
*H
EP
-P
H/
06
08
∣5
4*

Revised Version  CERN-PH-TH/2006-137
 DESY-06-115

ar
X

iv
:h

ep
-p

h/
06

08
15

4 
v2

   
27

 N
ov

 2
00

6

NLO inlusive jet prodution in kT{fatorizationJ. Bartels1, A. Sabio Vera2 and F. Shwennsen11 II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, D{22761 Hamburg, Germany2 Physis Department, Theory Division, CERN,CH{1211, Geneva 23, SwitzerlandNovember 27, 2006

CERN{PH{TH/2006{137DESY{06{115

AbstratThe inlusive prodution of jets in the entral region of rapidity is studiedin kT {fatorization at next{to{leading order (NLO) in QCD perturba-tion theory. Calulations are performed in the Regge limit making useof the NLO BFKL results. A jet one de�nition is introdued and aproper phase{spae separation into multi{Regge and quasi{multi{Reggekinemati regions is arried out. Two situations are disussed: satter-ing of highly virtual photons, whih requires a symmetri energy sale toseparate the impat fators from the gluon Green's funtion, and hadron{hadron ollisions, where a non{symmetri sale hoie is needed.1 IntrodutionThe understanding of the physis behind jet prodution in the ontext of per-turbative QCD is an essential ingredient in phenomenologial studies at presentand future olliders. At high energies the theoretial study of multijet eventsbeomes an inreasingly important task. In the ontext of ollinear fatorizationthe alulation of multijet prodution is ompliated beause of the large num-ber of ontributing diagrams. There is, however, a region of phase spae whereit is indeed possible to desribe the prodution of a large number of jets: theRegge asymptotis (small{x region) of sattering amplitudes. This orrespondsto the ase where the enter{of{mass energy in the proess under study, s, anbe onsidered asymptotially larger than any other partiipating sale. In thislimit the dominating diagrams are those with gluons being exhanged in thet{hannel. A perturbative analysis of these diagrams shows that it is possible1



to resum ontributions of the form (�s ln s)n to all orders, with �s being theoupling onstant for the strong interation. This an be ahieved by means ofthe Balitsky{Fadin{Kuraev{Lipatov (BFKL) equation [1℄.An essential ingredient in the BFKL approah is the onept of the Reggeizedgluon or Reggeon. In Regge asymptotis olour otet exhange an be e�etivelydesribed by a t{hannel gluon with its propagator being modi�ed by a mul-tipliative fator depending on a power of s. This power, also known as gluonRegge trajetory, depends on the transverse momenta of the gluon and is notinfrared �nite. However, when real emissions are inluded using gauge invariantReggeon{Reggeon{gluon ouplings, the divergenes anel out. It is then possi-ble to desribe sattering amplitudes with any number of partiles (jets) in the�nal state. The (�s ln s)n resummation is known as leading{order (LO) approx-imation and provides a simple piture of the underlying physis. Neverthelessit is not free of drawbaks, the main two being that, at LO, both �s and thefator saling the energy s in the resummed logarithms, s0, are free parametersnot determined by the theory. These limitations an be removed if the aurayin the alulation is inreased, and next{to{leading (NLO) terms of the form�s (�s ln s)n are taken into aount [2℄. When this is done, diagrams ontribut-ing to the running of the oupling have to be inluded, and also s0 is not longerundetermined. As an example, in the ontext of Mueller{Navelet jets, the in-trodution of NLO e�ets in the kernel has been reently shown to have a largephenomenologial impat, in partiular, for azimuthal angle deorrelations [3℄.At LO every Reggeon{Reggeon{gluon vertex orresponds to one single gluonemission, and the produed gluon an form a single jet. At NLO the situationis more ompliated sine the emission vertex also ontains Reggeon{Reggeon{gluon{gluon and Reggeon{Reggeon{quark{antiquark ontributions. In the presentwork we are interested in the desription of the inlusive prodution of one jetin the BFKL formalism at NLO. This means that the relevant events are thosewith only one jet produed in the entral rapidity region of the detetor. Inorder to �nd the probability of prodution of a single jet it is neessary to intro-due a jet de�nition in the emission vertex. This is simple at LO, but at NLO weshould arefully study the possibility of a double emission in the same region ofrapidity, leading to the prodution of one or two jets. This will be the main goalof the present paper. Our aim is to learly separate the di�erent ontributionsto the ross setion, and to explain in detail whih sales are relevant. Partiu-lar attention is given to the separation of multi{Regge and quasi{multi{Reggekinematis. An earlier analysis has been presented in Ref. [4℄. We have inde-pendently repeated these alulations, and we have found several disrepanieswhih will be explained in the text.Our analysis will be done in two di�erent ases: inlusive jet prodution inthe sattering of two photons with large and similar virtualities, and in hadron{hadron ollisions. In the former ase the ross setion has a fatorized formin terms of the photon impat fators and of the gluon Green's funtion whihis valid in the Regge limit. In the latter ase, sine the momentum sale ofthe hadron is substantially lower than the typial kT entering the produtionvertex, the gluon Green's funtion for hadron{hadron ollisions has a slightly2



di�erent BFKL kernel whih, in partiular, also inorporates some kT {evolutionfrom the nonperturbative, and model dependent, proton impat fator to theperturbative jet prodution vertex. We provide analyti formul� for these twoproesses, and the numerial analysis is left for a future publiation.In the ase of hadron{hadron sattering, our ross setion formul� ontainsan unintegrated gluon density whih, in addition to the usual dependene onthe longitudinal momentum fration typial of ollinear fatorization, arries anexpliit dependene on the transverse momentum kT . This sheme is known askT {fatorization. So far, no systemati attempt has been made to generalizethis framework beyond LO auray. In the small{x region, where this typeof fatorization has attrated partiular interest, the BFKL framework o�ersthe possibility to formulate, in a systemati way, the generalization of the kT {fatorization to NLO. We therefore interpret our analysis also as a ontributionto the more general question of how to formulate the unintegrated gluon densityand the kT {fatorization sheme at NLO: our results an be onsidered as thesmall{x limit of a more general formulation.After this short introdution, in Setion 2 we de�ne, losely following Ref. [5℄,our notations for the desription of a general ross setion in the BFKL ap-proah. We also introdue multi{Regge kinematis (MRK) and the iterativestruture of the ross setions at LO. In Setion 3 we desribe the basi ele-ments ontributing at NLO. The linearity of the BFKL equation remains thesame while the emission kernel now has several piees suh as virtual ontribu-tions to one gluon emission and double emissions. We desribe them in somedetail, inluding a proedure to avoid double ounting when the MRK is sep-arated from the quasi{multi{Regge kinematis (QMRK). The disussion of in-lusive jet prodution starts with a LO desription in Setion 4. Following thisintrodutory part, we present, in Setion 5, a de�nition of the NLO jet vertex.We separate the di�erent regions of phase spae in suh a way that the an-ellation of infrared divergenes is expliit for the two ases above{mentioned:inlusive jet prodution in �� and in hadron{hadron interations. We willalso disuss the de�nition of a NLO unintegrated gluon distribution valid in thesmall{x regime. To lose we study in Setion 6 the rôle of the sale separatingMRK from QMRK and show how, even with the jet de�nition, it is possible toprove that the dependene on this sale is power suppressed. Finally, we drawour Conlusions and suggest future lines of researh.2 General struture of BFKL ross setionsFor the sake of larity, in the present setion we introdue the notation wewill follow in the rest of this study. BFKL ross setions present a fatorizedstruture in terms of a universal Green's funtion, whih arries the dependeneon s, and impat fators, whih have to be alulated for eah proess of interest.This fatorization remains unhanged in the transition from LO to NLO. Westart by de�ning our normalizations at LO in the following.Lets onsider the ase of the total ross setion �AB in the sattering of two3



partiles A and B. It is onvenient to work with the Mellin transformF(!; s0) = Z 1s0 dss � ss0��! �AB; (1)ating on the enter{of{mass energy s. The dependene on the saling fa-tor s0 belongs to the NLO approximation sine the LO alulation is formallyindependent of s0.If we denote the matrix element for the transition A+B! ~A+~B+n produedpartiles with momenta ki (i = 1; : : : ; n) as A~A~B+n, and the orrespondingelement of phase spae as d�~A~B+n, then we an write�AB = 12s 1Xn=0 Z d�~A~B+njA~A~B+nj2: (2)As we mentioned in the Introdution we are interested in the Regge limit wheres is asymptotially larger than any other sale in the sattering proess. In thisregion the sattering amplitudes are dominated by the prodution of partonswidely separated in rapidity from eah other. This partiular on�guration ofphase spae is known as multi{Regge kinematis (MRK). In MRK produed par-tiles are strongly ordered in rapidity but there is no ordering of the transversemomenta whih are only assumed not to be growing with energy.We �x our notation in Fig. 1: qi orrespond to the momenta of those partilesexhanged in the t{hannel while the subenergies si�1;i = (ki�1+ki)2 are relatedto the rapidity di�erene between onseutive s{hannel partons. Eulideantwo{dimensional transverse momenta are denoted in bold. For future disussionwe use the Sudakov deomposition ki = �i pA+�i pB + ki? for the momenta ofemitted partiles.In MRK the enter{of{mass energy for the inoming external partiles anbe expressed in terms of the internal subenergies ass ' "n+1Yi=1 si�1;i#" nYi=1k2i #�1 'qq21q2n+1 n+1Yi=1 si�1;iqk2i�1k2i ; (3)where we have used the fat that in Regge kinematis s is muh larger than �tand, therefore, �0 ' �n+1 ' 1, k20 ' q21 and k2n+1 ' q2n+1. To write down themeasure of phase spae we use dimensional regularization with D = 4+2 �, i.e.ds d�~A~B+n = 2� n+1Yi=1 dsi�1;i2 si�1;i dD�2qi(2�)D�1 : (4)The matrix element A~A~B+n of Eq. (2) an be written in MRK in the fatorizedformA~A~B+n2 s = �A " nYi=1 1q2i �si�1;isR �!i (qi; qi+1)# 1q2n+1 �sn;n+1sR �!n+1 �B ; (5)4
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at this auray, Eq. (7) givesF (n)(!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi! � 2!i# �A(q1)q 21 " nYi=1Kr(qi;qi+1)# �B(qn+1)q2n+1 ; (8)where the poles in the omplex !{plane orrespond to Reggeon propagators.This simple struture is a onsequene of the linearity of the integral equation forthe gluon Green's funtion. We will see below that Eq. (8) holds very similarlyat NLO. This fat has been useful in the study of di�erent NLO BFKL rosssetions using numerial tehniques in reent years (see Ref. [6℄).After this brief introdution to the struture of BFKL ross setions andits iterative expression we now turn to the NLO ase. The fatorization intoimpat fators and Green's funtion will remain, while the kernel and trajetorywill be more omplex than at LO. We disuss these points in the next setion.3 Di�erent ontributions at NLOTo disuss the various ontributions to NLO BFKL ross setions we followRef. [5℄. We omment in more detail those points whih will turn out to bemore relevant for our later disussion of inlusive jet prodution. Our startingpoint are Eqs. (1) to (4), whih remain unhanged. Sine at NLO the sR saleis no longer a free parameter, we should modify Eq. (5) to readA~A~B+n2 s = �(sR;0;1)A " nYi=1 1q2i � si�1;isR;i�1;i�!i (sR;i�1;i;sR;i;i+1)(qi; qi+1)#� 1q2n+1 � sn;n+1sR;n;n+1�!n+1 �(sR;n;n+1)B : (9)The propagation of a Reggeized gluon with momentum qi in MRK takes plaebetween two emissions with momenta ki�1 and ki (see Fig. 1). Therefore, atNLO, the term sR, whih sales the invariant energy si�1;i, does depend onthese two onseutive emissions and, in general, will be written as sR;i�1;i. Itis important to note that the prodution amplitudes should be independent ofthe energy sale hosen and, therefore,�(sR;0;1)A = �(s0R;0;1)A  sR;0;1s0R;0;1!!12 ; �(sR;n;n+1)B = �(s0R;n;n+1)B  sR;n;n+1s0R;n;n+1!!n+12 (10)for the partile{partile{Reggeon verties and(sR;i�1;i;sR;i;i+1) (qi; qi+1) = (s0R;i�1;i;s00R;i;i+1) (qi; qi+1)� sR;i�1;is0R;i�1;i!!i2  sR;i;i+1s00R;i;i+1!!i+12 (11)6



for the Reggeon{Reggeon{gluon prodution verties.At NLO, besides the two{loop orretions to the gluon Regge trajetory,there are four other ontributions whih a�et the real emission vertex. The�rst one onsists of virtual orretions to the one gluon prodution vertex. Theseond stems from the fat that in a hain of emissions widely separated inrapidity two of them are allowed to be nearby in this variable, this is knownas quasi{multi{Regge kinematis (QMRK). A third soure is obtained by per-turbatively expanding the Reggeon propagators in Eq. (9) while keeping MRKand every vertex at LO. A �nal fourth ontribution is that of the prodution ofquark{antiquark pairs. The ommon feature of all of these new NLO elementsis that they generate an extra power in the oupling onstant without buildingup a orresponding logarithm of energy so that �s (�s ln s)n terms are takeninto aount.With the idea of introduing a jet de�nition later on, it is important tounderstand the properties of the prodution vertex whih we now desribe insome detail.Lets start with the virtual orretions to the single{gluon emission vertex.These are rather simple and orrespond to Eq. (8) with the insertion of a singlekernel or impat fator with NLO virtual ontributions (noted as (v)) whileleaving the rest of the expression at Born level (written as (B)). More expliitly:F (n)virtual(!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi(! � 2!i)#�(�(B)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(v)B (qn+1)q2n+1+�(v)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(B)B (qn+1)q2n+1+�(B)A (q1)q21 nXj=1 "j�1Yi=1 K(B)r (qi;qi+1)#K(v)r (qj ;qj+1)�24 nYi=j+1K(B)r (qi;qi+1)35 �(B)B (qn+1)q2n+1 ): (12)Now we turn to the disussion of how to de�ne QMRK. For this purposethe introdution of an extra sale is mandatory in order to de�ne a separationin rapidity spae between di�erent emissions. As in Ref. [5℄ we all this newsale s�. At LO MRK implies that all sij = (ki + kj)2 are larger than s�. Inrapidity spae this means that their rapidity di�erene jyi � yj j is larger thanln s�pk2ik2j . As we stated earlier, in QMRK one single pair of emissions is allowedto be lose in rapidity. When any of these two emissions is one of the externalpartiles ~A or ~B it ontributes as a real orretion to the orresponding impatfator. If this is not the ase it quali�es as a real orretion to the kernel. This7



is summarized in the following expression where we write real orretions to theimpat fators as (r):F (n+1)QMRK(!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi(! � 2!i)#�(�(B)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(r)B (qn+1)q2n+1+�(r)A (q1)q21 " nYi=1K(B)r (qi;qi+1)# �(B)B (qn+1)q2n+1+�(B)A (q1)q21 nXj=1 "j�1Yi=1 K(B)r (qi;qi+1)#KQMRK(qj ;qj+1)�24 nYi=j+1K(B)r (qi;qi+1)35 �(B)B (qn+1)q2n+1 ): (13)The modi�ations due to QMRK belonging to the kernel or to the impat fatorsare, respetively, KQMRK and �(r)P , i.e.KQMRK(qi;qi+1) = (N2 � 1) Z dŝ IRR �RR!GG(ŝ) �(s� � ŝ)(2�)D q2i q2i+1 ; (14)�(r)P (k) = pN2 � 1Z dŝ IPR �PR!PG(ŝ) �(s� � ŝ)(2�) s : (15)In both ases ŝ denotes the invariant mass of the two emissions in QMRK. TheHeaviside funtions are used to separate the regions of phase spae where theemissions are at a relative rapidity separation smaller than s�. It is within thisregion where the LO emission kernel is modi�ed. �RR!GG and �PR!PG are thetotal ross setions for two Reggeons into two gluons, and an external partileand a Reggeon into an external partile and a gluon, respetively. I stands forthe invariant ux and N for the number of olours.For those setors remaining in the MRK we use a Heaviside funtion tokeep si�1;i > s�, in this way MRK is learly separated from QMRK. We thenfollow the same steps as at LO and use Eq. (7) with the modi�ations alreadyintrodued in Eq. (9), i.e.F (n+1)MRK (!; s0)(2�)2�D= Z 24n+2Yi=1 dD�2qi dsi�1;isi�1;i � si�1;isR;i�1;i�2!i 0� si�1;iqk2i�1k2i 1A�! �(si�1;i � s�)35�0� s0qq21q2n+21A! �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2 : (16)8



After performing the integration over the si�1;i variables the following interest-ing dependene on s� arises:F (n+1)MRK (!; s0)(2�)2�D = Z 24n+2Yi=1 dD�2qi(! � 2!i) � s�sR;i�1;i�2!i 0� s�qk2i�1k2i 1A�!35�0� s0qq21q2n+21A! �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2 : (17)It is now onvenient to go bak to Eq. (1) and write the lower limit s0 ofthe Mellin transform as a generi produt of two sales related to the externalimpat fators, i.e. s0 = ps0;A s0;B . By expanding in �s the fators with powersin ! and !i it is then possible to identify the NLO terms:F (n+1)MRK (!; s0)(2�)2�D = Z "n+2Yi=1 dD�2qi(! � 2!i)# �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2�(1� !2 ln s2�k21s0;A + !1 ln s2�s2R;0;1 � n+1Xi=2 "!2 ln s2�k2i�1k2i � !i ln s2�s2R;i�1;i #� !2 ln s2�k2n+1s0;B + !n+2 ln s2�s2R;n+1;n+2): (18)To ombine this expression with that of the QMRK ontribution we shouldmake a hoie for sR. The most onvenient one is sR;i;j = psR;i sR;j , wherefor intermediate Reggeon propagation we use sR;i = k2i , and for the onnetionwith the external partiles sR;0 = s0;A and sR;n+2 = s0;B . We an then writeF (n+1)MRK (!; s0)(2�)2�D = Z "n+2Yi=1 dD�2qi(! � 2!i)# �(B)A (q1)q21 "n+1Yi=1 K(B)r (qi;qi+1)# �(B)B (qn+2)q2n+2�(1� (! � 2!1)2 ln s2�k21s0;A � n+1Xi=2 � (! � 2!i)2 ln s2�k2i�1k2i �� (! � 2!n+2)2 ln s2�k2n+1s0;B): (19)This orresponds to the LO result for F (n+1) plus additional terms where the! � 2!i fator anels, in suh a way that they an be ombined with the LOresult of F (n).The quark ontribution an be inluded in a straightforward manner sinebetween the quark{antiquark emissions there is no propagation of a Reggeized
9



gluon. In this way one an simply writeF (n+1)Q �Q (!; s0)(2�)2�D = Z "n+1Yi=1 dD�2qi(! � 2!i)# �(B)A (q1)q21 �(B)B (qn+1)q2n+1� nXj=1 "j�1Yi=1K(B)r (qi;qi+1)#KQ �Q(qj ;qj+1)24 nYi=j+1K(B)r (qi;qi+1)35 : (20)The prodution kernel an be written asKQ �Q(qi;qi+1) = (N2 � 1) Z dŝ IRR �RR!Q �Q(ŝ)(2�)D q2i q2i+1 ; (21)with �RR!Q �Q being the total ross setion for two Reggeons produing thequark{antiquark pair with an invariant mass ŝ.The ombination of all the NLO ontributions together generates the follow-ing expression for the NLO ross setion:F(!; s0)AB = 1Xn=0 1(2�)D�2 Z "n+1Yi=1 dD�2qi(! � 2!i)#��A(q1; s0;A)q21 " nYi=1Kr(qi;qi+1)# �B(qn+1; s0;B)q2n+1 ; (22)where the NLO real emission kernel ontains several terms:Kr(qi;qi+1) = �K(B)r +K(NLO)r � (qi;qi+1)= �K(B)r +K(v)r +KGG +KQ �Q� (qi;qi+1); (23)with KQ �Q given by Eq. (21). The two gluon prodution kernel KGG is theombination of KQMRK of Eq. (14) and the MRK ontribution in Eq. (19). Itexpliitly readsKGG(qi;qi+1) = (N2 � 1) Z dŝIRR�RR!GG(ŝ) �(s� � ŝ)(2�)D q2i q2i+1� Z dD�2~q K(B)r (qi; ~q)K(B)r (~q;qi+1)12 ln� s2�(qi � ~q)2(qi+1 � ~q)2� : (24)Below we will show that when s� is taken to in�nity the seond term of this ex-pression subtrats the logarithmi divergene of the �rst one. When omputingthe total ross setion it is natural to remove the dependene on the parameters� in this way. For our jet prodution ross setion, however, we prefer to retainthe dependene upon s�. 10



For the impat fators a similar expression inluding virtual and MRK or-retions as in Eq. (15) arises:�P (q1; s0;P ) = �(B)P +�(v)P +pN2 � 1Z dŝIPR �PR(ŝ) �(s� � ŝ)(2�) s� Z dD�2~q �(B)P (~q)K(B)r (~q;q1)12 ln� s2�(q1 � ~q)2s0;P � : (25)From this expression it is now lear why to hoose the fatorized form s0 =ps0;A s0;B : in this way eah of the impat fators �A;B arry its own s0;A;Bterm at NLO independently of the hoie of sale in the other.To onlude this setion, for the sake of larity, the di�erent ontributionsto the NLO BFKL kernelCONTRIBUTION NUMBER OF EMISSIONS Fig.2MRK � LO n (a)Virtual n (b)QMRK n+ 1 ()MRK � NLO n+ 1 (d)Quark{antiquark pair n+ 1 (e)are pitorially represented in Fig. 2.
(a) (b) (c) (d) (e)Figure 2: Contributions to real emission kernel at LO (a) and NLO (b-e).As a �nal remark we would like to indiate that the divergenes present in thegluon trajetories !i (see Ref. [2℄) are all anelled inside the inlusive terms.We will see how the soft and ollinear divergenes of the prodution vertex areeither anelled amongst its di�erent omponents or are regularized by the jetde�nition.After having introdued the notation and highlighted the di�erent on-stituents of a BFKL prodution kernel at NLO, in the oming setion we desribehow to alulate the inlusive prodution of jets in two di�erent environments.The �rst one is the ase of the interation between two small and perturba-tive objets, highly virtual photons, and the seond will be the ollision of twolarge and non{perturbative external partiles suh as the ones taking plae athadron{hadron olliders. 11



4 Inlusive jet prodution at LOAs MRK relies on the transverse sales of the emissions and internal lines beingof the same order it is natural to think that proesses haraterized by two largeand similar transverse momenta are the ideal environment for BFKL dynamisto show up. Moreover, as the resummation is based on perturbative degrees offreedom, these large sales assoiated to the external partiles should favor theauray of the preditions. An ideal senario is the interation between twophotons with large virtualities Q21;2 in the Regge limit s� jtj � Q21 � Q22. Thetotal ross setion for this proess has been investigated in a large number ofpapers in reent years. Here we are interested in the inlusive prodution ofa single jet in the entral region of rapidity in this proess. We will onsiderthe ase where the transverse momentum of the jet is of the same order as thevirtualities of the photons.As a starting point we review single jet prodution at LO auray. Asusual the total ross setion an be written as a onvolution of the photonimpat fators with the gluon Green's funtion, i.e.�(s) = Z d2ka2�k2a Z d2kb2�k2b �A(ka) �B(kb) Z Æ+i1Æ�i1 d!2�i � ss0�! f!(ka;kb): (26)A ommon hoie for the energy sale is s0 = jkaj jkbj whih naturally introduesthe rapidities y ~A and y ~B of the emitted partiles with momenta p ~A and p ~B sine� ss0�! = e!(y ~A�y ~B): (27)Let us remark that a hange in this sale an be treated as a rede�nition ofthe impat fators and, if s0 is hosen to depend only on ka or only on kb, thekernel as well. This treatment lies beyond LO and will be disussed in the nextsetion. The gluon Green's funtion f! orresponds to the solution of the BFKLequation !f!(ka;kb) = Æ2(ka � kb) + Z d2k K(ka;k)f!(k;kb); (28)K(ka;k) = 2!(k2a) Æ2(ka � k) +Kr(ka;k); (29)where the kernel K ontains a term related to the Reggeized gluon propagator,the trajetory !(k2a), and the real emission kernel, Kr.For the inlusive prodution of a single jet we assign to it a rapidity yJand a transverse momentum kJ , as shown in Fig. 3. In this way, if kJ =�JpA + �JpB + kJ? the orresponding rapidity is yJ = 12 ln �J�J . Using its on{shell ondition we an writekJ =rk2Js eyJpA +rk2Js e�yJpB + kJ?: (30)12
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Figure 3: Total ross setion and inlusive one jet prodution in the BFKLapproah.It is possible to single out one gluon emission by extrating its emissionprobability from the BFKL kernel. The di�erential ross setion in terms of thejet variables an then be onstruted in the following way:d�d2kJdyJ = Z d2ka2�k2a Z d2kb2�k2b �A(ka) �B(kb)� Z d2qa Z d2qb Z Æ+i1Æ�i1 d!2�i �sAJs0 �! f!(ka;qa)� V(qa;qb;kJ ; yJ) Z Æ+i1Æ�i1 d!02�i �sBJs00 �!0 f!0(�qb;�kb) (31)with the LO emission vertex beingV(qa;qb;kJ ; yJ) = K(B)r (qa;�qb) Æ(2) (qa + qb � kJ) : (32)By seleting one emission to be exlusive we have fatorized the gluon Green'sfuntion into two omponents. Eah of them onnets one of the external par-tiles to the jet vertex. In the notation of Eq. (31) the energies of these bloksare sAJ =(pA + qb)2; sBJ =(pB + qa)2: (33)In a symmetri situation, where the jet provides a hard sale as well as theimpat fators, a natural hoie for the sales is similar to that in the total ross13



setion s0 =jkaj jkJ j; s00 =jkJ j jkbj: (34)These hoies an now be related to the relative rapidity between the jet andthe external partiles. To set the ground for the NLO disussion of the nextsetion we introdue an additional integration over the rapidity � of the entralsystem:d�d2kJdyJ = Z d2qa Z d2qb Z d�� "Z d2ka2�k2a �A(ka) Z Æ+i1Æ�i1 d!2�ie!(yA��)f!(ka;qa)# V(qa;qb; �;kJ ; yJ)� "Z d2kb2�k2b �B(kb) Z Æ+i1Æ�i1 d!02�ie!0(��yB)f!0(�qb;�kb)# (35)with the LO emission vertex beingV(qa;qb; �;kJ ; yJ) = K(B)r (qa;�qb) Æ(2) (qa + qb � kJ ) Æ(� � yJ): (36)Eqs. (35) and (36) will be the starting point for the NLO jet prodution in thesymmetri on�gurations.Let us now swith to the asymmetri ase. In general we an write qa andqb as qa =�apA + �apB + qa? qb =�bpA + �bpB + qb?: (37)The strong ordering in the rapidity of emissions translates into the onditions�a � �b and �b � �a. This, together with momentum onservation qa + qb =kJ , leads us to �J = �a + �b � �a, �J = �a + �b � �b andsAJ =�Js; sBJ =�Js: (38)While the longitudinal momentum of qa(qb) is a linear ombination of pA andpB we see that only its omponent along pA(pB) matters.If the olliding external partiles provide no perturbative sale as it is thease in hadron{hadron ollisions, then the jet is the only hard sale in the proessand we have to deal with an asymmetri situation. Thus the sales s0 and s00should be hosen as k2J alone. At LO auray s0 is arbitrary and we are indeedfree to make this hoie. Then the arguments of the gluon Green's funtionsan be written as sAJs0 = 1�a ; sBJs0 = 1�b : (39)The desription in terms of these longitudinal omponents is partiularly usefulif one is interested in jet prodution in a hadroni environment. Here one an14



introdue the onept of unintegrated gluon density in the hadron. This rep-resents the probability of resolving a gluon arrying a longitudinal momentumfration x from the inoming hadron, and with a ertain transverse momentumkT . With the help of Eq. (39) a LO unintegrated gluon distribution g an bede�ned from Eq. (31) asg(x;k) = Z d2q2�q2 �P (q) Z Æ+i1Æ�i1 d!2�i x�!f!(q;k): (40)Then we an rewrite Eq. (31) asd�d2kJdyJ = Z d2qa Z dx1 Z d2qb Z dx2� g(x1;qa)g(x2;qb)V(qa; x1;qb; x2;kJ ; yJ); (41)with the LO jet vertex for the asymmetri situation beingV(qa; x1;qb; x2;kJ ; yJ) = K(B)r (qa;�qb)� Æ(2) (qa + qb � kJ ) Æ x1 �rk2Js eyJ! Æ x2 �rk2Js e�yJ! : (42)Having presented our framework for the LO ase, in both �� and hadron{hadron ollisions, we now proeed to explain in detail what orretions areneeded to de�ne our ross setions at NLO. Speial attention should be put intothe treatment of those sales with do not enter the LO disussion but are ruialat higher orders.5 Inlusive jet prodution at NLOA similar approah to that shown in Setion 4 remains valid when jet produtionis onsidered at NLO. The ruial step in this diretion is to modify the LO jetvertex of Eq. (36) and Eq. (42) to inlude new on�gurations present at NLO. Weshow how this is done in the following �rst subsetion. In the seond subsetionwe implement this vertex in the symmetri �� ase, and we repeat the stepsfrom Eq. (26) to Eq. (38), arefully desribing the hoie of energy sale at eahof the subhannels. In the third subsetion hadron{hadron sattering is takeninto onsideration, and we extend the onept of unintegrated gluon density ofEq. (40) to NLO auray. Most importantly, it is shown that a orret hoieof intermediate energy sales in this ase implies a modi�ation of the impatfators, the jet vertex, and the evolution kernel.5.1 The NLO jet vertexFor those parts of the NLO kernel responsible for one gluon prodution weproeed in exatly the same way as at LO. The treatment of those terms related15



to two partile prodution is more ompliated sine for them it is neessaryto introdue a jet algorithm. In general terms, if the two emissions generatedby the kernel are nearby in phase spae they will be onsidered as one singlejet, otherwise one of them will be identi�ed as the jet whereas the other willbe absorbed as an untagged inlusive ontribution. Hadronization e�ets inthe �nal state are negleted and we simply de�ne a one of radius R0 in therapidity{azimuthal angle spae suh that two partiles form a single jet if R12 �p(�1 � �2)2 + (y1 � y2)2 < R0. As long as only two emissions are involved thisis equivalent to the kT {lustering algorithm.To introdue the jet de�nition in the 2 ! 2 omponents of the kernel it isonvenient to start by onsidering the gluon and quark matrix elements together:�KQMRK +KQ �Q� (qa;�qb) = Z dD�2k2 Z dy2�� jA2g(qa;qb;k1;k2)j2 �(s� � s12) + jA2q(qa;qb;k1;k2)j2 �;(43)with A2P being the two partile prodution amplitudes of whih only the gluonione also ontributes to MRK. This is why a step funtion is needed to separateit from MRK. Momentum onservation implies that k1 = qa + qb � k2.The expression (43) is not omplete as it stands sine we should also inludethe MRK ontribution as it was previously done in Eq. (24):�KGG +KQ �Q� (qa;�qb) � Z dD�2k2 Z dy2 jB(qa;qb;k1;k2)j2=Z dD�2k2 Z dy2( jA2g(qa;qb;k1;k2)j2 �(s� � s12)�K(B)(qa;qa � k1)K(B)(qa � k1;�qb) 12 ��ln s�k22 � y2� ��y2 � ln k21s��+ jA2q(qa;qb;k1;k2)j2): (44)We are now ready to introdue the jet de�nition for the double emissions. The
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NLO versions of Eq. (36) and Eq. (42) then read, respetively,V(qa;qb; �;kJ ; yJ) =�K(B)r +K(v)r � (qa;�qb)���[y℄(a)+ Z dD�2k2 dy2 jB(qa;qb;kJ � k2;k2)j2 �(R0 �R12)���[y℄(b)+ 2 Z dD�2k2 dy2 jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���[y℄(); (45)V(qa; x1;qb; x2;kJ ; yJ) =�K(B)r +K(v)r � (qa;�qb)���[x℄(a)+ Z dD�2k2 dy2 jB(qa;qb;kJ � k2;k2)j2 �(R0 �R12)���[x℄(b)+ 2 Z dD�2k2 dy2 jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���[x℄(): (46)In these two expressions we have introdued the notation���[y℄(a;b) = Æ(2) (qa + qb � kJ ) Æ(� � y(a;b)); (47)���[y℄() = Æ(2) (qa + qb � kJ � k2) Æ �� � y()� ; (48)���[x℄(a;b) = Æ(2) (qa + qb � kJ ) Æ �x1 � x(a;b)1 � Æ �x2 � x(a;b)2 � ; (49)���[x℄() = Æ(2) (qa + qb � kJ � k2) Æ �x1 � x()1 � Æ �x2 � x()2 � : (50)The various jet on�gurations demand di�erent y and x on�gurations. Theseare related to the properties of the produed jet in di�erent ways depending onthe origin of the jet: if only one gluon was produed in MRK this orrespondsto the on�guration (a) in the table below, if two partiles in QMRK form a jetthen we have the ase (b), and �nally ase () if the jet is produed out of one ofthe partons in QMRK. The fator of 2 in the last term of Eq. (45) and Eq. (46)aounts for the possibility that either emitted partile an form the jet. Justby kinematis we get the expliit expressions for the di�erent x on�gurationslisted in the following table:JET y on�gurations x on�gurationsa) y(a) = yJ x(a)1 = jkJ jps eyJ x(a)2 = jkJ jps e�yJb) y(b) = yJ x(b)1 = p�ps eyJ x(b)2 = p�ps e�yJ) y() = 12 ln x()1x()2 x()1 = jkJ jps eyJ + jk2jps ey2 x()2 = jkJ jps e�yJ + jk2jps e�y2The variable � is de�ned below in Eq. (58). Due to the analogue treatmentof the emission vertex either expressed in terms of rapidities or longitudinal17



momentum frations in the remaining of this setion we will imply the sameanalysis for both. In partiular, we will not expliitly mention these argumentswhen we ome to Eqs. (68, 69).The introdution of the jet de�nition divides the phase spae into di�erentsetors. It is now needed to show that the �nal result is indeed free of anyinfrared divergenes. In the following we proeed to independently alulateseveral ontributions to the kernel to be able, in this way, to study its singularitystruture.The NLO virtual orretion to the one{gluon emission kernel, K(v), wasoriginally alulated in Ref. [7, 8, 9℄. Its expression readsK(v)r (qa;�qb) = �g4���2��1+��(1� �) 4�2(2��2�2 ���� 1�2 + �22 � 2 � �(3)�+ �0N 1� + 3�2q2a � q2b ln�q2aq2b �� ln2�q2aq2b �+ �1� nfN�� �2q2a � q2b �1� �2(q2a + q2b � 4qaqb)3(q2a � q2b)2 � ln�q2aq2b �� �26q2aq2b (qa � qb)2 + �4 (q2a + q2b)6q2aq2b(q2a � q2b)2 (q2a + q2b � 4qaqb)�); (51)with �0 = (11N � 2nf )=3, �(n) = P1k=1 k�n and � = qa + qb. �g� an beexpressed in terms of the renormalized oupling onstant g� in the MS renor-malization sheme by the relation �g2� = g2�N �(1� �) (4�)�2��. Note that theexpression for the virtual ontribution given in [4℄ laks the log squared.Those piees related to two{gluon prodution in QMRK an be rewritten interms of their orresponding matrix elements asKQMRK(qa;�qb) = Z dD�2k2 Z dy2 jA2g(qa;qb;k1;k2)j2 �(s� � s12)= g2���2�N2�(2�)D+1q2aq2b Z dD�2k2�2�(2�)D�4 Z dy2 Agluons �(s� � s12); (52)and those related to quark{antiquark prodution areKQ �Q(qa;�qb) = Z dD�2k2 Z dy2 jA2q(qa;qb;k1;k2)j2= g2���2�N2�(2�)D+1q2aq2b Z dD�2k2�2�(2�)D�4 Z dy2 Aquarks: (53)We have alulated the orresponding amplitudes, using the Mandelstam invari-
18



ants ŝ, t̂, and û, and our results areAgluons = q2aq2b(� 1̂tû + 14t̂û q2aq2bk21k22 � 14 �1� xx 1k22 t̂ + x1� x 1k21û�+ 14k21k22+ 1�"� 1̂s �2 +� 1̂t � 1̂u��1� xx k21 � x1� xk22��+ 14 � �̂s + 1���1� xx 1k22 + x1� x 1k21�� q2b4ŝ � 1(1� x)t̂ + 1xû��q2a4ŝ ��1 + x1� x k22k21 � 1̂t + �1 + 1� xx k21k22 � 1̂u�#)+ D � 24 (� (k1 � qa)2(k2 � qa)2 � k21k22t̂û �2�14  (k2 � qa)2 � x1�xk22û + Ês !� (k1 � qa)2 � 1�xx k21t̂ � Ês �);(54)Aquarks = nf4N(q2aq2bŝ� �2 +� 1̂t � 1̂u��1� xx k21 � x1� xk22����(k1 � qa)2(k2 � qa)2 � k21k22t̂û �2+12  (k2 � qa)2 � x1�xk22û + Ês !� (k1 � qa)2 � 1�xx k21t̂ � Ês �)+ nf4N3 (� (k1 � qa)2(k2 � qa)2 � k21k22t̂û �2 � q2aq2bt̂û ): (55)These expressions are in agreement with the orresponding ones obtained inRef. [4℄. The following notation has been used:x = jk1jjk1j+ jk2je�y ; (56)� = (1� x)k1 � xk2; (57)� = ŝ+�2 = �2x(1� x) +�2; (58)E = 2(2x� 1)q2a + 4�qa + 1� 2xx(1� x)�2� 2x(1� x) �(2x� 1)�2 + 2��� q2ax(1� x)�2 +�2 : (59)We now study those terms whih ontribute to generate soft and ollinear di-vergenes after integration over the two{partile phase spae. They should be19



able to anel the � poles of the virtual ontributions in Eq. (51), i.e.K(v)singular (qa;qb) = �g4���2��1+��(1� �) 4�2(��2�2 ���� 2�2�+ �0N 1�): (60)Here we identify those piees responsible for the generation of these poles.One of the divergent regions is de�ned by the two emissions with momentak1 = �1pA+�1pB + k1? and k2 = �2pA+�2pB + k2? beoming ollinear. Thismeans that, for a real parameter �, k1 ' � k2, i.e. k1? ' � k2?, �1 ' ��2 andthus �2k1? � �1k2? ' 0. Sine x = �1�1+�2 this is equivalent to the ondition� ' 0. In the ollinear region ŝ = �2x(1�x) tends to zero and the dominantontributions whih are purely ollinear areAsingulargluons ���ollinear =� q2aq2b� 2̂s + D � 216 E2ŝ2 � A(1) +A(2); (61)Asingularquarks ���ollinear = nf2N q2aq2bŝ� � nf8N E2ŝ2 : (62)The quark{antiquark prodution does not generate divergenes when k1 or k2beome soft, therefore we have that the only purely soft divergene isAsingulargluons ���soft = q2aq2b 14t̂û q2aq2bk21k22 + 14k21k22! � A(3) +A(4) ! 2A(4); (63)where we have used the property that, in the soft limit, the t̂û produt tendsto q2aq2b . We will see that these terms will be responsible for simple poles in �.The double poles will be generated by the regions with simultaneous soft andollinear divergenes. They are only present in the gluon{gluon prodution aseand an be written asAsingulargluons ���soft&ollinear = q2aq2b4ŝ �1� xx 1k22 + x1� x 1k21 ��q2aq2b4ŝ� "q2b � 1(1� x)t̂ + 1xû�+ q2a��1 + x1� x k22k21 � 1̂t + �1 + 1� xx k21k22 � 1̂u�#:= A(5) +A(6): (64)Fousing on the divergent struture it turns out that in the soft and ollinearregion the �rst line of Eq. (64), A(5), has exatly the same limit as the seondline, A(6). This is very onvenient sine we an then simply writeAsingulargluons ���soft&ollinear ! q2aq2b2ŝ �1� xx 1k22 + x1� x 1k21� = 2A(5): (65)The MRK ontribution of Eq. (44) has the form AMRK = �4A(4) and when20



added to all the other singular terms we get the expressionZ dD�2k2 Z dy2 jBs(qa;qb;k2;k1)j2 �g2���2�N2�(2�)D+1q2aq2b Z dD�2k2�2�(2�)D�4 Z dy2 nAsingulargluons �(s� � s12) +Asingularquarks o; (66)withAsingulargluons �(s� � s12) +Asingularquarks =8>>><>>>:�q2aq2b� 2̂s| {z }Gluonjoll1 + D � 216 E2ŝ2| {z }Gluonjoll2 � q2aq2b2k21k22| {z }Gluonjsoft+ q2aq2b2ŝ �1� xx 1k22 + x1� x 1k21�| {z }Gluonjsoft&oll 9>>>=>>>; �(s� � s12)+ nf2N q2aq2bŝ�| {z }Quarkjoll1 � nf8N3 E2ŝ2| {z }Quarkjoll2 :: (67)We have labeled the di�erent terms to study how eah of them produes the �poles. We will do this in Setion 6.With the singularity struture well identi�ed we now ome bak to Eqs. (45,46) and show how they are free of any divergenes. Only if the divergent termsbelong to the same on�guration this anellation an be shown analytially.With this in mind we add the singular parts of the two partile prodution ofEq. (66) in the on�guration (a) multiplied by 0 = 1��(R0�R12)��(R12�R0):V = ��K(B)r +K(v)r � (qa;�qb)+ Z dD�2k2 dy2 jBs(qa;qb;kJ � k2;k2)j2 ����(a)+ Z dD�2k2 dy2� jB(qa;qb;kJ � k2;k2)j2 ���(b)� jBs(qa;qb;kJ � k2;k2)j2 ���(a)��(R0 �R12)+ �2 Z dD�2k2 dy2 jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���()� Z dD�2k2 dy2 jBs(qa;qb;kJ � k2;k2)j2 �(R12 �R0)���(a)�: (68)The anellation of divergenes within the �rst two lines is now the same asin the alulation of the full NLO kernel. In Setion 6 we will show how the�rst two lines of Eq. (68) are free of any singularities in the form of � poles. Indoing so we will go into the details of the rôle of s�. The third and fourth lines21



are also expliitly free of divergenes sine these have been subtrated out. Thesixth line has a k1 $ k2 symmetry whih allows us to writeV = ��K(B)r +K(v)r � (qa;�qb)+ Z dD�2k2 dy2 jBs(qa;qb;kJ � k2;k2)j2 ����(a)+ Z dD�2k2 dy2� jB(qa;qb;kJ � k2;k2)j2 ���(b)� jBs(qa;qb;kJ � k2;k2)j2 ���(a)��(R0 �R12)+ 2 Z dD�2k2 dy2� jB(qa;qb;kJ ;k2)j2 �(RJ2 �R0)���()� jBs(qa;qb;kJ � k2;k2)j2 �(R12 �R0)�(jk1j � jk2j)���(a)�: (69)We an now see that the remaining possible divergent regions of the last lineare regulated by the one radius R0.It is worth noting that, apart from an overall ��2s(�2) fator, the NLO terms inthe last four lines in Eq. (69) do not arry any renormalization sale dependenesine they are �nite when � is set to zero. The situation is di�erent for the �rsttwo lines sine V ontains a logarithm of �2 in the formV = V(B)�1� �s(�2)4� �0N ln k2J�2�+�V : (70)where �V ontains the third to sixth lines and the �{independent part of the�rst two lines of (69). It is then natural to absorb this term in a rede�nitionof the running of the oupling and replae �s(�2) by �s(k2J ). For a expliitderivation of this term we refer the reader to Setion 6.Therefore we now have a �nite expression for the jet vertex suitable fornumerial integration. This numerial analysis will be performed elsewhere sinehere we are mainly onerned with the formal introdution of the jet de�nitionand the orret separation of the di�erent ontributions to the kernel.What remains to be proven is the anellation of divergenes between Eq. (60)and Eq. (66). This will be performed in Setion 6. Before doing so, in the nexttwo subsetions, we indiate how to introdue our vertex in the de�nition of thedi�erential ross setion. Espeial are must be taken in the treatment of theenergy sale in the Reggeized gluon propagators sine in the symmetri ase itis diretly related to the rapidity di�erene between subsequent emissions, as wewill show in the next subsetion, but in the asymmetri ase of hadron{hadronollisions it depends on the longitudinal momentum frations of the t{hannelReggeons. 22



5.2 Prodution of jets in �� satteringWe now have all the ingredients required to desribe the inlusive single jetprodution in a symmetri proess at NLO. To be de�nite, we onsider ��sattering with the virtualities of the two photons being large and of the sameorder. All we need is to take Eq. (31) for the di�erential ross setion as afuntion of the transverse momentum and rapidity of the jet. The vertex V tobe used is that of Eq. (69) in the representation based on rapidity variables ofEq. (45). The rapidities of the emitted partiles are the natural variables toharaterize the partoni evolution and s{hannel prodution sine we assumethat all transverse momenta are of the same order.Let us note that the rapidity di�erene between two emissions an be writtenas yi � yi+1 = ln si;i+1qk2i k2i+1 (71)whih supports the hoie sR;i;i+1 =qk2ik2i+1 in Eq. (9). This is also tehniallymore onvenient sine it simpli�es the �nal expression for the ross setion inEq. (19).In Fig. 4 we illustrate the di�erent sales partiipating in the satteringand the variables of evolution. We write down the onditions for MRK: alltransverse momenta are of similar size and muh larger than the on�ning sale,the rapidities are strongly ordered in the evolution from one external partileto the other. At eah stage of the evolution the propagation of the Reggeizedgluons, whih generates rapidity gaps, takes plae between two real emissions.There are many on�gurations ontributing to the di�erential ross setion, eahof them with a di�erent weight. Eq. (31) represents the sum of these produtionproesses.5.3 The unintegrated gluon density and jet prodution inhadron{hadron ollisionsIn this subsetion we now turn to the ase of hadron ollisions where MRK hasto be neessarily modi�ed to inlude some evolution in the transverse momenta,sine the momentum of the jet will be muh larger than the typial transversesale assoiated to the hadron.In the LO ase we have already explained that, in order to move from thesymmetri ase to the asymmetri one, it is needed to hange the energy salefrom Eq. (34) to Eq. (39). This is equivalent to hanging the desription ofthe evolution in terms of rapidity di�erenes between emissions to longitudinalmomentum frations of the Reggeized gluons in the t{hannel. Whereas inLO this hange of sales has no onsequenes, in NLO auray it leads tomodi�ations, not only of the jet emission vertex but also of the evolution23



MRK: p2~A � p2~B � k2i � k2j � �2QCD; y ~A = y0 � y1 � � � � � yn � yn+1 = y ~BpA p ~A k20 = sR;0
k2j = sR;j

pB p ~B k2n+1 = sR;n+1

q1 k21 = sR;1q2 k22 = sR;2� � �qj k2j�1 = sR;j�1qj+1 � � � k2j+1 = sR;j+1qn k2n�1 = sR;n�1qn+1 k2n = sR;n

� s0;1sR;0;1=pk20k21�! = e!(y0�y1)� s1;2sR;1;2=pk21k22�! = e!(y1�y2)� sj�1;jsR;j�1;j=pk2j�1k2j �! = e!(yj�1�yj)� sj;j+1sR;j;j+1=pk2jk2j+1�!0 = e!0(yj�yj+1)� sn�1;nsR;n�1;n=pk2n�1k2n�!0 = e!0(yn�1�yn)� sn;n+1sR;n;n+1=pk2nk2n+1�!0 = e!0(yn�yn+1)Figure 4: Momenta for 2 ! 2 + (n � 1) + jet amplitude in the symmetrion�guration with MRK. The produed jet has rapidity yJ = yj and transversemomentum kJ = kj .kt{ordered MRK:�2QCD � p2~A � k21 � : : :� k2j�1 � k2j (Jet) k2j � k2j+1 � � � � k2n � p2~B � �2QCDy ~A = y0 � y1 � : : :� yj�1 � yj � yj+1 � � � � yn � yn+1 = y ~BpA p ~Ak20 = sR;0
k2j = sR;j

pB p ~Bk2n+1 = sR;n+1

q1 k21 = sR;1q2 k22 = sR;2� � �qj k2j�1 = sR;j�1qj+1� � � k2j+1 = sR;j+1qn k2n�1 = sR;n�1qn+1 k2n = sR;n

To impat fator To kernel)�q21q2�!2 )�q2jk2j �!2 �q2j+1k2j �!02To emission vertex� s0;1sR;0;1=k21�! = e!(y0�y1) �k20q21�!2up �q21k21 �!2down� s1;2sR;1;2=k22�! = e!(y1�y2) �k21q22�!2up �q22k22 �!2down� sj�1;jsR;j�1;j=k2j �! = e!(yj�1�yj) �k2j�1q2j �!2up �q2jk2j �!2down� sj;j+1sR;j;j+1=k2j �!0 = e!0(yj�yj+1) �k2j+1q2j+1�!02down �q2j+1k2j �!02up� sn�1;nsR;n�1;n=k2n�1�!0 = e!0(yn�1�yn) �k2nq2n�!02down � q2nk2n�1�!02up� sn;n+1sR;n;n+1=k2n�!0 = e!0(yn�yn+1) �k2n+1q2n+1�!02down �q2n+1k2n �!02upFigure 5: Momenta for 2 ! 2 + (n � 1) + jet amplitude in the asymmetrion�guration with kt{ordered MRK. 24



kernels above and below the jet vertex. These new de�nitions will allow theross setion still to be written in a fatorizable way and the evolution of thegluon Green's funtion still to be desribed by an integral equation.To understand this in detail we start by writing the solution to the NLOBFKL equation iteratively, i.e.Z d2kaf!(ka;qa) = 1! 1Xj=1 "j�1Yi=1 Z d2qi 1!K(qi;qi+1)# ; (72)where q1 = ka and qj = qa. We now fous on one side of the evolution towardsthe hard sale sine the other side is similar and use Fig. 5 as a graphialreferene. Starting with the symmetri ase the di�erential ross setion for jetprodution ontains the following evolution between partile A and the jet:d�d2kJdyJ = Z d2qa Z d2ka�A(ka)2�k2a� Z d!2�if!(ka;qa) sAJpk2ak2J!! V(qa;qb;kJ ; yJ) : : : (73)In the asymmetri situation where k2J � k2a the sale pk2ak2J should bereplaed by k2J . In order to do so we rewrite the term related to the hoie ofenergy sale. To be onsistent with Fig. 5 we take kj = kJ , k0 = �ka = �q1and qj = qa. To start with it is onvenient to introdue a hain of sale hangesin every kernel:  sAJpk2ak2J !! = " jYi=1� k2ik2i�1�!2 #�sAJk2J �! ; (74)whih an alternatively be written in terms of the t{hannel momenta as sAJpk2ak2J!! = "j�1Yi=1 �q2i+1q2i �!2 #�k2Jq2a�!2 �sAJk2J �! : (75)For ompleteness note that we are indeed hanging the variable of evolutionfrom a di�erene in rapidity: sAJpk2ak2J = ey ~A�yJ (76)to the inverse of the longitudinal momentum fration, i.e.sAJk2J = 1�J : (77)This shift in sales translates into the following expression for the ross25



setion:d�d2kJdyJ = Z d!2�i ! 1Xj=1 " jYi=1 Z d2qi# �A(q1)2�q21�"j�1Yi=1 �q2i+1q2i �!2 1!K(qi;qi+1)#�k2Jq2a�!2 V(qa;qb;kJ ; yJ)�sAJk2J �! : : : (78)As we mentioned above these hanges an be absorbed at NLO in the kernelsand impat fators, we just need to perturbatively expand the integrand. Theimpat fators get one single ontribution, as an be seen in Fig. 5, and theyexpliitly hange ase�(ka) = �(ka)� 12k2a Z d2q�(B)(q)q2 K(B)(q;ka) ln q2k2a : (79)The kernels in the evolution reeive a double ontribution from the di�erentenergy sale hoies of both the inoming and outgoing Reggeons (see Fig. 5).This amounts to the following orretion:eK(q1;q2) = K(q1;q2)� 12 Z d2qK(B)(q1;q)K(B)(q;q2) ln q2q22 : (80)There is a di�erent type of term in the ase of the emission vertex where thejet is de�ned. This orretion has also two ontributions originated at the twodi�erent evolution hains from the hadrons A and B. Its expression iseV(qa;qb) = V(qa;qb)� 12 Z d2qK(B)(qa;q)V(B)(q;qb) ln q2(q� qb)2�12 Z d2qV(B)(qa;q)K(B)(q;qb) ln q2(qa � q)2 : (81)These are all the modi�ations we need to be able to write our di�erentialross setion for the asymmetri ase. The �nal expression isd�d2kJdyJ = Z d2qa Z d2ka e�A(ka)2�k2a� Z d!2�i ~f!(ka;qa)�sAJk2J �! eV(qa;qb;kJ ; yJ) : : : (82)As in the LO ase, we an use Eq. (77) to de�ne the NLO unintegrated gluondensity as g(x;k) = Z d2q e�P (q)2�q2 Z d!2�i ~f!(k;q)x�! : (83)The gluon Green's funtion ~f! is the solution to a new BFKL equation with themodi�ed kernel of Eq. (80) whih inludes the energy shift at NLO, i.e.! ~f!(ka;qa) = Æ(2) (ka � qa) + Z d2q eK(ka;q) ~f!(q;qa): (84)26



In this way the unintegrated gluon distribution follows the evolution equation�g(x;qa)� ln 1=x = Z d2q eK(qa;q) g(x;q): (85)Finally, taking into aount the evolution from the other hadron, the di�erentialross setion readsd�d2kJdyJ = Z d2qa Z d2qb g(xa;qa) g(xb;qb) eV(qa;qb;kJ ; yJ); (86)with the emission vertex taken from Eq. (81).We would like to indiate that with the presription derived in this subsetionwe managed to express the new kernels, emission vertex and impat fators asfuntions of their inoming momenta only. It is also worth mentioning thatthe proton impat fator ontains non{perturbative physis whih an only bemodeled by, e.g. �P (q) � (1� x)p1x�p2 � q2q2 +Q20�p3 ; (87)where pi are positive free parameters, with Q20 representing a momentum saleof the order of the on�nement sale. The initial x dependene in this expressionwould be of non{perturbative origin.Let us also point out that the presription to modify the kernel as in Eq. (80)was originally suggested in the �rst paper of Ref. [2℄ in the ontext of deepinelasti sattering. This new kernel an be onsidered as the �rst term in anall orders perturbative expansion due to the hange of sale. When all termsare inluded the kernel aquires improved onvergene properties and mathesollinear evolution. Details of this proedure an be found in Ref. [11℄, wherethe ollinear resummation was done in Mellin spae. In a future publiation weintend to investigate how these orretions an be phrased in momentum spae,and how they a�et the behaviour of the unintegrated gluon distribution. Forthis we will use the proedure developed in Ref. [12℄ where the resummation toall orders orresponding to the energy shift was proven to be equivalent to aBessel funtion of the �rst kind with argument depending on the strong ouplingand a double logarithm of the ratio of transverse sales.6 Canellation of divergenes and a loser lookat the separation between MRK and QMRKDuring the alulation of a NLO BFKL ross setion, both at a fully inlusivelevel and at a more exlusive one, there is a need to separate the ontribu-tions from MRK and QMRK. In order to do so we have followed Ref. [5℄ andintrodued the parameter s� in Eq. (14) and Eq. (15). In priniple, at NLOauray, our �nal results should not depend on this extra sale. In fat, as we27



have remarked earlier in our disussion of the total ross setion (after Eq. (24)),we ould have taken the limit s� ! 1: the logarithms of s� anel, and theorretions to the �nite piees die away as O(s�1� ). In the ontext of the in-lusive ross setion, however, we prefer to treat s� as a physial parameter: itseparates MRK from QMRK and, hene, annot be arbitrarily large. We willtherefore retain the dependene upon s�: in the remainder of this setion wedemonstrate that, in our inlusive ross setion, all logarithmi terms anel(analogous to Eq. (24)), and we will then leave the study of the orretionsof the order O(s�1� ) for a numerial analysis. It will also be interesting to seehow this dependene on s� ould be related to the rapidity veto introdued inRef. [13℄.Let us onsider the s� dependent terms in Eq. (66) whih are only presentin the gluon piee: g2���2�N2�(2�)D+1 !�1 Z dD�2k2 Z dy2 jBs(qa;qb;k2;k1)j2 ���s�� Z dD�2k2�2�(2�)D�4 Z dy2 Asingulargluonsq2aq2b �(s� � s12) = IVXi=I Si; (88)where we have used the numbering (I; II; III; IV ) orresponding to, respe-tively, (Gluonjoll1 ;Gluonjoll2 ;Gluonjsoft;Gluonjsoft&oll) in Eq. (67).To alulate eah of the Si terms we start by transforming the rapidityintegral into an integral over x in the form R d�y = R dxx(1�x) . We onsiders� muh larger than any of the typial transverse momenta. In the limit oflarge s� the theta funtion �(s� � ŝ) amounts to the limits k21s� + O �s�2� � and1� k22s� +O �s�2� � for the x integral.We �rstly onsider SIII whih is� Z dD�2k2�2�(2�)D�4 Z 1� k22s�k21s� dxx(1� x) 12k21k22 = ��(4�)� 1�2 �(1� �)�(�)2�(2�)��ln s��2 +  (1� �)�  (�) +  (2�)�  (1)���2�2 �� +O �s�1� � : (89)We are only interested in the logarithmi dependene on s� and hene we donot need to alulate O �s�1� � or s� independent fators.The next s� ontribution we alulate is SIV whih readsZ dD�2k2�2�(2�)D�4 Z 1� k22s�(��k2)2s� dxx(1� x) � (1� x)2k22(k2 � (1� x)�)2 + x2k22(k2 � x�)2�= Z dD�2k2�2�(2�)D�4 " 2(�� k2)2k22 ln s�k22 + 2 (�� k2)k2(�� k2)2k22pk22�2 � (�k2)2� artan �(�� k2)pk22�2 � (�k2)2 + artan �k2pk22�2 � (�k2)2!#+O �s�1� � :(90)28



The part with logarithmi s� dependene an be alulated analytially:Z dD�2k2�2�(2�)D�4 1(�� k2)2k22 ln s�k22 = �(4�)� 1�2 �(1� �)�(�)2�(2�)��ln s��2 +  (1� �)�  (�) +  (2�)�  (1)���2�2 �� : (91)It is then lear that this logarithmi s� ontribution anels against that of SIIIin Eq. (89).Let us proeed now to show that the ontribution of SI is diretly of O �s�1� �and does not ontribute with any logarithm of s�. In the relevant integral weintrodue the hange of variable k2 ! � = (1� x)�� k2 and obtainZ dD�2��2�(2�)D�4 Z 1��2s��2s� dxx(1� x) � x2(1� x)2�2(�2 + x(1� x)�2)� =Z dD�2��2�(2�)D�4 0BB� 1�2�2 � 2 ln�1 + �2+p�2(�2+4�2)2�2 ��2p�2(�2 + 4�2) 1CCA+O �s�1� � :(92)We do not write here the lengthier but similar expression whih orresponds toSII and also only ontributes to O �s�1� �.With this we have shown that the sum of di�erent terms in Eq. (88) is free oflogarithmi dependenes on s� proving, in this way, that the remaining O �s�1� �orretions vanish at large values of s�. In partiular, it is possible to take thes� ! 1 limit in order to ompletely eliminate the dependene on this sale.This is onvenient in the fully inlusive ase where it is very useful to write aMellin transform in the kT dependene of the NLO BFKL kernel.If we perform this s� !1 limit then SIII and SIV an be put together andtheir sum isSIII + SIV =Z 10 dxx(1� x) Z dD�2k2�2�(2�)D�4 � 12ŝ �1� xxk22 + x(1� x)k21�� 12k21k22 �=Z 10 dx2x(1� x) Z dD�2k2�2�(2�)D�4" (1� x)2k22(k2 � (1� x)�)2+ x2k21(k1 � x�)2 � 1k22(�� k2)2 #= 1�2 �(4�)� �(1� �)�2(1 + �)��(1 + 2�) �1� + 2 (1)� 2 (1 + 2�)���2�2 �� :(93)
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Regarding SI the integration gives usSI = �2 Z 10 dxx(1� x) Z dD�2��2�(2�)D�4 � x2(1� x)2�2(�2 + x(1� x)�2)�= �2 Z 10 dxx(1� x) � �(4�)� x(1� x)�2 �(1� �)�(�)�(1 + �) �x(1� x)�2�2 ���= � 2�2 �(4�)� �(1� �)�(1 + �)2��(2 + 2�) ��2�2 �� : (94)The ontribution from SII is more ompliated and the relevant integral an beobtained in the following way:Z dD�2��2�(2�)D�4 E28q2aq2b ŝ2 = Z dD�2��2�(2�)D�4 x2(1� x)2E28q2aq2b�4= Z dD�2��2�(2�)D�4 � x2(1� x)2(2x� 1)2�22q2b�2(x(1� x)�2 +�2)�x3(1� x)3(2x� 1)2�2q2aq2b�4(x(1� x)�2 +�2) + x4(1� x)4(2x� 1)2�4q2a2q2b�4(x(1� x)�2 +�2)2� 4x3(1� x)3(��)(�qa)q2b�2(x(1� x)�2 +�2) + 2x4(1� x)4(��)2q2aq2b�2(x(1� x)(�2 +�2)2 � (95)= �(4�)� �(2� �)�(�)�(1 + �) �x(1� x)�2���1�2� � 11� � x2(1� x)2(2x� 1)2�2q2b+ 11� � x2(1� x)2(2x� 1)2q2aq2b � 2� �1� � x2(1� x)2(2x� 1)2q2a2q2b� 21� �2 x3(1� x)3�qaq2b + 11 + � x3(1� x)3q2aq2b � (96)We now need to integrate it over x to obtain:SII = 1�2 �(4�)� �(1 + �)�(2 + �)sin(��)�(4 + 2�) ��2�2 �� : (97)This result gives the same poles in � as the result given in [4℄, but di�ers forthe �nite ontribution. To obtain all the � poles we now also inlude the quarkontributions present in Eq. (66). We denote them asZ dD�2k2�2�(2�)D�4 Z dy2 Asingularquarksq2aq2b = V IXi=V Si; (98)where the orrespondene with Eq. (67) is (V; V I)! (Quarkjoll1;Quarkjoll2).Adding everything up the sum of all the terms readsV IXi=I Si = 1�2 ��(1� �)(4�)� ��2�2 �� � 1�2 � �02N 1� + 6718 � 5nf9N � 5�26 +O (�)� :(99)30



The �nal expression for Eq. (66) is thenZ dD�2k2 Z dy2 jBs(qa;qb;kJ � k2;k2)j2 =�g4���2��1+��(1� �) 4k2J �k2J�2 �� � 2�2 � �0N 1� + 679 � 10nf9N � 5�23 +O (�)� : (100)When we ombine this result with the singular terms of Eq. (51) then we ex-pliitly prove the anellation of any singularity in our subtration proedureto introdue the jet de�nition. The �nite remainder reads��2s(�2)� 1k2J �� �04N ln k2J�2 + 112 �4� 2�2 + 5 �0N�� : (101)We have already disussed the logarithmi term due to the running of the ou-pling in Eq. (70). The non{logarithmi part is similar to that present in otheralulations involving soft gluon resummations [14℄ where terms of the form��s (1 + S ��s) (102)appear and o�er the possibility to hange from the MS renormalization shemeto the so{alled gluon{bremsstrahlung (GB) sheme by shifting the position ofthe Landau pole, i.e. �GB = �MS exp�S 2N�0 �: (103)The fator S di�ers from ours in the �2 term:S = 112 �4� �2 + 5 �0N� : (104)The origin of this disrepany lies in the fat that we used the simplest formof subtration proedure. In the Appendix we suggest a di�erent subtrationterm whih is more ompliated in the sense that it substrats a larger portionof the matrix element in addition to the infrared divergent piees. When this isdone and we put together the divergent piees of Eq. (51) and the seond lineof Eq. (119) then we reover the same S term.7 ConlusionsIn this paper we have extended the NLO BFKL alulations to derive a NLOjet prodution vertex in kT {fatorization. Our proedure was to `deonstrut'the NLO BFKL kernel to introdue a jet de�nition at NLO in a onsistentway. After a areful study of the di�erent energy sales and ontributions tothe kernel we were able to show the infrared �niteness of this jet vertex and itsdependene on the sale s�, whih separates MRK from QMRK. As the entral31



result of this paper, we have de�ned the jet prodution vertex (69) in terms oflongitudinal momentum frations, and we have expliitly given the neessarysubtration, both at the matrix element level (67) as well as integrated overthe orresponding phase spae (100). Our alulations also suggest that thenatural sale for the running of the oupling at the jet vertex is the square ofthe transverse momentum of the jet (70). We have shown how this vertex anbe used in the ontext of �� or hadron{hadron sattering (86) to alulateinlusive single jet ross setions. For this purpose we have formulated, on thebasis of the NLO BFKL equation, a NLO unintegrated gluon density valid inthe small{x regime.In our analysis we have been areful to retain the dependene upon the en-ergy sale s� whih appears at NLO auray and separates multi{Regge kine-matis from quasi{multi{Regge kinematis. In the NLO alulation of the totalross setion, one may be tempted to take the limit s� !1, thus disregardingthe 1=s� orretions to the NLO BFKL kernel. However, when disussing inlu-sive (multi-) jet prodution one has to remember that s� has a onrete physialmeaning: it denotes the lower uto� of rapidity gaps and thus diretly entersthe rapidity distribution of multi{jet �nal states. In a self{onsistent desriptionthen also the evolution of the unintegrated gluon density has to depend uponthis sale.Hene we are well prepared for our next step, the numerial study of singleor multiple jet prodution in hadron{hadron ollisions at the LHC. One issueto be overed will be the question of handling the running of oupling. Furtherappliations of our NLO kT {formalism inlude W and Z as well as heavy avorprodution in the small{x region. Compared to the results presented in thispaper, these appliations require the alulation of further prodution verties;however, for the treatment of the di�erent sales and of the unintegrated gluondensity all basi ingredients have been olleted in this paper.Aknowledgements: A.S.V. thanks the Alexander{von{Humboldt Founda-tion for �nanial support. F.S. is supported by the Graduiertenkolleg \Zuk�unftigeEntwiklungen in der Teilhenphysik". Helpful disussions with V. S. Fadin andL. N. Lipatov are gratefully aknowledged.A Alternative subtration termIn this Appendix we present an alternative subtration term whih does notmake use of the simpli�ations A(3) + A(4) ! 2A(4) and A(5) + A(6) ! 2A(5)whih we used in Eqs. (63, 65). These limits are valid in the kinemati regionsleading to IR{divergenes and hene they do provide the orret � poles. How-ever, they also alter the �nite terms. Here we want to study also this �nitepart as aurately as possible and hene we do not take these limits but use theomplete sum A(1) +A(2) +A(3) +A(4) +A(5) +A(6) + AMRK (105)32



as the gluoni subtration term.The full gluoni matrix element written in Eq. (54) ontains spurious UV{divergenes whih are anelled when ombined with the MRK ontribution.One fourth of the MRK ontribution anels the UV{divergene ofA(4) while an-other fourth anels that of A(6). The remaining half anels the UV{divergeneof two terms present in Eq. (54):A(7) �� q2aq2b4 �1� xx 1k22 t̂ + x1� x 1k21û� (106)A(8) �q2aq2b4� �1� xx 1k22 + x1� x 1k21� ; (107)whih are IR{�nite and hene so far not inluded in the subtration term.By doubling A(4) and A(5) in the subtration term onstruted in Eq. (67)also their spurious UV{divergenes are doubled and thus ompletely anelledby the MRK ontribution. But Eq. (105) so far only ontains half of the spu-rious UV{divergenes of the full matrix element in suh a way that half of theMRK ontribution is not ompensated. Therefore a subtration term based onEq. (105) whih is also free from spurious UV{divergenes should also inludeA(7) and A(8) and readseAsingulargluons = A(1) +A(2) +A(3) +A(4) +A(5) +A(6) +AMRK +A(7) +A(8)= A(1) +A(2) +A(3) + �A(5) �A(4)�+A(6) + AMRK2 +A(7) +A(8):(108)If we now de�ne S(3;6;7;8) and SMRK as we did in Eq. (88) we get a new integratedsubtration term from the previous Eq. (100) by replaingSIII + SIV = 1�2 ��(1� �)(4�)� ��2�2 �� � 1�2 � 5�26 +O (�)� (109)with 12 (SIII + SIV ) + S(3) + S(6) + SMRK2 + S(7) + S(8): (110)The results for S(3) and S(6) an be easily obtained from Eqs. (C.43) and (C.40)
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of Ref. [15℄:S(3) = 1�2 ��(1� �)(4�)� ��2�2 �� " 12�2 + 12� ln q2aq2b�4 � �212 + 14 ln2 q2aq2b+ q2aq2b��(qa � qb)��2(qa � qb)2 (12 ln�q2aq2b � ln� q2aq2b�4(q2a + q2b)4�� Li2��q2aq2b �+ Li2��q2bq2a�)� q2aq2b2  1� ��(qa � qb)�2�2(qa � qb)2 !��Z 10 � Z 11 � dz ln� (zqa)2q2b �(qb + zqa)2 +O (�)#; (111)S(6) = 1�2 ��(1� �)(4�)� ��2�2 �� � 1�2 � �26 +O (�)� : (112)Due to the UV{singularity of AMRK we regularize the x integration by a uto�Æ to obtainSMRK = � Z 1�ÆÆ dxx(1� x) Z dD�2k2�2�(2�)D�4 1k22(�� k2)2= 1�2 ��(1� �)(4�)� ��2�2 �� �2(�)�(2�)2 ln Æ1� Æ : (113)Making use of 2qak1�q2a = t̂+k21=x we an deompose Eq. (C.41) of Ref. [15℄into one integration very similar to that of SMRK and another one whih an betransformed to give S(7).S(7) = 1�2 ��(1� �)(4�)� ��2�2 �� "� 12 �2(�)�(2�) ln Æ1� Æ � 12�2 � 12� ln q2aq2b�4� 14 ln2 q2aq2b + �212 +O (�)#: (114)

34



The two parts forming A(8) an be obtained from eah other by the exhangek1 $ k2 and we only need to double the alulation of one:S(8) =2 Z 1�ÆÆ dxx(1� x) Z dD�2k1�2�(2�)D�4 x4(1� x) 1�k21 (115)=2 Z 1�ÆÆ dxx(1� x) Z dD�2k1�2�(2�)D�4� 14 Z 10 d� x2n[k1 � �x�℄2 + �(1� �)x2�2 + �x(1� x)�2o2 (116)=12 ��(1� �)(4�)� 1�2 ��2�2 �� Z 1�ÆÆ dx 11� xBx(�; �) (117)= 1�2 ��(1� �)(4�)� ��2�2 �� ��12 �2(�)�(2�) ln Æ � 12�2 � �212 +O (�)� : (118)When we add up these new ontributions the spurious UV{divergenes indeedanel and we an safely take the Æ ! 0 limit. Furthermore, the new subtrationterm has the same pole struture and only di�erent �nite parts when omparedto that in Eq. (67) and its integrated form in Eq. (100). To omplete thealulation we ombine it with the orresponding unmodi�ed quark part andobtainZ dD�2k2 Z dy2 ��� eBs(qa;qb;kJ � k2;k2)���2 =�g4���2��1+��(1� �) 4k2J �k2J�2��( 2�2 � �0N 1� + 679 � 10nf9N � 4�23+2q2aq2b��(qa � qb)��2(qa � qb)2 "12 ln�q2aq2b � ln� q2aq2b�4(q2a + q2b)4��Li2��q2aq2b �+ Li2 ��q2bq2a�#�q2aq2b  1� ��(qa � qb)�2�2(qa � qb)2 !�Z 10 � Z 11 � dz ln� (zqa)2q2b �(qb + zqa)2 +O (�)):(119)Referenes[1℄ L.N. Lipatov, Sov. J. Nul. Phys. 23, 338 (1976); V. S. Fadin, E.A. Kuraevand L.N. Lipatov, Phys. Lett. B 60, 50 (1975), Sov. Phys. JETP 44, 443(1976), Sov. Phys. JETP 45, 199 (1977); I. I. Balitsky and L.N. Lipatov,Sov. J. Nul. Phys. 28, 822 (1978), JETP Lett. 30, 355 (1979).[2℄ V.S. Fadin, L.N. Lipatov, Phys. Lett. B 429, 127 (1998); G. Camii,M. Ciafaloni, Phys. Lett. B 430, 349 (1998).35
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