�eren
e in rapidity: sAJpk2ak2J = ey ~A�yJ (76)to the inverse of the longitudinal momentum fra
tion, i.e.sAJk2J = 1�J : (77)This shift in s
ales translates into the following expression for the 
ross25



se
tion:d�d2kJdyJ = Z d!2�i ! 1Xj=1 " jYi=1 Z d2qi# �A(q1)2�q21�"j�1Yi=1 �q2i+1q2i �!2 1!K(qi;qi+1)#�k2Jq2a�!2 V(qa;qb;kJ ; yJ)�sAJk2J �! : : : (78)As we mentioned above these 
hanges 
an be absorbed at NLO in the kernelsand impa
t fa
tors, we just need to perturbatively expand the integrand. Theimpa
t fa
tors get one single 
ontribution, as 
an be seen in Fig. 5, and theyexpli
itly 
hange ase�(ka) = �(ka)� 12k2a Z d2q�(B)(q)q2 K(B)(q;ka) ln q2k2a : (79)The kernels in the evolution re
eive a double 
ontribution from the di�erentenergy s
ale 
hoi
es of both the in
oming and outgoing Reggeons (see Fig. 5).This amounts to the following 
orre
tion:eK(q1;q2) = K(q1;q2)� 12 Z d2qK(B)(q1;q)K(B)(q;q2) ln q2q22 : (80)There is a di�erent type of term in the 
ase of the emission vertex where thejet is de�ned. This 
orre
tion has also two 
ontributions originated at the twodi�erent evolution 
hains from the hadrons A and B. Its expression iseV(qa;qb) = V(qa;qb)� 12 Z d2qK(B)(qa;q)V(B)(q;qb) ln q2(q� qb)2�12 Z d2qV(B)(qa;q)K(B)(q;qb) ln q2(qa � q)2 : (81)These are all the modi�
ations we need to be able to write our di�erential
ross se
tion for the asymmetri
 
ase. The �nal expression isd�d2kJdyJ = Z d2qa Z d2ka e�A(ka)2�k2a� Z d!2�i ~f!(ka;qa)�sAJk2J �! eV(qa;qb;kJ ; yJ) : : : (82)As in the LO 
ase, we 
an use Eq. (77) to de�ne the NLO unintegrated gluondensity as g(x;k) = Z d2q e�P (q)2�q2 Z d!2�i ~f!(k;q)x�! : (83)The gluon Green's fun
tion ~f! is the solution to a new BFKL equation with themodi�ed kernel of Eq. (80) whi
h in
ludes the energy shift at NLO, i.e.! ~f!(ka;qa) = Æ(2) (ka � qa) + Z d2q eK(ka;q) ~f!(q;qa): (84)26



In this way the unintegrated gluon distribution follows the evolution equation�g(x;qa)� ln 1=x = Z d2q eK(qa;q) g(x;q): (85)Finally, taking into a

ount the evolution from the other hadron, the di�erential
ross se
tion readsd�d2kJdyJ = Z d2qa Z d2qb g(xa;qa) g(xb;qb) eV(qa;qb;kJ ; yJ); (86)with the emission vertex taken from Eq. (81).We would like to indi
ate that with the pres
ription derived in this subse
tionwe managed to express the new kernels, emission vertex and impa
t fa
tors asfun
tions of their in
oming momenta only. It is also worth mentioning thatthe proton impa
t fa
tor 
ontains non{perturbative physi
s whi
h 
an only bemodeled by, e.g. �P (q) � (1� x)p1x�p2 � q2q2 +Q20�p3 ; (87)where pi are positive free parameters, with Q20 representing a momentum s
aleof the order of the 
on�nement s
ale. The initial x dependen
e in this expressionwould be of non{perturbative origin.Let us also point out that the pres
ription to modify the kernel as in Eq. (80)was originally suggested in the �rst paper of Ref. [2℄ in the 
ontext of deepinelasti
 s
attering. This new kernel 
an be 
onsidered as the �rst term in anall orders perturbative expansion due to the 
hange of s
ale. When all termsare in
luded the kernel a
quires improved 
onvergen
e properties and mat
hes
ollinear evolution. Details of this pro
edure 
an be found in Ref. [11℄, wherethe 
ollinear resummation was done in Mellin spa
e. In a future publi
ation weintend to investigate how these 
orre
tions 
an be phrased in momentum spa
e,and how they a�e
t the behaviour of the unintegrated gluon distribution. Forthis we will use the pro
edure developed in Ref. [12℄ where the resummation toall orders 
orresponding to the energy shift was proven to be equivalent to aBessel fun
tion of the �rst kind with argument depending on the strong 
ouplingand a double logarithm of the ratio of transverse s
ales.6 Can
ellation of divergen
es and a 
loser lookat the separation between MRK and QMRKDuring the 
al
ulation of a NLO BFKL 
ross se
tion, both at a fully in
lusivelevel and at a more ex
lusive one, there is a need to separate the 
ontribu-tions from MRK and QMRK. In order to do so we have followed Ref. [5℄ andintrodu
ed the parameter s� in Eq. (14) and Eq. (15). In prin
iple, at NLOa

ura
y, our �nal results should not depend on this extra s
ale. In fa
t, as we27



have remarked earlier in our dis
ussion of the total 
ross se
tion (after Eq. (24)),we 
ould have taken the limit s� ! 1: the logarithms of s� 
an
el, and the
orre
tions to the �nite pie
es die away as O(s�1� ). In the 
ontext of the in-
lusive 
ross se
tion, however, we prefer to treat s� as a physi
al parameter: itseparates MRK from QMRK and, hen
e, 
annot be arbitrarily large. We willtherefore retain the dependen
e upon s�: in the remainder of this se
tion wedemonstrate that, in our in
lusive 
ross se
tion, all logarithmi
 terms 
an
el(analogous to Eq. (24)), and we will then leave the study of the 
orre
tionsof the order O(s�1� ) for a numeri
al analysis. It will also be interesting to seehow this dependen
e on s� 
ould be related to the rapidity veto introdu
ed inRef. [13℄.Let us 
onsider the s� dependent terms in Eq. (66) whi
h are only presentin the gluon pie
e: g2���2�N2
�(2�)D+1 !�1 Z dD�2k2 Z dy2 jBs(qa;qb;k2;k1)j2 ���s�� Z dD�2k2�2�(2�)D�4 Z dy2 Asingulargluonsq2aq2b �(s� � s12) = IVXi=I Si; (88)where we have used the numbering (I; II; III; IV ) 
orresponding to, respe
-tively, (Gluonj
oll1 ;Gluonj
oll2 ;Gluonjsoft;Gluonjsoft&
oll) in Eq. (67).To 
al
ulate ea
h of the Si terms we start by transforming the rapidityintegral into an integral over x in the form R d�y = R dxx(1�x) . We 
onsiders� mu
h larger than any of the typi
al transverse momenta. In the limit oflarge s� the theta fun
tion �(s� � ŝ) amounts to the limits k21s� + O �s�2� � and1� k22s� +O �s�2� � for the x integral.We �rstly 
onsider SIII whi
h is� Z dD�2k2�2�(2�)D�4 Z 1� k22s�k21s� dxx(1� x) 12k21k22 = ��(4�)� 1�2 �(1� �)�(�)2�(2�)��ln s��2 +  (1� �)�  (�) +  (2�)�  (1)���2�2 �� +O �s�1� � : (89)We are only interested in the logarithmi
 dependen
e on s� and hen
e we donot need to 
al
ulate O �s�1� � or s� independent fa
tors.The next s� 
ontribution we 
al
ulate is SIV whi
h readsZ dD�2k2�2�(2�)D�4 Z 1� k22s�(��k2)2s� dxx(1� x) � (1� x)2k22(k2 � (1� x)�)2 + x2k22(k2 � x�)2�= Z dD�2k2�2�(2�)D�4 " 2(�� k2)2k22 ln s�k22 + 2 (�� k2)k2(�� k2)2k22pk22�2 � (�k2)2� ar
tan �(�� k2)pk22�2 � (�k2)2 + ar
tan �k2pk22�2 � (�k2)2!#+O �s�1� � :(90)28



The part with logarithmi
 s� dependen
e 
an be 
al
ulated analyti
ally:Z dD�2k2�2�(2�)D�4 1(�� k2)2k22 ln s�k22 = �(4�)� 1�2 �(1� �)�(�)2�(2�)��ln s��2 +  (1� �)�  (�) +  (2�)�  (1)���2�2 �� : (91)It is then 
lear that this logarithmi
 s� 
ontribution 
an
els against that of SIIIin Eq. (89).Let us pro
eed now to show that the 
ontribution of SI is dire
tly of O �s�1� �and does not 
ontribute with any logarithm of s�. In the relevant integral weintrodu
e the 
hange of variable k2 ! � = (1� x)�� k2 and obtainZ dD�2��2�(2�)D�4 Z 1��2s��2s� dxx(1� x) � x2(1� x)2�2(�2 + x(1� x)�2)� =Z dD�2��2�(2�)D�4 0BB� 1�2�2 � 2 ln�1 + �2+p�2(�2+4�2)2�2 ��2p�2(�2 + 4�2) 1CCA+O �s�1� � :(92)We do not write here the lengthier but similar expression whi
h 
orresponds toSII and also only 
ontributes to O �s�1� �.With this we have shown that the sum of di�erent terms in Eq. (88) is free oflogarithmi
 dependen
es on s� proving, in this way, that the remaining O �s�1� �
orre
tions vanish at large values of s�. In parti
ular, it is possible to take thes� ! 1 limit in order to 
ompletely eliminate the dependen
e on this s
ale.This is 
onvenient in the fully in
lusive 
ase where it is very useful to write aMellin transform in the kT dependen
e of the NLO BFKL kernel.If we perform this s� !1 limit then SIII and SIV 
an be put together andtheir sum isSIII + SIV =Z 10 dxx(1� x) Z dD�2k2�2�(2�)D�4 � 12ŝ �1� xxk22 + x(1� x)k21�� 12k21k22 �=Z 10 dx2x(1� x) Z dD�2k2�2�(2�)D�4" (1� x)2k22(k2 � (1� x)�)2+ x2k21(k1 � x�)2 � 1k22(�� k2)2 #= 1�2 �(4�)� �(1� �)�2(1 + �)��(1 + 2�) �1� + 2 (1)� 2 (1 + 2�)���2�2 �� :(93)
29



Regarding SI the integration gives usSI = �2 Z 10 dxx(1� x) Z dD�2��2�(2�)D�4 � x2(1� x)2�2(�2 + x(1� x)�2)�= �2 Z 10 dxx(1� x) � �(4�)� x(1� x)�2 �(1� �)�(�)�(1 + �) �x(1� x)�2�2 ���= � 2�2 �(4�)� �(1� �)�(1 + �)2��(2 + 2�) ��2�2 �� : (94)The 
ontribution from SII is more 
ompli
ated and the relevant integral 
an beobtained in the following way:Z dD�2��2�(2�)D�4 E28q2aq2b ŝ2 = Z dD�2��2�(2�)D�4 x2(1� x)2E28q2aq2b�4= Z dD�2��2�(2�)D�4 � x2(1� x)2(2x� 1)2�22q2b�2(x(1� x)�2 +�2)�x3(1� x)3(2x� 1)2�2q2aq2b�4(x(1� x)�2 +�2) + x4(1� x)4(2x� 1)2�4q2a2q2b�4(x(1� x)�2 +�2)2� 4x3(1� x)3(��)(�qa)q2b�2(x(1� x)�2 +�2) + 2x4(1� x)4(��)2q2aq2b�2(x(1� x)(�2 +�2)2 � (95)= �(4�)� �(2� �)�(�)�(1 + �) �x(1� x)�2���1�2� � 11� � x2(1� x)2(2x� 1)2�2q2b+ 11� � x2(1� x)2(2x� 1)2q2aq2b � 2� �1� � x2(1� x)2(2x� 1)2q2a2q2b� 21� �2 x3(1� x)3�qaq2b + 11 + � x3(1� x)3q2aq2b � (96)We now need to integrate it over x to obtain:SII = 1�2 �(4�)� �(1 + �)�(2 + �)sin(��)�(4 + 2�) ��2�2 �� : (97)This result gives the same poles in � as the result given in [4℄, but di�ers forthe �nite 
ontribution. To obtain all the � poles we now also in
lude the quark
ontributions present in Eq. (66). We denote them asZ dD�2k2�2�(2�)D�4 Z dy2 Asingularquarksq2aq2b = V IXi=V Si; (98)where the 
orresponden
e with Eq. (67) is (V; V I)! (Quarkj
oll1;Quarkj
oll2).Adding everything up the sum of all the terms readsV IXi=I Si = 1�2 ��(1� �)(4�)� ��2�2 �� � 1�2 � �02N
 1� + 6718 � 5nf9N
 � 5�26 +O (�)� :(99)30



The �nal expression for Eq. (66) is thenZ dD�2k2 Z dy2 jBs(qa;qb;kJ � k2;k2)j2 =�g4���2��1+��(1� �) 4k2J �k2J�2 �� � 2�2 � �0N
 1� + 679 � 10nf9N
 � 5�23 +O (�)� : (100)When we 
ombine this result with the singular terms of Eq. (51) then we ex-pli
itly prove the 
an
ellation of any singularity in our subtra
tion pro
edureto introdu
e the jet de�nition. The �nite remainder reads��2s(�2)� 1k2J �� �04N
 ln k2J�2 + 112 �4� 2�2 + 5 �0N
�� : (101)We have already dis
ussed the logarithmi
 term due to the running of the 
ou-pling in Eq. (70). The non{logarithmi
 part is similar to that present in other
al
ulations involving soft gluon resummations [14℄ where terms of the form��s (1 + S ��s) (102)appear and o�er the possibility to 
hange from the MS renormalization s
hemeto the so{
alled gluon{bremsstrahlung (GB) s
heme by shifting the position ofthe Landau pole, i.e. �GB = �MS exp�S 2N
�0 �: (103)The fa
tor S di�ers from ours in the �2 term:S = 112 �4� �2 + 5 �0N
� : (104)The origin of this dis
repan
y lies in the fa
t that we used the simplest formof subtra
tion pro
edure. In the Appendix we suggest a di�erent subtra
tionterm whi
h is more 
ompli
ated in the sense that it substra
ts a larger portionof the matrix element in addition to the infrared divergent pie
es. When this isdone and we put together the divergent pie
es of Eq. (51) and the se
ond lineof Eq. (119) then we re
over the same S term.7 Con
lusionsIn this paper we have extended the NLO BFKL 
al
ulations to derive a NLOjet produ
tion vertex in kT {fa
torization. Our pro
edure was to `de
onstru
t'the NLO BFKL kernel to introdu
e a jet de�nition at NLO in a 
onsistentway. After a 
areful study of the di�erent energy s
ales and 
ontributions tothe kernel we were able to show the infrared �niteness of this jet vertex and itsdependen
e on the s
ale s�, whi
h separates MRK from QMRK. As the 
entral31



result of this paper, we have de�ned the jet produ
tion vertex (69) in terms oflongitudinal momentum fra
tions, and we have expli
itly given the ne
essarysubtra
tion, both at the matrix element level (67) as well as integrated overthe 
orresponding phase spa
e (100). Our 
al
ulations also suggest that thenatural s
ale for the running of the 
oupling at the jet vertex is the square ofthe transverse momentum of the jet (70). We have shown how this vertex 
anbe used in the 
ontext of 
�
� or hadron{hadron s
attering (86) to 
al
ulatein
lusive single jet 
ross se
tions. For this purpose we have formulated, on thebasis of the NLO BFKL equation, a NLO unintegrated gluon density valid inthe small{x regime.In our analysis we have been 
areful to retain the dependen
e upon the en-ergy s
ale s� whi
h appears at NLO a

ura
y and separates multi{Regge kine-mati
s from quasi{multi{Regge kinemati
s. In the NLO 
al
ulation of the total
ross se
tion, one may be tempted to take the limit s� !1, thus disregardingthe 1=s� 
orre
tions to the NLO BFKL kernel. However, when dis
ussing in
lu-sive (multi-) jet produ
tion one has to remember that s� has a 
on
rete physi
almeaning: it denotes the lower 
uto� of rapidity gaps and thus dire
tly entersthe rapidity distribution of multi{jet �nal states. In a self{
onsistent des
riptionthen also the evolution of the unintegrated gluon density has to depend uponthis s
ale.Hen
e we are well prepared for our next step, the numeri
al study of singleor multiple jet produ
tion in hadron{hadron 
ollisions at the LHC. One issueto be 
overed will be the question of handling the running of 
oupling. Furtherappli
ations of our NLO kT {formalism in
lude W and Z as well as heavy 
avorprodu
tion in the small{x region. Compared to the results presented in thispaper, these appli
ations require the 
al
ulation of further produ
tion verti
es;however, for the treatment of the di�erent s
ales and of the unintegrated gluondensity all basi
 ingredients have been 
olle
ted in this paper.A
knowledgements: A.S.V. thanks the Alexander{von{Humboldt Founda-tion for �nan
ial support. F.S. is supported by the Graduiertenkolleg \Zuk�unftigeEntwi
klungen in der Teil
henphysik". Helpful dis
ussions with V. S. Fadin andL. N. Lipatov are gratefully a
knowledged.A Alternative subtra
tion termIn this Appendix we present an alternative subtra
tion term whi
h does notmake use of the simpli�
ations A(3) + A(4) ! 2A(4) and A(5) + A(6) ! 2A(5)whi
h we used in Eqs. (63, 65). These limits are valid in the kinemati
 regionsleading to IR{divergen
es and hen
e they do provide the 
orre
t � poles. How-ever, they also alter the �nite terms. Here we want to study also this �nitepart as a

urately as possible and hen
e we do not take these limits but use the
omplete sum A(1) +A(2) +A(3) +A(4) +A(5) +A(6) + AMRK (105)32



as the gluoni
 subtra
tion term.The full gluoni
 matrix element written in Eq. (54) 
ontains spurious UV{divergen
es whi
h are 
an
elled when 
ombined with the MRK 
ontribution.One fourth of the MRK 
ontribution 
an
els the UV{divergen
e ofA(4) while an-other fourth 
an
els that of A(6). The remaining half 
an
els the UV{divergen
eof two terms present in Eq. (54):A(7) �� q2aq2b4 �1� xx 1k22 t̂ + x1� x 1k21û� (106)A(8) �q2aq2b4� �1� xx 1k22 + x1� x 1k21� ; (107)whi
h are IR{�nite and hen
e so far not in
luded in the subtra
tion term.By doubling A(4) and A(5) in the subtra
tion term 
onstru
ted in Eq. (67)also their spurious UV{divergen
es are doubled and thus 
ompletely 
an
elledby the MRK 
ontribution. But Eq. (105) so far only 
ontains half of the spu-rious UV{divergen
es of the full matrix element in su
h a way that half of theMRK 
ontribution is not 
ompensated. Therefore a subtra
tion term based onEq. (105) whi
h is also free from spurious UV{divergen
es should also in
ludeA(7) and A(8) and readseAsingulargluons = A(1) +A(2) +A(3) +A(4) +A(5) +A(6) +AMRK +A(7) +A(8)= A(1) +A(2) +A(3) + �A(5) �A(4)�+A(6) + AMRK2 +A(7) +A(8):(108)If we now de�ne S(3;6;7;8) and SMRK as we did in Eq. (88) we get a new integratedsubtra
tion term from the previous Eq. (100) by repla
ingSIII + SIV = 1�2 ��(1� �)(4�)� ��2�2 �� � 1�2 � 5�26 +O (�)� (109)with 12 (SIII + SIV ) + S(3) + S(6) + SMRK2 + S(7) + S(8): (110)The results for S(3) and S(6) 
an be easily obtained from Eqs. (C.43) and (C.40)
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of Ref. [15℄:S(3) = 1�2 ��(1� �)(4�)� ��2�2 �� " 12�2 + 12� ln q2aq2b�4 � �212 + 14 ln2 q2aq2b+ q2aq2b��(qa � qb)��2(qa � qb)2 (12 ln�q2aq2b � ln� q2aq2b�4(q2a + q2b)4�� Li2��q2aq2b �+ Li2��q2bq2a�)� q2aq2b2  1� ��(qa � qb)�2�2(qa � qb)2 !��Z 10 � Z 11 � dz ln� (zqa)2q2b �(qb + zqa)2 +O (�)#; (111)S(6) = 1�2 ��(1� �)(4�)� ��2�2 �� � 1�2 � �26 +O (�)� : (112)Due to the UV{singularity of AMRK we regularize the x integration by a 
uto�Æ to obtainSMRK = � Z 1�ÆÆ dxx(1� x) Z dD�2k2�2�(2�)D�4 1k22(�� k2)2= 1�2 ��(1� �)(4�)� ��2�2 �� �2(�)�(2�)2 ln Æ1� Æ : (113)Making use of 2qak1�q2a = t̂+k21=x we 
an de
ompose Eq. (C.41) of Ref. [15℄into one integration very similar to that of SMRK and another one whi
h 
an betransformed to give S(7).S(7) = 1�2 ��(1� �)(4�)� ��2�2 �� "� 12 �2(�)�(2�) ln Æ1� Æ � 12�2 � 12� ln q2aq2b�4� 14 ln2 q2aq2b + �212 +O (�)#: (114)
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The two parts forming A(8) 
an be obtained from ea
h other by the ex
hangek1 $ k2 and we only need to double the 
al
ulation of one:S(8) =2 Z 1�ÆÆ dxx(1� x) Z dD�2k1�2�(2�)D�4 x4(1� x) 1�k21 (115)=2 Z 1�ÆÆ dxx(1� x) Z dD�2k1�2�(2�)D�4� 14 Z 10 d� x2n[k1 � �x�℄2 + �(1� �)x2�2 + �x(1� x)�2o2 (116)=12 ��(1� �)(4�)� 1�2 ��2�2 �� Z 1�ÆÆ dx 11� xBx(�; �) (117)= 1�2 ��(1� �)(4�)� ��2�2 �� ��12 �2(�)�(2�) ln Æ � 12�2 � �212 +O (�)� : (118)When we add up these new 
ontributions the spurious UV{divergen
es indeed
an
el and we 
an safely take the Æ ! 0 limit. Furthermore, the new subtra
tionterm has the same pole stru
ture and only di�erent �nite parts when 
omparedto that in Eq. (67) and its integrated form in Eq. (100). To 
omplete the
al
ulation we 
ombine it with the 
orresponding unmodi�ed quark part andobtainZ dD�2k2 Z dy2 ��� eBs(qa;qb;kJ � k2;k2)���2 =�g4���2��1+��(1� �) 4k2J �k2J�2��( 2�2 � �0N
 1� + 679 � 10nf9N
 � 4�23+2q2aq2b��(qa � qb)��2(qa � qb)2 "12 ln�q2aq2b � ln� q2aq2b�4(q2a + q2b)4��Li2��q2aq2b �+ Li2 ��q2bq2a�#�q2aq2b  1� ��(qa � qb)�2�2(qa � qb)2 !�Z 10 � Z 11 � dz ln� (zqa)2q2b �(qb + zqa)2 +O (�)):(119)Referen
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